
a

as

-inner
. Res.

s

p

n

nner

ion
Journal of Algebra 282 (2004) 490–512

www.elsevier.com/locate/jalgebr

Automorphisms of the category of free Lie algebr

G. Mashevitzkya,∗, B. Plotkinb, E. Plotkinc,1

a Ben Gurion University of the Negev, Israel
b Hebrew University, Israel
c Bar Ilan University, Israel

Received 1 November 2002

Communicated by Efim Zelmanov

Abstract

We prove that every automorphism of the category of free Lie algebras is a semi
automorphism. This solves Problem 3.9 from [G. Mashevitzky, B. Plotkin, E. Plotkin, Electron
Announc. Amer. Math. Soc. 8 (2002) 1–10] for Lie algebras.
 2003 Elsevier Inc. All rights reserved.

Introduction

We start from an arbitrary variety of algebrasΘ. Let us denote the category of free inΘ

algebrasF = F(X), whereX is finite, byΘ0. In order to avoid the set theoretic problem
we view allX as subsets of a universal infinite setX0.

Our main goal is to study automorphismsϕ :Θ0 → Θ0 and the corresponding grou
AutΘ0 for variousΘ.

In this paper we consider the case whenΘ is the variety of all Lie algebras over a
infinite fieldP . Our aim is to prove the following principal theorem:

Theorem 1. Every automorphism of the category of free Lie algebras is a semi-i
automorphism.
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This theorem solves Problem 3.9 from [19] for the case of Lie algebras.
Our primary interest to automorphisms of categories raised from the universal alg

geometry (see [2–4,16,17,22,23,26–31,37], etc.). The motivations we keep in mi
inspired by the following observations.

Some basic notions of classical algebraic geometry can be defined for arbitrary varieti
of algebrasΘ. For every algebraH ∈ Θ one can consider geometry inΘ overH . This
geometry gives rise to the categoryKΘ(H) of algebraic sets in affine spaces overH [31].
The key question in this setting is when the geometries inΘ defined by different algebra
H1 andH2 coincide. The coincidence of geometries means for us that the correspo
categories of algebraic setsKΘ(H1) andKΘ(H2) are either isomorphic or equivalent.

It is known that the conditions onH1 andH2 providing isomorphism or equivalence
the categoriesKΘ(H1) andKΘ(H2) depend essentially on the description of the autom
phisms of the categoryΘ0 (see [19,31]). This explains the interest to automorphism
categories of free algebras of varieties.

Let F = F(X) ∈ Θ be a free algebra, i.e., an object of the categoryΘ0. The group
Aut(Θ0) is tied naturally with the following sequence of groups:

Aut(F ), Aut
(
Aut(F )

)
, Aut

(
End(F )

)
.

The groups Aut(F ) are known for the variety of all groups (Nielsen’s theorem [15]), for
variety of Lie algebras (P. Cohn’s theorem [7]), for the free associative algebras over
when the number of generators ofF is � 2 [8,9,18,25] and for some other varieties. F
free associative algebras with bigger number of generators the question is still ope
Cohn’s conjecture [8]). The groups Aut(Aut(F )), Aut(End(F )) are known for the variety
of all groups [10,12,33], and due to E. Formanek every automorphism of End(F ) is inner.
The groups Aut(Aut(F )), Aut(End(F )) are also known for some other varieties of grou
and semigroups [11,14,20,34–36].

Suppose that a free algebraF = F(X) generates the whole varietyΘ. In this case there
exists a natural way from the group Aut(End(F )) to the group Aut(Θ0). Thus, there is a
good chance to reduce the question on automorphisms of the categoryΘ0 to the description
of Aut(End(F )).

Aut(F ) is the group of invertible elements of the semigroup End(F ). Every automor-
phismϕ of the semigroup End(F ) induces an automorphism of the group Aut(F ). This
gives a homomorphismτ : Aut(End(F )) → Aut(Aut(F )). The kernel of this homomor
phism consists of automorphisms acting trivially in Aut(F ). These automorphisms a
calledstable. We will prove that

(1) The homomorphismτ is not a surjection.
(2) If X consists of more than 2 elements thenτ is an injection.
(3) If X consists of 2 elements then Kerτ consists of scalar automorphisms (s

Sections 2, 3).

The paper is organized as follows. In Section 1 we give the definitions of inner and
inner automorphisms of a category. In Section 2 the notations are introduced. Se
is dedicated to linearly stable automorphisms and we prove that every linearly
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automorphism is inner. In Section 4 we define the notion of a quasi-stable automor
and prove that every quasi-stable automorphism is inner. In Section 5 we prove tha
automorphism of the semigroup of endomorphisms of the free two generator Lie a
is semi-inner. In Section 6 we prove the general reduction theorem for a large cl
varieties and reduce the problem about Aut(Θ0) to the description of Aut(End(F (x, y)).
Section 7 is dedicated to the proof of the main theorem. Finally, in Appendix we p
some auxiliary statements used in the text.

1. Inner and semi-inner automorphisms of a category

Recall the notions of category isomorphism and equivalence [21]. A functorϕ :C1 → C2
is called anisomorphism of categoriesif there exists a functorψ :C2 → C1 such that
ψϕ = 1C1 andϕψ = 1C2, where 1C1 and 1C2 are identity functors.

Let ϕ1, ϕ2 be two functorsC1 → C2. An isomorphism of functorss :ϕ1 → ϕ2 is defined
by the following conditions:

(1) To every objectA of the categoryC1 an isomorphismsA :ϕ1(A) → ϕ2(A) in C2 is
assigned.

(2) If ν :A → B is a morphism inC1, then there is a commutative diagram inC2:

ϕ1(A)
sA

ϕ1(ν)

ϕ2(A)

ϕ2(ν)

ϕ1(B)
sB

ϕ2(B).

The isomorphism of functorsϕ1 andϕ2 is denoted byϕ1 � ϕ2.
The notion of category equivalence generalizes the notion of category isomorp

A pair of functorsϕ :C1 → C2 andψ :C2 → C1 define acategory equivalenceif ψϕ � 1C1

andϕψ � 1C2. If C1 = C2 = C then we get the notions ofautomorphismandautoequiva-
lenceof the categoryC.

Definition 1.1. An automorphismϕ of the categoryC is called inner if there exists a
isomorphism of functorss : 1C → ϕ.

This means that for every objectA of the categoryC there exists an isomorphis
sA :A → ϕ(A) such that

ϕ(ν) = sBνs−1
A :ϕ(A) → ϕ(B),

for any morphismν :A → B in C.
For every small categoryC denote the group of all automorphisms ofC by Aut(C) and

denote its normal subgroup of all inner automorphisms by Int(C).
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From now on and till Section 5,Θ will denote the variety of all Lie algebras over th
field P . Correspondingly,Θ0 is the category of free Lie algebras overP .

Define the notion of a semi-inner automorphism of the categoryΘ0. Consider, first,
semimorphisms in the varietyΘ. A semimorphismin Θ is a pair(σ, ν) :A → B, whereA

andB are algebras inΘ, ν :A → B a homomorphism of Lie rings,σ an automorphism o
the fieldP, subject to conditionν(λa) = σ(λ)ν(a), whereλ ∈ P , a ∈ A. If σ = 1 thenν is
a homomorphism of Lie algebras and we write it as(1, ν). Semimorphisms are multiplie
componentwise.

Thus, if µ :A → B is a homomorphism, and(σ, ν1) :A → A1, (σ, ν2) :B → B1 are
semi-isomorphisms, then

(σ, ν2)(1,µ)(σ, ν1)
−1 = (σ, ν2)(1,µ)

(
σ−1, ν−1

1

) = (
1, ν2µν−1

1

)
.

This means thatν2µν−1
1 :A1 → B1 is a homomorphism of Lie algebras.

Definition 1.2. An automorphismϕ of the categoryΘ0 is called semi-inner, if for som
σ ∈ Aut(P ) there is a semi-isomorphism of functors(σ, s) : 1Θ0 → ϕ.

This definition means that for every objectF ∈ Θ0 there exists a semi-isomorphis
(σ, sF ) :F → ϕ(F ) such that

ϕ(ν) = sF2νs−1
F1

:ϕ(F1) → ϕ(F2),

for any morphismν :F1 → F2 in Θ0.
Let now σ be an arbitrary automorphism of the fieldP . We will construct a semi

inner automorphism̂σ of the categoryΘ0. Consider an arbitrary free finitely generat
Lie algebraF = F(X) and fix a Hall basis inF [1,6]. It can be shown [6] that ifu,v are
two elements of a Hall basis then[u,v] is presented via elements of this basis with
coefficients (structure constants) belonging to the minimal subfield of the fieldP . Define a
mapσF :F → F . Every elementw of F has the form:

w = λ1u1 + · · · + λnun,

whereλi ∈ P andui belong to the Hall basis ofF . Define

σF (w) = σ(λ1)u1 + · · · + σ(λn)un.

We show that(σ,σF ) is a semi-automorphism of the algebraF . It is clear thatσF

preserves the addition, and thatσF (λw) = σ(λ)σF (w). It remains to check thatσF

preserves the multiplication. Letw1 = ∑
i αiui , andw2 = ∑

j αj uj . Take

[ui, uj ] =
∑

n
i,j
k u

i,j
k ,
k
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[w1,w2] =
∑
i,j

αiβj [ui, uj ] =
∑
i,j,k

αiβjn
i,j
k u

i,j
k .

Apply σF , then

σF [w1,w2] =
∑
i,j,k

σ (αi)σ (βj )n
i,j

k u
i,j

k ,

since the automorphismσ does not change the elements of a prime subfield. On the
hand

[
σF (w1), σF (w2)

] =
[∑

i

σ (αi)ui ,
∑
j

σ (βj )uj

]
=

∑
i,j

σ (αi)σ (βj )[ui, uj ]

=
∑
i,j,k

σ (αi)σ (βj )n
i,j
k u

i,j
k .

We verified that the pair(σ,σF ) defines a semi-automorphism of the algebraF . Note that
σF does not change variables fromX and does not change all commutators constru
from these variables.

Now we are able to define the automorphismσ̂ of the categoryΘ0. This automorphism
does not change objects andσ̂ (ν) = σF2νσ−1

F1
:F1 → F2 for every morphismν :F1 → F2.

It is easy to check that ifϕ is an arbitrary semi-inner automorphism ofΘ0 for the given
σ ∈ Aut(P ) then there is a factorisationϕ = ϕ0σ̂ , whereϕ0 is an inner automorphism.

The same scheme which was applied for the definition of semi-inner automorphis
the categoryΘ0 works for the definition of semi-inner automorphisms of the semigr
End(F ), whereF is a free finitely generated Lie algebra. An automorphismϕ of End(F )

is called asemi-innerautomorphism if there exists a semi-automorphism(σ, s) :F → F

such thatϕ(ν) = sνs−1 for everyν ∈ End(F ). The factorizationϕ = ϕ0σ̂ , whereϕ0 is
inner holds also in this case.

2. Notations and preliminaries

Let X be a finite set. Denote byF(X) the free Lie algebra over an infinite fieldP
generated by the setX of free generators. The Lie operation is denoted by[ , ]. Denote the
group of all non-zero elements ofP byP ∗. We denote the semigroup of all endomorphis
of F(X) by End(F (X)). Any endomorphism ofF(X) is uniquely determined by
mappingX → F(X). Therefore, we define an endomorphismϕ of F(X) by definingϕ(x)

for all x ∈ X. Denote the group of all automorphisms ofF(X) by Aut(F (X)).
We fix a basis, say the Hall basis inF(X) and consider the presentations of element

F(X) in this basis. Denote the length of a monomialu ∈ F(X) by |u|, we call it also the
degree ofu. Denote the set of all elements ofX included inu by χ(u). The setχ(u) is a
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support of elementu, which is uniquely defined by the presentation ofu in the fixed basis
Denote the number of occurrences of a letterx in u by lx(u). Let p ∈ F(X). Denote the
degree of the polynomialp by deg(p). Denote the cardinality of the setX by |X|.

Let us denote the semigroup of all endomorphismsϕ ∈ End(F (X)) which assign a
linear polynomial fromF(X) to anyx ∈ X by Endl (F (X)). Denote the group of the linea
automorphisms ofF(X) by Autl (F (X)).

Let X = {x1 . . . xn}. If ϕ is linear thenϕ(xi) = ai1x1 + · · · + ainxn, whereaij ∈ P .
This means that a linear automorphism is defined by its matrix of coefficients.
multiplication of linear automorphisms corresponds to the multiplication of their matrices
Thus, the semigroup Endl (F (X)) is isomorphic to the matrix semigroupMn(P). The
scalar matrix corresponds to the linear automorphism, defined byfa(xi) = axi . Therefore,
the automorphismfa commutes with all linear endomorphisms. However, it does
commute with an arbitrary endomorphism.

Denote the endomorphism ofF(X) which assigns the samep ∈ F(X) to anyx ∈ X

by cp. All endomorphisms of the typecp form a subsemigroupCF of End(F (X)). Let
us denote the subsemigroup ofCF consisting of all endomorphisms of the typecu where
u ∈ X by CX . Let Cl = CF ∩ Endl (F (X)). Cl consists of all endomorphisms of the ty
cp ∈ CF wherep is a linear polynomial.

Definition 2.1. An automorphismξ ∈ Aut(End(F (X))) which acts identically on
Autl (F (X)), is called a linearly stable automorphism of End(F (X)).

3. Linearly stable automorphisms of End(F (X)) are inner

In this section we prove that the semigroupCF of all constant endomorphisms
invariant in respect to the action of any linearly stable automorphism of End(F (X))

and that any linearly stable automorphism acts identically on the semigroup Endl (F (X))

of all linear endomorphisms. Then we prove that any linearly stable automorphis
End(F (X)) is an inner automorphism.

Lemma 3.1. Let ξ be a linearly stable automorphism ofEnd(F (X)). Thenξ(CF ) = CF .

Proof. Takeu ∈ F(X), cu ∈ CF . Considerg ∈ Autl(F (X)) such thatg(x) = y, g(y) = x,

andg(z) = z for any z ∈ X distinct fromx andy. Thencug = cu andξ(g) = g. Hence,
ξ(cu)(x) = ξ(cug)(x) = ξ(cu)ξ(g)(x) = ξ(cu)(y) = v. Thus,ξ(cu) = cv ∈ CF . Therefore,
ξ(CF ) ⊂ CF . Similarly, ξ−1(CF ) ⊂ CF . Hence,ξ(CF ) = CF . �
Lemma 3.2. Let ξ ∈ Aut(End(F (X))) be a linearly stable automorphism. Letξ(cp) = cq .
Thenχ(p) = χ(q) ( polynomialsp andq are constructed from the same variables).

Proof. Suppose thatx ∈ χ(p) \ χ(q). Let a ∈ P be a torsion free element. Consid
ga ∈ Autl (F (X)), which assignsax to x and assignsz to z for any z ∈ X different
from x. Thenga(p) = w �= p (indeed all elements of the basis are linearly indepen
and a is torsion free) andga(q) = q . Therefore,gacp = cw �= cp. On the other hand
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ξ(gacp) = ξ(ga)ξ(cp) = gacq = cq = ξ(cp). It contradicts to injectivity ofξ . The similar
reasoning can be applied tox ∈ χ(q) \ χ(p) as well. Thus,χ(q) = χ(p). �
Lemma 3.3. Any linearly stable automorphismξ of End(F (X)) acts identically onCX .

Proof. It is obvious that anycx ∈ CX is a right identity ofCF . Therefore,ξ(cx) = cp ∈ CF

(Lemma 3.1) andξ(cx) is a right identity ofCF . Hence,cxcp = cx . It follows from
Lemma 3.2 and identity[xx] = 0 that p = ax, a ∈ P . Therefore,cxcp = cp . Thus,
ξ(cx) = cp = cx . �
Lemma 3.4. For any linearly stable automorphismξ of End(F (X)) and for anyϕ ∈
End(F (X)), ξ(cϕ(x)) = cξ(ϕ)(x).

Proof. We haveϕcx = cϕ(x). Thenξ(cϕ(x)) = ξ(ϕcx) = ξ(ϕ)cx = cξ(ϕ)(x). �
Lemma 3.5. Any linearly stable automorphismξ of End(F (X)) acts identically on
Endl (F (X)).

Proof. Let us prove first thatξ acts identically onCl . Let cp ∈ Cl , wherep is a linear
polynomial. Letg ∈ Autl (F (X)) be defined byg(x) = p, x ∈ χ(p), andg(y) = y for
any othery ∈ X. It follows from Lemma 3.3 thatξ(cx) = cx . Therefore,gcx = cp and
ξ(cp) = ξ(g)ξ(cx) = gcx = cp.

Hence,cϕ(x) = ξ(cϕ(x)) = ξ(ϕ)cx = cξ(ϕ)(x), for anyϕ ∈ Endl (F (X)). Thus,ξ(ϕ)(x) =
ϕ(x). �
Lemma 3.6. Let ξ ∈ Aut(End(F (X))) be a linearly stable automorphism. Letξ(cpi ) = cqi

andai ∈ P for i = 1,2, . . . , k. Thenξ(ca1p1+···+akpk ) = ca1q1+···+akqk .

Proof. It follows from Lemma 3.5 thatξ(cax) = cax . Therefore,ξ(capi ) = ξ(cpi cax) =
cqi cax = caqi .

Define ϕ ∈ End(F (X)) as followsϕ(x) = p1, ϕ(y) = p2. Thencp1+p2 = ϕcx+y . It
follows from Lemma 3.4 thatξ(ϕ)(x) = q1 andξ(ϕ)(y) = q2. It follows from Lemma 3.5
thatξ(cx+y) = cx+y . Therefore,ξ(cp1+p2) = ξ(ϕ)cx+y = cq1+q2.

Let us prove thatξ(ca1p1+···+akpk ) = ca1q1+···+akqk by induction onk. We have proved
above the basis of the induction:ξ(ca1p1) = ca1q1. Assume that the statement is tr
for k < t . It follows from the assumption of the induction thatξ(ca1p1+···+at−1pt−1) =
ca1q1+···+at−1qt−1 and ξ(catpt ) = catqt . ξ(cp+p′) = cq+q ′ . Therefore,ξ(ca1p1+···+atpt ) =
ca1q1+···+at qt . �
Lemma 3.7. Letξ ∈ Aut(End(F (X))) be a linearly stable automorphism. Thenξ(c[x1,x2]) =
ca[x1,x2], wherea ∈ P anda �= 0.

Proof. Suppose thatξ(c[x1,x2]) = cf .
Denote the endomorphism generated by the mappingxi → aixi by τa1...an . It follows

from Lemma 3.5 thatξ(τa1...an) = τa1...an . Therefore,ξ(τa1...anc[x1,x2]) = τa1...ancf . Hence,
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ξ(ca1a2[x1,x2]) = cτa1...an (f ). It follows from Lemma 3.6 thatξ(ca1a2[x1,x2]) = ca1a2f . Thus,
a1a2f = τa1...an(f ).

Suppose thatf = α1f1 + · · · + αtft is the decomposition off with respect to the basi
of Hall. Observe that the decomposition ofτa1...an(f ) contains the same elements of t
basis as the decomposition off but with different coefficients. Elements of the basis
linearly independent overP . Therefore, we obtain a system of equations of the form

(
a

ki
1

1 . . . a
ki
n

n − a1a2
)
αi = 0

from the equationa1a2f = τa1...an(f ). For the element[x1, x2] of the basis we get th
equation(a1a2 − a1a2)α = 0. In all other cases it is easy to finda1, . . . , an such that

(
a

ki
1

1 . . . a
ki
n

n − a1a2
) �= 0

(for example, if char(P ) �= 2, takea1 = a2 = · · · = an = 2 for the monomials with the
number of multipliers different from 2 and takea1 = a2 = 2, a3 = · · · = an = 1 for
monomials[xi, xj ], where{i, j } �= {1,2}). Hence, all coefficientsαi are equal to zero
except the coefficient of the monomial[x1, x2]. �

Let a ∈ P ∗. Consider a scalar automorphismfa of F(X) defined by the rulefa(x) =
ax, for everyx ∈ X. It defines an inner automorphism̂fa of the semigroup End(F (X)) by
the rulef̂a(ϕ) = faϕf

−1
a . f̂a acts trivially on Endl (F (X)). Thus,f̂a is linearly stable.

Proposition 1. Let ξ ∈ Aut(End(F (X))) be a linearly stable automorphism. Then the
existsa ∈ K such thatξ = f̂a .

Proof. Let ξ(c[x1,x2]) = ca[x1,x2]. Take the scalar automorphismfa corresponding to the
elementa. Consider the bijectionF(X) → F(X) which multiplies a monomial of the
lengthn on an−1. Supposep is a polynomial presented as the sum of its homogen
components:p = p1 + · · · + ps , where deg(pi) = i or pi = 0. Denotep1 + ap2 + · · · +
as−1ps by p̄. Let us prove thatξ(cp) = cp̄ for anycp ∈ CF by induction on the numberr
of monomials of the polynomialp.

Let us prove the base of the induction forr = 1 by induction on the degree of th
monomialp = u. The base of this induction follows from the Lemma 3.5. Suppose
ξ(cu) = cal−1u for anyu such that|u| = l < k. Suppose now that|u| = k andu = [u1, u2],
where |u1| = k1 and |u2| = k2. Let ϕ(x1) = u1, ϕ(x2) = u2 and ϕ(x) = x for any
other x ∈ X. Thenϕc[x1,x2] = cu. It follows from the assumption of the induction th
ξ(cu1) = cak1−1u1

, ξ(cu2) = cak2−1u2
andξ(cx) = cx for any x ∈ X. Therefore, it follows

from Lemma 3.4 thatξ(ϕ)(x) = ϕ(x) for anyx ∈ X. Hence,

ξ(cu) = ξ(ϕc[x1,x2]) = ξ(ϕ)ca[x1,x2] = cξ(ϕ)(a[x1,x2]) = ca[ak1−1u1,a
k2−1u2] = cak−1u = cū.

Thus, we proved the basis of the first induction forr = 1.
Suppose thatξ(cp) = cp̄ for any p ∈ F(X) which contains less thank monomials.

Suppose now thatp containsk monomials andp = q +g where each of the polynomialsq
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andg contains less thank monomials. It follows from the assumption of the induction t
ξ(cq) = cq̄ , ξ(cg) = cḡ andξ(cx) = cx for anyx ∈ X. Hence, it follows from Lemma 3.
thatξ(cp) = ξ(cq+g) = cq̄+ḡ = cp̄ . Thus,ξ(cp) = cp̄ for anyp ∈ F(X).

In particular,cξ(ϕ)(x) = ξ(ϕcx) = ξ(cϕ(x)) = cϕ(x) for every ϕ ∈ End(F (X)). Thus,

ξ(ϕ)(x) = ϕ(x). On the other hand it is easy to see thatf̂a(ϕ)(x) = ϕ(x). Therefore,
ξ(ϕ)(x) = f̂a(ϕ)(x). This equality holds for everyx ∈ X and everyϕ ∈ End(F (X)). Thus,
ξ = f̂a . �
Corollary 3.8. Any linearly stable automorphism ofEnd(F (X)) is inner.

Remark 3.9. (1) Let |X| > 2. Consider the automorphismϕ ∈ Aut(F (X)) defined by
ϕ(x) = x + [y, z], ϕ acts identically on the rest of variables fromX. Then f̂a(ϕ)(x) =
x + a[y, z]. Therefore, the linearly stable automorphism̂fa for a �= 1 does not ac
identically on the group Aut(F (X)).

(2) LetX = {x, y}. Then Autl (F (X)) = Aut(F (X)) [8]. In this case the automorphis
f̂a acts identically on the group Aut(F (X)). However, if a �= 1 then f̂a does not ac
identically on the semigroup End(F (X)). Indeed, take an endomorphismϕ such that
ϕ(x) = [x, y]. Thenf̂a(ϕ)(x) = a[x, y].

Proposition 2. Let |X| > 2. If ξ is a stable automorphism(acts identically onAut(F (X)))
thenξ acts identically onEnd(F (X)).

Proof. It follows from Remark 3.9 that if|X| > 2 thenξ = f̂a is a stable automorphism
and only ifa = 1. This proves the proposition.�

We say that an automorphismf of Aut(F (X)) is an extendable automorphism if the
exists an automorphismg of End(F (X)) whose restriction to Aut(F (X)) is f . It is obvious
that all extendable automorphisms of Aut(F (X)) form a subgroup of Aut(Aut(F (X))).
This subgroup is the image Im(τ ) of a homomorphismτ defined in the introduction.

Corollary 3.10. If |X| > 2 then the groupAut(End(F (X))) is isomorphic to the subgrou
of Aut(Aut(F (X))) consisting of all extendable automorphisms.

4. Quasi-stable automorphisms of End(F (X))

In this section we define the notion of the quasi-stable automorphism of End(F (X))

and prove that any quasi-stable automorphism of End(F (X)) is inner.
Define, first, the diagonal automorphisms of the group Autl (F (X)). We proceed from

the canonical isomorphismδ : Autl(F (X)) → GLn(P ), n = |X|. Consider the commutativ
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diagram

Autl
(
F(X)

) δ

h

GLn(P )

h1

P ∗.

Defineh̃1(A) = h1(A)A, for every matrixA ∈ GLn(P ). Thenh̃1 is an automorphism o
GLn(P ). It corresponds to the automorphism̃h of Autl (F (X)) defined byh̃ = δ−1h̃1δ. It
is easy to see that̃h(g)(x) = h(g)g(x) for everyg ∈ Autl (F (X)) and everyx ∈ X. The
automorphisms̃h andh̃1 are called diagonal automorphisms.

Definition 4.1. An automorphismξ ∈ Aut(End(F (X))) is called quasi-stable if the grou
Autl (F (X)) is invariant in respect toξ and the restriction ofξ to Autl (F (X)) is a diagona
automorphism.

Denote the restriction ofξ to Autl (F (X)) by τ0(ξ). Then τ0(ξ) = h̃ for some
homomorphismh : Autl (F (X)) → P ∗.

Consider the caseX = {x, y}. In this case Aut(F (X)) = Autl (F (X)) (see [8]). Thus, we
do not need the assumption thatξ leaves Autl (F (X)) invariant, andτ0(ξ) = τ (ξ) where
τ : Aut(End(F )) → Aut(Aut(F )) is the homomorphism defined in the introduction.

Remark 4.2. For the case|X| > 2 we also could proceed from the homomorphi
h : Aut(F (X)) → P ∗. However, in this case the correspondingh̃ is not an automorphism
of Aut(F (X)).

Let ξ be a quasi-stable automorphism of End(F (X)). Let τ0(ξ) be equal tõh. It means
that for anyg ∈ Autl (F (X)) we haveξ(g) = h(g)g.

Let x ∈ X. Denote the automorphism defined by the mappingg(x) = y, g(y) = x

and g(z) = z for the rest of elements ofX by gxy . Denoteh(gxy) = axy . Notice that
g2

xy = e. Therefore,a2
xy = 1. SinceP does not contain zero divisorsaxy = ±1. Denote

ϕ ∈ Endl (F (X)) such thatϕ(x) = x andϕ(y) = axyx for any othery ∈ X by l.

Lemma 4.3. Let ξ be a quasi-stable automorphism ofEnd(F (X)). Thenξ(cu) = cvl,
wherel ∈ Endl (F (X) is defined above. Thus,ξ(CF ) = CF l.

Proof. Let gxy ∈ Aut(F ) and ξ(gxy) = axygxy , cu = cugxy , ξ(cu) = ξ(cu)axygxy .
Let ξ(cu)(x) = v. Therefore, for anyy ∈ X, ξ(cu)(y) = axyξ(cu)(x) = cvl(y). Thus,
ξ(cu) = cvl. �
Lemma 4.4. Letξ be a quasi-stable automorphism ofEnd(F (X)). Then for anyy ∈ X we
obtain thatξ(cy) = c −1 l. In particular,ξ(cy)(z) = axza

−1
xy y.
axy y
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Proof. Let cy ∈ CX . It follows from the previous lemma thatξ(cy) = cpl for some
p ∈ F(X). Letp = ay+b1y1+· · ·+bkyk +p1, wherep1 is a non-linear polynomial. Sinc
cy is a right identity in the semigroupCF for anycy ∈ CX we obtain thatξ(cy) is a right
identity for CF l. Hence,cylξ(cy) = cyl. In particular(axya + axy1b1 + · · · + axykbk)y =
cylξ(cy)(x) = cyl(x) = y. Thereforeaxya + axy1b1 + · · · + axykbk = 1.

Suppose thata �= 0. Letgmy be the automorphism defined by the mappinggmy(y) = y

andgmy(z) = mz for z �= y, z ∈ X and leth(gmy) = dm �= 0. Sincegmycy = cy we obtain
dmgmycp(x) = ξ(gmycy)(x) = ξ(cy)(x) = cp(x). Hence,dmgmy(p) = p. Remind that we
presentp in the basis of Hall of linearly independent elements. Thus, we obtain a sy
of equalities for corresponding coefficients.dma = a, dmmbi = bi, . . . . Sincea �= 0 we
obtain thatdm = 1. Choosingm of infinite order we obtain that all other coefficients ofp

are equal to 0. Hencep = ay andaxya = 1. Thus, in this caseξ(cy) = c1/axyyl.
Suppose now thata = 0. Thenaxy1b1+· · ·+axykbk = 1 andp = b1y1+· · ·+bkyk +p1.

Sinceaxy1b1 + · · · + axykbk = 1 at least one of the coefficientsb1, . . . , bk is non zero.
Let m,a1, . . . , ak ∈ P . Let g′

my be the automorphism generated by the mappingg′
my(y) =

y, g′
my(yi) = myi + aiy and g′

my(z) = mz for other z ∈ X and let h(g′
my) = d ′

m �= 0.
Then g′

mycy = cy . Therefore,d ′
mg′

mycp(x) = ξ(g′
mycy)(x) = ξ(cy)(x) = cp(x). Hence,

d ′
mg′

my(p) = p. Comparing the coefficients ofy we obtain thatd ′
m(b1a1 + · · ·+ bkak) = 0.

Since we always can choosea1, . . . , ak ∈ P such thatb1a1 + · · ·+ bkak �= 0 we obtain that
d ′
m = 0. But this is impossible. Thus,ξ(cy) = c1/axyyl.

In particularξ(cy)(z) = c1/axyy l(z) = axza
−1
xy y. �

Proposition 3. Any quasi-stable automorphismξ of End(F (X)) is inner.

Proof. Remind thatl :X → X is a function, assigningx to x, axzz to z for x, z ∈ X,
axz ∈ P ∗. l defines the automorphismα of F(X). α defines the inner automorphismξ1 of
End(F (X)). Denoteξ2 = ξξ−1

1 . To prove the proposition it is enough to prove thatξ2 acts
identically on Endl(F (X)) and then use Corollary 3.8.

ξ1(cy)(z) = α−1cyα(z) = α−1(axzy) = axza
−1
xy y = ξ(cy)(z) (Lemma 4.4). Hence,ξ2 =

ξξ−1
1 acts identically onCX .
Suppose thatg ∈ Autl (F (X)) is presented by a diagonal matrix that isg(y) = ayy for

any y ∈ X anday ∈ P ∗. Suppose thatξ(α) = sα andξ(g) = tg, wheres, t ∈ P ∗. Then
ξ2(g)(y) = ξξ−1

1 (g)(y) = ξ(αgα−1)(y) = saxytays−1a−1
xy y = tayy = ξ(g)(y). Therefore

ξ2(g) = ξ(g). Since we use below in the proof of proposition only linear automorphism
presented by a diagonal matrix we referto this equality without explanation.

Let p be a linear polynomial. Letgp be the automorphism defined by the mapp
g(x) = p and g(y) = y for y �= x, y ∈ X. Then ξ2(cp) = ξ2(gcx) = ξ2(g)ξ2(cx) =
ξ(g)cx = h(g)gcx = ch(g)g(x) = ch(g)p. Thusξ2(cp) = ckp , wherek ∈ P ∗.

Let gmx be the automorphism generated by the mappinggmx(x) = x andgmx(y) = my

for y �= x, y ∈ X and leth(gmx) = dm. Sincegmxcx = cx we obtain thatcx = ξ2(cx) =
ξ2(gmxcx) = ξ(gmx)cx = dmgmxcx = cdmgmx(x) = cdmx . Thereforedm = 1. Let p be a
linear polynomial. Leta be the sum of all coefficients ofp. Thenξ2(cxcp) = ξ2(cax) =
ξ2(cxgaxcy) = cxgaxcy = cax . On the other handξ2(cxcp) = ξ2(cx)ξ2(cp) = cxckp = cakx .
If a �= 0 thenk = 1, that isξ2(cp) = cp . Thusξ2 acts identically on eachcp , wherep is a
linear polynomial with non-zero sum of coefficients.
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Now consider the case when the sum of all coefficientsa of a linear polynomia
p is zero. Letp = ax + b1y1 + · · · + bkyk . Let g = ga1,...,ak be the automorphism
generated by the mappingg(x) = x, g(y1) = a1y1, . . . , g(yk) = akyk and g(z) = z for
otherz ∈ X and leth(g) = h(ga1,...,ak ) = da1,...,ak . Choosea1, . . . , ak such that the sum o
all coefficientsb of the linear polynomialga1,...,ak (p) is non zero. We have proved abo
thatξ2(ga1,...,ak (p)) = ga1,...,ak (p). Sincega1,...,ak cx = cx we obtain that

cx = ξ2(cx) = ξ2(ga1,...,ak cx) = ξ(ga1,...,ak )ξ2(cx) = da1,...,akga1,...,ak cx = cda1,...,ak
x .

Therefore,da1,...,ak = 1. Hence, ξ2(ga1,...,ak ) = ga1,...,ak . Consequentlyga1,...,akcp =
ξ2(ga1,...,ak cp) = ga1,...,ak ξ2(cp). Sincega1,...,ak is an automorphism ofF(X) we obtain
thatξ2(cp) = cp .

Thus,ξ2 acts identically onCl . Let ϕ ∈ Endl (F (X)). cϕ(x) = ξ2(cϕ(x)) = ξ2(ϕcx) =
ξ2(ϕ)ξ2(cx) = ξ2(ϕ)cx = cξ2(ϕ)(x). Thus,ξ2(ϕ)(x) = ϕ(x). Hence,ξ2(ϕ) = ϕ. �

Regarding the material of Section 4 see also [13].

5. Automorphisms of End(F (X))

In this section we prove that any automorphism of End(F (x, y)) is semi-inner.

Theorem 2. Any automorphism ofEnd(F (x, y)) is a semi-inner automorphism.

Proof. P. Cohn [7] proved that the group Aut(F (X)) is generated by linear and triangu
automorphisms. Triangular automorphisms assignaxi + f (x1, . . . , xi−1) to xi . Hence, for
X = {x, y} (X consists of two elements), a triangular automorphism assignsay + f (x)

to y. A Lie polynomial of one variable is a linear polynomial. Therefore, the gr
Aut(F (x, y)) consists of linear automorphisms only. Thus, Aut(F (x, y)) is isomorphic to
GL2(P ). Let δ : Aut(F (x, y)) → GL2(P ) be an isomorphism. Thenν → δ−1νδ defines an
isomorphism Aut(GL2(P )) → Aut(Aut(F (x, y))). If ν ∈ Aut(GL2(P )) is semi-inner then
δ−1νδ is a semi-inner automorphism of Aut(F (x, y)). If ν ∈ Aut(GL2(P )) is diagonal then
δ−1νδ is a diagonal automorphism of Aut(F (x, y)). It is well known [24] that the group
of automorphisms of GL2(P ) is generated by semi-inner and diagonal automorphi
Hence, the group of automorphisms of Aut(F (x, y)) is generated by semi-inner an
diagonal automorphisms.

Let ξ be an automorphism of End(F (X)). In the introduction we defined a homomo
phism τ : Aut(End(F (X))) → Aut(Aut(F (X))), whereτ (ξ) = ξτ is the restriction ofξ
to Aut(F (X)). Hence,τ (ξ) is a product of semi-inner and diagonal automorphism
Aut(F (X)). Since a diagonal automorphism commutes with a semi-inner automorp
we obtainτ (ξ) = ξsξd , whereξs is a semi-inner automorphism andξd is a diagonal au
tomorphism of Aut(F (X)). ξs is a semi-inner automorphism of Aut(F (X)) defined by
a semi-automorphismf of F(X). f defines an automorphismξ1 of End(F (X)). Thus,
ξs = ξτ . Thenξ−1ξ = ξ2 is an automorphism of End(F (X)) andξτ = ξd . Thus,ξ2 is a
1 1 2
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quasi-stable automorphism. It follows from Proposition 3 thatξ2 is inner. Consequentl
ξ = ξ1ξ2 is semi-inner as a product of semi-inner automorphisms.�

Now we formulate an application of Theorem 2. First, we consider two problems. LF1
andF2 be free Lie algebras over a fieldP. Suppose that the semigroups of endomorphi
End(F1) and End(F2) are isomorphic. Does this imply the isomorphism of algebrasF1
andF2? Letξ be an isomorphism of End(F1) and End(F2). In which cases one can sta
that there exists an isomorphism or a semi-isomorphismf :F1 → F2 which inducesξ,

i.e., ξ(ϕ) = fϕf − for everyϕ ∈ End(F1)? If f inducesξ then the pair(f, ξ) defines the
isomorphism or semi-isomorphism of the actions of the semigroup End(F1) on F1 and
End(F2) onF2.

Proposition 4. If F1 = F(x, y) then for any isomorphismξ : End(F1) → End(F2) there
exists a semi-isomorphismf :F1 → F2 which inducesξ .

Proof. Show that there exists an isomorphismF1 → F2. We have to show that ifF2 is
freely generated by a setY then |Y | = 2. Isomorphismξ induces an automorphism o
groups Aut(F1) and Aut(F2). The group Aut(F1) contains a non-trivial center consistin
of scalar automorphisms. If|Y | �= 2 then the group Aut(F2) does not possess such
property. Thus,|Y | = 2 and there is an isomorphismf1 :F1 → F2. We change thisf1
in order to get a desired semi-isomorphismf . Define f̂1 : End(F1) → End(F2) by the

rule f̂1(ϕ) = f1ϕf
−1
1 for everyϕ ∈ End(F1). The productf̂1

−1
ξ is an automorphism o

the semigroup End(F1). Using Theorem 2 we get that this automorphism is semi-in

Thus,f̂1
−1

ξ = ĝ, whereg is a semi-automorphism of the algebraF1. Now ξ = f̂1ĝ. Semi-
isomorphismf = f1g :F1 → F2 induces the initialξ . �
Problem 5.1. Does Theorem 2 admit a generalization for the case of arbitraryX, |X| � 2?

Proposition 5. The following conditions on a free Lie algebraF(X) are equivalent

(1) Any automorphism ofEnd(F (X)) is semi-inner.
(2) For any automorphismξ of End(F (X)) the groupξ(Autl (F (X))) is conjugated to

Autl(F (X)) (in the groupAut(F (X))).

Proof. 1 ⇒ 2. There exists a semi-inner automorphism(σ, g) of F(X) such that
for any ϕ ∈ End(F (X)) ξ(ϕ) = gσϕσ−1g−1. For any α ∈ Autl (F (X)) we have
σασ−1 ∈ Autl(F (X)). Therefore, Autl (F (X)) and ξ(Autl (F (X))) are conjugated by
g ∈ Aut(F (X)).

2 ⇒ 1. Let ξ be an automorphism of End(F (X)). Autl (F (X)) and ξ(Autl (F (X)))

are conjugated byg ∈ Aut(F (X)). g defines an inner automorphism̂g of End(F (X)).
ξ ĝ−1 = ξ1 is an automorphism of End(F (X)) which induces an automorphismξ2 of
Autl (F (X)). ξ2 is semi-inner and, therefore, it is extended to semi-inner automorp
ξ̂2 of End(F (X)). Automorphismξ1ξ̂

−1
2 = ξ3 is a linearly stable automorphism

End(F (X)). Therefore, it is inner (see Corollary 3.8). Hence,ξ = ξ1ĝ = ξ3ξ̂2ĝ is semi-
inner. �
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6. Reduction theorem

In this section we prove the general reduction theorem for a large class of varietΘ.
This theorem allows to reduce the problem of the description of automorphisms
categoryΘ0 to the same problem for a much simplercategory (consisting of two objects

We assume that the varietyΘ satisfies the following 3 conditions.

(1) The varietyΘ is hopfian. This means that every objectF = F(X) of the categoryΘ0

is hopfian, i.e., every surjective endomorphismν :F → F is an automorphism.
(2) If X = {x0} is a one element set andF0 = F(x0) is the cyclic free algebra then for eve

automorphismϕ of the categoryΘ0 we requireϕ(F0) is also a cyclic free algebr
F(y0).

(3) We assume that there exists a finitely generated free algebraF 0 = F(X0), X0 =
{x1, . . . , xk}, generating the whole varietyΘ, i.e.,Θ = Var(F 0).

For the sake of convenience in this paper we call a variety, satisfying these cond
a hereditary variety.

We fix F 0 andF0.

Proposition 6 ([5], see also Appendix).The conditions(1) and (2) imply that for every
F = F(X) and everyϕ :Θ0 → Θ0 the algebrasF andϕ(F ) are isomorphic.

Lemma 6.1 [5]. Any automorphismϕ :Θ0 → Θ0 such that algebrasF and ϕ(F ) are
isomorphic has the form

ϕ = ϕ0ϕ1,

whereϕ0 is an inner automorphism ofΘ0 andϕ1 does not change objects.

Consider a constant morphismν0 :F 0 → F0 such thatν0(x) = x0 for everyx ∈ X0.

Theorem 3 (Reduction Theorem).Let ϕ be an automorphism of the categoryΘ0 which
does not change objects, and letϕ induce the identity automorphism of the semigro
End(F 0) andϕ(ν0) = ν0. Thenϕ is an inner automorphism.

Note that for the varietyΘ of all commutative associative algebras with 1 over a fi
this theorem has been proved by A. Berzins in [5].

The proof of the theorem consists of several steps.
(1) It will be convenient to attach to the categoryΘ0 the category of affine

spacesK0
Θ(H) over the algebraH = F 0 [31]. The objects ofK0

Θ(H) have the form
Hom((F (X),H), whereF is an object of the categoryΘ0. Morphisms

s̃ : Hom
(
F(X),H

) → Hom
(
F(Y ),H

)
are defined by morphismss :F(Y ) → F(X) by the rules̃(ν) = νs for everyν :F(X) → H .
We have a contravariant functorΦ :Θ0 → K0 (H). The condition Var(H) = Θ implies
Θ
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that this functor yields the duality of the categoriesΘ0 and K0
Θ(H) (see [31] and

Appendix). Consider the automorphismϕH of the category of affine spaces which is t
image ofϕ under the duality above. FunctorϕH :K0

Θ(H) → K0
Θ(H) does not chang

objects and fors :F(Y ) → F(X) we defineϕH (s̃) = ϕ̃(s). This definition is correct, sinc
s̃1 = s̃2 impliess1 = s2.

We will show thatϕH is in a certain sense a quasi-inner automorphism. Firs
all, ϕ defines a substitution on each set Hom(F (X),H). Indeed,ν :F(X) → H and
ϕ(ν) :F(X) → H give rise to a substitutionµX defined byµX(ν) = ϕ(ν). The following
proposition explains the transition fromΘ0 to K0

Θ(H).

Proposition 7. Let s :F(Y ) → F(X). Then

ϕH
(
s̃
) = µY s̃µ−1

X : Hom
(
F(X),H

) → Hom
(
F(Y ),H

)
.

Proof. For everys :F(Y ) → F(X) and everyν :F(X) → H the equalityϕH (s̃)(ν) =
ϕ̃(s)(ν) = νϕ(s) holds. Therefore, we have

µY s̃µ−1
X (ν) = µY

(
µ−1

X (ν)s
) = ϕ

(
ϕ−1(ν)s

) = νϕ(s) = ϕH
(
s̃
)
(ν). �

Remark 6.2. If the automorphismϕH has a presentation above we call it quasi-inner.

Consider separately the caseX = X0 and take the substitutionµX0 : Hom(F 0,H) →
Hom(F 0,H). By the condition of the theorem the equalityµX0(ν) = ϕ(ν) = ν holds for
anyν :F 0 → H = F 0. This means thatµX0 = 1. Then fors :F(Y ) → F(X0) we have

ϕH
(
s̃
) = µY s̃µ−1

X0 = µY s̃ = ϕ̃(s).

For s :F(X0) → F(Y ) we get

ϕH
(
s̃
) = µX0 s̃µ

−1
Y = s̃µ−1

Y = ϕ̃(s).

Therefore,̃s = ϕ̃(s)µY .
(2) Now we use the category of polynomial maps PolΘ(H). Objects of this categor

have the formHn, wheren changes andH is fixed. Morphisms are represented
polynomial mapssα :Hn → Hm defined below. Take a setX = {x1, . . . , xn}. Denote
αX : Hom(F (X),H) → Hn the canonical bijection defined byαX(ν) = (ν(x1), . . . , ν(xn))

for every ν :F(X) → H . Let now s :F(Y ) → F(X) be given andX = {x1, . . . , xn}
Y = {y1, . . . , ym}. Consider the diagram

Hom
(
F(X),H

) s̃

αX

Hom
(
F(Y ),H

)
αY

Hn
sα

Hm,
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X ; s̃ = α−1

Y sααX . Thensα(a1, . . . , an) = αY s̃α−1
X (a1, . . . , an). Take a

pointν = α−1
X (a1, . . . , an) :F(X) → H . Then

sα(a1, . . . , an) = αY s̃(ν) = αY (νs) = (
νs(y1), . . . , νs(ym)

)
.

Denotes(yi) = wi(x1, . . . , xn), i = 1, . . . ,m. We have got

sα(a1, . . . , an) = (
w1(a1, . . . , an), . . . ,wm(a1, . . . , an)

)
.

Indeed,

sα(a1, . . . , an) = (
ν
(
w1(x1, . . . , xn)

)
, . . . , ν

(
wm(x1, . . . , xn)

))
= (

w1
(
xν

1, . . . , xν
n

)
, . . . ,wm

(
xν

1, . . . , xν
n

))
= (

w1(a1, . . . , an), . . . ,wm(a1, . . . , an)
)
.

Thus, we defined morphismssα :Hn → Hm in the category PolΘ(H).
Consider constant morphisms in the categoryΘ0. First, take morphisms of the form

ν = νa :F0 → F(X) defined byνa(x0) = a, a ∈ F(X). Recall that the constant morphis
ν0 :F 0 → F(x0) is defined byν0(x) = x0 for everyx ∈ X0.

Takeν = νaν0 :F(X0) → F(X). Thenν(x) = a for everyx ∈ X0, andν is a constan
we will be dealing with.

Let, further,ϕ be an automorphism ofΘ0 which does not change objects. Thisϕ

induces a substitution on each set Hom(F (X),F (Y )) denoted byµX,Y . In particular,
µX,X0 = µX . The substitutionµx0,X on the set Hom(F0,F (X)) induces the substitutio
σX on the algebraF(X) defined by the ruleϕ(νa) = νσX(a). It is proved [31] that for every
µ :F(X) → F(Y ) the formula

ϕ(µ) = σY µσ−1
X

holds. In this sense the automorphismϕ is said to be a quasi-inner automorphism in
categoryΘ0. Take nowν = νaν0. Then

ϕ(ν) = ϕ(νa)ϕ(ν0) = νσX(a)ϕ(ν0).

If ϕ does not changeν0 then

ϕ(ν) = νσX(a)ν0.

For everyx ∈ X0 we getϕ(ν)(x) = σX(a), hereϕ(ν) is also a constant.
Now we are in the position to make the next step. We return to the catego

polynomial maps and consider how the constant maps defined above inΘ0 look like
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in PolΘ(H). Takes :H = F(X0) = F 0 → F(X) defined bys = swν0, w ∈ F(X). Then
s(x) = w for everyx ∈ X0. Let X0 = {x1, . . . , xk}. We get the commutative diagram

Hom
(
F(X),H

) s̃

αX

Hom
(
F

(
X0

)
,H

)
α

X0

Hn
sα

Hk.

Then sα(a1, . . . , an) = (w(a1, . . . , an), . . . ,w(a1, . . . , an)), where w(a1, . . . , an) is
taken k times. Considering the projectionπ :Hk → H , π(b1, . . . , bk) = b1 we get
πsα(a1, . . . , an) = w(a1, . . . , an).

Take an arbitrarys :F(Y ) → F(X). Let X = {x1, . . . , xn}, andY = {y1, . . . , ym}. Let
s(yi) = wi(x1, . . . , xn) = wi . Take a constant mapsi = νwi ν0 :F(X0) → F(X). The
sequences1, . . . , sm depends ons and on the basis ofY . In this situation we denote

s =Y (s1, . . . , sm).

We have alsosα :Hn → Hm, andsα
i :Hn → Hk. There is a relation betweensα andsα

i ,
i = 1, . . . ,m:

sα(a1, . . . , an) = (
πsα

1 (a1, . . . , an), . . . , πsα
m(a1, . . . , an)

)
.

Indeed,

sα(a1, . . . , an) = (
w1(a1, . . . , an), . . . ,wm(a1, . . . , an)

)
= (

πsα
1 (a1, . . . , an), . . . , πsα

m(a1, . . . , an)
)
.

This formula is a key working tool for the proof of the theorem. It was the reaso
replace the category of affine spaces by the category of polynomial maps.

Now we are able to prove the reduction theorem.

Proof of Theorem 3. Let us return to the automorphismϕ :Θ0 → Θ0. For every algebra
F = F(X), X = {x1, . . . , xn} we will construct an automorphismσX :F → F depending
onϕ. The collection of such automorphisms will defineϕ as an inner automorphism.

Consider morphismsεi = νxi ν0 :F 0 → F , i = 1, . . . , n. We haveϕ(εi) = ϕ(νxi )ν0, and
let ϕ(νxi )(x0) = yi = ϕ(εi)(x) for everyx ∈ X0. Let Y = {y1, . . . , yn}. From the proof of
Proposition 6 follows that if the varietyΘ is hopfian thenY is also a basis inF .

Define the automorphismσX :F → F by the ruleσX(xi) = yi .
Let s be an automorphism of the algebraF = F(X), and lets(xi) = wi(x1, . . . , xn) = wi .

Takeνwi :F0 → F , νwi = sνxi and letsi = νwi ν0 = sνxi ν0 = sεi .
We haves =X (s1, . . . , sn). We will check thatϕ(s) =Y (ϕ(s1), . . . , ϕ(sn).
We have to verify that ifϕ(s)(yi) = w′ thenϕ(si)(x) = w′ for everyx ∈ X0. Compute
i i
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ϕ(s)(yi) = ϕ(s)ϕ(νxi )(x0) = ϕ(sνxi )(x0) = ϕ(νwi )(x0)

= ϕ(νwi )ν0(x) = ϕ(νwi )ϕ(ν0)(x) = ϕ(νwi ν0)(x) = ϕ(si)(x)

for everyx ∈ X0. Thus,ϕ(s)(yi) = w′
i = ϕ(si)(x) for everyx ∈ X0.

This impliesϕ(s)σX =X (ϕ(s1), . . . , ϕ(sn). Indeed,ϕ(s)σX(xi) = ϕ(s)(yi) = ϕ(si)(x)

for everyx ∈ X0.
Consider the image of the formulãsi = ϕ̃(si)µX , i = 1, . . . , n, in the category o

polynomial maps PolΘ(H).
Take the diagram

Hom
(
F(X),H

) µX

αX

Hom
(
F(X),H

)
αX

Hn
µα

X

Hn

We have got a mapµα
X = αXµXα−1

X :Hn → Hn. In particular,µα
X0 = αX0µXα−1

X0 . By
the condition of theorem,µX0 = 1 andµα

X0 = 1.

Since,ϕH (s̃) = µXs̃µ−1
X = ϕ̃(s) for ϕ(s) :F(X) → F(X) the following equality holds

ϕ(s)α = αXϕ̃(s)α−1
X = αXµXα−1

X αXs̃α−1
X αXµ−1

X α−1
X = µα

Xsα
(
µα

X

)−1
.

For si :F 0 → F we gets̃i = ϕ̃(si )µX and hence,

sα
i = αX0 s̃iα

−1
X = αX0ϕ̃(si )α

−1
X αXµXα−1

X = ϕ(si)
αµα

X,

wheresα
i = ϕ(si)

αµα
X are polynomial mappings fromHn to Hk. For a = (a1, . . . , an) ∈

Hn we have

sα(a1, . . . , an) = (
πsα

1 (a1, . . . , an), . . . , πsα
n (a1, . . . , an)

)
= (

πϕ(s1)
αµα

X(a1, . . . , an), . . . , πϕ(sn)
αµα

X(a1, . . . , an)
)
.

Take

ϕ(s)σX =X

(
ϕ(s1), . . . , ϕ(sn)

)
and apply this formula to the pointµα

X(a1, . . . , an). Then

(
ϕ(s)σX

)α(
µα

X(a1, . . . , an)
) = (

πϕ(s1)
αµα

X(a1, . . . , an), . . . , πϕ(sn)
αµα

X(a1, . . . , an)
)

= sα(a).
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Thus,sα(a) = (ϕ(s)σX)αµα
X(a). Since this formula holds in every pointa then

sα = (
ϕ(s)σX

)α
µα

X = σα
Xϕ(s)αµα

X.

Hence,µα
X = (ϕ(s)−1)α(σ−1

X )αsα = (sσ−1
X ϕ(s)−1)α .

DenoteξX = sσ−1
X ϕ(s)−1. This is an automorphism of the algebraF = F(X) and

µα
X = ξα

X . Therefore, ˜ξX = µX . In particular,ξX does not depend on the choice of t
automorphisms.

Let now an arbitraryδ :F(X) → F(Y ) be given. Then we have

ϕH
(
δ̃
) = µXδ̃µ−1

Y = ˜ξXδ̃ξ̃−1
Y = ˜

ξ−1
Y δξX = ϕ̃(δ).

This givesϕ(δ) = ξ−1
Y δξX .

Since our initials is arbitrary, one can takes = 1. ThenξX = σ−1
X .

Finally we get

ϕ(δ) = σY δσ−1
X . �

7. Automorphisms of the category of free Lie algebras. The proof of the main
theorem

Return to the varietyΘ of all Lie algebras over an infinite field. We want to prove t
every automorphism of the categoryΘ0 is semi-inner.

Proof of Theorem 1. This varietyΘ is hopfian and is generated by the free Lie alge
F 0 = F(x, y) [6]. It is clear that condition 2 is also valid. Thus, the conditions from
Section 6 are fulfilled. Therefore, the varietyΘ is hereditary.

It is enough to consider automorphismsϕ which do not change objects [19]. Ta
such aϕ and induce the automorphismϕF 0 of the semigroup End(F 0). According to
Theorem 2 such an automorphism is semi-inner and is defined by the semi-automo
(σ, sF 0) :F 0 → F 0. For every algebraF = F(X), which is distinct fromF 0 take a semi-
automorphism(σ,σF ) :F → F . Semi-automorphisms(σ, s)F 0 = (σ, sF0) and (σ, s)F =
(σ,σF ) define a semi-inner automorphismψ of the categoryΘ0. Thisψ does not chang
objects. Automorphismsϕ andψ act in the same way on the semigroup End(F 0). Thus,
the automorphismϕ1 = ψ−1ϕ acts on End(F 0) identically.

Take a constant morphismν0 :F 0 → F0 with ν0(x) = ν0(y) = x0. Let us verify that
ϕ1(ν0) is also a constant. Take an automorphismη of the algebraF 0 defined byη(x) = y,
η(y) = x. We haveν0η = ν0. Thereforeϕ1(ν0η) = ϕ1(ν0)η = ϕ1(ν0). Hence,ϕ1(ν0)(x) =
ϕ1(ν0)η(x) = ϕ1(ν0)(y) = ax0 for a �= 0.

Automorphisms of free Lie algebras:fF0(x0) = ax0 andfF (x) = x for x ∈ X, F =
F(X) �= F0, define an inner automorphism̂f of the categoryΘ0, which does not chang
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objects. Observe that isomorphismfF acts trivially onF 0. We havef̂ (ν0) = fF0ν0f
−1
F 0

and

f̂ (ν0)(x) = fF0ν0f
−1
F 0 (x) = fF0ν0(x) = fF0(x0) = ax0.

Thus,ϕ1(ν0) and f̂ (ν0) coincide. Thereforef̂ −1ϕ1(ν0) = ν0. Denotef̂ −1ψ−1ϕ = ψ0.
Then ψ0(ν0) = ν0 and ψ0 acts trivially on End(F (x, y)). By Reduction Theorem th
automorphismψ0 is inner. We have gotϕ = ψf̂ ψ0 = σ̂ψ1f̂ ψ0.

Thus,ϕ is semi-inner and the theorem is proved.�
Along with the automorphisms of categories of free algebras of varieties it is na

to consider also the autoequivalences of these categories (see Section 1). Let(ϕ,ψ) be an
autoequivalence of the category of free Lie algebras. We call it semi-inner if the fun
ϕ andψ are semi-isomorphic to the identity functor.

It was proved in [38], that for everyΘ and every autoequivalence(ϕ,ψ) of the category
Θ0 there are factorizations

ϕ = ϕ0ϕ1, ψ = ϕ−1
1 ψ0,

whereϕ0 andψ0 are isomorphic to the identity functor andϕ1 is an automorphism.
This means that every autoequivalence is isomorphic to an automorphism. This r

and Theorem 1 lead to the following statement:

Theorem 4. Every autoequivalence of the category of free Lie algebras is semi-inner

In the introduction we discussed the categories of algebraic setsKΘ(H), H ∈ Θ.
The two problems were pointed out, namely, the problem of isomorphism of categ
KΘ(H1) and KΘ(H2) and the problem of equivalence of the same categories. Fo
variety of Lie algebras and algebrasH1 andH2, satisfying Var(H1) = Var(H2) = Θ, the
first problem is solved in [32] with the aid of Theorem 1, while the solution of the se
problem also in [32] requires arguments from Theorem 4.

Appendix

In this section we prove two propositions we have referred to in the text.
Remind that the contravariant functorΦ :Θ0 → K0

Θ(H) assign Hom((F (X),H) to any
F(X) ∈ Θ0 and for anys :F(Y ) → F(X) it assigns̃s : Hom(F (X),H) → Hom(F (Y ),H)

defined by the rulẽs(ν) = νs.

Proposition 8. The functorΦ :Θ0 → K0
Θ(H) defines a duality of categories if and only

Var(H) = Θ.

Proof. In our case the duality of categories means that ifs1, s2 morphismsF(Y ) → F(X)

thens1 �= s2 implies s̃1 �= s̃2. Let s1 �= s2 and assumẽs1 = s̃2. Takey ∈ Y such thats1(y) =
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w1, s2(y) = w2, andw1 �= w2. Show that the non-trivial identityw1 ≡ w2 is fulfilled in
algebraH . Take an arbitraryν :F(X) → H . The equalitỹs1 = s̃2 yieldss̃1(ν) = s̃2(ν). We
have alsoνs1 = νs2. Apply this equality toy. We getνs1(y) = ν(w1) = νs2(y) = ν(w2).

Sinceν is arbitrary, we get that̃s1 = s̃2 impliesw1 ≡ w2 in H .
Assume that Var(H) = Θ. Then there are no non-trivial identities inH . This means tha

the equalitys̃1 = s̃2 does not hold inK0
Θ(H). We proved that if Var(H) = Θ thens1 �= s2

implies s̃1 �= s̃2 and we get a duality of categories.
Conversely, let us prove that if Var(H) �= Θ then there is no duality. Since Var(H) �= Θ

there exists a non-trivial identityw1 ≡ w2 in H , wherew1, w2 in someF(X). Take
Y = {y0}. Considers1 and s2 from F(Y ) to F(X) defined by the rule:s1(y0) = w1,
s2(y0) = w2. Show that̃s1 = s̃2. This will mean that there is no duality. Take an arbitra
ν :F(X) → H . Thens̃1(ν) = νs1, s̃2(ν) = νs2, bothF(Y ) → H . Takey0. Thenνs1(y0) =
ν(w1), νs1(y0) = ν(w2). Sincew1 ≡ w2 is an identity inH then ν(w1) = ν(w2) and
correspondingly,νs1(y0) = νs2(y0). Since the setY consists of one elementy0 then
νs1 = νs2. This equality holds for everyν and therefore,̃s1 = s̃2. �
Proposition 9. Let the varietyΘ be hopfian,ϕ an automorphism ofΘ0 and ϕ(F0) be
isomorphic toF0. Thenϕ(F ) is isomorphic toF for everyF = F(X).

We use some new notions to prove Proposition 9.

Definition 7.1. Let X be a set in a free algebraF = F(Y ). We say thatX defines freely
algebraF if every mapµ0 :X → F can be extended uniquely up to endomorph
µ :F → F .

Remark 7.2. In many cases the notions “to define freely” and “to generate freely” coincide
For instance, this is true for the variety of all groups (E. Rips, unpublished). If this is
for the variety of Lie algebras we do not know.

Lemma 7.3. Let the varietyΘ be hopfian. Let|X| � |Y |. ThenX defines freelyF = F(Y )

if and only ifX is a basis inF and |X| = |Y |.
Proof. Take an arbitrary surjectionµ0 :X → Y . If X defines freelyF then there exists
surjective endomorphismµ :F → F . SinceF is hopfian,µ is automorphism. Thenµ0 is
a bijection. The inverse bijection defines the inverse automorphism. Therefore,|X| = |Y |
andX is a basis inF . The “only if” part is evident. �

For the sake of self-completeness we repeatsome material from [5]. Take a free algeb
F = F(X) and consider a system of morphismsεi :F0 → F , i = 1, . . . , n.

Definition 7.4. A system of morphisms(ε1, . . . , εn) defines freely an algebraF if for every
sequence of homomorphismsf1, . . . , fn, fi :F0 → F there exists a unique endomorphis
s :F → F such thatfi = sεi wherei = 1, . . . , n.

It is proved in [5] that the system(ε1, . . . , εn) defines freelyF if and only if the system
of elements(ε1(x0), . . . , εn(x0)) defines freely the algebraF . It is obvious, that if the
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system(ε1, . . . , εn) defines freelyF then the system(ϕ(ε1), . . . , ϕ(εn)) defines freely
ϕ(F ) if ϕ(F0) = F(y0).

Proof of Proposition 9. Let the varietyΘ be hopfian,ϕ(F0) = F(y0). Let ϕ(F ) = F(Y )

whereF = F(X). We prove that algebrasF(X) andF(Y ) are isomorphic.
Let, first, |X| � |Y | and X = {x1, . . . , xn}. Define the system (ε1, . . . , εn) by the

conditionεi(x0) = xi , for everyi. This system defines freely algebraF . Then the system
(ϕ(ε1), . . . , ϕ(εn)) defines freely algebraϕ(F ) = F(Y ). This means that the setY ′ of
elementsy ′

i = ϕ(εi)(y0) defines freely algebraF(Y ). Since |Y ′| = |X| � |Y | then the
systemY ′ is a basis inF(Y ) and |Y ′| = |X| = |Y |. The mapxi → y ′

i defines the
isomorphism of algebrasF(X) andF(Y ).

Let now |X| < |Y |. Then F(X) = ϕ(F (Y ))−1. Applying the same method to th
automorphismϕ−1 we get the contradiction.�
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