Character formulas and matrices

Ron Adin and Yuval Roichman

Department of Mathematics Bar-Ilan University

$$\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right)$$

Abstract

We present a family of square matrices which are asymmetric variants of Walsh-Hadamard matrices. They originate in the study of character formulas, and provide a handy tool for translation of statements about permutation statistics to results in representation theory, and vice versa. They turn out to have many fascinating properties.

Character formulas 2. Matrices 3. Back to characters

Outline

1. Character formulas

2. Matrices

3. Back to characters

Character formulas

μ -unimodal permutations

• A sequence (a_1, \ldots, a_n) of distinct positive integers is unimodal if there exists $1 \le m \le n$ such that

$$a_1 > a_2 > \ldots > a_m < a_{m+1} < \ldots < a_n.$$

μ -unimodal permutations

• A sequence (a_1, \ldots, a_n) of distinct positive integers is unimodal if there exists $1 \le m \le n$ such that

$$a_1 > a_2 > \ldots > a_m < a_{m+1} < \ldots < a_n$$
.

• Let $\mu=(\mu_1,\ldots,\mu_t)$ be a composition of n. A sequence of n positive integers is μ -unimodal if the first μ_1 integers form a unimodal sequence, the next μ_2 integers form a unimodal sequence, and so on.

μ -unimodal permutations

• A sequence (a_1, \ldots, a_n) of distinct positive integers is unimodal if there exists $1 \le m \le n$ such that

$$a_1 > a_2 > \ldots > a_m < a_{m+1} < \ldots < a_n$$
.

- Let $\mu = (\mu_1, \dots, \mu_t)$ be a composition of n. A sequence of n positive integers is μ -unimodal if the first μ_1 integers form a unimodal sequence, the next μ_2 integers form a unimodal sequence, and so on.
- A permutation $\pi \in S_n$ is μ -unimodal if the sequence $(\pi(1), \dots, \pi(n))$ is μ -unimodal.

μ -unimodal permutations, descent set

• Let U_{μ} be the set of all μ -unimodal permutations in S_n .

μ -unimodal permutations, descent set

- Let U_{μ} be the set of all μ -unimodal permutations in S_n .
- Example: n = 10, $\mu = (3, 3, 4)$.

$$\pi = (4, 2, 10, 9, 7, 6, 5, 3, 1, 8) \in U_{\mu}$$

$$| \mu_1 | \mu_2 | \mu_3 |$$

1. Character formulas 2. Matrices 3. Back to characters

μ -unimodal permutations, descent set

- Let U_{μ} be the set of all μ -unimodal permutations in S_n .
- Example: n = 10, $\mu = (3, 3, 4)$.

$$\pi = (4, 2, 10, 9, 7, 6, 5, 3, 1, 8) \in U_{\mu}$$

$$\mid \mu_{1} \mid \mu_{2} \mid \mu_{3} \mid$$

• The descent set of a permutation $\pi \in S_n$ is

$$Des(\pi) := \{i : \pi(i) > \pi(i+1)\}.$$

1. Character formulas 2. Matrices 3. Back to characters

μ -unimodal permutations, descent set

- Let U_{μ} be the set of all μ -unimodal permutations in S_n .
- Example: n = 10, $\mu = (3, 3, 4)$.

$$\pi = (\underline{4}, \underline{2}, \underline{10}, \underline{9}, \underline{7}, \underline{6}, \underline{5}, \underline{3}, 1, 8) \in U_{\mu}$$

$$| \mu_1 | \mu_2 | \mu_3 |$$

• The descent set of a permutation $\pi \in S_n$ is

$$Des(\pi) := \{i : \pi(i) > \pi(i+1)\}.$$

• Example: $Des(\pi) = \{1, 3, 4, 5, 6, 7, 8\}$

1. Character formulas 2. Matrices 3. Back to character

μ -unimodal permutations, descent set

- Let U_{μ} be the set of all μ -unimodal permutations in S_n .
- Example: n = 10, $\mu = (3, 3, 4)$.

$$\pi = (\underline{4}, \underline{2}, \underline{10}, \underline{9}, \underline{7}, \underline{6}, \underline{5}, \underline{3}, 1, 8) \in U_{\mu}$$

$$| \mu_1 | \mu_2 | \mu_3 |$$

• The descent set of a permutation $\pi \in S_n$ is

$$\mathsf{Des}(\pi) := \{i : \ \pi(i) > \pi(i+1)\}.$$

- Example: $Des(\pi) = \{1, 3, 4, 5, 6, 7, 8\}$
- Denote $I(\mu) := \{1, \dots, n\} \setminus \{\mu_1, \mu_1 + \mu_2, \mu_1 + \mu_2 + \mu_3, \dots\}$

1. Character formulas 2. Matrices 3. Back to character

μ -unimodal permutations, descent set

- Let U_{μ} be the set of all μ -unimodal permutations in S_n .
- Example: n = 10, $\mu = (3, 3, 4)$.

$$\pi = (\underline{4}, \underline{2}, \underline{10}, \underline{9}, \underline{7}, \underline{6}, \underline{5}, \underline{3}, 1, 8) \in U_{\mu}$$

$$| \mu_{1} | \mu_{2} | \mu_{3} |$$

• The descent set of a permutation $\pi \in S_n$ is

$$\mathsf{Des}(\pi) := \{i: \ \pi(i) > \pi(i+1)\}.$$

- Example: $Des(\pi) = \{1, 3, 4, 5, 6, 7, 8\}$
- Denote $I(\mu) := \{1, \dots, n\} \setminus \{\mu_1, \mu_1 + \mu_2, \mu_1 + \mu_2 + \mu_3, \dots\}$
- Example: $I(\mu) = \{1, \dots, 10\} \setminus \{3, 6, 10\} = \{1, 2, 4, 5, 7, 8, 9\}$ $\mathsf{Des}(\pi) \cap I(\mu) = \{1, 4, 5, 7, 8\}$

Formula 1: irreducible characters

Let λ and μ be partitions of n, let χ^{λ} be the character of the irreducible S_n -representation corresponding to λ , and let χ^{λ}_{μ} be its value on a conjugacy class of cycle type μ .

Theorem (Roichman '97)

$$\chi_{\mu}^{\lambda} = \sum_{\pi \in \mathcal{C} \cap U_{\mu}} (-1)^{|\operatorname{Des}(\pi) \cap I(\mu)|},$$

where C is any Knuth class of shape λ .

1. Character formulas 2. Matrices 3. Back to characters

Formula 2: coinvariant algebra, homogeneous component

Let $\chi^{(k)}$ be the S_n -character corresponding to the symmetric group action on the k-th homogeneous component of its coinvariant algebra, and let $\chi_{\mu}^{(k)}$ be its value on a conjugacy class of cycle type μ .

Theorem (A-Postnikov-Roichman, '00)

$$\chi_{\mu}^{(k)} = \sum_{\pi \in L(k) \cap U_{\mu}} (-1)^{|\operatorname{Des}(\pi) \cap I(\mu)|},$$

where L(k) is the set of all permutations of length k in S_n .

1. Character formulas 2. Matrices 3. Back to character

Formula 3: Gelfand model

A complex representation of a group or an algebra A is called a Gelfand model for A if it is equivalent to the multiplicity free direct sum of all irreducible A-representations. Let χ^G be the corresponding character, and let χ^G_μ be its value on a conjugacy class of cycle type μ .

Theorem (A-Postnikov-Roichman, '08)

The character of the Gelfand model of S_n at a conjugacy class of cycle type μ is equal to

$$\chi_{\mu}^{G} = \sum_{\pi \in Inv_{n} \cap U_{\mu}} (-1)^{|\operatorname{Des}(\pi) \cap I(\mu)|},$$

where $Inv_n := \{ \sigma \in S_n : \sigma^2 = id \}$ is the set of all involutions in S_n .

Inverse formulas?

Question

Are these formulas invertible?

In other words: to what extent do the character values χ_{μ}^* ($\forall \mu$) determine the distribution of descent sets?

Matrices

Subsets as indices

Definition

Let P_n be the power set (set of all subsets) of $\{1,\ldots,n\}$, with the anti-lexicographic linear order: for $I,J\in P_n,\ I\neq J$, let m be the largest element in the symmetric difference $I\triangle J:=(I\cup J)\setminus (I\cap J)$, and define: $I< J\iff m\in J$.

Example

The linear order on P_3 is

$$\emptyset < \{1\} < \{2\} < \{1,2\} < \{3\} < \{1,3\} < \{2,3\} < \{1,2,3\}.$$

 P_n will index the rows and columns of our matrices.

Walsh-Hadamard matrices

The Walsh-Hadamard matrix H_n of order 2^n has entries

$$h_{I,J}:=(-1)^{|I\cap J|} \qquad (\forall I,J\in P_n).$$

Walsh-Hadamard matrices

The Walsh-Hadamard matrix H_n of order 2^n has entries

$$h_{I,J}:=(-1)^{|I\cap J|} \qquad (\forall I,J\in P_n).$$

$$H_1 = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

Walsh-Hadamard matrices

The Walsh-Hadamard matrix H_n of order 2^n has entries

$$h_{I,J}:=(-1)^{|I\cap J|} \qquad (\forall I,J\in P_n).$$

Character formulas 2. Matrices 3. Back to characters

Walsh-Hadamard matrices

The Walsh-Hadamard matrix H_n of order 2^n has entries

$$h_{I,J} := (-1)^{|I \cap J|} \qquad (\forall I, J \in P_n).$$

Prefixes and runs

Definition

The prefix of length p of an interval $\{m+1,\ldots,m+\ell\}$ is the interval $\{m+1,\ldots,m+p\}$ $(0 \le p \le \ell)$.

Prefixes and runs

Definition

The prefix of length p of an interval $\{m+1,\ldots,m+\ell\}$ is the interval $\{m+1,\ldots,m+p\}$ $(0 \le p \le \ell)$.

Definition

For $I \in P_n$ let I_1, \ldots, I_t be the sequence of runs (maximal consecutive intervals) in I.

Character formulas 2. Matrices 3. Back to character

Prefixes and runs

Definition

The prefix of length p of an interval $\{m+1,\ldots,m+\ell\}$ is the interval $\{m+1,\ldots,m+p\}$ $(0 \le p \le \ell)$.

Definition

For $I \in P_n$ let I_1, \ldots, I_t be the sequence of runs (maximal consecutive intervals) in I.

For
$$I = \{1, 2, 4, 5, 6, 8, 10\} \in P_{10}$$
:
 $I_1 = \{1, 2\}, I_2 = \{4, 5, 6\}, I_3 = \{8\}, I_4 = \{10\}.$

. Character formulas 2. Matrices 3. Back to characters

The matrices A and B

The matrices A and B

Definition

For $I \in P_n$ let I_1, \ldots, I_t be the runs in I. Define, for any $J \in P_n$:

$$a_{I,J} := egin{cases} (-1)^{|I\cap J|}, & ext{if } I_k\cap J ext{ is a prefix of } I_k ext{ for each } k; \ 0, & ext{otherwise.} \end{cases}$$

 $A_n := (a_{I,J})_{I,J \in P_n}$, with P_n ordered as above.

The matrices A and B

Definition

For $I \in P_n$ let I_1, \dots, I_t be the runs in I. Define, for any $J \in P_n$:

$$a_{I,J} := egin{cases} (-1)^{|I\cap J|}, & ext{if } I_k\cap J ext{ is a prefix of } I_k ext{ for each } k; \ 0, & ext{otherwise}. \end{cases}$$

 $A_n := (a_{I,J})_{I,J \in P_n}$, with P_n ordered as above.

An auxiliary matrix:

$$b_{I,J} := \begin{cases} (-1)^{|I \cap J|}, & \text{if } I_k \cap J \text{ is a prefix of } I_k \text{ for each } k, \\ & \text{and } n \not \in I \setminus J; \\ 0, & \text{otherwise.} \end{cases}$$

$$B_n := (b_{I,J})_{I,J \in P_n}.$$

$$A_1 = (1)$$
 $B_1 = (1)$

$$A_1 = (1)$$
 $B_1 = (1)$

$$A_1 = \left(egin{array}{cc} 1 & 1 \ 1 & -1 \end{array}
ight) \qquad B_1 = \left(egin{array}{cc} 1 & 1 \ 0 & -1 \end{array}
ight)$$

$$A_1 = (1)$$
 $B_1 = (1)$

$$A_1=\left(egin{array}{cc} 1 & 1 \ 1 & -1 \end{array}
ight) \qquad B_1=\left(egin{array}{cc} 1 & 1 \ 0 & -1 \end{array}
ight)$$

Character formulas 2. Matrices 3. Back to characters

Character formulas 2. Matrices 3. Back to character

A and B (examples)

 $A_n^t \neq A_n$ $A_n A_n^t \neq 2^n I_{2^n}$ $(n \geq 2)$

Recursion

Lemma

$$A_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ A_{n-1} & -B_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $A_0 = (1)$, and

$$B_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ 0 & -B_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $B_0 = (1)$.

Recursion

Lemma

$$A_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ A_{n-1} & -B_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $A_0 = (1)$, and

$$B_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ 0 & -B_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $B_0 = (1)$.

For comparison:

$$H_n = \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $H_0 = (1)$.

Theorem

 A_n and B_n are invertible for all $n \ge 0$.

Theorem

 A_n and B_n are invertible for all $n \ge 0$. In fact,

$$\det(A_n) = (n+1) \cdot \prod_{k=1}^n k^{2^{n-1-k}(n+4-k)} \qquad (n \ge 2)$$

while
$$det(A_0) = 1$$
 and $det(A_1) = -2$,

Theorem

 A_n and B_n are invertible for all $n \ge 0$. In fact,

$$\det(A_n) = (n+1) \cdot \prod_{k=1}^n k^{2^{n-1-k}(n+4-k)} \qquad (n \ge 2)$$

while $det(A_0) = 1$ and $det(A_1) = -2$, and

$$\det(B_n) = \prod_{k=1}^n k^{2^{n-1-k}(n+2-k)} \qquad (n \ge 2)$$

while $det(B_0) = 1$ and $det(B_1) = -1$.

Theorem

 A_n and B_n are invertible for all $n \ge 0$. In fact,

$$\det(A_n) = (n+1) \cdot \prod_{k=1}^n k^{2^{n-1-k}(n+4-k)} \qquad (n \ge 2)$$

while $det(A_0) = 1$ and $det(A_1) = -2$, and

$$\det(B_n) = \prod_{k=1}^n k^{2^{n-1-k}(n+2-k)} \qquad (n \ge 2)$$

while $det(B_0) = 1$ and $det(B_1) = -1$.

For comparison,

$$\det(H_n) = 2^{2^{n-1}n} \qquad (n \ge 2)$$

with $det(H_0) = 1$ and $det(H_1) = -2$.

Möbius inversion

Let Z_n be the zeta matrix of the poset P_n with respect to set inclusion:

$$z_{I,J} := \begin{cases} 1, & \text{if } I \subseteq J; \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$Z_n = \begin{pmatrix} Z_{n-1} & Z_{n-1} \\ 0 & Z_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $Z_0 = (1)$. Its inverse is the Möbius matrix $M_n = Z_n^{-1}$, with entries $m_{l,J}$ defined by

$$m_{I,J} := \begin{cases} (-1)^{|J\setminus I|}, & \text{if } I \subseteq J; \\ 0, & \text{otherwise.} \end{cases}$$

It satisfies

$$M_n = \begin{pmatrix} M_{n-1} & -M_{n-1} \\ 0 & M_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $M_0 = (1)$.

AM and BM

Denote now $AM_n := A_n M_n$, $BM_n := B_n M_n$ and $HM_n := H_n M_n$. It follows that

$$AM_n = \begin{pmatrix} AM_{n-1} & 0 \\ AM_{n-1} & -(AM_{n-1} + BM_{n-1}) \end{pmatrix}$$
 $(n \ge 1)$

with $AM_0 = (1)$ and

$$BM_n = \begin{pmatrix} AM_{n-1} & 0 \\ 0 & -BM_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $BM_0 = (1)$, as well as

$$HM_n = \left(egin{array}{cc} HM_{n-1} & 0 \\ HM_{n-1} & -2HM_{n-1} \end{array}
ight) \qquad (n \ge 1)$$

with $HM_0 = (1)$.

Determinant computation (1)

By the BM recursion,

$$\det(BM_n) = \det(AM_{n-1})\det(-BM_{n-1}) \qquad (n \ge 1).$$

Now M_n is an upper triangular matrix with 1-s on its diagonal, so that

$$\det(M_n)=1.$$

We conclude that

$$\det(B_n) = \delta_{n-1} \det(A_{n-1}) \det(B_{n-1}) \qquad (n \ge 1),$$

where

$$\delta_n = (-1)^{2^n} = \begin{cases} -1, & \text{if } n = 0; \\ 1, & \text{otherwise.} \end{cases}$$

Determinant computation (2)

Similarly, for any scalar t and $n \ge 1$,

$$AM_n + tBM_n = \begin{pmatrix} (t+1)AM_{n-1} & 0 \\ AM_{n-1} & -AM_{n-1} - (t+1)BM_{n-1} \end{pmatrix}$$

and a similar argument yields

$$\det(A_n + tB_n) = \delta_{n-1} \det((t+1)A_{n-1}) \det(A_{n-1} + (t+1)B_{n-1})$$

It follows that

$$\det(A_n) = \left(\prod_{k=1}^n \delta_{n-k} \det(kA_{n-k})\right) \cdot \det(A_0 + nB_0) =$$

$$= -(n+1) \cdot \prod_{k=1}^n k^{2^{n-k}} \cdot \prod_{k=1}^n \det(A_{n-k}) \qquad (n \ge 1).$$

Since $A_0 = (1)$ it follows that $det(A_n) \neq 0$ for any nonnegative integer n.

Determinant computation (3)

The solution to this recursion, with initial value $det(A_1) = -2$, is

$$\det(A_n) = (n+1) \cdot \prod_{k=1}^n k^{2^{n-1-k}(n+4-k)} \qquad (n \ge 2).$$

The BM recursion, with initial value $det(B_1) = -1$, now yields

$$\det(B_n) = \prod_{k=1}^n k^{2^{n-1-k}(n+2-k)} \qquad (n \ge 2).$$

For comparison,

$$\det(H_n) = 2^{2^{n-1}} \det(H_{n-1})^2 \qquad (n \ge 2)$$

with initial value $det(H_1) = -2$, so that

$$\det(H_n) = 2^{2^{n-1}n}$$
 $(n \ge 2).$

HM entries

$$HM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -2 & 4 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 4 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 0 & 4 & 0 \\ 1 & -2 & -2 & 4 & -2 & 4 & 4 & -8 \end{pmatrix}$$

HM entries

$$HM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -2 & 4 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 4 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 0 & 4 & 0 \\ 1 & -2 & -2 & 4 & -2 & 4 & 4 & -8 \end{pmatrix}$$

Lemma

• Zero pattern: $(HM_n)_{I,J} \neq 0 \iff J \subseteq I$

2. Matrices

HM entries

$$HM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -2 & 4 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 4 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 0 & 4 & 0 & 0 & 0 \\ 1 & -2 & -2 & 4 & -2 & 4 & 4 & -8 \end{pmatrix}$$

Lemma

- Zero pattern: $(HM_n)_{I,J} \neq 0 \iff J \subseteq I$ Signs: $(HM_n)_{I,J} \neq 0 \implies \text{sign}((HM_n)_{I,J}) = (-1)^{|J|}$

2. Matrices

HM entries

$$HM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -2 & 4 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 4 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 0 & 4 & 0 & 0 & 0 \\ 1 & -2 & -2 & 4 & -2 & 4 & 4 & -8 \end{pmatrix}$$

Lemma

- Zero pattern: $(HM_n)_{I,J} \neq 0 \iff J \subseteq I$
- Signs: $(HM_n)_{I,J} \neq 0 \Longrightarrow \text{sign}((HM_n)_{I,J}) = (-1)^{|J|}$ Absolute values: $(HM_n)_{I,J} \neq 0 \Longrightarrow |(HM_n)_{I,J}| = 2^{|J|}$

AM entries (1)

Character formulas 2. Matrices 3. Back to characters

AM entries (1)

$$AM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 4 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 & 0 \\ 1 & -2 & -1 & 3 & -1 & 2 & 1 & -4 & 0 \end{pmatrix}$$

Theorem

• Zero pattern: $(AM_n)_{I,J} \neq 0 \iff J \subseteq I$

2. Matrices

AM entries (1)

Theorem

- Zero pattern: $(AM_n)_{I,J} \neq 0 \iff J \subseteq I$ Signs: $(AM_n)_{I,J} \neq 0 \implies \text{sign}((AM_n)_{I,J}) = (-1)^{|J|}$

2. Matrices

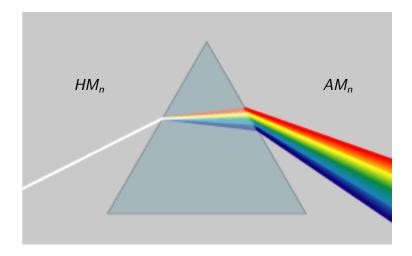
AM entries (1)

$$AM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 & 0 & 0 \\ 1 & -2 & -1 & 3 & -1 & 2 & 1 & -4 & 0 & 0 & 0 & 0 \\ \end{pmatrix}$$

Theorem

- Zero pattern: $(AM_n)_{I,J} \neq 0 \iff J \subseteq I$ Signs: $(AM_n)_{I,J} \neq 0 \implies \text{sign}((AM_n)_{I,J}) = (-1)^{|J|}$
- Absolute values: ???

Dispersion



AM entries (2)

Theorem

- **Zero pattern:** $(AM_n)_{I,J} \neq 0 \iff J \subseteq I$
- Signs: $(AM_n)_{I,J} \neq 0 \Longrightarrow \text{sign}((AM_n)_{I,J}) = (-1)^{|J|}$
- Absolute values:

$$(AM_n)_{I,J} \neq 0 \Longrightarrow |(AM_n)_{I,J}| = \prod_{k=1}^t (|J_k| + 1)^{\delta_k(I)}$$

where J_1, \ldots, J_t are the runs in J and, for $J_k = \{m_k + 1, \ldots, m_k + \ell_k\}$ $(1 \le k \le t)$:

$$\delta_k(I) :=
\begin{cases}
0, & \text{if } m_k \in I; \\
1, & \text{otherwise.}
\end{cases}$$

Character formulas 2. Matrices 3. Back to character

Diagonal and last row

Corollary

- All entries in the diagonal and last row of AM_n are non-zero.
- Diagonal:

$$|(AM_n)_{J,J}| = \prod_{k=1}^t (|J_k| + 1)$$

Last row:

$$|(AM_n)_{[n],J}| =$$

$$\begin{cases} |J_1| + 1, & \text{if } 1 \in J; \\ 1, & \text{otherwise.} \end{cases}$$

• Each nonzero entry $(AM_n)_{I,J}$ divides the corresponding diagonal entry $(AM_n)_{J,J}$ and is divisible by the corresponding last row entry $(AM_n)_{[n],J}$.

Diagonal and last row (example)

$$AM_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 4 & 0 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\ 1 & -2 & -1 & 3 & -1 & 2 & 1 & -4 \end{pmatrix} \quad I = \{1, 2\}$$

Diagonal and last row (example)

$$AM_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\ 1 & -2 & -1 & 3 & -1 & 2 & 1 & -4 \end{pmatrix} \quad \begin{matrix} I = \{2,3\} \\ I = \{1,2,3\} \end{matrix}$$

Row sums

Lemma

- The sum of all entries in row I of AM_n (or HM_n) is $(-1)^{|I|}$.
- The sum of absolute values of all entries in row I of AM_n is

$$\prod_{k=1}^{l} (2^{|I_k|+1}-1).$$

In HM_n the sum is $3^{|I|}$.

Character formulas 2. Matrices 3. Back to characters

Column sums and square diagonal entries

Theorem

• The sum of absolute values of all the entries in column J of AM_n is equal to the (J,J) diagonal entry of A_n^2 , which in turn is equal to

$$2^{n-t^*-|J^*|}\prod_{k=1}^{t^*}(|J_k^*|+2),$$

where $J^* := J \setminus \{1\}$ and $J_1^*, \dots, J_{t^*}^*$ are its runs.

• For comparison, the sum of absolute values of all the entries in column J of HM_n is equal to the (J, J) diagonal entry of H_n^2 , namely to the constant 2^n .

Column sums and square diagonal entries

Example

$$AM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\ 1 & -2 & -1 & 3 & -1 & 2 & 1 & -4 \end{pmatrix}$$

column sums:

8

6

5

4

Column sums and square diagonal entries

Example

$$A_3^2 = \begin{pmatrix} 8 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\ 0 & 8 & -2 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 6 & 0 & -2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 6 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 & -2 & 0 \\ 2 & 0 & 2 & 0 & 0 & 0 & 4 & 0 \\ 0 & 2 & 0 & 2 & 1 & 1 & 0 & 4 \end{pmatrix}$$

Theorem

•

$$(AM_n^{-1})_{I,J} \neq 0 \iff J \subseteq I$$

• For $J \subseteq I$.

$$(AM_n^{-1})_{I,J} = (-1)^{|J|} \prod_{i \in I} \frac{d_{I,J}(i)}{e_{I,J}(i)},$$

where, for $i \in I_k$ (k-th run of I):

$$d_{I,J}(i) := egin{cases} \max(I_k) - i + 1, & \textit{if } i \in J; \ 1, & \textit{otherwise} \end{cases}$$

and

$$e_{I,J}(i) := \max(I_k) - i + 2.$$

Equivalently, for $J \subseteq I$,

$$(AM_n^{-1})_{I,J} = (-1)^{|J|} \prod_{k=1}^t \frac{1}{(|I_k|+1)!} \prod_{i \in I_k \cap J} (\max(I_k) - i + 1).$$

Note that the denominator $\prod_{k=1}^{t}(|I_k|+1)!$ is the cardinality of the parabolic subgroup $\langle I \rangle$ of S_{n+1} generated by the simple reflections $\{s_i: i \in I\}$.

Corollary

- Each nonzero entry of AM_n^{-1} is the inverse of an integer.
- In each row of AM_n^{-1} , the sum of absolute values of all the entries is 1.
- In each row I of AM_n^{-1} , the first entry

$$(AM_n^{-1})_{I,\emptyset} = \prod_{k=1}^t \frac{1}{(|I_k|+1)!}$$

divides all the other nonzero entries and the diagonal entry

$$(AM_n^{-1})_{I,I} = (-1)^{|I|} \prod_{k=1}^{r} \frac{1}{|I_k|+1}$$

is divisible by all the other nonzero entries.

Example

$$AM_3^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1/2 & -1/2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & -1/2 & 0 & 0 & 0 & 0 & 0 \\ 1/6 & -1/3 & -1/6 & 1/3 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & -1/2 & 0 & 0 & 0 \\ 1/4 & -1/4 & 0 & 0 & -1/4 & 1/4 & 0 & 0 \\ 1/6 & 0 & -1/3 & 0 & -1/6 & 0 & 1/3 & 0 \\ 1/24 & -1/8 & -1/12 & 1/4 & -1/24 & 1/8 & 1/12 & -1/4 \end{pmatrix}$$

Eigenvalues

Eigenvalues

$$A_2^t \neq A_2 \qquad A_2 A_2^t \neq 4I_4$$

Character formulas 2. Matrices 3. Back to characters

Eigenvalues

$$A_2^t \neq A_2 \qquad A_2 A_2^t \neq 4I_4$$

Question: What can be said about its eigenvalues?

Character formulas 2. Matrices 3. Back to character

Eigenvalues

$$A_2^t \neq A_2 \qquad A_2 A_2^t \neq 4I_4$$

Question: What can be said about its eigenvalues?

Answer: char. poly.
$$(A_2) = (x^2 - 4)(x^2 - 3)$$

Character formulas 2. Matrices 3. Back to character

Eigenvalues

$$A_2^t \neq A_2 \qquad A_2 A_2^t \neq 4I_4$$

Question: What can be said about its eigenvalues?

Answer: char. poly.
$$(A_2) = (x^2 - 4)(x^2 - 3)$$

$$A_2^2 = \left(\begin{array}{cccc} 4 & 0 & 1 & 0 \\ 0 & 4 & -1 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 1 & 0 & 3 \end{array}\right)$$

Eigenvalues

$$A_3^2 = \begin{pmatrix} 8 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\ 0 & 8 & -2 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 6 & 0 & -2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 6 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 & -2 & 0 \\ 2 & 0 & 2 & 0 & 0 & 0 & 4 & 0 \\ 0 & 2 & 0 & 2 & 1 & 1 & 0 & 4 \end{pmatrix}$$

Eigenvalues

$$A_3^2 = \begin{pmatrix} 8 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\ 0 & 8 & -2 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 6 & 0 & -2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 6 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 & -2 & 0 \\ 2 & 0 & 2 & 0 & 0 & 0 & 4 & 0 \\ 0 & 2 & 0 & 2 & 1 & 1 & 0 & 4 \end{pmatrix}$$

char. poly.
$$(A_3^2) = (x-8)^2(x-6)^4(x-4)^2$$

Eigenvalues

$$A_3^2 = \begin{pmatrix} 8 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\ 0 & 8 & -2 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 6 & 0 & -2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 6 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 & -2 & 0 \\ 2 & 0 & 2 & 0 & 0 & 0 & 4 & 0 \\ 0 & 2 & 0 & 2 & 1 & 1 & 0 & 4 \end{pmatrix}$$

char. poly.
$$(A_3^2) = (x-8)^2(x-6)^4(x-4)^2$$

Alas... A_3^2 is not diagonalizable!

Eigenvalues (conjecture)

Conjecture

The eigenvalues of A_n^2 (counted by algebraic multiplicity) are in 1:1 correspondence with the diagonal entries of A_n^2 .

Character formulas 2. Matrices 3. Back to character

Eigenvalues (conjecture)

Conjecture

The eigenvalues of A_n^2 (counted by algebraic multiplicity) are in 1:1 correspondence with the diagonal entries of A_n^2 .

The latter are explicitly known:

Theorem

The (J, J) diagonal entry of A_n^2 is equal to the sum of absolute values of all the entries in column J of AM_n , which in turn is equal to

$$2^{n-t^*-|J^*|}\prod_{k=1}^{t^*}(|J_k^*|+2)=\prod_k(\mu_k+1),$$

where μ is the composition of n corresponding to $J^* := J \setminus \{1\}$.

Back to characters

Fine sets

Definition

Let B be a set of combinatorial objects, and let $Des: B \to P_{n-1}$ be a map which associates a "descent set" $Des(b) \subseteq [n-1]$ to each element $b \in B$. Denote by B^{μ} the set of elements in B whose descent set Des(b) is μ -unimodal. Let ρ be a complex S_n -representation. Then B is called a fine set for ρ if, for each composition μ of n, the character value of ρ on a conjugacy class of cycle type μ satisfies

$$\chi^{\rho}_{\mu} = \sum_{b \in B^{\mu}} (-1)^{|\operatorname{Des}(b) \setminus S(\mu)|}.$$

Character values and descent sets

Theorem (Fine Set Theorem)

If B is a fine set for an S_n -representation ρ , then the character values of ρ uniquely determine the overall distribution of descent sets over B.

Character values and descent sets

Theorem (Fine Set Theorem)

If B is a fine set for an S_n -representation ρ , then the character values of ρ uniquely determine the overall distribution of descent sets over B.

Idea of proof

For a subset $J=\{j_1,\ldots,j_k\}\subseteq [n-1]$ let $s_J:=s_{j_1}s_{j_2}\cdots s_{j_k}\in S_n$. Let χ^ρ be the vector with entries $\chi^\rho(s_J)$, for $J\in P_{n-1}$, and let v^B be the vector with entries

$$v_J^B := |\{b \in B : \mathsf{Des}(b) = J\}| \qquad (\forall J \in P_{n-1}).$$

Then, by definition, B is a fine set for ρ if and only if

$$\chi^{\rho} = A_{n-1} v^B.$$

The result follows since A_{n-1} is an invertible matrix.

Character formulas 2. Matrices 3. Back to characters

Explicit inversion formula

Theorem

Let B be a fine set for an S_n -representation ρ . For every $D \subseteq [n-1]$, the number of elements in B with descent set D satisfies

$$|\{b \in B : \mathsf{Des}(b) = D\}| = \sum_J \chi^{\rho}(c_J) \sum_{I: D \cup J \subseteq I} (-1)^{|I \setminus D|} (AM_{n-1}^{-1})_{I,J}$$

where

$$(AM_{n-1}^{-1})_{I,J} = \frac{(-1)^{|J|}}{|\langle I \rangle|} \prod_{k=1}^{t} \prod_{i \in I_k \cap J} (\max(I_k) - i + 1),$$

 I_1, \ldots, I_t are the runs in I and $c_J := \prod_{j \in J} s_j$ is a Coxeter element in the parabolic subgroup $\langle J \rangle$.

Equivalence of classical theorems

For $0 \le k \le \binom{n}{2}$ let R_k be the k-th homogeneous component of the coinvariant algebra of the symmetric group S_n . For a partition λ , let $m_{k,\lambda}$ be the number of standard Young tableaux of shape λ with major index k.

Theorem (Lusztig-Stanley)

$$R_k\cong\bigoplus_{\lambda\vdash n}m_{k,\lambda}S^\lambda,$$

where the sum runs over all partitions of n and S^{λ} denotes the irreducible S_n -module indexed by λ .

Character formulas 2. Matrices 3. Back to characters

Equivalence of classical theorems

The major index of a permutation π is $\operatorname{maj}(\pi) := \sum_{i \in \operatorname{Des}(\pi)} i$, and its length $\ell(\pi)$ is the number of inversions in π . For a subset $I \subseteq [n-1]$ denote $\mathbf{x}^I := \prod_{i \in I} x_i$.

Theorem (Foata-Schützenberger; Garsia-Gessel)

$$\sum_{\pi \in \mathcal{S}_n} \mathbf{x}^{\mathsf{Des}(\pi)} q^{\ell(\pi)} = \sum_{\pi \in \mathcal{S}_n} \mathbf{x}^{\mathsf{Des}(\pi)} q^{\mathsf{maj}(\pi^{-1})}.$$

The Fine Set Theorem implies

Corollary

The Foata-Schützenberger Theorem is equivalent to the Lusztig-Stanley Theorem.

. Character formulas 2. Matrices 3. Back to characters

• Asymmetric variants of Walsh-Hadamard matrices

- Asymmetric variants of Walsh-Hadamard matrices
- Have fascinating properties, with strong combinatorial flavor

- Asymmetric variants of Walsh-Hadamard matrices
- · Have fascinating properties, with strong combinatorial flavor
- Serve as a bridge between characters and combinatorial permutation statistics

- Asymmetric variants of Walsh-Hadamard matrices
- Have fascinating properties, with strong combinatorial flavor
- Serve as a bridge between characters and combinatorial permutation statistics
- Eigenvalues are still conjectural

- Asymmetric variants of Walsh-Hadamard matrices
- · Have fascinating properties, with strong combinatorial flavor
- Serve as a bridge between characters and combinatorial permutation statistics
- Eigenvalues are still conjectural

- Asymmetric variants of Walsh-Hadamard matrices
- Have fascinating properties, with strong combinatorial flavor
- Serve as a bridge between characters and combinatorial permutation statistics
- Eigenvalues are still conjectural

THANK YOU!