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Abstract

A certain family of square matrices plays a major role in character
formulas for the symmetric group and related algebras. These
matrices are asymmetric variants of Walsh-Hadamard matrices,
and have some fascinating properties which may be explained by
use of Mabius inversion. They provide a tool for translation of
statements about permutation statistics to results in representation
theory, and vice versa.
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pu-unimodal permutations

e A sequence (ai,...,a,) of distinct positive integers is
unimodal if there exists 1 < m < n such that

ag>a>...>2ap<amr1 <...<ap.
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pu-unimodal permutations

e A sequence (ai,...,a,) of distinct positive integers is
unimodal if there exists 1 < m < n such that

ag>a>...>2ap<amr1 <...<ap.

o Let u = (u1,...,4t) be a composition of n. A sequence of n
positive integers is p-unimodal if the first py integers form a
unimodal sequence, the next py integers form a unimodal
sequence, and so on.



1. Character Formulas 2. Matrices 3. Back to Characters

pu-unimodal permutations

e A sequence (ai,...,a,) of distinct positive integers is
unimodal if there exists 1 < m < n such that

ag>a>...>2ap<amr1 <...<ap.

o Let u = (u1,...,4t) be a composition of n. A sequence of n
positive integers is p-unimodal if the first py integers form a
unimodal sequence, the next py integers form a unimodal
sequence, and so on.

e A permutation T € S, is p-unimodal if the sequence
(m(1),...,7(n)) is p-unimodal.
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e Let U, be the set of all y-unimodal permutations in S,,.
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p-unimodal permutations, descent set

e Let U, be the set of all y-unimodal permutations in S,,.
e Example: n =10, p = (3,3,4).

7 =(4,2,10,9.7,6,5,3,1,8) € U,
| | oo | ops |
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p-unimodal permutations, descent set

e Let U, be the set of all y-unimodal permutations in S,,.
e Example: n =10, p = (3,3,4).

7 =(4,2,10,9.7,6,5,3,1,8) € U,
| | oo | ops |

e The descent set of a permutation ™ € S,, is
Des(m) :={i: =(i) > n(i +1)}.
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p-unimodal permutations, descent set

Let U, be the set of all y-unimodal permutations in S,,.
Example: n =10, p = (3,3,4).

| | oo | ops |

e The descent set of a permutation ™ € S,, is
Des(m) :={i: =(i) > n(i +1)}.
Example: Des(m) ={1,3,4.5,6,7,8}
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p-unimodal permutations, descent set

Let U, be the set of all y-unimodal permutations in S,,.
Example: n =10, p = (3,3,4).

| | oo | oms |
e The descent set of a permutation ™ € S,, is
Des(m) :={i: =(i) > n(i +1)}.
Example: Des(m) ={1,3,4.5,6,7,8}
Denote /(u) :={1,...,n} \ {p1, p1 + po, pp1 + p2 + p3, ...}
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p-unimodal permutations, descent set

Let U, be the set of all y-unimodal permutations in S,,.
Example: n =10, p = (3,3,4).

R R I
e The descent set of a permutation ™ € S,, is
Des(m) :={i: =(i) > n(i +1)}.
Example: Des(m) ={1,3,4.5,6,7,8}

Denote /(p) :={1,...,n} \ {p1, 1 + p2, i1 + p2 + pi3, . . .}
Example: I(n) ={1,...,10} \ {3,6,10} = {1,2,4,5,7,8,9}

Des(m) N /(p) = {1,4.5,7,8}
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Formula 1: irreducible characters

Let X and j be partitions of n, let x* be the character of the
irreducible S,-representation corresponding to A, and let Xf) be its
value on a conjugacy class of cycle type p.
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Formula 1: irreducible characters

Let X and j be partitions of n, let x* be the character of the
irreducible S,-representation corresponding to A, and let Xf) be its
value on a conjugacy class of cycle type p.

Theorem (Roichman '97)

xﬁz Z (_;[)\DES(TF)W(#)I7

TeCnU,

where C is any Knuth class of shape \.
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Formula 2: coinvariant algebra, homogeneous component

Let x(¥) be the S,-character corresponding to the symmetric group
action on the k-th homogeneous component of its coinvariant

(k) . .
algebra, and let x;,’ be its value on a conjugacy class of cycle type

.
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Formula 2: coinvariant algebra, homogeneous component

Let x(¥) be the S,-character corresponding to the symmetric group
action on the k-th homogeneous component of its coinvariant

(k) . .
algebra, and let x;,’ be its value on a conjugacy class of cycle type

1.
Theorem (A-Postnikov-Roichman '00)

XLk): Z (—1)! Pes(m)I ()l

reL(k)NU,

where L(k) is the set of all permutations of length k in S,.
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Formula 3: Gelfand model

A complex representation of a group or an algebra A is called a
Gelfand model for A if it is equivalent to the multiplicity free direct
sum of all irreducible A-representations. Let x© be the
corresponding character, and let Xﬁ be its value on a conjugacy
class of cycle type p.
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Formula 3: Gelfand model

A complex representation of a group or an algebra A is called a
Gelfand model for A if it is equivalent to the multiplicity free direct
sum of all irreducible A-representations. Let x© be the
corresponding character, and let Xﬁ be its value on a conjugacy
class of cycle type p.

Theorem (A-Postnikov-Roichman '08)

The character of the Gelfand model of S, at a conjugacy class of
cycle type u is equal to

XE: Z (_1)\DeS(7r)ﬂ/(u)I’

m€lnvaNUy

where Inv, := {0 € S, : 02 = id} is the set of all involutions in S,.
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Iwahori-Hecke algebra

Let H,(q) be the algebra over Q generated by T1,..., Th—1
subject to the relations

(Ti+q)(Ti—1)=0 (Vi)

LhLT (U—il>1)

and
TiTigaTi=TiaTiTiga (1<i<n-=1).
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Iwahori-Hecke algebra characters

Theorem In order to determine an Hecke algebra ordinary character
it suffices to evaluate it on the elements T, := [[ T;

i€l(p)
over all partitions p of n.
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Iwahori-Hecke algebra characters

Theorem In order to determine an Hecke algebra ordinary character
it suffices to evaluate it on the elements T, := [[ T;

i€l(p)
over all partitions p of n.

Remark. All above formulas extend to H,(q) when replacing (—1)
by (—q).
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Iwahori-Hecke algebra characters

Theorem In order to determine an Hecke algebra ordinary character
it suffices to evaluate it on the elements T, := [[ T;

i€l(p)
over all partitions p of n.

Remark. All above formulas extend to H,(q) when replacing (—1)
by (—q).

Example. The character of the Gelfand model of H,(q) at the
element T, is equal to

Z (_q)l DeS(W)ﬂ/(u)L

w€lnvaNUy
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Inverse formulas?

Question

Are these formulas invertible?

In other words: to what extent do the character values xj, (V1)
determine the distribution of descent sets?
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Walsh-Hadamard matrices

Recursive definition

with Hp = (1).

Example

1 1 1 1

I T T R ) [

fe=141 1 1 1 |=H
1 -1 1 1

3. Back to Characters
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Subsets as indices

Definition

Let P, be the power set (set of all subsets) of {1,...,n}, with the
anti-lexicographic linear order: for I,J € P,, | # J, let m be the
largest element in the symmetric difference

INS = (TUJ)\ (INJ), and define: | < J <= me J.

Example
The linear order on Pj3 is

0 < {1} < {2} <{1,2} < {3} < {1,3} < {2,3} < {1,2,3).
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Fact (explicit description of H,)

The Walsh-Hadamard matrix H,, of order 2" has entries
hiy = (=DM (v, g e P).

where rows and columns of H, are indexed by P, ordered as above.
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Fact (explicit description of H,)
The Walsh-Hadamard matrix H,, of order 2" has entries

hy = (1)l (Y1, J € Py).

where rows and columns of H, are indexed by P, ordered as above.

Note that

and
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Recursive definition

with Ag = (1),

3. Back to Characters
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The matrices A and B

Recursive definition

o Anfl Anfl
An N ( An—l _Bn—l > (n = 1)

Anfl Anfl
B — >
" < 0 Bn—l > (n B 1)
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The matrices A and B

Recursive definition

o Anfl Anfl
An N ( An—l _Bn—l > (n = 1)

Anfl Anfl
= >
B, < 0 B, > (n>1)
with By = (1).

For comparison:
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A and B (examples)

Ar=(1) By = (1)
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A and B (examples)

11 1
Al_(l—l) Bl_(o

3. Back to Characters
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A and B (examples)

11 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
=11 1 1 1 B, = 1 -1
1 -1 0 1 0 1
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Prefixes and runs

Definition
The prefix of length p of an interval {m+1,..., m+ ¢} is the
interval {m+1,...,m+p} (0 < p</).
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Prefixes and runs

Definition
The prefix of length p of an interval {m+1,..., m+ ¢} is the
interval {m+1,...,m+p} (0 < p</).

Definition

For I € P, let h,..., I be the sequence of runs (maximal
consecutive intervals) in /.
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Prefixes and runs

Definition
The prefix of length p of an interval {m+1,..., m+ ¢} is the
interval {m+1,...,m+p} (0 < p</).

Definition
For I € P, let h,..., I be the sequence of runs (maximal
consecutive intervals) in /.

Example
For I ={1,2,4.5.6,8,10} € Pio:
h={1,2}, h = {4.5.6}, s = {8}, I, = {10}.



The matrices A and B
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The matrices A and B

Lemma (explicit description of A, and B,)
Forl € P, let I,..., Il be the runs in |I. Define for any J € Pp:

(=) if LN J is a prefix of I for each k;
ajy =
-t 0, otherwise.
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The matrices A and B

Lemma (explicit description of A, and B,)
Forl € P, let I,..., Il be the runs in |I. Define for any J € Pp:

{(—1)”“', if I N J is a prefix of Iy for each k;
alJ =

0, otherwise.
and

(=) if LN J is a prefix of Iy for each k,
by = andn¢ I\ J;

0, otherwise.
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The matrices A and B

Lemma (explicit description of A, and B,)
Forl € P, let I,..., Il be the runs in |I. Define for any J € Pp:

{(—1)”“', if I N J is a prefix of Iy for each k;

aj =
H 0, otherwise.
and
(=) if LN J is a prefix of Iy for each k,
by = andn¢ I\ J;
0, otherwise.
Then

An=(ars)iyep, and B, = (b )i ep,

with P, ordered as above.
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A and B (examples)

A= (1) B =(1)
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A and B (examples)

A= (1) B =(1)

11 1
ve(i ) (0

3. Back to Characters
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>
N
Il
==

2. Matrices

A and B (examples)

A= (1) By =(1)

1 1 1
ae(th) n

1 1 1 1
-1 1 -1 1
1 -1 -1 B, =

-1 0 1

3. Back to Characters

1 0
-1 {L
-1 {2

1 ) (1,2}
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A and B (examples)

A= (1) By =(1)

w0 h) e (0 4

11 1 1 1 1 1 1 0

N I S R N T S R {1}
A=l 1 S B2 = -1 -1 {2}
1 -1 0 1 0 1 {1,2}

I ={1,2}, J={2}, InJ={2}isnot a prefix of /
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A and B (examples)

A= (1) By =(1)

w0 h) e (0 4

11 1 1 1 1 1 1 0

N I S R N T S R {1}
A=l 1 S B2 = -1 -1 {2}
1 -1 0 1 0 1 {1,2}

T
I ={1,2}, J={2}, InJ={2}isnot a prefix of /

AL A, (n>2)
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Determinant

Theorem
A, and B,, are invertible for all n > 0.
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Determinant

Theorem
A, and By, are invertible for all n > 0. In fact,

det(A,) = (n+1) - J] k2" (4R
k=1

while det(Ag) = 1 and det(A;) = —2.

(n=>2)

3. Back to Characters
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Determinant

Theorem
A, and By, are invertible for all n > 0. In fact,

det(A,) = (n+1)- [T K240 (n>2)
k=1

while det(Ag) = 1 and det(A;) = —2.
For comparison,
det(H,) =22"""  (n>2)

with det(Hp) = 1 and det(H;) = —2.



From white light to rainbow colors




2. Matrices

Mobius inversion
Let Z, be the zeta matrix of the poset P, with respect to set

inclusion:
1, iflCJ,
Z/’_/ =

0, otherwise.
Then

anl anl
= >
Z, < 0 zZ (n>1)
with Zy = (1). lts inverse is the Mdbius matrix M, = Z "%, with
entries m; ; defined by

(—1)PVLif 1 C o,
my = .
0, otherwise.

It satisfies



2. Matrices

AM and BM

Denote now AM,, .= A, M,,, BM,, .= B,M,, and HM,, .= H,M,,. It
follows that

AM,_1 0
AM,, = >1
( AM,_1  —(AM,_1 + BM,_1) ) (n=1)

with AMp = (1) and

AM,, 1 0
= >
BM, < 0 _BM,, > (n>1)

with BMp = (1), as well as

HM, 1 0
= >
AMn ( HM,_1 —2HM, 1 > (n=21)

with HMg = (1).



2. Matrices

HM entries

0
0
0
0

0
—2.0 0
2 40
—2 0 4
2 4 4

4
0
0

-2 =2
0
0

1
1

-2

-2 0

0
-2

—8

2 4

1

HM; =



2. Matrices

HM entries

0
0
0
0
-8

coo <<
coxo«
° 99T
<t ooo«
Tooqq
Teoqeq

1
1
1
1
1

HM; =

Lemma

e Zero pattern: (HM,); ; #0 <= J C |



2. Matrices

HM entries

1 0 0 0 0 00 O
1 2 0 0 0 00 O
1 0 -20 0 00 0
1 -2 =24 0 00 0
AMs=11 9 0 0 200 o0
1 2 0 0 -2 40 0
1 0 -2 0 -2 0 4 0
1 -2 -2 4 -2 4 4 -8

Lemma

e Zero pattern: (HM,); ; #0 <= J C |
o Signs: (HM,); ; # 0 = sign((HM,); j) = (—1)//!



2. Matrices

HM entries

1 0 0 0 0 00 O
1 2 0 0 0 00 O
1 0 -20 0 00 0
1 -2 =24 0 00 0
AMs=11 9 0 0 200 o0
1 2 0 0 -2 40 0
1 0 -2 0 -2 0 4 0
1 -2 -2 4 -2 4 4 -8

Lemma
e Zero pattern: (HM,); ; #0 <= J C |
o Signs: (HM,); ; # 0 = sign((HM,); j) = (—1)//!
o Absolute values: (HM,); ; #0 = |(HM,); | = 2



2. Matrices

AM entries

0
-2 00
-2 4 0
-1 0 3
-1 21

3
0
0

—2 -1
0
0

1
1

0
0

-2

-2 0

0
-2

—4

-1 3

1

AMs3 =



2. Matrices

AM entries

0
-2 00
-2 4 0
-1 0 3
-1 21

3
0
0

-2 -1
0
0

1
1

0
0

-2

-2 0

0
-2

—4

-1 3

1

AM; =

Theorem

e Zero pattern: (AM,); ;#0 <= JC|/



2. Matrices

AM entries

1 0 0 0 0 00 O
1 2 0 0 0 00 O
1 0 20 0 00 0
1 2 -13 0 00 0
AMs=11 0 0 0 200 0
1 -2 0 0 -2 40 0
1 0 -2 0 —-103 0
1 -2 -1 3 -1 2 1 —4
Theorem

e Zero pattern: (AM,); ;#0 <= JC|/
o Signs: (AM,);; # 0 = sign((AM,), ;) = (—1)




2. Matrices

AM entries

1 0 0 0 0 00 O
1 2 0 0 0 00 O
1 0 20 0 00 0
1 2 -13 0 00 0
AMs=11 0 0 0 200 0
1 -2 0 0 -2 40 0
1 0 -2 0 —-103 0
1 -2 -1 3 -1 2 1 —4
Theorem

e Zero pattern: (AM,); ;#0 <= JC|/
e Signs: (AM,); ; # 0 = sign((AM,),; J) = (—1)“‘
e Absolute values: 777
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AM entries

Theorem
e Zero pattern: (AM,); ; #0 < JC/
o Signs: (AM,), ; # 0 = sign((AM,), ;) = (—1)M!
e Absolute values:

t

(AMn)/,J 7£ 00— ’(AMH)I,J| — H(|Jk| + 1)5k(/)
k=1

where Ji, ..., J; are the runs in J and, for
Jk:{mk+1,...,mk+€k} (1§k§t).‘

0, if I;
(Sk(/) - , I my E.
1, otherwise.
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Diagonal and last row

Corollary

o All entries in the diagonal and last row of AM,, are non-zero.

e Diagonal:
t
[(AMn) sl = TT (1l + 1)
k=1
e Last row:
|Ah|+1, ifled;
AMn n =
|(AMn )5, 4| {1, otherwise.

e Each nonzero entry (AM,); ; divides the corresponding
diagonal entry (AM,), ; and is divisible by the corresponding
last row entry (AMp)(q),J-



1. Character Formulas

AM3

2. Matrices 3. Back to Characters

Diagonal and last row (example)

1 0 0 0 0 00 O

1 -2 0 0 0 00 0O

1 0 2 0 0 00 0

1 2 -1 3 0 00 0 I ={1,2}
1 0 0 0 -200 0O

1 2 0 0 -2 40 0

1 0 -2 0 -1 03 0

1 -2 -1 3 -1 21 —4) I={1,23}
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AM3

2. Matrices 3. Back to Characters

Diagonal and last row (example)

1 0 0 0 0 0 0 O

1 -2 0 0 0 0 0 O

1 0 20 0 0 0 O

1 -2 =13 0 0 0 0

1 0 0 0 -20 0 0

1 2 0 0 -2 4 0 0

1 0 -2 0 -10 3 0 I ={2,3}
1 -2 -1 3 -1 2 1 —-4) I={1,23}

T

J=1{2,3}
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Eigenvalues

1 1 1
-1 1 -1
1 -1 -1
-1 0 1

>
)
Il
=
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Eigenvalues

1 1 1 1

1 -1 1 -1
A=y 1 1

1 -1 0 1

AL £ Ay AgAb £ 4l
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Eigenvalues

1 1 1 1

1 -1 1 -1
A=y 1 1

1 -1 0 1

AL £ Ay AgAb £ 4l

Question: What can be said about its eigenvalues?



1. Character Formulas 2. Matrices 3. Back to Characters

Eigenvalues

1 1 1 1

1 -1 1 -1
A=y 1 1

1 -1 0 1

AL £ Ay A AL+ 4y
Question: What can be said about its eigenvalues?

Answer: char. poly.(A2) = (x* — 4)(x? — 3)
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Eigenvalues

1 1 1 1

1 -1 1 -1
A=y 1 1

1 -1 0 1

AL £ Ay A AL+ 4y
Question: What can be said about its eigenvalues?
Answer: char. poly.(A2) = (x* — 4)(x? — 3)
1
-1

3
0

— O O &
_ O B~ O
w o O o



2. Matrices

Eigenvalues

0

-2

0 8

2
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Eigenvalues

80 2 0 2 0 0 0
08 20 0 2 0 0
00 6 0 -2 0 0 O
p2_| 2206 1 -1 00
3l oo 0o 0 6 0 2 0
00 0 0 0 6 -20
20 2 0 0 0 4 0
02 0 2 1 1 0 4
char. poly.(A3) = (x* — 8)(x? — 6)?(x*> — 4)
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Eigenvalues

Conjecture

The eigenvalues of A2 (counted by algebraic multiplicity) are in
1 : 1 correspondence with the diagonal entries of A2 (which are
explicitly known).
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Eigenvalues

Theorem (G. Alon '13)
The eigenvalues of A2 (counted by algebraic multiplicity) are in
1: 1 correspondence with the diagonal entries of A%, and thus in

2:1 correspondence with the compositions p = (p1, ..., pt) of n:

t

T = H(Mi +1).

i=1
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Eigenvalues

Theorem (G. Alon '13)
The eigenvalues of A2 (counted by algebraic multiplicity) are in
1: 1 correspondence with the diagonal entries of A%, and thus in

2:1 correspondence with the compositions p = (p1, ..., pt) of n:

t

T = H(Mi +1).

i=1

Similarly, The eigenvalues of B2 are in 1: 1 correspondence with
the diagonal entries of B2, and thus in 2:1 correspondence with the
compositions of n:

t—1
ﬂ-;l = H(/J,' +1).
i=1
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1. Character Formulas

Eigenvalues

04000000
2 000O0O0O0CO
000 20000
103 00O0O0O
00010300

0 00020O00

0200020 4

0 000O0O0T10O0

A3z ~
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3. Back to Characters
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Fine sets

Definition
Let BB be a set of combinatorial objects.
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Fine sets

Definition

Let BB be a set of combinatorial objects.

Let Des : B — P,,_1 be a map which associates a “descent set”
Des(b) C [n — 1] to each element b € B.
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Fine sets

Definition

Let BB be a set of combinatorial objects.

Let Des : B — P,,_1 be a map which associates a “descent set”
Des(b) C [n — 1] to each element b € B.

Denote by B the set of elements in B whose descent set Des(b) is
p-unimodal.



1. Character Formulas 2. Matrices 3. Back to Characters

Fine sets

Definition

Let BB be a set of combinatorial objects.

Let Des : B — P,,_1 be a map which associates a “descent set”
Des(b) C [n — 1] to each element b € B.

Denote by B the set of elements in B whose descent set Des(b) is
p-unimodal.

Then B is called a fine set for a complex S,-representation p
if,



3. Back to Characters

Fine sets

Definition

Let BB be a set of combinatorial objects.

Let Des : B — P,,_1 be a map which associates a “descent set”
Des(b) C [n — 1] to each element b € B.

Denote by B the set of elements in B whose descent set Des(b) is
p-unimodal.

Then B is called a fine set for a complex S,-representation p
if, for each composition p of n, the character value of p on a
conjugacy class of cycle type u satisfies

A= 3 (1)l Pes(oNS ()
beB®
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Theorem (Fine Set Theorem)

If B is a fine set for an S,-representation p, then the character

values of p uniquely determine the overall distribution of descent
sets over B.
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Character values and descent sets

Theorem (Fine Set Theorem)

If B is a fine set for an S,-representation p, then the character
values of p uniquely determine the overall distribution of descent
sets over B.

Idea of proof

For a subset J = {j1,...,jk} C[n—1] let s, :=s;s},---5j, € Sp.
Let x” be the vector with entries x”(sy), for J € P,_1, and let vB
be the vector with entries

VB .= |{be B : Des(b)=J}|  (VJe P,1).
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Character values and descent sets

Theorem (Fine Set Theorem)

If B is a fine set for an S,-representation p, then the character
values of p uniquely determine the overall distribution of descent
sets over B.

Idea of proof

For a subset J = {j1,...,jk} C[n—1] let s, :=s;s},---5j, € Sp.
Let x” be the vector with entries x”(sy), for J € P,_1, and let vB
be the vector with entries

VB .= |{be B : Des(b)=J}|  (VJe P,1).
Then B is a fine set for p if and only if

X' = An1 vo.
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Character values and descent sets

Theorem (Fine Set Theorem)

If B is a fine set for an S,-representation p, then the character
values of p uniquely determine the overall distribution of descent
sets over B.

Idea of proof
For a subset J = {j1,...,jk} C[n—1] let s, :=s;s},---5j, € Sp.
Let x” be the vector with entries x”(sy), for J € P,_1, and let vB
be the vector with entries

VB .= |{be B : Des(b)=J}|  (VJe P,1).
Then B is a fine set for p if and only if

X' = An1 vo.

The result follows since A,_1 is an invertible matrix.
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Example

Let p be the regular representation of Sp.

The set of all permutations in S, is a fine set for p.

Then
1 0
VSz — 2 {1}
2 {2}
1 {1,2}

3. Back to Characters
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Example

Let p be the regular representation of Sp.
The set of all permutations in S, is a fine set for p.

Then
1 0
S _ 2 {1}
T 2] @
1 {1,2}
and

A2 V52 =

=
=
|
—_
|
—_
O O OO
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Explicit inversion formula

Theorem
Let B be a fine set for an S,-representation p. For every

I C [n— 1], the number of elements in B with descent set D
satisfies

[{b € B:Des(b)=D}| = ZX cy) Z (*1)“\D|(AM,:_11)I,J

1:DUJC]
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Explicit inversion formula

Theorem
Let B be a fine set for an S,-representation p. For every
I C [n— 1], the number of elements in B with descent set D

satisfies
[{b € B : Des(b) = D}| = Zx” ) > ()NPIAM )
1:DUJCI
where
) IJ\ t
(AM;I),’Jf H IT (max(h) =i+ 1),
k=1lielnJ
Ii,..., Iy are the runs in | and c; := Hjejsj is a Coxeter element

in the parabolic subgroup (J).
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Equivalence of classical theorems

Corollary

Given two symmetric group modules with fine sets,
the isomorphism of these modules is equivalent to
equi-distribution of the descent set on their fine sets.
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Equivalence of classical theorems

The major index of a permutation 7 is maj(7) := > 1,
i€Des()
and its length /(7) is the number of inversions in .
For a subset / C [n — 1] denote x' := [] x;.
iel

Theorem (Foata-Schiitzenberger; Garsia-Gessel)

Z xDes(m) (m) — Z xDes(r) qmaj(w‘l)'

TES, TES,
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Equivalence of classical theorems

For 0 < k < (J)let Ry be the k-th homogebeous component of the
coinvariant algebra of the symmetric group S,.

For a partition A, let my ) be the number of standard Young
tableaux of shape A\ with major index k.

Theorem (Lusztig-Stanley)

Ry = @ mi A S,

Abn

where the sum runs over all partitions of n and S* denotes the
irreducible S,-module indexed by ).
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Corollary

The Foata-Schiitzenberger Theorem is equivalent to the
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By = {7 € S,: maj(rm!) = k} is a fine set for the representation
P = D p M p S
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Equivalence of classical theorems

The Fine Set Theorem implies

Corollary

The Foata-Schiitzenberger Theorem is equivalent to the
Lusztig-Stanley Theorem.

Idea of proof
By = {7 € S,: maj(rm!) = k} is a fine set for the representation
P = D p M p S

Ly ={meS,: {r) =k} is a fine set for Ry.
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Equivalence of classical theorems

The Fine Set Theorem implies

Corollary

The Foata-Schiitzenberger Theorem is equivalent to the
Lusztig-Stanley Theorem.

Idea of proof
By = {7 € S,: maj(rm!) = k} is a fine set for the representation

pici= Ben MAS™
Ly ={meS,: {r) =k} is a fine set for Ry.

Thus px =2 Ry if and only if the distributions of the descent set
over By and Ly are equal.
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Summary

e Asymmetric variants of Walsh-Hadamard matrices
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Summary

e Asymmetric variants of Walsh-Hadamard matrices

e ... serve as a bridge between characters and combinatorial
permutation statistics

... have fascinating properties, with a strong combinatorial
flavor

... and offer many more riddles, awaiting (your) solution!
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1 1 1
-1 1 -1
1 -1 -1
-1 0 1

Ar =

R



Character Formulas

1 1 1 1
1 -1 1 -1
=11 1 1 1
1 -1 0 1

THANK YOU !

3. Back to Characters
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