Characters, Descents and Matrices

Ron Adin and Yuval Roichman

Department of Mathematics Bar-Ilan University

$$\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right)$$

Abstract

A certain family of square matrices plays a major role in character formulas for the symmetric group and related algebras. These matrices are asymmetric variants of Walsh-Hadamard matrices, and have some fascinating properties which may be explained by use of Möbius inversion. They provide a tool for translation of statements about permutation statistics to results in representation theory, and vice versa.

. Character Formulas 2. Matrices 3. Back to Characters

Outline

1. Character Formulas

2. Matrices

3. Back to Characters

Character Formulas

μ -unimodal permutations

• A sequence (a_1, \ldots, a_n) of distinct positive integers is unimodal if there exists $1 \le m \le n$ such that

$$a_1 > a_2 > \ldots > a_m < a_{m+1} < \ldots < a_n$$
.

μ -unimodal permutations

• A sequence (a_1, \ldots, a_n) of distinct positive integers is unimodal if there exists $1 \le m \le n$ such that

$$a_1 > a_2 > \ldots > a_m < a_{m+1} < \ldots < a_n$$
.

• Let $\mu=(\mu_1,\ldots,\mu_t)$ be a composition of n. A sequence of n positive integers is μ -unimodal if the first μ_1 integers form a unimodal sequence, the next μ_2 integers form a unimodal sequence, and so on.

μ -unimodal permutations

• A sequence (a_1, \ldots, a_n) of distinct positive integers is unimodal if there exists $1 \le m \le n$ such that

$$a_1 > a_2 > \ldots > a_m < a_{m+1} < \ldots < a_n$$
.

- Let $\mu=(\mu_1,\ldots,\mu_t)$ be a composition of n. A sequence of n positive integers is μ -unimodal if the first μ_1 integers form a unimodal sequence, the next μ_2 integers form a unimodal sequence, and so on.
- A permutation $\pi \in S_n$ is μ -unimodal if the sequence $(\pi(1), \dots, \pi(n))$ is μ -unimodal.

• Let U_{μ} be the set of all μ -unimodal permutations in S_n .

- Let U_{μ} be the set of all μ -unimodal permutations in S_n .
- Example: n = 10, $\mu = (3, 3, 4)$.

$$\pi = (4, 2, 10, 9, 7, 6, 5, 3, 1, 8) \in U_{\mu}$$

$$| \mu_1 | \mu_2 | \mu_3 |$$

- Let U_{μ} be the set of all μ -unimodal permutations in S_n .
- Example: n = 10, $\mu = (3, 3, 4)$.

$$\pi = (4, 2, 10, 9, 7, 6, 5, 3, 1, 8) \in U_{\mu}$$

$$\mid \mu_{1} \mid \mu_{2} \mid \mu_{3} \mid$$

• The descent set of a permutation $\pi \in S_n$ is

$$\mathsf{Des}(\pi) := \{i : \ \pi(i) > \pi(i+1)\}.$$

- Let U_{μ} be the set of all μ -unimodal permutations in S_n .
- Example: n = 10, $\mu = (3, 3, 4)$.

$$\pi = (\underline{4}, \underline{2}, \underline{10}, \underline{9}, \underline{7}, \underline{6}, \underline{5}, \underline{3}, 1, 8) \in U_{\mu}$$

$$| \mu_1 | \mu_2 | \mu_3 |$$

- The descent set of a permutation $\pi \in S_n$ is $\mathsf{Des}(\pi) := \{i: \ \pi(i) > \pi(i+1)\}.$
- Example: $Des(\pi) = \{1, 3, 4, 5, 6, 7, 8\}$

1. Character Formulas 2. Matrices 3. Back to Characters

- Let U_{μ} be the set of all μ -unimodal permutations in S_n .
- Example: n = 10, $\mu = (3, 3, 4)$.

$$\pi = (\underline{4}, \underline{2}, \underline{10}, \underline{9}, \underline{7}, \underline{6}, \underline{5}, \underline{3}, 1, 8) \in U_{\mu}$$

$$| \mu_1 | \mu_2 | \mu_3 |$$

- The descent set of a permutation $\pi \in S_n$ is $\mathsf{Des}(\pi) := \{i: \pi(i) > \pi(i+1)\}.$
- Example: $Des(\pi) = \{1, 3, 4, 5, 6, 7, 8\}$
- Denote $I(\mu) := \{1, \dots, n\} \setminus \{\mu_1, \mu_1 + \mu_2, \mu_1 + \mu_2 + \mu_3, \dots\}$

1. Character Formulas 2. Matrices 3. Back to Character

- Let U_{μ} be the set of all μ -unimodal permutations in S_n .
- Example: n = 10, $\mu = (3, 3, 4)$.

$$\pi = (\underline{4}, \underline{2}, \underline{10}, \underline{9}, \underline{7}, \underline{6}, \underline{5}, \underline{3}, 1, 8) \in U_{\mu}$$

$$| \mu_1 | \mu_2 | \mu_3 |$$

- The descent set of a permutation $\pi \in S_n$ is $\mathsf{Des}(\pi) := \{i: \pi(i) > \pi(i+1)\}.$
- Example: $Des(\pi) = \{1, 3, 4, 5, 6, 7, 8\}$
- Denote $I(\mu) := \{1, \dots, n\} \setminus \{\mu_1, \mu_1 + \mu_2, \mu_1 + \mu_2 + \mu_3, \dots\}$
- Example: $I(\mu)=\{1,\ldots,10\}\setminus\{3,6,10\}=\{1,2,4,5,7,8,9\}$ $\mathsf{Des}(\pi)\cap I(\mu)=\{1,4,5,7,8\}$

Formula 1: irreducible characters

Let λ and μ be partitions of n, let χ^{λ} be the character of the irreducible S_n -representation corresponding to λ , and let χ^{λ}_{μ} be its value on a conjugacy class of cycle type μ .

Formula 1: irreducible characters

Let λ and μ be partitions of n, let χ^{λ} be the character of the irreducible S_n -representation corresponding to λ , and let χ^{λ}_{μ} be its value on a conjugacy class of cycle type μ .

Theorem (Roichman '97)

$$\chi_{\mu}^{\lambda} = \sum_{\pi \in \mathcal{C} \cap U_{\mu}} (-1)^{|\operatorname{Des}(\pi) \cap I(\mu)|},$$

where C is any Knuth class of shape λ .

Formula 2: coinvariant algebra, homogeneous component

Let $\chi^{(k)}$ be the S_n -character corresponding to the symmetric group action on the k-th homogeneous component of its coinvariant algebra, and let $\chi^{(k)}_{\mu}$ be its value on a conjugacy class of cycle type μ .

1. Character Formulas 2. Matrices 3. Back to Characters

Formula 2: coinvariant algebra, homogeneous component

Let $\chi^{(k)}$ be the S_n -character corresponding to the symmetric group action on the k-th homogeneous component of its coinvariant algebra, and let $\chi^{(k)}_{\mu}$ be its value on a conjugacy class of cycle type μ .

Theorem (A-Postnikov-Roichman '00)

$$\chi_{\mu}^{(k)} = \sum_{\pi \in L(k) \cap U_{\mu}} (-1)^{|\operatorname{Des}(\pi) \cap I(\mu)|},$$

where L(k) is the set of all permutations of length k in S_n .

Formula 3: Gelfand model

A complex representation of a group or an algebra A is called a Gelfand model for A if it is equivalent to the multiplicity free direct sum of all irreducible A-representations. Let χ^G be the corresponding character, and let χ^G_μ be its value on a conjugacy class of cycle type μ .

1. Character Formulas 2. Matrices 3. Back to Characters

Formula 3: Gelfand model

A complex representation of a group or an algebra A is called a Gelfand model for A if it is equivalent to the multiplicity free direct sum of all irreducible A-representations. Let χ^G be the corresponding character, and let χ^G_μ be its value on a conjugacy class of cycle type μ .

Theorem (A-Postnikov-Roichman '08)

The character of the Gelfand model of S_n at a conjugacy class of cycle type μ is equal to

$$\chi_{\mu}^{\mathsf{G}} = \sum_{\pi \in \mathsf{Inv}_n \cap U_{\mu}} (-1)^{|\mathsf{Des}(\pi) \cap I(\mu)|},$$

where $Inv_n := \{ \sigma \in S_n : \sigma^2 = id \}$ is the set of all involutions in S_n .

Iwahori-Hecke algebra

Let $\mathcal{H}_n(q)$ be the algebra over \mathbb{Q} generated by T_1, \ldots, T_{n-1} subject to the relations

$$(T_i + q)(T_i - 1) = 0$$
 $(\forall i)$
 $T_i T_j T_j T_i$ $(|j - i| > 1)$

and

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$
 $(1 \le i < n-1).$

Theorem In order to determine an Hecke algebra ordinary character it suffices to evaluate it on the elements $T_{\mu} := \prod_{i \in I(\mu)} T_i$ over all partitions μ of n.

Theorem In order to determine an Hecke algebra ordinary character it suffices to evaluate it on the elements $T_{\mu} := \prod_{i \in I(\mu)} T_i$ over all partitions μ of n.

Remark. All above formulas extend to $\mathcal{H}_n(q)$ when replacing (-1) by (-q).

Theorem In order to determine an Hecke algebra ordinary character it suffices to evaluate it on the elements $T_{\mu} := \prod_{i \in I(\mu)} T_i$ over all partitions μ of n.

Remark. All above formulas extend to $\mathcal{H}_n(q)$ when replacing (-1) by (-q).

Example. The character of the Gelfand model of $\mathcal{H}_n(q)$ at the element \mathcal{T}_μ is equal to

$$\sum_{\pi \in In\nu_n \cap U_\mu} (-q)^{|\operatorname{Des}(\pi) \cap I(\mu)|},$$

Inverse formulas?

Question

Are these formulas invertible?

In other words: to what extent do the character values χ_{μ}^* ($\forall \mu$) determine the distribution of descent sets?

Matrices

Walsh-Hadamard matrices

Recursive definition

$$H_n = \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with
$$H_0 = (1)$$
.

Walsh-Hadamard matrices

Recursive definition

$$H_n = \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $H_0 = (1)$.

Example

$$H_1 = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

Walsh-Hadamard matrices

Recursive definition

$$H_n = \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $H_0 = (1)$.

Example

Character Formulas 2. Matrices 3. Back to Characters

Subsets as indices

Definition

Let P_n be the power set (set of all subsets) of $\{1,\ldots,n\}$, with the anti-lexicographic linear order: for $I,J\in P_n,\ I\neq J$, let m be the largest element in the symmetric difference $I\triangle J:=(I\cup J)\setminus (I\cap J)$, and define: $I< J\iff m\in J$.

Example

The linear order on P_3 is

$$\emptyset < \{1\} < \{2\} < \{1,2\} < \{3\} < \{1,3\} < \{2,3\} < \{1,2,3\}.$$

Fact (explicit description of H_n)

The Walsh-Hadamard matrix H_n of order 2^n has entries

$$h_{I,J}:=(-1)^{|I\cap J|} \qquad (\forall I,J\in P_n).$$

where rows and columns of H_n are indexed by P_n ordered as above.

Fact (explicit description of H_n)

The Walsh-Hadamard matrix H_n of order 2^n has entries

$$h_{I,J}:=(-1)^{|I\cap J|} \qquad (\forall I,J\in P_n).$$

where rows and columns of H_n are indexed by P_n ordered as above.

Note that

$$H_n^t = H_n$$

and

$$H_nH_n^t=2^nI_{2^n}$$

Recursive definition

$$A_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ A_{n-1} & -B_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with
$$A_0 = (1)$$
,

Recursive definition

$$A_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ A_{n-1} & -B_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $A_0 = (1)$, and

$$B_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ 0 & -B_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $B_0 = (1)$.

Recursive definition

$$A_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ A_{n-1} & -B_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $A_0 = (1)$, and

$$B_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ 0 & -B_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $B_0 = (1)$.

For comparison:

$$H_n = \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $H_0 = (1)$.

$$A_1 = (1)$$
 $B_1 = (1)$

$$A_1=(1)$$
 $B_1=(1)$ $A_1=\left(egin{array}{cc} 1 & 1 \ 1 & -1 \end{array}
ight)$ $B_1=\left(egin{array}{cc} 1 & 1 \ 0 & -1 \end{array}
ight)$

Prefixes and runs

Definition

The prefix of length p of an interval $\{m+1,\ldots,m+\ell\}$ is the interval $\{m+1,\ldots,m+p\}$ $(0 \le p \le \ell)$.

Prefixes and runs

Definition

The prefix of length p of an interval $\{m+1,\ldots,m+\ell\}$ is the interval $\{m+1,\ldots,m+p\}$ $(0 \le p \le \ell)$.

Definition

For $I \in P_n$ let I_1, \ldots, I_t be the sequence of runs (maximal consecutive intervals) in I.

Prefixes and runs

Definition

The prefix of length p of an interval $\{m+1,\ldots,m+\ell\}$ is the interval $\{m+1,\ldots,m+p\}$ $(0 \le p \le \ell)$.

Definition

For $I \in P_n$ let I_1, \ldots, I_t be the sequence of runs (maximal consecutive intervals) in I.

Example

For
$$I = \{1, 2, 4, 5, 6, 8, 10\} \in P_{10}$$
:
 $I_1 = \{1, 2\}, I_2 = \{4, 5, 6\}, I_3 = \{8\}, I_4 = \{10\}.$

Lemma (explicit description of A_n and B_n)

For $I \in P_n$ let I_1, \ldots, I_t be the runs in I. Define for any $J \in P_n$:

$$a_{I,J} := egin{cases} (-1)^{|I\cap J|}, & \textit{if } I_k \cap J \textit{ is a prefix of } I_k \textit{ for each } k; \ 0, & \textit{otherwise}. \end{cases}$$

Lemma (explicit description of A_n and B_n)

For $I \in P_n$ let I_1, \ldots, I_t be the runs in I. Define for any $J \in P_n$:

$$a_{I,J} := egin{cases} (-1)^{|I\cap J|}, & \textit{if } I_k \cap J \textit{ is a prefix of } I_k \textit{ for each } k; \\ 0, & \textit{otherwise.} \end{cases}$$

and

$$b_{I,J} := egin{cases} (-1)^{|I\cap J|}, & \textit{if } I_k \cap J \textit{ is a prefix of } I_k \textit{ for each } k, \\ & \textit{and } n
otin I \setminus J; \\ 0, & \textit{otherwise}. \end{cases}$$

Lemma (explicit description of A_n and B_n)

For $I \in P_n$ let I_1, \ldots, I_t be the runs in I. Define for any $J \in P_n$:

$$a_{I,J} := egin{cases} (-1)^{|I\cap J|}, & \textit{if } I_k \cap J \textit{ is a prefix of } I_k \textit{ for each } k; \\ 0, & \textit{otherwise.} \end{cases}$$

and

$$b_{I,J} := egin{cases} (-1)^{|I\cap J|}, & \textit{if } I_k \cap J \textit{ is a prefix of } I_k \textit{ for each } k, \\ & \textit{and } n
otin I \setminus J; \\ 0, & \textit{otherwise}. \end{cases}$$

Then

$$A_n = (a_{I,J})_{I,J \in P_n}$$
 and $B_n = (b_{I,J})_{I,J \in P_n}$

with P_n ordered as above.

$$A_1 = (1)$$
 $B_1 = (1)$

$$A_1 = (1)$$
 $B_1 = (1)$

$$A_1=\left(egin{array}{cc} 1 & 1 \ 1 & -1 \end{array}
ight) \qquad B_1=\left(egin{array}{cc} 1 & 1 \ 0 & -1 \end{array}
ight)$$

Character Formulas 2. Matrices 3. Back to Characters

Character Formulas 2. Matrices 3. Back to Characters

A and B (examples)

 $A_n^t \neq A_n$ (n > 2)

Determinant

Theorem

 A_n and B_n are invertible for all $n \ge 0$.

Determinant

Theorem

 A_n and B_n are invertible for all $n \ge 0$. In fact,

$$\det(A_n) = (n+1) \cdot \prod_{k=1}^n k^{2^{n-1-k}(n+4-k)} \qquad (n \ge 2)$$

while
$$det(A_0) = 1$$
 and $det(A_1) = -2$.

Determinant

Theorem

 A_n and B_n are invertible for all $n \ge 0$. In fact,

$$\det(A_n) = (n+1) \cdot \prod_{k=1}^n k^{2^{n-1-k}(n+4-k)} \qquad (n \ge 2)$$

while $det(A_0) = 1$ and $det(A_1) = -2$.

For comparison,

$$\det(H_n) = \frac{2^{2^{n-1}n}}{(n \ge 2)}$$

with $det(H_0) = 1$ and $det(H_1) = -2$.

From white light to rainbow colors

Möbius inversion

Let Z_n be the zeta matrix of the poset P_n with respect to set inclusion:

$$z_{I,J} := \begin{cases} 1, & \text{if } I \subseteq J; \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$Z_n = \left(\begin{array}{cc} Z_{n-1} & Z_{n-1} \\ 0 & Z_{n-1} \end{array}\right) \qquad (n \ge 1)$$

with $Z_0 = (1)$. Its inverse is the Möbius matrix $M_n = Z_n^{-1}$, with entries $m_{I,J}$ defined by

$$m_{I,J} := egin{cases} (-1)^{|J\setminus I|}, & ext{if } I\subseteq J; \ 0, & ext{otherwise}. \end{cases}$$

It satisfies

$$M_n = \begin{pmatrix} M_{n-1} & -M_{n-1} \\ 0 & M_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $M_0 = (1)$.

AM and BM

Denote now $AM_n := A_n M_n$, $BM_n := B_n M_n$ and $HM_n := H_n M_n$. It follows that

$$AM_n = \begin{pmatrix} AM_{n-1} & 0 \\ AM_{n-1} & -(AM_{n-1} + BM_{n-1}) \end{pmatrix}$$
 $(n \ge 1)$

with $AM_0 = (1)$ and

$$BM_n = \begin{pmatrix} AM_{n-1} & 0 \\ 0 & -BM_{n-1} \end{pmatrix} \qquad (n \ge 1)$$

with $BM_0 = (1)$, as well as

$$HM_n = \left(\begin{array}{cc} HM_{n-1} & 0 \\ HM_{n-1} & -2HM_{n-1} \end{array} \right) \qquad (n \ge 1)$$

with $HM_0 = (1)$.

HM entries

$$HM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -2 & 4 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 4 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 0 & 4 & 0 & 0 \\ 1 & -2 & -2 & 4 & -2 & 4 & 4 & -8 \end{pmatrix}$$

HM entries

$$HM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -2 & 4 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 4 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 0 & 4 & 0 \\ 1 & -2 & -2 & 4 & -2 & 4 & 4 & -8 \end{pmatrix}$$

Lemma

• **Zero pattern**: $(HM_n)_{I,J} \neq 0 \iff J \subseteq I$

2. Matrices

HM entries

$$HM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -2 & 4 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 4 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 0 & 4 & 0 & 0 & 0 \\ 1 & -2 & -2 & 4 & -2 & 4 & 4 & -8 \end{pmatrix}$$

Lemma

- Zero pattern: (HM_n)_{I,J} ≠ 0 ⇔ J ⊆ I
 Signs: (HM_n)_{I,J} ≠ 0 ⇒ sign((HM_n)_{I,J}) = (-1)^{|J|}

2. Matrices

HM entries

Lemma

- Zero pattern: $(HM_n)_{I,J} \neq 0 \iff J \subseteq I$
- Signs: $(HM_n)_{I,J} \neq 0 \Longrightarrow \text{sign}((HM_n)_{I,J}) = (-1)^{|J|}$ Absolute values: $(HM_n)_{I,J} \neq 0 \Longrightarrow |(HM_n)_{I,J}| = 2^{|J|}$

AM entries

AM entries

$$AM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 & 0 \\ 1 & -2 & -1 & 3 & -1 & 2 & 1 & -4 & 0 \end{pmatrix}$$

Theorem

• Zero pattern: $(AM_n)_{I,J} \neq 0 \iff J \subseteq I$

2. Matrices

AM entries

$$AM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 4 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 & 0 \\ 1 & -2 & -1 & 3 & -1 & 2 & 1 & -4 & 0 \end{pmatrix}$$

Theorem

- Zero pattern: $(AM_n)_{I,J} \neq 0 \iff J \subseteq I$ Signs: $(AM_n)_{I,J} \neq 0 \Longrightarrow \text{sign}((AM_n)_{I,J}) = (-1)^{|J|}$

2. Matrices

AM entries

$$AM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -2 & 4 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 & 0 \\ 1 & -2 & -1 & 3 & -1 & 2 & 1 & -4 & 0 \end{pmatrix}$$

Theorem

- Zero pattern: $(AM_n)_{I,J} \neq 0 \iff J \subseteq I$ Signs: $(AM_n)_{I,J} \neq 0 \Longrightarrow \text{sign}((AM_n)_{I,J}) = (-1)^{|J|}$
- Absolute values: ???

AM entries

Theorem

- **Zero pattern:** $(AM_n)_{I,J} \neq 0 \iff J \subseteq I$
- Signs: $(AM_n)_{I,J} \neq 0 \Longrightarrow \operatorname{sign}((AM_n)_{I,J}) = (-1)^{|J|}$
- Absolute values:

$$(AM_n)_{I,J} \neq 0 \Longrightarrow |(AM_n)_{I,J}| = \prod_{k=1}^{\iota} (|J_k| + 1)^{\delta_k(I)}$$

where J_1, \ldots, J_t are the runs in J and, for $J_k = \{m_k + 1, \ldots, m_k + \ell_k\}$ $(1 \le k \le t)$:

$$\delta_k(I) :=
\begin{cases}
0, & \text{if } m_k \in I; \\
1, & \text{otherwise.}
\end{cases}$$

Diagonal and last row

Corollary

- All entries in the diagonal and last row of AM_n are non-zero.
- Diagonal:

$$|(AM_n)_{J,J}| = \prod_{k=1}^t (|J_k| + 1)$$

Last row:

$$|(AM_n)_{[n],J}| =$$

$$\begin{cases} |J_1| + 1, & \text{if } 1 \in J; \\ 1, & \text{otherwise.} \end{cases}$$

• Each nonzero entry $(AM_n)_{I,J}$ divides the corresponding diagonal entry $(AM_n)_{J,J}$ and is divisible by the corresponding last row entry $(AM_n)_{[n],J}$.

Diagonal and last row (example)

$$AM_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\ 1 & -2 & -1 & 3 & -1 & 2 & 1 & -4 \end{pmatrix} \quad I = \{1, 2\}$$

Diagonal and last row (example)

$$AM_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\ 1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\ 1 & -2 & -1 & 3 & -1 & 2 & 1 & -4 \end{pmatrix} \quad \begin{matrix} I = \{2,3\} \\ I = \{1,2,3\} \end{matrix}$$

Eigenvalues

Eigenvalues

Eigenvalues

Question: What can be said about its eigenvalues?

Character Formulas 2. Matrices 3. Back to Characters

Eigenvalues

$$A_2^t \neq A_2 \qquad A_2 A_2^t \neq 4I_4$$

Question: What can be said about its eigenvalues?

Answer: char. poly.
$$(A_2) = (x^2 - 4)(x^2 - 3)$$

$$A_2^t \neq A_2 \qquad A_2 A_2^t \neq 4I_4$$

Question: What can be said about its eigenvalues?

Answer: char. poly.
$$(A_2) = (x^2 - 4)(x^2 - 3)$$

$$A_2^2 = \left(\begin{array}{cccc} 4 & 0 & 1 & 0 \\ 0 & 4 & -1 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 1 & 0 & 3 \end{array}\right)$$

$$A_3^2 = \begin{pmatrix} 8 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\ 0 & 8 & -2 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 6 & 0 & -2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 6 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 & -2 & 0 \\ 2 & 0 & 2 & 0 & 0 & 0 & 4 & 0 \\ 0 & 2 & 0 & 2 & 1 & 1 & 0 & 4 \end{pmatrix}$$

$$A_3^2 = \begin{pmatrix} 8 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\ 0 & 8 & -2 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 6 & 0 & -2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 6 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 & -2 & 0 \\ 2 & 0 & 2 & 0 & 0 & 0 & 4 & 0 \\ 0 & 2 & 0 & 2 & 1 & 1 & 0 & 4 \end{pmatrix}$$

char. poly.
$$(A_3) = (x^2 - 8)(x^2 - 6)^2(x^2 - 4)$$

Conjecture

The eigenvalues of A_n^2 (counted by algebraic multiplicity) are in 1:1 correspondence with the diagonal entries of A_n^2 (which are explicitly known).

Theorem (G. Alon '13)

The eigenvalues of A_n^2 (counted by algebraic multiplicity) are in 1:1 correspondence with the diagonal entries of A_n^2 , and thus in 2:1 correspondence with the compositions $\mu=(\mu_1,\ldots,\mu_t)$ of n:

$$\pi_{\mu} = \prod_{i=1}^{\iota} (\mu_i + 1).$$

Theorem (G. Alon '13)

The eigenvalues of A_n^2 (counted by algebraic multiplicity) are in 1:1 correspondence with the diagonal entries of A_n^2 , and thus in 2:1 correspondence with the compositions $\mu=(\mu_1,\ldots,\mu_t)$ of n:

$$\pi_{\mu} = \prod_{i=1}^t (\mu_i + 1).$$

Similarly, The eigenvalues of B_n^2 are in 1:1 correspondence with the diagonal entries of B_n^2 , and thus in 2:1 correspondence with the compositions of n:

$$\pi'_{\mu} = \prod_{i=1}^{t-1} (\mu_i + 1).$$

Back to Characters

Definition

Let \mathcal{B} be a set of combinatorial objects.

Definition

Let \mathcal{B} be a set of combinatorial objects.

Let $Des: \mathcal{B} \to P_{n-1}$ be a map which associates a "descent set"

 $\mathsf{Des}(b) \subseteq [n-1]$ to each element $b \in \mathcal{B}$.

Definition

Let \mathcal{B} be a set of combinatorial objects.

Let $Des: \mathcal{B} \to P_{n-1}$ be a map which associates a "descent set"

 $\mathsf{Des}(b) \subseteq [n-1]$ to each element $b \in \mathcal{B}$.

Denote by \mathcal{B}^{μ} the set of elements in \mathcal{B} whose descent set $\mathsf{Des}(b)$ is μ -unimodal.

Definition

Let \mathcal{B} be a set of combinatorial objects.

Let $Des : \mathcal{B} \to P_{n-1}$ be a map which associates a "descent set"

 $\mathsf{Des}(b) \subseteq [n-1]$ to each element $b \in \mathcal{B}$.

Denote by \mathcal{B}^{μ} the set of elements in \mathcal{B} whose descent set $\mathsf{Des}(b)$ is μ -unimodal.

Then \mathcal{B} is called a fine set for a complex S_n -representation ρ if,

Definition

Let \mathcal{B} be a set of combinatorial objects.

Let $Des : \mathcal{B} \to \mathcal{P}_{n-1}$ be a map which associates a "descent set"

 $\mathsf{Des}(b) \subseteq [n-1]$ to each element $b \in \mathcal{B}$.

Denote by \mathcal{B}^{μ} the set of elements in \mathcal{B} whose descent set $\mathsf{Des}(b)$ is μ -unimodal.

Then \mathcal{B} is called a fine set for a complex S_n -representation ρ if, for each composition μ of n, the character value of ρ on a conjugacy class of cycle type μ satisfies

$$\chi^{
ho}_{\mu} = \sum_{b \in \mathcal{B}^{\mu}} (-1)^{|\operatorname{Des}(b) \setminus \mathcal{S}(\mu)|}.$$

Theorem (Fine Set Theorem)

If \mathcal{B} is a fine set for an S_n -representation ρ , then the character values of ρ uniquely determine the overall distribution of descent sets over \mathcal{B} .

Theorem (Fine Set Theorem)

If \mathcal{B} is a fine set for an S_n -representation ρ , then the character values of ρ uniquely determine the overall distribution of descent sets over \mathcal{B} .

For a subset
$$J=\{j_1,\ldots,j_k\}\subseteq [n-1]$$
 let $s_J:=s_{j_1}s_{j_2}\cdots s_{j_k}\in S_n$.

Theorem (Fine Set Theorem)

If \mathcal{B} is a fine set for an S_n -representation ρ , then the character values of ρ uniquely determine the overall distribution of descent sets over \mathcal{B} .

Idea of proof

For a subset $J = \{j_1, \ldots, j_k\} \subseteq [n-1]$ let $s_J := s_{j_1} s_{j_2} \cdots s_{j_k} \in S_n$. Let χ^{ρ} be the vector with entries $\chi^{\rho}(s_J)$, for $J \in P_{n-1}$, and let $v^{\mathcal{B}}$ be the vector with entries

$$v_J^{\mathcal{B}} := |\{b \in \mathcal{B} : \mathsf{Des}(b) = J\}| \qquad (\forall J \in P_{n-1}).$$

Theorem (Fine Set Theorem)

If \mathcal{B} is a fine set for an S_n -representation ρ , then the character values of ρ uniquely determine the overall distribution of descent sets over \mathcal{B} .

Idea of proof

For a subset $J = \{j_1, \ldots, j_k\} \subseteq [n-1]$ let $s_J := s_{j_1} s_{j_2} \cdots s_{j_k} \in S_n$. Let χ^{ρ} be the vector with entries $\chi^{\rho}(s_J)$, for $J \in P_{n-1}$, and let $v^{\mathcal{B}}$ be the vector with entries

$$v_J^{\mathcal{B}} := |\{b \in \mathcal{B} : \mathsf{Des}(b) = J\}| \qquad (\forall J \in P_{n-1}).$$

Then \mathcal{B} is a fine set for ρ if and only if

$$\chi^{\rho} = A_{n-1} v^{\mathcal{B}}.$$

Theorem (Fine Set Theorem)

If \mathcal{B} is a fine set for an S_n -representation ρ , then the character values of ρ uniquely determine the overall distribution of descent sets over \mathcal{B} .

Idea of proof

For a subset $J = \{j_1, \ldots, j_k\} \subseteq [n-1]$ let $s_J := s_{j_1} s_{j_2} \cdots s_{j_k} \in S_n$. Let χ^{ρ} be the vector with entries $\chi^{\rho}(s_J)$, for $J \in P_{n-1}$, and let $v^{\mathcal{B}}$ be the vector with entries

$$v_J^{\mathcal{B}} := |\{b \in \mathcal{B} : \mathsf{Des}(b) = J\}| \qquad (\forall J \in P_{n-1}).$$

Then \mathcal{B} is a fine set for ρ if and only if

$$\chi^{\rho} = A_{n-1} v^{\mathcal{B}}.$$

The result follows since A_{n-1} is an invertible matrix.

Let ρ be the regular representation of S_2 .

Let ρ be the regular representation of S_2 . The set of all permutations in S_2 is a fine set for ρ .

Let ρ be the regular representation of S_2 . The set of all permutations in S_2 is a fine set for ρ . Then

$$v^{S_2} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix} \quad \begin{cases} 11 \\ \{2\} \\ \{1,2\} \end{cases}$$

Let ρ be the regular representation of S_2 .

The set of all permutations in S_2 is a fine set for ρ .

Then

$$v^{S_2} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix} \quad \begin{cases} \{1\} \\ \{2\} \\ \{1,2\} \end{cases}$$

and

Explicit inversion formula

Theorem

Let B be a fine set for an S_n -representation ρ . For every $I\subseteq [n-1]$, the number of elements in B with descent set D satisfies

$$|\{b \in B : \mathsf{Des}(b) = D\}| = \sum_J \chi^{\rho}(c_J) \sum_{I: D \cup J \subseteq I} (-1)^{|I \setminus D|} (AM_{n-1}^{-1})_{I,J}$$

Character Formulas 2. Matrices 3. Back to Characters

Explicit inversion formula

Theorem

Let B be a fine set for an S_n -representation ρ . For every $I \subseteq [n-1]$, the number of elements in B with descent set D satisfies

$$|\{b \in B : \mathsf{Des}(b) = D\}| = \sum_J \chi^\rho(c_J) \sum_{I: D \cup J \subseteq I} (-1)^{|I \setminus D|} (AM_{n-1}^{-1})_{I,J}$$

where

$$(AM_{n-1}^{-1})_{I,J} = \frac{(-1)^{|J|}}{|\langle I \rangle|} \prod_{k=1}^{t} \prod_{i \in I_k \cap J} (\max(I_k) - i + 1),$$

 I_1, \ldots, I_t are the runs in I and $c_J := \prod_{j \in J} s_j$ is a Coxeter element in the parabolic subgroup $\langle J \rangle$.

Corollary

Given two symmetric group modules with fine sets, the isomorphism of these modules is equivalent to equi-distribution of the descent set on their fine sets.

The major index of a permutation π is $\operatorname{maj}(\pi) := \sum_{i \in \operatorname{Des}(\pi)} i$, and its length $\ell(\pi)$ is the number of inversions in π . For a subset $I \subseteq [n-1]$ denote $\mathbf{x}^I := \prod_{i \in I} x_i$.

Theorem (Foata-Schützenberger; Garsia-Gessel)

$$\sum_{\pi \in \mathcal{S}_n} \mathbf{x}^{\mathsf{Des}(\pi)} q^{\ell(\pi)} = \sum_{\pi \in \mathcal{S}_n} \mathbf{x}^{\mathsf{Des}(\pi)} q^{\mathsf{maj}(\pi^{-1})}.$$

For $0 \le k \le \binom{n}{2}$ let R_k be the k-th homogebeous component of the coinvariant algebra of the symmetric group S_n .

For a partition λ , let $m_{k,\lambda}$ be the number of standard Young tableaux of shape λ with major index k.

Theorem (Lusztig-Stanley)

$$R_k\cong\bigoplus_{\lambda\vdash n}m_{k,\lambda}S^\lambda,$$

where the sum runs over all partitions of n and S^{λ} denotes the irreducible S_n -module indexed by λ .

The Fine Set Theorem implies

Corollary

The Foata-Schützenberger Theorem is equivalent to the Lusztig-Stanley Theorem.

The Fine Set Theorem implies

Corollary

The Foata-Schützenberger Theorem is equivalent to the Lusztig-Stanley Theorem.

The Fine Set Theorem implies

Corollary

The Foata-Schützenberger Theorem is equivalent to the Lusztig-Stanley Theorem.

$$B_k = \{\pi \in S_n : \operatorname{maj}(\pi^{-1}) = k\}$$
 is a fine set for the representation $\rho_k := \bigoplus_{\lambda \vdash n} m_{k,\lambda} S^{\lambda}$.

The Fine Set Theorem implies

Corollary

The Foata-Schützenberger Theorem is equivalent to the Lusztig-Stanley Theorem.

$$B_k = \{\pi \in S_n : \operatorname{maj}(\pi^{-1}) = k\}$$
 is a fine set for the representation $\rho_k := \bigoplus_{\lambda \vdash n} m_{k,\lambda} S^{\lambda}$.

$$L_k = \{ \pi \in S_n : \ell(\pi) = k \}$$
 is a fine set for R_k .

The Fine Set Theorem implies

Corollary

The Foata-Schützenberger Theorem is equivalent to the Lusztig-Stanley Theorem.

Idea of proof

$$B_k = \{ \pi \in S_n : \operatorname{maj}(\pi^{-1}) = k \}$$
 is a fine set for the representation $\rho_k := \bigoplus_{\lambda \vdash n} m_{k,\lambda} S^{\lambda}$.

$$L_k = \{ \pi \in S_n : \ \ell(\pi) = k \}$$
 is a fine set for R_k .

Thus $\rho_k \cong R_k$ if and only if the distributions of the descent set over B_k and L_k are equal.

. Character Formulas 2. Matrices 3. Back to Characters

Summary

Asymmetric variants of Walsh-Hadamard matrices

- Asymmetric variants of Walsh-Hadamard matrices
- ... serve as a bridge between characters and combinatorial permutation statistics

- Asymmetric variants of Walsh-Hadamard matrices
- ... serve as a bridge between characters and combinatorial permutation statistics
- ... have fascinating properties, with a strong combinatorial flavor

Character Formulas 2. Matrices 3. Back to Characters

- Asymmetric variants of Walsh-Hadamard matrices
- ... serve as a bridge between characters and combinatorial permutation statistics
- ... have fascinating properties, with a strong combinatorial flavor
- ... and offer many more riddles, awaiting (your) solution!

THANK YOU!