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Abstract

We present a family of square matrices which are asymmetric
variants of Walsh-Hadamard matrices. They originate in the study
of character formulas, and provide a handy tool for translation of
statements about permutation statistics to results in representation
theory, and vice versa. They turn out to have many fascinating
properties.
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µ-unimodal permutations

• A sequence (a1, . . . , an) of distinct positive integers is
unimodal if there exists 1 ≤ m ≤ n such that

a1 > a2 > . . . > am < am+1 < . . . < an.

• Let µ = (µ1, . . . , µt) be a composition of n. A sequence of n
positive integers is µ-unimodal if the first µ1 integers form a
unimodal sequence, the next µ2 integers form a unimodal
sequence, and so on.

• A permutation π ∈ Sn is µ-unimodal if the sequence
(π(1), . . . , π(n)) is µ-unimodal.
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µ-unimodal permutations, descent set

• Let Uµ be the set of all µ-unimodal permutations in Sn.

• Example: n = 10, µ = (3, 3, 4).

π = (4, 2, 10, 9, 7, 6, 5, 3, 1, 8) ∈ Uµ
| µ1 | µ2 | µ3 |

• The descent set of a permutation π ∈ Sn is

Des(π) := {i : π(i) > π(i + 1)}.

• Example: Des(π) = {1, 3, 4, 5, 6, 7, 8}
• Denote I (µ) := {1, . . . , n} \ {µ1, µ1 + µ2, µ1 + µ2 + µ3, . . .}
• Example: I (µ) = {1, . . . , 10} \ {3, 6, 10} = {1, 2, 4, 5, 7, 8, 9}

Des(π) ∩ I (µ) = {1, 4, 5, 7, 8}
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Formula 1: irreducible characters

Let λ and µ be partitions of n, let χλ be the character of the
irreducible Sn-representation corresponding to λ, and let χλµ be its
value on a conjugacy class of cycle type µ.

Theorem (Roichman ’97)

χλµ =
∑

π∈C∩Uµ

(−1)|Des(π)∩I (µ)|,

where C is any Knuth class of shape λ.
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Formula 2: coinvariant algebra, homogeneous component

Let χ(k) be the Sn-character corresponding to the symmetric group
action on the k-th homogeneous component of its coinvariant

algebra, and let χ
(k)
µ be its value on a conjugacy class of cycle type

µ.

Theorem (A-Postnikov-Roichman, ’00)

χ(k)
µ =

∑
π∈L(k)∩Uµ

(−1)|Des(π)∩I (µ)|,

where L(k) is the set of all permutations of length k in Sn.
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Formula 3: Gelfand model

A complex representation of a group or an algebra A is called a
Gelfand model for A if it is equivalent to the multiplicity free direct
sum of all irreducible A-representations. Let χG be the
corresponding character, and let χG

µ be its value on a conjugacy
class of cycle type µ.

Theorem (A-Postnikov-Roichman, ’08)

The character of the Gelfand model of Sn at a conjugacy class of
cycle type µ is equal to

χG
µ =

∑
π∈Invn∩Uµ

(−1)|Des(π)∩I (µ)|,

where Invn := {σ ∈ Sn : σ2 = id} is the set of all involutions in Sn.
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Inverse formulas?

Question
Are these formulas invertible?
In other words: to what extent do the character values χ∗µ (∀µ)
determine the distribution of descent sets?
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Matrices
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Subsets as indices

Definition
Let Pn be the power set (set of all subsets) of {1, . . . , n}, with the
anti-lexicographic linear order: for I , J ∈ Pn, I 6= J, let m be the
largest element in the symmetric difference
I4J := (I ∪ J) \ (I ∩ J), and define: I < J ⇐⇒ m ∈ J.

Example

The linear order on P3 is

∅ < {1} < {2} < {1, 2} < {3} < {1, 3} < {2, 3} < {1, 2, 3}.

Pn will index the rows and columns of our matrices.
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Walsh-Hadamard matrices

The Walsh-Hadamard matrix Hn of order 2n has entries

hI ,J := (−1)|I∩J| (∀I , J ∈ Pn).

Example

H1 =

(
1 1
1 −1

)

H2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 1 1

 = H⊗21

Ht
n = Hn HnHt

n = 2nI2n
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Prefixes and runs

Definition
The prefix of length p of an interval {m + 1, . . . ,m + `} is the
interval {m + 1, . . . ,m + p} (0 ≤ p ≤ `).

Definition
For I ∈ Pn let I1, . . . , It be the sequence of runs (maximal
consecutive intervals) in I .

Example

For I = {1, 2, 4, 5, 6, 8, 10} ∈ P10:
I1 = {1, 2}, I2 = {4, 5, 6}, I3 = {8}, I4 = {10}.
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The matrices A and B

Definition
For I ∈ Pn let I1, . . . , It be the runs in I . Define, for any J ∈ Pn:

aI ,J :=

{
(−1)|I∩J|, if Ik ∩ J is a prefix of Ik for each k ;

0, otherwise.

An := (aI ,J)I ,J∈Pn , with Pn ordered as above.

An auxiliary matrix:

bI ,J :=


(−1)|I∩J|, if Ik ∩ J is a prefix of Ik for each k,

and n 6∈ I \ J;

0, otherwise.

Bn := (bI ,J)I ,J∈Pn .
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A and B (examples)

A1 = (1) B1 = (1)

A1 =

(
1 1
1 −1

)
B1 =

(
1 1
0 −1

)

A2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 0 1

 B2 =


1 1 1 1
1 −1 1 −1
0 0 −1 −1
0 0 0 1


∅
{1}
{2}
{1, 2}

↑
I = {1, 2}, J = {2}, I ∩ J = {2} is not a prefix of I

At
n 6= An AnAt

n 6= 2nI2n (n ≥ 2)



1. Character formulas 2. Matrices 3. Back to characters

A and B (examples)

A1 = (1) B1 = (1)

A1 =

(
1 1
1 −1

)
B1 =

(
1 1
0 −1

)

A2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 0 1

 B2 =


1 1 1 1
1 −1 1 −1
0 0 −1 −1
0 0 0 1


∅
{1}
{2}
{1, 2}

↑
I = {1, 2}, J = {2}, I ∩ J = {2} is not a prefix of I

At
n 6= An AnAt

n 6= 2nI2n (n ≥ 2)



1. Character formulas 2. Matrices 3. Back to characters

A and B (examples)

A1 = (1) B1 = (1)

A1 =

(
1 1
1 −1

)
B1 =

(
1 1
0 −1

)

A2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 0 1

 B2 =


1 1 1 1
1 −1 1 −1
0 0 −1 −1
0 0 0 1


∅
{1}
{2}
{1, 2}

↑
I = {1, 2}, J = {2}, I ∩ J = {2} is not a prefix of I

At
n 6= An AnAt

n 6= 2nI2n (n ≥ 2)



1. Character formulas 2. Matrices 3. Back to characters

A and B (examples)

A1 = (1) B1 = (1)

A1 =

(
1 1
1 −1

)
B1 =

(
1 1
0 −1

)

A2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 0 1

 B2 =


1 1 1 1
1 −1 1 −1
0 0 −1 −1
0 0 0 1


∅
{1}
{2}
{1, 2}

↑
I = {1, 2}, J = {2}, I ∩ J = {2} is not a prefix of I

At
n 6= An AnAt

n 6= 2nI2n (n ≥ 2)



1. Character formulas 2. Matrices 3. Back to characters

A and B (examples)

A1 = (1) B1 = (1)

A1 =

(
1 1
1 −1

)
B1 =

(
1 1
0 −1

)

A2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 0 1

 B2 =


1 1 1 1
1 −1 1 −1
0 0 −1 −1
0 0 0 1


∅
{1}
{2}
{1, 2}

↑
I = {1, 2}, J = {2}, I ∩ J = {2} is not a prefix of I

At
n 6= An AnAt

n 6= 2nI2n (n ≥ 2)



1. Character formulas 2. Matrices 3. Back to characters

Recursion

Lemma

An =

(
An−1 An−1
An−1 −Bn−1

)
(n ≥ 1)

with A0 = (1), and

Bn =

(
An−1 An−1

0 −Bn−1

)
(n ≥ 1)

with B0 = (1).

For comparison:

Hn =

(
Hn−1 Hn−1
Hn−1 −Hn−1

)
(n ≥ 1)

with H0 = (1).
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Determinant

Theorem
An and Bn are invertible for all n ≥ 0.

In fact,

det(An) = (n + 1) ·
n∏

k=1

k2n−1−k (n+4−k) (n ≥ 2)

while det(A0) = 1 and det(A1) = −2, and

det(Bn) =
n∏

k=1

k2n−1−k (n+2−k) (n ≥ 2)

while det(B0) = 1 and det(B1) = −1.

For comparison,

det(Hn) = 22
n−1n (n ≥ 2)

with det(H0) = 1 and det(H1) = −2.
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Möbius inversion
Let Zn be the zeta matrix of the poset Pn with respect to set
inclusion:

zI ,J :=

{
1, if I ⊆ J;

0, otherwise.

Then

Zn =

(
Zn−1 Zn−1

0 Zn−1

)
(n ≥ 1)

with Z0 = (1). Its inverse is the Möbius matrix Mn = Z−1n , with
entries mI ,J defined by

mI ,J :=

{
(−1)|J\I |, if I ⊆ J;

0, otherwise.

It satisfies

Mn =

(
Mn−1 −Mn−1

0 Mn−1

)
(n ≥ 1)

with M0 = (1).
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AM and BM

Denote now AMn := AnMn, BMn := BnMn and HMn := HnMn. It
follows that

AMn =

(
AMn−1 0
AMn−1 −(AMn−1 + BMn−1)

)
(n ≥ 1)

with AM0 = (1) and

BMn =

(
AMn−1 0

0 −BMn−1

)
(n ≥ 1)

with BM0 = (1), as well as

HMn =

(
HMn−1 0
HMn−1 −2HMn−1

)
(n ≥ 1)

with HM0 = (1).
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Determinant computation (1)

By the BM recursion,

det(BMn) = det(AMn−1) det(−BMn−1) (n ≥ 1).

Now Mn is an upper triangular matrix with 1-s on its diagonal, so
that

det(Mn) = 1.

We conclude that

det(Bn) = δn−1 det(An−1) det(Bn−1) (n ≥ 1),

where

δn = (−1)2
n

=

{
−1, if n = 0;

1, otherwise.
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Determinant computation (2)
Similarly, for any scalar t and n ≥ 1,

AMn + tBMn =

(
(t + 1)AMn−1 0

AMn−1 −AMn−1 − (t + 1)BMn−1

)
and a similar argument yields

det(An + tBn) = δn−1 det((t + 1)An−1) det(An−1 + (t + 1)Bn−1)

It follows that

det(An) =

(
n∏

k=1

δn−k det(kAn−k)

)
· det(A0 + nB0) =

= −(n + 1) ·
n∏

k=1

k2n−k ·
n∏

k=1

det(An−k) (n ≥ 1).

Since A0 = (1) it follows that det(An) 6= 0 for any nonnegative
integer n.
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Determinant computation (3)
The solution to this recursion, with initial value det(A1) = −2, is

det(An) = (n + 1) ·
n∏

k=1

k2n−1−k (n+4−k) (n ≥ 2).

The BM recursion, with initial value det(B1) = −1, now yields

det(Bn) =
n∏

k=1

k2n−1−k (n+2−k) (n ≥ 2).

For comparison,

det(Hn) = 22
n−1

det(Hn−1)2 (n ≥ 2)

with initial value det(H1) = −2, so that

det(Hn) = 22
n−1n (n ≥ 2).
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HM entries

HM3 =



1 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0
1 0 −2 0 0 0 0 0
1 −2 −2 4 0 0 0 0
1 0 0 0 −2 0 0 0
1 −2 0 0 −2 4 0 0
1 0 −2 0 −2 0 4 0
1 −2 −2 4 −2 4 4 −8



Lemma

• Zero pattern: (HMn)I ,J 6= 0 ⇐⇒ J ⊆ I

• Signs: (HMn)I ,J 6= 0 =⇒ sign((HMn)I ,J) = (−1)|J|

• Absolute values: (HMn)I ,J 6= 0 =⇒ |(HMn)I ,J | = 2|J|
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HM entries

HM3 =



1 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0
1 0 −2 0 0 0 0 0
1 −2 −2 4 0 0 0 0
1 0 0 0 −2 0 0 0
1 −2 0 0 −2 4 0 0
1 0 −2 0 −2 0 4 0
1 −2 −2 4 −2 4 4 −8


Lemma

• Zero pattern: (HMn)I ,J 6= 0 ⇐⇒ J ⊆ I

• Signs: (HMn)I ,J 6= 0 =⇒ sign((HMn)I ,J) = (−1)|J|

• Absolute values: (HMn)I ,J 6= 0 =⇒ |(HMn)I ,J | = 2|J|
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HM entries

HM3 =



1 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0
1 0 −2 0 0 0 0 0
1 −2 −2 4 0 0 0 0
1 0 0 0 −2 0 0 0
1 −2 0 0 −2 4 0 0
1 0 −2 0 −2 0 4 0
1 −2 −2 4 −2 4 4 −8


Lemma

• Zero pattern: (HMn)I ,J 6= 0 ⇐⇒ J ⊆ I

• Signs: (HMn)I ,J 6= 0 =⇒ sign((HMn)I ,J) = (−1)|J|

• Absolute values: (HMn)I ,J 6= 0 =⇒ |(HMn)I ,J | = 2|J|
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HM entries

HM3 =



1 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0
1 0 −2 0 0 0 0 0
1 −2 −2 4 0 0 0 0
1 0 0 0 −2 0 0 0
1 −2 0 0 −2 4 0 0
1 0 −2 0 −2 0 4 0
1 −2 −2 4 −2 4 4 −8


Lemma

• Zero pattern: (HMn)I ,J 6= 0 ⇐⇒ J ⊆ I

• Signs: (HMn)I ,J 6= 0 =⇒ sign((HMn)I ,J) = (−1)|J|

• Absolute values: (HMn)I ,J 6= 0 =⇒ |(HMn)I ,J | = 2|J|
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AM entries (1)

AM3 =



1 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0
1 0 −2 0 0 0 0 0
1 −2 −1 3 0 0 0 0
1 0 0 0 −2 0 0 0
1 −2 0 0 −2 4 0 0
1 0 −2 0 −1 0 3 0
1 −2 −1 3 −1 2 1 −4



Theorem

• Zero pattern: (AMn)I ,J 6= 0 ⇐⇒ J ⊆ I

• Signs: (AMn)I ,J 6= 0 =⇒ sign((AMn)I ,J) = (−1)|J|

• Absolute values: ???
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AM entries (1)

AM3 =



1 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0
1 0 −2 0 0 0 0 0
1 −2 −1 3 0 0 0 0
1 0 0 0 −2 0 0 0
1 −2 0 0 −2 4 0 0
1 0 −2 0 −1 0 3 0
1 −2 −1 3 −1 2 1 −4


Theorem

• Zero pattern: (AMn)I ,J 6= 0 ⇐⇒ J ⊆ I

• Signs: (AMn)I ,J 6= 0 =⇒ sign((AMn)I ,J) = (−1)|J|

• Absolute values: ???
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AM entries (1)

AM3 =



1 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0
1 0 −2 0 0 0 0 0
1 −2 −1 3 0 0 0 0
1 0 0 0 −2 0 0 0
1 −2 0 0 −2 4 0 0
1 0 −2 0 −1 0 3 0
1 −2 −1 3 −1 2 1 −4


Theorem

• Zero pattern: (AMn)I ,J 6= 0 ⇐⇒ J ⊆ I

• Signs: (AMn)I ,J 6= 0 =⇒ sign((AMn)I ,J) = (−1)|J|

• Absolute values: ???
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AM entries (1)

AM3 =



1 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0
1 0 −2 0 0 0 0 0
1 −2 −1 3 0 0 0 0
1 0 0 0 −2 0 0 0
1 −2 0 0 −2 4 0 0
1 0 −2 0 −1 0 3 0
1 −2 −1 3 −1 2 1 −4


Theorem

• Zero pattern: (AMn)I ,J 6= 0 ⇐⇒ J ⊆ I

• Signs: (AMn)I ,J 6= 0 =⇒ sign((AMn)I ,J) = (−1)|J|

• Absolute values: ???
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Dispersion

HMn AMn
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AM entries (2)

Theorem

• Zero pattern: (AMn)I ,J 6= 0 ⇐⇒ J ⊆ I

• Signs: (AMn)I ,J 6= 0 =⇒ sign((AMn)I ,J) = (−1)|J|

• Absolute values:

(AMn)I ,J 6= 0 =⇒ |(AMn)I ,J | =
t∏

k=1

(|Jk |+ 1)δk (I )

where J1, . . . , Jt are the runs in J and, for
Jk = {mk + 1, . . . ,mk + `k} (1 ≤ k ≤ t):

δk(I ) :=

{
0, if mk ∈ I ;

1, otherwise.
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Diagonal and last row

Corollary

• All entries in the diagonal and last row of AMn are non-zero.

• Diagonal:

|(AMn)J,J | =
t∏

k=1

(|Jk |+ 1)

• Last row:

|(AMn)[n],J | =

{
|J1|+ 1, if 1 ∈ J;

1, otherwise.

• Each nonzero entry (AMn)I ,J divides the corresponding
diagonal entry (AMn)J,J and is divisible by the corresponding
last row entry (AMn)[n],J .
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Diagonal and last row (example)

AM3 =



1 0 0 0 0 0 0 0

1 −2 0 0 0 0 0 0

1 0 −2 0 0 0 0 0

1 −2 −1 3 0 0 0 0

1 0 0 0 −2 0 0 0

1 −2 0 0 −2 4 0 0

1 0 −2 0 −1 0 3 0

1 −2 −1 3 −1 2 1 −4


I = {1, 2}

I = {1, 2, 3}

↑
J = {1, 2}
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Diagonal and last row (example)

AM3 =



1 0 0 0 0 0 0 0

1 −2 0 0 0 0 0 0

1 0 −2 0 0 0 0 0

1 −2 −1 3 0 0 0 0

1 0 0 0 −2 0 0 0

1 −2 0 0 −2 4 0 0

1 0 −2 0 −1 0 3 0

1 −2 −1 3 −1 2 1 −4

 I = {2, 3}
I = {1, 2, 3}

↑
J = {2, 3}
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Row sums

Lemma

• The sum of all entries in row I of AMn (or HMn) is (−1)|I |.

• The sum of absolute values of all entries in row I of AMn is

t∏
k=1

(2|Ik |+1 − 1).

In HMn the sum is 3|I |.
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Column sums and square diagonal entries

Theorem

• The sum of absolute values of all the entries in column J of
AMn is equal to the (J, J) diagonal entry of A2

n, which in turn
is equal to

2n−t
∗−|J∗|

t∗∏
k=1

(|J∗k |+ 2),

where J∗ := J \ {1} and J∗1 , . . . , J
∗
t∗ are its runs.

• For comparison, the sum of absolute values of all the entries
in column J of HMn is equal to the (J, J) diagonal entry of
H2
n , namely to the constant 2n.
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Column sums and square diagonal entries

Example

AM3 =



1 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0
1 0 −2 0 0 0 0 0
1 −2 −1 3 0 0 0 0
1 0 0 0 −2 0 0 0
1 −2 0 0 −2 4 0 0
1 0 −2 0 −1 0 3 0
1 −2 −1 3 −1 2 1 −4


column sums: 8 8 6 6 6 6 4 4
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Column sums and square diagonal entries

Example

A2
3 =



8 0 2 0 2 0 0 0

0 8 −2 0 0 2 0 0

0 0 6 0 −2 0 0 0

2 2 0 6 1 −1 0 0

0 0 0 0 6 0 2 0

0 0 0 0 0 6 −2 0

2 0 2 0 0 0 4 0

0 2 0 2 1 1 0 4


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Inverse of AM

Theorem

•
(AM−1n )I ,J 6= 0 ⇐⇒ J ⊆ I

• For J ⊆ I ,

(AM−1n )I ,J = (−1)|J|
∏
i∈I

dI ,J(i)

eI ,J(i)
,

where, for i ∈ Ik (k-th run of I ):

dI ,J(i) :=

{
max(Ik)− i + 1, if i ∈ J;

1, otherwise

and
eI ,J(i) := max(Ik)− i + 2.
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Inverse of AM

Equivalently, for J ⊆ I ,

(AM−1n )I ,J = (−1)|J|
t∏

k=1

1

(|Ik |+ 1)!

∏
i∈Ik∩J

(max(Ik)− i + 1).

Note that the denominator
∏t

k=1(|Ik |+ 1)! is the cardinality of the
parabolic subgroup 〈I 〉 of Sn+1 generated by the simple reflections
{si : i ∈ I}.
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Inverse of AM

Corollary

• Each nonzero entry of AM−1n is the inverse of an integer.

• In each row of AM−1n , the sum of absolute values of all the
entries is 1.

• In each row I of AM−1n , the first entry

(AM−1n )I ,∅ =
t∏

k=1

1

(|Ik |+ 1)!

divides all the other nonzero entries and the diagonal entry

(AM−1n )I ,I = (−1)|I |
t∏

k=1

1

|Ik |+ 1

is divisible by all the other nonzero entries.
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Inverse of AM

Example

AM−13 =



1 0 0 0 0 0 0 0
1/2 −1/2 0 0 0 0 0 0
1/2 0 −1/2 0 0 0 0 0
1/6 −1/3 −1/6 1/3 0 0 0 0
1/2 0 0 0 −1/2 0 0 0
1/4 −1/4 0 0 −1/4 1/4 0 0
1/6 0 −1/3 0 −1/6 0 1/3 0

1/24 −1/8 −1/12 1/4 −1/24 1/8 1/12 −1/4


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Eigenvalues

A2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 0 1



At
2 6= A2 A2At

2 6= 4I4

Question: What can be said about its eigenvalues?

Answer: char. poly.(A2) = (x2 − 4)(x2 − 3)

A2
2 =


4 0 1 0
0 4 −1 0
0 0 3 0
1 1 0 3


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Eigenvalues

A2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 0 1


At
2 6= A2 A2At

2 6= 4I4

Question: What can be said about its eigenvalues?

Answer: char. poly.(A2) = (x2 − 4)(x2 − 3)

A2
2 =


4 0 1 0
0 4 −1 0
0 0 3 0
1 1 0 3





1. Character formulas 2. Matrices 3. Back to characters

Eigenvalues

A2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 0 1


At
2 6= A2 A2At

2 6= 4I4

Question: What can be said about its eigenvalues?

Answer: char. poly.(A2) = (x2 − 4)(x2 − 3)

A2
2 =


4 0 1 0
0 4 −1 0
0 0 3 0
1 1 0 3


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Eigenvalues

A2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 0 1


At
2 6= A2 A2At

2 6= 4I4

Question: What can be said about its eigenvalues?

Answer: char. poly.(A2) = (x2 − 4)(x2 − 3)

A2
2 =


4 0 1 0
0 4 −1 0
0 0 3 0
1 1 0 3


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Eigenvalues

A2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 0 1


At
2 6= A2 A2At

2 6= 4I4

Question: What can be said about its eigenvalues?

Answer: char. poly.(A2) = (x2 − 4)(x2 − 3)

A2
2 =


4 0 1 0
0 4 −1 0
0 0 3 0
1 1 0 3


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Eigenvalues

A2
3 =



8 0 2 0 2 0 0 0
0 8 −2 0 0 2 0 0
0 0 6 0 −2 0 0 0
2 2 0 6 1 −1 0 0
0 0 0 0 6 0 2 0
0 0 0 0 0 6 −2 0
2 0 2 0 0 0 4 0
0 2 0 2 1 1 0 4



char. poly.(A2
3) = (x − 8)2(x − 6)4(x − 4)2

Alas... A2
3 is not diagonalizable !
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Eigenvalues

A2
3 =



8 0 2 0 2 0 0 0
0 8 −2 0 0 2 0 0
0 0 6 0 −2 0 0 0
2 2 0 6 1 −1 0 0
0 0 0 0 6 0 2 0
0 0 0 0 0 6 −2 0
2 0 2 0 0 0 4 0
0 2 0 2 1 1 0 4


char. poly.(A2

3) = (x − 8)2(x − 6)4(x − 4)2

Alas... A2
3 is not diagonalizable !
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Eigenvalues

A2
3 =



8 0 2 0 2 0 0 0
0 8 −2 0 0 2 0 0
0 0 6 0 −2 0 0 0
2 2 0 6 1 −1 0 0
0 0 0 0 6 0 2 0
0 0 0 0 0 6 −2 0
2 0 2 0 0 0 4 0
0 2 0 2 1 1 0 4


char. poly.(A2

3) = (x − 8)2(x − 6)4(x − 4)2

Alas... A2
3 is not diagonalizable !
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Eigenvalues (conjecture)

Conjecture
The eigenvalues of A2

n (counted by algebraic multiplicity) are in
1 : 1 correspondence with the diagonal entries of A2

n.

The latter are explicitly known:

Theorem
The (J, J) diagonal entry of A2

n is equal to the sum of absolute
values of all the entries in column J of AMn, which in turn is equal
to

2n−t
∗−|J∗|

t∗∏
k=1

(|J∗k |+ 2) =
∏
k

(µk + 1),

where µ is the composition of n corresponding to J∗ := J \ {1}.
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Eigenvalues (conjecture)

Conjecture
The eigenvalues of A2

n (counted by algebraic multiplicity) are in
1 : 1 correspondence with the diagonal entries of A2

n.

The latter are explicitly known:

Theorem
The (J, J) diagonal entry of A2

n is equal to the sum of absolute
values of all the entries in column J of AMn, which in turn is equal
to

2n−t
∗−|J∗|

t∗∏
k=1

(|J∗k |+ 2) =
∏
k

(µk + 1),

where µ is the composition of n corresponding to J∗ := J \ {1}.
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Back to characters



1. Character formulas 2. Matrices 3. Back to characters

Fine sets

Definition
Let B be a set of combinatorial objects, and let Des : B → Pn−1
be a map which associates a “descent set” Des(b) ⊆ [n − 1] to
each element b ∈ B. Denote by Bµ the set of elements in B whose
descent set Des(b) is µ-unimodal. Let ρ be a complex
Sn-representation. Then B is called a fine set for ρ if, for each
composition µ of n, the character value of ρ on a conjugacy class
of cycle type µ satisfies

χρµ =
∑
b∈Bµ

(−1)|Des(b)\S(µ)|.
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Character values and descent sets

Theorem (Fine Set Theorem)

If B is a fine set for an Sn-representation ρ, then the character
values of ρ uniquely determine the overall distribution of descent
sets over B.

Idea of proof
For a subset J = {j1, . . . , jk} ⊆ [n − 1] let sJ := sj1sj2 · · · sjk ∈ Sn.
Let χρ be the vector with entries χρ(sJ), for J ∈ Pn−1, and let vB

be the vector with entries

vB
J := |{b ∈ B : Des(b) = J}| (∀J ∈ Pn−1).

Then, by definition, B is a fine set for ρ if and only if

χρ = An−1vB .

The result follows since An−1 is an invertible matrix.
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Character values and descent sets

Theorem (Fine Set Theorem)

If B is a fine set for an Sn-representation ρ, then the character
values of ρ uniquely determine the overall distribution of descent
sets over B.

Idea of proof
For a subset J = {j1, . . . , jk} ⊆ [n − 1] let sJ := sj1sj2 · · · sjk ∈ Sn.
Let χρ be the vector with entries χρ(sJ), for J ∈ Pn−1, and let vB

be the vector with entries

vB
J := |{b ∈ B : Des(b) = J}| (∀J ∈ Pn−1).

Then, by definition, B is a fine set for ρ if and only if

χρ = An−1vB .

The result follows since An−1 is an invertible matrix.
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Explicit inversion formula

Theorem
Let B be a fine set for an Sn-representation ρ. For every
D ⊆ [n − 1], the number of elements in B with descent set D
satisfies

|{b ∈ B : Des(b) = D}| =
∑
J

χρ(cJ)
∑

I :D∪J⊆I
(−1)|I\D|(AM−1n−1)I ,J

where

(AM−1n−1)I ,J =
(−1)|J|

|〈I 〉|

t∏
k=1

∏
i∈Ik∩J

(max(Ik)− i + 1),

I1, . . . , It are the runs in I and cJ :=
∏

j∈J sj is a Coxeter element
in the parabolic subgroup 〈J〉.
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Equivalence of classical theorems

For 0 ≤ k ≤
(n
2

)
let Rk be the k-th homogeneous component of

the coinvariant algebra of the symmetric group Sn. For a partition
λ, let mk,λ be the number of standard Young tableaux of shape λ
with major index k.

Theorem (Lusztig-Stanley)

Rk
∼=
⊕
λ`n

mk,λSλ,

where the sum runs over all partitions of n and Sλ denotes the
irreducible Sn-module indexed by λ.
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Equivalence of classical theorems

The major index of a permutation π is maj(π) :=
∑

i∈Des(π)

i ,

and its length `(π) is the number of inversions in π.
For a subset I ⊆ [n − 1] denote xI :=

∏
i∈I

xi .

Theorem (Foata-Schützenberger; Garsia-Gessel)∑
π∈Sn

xDes(π)q`(π) =
∑
π∈Sn

xDes(π)qmaj(π−1).

The Fine Set Theorem implies

Corollary

The Foata-Schützenberger Theorem is equivalent to the
Lusztig-Stanley Theorem.
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Summary

• Asymmetric variants of Walsh-Hadamard matrices

• Have fascinating properties, with strong combinatorial flavor

• Serve as a bridge between characters and combinatorial
permutation statistics

• Eigenvalues are still conjectural

A2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 0 1



THANK YOU !
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