February 22, 2011
Due date: March 24, 2011.

Final exam in Advanced Algebra 83-804

General rules: You are supposed to solve these problems alone without an external help or a cooperation with fellow students. Please write solutions clearly (preferably type) and submit to me via email (listed on my homepage). Try to find short solutions. All statements should be explained. I might ask to explain unclear passages.
The maximal grade is 100 .

1. Let p be a prime. Prove that \mathbb{F}_{p}^{x} is a cyclic group (here $\mathbb{F}_{p}^{x}=\mathbb{F}_{p} \backslash \overline{0}$ is the multiplicative group of the finite field with p elements; another notation we used for \mathbb{F}_{p} is \mathbb{Z}_{p}).
Here are steps to follow:
a) (15 pts .) Let \mathbb{Z}_{n} be the cyclic group of order $n>1$. Show that if $d \mid n$ then there is the unique subgroup $C_{d} \subset \mathbb{Z}_{n}$ of order d (i.e., $\left|C_{d}\right|=d$). Show that the number of generators of C_{d} is equal to $\phi(d)$ (ϕ is the Euler function).
Deduce from this the Gauss identity $n=\sum_{d \mid n} \phi(d)$.
b) (15 pts) Let H be a finite group of order n such that for any $d \mid n$ the set $H_{d} \subset H$ of elements $x \in H$ satisfying $x^{d}=1$ have at most d elements. Prove that H is cyclic. (Hint: use the Gauss identity from a), and the notion of the order of an element in a group.)
c) (15 pts.) Deduce that \mathbb{F}_{p}^{x} is cyclic by applying Lagrange theorem on number of roots of polynomials over \mathbb{F}_{p}.
d) (5 pts.) How many generators are there in the group \mathbb{F}_{p}^{x} ?

Bonus problems: $1 \frac{1}{2}$. (10 pts.) Prove that $\mathbb{Z}_{p^{2}}^{x}$ is cyclic. (Hint: use the fact that \mathbb{Z}_{p}^{x} is cyclic, i.e., it is generated by an integer $g \in \mathbb{Z}$, and try to correct it (if needed!) in order to find $g^{\prime} \in \mathbb{Z}$ generating $\mathbb{Z}_{p^{2}}^{x}$.)
$1 \frac{3}{4}$. (15 pts .) Check that the proof you constructed in a-b-c in fact proves the following:
Let $H \subset F^{x}$ be a finite subgroup of the multiplicative group of a field F (finite or infinite).
Assume that the order $|H|=p^{n}$ for some prime p and integer $n \geq 1$. Then H is cyclic.
(In fact one can prove that, any finite subgroup of a multiplicative group of a field (finite or infinite) is cyclic.)
2. Let p be a prime number, and $G L\left(2, \mathbb{F}_{p}\right)$ be the group of invertible 2×2 matrices with elements in the field \mathbb{F}_{p}. Consider the following subgroup (called the affine group)

$$
\operatorname{Aff}(p)=\left\{\left.\left(\begin{array}{cc}
a & b \\
& 1
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{p}^{x}, b \in \mathbb{F}_{p}\right\} \subset G L\left(2, \mathbb{F}_{p}\right)
$$

The operation in the group $\operatorname{Aff}(p)$ is the usual multiplication of matrices.
a) (15 pts.) Prove that $\operatorname{Aff}(p)$ is solvable. Namely, there are subgroups $G_{1} \subset G_{2} \subset$ $\operatorname{Aff}(p)$ such that G_{1} is normal in G_{2}, G_{2} is normal in $\operatorname{Aff}(p)$, and quotient groups G_{2} / G_{1} and $\operatorname{Aff}(p) / G_{2}$ are abelian.
b) (15 pts) Let G be a group, and let $a \in G$ be an element.

The set $C_{a}=\left\{g a g^{-1} \mid g \in G\right\} \subset G$ of elements is called the conjugacy class of a.
Compute conjugacy classes of $\operatorname{Aff}(p)$ and their sizes.
c) (10 pts.) Let $g \in \mathbb{F}_{p}^{x}$ be a generator for the multiplicative group of the field \mathbb{F}_{p} (proven to exist in problem 1). Prove that the set

$$
S=\left\{\left(\begin{array}{ll}
g & \\
& 1
\end{array}\right),\left(\begin{array}{ll}
g^{-1} & \\
& 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
& 1
\end{array}\right)\right\}
$$

is a symmetric generating set for $\operatorname{Aff}(p)$.
d) (10 pts.) Construct the Cayley graph for $(\operatorname{Aff}(p), S)$ with $p=5$. (Hint: organize elements of $\operatorname{Aff}(p)$ in groups.)
Bonus problems: $2 \frac{1}{2}$. (5 pts.) Let p be a prime. Consider the subgroup $\left(\mathbb{F}_{p}^{x}\right)^{2}=\left\{a^{2} \mid \in\right.$ $\left.a \in \mathbb{F}_{p}^{x}\right\}$ consisting of squares in the multiplicative group \mathbb{F}_{p}^{x}. Use results from problem 1 to compute the order of the factor group $\left|\mathbb{F}_{p}^{x} /\left(\mathbb{F}_{p}^{x}\right)^{2}\right|$.
$2 \frac{3}{4}$. (5 pts.) Use the problem $2 \frac{1}{2}$. to determine conjugacy classes in the special affine group

$$
S A f f(p)=\left\{\left.\left(\begin{array}{cc}
a & b \\
& a^{-1}
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{p}^{x}, b \in \mathbb{F}_{p}\right\} \subset S L\left(2, \mathbb{F}_{p}\right) .
$$

