All-Pairs of Shortest paths

1. Let $G(V, E)$ be a directed unweighted graph with n nodes. Show that in $O\left(n^{w} \log n\right)$ time it is possible to compute a matrix $C=\left(c_{i j}\right)$ such that $\delta(i, j) \leq c_{i j} \leq(1+\epsilon) \delta(i, j)$, for any $\epsilon>0$.
2. The diameter of a graph is the longest shortest path in the graph. Let $G(V, E)$ be a directed unweighted graph with n nodes. Show that it is possible to find the diameter of G in $O\left(n^{w} \log ^{2} n\right)$ time.
3. Let A and B be two $n \times n$ boolean matrices. Show how to find witnesses to all entries in $A B$ that have only a single witness. What is the running time of your algorithm.
4. Let A be the the adjacency matrix of an unweighted undirected graph. Suppose that it is possible to compute in $M(n)+O\left(n^{2}\right)$ time a boolean matrix such that entry (i, j) is 1 if and only if the distance between i and j is odd. Show that it is possible to compute the distance matrix of the graph represented by A in $M(n) \log n+O\left(n^{2} \log n\right)$ time.
5. Show how to implement Seidel's algorithm using only boolean matrix multiplication.
