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1. INTRODUCTION

This paper, which is a part of a larger joint project with
G.-M. Greuel and F. Grunewald, is motivated by a prob-
lem in the theory of finite groups. We describe here
a general approach combining computer experiments
and algebraic-geometric machinery. This approach was
mainly elaborated at the initial stage of investigation
when many important details remained mysterious. We
want to emphasise that significant corrections and en-
richments, made at further stages, emerged from our
collaboration with Greuel and Grunewald, whose numer-
ous ideas were crucial for the realisation of the proposed
methodology. Although technical details are left aside
here, we hope to convince the reader that the suggested
strategy can prove fruitful to attack this problem as well
as other group-theoretic problems.

Our goal is to characterise the class of finite solvable
groups by two-variable identities, as the class of Abelian
groups is characterised by the identity zy = yzx, and
the class of finite nilpotent groups is characterised by
Engel identities. To be more precise, a finite group G is
nilpotent if and only if it satisfies one of the identities
ly,z,z,...,z] = 1 (here [y, z] = yxy ta !, [y, z,z] =
[[y, z], ], etc.). Moreover, one can prove even the more
general

PROPOSITION 1. Lel G be a finile group, and let w =
w(z,y) be a word in two variables such that: 1) if
w(z,y) = 1 in G then G = {1}; 2) the words z and
w(x,y) generate the free group Fo = (x,y). Then G is
nilpotent if and only if it salisfies one of the identities
[w(z,y),z,z,... 2] =1.

This observation allows one to produce a lot of Engel-like
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20D10, 20F45, 20D05, 14G15

sequences defining finite nilpotent groups by just varying
the initial term (for example, one can take w = 2y 'z,
cf. 3.1 and 3.2 below). B. Plotkin suggested some
Engel-like identities that could characterise finite solv-
able groups (see Plotkin et al., 1999; Grunewald et al.,
2000). In a slightly modified form, B. Plotkin’s con-
jecture can be formulated as follows. Let w denote a
word in z, y, 1, y %, and let “uy,(z,y) be an infinite
sequence defined by the rule

Y1 = w,

= [zYunztyuny ], ...

1
- &
CONJECTURE 1. There exists w such that a finite group
G is solvable if and only if for some n the identily
Yup(x,y) =1 holds in G.

We believe that an even stronger statement is true.

CONJECTURE 2. Let w be any word satisfying the con-
dition: if w(z,y) =1 in G then G is Abelian. Then a
finite group G is solvable if and only if for some n the
identily “un(z,y) = 1 holds in G.

Should Conjecture 2 be true, the most natural choice for
the initial word could be w = [z, y].

At present, we have no approach to Conjecture 2. As to
Conjecture 1, in Grunewald et al. (2000) one can find a
proof of its Lie-algebraic analogue. Note that according
to a theorem of J. Thompson (Thompson, 1968; Flavell,
1995), stating that if G is a finite group in which ev-
ery two elements generate a solvable subgroup then G is
solvable, one can expect that finite solvable groups can
be characterised by two-variable identities. (However,
this theorem does not provide any explicit two-variable
identity for finite solvable groups.)
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To prove Conjecture 1, we suggest to proceed as in
Grunewald et al. (2000). Namely, one can easily de-
rive Conjecture 1 from the following

CONJECTURE 3. Let G be one of the following groups:

1. PSL(2,p) (p=5 orp==42 (mod 5),p +# 3),
2. PSL(2,2P),

3. PSL(2,37) (p odd ),

4. PSL(3,3),

5. Sz(2P) (p odd )

Then there exists ¢ word w in x, y, £~ 1, y~1, indepen-

dent of G, such thal none of the identilies “u,(x,y) = 1
holds in G.

ProposITION 2. Conjecture 3 implies Conjecture 1.

Proof. First note that the “only if” part of the state-
ment of Conjecture 1 is obvious. Indeed, if G is solvable
of class n then the identity “u, = 1 holds in G for any
w, since the value “u,(z,y) belongs to the correspond-
ing term of the derived series. Thus, we only have to
prove that the “if” part of the statement of Conjecture
1 follows from Conjecture 3. Let us assume that Con-
jecture 3 holds, take w as in its statement, and suppose
that there exists a non-solvable finite group in which the
identity “u,, = 1 holds. Denote by G a minimal counter-
example, i.e. a finite non-solvable group with identity
“u, = 1, where all subgroups are solvable. However,
the list of groups in Conjecture 3 is none other than the
list of minimal finite non-solvable groups (that is, the
groups whose every subgroup is solvable). Thus, for any
G from this list the identity “u,, = 1 does not hold in G,
a contradiction. a

To prove Conjecture 3, it is enough to find a word w and
integers ¢ and j such that the equation

wui (1‘, y) = wuj (1‘, y) (2)

has a non-trivial solution in every G from the above
list (non-trivial means that “u;(z,y) # 1). In the next
sections we explain how this can be done.

2. FIRST SCREENING

A possible attempt to find numerical evidence in support
of the main conjecture could be as follows: pick a word w
(say, take w = [z, y], as in the classical Engel sequence),
and consider equation (2) for small 7, j in each group G
from the list of Conjecture 3. Let us focus on the case
G = PSL(2,p), and consider 1 < i,j < 4. Computer ex-
periments (with the help of MAPLE) immediately show
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Fig. 1. Distribution of solutions to “u; = “us for a “bad”

word w = zyzy ‘z ! and a “good” word w =z 2y lz

arising difficulties. Although the number of solutions to
the above equations has a tendency to grow with growth
of p, for each pair i, there is p such that equation (2)
has no non-trivial solutions in PSL(2,p). Here is a way
out suggested by F. Grunewald (see also Proposition 1):
we vary the initial word of the sequence. For simplicity,
we limit ourselves by the equation

Yus(x,y) = “ua(z, y). (3)

The result may seem unexpected enough: there are cer-
tain words (less than 0.1% of the total number of words
of given length) such that equation (3) has a non-trivial
solution for all p < 1000; moreover, for such initial words
the rate of growth of the number of solutions is signif-
icantly higher than for others. Here are the shortest
words of this type: 1) w =z lyzy ta; 2) w =z 2y lx;
3) w =y 2z ly. The difference in the behaviour of the
nmumber of solutions for the cases when w is “bad” or

“good” can be seen very clearly from Figure 1.

This purely experimental numerical phenomenon allows
us to reveal even deeper properties of the equations un-

der consideration. These properties are of algebraic-
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geometric nature and are of key importance for further
investigation.

3. ALGEBRAIC-GEOMETRIC VIEW

The general idea of our approach to proving Conjecture
3 can be described as follows. For a group G in the list
of Conjecture 3, we fix its standard linear representa-
tion (over the corresponding finite field F). Then the
equation *uq(x,y) = “us(x, y) can be viewed as a matrix
equation. To be more precise, we regard the entries of
the matrices corresponding to z and y in this represen-
tation as variables, and thus the above matrix equation
becomes a system of polynomial equations defining an
algebraic variety over F,. Our goal is to apply to this
variety estimates of Lang—Weil type which guarantee the
existence of a solution for a sufficiently large ¢ (see Lang
and Weil (1954)). Small values of g are checked case by

case.

This strategy has been realised in a human-computer
manner. We mean that the use of the problem-oriented
software, in particular, the package SINGULAR (see
Greuel et al. (2001) or Greuel and Pfister (2002), or
try http://www.singular.uni-kl.de), was absolutely in-
dispensable. In our case, SINGULAR enabled us to
overcome heavy computational problems arising from
the complexity of the geometric objects under considera-
tion. Note that this is not the first example of successful
application of algebraic-geometric methods to the theory
of finite groups (see, for instance, a remarkable paper by
Bombieri (1980) which served for us as an inspiring ex-
ample). We believe that this kind of machinery may be
applied to other interesting group-theoretical problems.

Here is how this strategy looks like in our setting.

3.1. The PSL(2) case. As mentioned at the end of
Section 2, our experimental data can only be explained
by some algebraic-geometric phenomena. So, following
the general strategy described above, we fix an initial
word w and represent equation (3) as an algebraic variety

over F. (Figure 2 presents a graph of such a variety.)

We start with the case G = PSL(2,p) and, for simplic-
ity, limit ourselves by looking for solutions among the
matrices x,y € G of the following form:

(0 -1 (1 b
x<1 t) ' y<cl+bc>
We then study the arising variety C, C A3 (with
affine coordinates b, ¢, t), defined by the matrix equation
Yy = “us, with the help of the SINGULAR package.
The first striking observation is the following dimension
Jump: there are four initial words w among about 10000
shortest ones such that the dimension of Cy, is one (and
not zero as one might expect and as it occurs for most

words w). Here are these four words: wy =z tyzy lz,
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Fig. 2. Graph of the equation “u1 = “ug in PSL(2,R),

w = a:fzy*la:

1 2 2 1

Wy = xfgyf x, w3 = Y xily, wy = Y xilyaf .
Note that if w = w; (i = 1,...,4), then any solution to
Yy = Yuy (except, possibly, for t =1, b =1, ¢ = —1),
is automatically non-trivial (cf. hypothesis 1 of Propo-
sition 1).

For these “good” words, we proceed as follows. As ex-
plained above, the main idea is to apply the Lang—Weil
bound for the number of rational points on a variety
defined over a finite field. It turns out that in the
PSL(2) case for our purposes it is enough to use the
classical Hasse—Weil bound (in a slightly modified form
adapted for singular curves, cf. Fried and Jarden (1986),
Th. 3.14, Aubry and Perret (1996)).

LEMMA 1. Let C be an absolutely irreducible projective
algebraic curve defined over a finite field Fy, and lel
Ny = |C(F,)| denote the number of its rational points.
Then [Ny — (q + 1)| < 2pay/q. where p, stands for the
arithmetic genus of C (in particular, if C is a plane
curve of degree d, p, = (d — 1)(d — 2)/2).

In fact, we need an affine version of the lower estimate
of Lemma 1 (cf. Fried and Jarden (1986), Th. 4.9,
Cor. 4.10)).

COROLLARY 1. Let C be an absolutely irreducible affine
plane curve of degree d defined over F,, Ny = |C(F,)|.
Then Nq > (d —1)(d — 2)\/q — d. In particular, if ¢ >
(d —1)%, there is a rational point on C.
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To apply Lemma 1 (or Corollary 1) we have to compute
the arithmetic genus of the curve C,, (or the degree of
some plane projection of C\,) and to prove that the curve
is absolutely irreducible. The first computation can be
done by SINGULAR,; as to the second one, this is a
kind of human-computer argument. To be more pre-
cise, SINGULAR can only check irreducibility over the
ground field, and some additional subtle considerations
based upon the structure of the singular locus of C,, are
needed.

The cases of small characteristics G = PSL(2,2P) and
G = PSL(2,3P) are treated in a similar way.

The case G = PSL(3, 3) is easily settled by full search.
For example, for w = wsy we find a solution to “u; = “us

given by the images in G of the following matrices:

8

I
— O O
o = O
_ O

S

I
N O N
—_—= O
— = N

3.2. The Suzuki case. The last remaining case G =
Sz(q) is the most complicated one, in particular, from the
computational side. Large group orders require heavy
computations (we used MAGMA for the group-theoretic
part and SINGULAR for the algebraic-geometric one).
Moreover, there are even deeper reasons making the
Suzuki case especially difficult. Although both PSL(2, ¢)
and Sz(q) are groups of Lie type of rank 1, and their
algebraic structure is very similar, the geometric prop-
erties of equations under consideration are significantly
different. Namely, in the PSL(2,p) case the algebraic
variety given by equation (3) is in fact defined over the
ring of integers Z, and the corresponding variety over
F, is obtained by reducing modulo p; in particular, the
degree is the same for all p, and we thus are able to
apply the Lang—Weil estimates for a sufficiently large p.
In the Suzuki case the situation is quite different. The
group Sz(q) is defined with the help of a Frobenius-like
automorphism, and hence the standard matrix repre-
sentation for Sz(q) (see below) contains entries depend-
ing on q. Therefore, the degree of the resulting variety
Yy = "uy depends on ¢ (and grows with growth of ¢)
which prevents direct application of the Lang—Weil esti-
mates.

Our strategy is essentially the same: we start with
screening for “good” initial words w such that the
equation “u; = "us has a solution in Sz(q) for ¢ =
8,32,128, ..., and the number of solutions grows with
growth of ¢ (this last condition should be emphasised
because it gives hope for using algebraic-geometric ma-
chinery). To be more precise, we use the standard em-
bedding of Sz(q) into GL(4, q) (see Huppert and Black-
burn (1982), Ch. XI, §3) and look for solutions among

the matrices of the following form:

100

a?t? L ab+b? b a1

. att? 4 b a® 1 0
a 1 0 0 ’

1 0O 0 0

A ped+d® d e 1

. At 4 d A 10

y= c 1 00

1 0 0 0

Here a,b,c,d € Fy, and 0 stands for the automorphism
of F, with 6?> = 2. F. Grunewald noticed the fol-
lowing amazing fact: “good” initial words w are those
for which the variety, corresponding to the equation
Yuy(x,y) = “us(x,y) with z,y chosen as above, is, in a
certain sense, f-invariant. It turns out that for such good
words one can apply estimates of the Lang—Weil type
to guarantee the existence of a solution for a sufficiently
large g (small values of g are checked directly). Thus, our
final step here is another screening for initial words satis-
fying this invariance condition. Luckily enough, among
these words we find the word wy = 2y~ ', which is
also good for the PSL(2) case and for the PSL(3, 3) case.
This establishes Conjecture 3.

4. CONCLUDING REMARKS

We want to emphasise that the role of computer tech-
nology in our decision strategy was absolutely indispens-
able. In fact, it was used in the same manner as in exper-
imental sciences: not just for checking some properties or
conjectures but rather for providing experimental mate-
rial for formulating main results and suggesting methods
for their proofs.

At the next stage of our research, we plan even more in-
tensive use of computer tools for the study of graphs on
finite groups arising from the obtained solvability iden-
tities (see Grunewald et al., 2000). This can be viewed
as a generalisation of the commuting graph of a finite
group applied by Segev and Seitz for the proof of the
Margulis—Platonov conjecture on arithmetic groups (see
Segev (1999), Segev and Seitz (2002)).
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GALIGU GRUPU VIENADOJUMU UN IDENTITASU PETISANAS STRATEGIJA CILVEKAM KOPA AR DATORU

Galigas nilpotentas grupas var raksturot ar Engela identitatem.

Apskatita lidzigas raksturosanas problema galigam

atrisinamam grupam ar divu mainigo identitatém un aprakstita uz datora izmantoSanu orientéta pieeja tas risinasanai.
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