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Proofs are given for results on surjective stability for the K1-functor for some 
exceptional Chevalley groups of normal types. Conditions are given (in terms of 
absolute stable rank) for stability for inclusions of Chevalley groups associated 
with maximal standard inclusions of root systems. The proofs are based on ideas 
of M. R. Stein. 

In the present paper, proofs are given for the results on Chevalley groups of normal 
types announced in [17, 18]. We use the approach developed in a fundamental paper of M. 
Stein [35]. In fact, the purpose of our paper is to consider those cases of the inclusions 
of root systems that were not considered in [35] and, therefore, to obtain a complete list 
of conditions under which stability appears for all maximal inclusions of root systems. 
On the other hand, another "pedagogical" idea was kept in mind, namely, to use systemat- 
ically the technique of base representations and weight diagrams developed in [33, 35], 
etc., which proved to play an important role in various questions on the structure of 
Chevalley groups, see [33, 35, 8, 6, 15, 34, 7], etc. 

i. Notation and Statement of the Problem 

Let R be a commutative ring with identity, 9 an irreducible root system, and let G(9, ) 
be the Chevalley--Demazur group scheme. The value of this scheme at the ring R is denoted 
by G(9, R) and is said to be the Chevalley group of type 9 over R. Let H = {~i .... , cSn} 

and let 9 + , 9- be the sets of positive and negative fundamental roots of the system 9 with 
respect to some order. The elementary unipotent root elements will be denoted by x~(t) 
for ~eg, teR. 

For a set X, we let <X> denote the object generated by X in the following sense: <X> 
denotes the subgroup generated by X if X is a subset of elements of a group G, <X > is the 
ideal generated by X if X is a subset of elements of a ring R, and <X> is the minimal closed 
root subsystem containing X if X is a subset of elements of a root system 9. 

We set, as usual, 

E(~,R)=<x(t), ~ ~ #, t ~ R> 

V(#,R)=<X (t), ~ ~ #? t ¢ R> 

U(#,R)=<X (t), ~ ~ ~ t ~ R>. 

The subgroup E(9, R) is said to be the elementary subgroup of the Chevalley group. 

It is well known that G(9, R) = E(9, R) if G(9, R) is a simply connected Chevalley 
group and R is a field or, more generally, a semilocal ring. 

Let T(9, R) be a split maximal torus in the group G(9, R). Then for a semilocal ring 
R, we have (see [24]) 

G(#,R)=E(#,R)T(~,R) 

Let 

w (t) B x (t)x (-t-l)x (t), t~R*, 

h (t) ~ w (t)w (I) -I, 
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where R* is the multiplicative group of the ring R. Let 

N(~,R) = <W (t),~,t~R*>, 

H(#,R) = <ha(t),~,t~R*>- 

For an arbitrary R, we have H(~,R)=E(~,R)nT(#,R). We will denote the Weyl group of the 

root syste m # by W(#). The group W(~) can be canonically identified with the factor group 
N(e, R)/H(e, R). 

Generally speaking, the Chevalley group G(¢, R) depends on the representation of the 
corresponding complex simple Lie algebra of type ¢. We will consider only simply connected 
Chevalley groups G(#, R). 

The question whether the subgroup E(~, R) is normal in G(~, R) was open for a long 
time. This is not the case for the groups of rank one (see [29, 38, 21]). Moreover, as 
for arbitrary associative rings, there exists a ring A such that even the subgroup En(A) 
of elementary matrices is not normal in GLn(A) (see [13]). However, for all Chevalley 
groups of rank ~2 and for any commutative ring R, we have 

E(#,R) <G(~,R) 

[39, 40, 25, 8, 20, 22, 16]. We can therefore consider the factor group 

K 1 (#,R) =G(~,R)/E(#,R) 

This is nothing but the K1-functor for Chevalley groups. If # = An, we obtain the 

usual SK1-functor for the special linear group [26]. An inclusion of root systems Ae~ 
induces homomorphisms v:G(A,R)-~ G(#,R), v:E(A,R)--+E(~,R), and, therefore, ~:KI(A,R)--+KI(~,R) • 

By a problem of surjective (injective) stability, we mean the following: Find condi- 
tions on the ring R depending on A ÷ ~ under which the homomorphism ~ is surjective (injec- 
rive). Surjective stability is equivalent to the decomposition G(~,R)=E(~,R)G(A,R), and in- 
jective stability is equivalent to the following formula: 

E(A~R)=G(A,R)nE(#,R) 

Therefore, when speaking about stability for Kl-functor for an inclusion Ae#, we can simply 

mean the existence of such a decomposition. 

The stability problem for the K1-functor for Chevalley groups over rings is a natural 
expansion of the analogous problem for classical groups. This problem is mentioned, among 
others, by H. Bass in [i]. After the papers of Bass, L. Vaserstein, H. Bass--J. Milnor-- 
J.-P. Serre, and others on classical groups (commutativity of the ring was not assumed), 
a considerable advance for the general case of Chevalley groups was achieved in [33, 30] 
and in Stein's series of papers [35-37]. The definition below follows [35]. 

A commutative ring R is said to satisfy the absolute stable rank condition ASR n if 

for any row (r I .... rn)eRn, there exist t I .... , tn_leR such that any maximal ideal in R 

containing <rl+tlrn,r2+t2rn .... rn_l+tn_irn > also contains the ideal <r I .... rn> (see [31, 35]). 

If the row (rl, .... rn)eRn is unimodular, i.e., <r I .... , rn> = R, the ASR n condition 

could be replaced by the stable rank condition SR n. Both of the conditions ASR n and SR n 

are known to follow from the condition dimMax(R) = n-2. 

The condition ASR n has the usual properties, i.e., it is inherited by a factor ring 

and, moreover, ASR m implies ASR n if n > m. In the next section, we will again discuss the 

role of the conditions SR n and ASR n. 

2. Base Representations and the Chevalley--Matsumoto Theorem 

With every irreducible representation ~ of finite dimention of a complex simple Lie 
algebra g of type 4, we can associate a representation of the Chevalley group G(~, R) in 
a free R-module V (see [3, 19, 33]). By irreducibility of an induced representation we 
mean that it is irreducible for s(~,c). For the study of Chevalley groups over rings, 
it is extremely important to choose the representation ~ in an appropriate way. 
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Let A(~) denote the set of all weights of the representation ~, let A*(~) be the set 

of nonzero weights, and let A(~) be the set of fundamental roots of the system # that be- 

long to the set of weights of the representation ~. 

A natural way to transfer arguments for classical groups to the general case is to 
choose a representation ~ so that all weight submodules V ~ associated with the weights 
~eA*(~) are one-dimensional. 

Definition [33]. An irreducible representation ~ is said to be a base representation 

if the Weyl group W(~) acts transitively on the set A*(~). 

This definition is equivalent to the following: if ~I-~2 = ~, with ~i,~2~A*(~), =~H, then 

we have w x1-~ 2 where w~ is a fundamental reflection. 

Such representations satisfy the above condition. Moreover, the dimension of the 

weight submodule V ° associated with the zero weight of the representation ~ is equal to 
the number of those fundamental roots of ~ that are the weights of the representation ~, 
i.e., dimV ° = card A(v). In the sequel, it will be convenient to consider the zero weights 

~i' ~i ~A(~)" We can choose a basis of the module v=Zv~ev °, ~^*(~) in a special way: v~v~,~A*(~), 
0 0 v~v ,~A(~) , so the action of the elementary root unipotents x(t),~,t~R , in this basis has 

a simple structure. A description of this action is given by Lemma 2.3 of [33], which we 
will use widely, with some additions (see [7]). 

We denote the action of elementary root unipotents of the representation ~ on the 

vectors v ~ by simply x=(t)v ~ . Recall that an element v of an X-module V is said to be 

unimodular if there exists an feV* = Hom (V, R) such that f(v) is invertible in R. For a 

free X-module V, this means that v may be included in a basis of V. 

LEMMA 1 ([33]). The elementary root unipotent elements x~(t) act on the above basis 

of the R-module V according to the rule 

i. if X~A*(~), ~+=~A(=), then x~(t)vA=v~; 

2. if ~,~+~A*(~) then x (t)vA=vA~tv A+~ 

3. if ~^(~) then x (t)v°=v ° for every v%v° ; 

4. if ~A(=) then X (t)v-~=v-~tv0(~);t2v ~ , X (t)vO=v0;t~,(vO)v a , 

where ~, is a unimodular element of (V°) * = HomR(V °, R), and v°(~) is a unimodular element 

of V °. More precisely, xc~(t)v ~ = v~ /~ 6~,~tv~, where ~, ~eA(~). 

Furthermore, the elements ~,, ~eA(~), form a basis of (V°) *. The choice of signs in 

the lemma is a topic for separate investigation (see [32]) and is not important for us. 

Let D be the highest weight of the representation ~. We denote by (G(~, R),~) the 
group G(~, R) considered in this representation. Any element g of the group (G(#, R), D) 
is represented in the above basis by a matrix g = (g%,~); %, veA*(~)~&(~), whose rows and 

columns are indexed by weights of the representation ~. Furthermore, we denote by %(g) = 

g%,v the %-th coordinate of the first column of g. 

We recall the list of base representations [7]. It is well known (see [33]) that 

G(~, R) has a unique base representation with zero weight. This is the representation on 
the short roots of the root system # whose highest weight is the dominant short root, i.e., 
it is simply the maximal root for those root systems in which all roots are of equal length. 
Thus, in the notation of [4], we have 

A I ~ = e 1 

B1 N = ~I 

C1 ~ = ~2 

D1 ~ = ~2 

- Cl+ I 
H is the adjoint representation 

is the representation of minimal 
dimension 

is the adjoint representation 
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E 6 ]/ = t0 2 

E 7 ~ ~ (o 1 

E6 ]/ = £01, 006 

F4 ~/ = ~4 

G2 ~/ = O)l 

Now let A(~) = A*(~), i.e., A(~) = W(~)~. 

weight D is a microweight representation. 

AI' ~ = ~k' k = I,...,I 

Bl' ~ = ~2' 

CI' ~ = ~i 

DI' ~ = ~i 

is the adjoint representation 

is the adjoint representation 

I[ is the two minimal dimensional representations 

Then the base representation with the highest 
We have 

is the k-th exterior power of the 
minimal representation 

is the spinor representation 

is the minimal representation 

is the minimal representation 

, is the semispinor representation 

E7' ~ = ~7 

There are no such representations for Es, F4, and G 2. All base representations are easily 

seen to be fundamental, except the adjoint representation for ~ = A£. 

Note that the list of representations having the fundamental (for us)property dimV % = i 

for %~A*(~) is not exhausted by the base representations. In particular, the adjoint rep- 
resentations for # = C£, F~, and G 2 are not base representations. 

It is an important fact that we can associate a weight diagram [35] with every base 
representation (see also [6, 7, 34, 15]), the diagram being constructed in the following 
manner [35, 7]. 

The diagram consists of vertices and edges. 

I. With every weight %eA*(~) we associate a vertex indicated by the symbol %, and 

we agree to read the diagram from the left to the right, i.e., a bigger weight stands on 
the left of a smaller one. 

2. If %1, %2eA(~) and %1 + ~2 = ~i for some ~ieH, then the corresponding vertices 
are connected by an edge indicated by ~i or simply by i. 

3. With a zero weight of multiplicity K we associate K vertices Ki, the following 

sequence of length three being associated with every "zero weight" ~i: 
^ 

~i ~i - ~ i o o - -  o 

Fig. 1 

where all ~i are not connected with other weights. 

The labels of vertices may be uniquely restored from the labels of edges and the highest 
weight, so, they are usually omitted. Note that irreducibility of a representation is equi- 
valent to connectedness of its diagram° We now proceed to the Chevalley-Matsumoto theorem. 
Fix a root =keH and let A be the minimal root subsystem of ~ generated by H-{~k}. 

+ + 
We set x~-A,z--~ hE, 

U(Z,R) - <X (t), ~EE+,t~R> 

V(E,R) - <x (t), ~-,t~R>. 

Recall that if ~ is a base representation, then for all G(~, R) there exists a unique 
root ~keA(~) such that ~-~keZ. We take it for the definition of the root subsystem A. If 

= A£, we set ~k = ~£ or ~i- 
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The Chevalley--Matsumoto theorem [28, 33] claims that if for an element ge(G(~, R), D) 

we have gD~eR*, then we have a decompositon g- vhglu with veV(Z, R), uau(z,~), hglaT(~,R)G(n,~), 

the factors v, u, and hgl being uniquely determined. Moreover, if g~H = i, then g = vglu = 

eg I with e~(E(#,R),;/). 

Finally, if gBD = 1 and glB = 0 for X # B, then g = g1D with gI~G(A,R), u~U(Z,R) . 

It is easy to see that the Chevalley--Matsumoto decomposition is the first step towards 
the important Gauss decomposition 

G(~,R) = U(~,R)V(~,R)T(~,R)U(~,R) 

We now suppose that ~k is an arbitrary root. Then the theorem remains valid if we 
make the following changes: instead of invertibility of the element gBD (i.e., of the 

principal minor of order one in the representation with principal weight ~ such that 
~-~keA(~)) we require invertibility of the principal minor of the matrix ge(G(~, R), B) 

that consists of those elements gx,v for which the root ~k does not occur in the decom- 

position i-v = Z~ s with ~, veA(~), ~seH. Note that if the root ~k has the property that 

there exists a base representation ~ with principal weight ~ such that B-~keA(~), then 

invertibility of the corresponding principal minor of the element g in an arbitrary base 
representation follows from the existence of the decomposition for g in the group (G(#, R), B) 

under the assumption gBDeR*, since the factors u, v, hg I do not depend on a representation. 

The Chevalley--Matsumoto theorem admits a graphic illustration in terms of base diagrams: 

Namely, if the root ~k is thrown away, the diagram of the base representation aplits into 

several connected components, the last of which corresponds to an invertible minor. There 
is another illustration for classical groups: Almost all their fundamental representations, 

except the spinor one for ~ = B n and the two semispinor representations for ~ = D n, are 

the exterior powers of natural representations of universal groups or their subrepresenta- 

tions (# = Cn), and a block form for a matrix ge(S(#,R),~l), #=An,Bn,Cn,D n , implies a certain 

form of its n-th exterior power, which belongs to (S(~,R),~k), (k~n for ~ = B n and k # n, n-I 

for ~ = Dn). 

3. The Stability Theorem 

Our purpose is to prove a theorem about surjective stability for the K1-functor for 

some inclusions of Chevalley groups associated with maximal standard inclusions of irre- 
ducible root systems, i.e., with those inclusions defined by connected subgraphs of a 
Dynkin diagram that could be obtained by removing one extreme fundamental root. As a cor- 
ollary, we obtain stability for all maximal inclusions of root systems. 

It is well-known [14] that in the above cases the root system ~ has exactly one class 
of subsystems of the type A, up to conjugation by an element of the Weyl group, except in 
the following two cases: The root system D£ with £ ~ 2k has two conjugacy classes of sub- 
systems of the type AZ-~ that are transformed into each other by an outer automorphism of 

order two, and the root system Es has the subsystems A~¢A 8 and A~'~A s. Also, the subsystem 

A~ of the system D~ is transformed by an outer automorphism of order three into a sub- 

system of the type D3, i.e., there are three conjugacy classes. 

THEOREM i. i. Surjective stability for the K~-functor holds under the condition ASR~ 

for the following inclusions of root systems: 

D5,A 5---+E6; E6,D6,A 6--+E7;D7,E7,A7,A 7' ---~E8; An_ I---+D n 

2. Under the condition ASR3, the same holds for the inclusions B3,C3--~F 4, An_I---~B n. 

Since stability for the K~-functor is well known for various inclusions (An_~--~ A n 

Bn_l---~Bn;Cn_l--~Cn; Dn_l----gDn; An_~-~Cn; AI,AI----~G2) ; (see [26, i, 2, 9-12, 33, 35], etc.), we 

collect the information on the above inclusions ~c~ in Table i. 

COROLLARY i. Under the following restrictions on the ring R, depending on the maximal 
standard inclusions of the root systems A ÷ #, we have a decomposition of the form G(~, R) = 
E(~, R)G(A, R) for the Chevalley group. 
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TABLE 1 

Inclusion A ~ ~i Cond. on R i Inclusion A + ~ Cond. on R 

An_ 1 ---9 A n 

Bn_ 1 ---+ B n 

An_ 1 ~ B n 

Cn_ 1 ---+ C n 

An-I ---+ Cn 

Dn_ 1 ---9 D n 

An_ 1 ---+ D n 

D 5 ---+ E 6 

A 5 ---+ E 6 

E 6 --9 E 7 

SRn+ 1 
ASR 

n 
ASR 3 

SR2n 

ASR 2 

ASR 
n 

ASR 4 

ASR 4 

ASR 4 

ASR 4 

D6---+ E 7 

A6---+ E 7 

D7---+ E 8 

A7'--+ E 8 

A~'--+ E 8 

E7---+ E 8 

B3---+ F 4 

C3---+ F 4 

AI---+ G 2 

A1 --+ G 2 

ASR 4 

ASR 4 

ASR 4 

ASR 4 

ASR 4 

ASR 4 

ASR 3 

ASR 3 

ASR 3 

ASR 2 

Here we denote an inclusion on the short roots by a tilde. We assume that A l = C I 

for the inclusion Cn_ I ÷ Cn, and AI = BI for the inclusion Bn_ I + B n. 

Stability for the other maximal inclusions of root systems Ac# follows immediately 

from the inclusions An_I---+Dn---+Bn, A6---+A7'---~E7, A6---+A 7" ---+E7, A7---+A8--+E8, B3--~B4---+F4 Thus, 

we obtain 

COROLLARY 2. i. Surjective stability for the Kl-functor for the inclusions D n ÷ B n 

and B 4 + F 4 holds when the condition ASR 3 holds. 

2. The same is true for the inclusions Av',AT'--~E 7 and A8---+E 8 when the condition ASR 4 

holds. 

Obviously, the conditions on the ring R given in Corollary 1 may be weakened in some 
cases or replaced by others. We will consider this question in more detail. It is easy 
to see that all conditions on the ring R are formulated in terms of stable and absolute 
stable rank. 

The stable rank condition, which is historically the most popular for stabilization 
of Chevalley groups, proves to be suited to the case of the special linear group, or, more 
precisely, to the case of those classical groups whose rows and columns do not satisfy 
any equation, i.e., SL(n, R) and Sp(n, R). L. Vaserstein [ii] discovered that a more 
complicated condition must hold for surjective stability of the K1-functor for orthogonal 
groups. This condition is related to the equation satisfied by an arbitrary column of an 
orthogonal matrix. It was a remarkable observation of M. Stein [35] that the absolute 
stable rank condition takes into account the equations mentioned above, so it plays an 
important role whenever subrepresentations of an orthogonal group are considered. However, 
there is no doubt that, for example, in the case of exceptional Chevalley groups there are 
conditions of the type [Ii] giving a sharper estimate than Corollary i. These conditions 
should take into account the numerous equations satisfied by the rows and the columns of 
matrices which belong to exceptional Chevalley groups. As those equations are cumbersome 
and the representation diagrams are very complex, the desired conditions might prove to 
be rather complicated. 

COROLLARY 3. Under the following restrictions on the ring R, the inclusions of root 
systems induce isomorphisms: 

ASR 3 KI(Dn,R)=KI(Bn,R) Dn---+B n 

ASR 4 KI(D5,R)=KI(E6,R) D5---+E 6 

ASR 4 KI(E6,R)~KI(E7,R) E6---+E 7 

ASR 4 KI(E7,R)=KI(E8,R) E7---+E 8 

ASR 3 KI(D4,R)~KI(F4,R) D4--)F 4 

In particular, all these groups are isomorphic to SKI(R) under the condition ASR 3, 

which is a slight generalization of Matsumoto's result on the same isomorphism for a 
Dedekind ring. 

The proof follows immediately from Theorem 1 and the lemma (see [35]) on injective 
stability for the K1-functor under the followin~ conditions: D n + B n under SRn, D5 ÷ E6 

756 



under SR~, E~ ÷ E~ under SRs, Ev ÷ Es under SRs, and D~ ÷ F~ under SR~. 

isomorphisms 

K 1 (A3,R) =K 1 (D 3,R) =K I(D4,R) =K I(D,R)=K 1 (A,R) =SK 1 (R) 

Finally, the 

that are valid under the condition ASR 3 imply the latter assertion of Corollary 3. 

We note that if the ring R satisfies the condition ASR 2, then for any root system ~, 

we have Kl(~, R) = i, since under the condition SR= the functor SK~ is trivial and K~(~, R) 

SKI(A, R). 

In fact, it follows from the proof of the theorem that a stronger assetion is true 
under the conditon ASR=; namely, the Chevalley group admits the Gauss decomposition, i.e., 

G (~, R) =U(~,R) T (~,R) V (#,R) U(~,R) 

(It is known that the Gauss decomposition holds for the groups G(An, R) and G(Cn, R) even 
under the condition SR2). 

It follows that under the condition ASR2, Theorem 1 of [5] is valid for any root system 

~, i.e., if the ring R satisfies the condition ASR 2 and some additional insignificant as- 
sumptions, then we have the standard description of parabolic subgroups of the group G(~, R). 

4. Proof of the Theorem 

First we will sketch the proof. We will consider base representations of the Chevalley 
group G(~, R) with the highest weight D, where ~ is a fundamental weight chosen according 
to the root ek excluded from the root system # under the inclusion A ÷ ~. 

It follows directly from the Chevalley--Matsumoto theorem that the proof of the theorem 
will be completed whenever for every ge(G(~, R), D), we can choose an ee(E(~, R), D) such 

that (eg)D,~eR* or, equivalently, in another notation, ~(eg) = i. In order to do this, we 

use only stable computations, i.e., those concerning only one row or a column of the matrix 
g. We carry out these computations using Lemma 1 and diagrams of base representations, these 
last providing a graphic illustration of transformations of a fixed column of the matrix 
~(g) under the action of elementary root unipotents x~(t), ~e~, teR. 

We will frequently use the following two facts in the proof without a reference. 

If D(g) = i, it follows from the Chevalley--Matsumoto theorem that there exists an 

ee(E(~, R), ~) such that li(eg) = 0 for I i # D. Furthermore, if I i # D and li(g) = i, 

there exists an ee(E(~, R), D) such that D(eg) = i. 

4.1. The Inclusions D5 ÷ E6 and As + E6 

LEMMA 2. Let g~(G(Ds,R),~4) • Then, under the condition ASR4, there exists an e~(E(Ds,R),~ 4) 

such that D(eg) = i. 

PROOF. The diagram of the base representation (D s, ~4) is depicted in Fig. 2, and 

the enumeration of weights is given in Fig. 3. 

It is known [35] that if condition ASR 5 holds, we have G(Ds,R)=E(Ds,R)G(D4,R), SO there 

exists an eeE(Ds, R) such that the element gl = e-lg belongs to G(D4, R). We are interested 

in the form of the element gl in the representation with the highest weight m4. We have 

D = <D-{~I}>. Hence we have (gl)l,v = 0 for the matrix gI=(G(D4,R),~4) whenever ~l occurs 

in the decomposition x-v-[~ k, =kGn. This corresponds to the splitting of gl into blocks 

according to the splitting of the base representation diagram after removing the root ~i. 
Thus, 

;I 

where glI,g22E(G(D4,R),t~4 ) . Applying the condition ASR 4 to g~1, we find that there exists an 

eI~(G(D4,R),Wl) ,(G(Ds,R),~4) such that e 2 = ele -I implies ]/(e2g) = 1. 
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\ .  -,,,. >-- ,-x,,., ,,-; 
,'-,.,.,,4 

Fig. 2 

A 1 

19. 

A4./ ~.AI0 .A12 

15 A7~/ 113 

18 

Fig. 3 

REMARK. Since <Ds-{=4}>-A 4 Lemma 2 claims precisely that surjective stability holds 

for the inclusion A 4 + D 5 under the condition ASR 4. 

The Case Ds + E6. Let geG(E6, R), and consider the group (G(E6, R), me)- 

The representation diagram has the form 
6 • 1 

~. ~ / ' \ . ~ '~ . .~ '~ . .~ ' \ . ~  . . . . . . . .  

~.½ ~,,.,4 
Fig. 4 

We will numerate the weights according to the inclusion Ds + E6 (we take h i = i), 

i0 
9/\.19 

s 8/\ (4 \.20 .22 
/ \ ~ / \  6 " \  d \ 4 \~'~ 

' ~ ~ % / \  4 " \ / \  6 " \  d " - ~  ~ ~ "\.4" is "\.4" 
Fig. 5 

We have a unimodular row (11(g) ....... ~27(g)) . We will use the inclusion (G(A3--~E6,R),~I) • From 

now on, we assume that the weight w k belongs to A for the inclusion A + E6, since the rep- 

resentation E 6 is fixed. Consider the weights X27, '~2,s, %25 and X24 of (G(A3 ~ + E 6, R), (,01). 
By the condition SR4, there exists an ee(E(A 3 ÷ E6, R), ~1) such that <li(eg)> = R, i = 

i, ..., 26. We put gl = elg. Let ~=<li(gl)>, i=l ...... 10. Then the row (111(g I) ...... ~26(gi)) 

is unimodular modulo the ideal s (i.e., its image in R/~ is unimodular) and, moreover, 

the group (G(Ds--~E6,R),u 4) acts on this row. By Lemma 2, there exists an element e2e(E(D 5 + 

E6, R), ~04) such that 111(e291)---1(modS) and li(e2g)~0(modS) for i = 12, ..., 26. As =I~Ds--~E6 

on the weights ~i, ..-, ~26, it follows from Lemma 1 that <li(e2gl)>=~, i-i ..... iO • It follows 

from these congruence relations that the row (~1(g2) ,12 (g 2) ...... ~z1(g2)) is unimodular, where 

g2 = e2gl. The group (G(D 5 + E6, R), mm) acts on the weights XI, ..., Xzo- Consider the 

weights X7, ..-, ~i0. By the condition ASR4, there exists an e3~(G(A3--~E6,R),~ I) such that 

any maximal ideal containing <~7(g2 ) ...... 19(e3g2)> also contains <X7(g2) .... , X10(g2)>. Since 

~2~A3---+E6 i on the weights XT, .-., lzo, we have <11(e3g3),.--,16(e3g2)>=<ll(g2),-...,A6(g2 )> and 
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~]l(e3g2)=Xll(g2 ) . Hence, any maximal ideal ~ containing <Al(e3g 2) .... ,~9(e3g2),Xll(e3g2 )> also 

contains the ideal <~1(g2 ) ..... l10(g2),~ll(g2)> So the row (Al(g3), "'',A9(g3),lll(g3 ) , with g3 = 

e392, is unimodular. Applying the condition ASR4 to the inclusion (G(A3--~E6,R),~ ~) on the 

weights I~, ..., 14, we obtain, as above, that there exists e4~(E(A3---~E6,R),~ I) such that the 

1 o 

o Y \o 
\o/ o 

a o/bo \ 
o _ o  . . . . .  

o . . . . .  

\ ~ o ~ \ \  o o . . . . .  

)25o Oao_o . . . . .  

~ o / ~  \ o  o ..... 

1 

Fig. 6 

row (A2(e493) ...... A9(~4g3), All(e4g3)) is unimodular. We put e4g 3 = g4. Then the group 

(~2(g4) .... ~9(g4 ) acts on the unimodular row ~11(g4) .... ~I~(g4)) (G(D5--~E6,R),~5) • However, Lemma 2 

is also valid for the representation (Ds, u s) as the dual of (Ds, m4)- Hence, there exists 

e5~(E(D5---~E6,R),~5) SUCh that ~2(e5,g4)=1. 

The Case A~ ÷ E 6. We have As=<E6-{%}>. The representation (E6, m2) is a base represent 

ation, and its dimension is equal to 78. The diagram of (E6, m2) is depicted at Fig. 6. By 

the above, surjective stability for the inclusion Ds ÷ E6 holds subject to the condition 

ASR 4. Hence, for an element geG(E6, R), we have g = eg I with e~E(E6,R), gI~G(DB,R). This 

means that there exists e~(E(E,R),~2) such that the element g' = eg has the form 

I gll 0 0 
g'= 0 g22 0 

0 0 g33 

where g[I~(G(Ds,R),~4 ) , g~2~(G(D5,R),~2) (the adjoint representation), and g~3~(G(Ds,R),~5). Apply- 

ing Lemma 2 to the element g'll, we find that there exists an e2~(D 5 E6,R),~ 4) such that 
D(e2g') = i. 

REMARK. We could also prove the inclusion A~ + E~ by using the inclusions 

A 4 ~ D 5 ) E 6 

However, the diagram of the base representation (E6, m2) might be interesting itself, which 
determined the choice of the proof. 

4.2. The Inclusions E 6 ÷ E 7 and E 7 ÷ Es 

The Case E6 ÷ ET. We have E6-<EV-{=7}>. Thus, we are interested in the base representa- 

tion (ET, ~7) of dimension 56. The corresponding diagram is given in Fig. 7. 

The representation (ET, ~7) consists of the two dual representations (E6, ~6) and 

(ET, ~7) "glued together" by the root ~7- We enumerate the weights of the representation 
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(ET, mT) according to the inclusion E 6 ÷ Ev. The weights inside (E6, m 6) and (E6, m I) are 
enumerated in the same way as in the previous subsection. 

Let g~(G(E7,R),to7). We have <~i(g)>=R, ~i ..... 56 . We will use the inclusion (G(A 3 + 

E 7, R), ml) on the weights 15~, 155, 124 and 152. By the condition SR4, there exists an 

eI~(E(A3---~E7,R),t0 I) such that <li(elg)~ R, iol ..... SS . We set gl = elg- Let <~i(gl)>'~, i-I ..... 28. 

The row (~2s(g I) ..... ~55(gi)) is unimodular modulo the ideal ~ and, moreover, the group (G(E 6 + 

E?, R), ~i) acts on it. By the condition ASR4, there exists an e2e(E6--~E7,R),~ I) such that 

for elements of the matrix g2 = e2gl, we have ~29(g2)-1(mod S) and Ai(g2)=-0(mod s) for i = 

30, ..., 55. Furthermore, since ~7,(E6--~ET) on the weights li, with i = 29, ..., 55, we 

have <li(g2 )>=~, i=I ..... 28 , so the row (Al(g 2) ..... ~29(g2 ) ) i's unimodular. We set ~l~<kl(g2)>, 

i = 25, ..., 28, and ~2=<~i(g2 )>, i-i ..... 24. Then we have ~. 51+~2. Using the condition ASR 4 

and the inclusion (Q(A3--~E7,R),~ I) on the weights 125 , ..., 128 , we find that there exists an 

e3~(E(A3---4E7,R),~I ) such that any maximal ideal containing ~i=<125(e3g2) ..... '127(e3g2)> also con- 

tains 51" Since ~2,~5~A3-+E7 on the above weights, we have <li(e3g2)>-~ 2, i-i ..... 24, so any 

maximal ideal containing li(e3g2) for i = i, ..., 27 also contains sl+s2=s. It remains to 

note that since ~i(g2)---O(mod~) , we again have A29(e3g2)ml(mod~) . Hence we obtain the unimodular 

rOW (kl(g3), ...,A27(g3),A29(g3)) with g3 = e~g~. Let ~3-<Ai(g3)>, i=l ..... If,Z9 The row 

(A12(g3) ..... ~27(g3 ) ) is unimodular modulo 53 ' and the group (G(D5---+E7,R),0~ 4) acts on it. This 

situation already occurred in the previous case, so there exists an e4~(E(D5---~E7,R),to4) such 

that Al2(e4g3)---Ifmod~ 3) and ~i(e4g3)-=0(mod~3), i=13 ..... 27 • AS =I~Ds---~E7 on the weights I i with 

i = 12, ..., 27, we again have <Ai(e4g3)>~ 3, i-I ..... I~,29 • Letting g~ = e~gs, we obtain the 

unimodular row (~l(g4),A2(g4) ..... A12(g4),A29(g4) ) • Using the condition ASR~ and the inclusion 

(G(A3---~E7,R),¢0 I) on the weights Is, I~0, i~, 125 and I~, I=, Is, I~, we find, as above, that 

,there exists an element es~(G(~3~E7,R),~ I) such that any maximal ideal containing 12(esg~) , 

13(esg~), ..., l~(esg,) also contains 53 • Since ~ does not belong to the inclusion 

A s + E 7 on the above weights, we have A12(e5g4)-~12(g4), i.e., ~12(e5g4)ml(mod~ 3) . Hence, the 

row (~2(g5) .... ,~28(gs)), with g5 = esg~, is unimodular. The group (~(E6--~E7,R),~ 6) acts on it, 

so, by the condition ASR~, we find that there exists an ~6~(E(E6--+E7,R),~6) such that 12 

(e~g 5) = i. 

The Case E? + E 5. We have ET=<ES-{=S}>, and the proof is similar to the previous case. 

As the present case is considerably more complicated, we give a sketch of the proof. The 

representation (Es, m s) has dimension 248. After deleting the root ~s, the structure of 

the remaining blocks can be easily understood• The thick arcs at Fig. 8 mean that, in fact, 
the representations are connected by the 27 arcs associated with the root ~s. 
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Fig. 9. * denotes the zero weight. 

Let g~(G(Es,R),~8). In order to obtain an invertible element %(eg)~R* by multiplying g 

by an element ee (E(Es,R),~S) , we must be able to obtain invertible elements in each of the 

blocks. This was done for (ET, ~7) while studying the inclusion E 6 + E 7 in the previous 

subsection. The case (ET, ~2) corresponding to the inclusion D 6 + E 7 will be dealt with 

in §4.4 (note that a proof similar to that for the inclusion A s + E 6 works in this case). 

The most difficult problem is to obtain an invertible element for the pair (ET, my), (Ev, ~2). 

Basically, we do this in the same way as for E 6 ÷ ET, by using the representation (G(D 7 

E 8, R), ~2) and the diagram (ET, ~2) (see Fig. 9). We omit the calculations, because they 
are cumbersome. 

4.3. The Inclusion B 3 + F 4 

LEMMA 3. Suppose the condition ASR 3 is satisfied in the ring R. 

i. If g~(G(B3,R),~3), then there exists an e~(E(B3,R),~ 3) such that ,(eg)=z. 

2. If g~(G(C3,R),~2) , then there exists an e~(E(C3,R),~2) such that ,(eg)=l. 

Proof i. The assertion of the lemma is equivalent to surjective stability of the K z- 
functor for the inclusion A 2 + B 3. We will use the diagram 
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v 
A I ) A 2 ~ B 3 

and the isomorphisms C~ ~ A~ and B= m C=. The inclusions ~, ~, ~ and ~ induce homomorphisms 

of the Kz-functors. The homomorphism corresponding to ~.~ is an epimorphism under the condi- 

tions SR~ and ASR3. Therefore, under the condition ASR3, the homomorphism corresponding to 

is also an epimorphism, by virtue of Proposition 1.5 of [35]. 

2. The diagram of the base representation (Cs, m=) has the form 

o o 

Fig. 10 

This is an adjoint representation of dimention 14. Let ge(G(C~, R), u2). We will use the 

inclusion C2 + Cs. We have g = eg~, with e ~E(C~,R),gm~G(C2,R). As C a = <c~-{=~}> the matrix 

g~ has the form 

gl={ gll0 ] 

0 g22 

It suffices to apply the condtion ASR~ to g~ in G(C~, R). 

The Case B3 ÷ F~. We have g~(G(B3,R),~3), The base representation ,(eg)=~ has the diagram 

4.1 1"4 

~,,4 ~.,4" ~,..d ~..4 

4 4 

Fig. ii 

We enumerate the weights in the following manner: 

A 6 A21 
%/'\hi h~'\ ~22 

AI ~2 % ~4/'\./'\~n h3hg/\./'\~23 ~24 ~2s %6 

~ ~9\ /~18 ~o 
AIO AI4 h17 

Fig. 12 

Let g~(G(F4,R),~4). We have <Ai(g)>-R , i=1 ..... 2s • Let S'<Ai(g)>, i-I ..... 20. The row (12(g), .... 

126(g)) is unimodular modulo the ideal ~ , and the group (G(C3-~F4,R),~ I) acts on it. Hence, 

even under the condition SR6, there exists an e~ (E(C3-+F4,R),(~I) such that for gl = elg, we 

have ~21(gl)---*(mod~) and Ai(gl)mO(modS ) for i = 22, ..., 26. Since =i~ C3-~F 4 on the weights 

li, with i = 21, ..., 26, we have <Ai(gl)>=s, i-i ..... z0 , so the row (~l(gl) ..... ~21(gi)) is uni- 

modular. We let S1=<A1(gl) ..... Al6(gl),A21(gl)> . Therefore, the row (~17(g I) .... ,~20(gi)) is uni- 

modular modulo sl [' and the group (S(C 2-~F4,R),~I) acts on it. By virtue of the condition 

SR 4, there exists an e2~(E(C3-~F4,R),~I) such that for g2 = e2gz, we have Al7(g2)-=l(mod~{l ) . As 

=I,=4~C2~F 4 on these weights, we have <Ai(g2)>'Sl, i = i, ..., 16, 21. Hence, the row 

(Al(g2) ...... AI7(g2),A21(g2)) is unimodular. We now apply the condition ASR 3 to the inclusion 
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(G(A2~F4,R),~ I) on the weights I15, 116, 121. Let ~3 = <Ai(g2)>l, i = 15, 16, 17. Then there 

exists an e3~(E(A2-~F4,R) ,w I) such that any maximal ideal ~ containing <llb(e3g2),~16(e3g2),> 

also contains s3" As ~4¢C2~F 4 on these weights, we again obtain the same ideal generated 

by the rest of li(e3g 2) from the unimodular row. We therefore have the unimodular row 

(Al(g 3) .... ,A17(g3) ) . We set ~4=<~i(g3)>, i=i,..,6. The group (G(C3-+F4,R),~ 2) acts on the row 

(A7(g 3) ..... ~20(g3 ) ) • By Lemma 3, there exists an e4~(E(C3-+F4,R),~2) such that IA7(e4g3)---l(mod~') 

and Ai(e4g3)-=O(mod~4 ) for i = 8, ..., 20. Let g4 = e493- Since ~2~C2-+ F 4 on the weights 

I i with i = 7, .... 20, we obtain the unimodular row (11(g4), ..., 17(g4)). We now apply 

the condition ASR 3 and the inclusion (G(A2~F4,R),~ I) on the weights 14, I s, 16. Since 

Ai(g4)-=0(mod~4) for i = 8, ..., 20, we find that there exists an ese(E(A2-~F4,R),~I) such that 

the raw (Al(ebg 4) ..... ~5(e5g4),A7(ebg4)) is unimodular. We set gb=ebg4 • The inclusion A 2 + F 4 on 

the weights I~, 12, Is, together with the condition ASRs, enables us to find an ie6~(E(A2~ 

F4,R),~I) such that <li(e~gs)> = R, i = 2, .... 5, 7. Note that the group (G(B3-+F4,R),~ 3) acts 

on the weights li with i = 2, ..., 5, 7, ..., i0. Now, by Lemma 3, there exists an e7~(E(B 3 -> 

F4,R),~ 2) such that I~ (e?e~gs) = i. 

4.4. Completion of the Proof 

We recall the method of the proof of Theorem 4.1 of [35]. Suppose we are given two 
homomorphisms ~, v~ of Chevalley groups G(&, R) + G(~, R) that carry root subgroups of 
G(~, R) into root subgroups of G(&, R). We also assume that A # An_ ~ for # = Dn, n = 2k, 

and A # A 7 for ~ = Es. Then there exists an inner automorphism X of the group G(~, R) 

such that v~ = X.V2. As a rule, we take for ~ the standard homomorphism associated with 

an inclusion of root systems A + ~. We denote the induced homomorphisms of K~-functors 

by the same letters with a tilde. Suppose that v 2 is equal to the composite map 

G(A,R) -~ G(~',R) -+ G(#£R) 

Therefore, if ~= is an epimorphism subject to a certain condition on R, then ~ is also an 

epimorphism. If ~ is a monomorphism, then $ is also a monomorphism. 

The Inclusions A 6 ÷ E? and D~ + Ev. Consider the diagrams 

A 5 ) A 6 ) E~, D5 ~i) D6 ) E7 

Under the conditon ASR4, the homomorphisms ~, ~ and 31, 61 are epimorphic, and hence so 

are ~ and ~i. 

Similarly, for the inclusions A' A" 7 7, + Es and D 7 + E 8 we have the diagrams 

A 6 ) A 7 > E 8 A 6 ; A 7 ) E 8 , 

D 6 ) D 7 ) E 8 

The Inclusion C 3 + F 4. We have the diagram 

C 2 ~ B 2 ~- C3--------~ F 4 

B 3 ,,~ 
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The homomorphism ~o~ is epimorphic under the condition ASR3, and hence so is ~. 

The Inclusion An_ I + B n. We have 

A2-------+ B 3 > B 4 

By virtue of Lemma 3, the homomorphism 

hence so is 6. 

The Inclusion An_ I + C n. We have 

$ is epimorphic under the condition ASRm, and 

~ 

AI------+ C 2 ) C n 

The homomorphism ~ is epimorphic under ASR2, since it corresponds to the inclusion 

A 1 ÷ B 2 on the long roots. Thus, 6 is an epimorphism too. 

The Inclusion An_ I + D n. We have 

A 4 > D 5 -------+D n 

By Lemma 2, $ is an epimorphism under ASR 3. Hence, so is 6. Here we could also use 

the inclusions A 3 + D4, D3 + D4, and the fact that they are transformed into each other by 

an inner homomorphism of D4. 

5. Some Irregular Inclusions 

We can also state the stability problem for homomorphisms of Chevalley groups associated 
with nonstandard inclusions of root systems. We provide some information on surjective 
stability for such inclusions in the following assertion. 

PROPOSITION. Under the following assumptions on the ring R, we have a decomposition of 
the form 

G(#,R)=E(~,R)G(#p,R) 

where ~p is a twisted root system: 

G2-~D 4 for ASR 3 

Bn-,Dn+ 1 for ASR n 

F4-~E 6 for ASR 4 

Cn-~A2n_ I for SR 3 

PROOF. The cases G 2 + D 4 and B n ÷ Dn+ I are well known [35]. A similar proof could 

be given for the inclusion F 4 + E 6. Consider the diagram 

G(D4,R ) # ) G(B4, R) 

G(D5,R ) 

) G(F4,R) @ ~ G(E6,R ) 

/ 
Let ~i=~0i(1)=xi(1)X i(1)xi(1) . We explicitly write out the action of the homomorphism 

#o~o~ on the unipotent root elements xi(t). For #:S(D4-~B4,R), we have 
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For ~:G(B3-+F4,R) , we obtain 

and, finally, for ~:G(F4-~E6,R), we have 

xi(t ) --+ xi(t), i=1,2,3 

x3(t ) --9 ~4x3(t)~41 

xl(t ) --+ ~4~3x2(t)(~4~3 )-I 

x2(t ) --+ xl(t ) 

x3(t ) ---) x2(t ) 

x4(t ) --+ x3(t ) 

x1(t) -~ x2(t) 

x2(t ) --+ x4(t ) 

x3(t ) --9 x3(t)x5(t ) 

x4(t ) --+ xl(t)x6(t ) 

The composite homomorphism ~o~o~ acts according to the rule 

Xl(t ) --~ ~3~5~l~6Xl(t)(~3~5~l~6 ) 

x2(t ) --+ x2(t ) 

x3(t ) --9 x4(t ) 

Xl(t ) --9 ~3~5Xl(t)(~3~5 )-I 

-i 

and it takes root subgroups to root subgroups. Proceeding to the homomorphisms of K1-func- 
tors, we find that the homomorphism ~o~o$ is epimorphic under the condition ASR4. Then 

~o$ and ~ are also epimorphic. In particular, we have surjective stability for B 4 + F4 
under ASR~. 

The proof for the inclusion C n + A2n_ I follows directly from the diagram 

A 1 a C 1 ~ C n ------+A2n_ I 

The author would like to express his deepest gratitude to N. A. Vavilov for constant 
attention and interest in the work. 
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