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Abstract

We prove that every automorphism of the category of free Lie algebras is a semi-inner
automorphism. This solves Problem 3.9 from [G. Mashevitzky, B. Plotkin, E. Plotkin, Electron. Res.
Announc. Amer. Math. Soc. 8 (2002) 1-10] for Lie algebras.
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Introduction

We start from an arbitrary variety of algebr@s Let us denote the category of freeén
algebrasF = F(X), whereX is finite, by®°. In order to avoid the set theoretic problems
we view all X as subsets of a universal infinite S&t.

Our main goal is to study automorphisps®°® — ©@° and the corresponding group
Aut®? for various®.

In this paper we consider the case wh@ris the variety of all Lie algebras over an
infinite field P. Our aim is to prove the following principal theorem:

Theorem 1. Every automorphism of the category of free Lie algebras is a semi-inner
automorphism.
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This theorem solves Problem 3.9 from [19] for the case of Lie algebras.

Our primary interest to automorphisms of categories raised from the universal algebraic
geometry (see [2-4,16,17,22,23,26-31,37], etc.). The motivations we keep in mind are
inspired by the following observations.

Some basic notions of classical algebraicgetry can be defined for arbitrary varieties
of algebras®. For every algebrd € ® one can consider geometry é over H. This
geometry gives rise to the categadky (H) of algebraic sets in affine spaces o¥e(31].

The key question in this setting is when the geometrie® idefined by different algebras
Hj and H> coincide. The coincidence of geometries means for us that the corresponding
categories of algebraic sek& (H1) andK o (H>2) are either isomorphic or equivalent.

It is known that the conditions oH1 and H> providing isomorphism or equivalence of
the categorieX g (H1) andK o (H2) depend essentially on the description of the automor-
phisms of the categor®? (see [19,31]). This explains the interest to automorphisms of
categories of free algebras of varieties.

Let F = F(X) € © be a free algebra, i.e., an object of the categefy The group
Aut(©9) is tied naturally with the following sequence of groups:

Aut(F), Aut(Aut(F)), Aut(End(F)).

The groups Autr’) are known for the variety of all groups (Nielsen’s theorem [15]), for the
variety of Lie algebras (P. Cohn’s theorem [7]), for the free associative algebras over a field
when the number of generators Bfis < 2 [8,9,18,25] and for some other varieties. For
free associative algebras with bigger number of generators the question is still open (see
Cohn’s conjecture [8]). The groups ABUt(F)), Aut(End(F)) are known for the variety

of all groups [10,12,33], and due to E. Formanek every automorphism affgnsl inner.

The groups AutAut(F)), Aut(End(F)) are also known for some other varieties of groups
and semigroups [11,14,20,34-36].

Suppose that a free algehfa= F'(X) generates the whole varie®y. In this case there
exists a natural way from the group AENd(F)) to the group Aut®®). Thus, there is a
good chance to reduce the question on automorphisms of the cat@ftmyhe description
of Aut(End(F)).

Aut(F) is the group of invertible elements of the semigroup &nd Every automor-
phism¢ of the semigroup En@’) induces an automorphism of the group &u}. This
gives a homomorphism: Aut(End(F)) — Aut(Aut(F)). The kernel of this homomor-
phism consists of automorphisms acting trivially in Allj. These automorphisms are
calledstable We will prove that

(1) The homomorphism is not a surjection.

(2) If X consists of more than 2 elements theis an injection.

(3) If X consists of 2 elements then Kerconsists of scalar automorphisms (see
Sections 2, 3).

The paper is organized as follows. In Section 1 we give the definitions of inner and semi-
inner automorphisms of a category. In Section 2 the notations are introduced. Section 3
is dedicated to linearly stable automorphisms and we prove that every linearly stable
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automorphism is inner. In Section 4 we define the notion of a quasi-stable automorphism
and prove that every quasi-stable automorphism is inner. In Section 5 we prove that every
automorphism of the semigroup of endomorphisms of the free two generator Lie algebra
is semi-inner. In Section 6 we prove the general reduction theorem for a large class of
varieties and reduce the problem about @) to the description of AUENd(F (x, y)).
Section 7 is dedicated to the proof of the main theorem. Finally, in Appendix we prove
some auxiliary statements used in the text.

1. Inner and semi-inner automor phisms of a category

Recall the notions of category isonptrism and equivalence [21]. A functer.C1 — C2
is called anisomorphism of categoriei$ there exists a functoy:C> — C1 such that
Yo =1¢, andepy = 1¢,, where k, and %, are identity functors.

Let g1, @2 be two functor€; — C2. An isomorphism of functors: 1 — ¢ is defined
by the following conditions:

(1) To every objectA of the categoryC1 an isomorphismy : p1(A) — ¢2(A) in Cz is
assigned.
(2) If v:A— Bisamorphism irCi, then there is a commutative diagranCin

P1(A) — 2= 9y(A)

¥1(v) l lwz(v)
S

01(B) —> pa(B).

The isomorphism of functorg; andgs, is denoted by >~ @s.

The notion of category equivalence generalizes the notion of category isomorphism.
A pair of functorsy : C1 — C andyr : C> — C1 define acategory equivalendé ¢ >~ 1¢,
andey ~ 1¢,. If C1 = C2 = C then we get the notions @utomorphismandautoequiva-
lenceof the category.

Definition 1.1. An automorphismy of the categonyC is called inner if there exists an
isomorphism of functors: 1o — ¢.

This means that for every objea of the categoryC there exists an isomorphism
sa:A— @(A) such that

@(v) =spvs T p(A) — o(B),

for any morphism: A — B in C.
For every small categor§y denote the group of all automorphismsbby Aut(C) and
denote its normal subgroup of all inner automorphisms bghnt
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From now on and till Section 5 will denote the variety of all Lie algebras over the
field P. Correspondingly®? is the category of free Lie algebras over

Define the notion of a semi-inner automorphism of the categ#fy Consider, first,
semimorphisms in the variety. A semimorphisnn @ is a pair(o, v): A — B, whereA
andB are algebras i®, v: A — B a homomorphism of Lie rings; an automorphism of
the field P, subject to conditiom(la) = o (A)v(a), wherer € P,a € A. If o =1thenvis
a homomorphism of Lie algebras and we write itAsv). Semimorphisms are multiplied
componentwise.

Thus, if u: A — B is a homomorphism, ant, v1): A — A1, (o,v2): B — Bj are
semi-isomorphisms, then

(0,v2) (L, w)(o, v1) T = (0, v2) (L, W) (o™ vy t) = (L vouvy ).
This means thatzuuil : A1 — B1 is a homomorphism of Lie algebras.

Definition 1.2. An automorphismy of the categony®? is called semi-inner, if for some
o € Aut(P) there is a semi-isomorphism of functdats s) : 150 — ¢.

This definition means that for every objeEte ®° there exists a semi-isomorphism
(o,sF): F — @(F) such that

9(v) = spsit 1 @(F1) = ¢(F2),

for any morphism: F; — F> in 9.

Let now o be an arbitrary automorphism of the fieRl We will construct a semi-
inner automorphisné of the category®®. Consider an arbitrary free finitely generated
Lie algebraF = F(X) and fix a Hall basis ir¥' [1,6]. It can be shown [6] that i, v are
two elements of a Hall basis thén, v] is presented via elements of this basis with the
coefficients (structure constants) belonging to the minimal subfield of theHidkfine a
mapor : F — F. Every elementv of F has the form:

w=AU1~+ -+ Aplp,
wherei; € P andu; belong to the Hall basis af . Define
or(w) =0c@ADu1r~+ -+ o,)u,.

We show that(c, oF) is a semi-automorphism of the algebfa It is clear thatop
preserves the addition, and that (Aw) = o (A)or(w). It remains to check thatp
preserves the multiplication. Let; = ) ; oju;, andwy = Z,. oju;. Take

ij, i
[uivuj]zznk ug,
k
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Wheren};’-’ belong to a minimal subfield. Then

i
[wi, wo] = Zaiﬂj[ui, ujl= Zaiﬂjnkjukj~

i,j i,j,k
Apply or, then

i,j i,j
orlwi, wal =Y o()o(Bjn’ uy’,
i,j,k

since the automorphism does not change the elements of a prime subfield. On the other
hand

[oF(w1), or (w2)] = [Za(m)ui, Zo(ﬂ,-)u,,} =Y o(@)a(B))ui, uj
i J iJ
= Za(ai)a(ﬁj)nﬁ;’ju};’j.

i,j.k

We verified that the paifo, o) defines a semi-automorphism of the algeBra\ote that
or does not change variables frokhand does not change all commutators constructed
from these variables.

Now we are able to define the automorphigrof the category??. This automorphism
does not change objects afidv) = opzvo;ll : F1 — F» for every morphism: F1 — F».

It is easy to check that i is an arbitrary semi-inner automorphism@°? for the given
o € Aut(P) then there is a factorisatian= @06, wheregg is an inner automorphism.

The same scheme which was applied for the definition of semi-inner automorphisms of
the category®® works for the definition of semi-inner automorphisms of the semigroup
End(F), whereF is a free finitely generated Lie algebra. An automorphisof End F)
is called asemi-innerautomorphism if there exists a semi-automorphignys) : F — F
such thatp(v) = svs~1 for everyv € End F). The factorizationy = ¢oé, Wheregyg is
inner holds also in this case.

2. Notationsand preliminaries

Let X be a finite set. Denote by (X) the free Lie algebra over an infinite field
generated by the sét of free generators. The Lie operation is denoted by Denote the
group of all non-zero elements 8fby P*. We denote the semigroup of all endomorphisms
of F(X) by EndF(X)). Any endomorphism ofF (X) is uniquely determined by a
mappingX — F(X). Therefore, we define an endomorphigraf F(X) by definingy(x)
for all x € X. Denote the group of all automorphismsofX) by Aut(F(X)).

We fix a basis, say the Hall basis #f{X) and consider the presentations of elements of
F(X) in this basis. Denote the length of a monomia F(X) by |u|, we call it also the
degree ofi. Denote the set of all elements &fincluded inu by x (). The sety () is a
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support of element, which is uniquely defined by the presentation:ah the fixed basis.
Denote the number of occurrences of a leitén u by I, (). Let p € F(X). Denote the
degree of the polynomial by ded p). Denote the cardinality of the s&tby | X|.

Let us denote the semigroup of all endomorphisms End F (X)) which assign a
linear polynomial fromF (X) to anyx € X by End(F (X)). Denote the group of the linear
automorphisms of (X) by Aut (F (X)).

Let X = {x1...x,}. If ¢ is linear thenp(x;) = aj1x1 + --- + ainx,, Wherea;; € P.
This means that a linear automorphism is defined by its matrix of coefficients. The
multiplication of linear atbmorphisms corresponds to the itiplication of their matrices.
Thus, the semigroup Epd (X)) is isomorphic to the matrix semigroug,(P). The
scalar matrix corresponds to the linear automorphism, definef) ) = ax;. Therefore,
the automorphisny, commutes with all linear endomorphisms. However, it does not
commute with an arbitrary endomorphism.

Denote the endomorphism @&f(X) which assigns the samee F(X) to anyx € X
by c¢,. All endomorphisms of the type, form a subsemigroug’r of End(F(X)). Let
us denote the subsemigroup®f consisting of all endomorphisms of the typewhere
ueXhbyCyx.LetC; =CrnNENd(F(X)). C; consists of all endomorphisms of the type
¢p € Cr wherep is a linear polynomial.

Definition 2.1. An automorphismé € Aut(End(F(X))) which acts identically on
Aut;(F (X)), is called a linearly stable automorphism of ER@X)).

3. Linearly stable automor phisms of End(F (X)) areinner

In this section we prove that the semigroap of all constant endomorphisms is
invariant in respect to the action of any linearly stable automorphism of /&)
and that any linearly stable automorphism acts identically on the semigroypFExd)
of all linear endomorphisms. Then we prove that any linearly stable automorphism of
End(F (X)) is an inner automorphism.

Lemma 3.1. Let¢ be a linearly stable automorphism Bhd(F(X)). Then&(Cr) = CF.

Proof. Takeu € F(X), ¢, € Cr. Considerg € Aut;(F (X)) such thalg(x) =y, g(y) = x,
andg(z) = z for anyz € X distinct fromx andy. Thenc,g = ¢, andé(g) = g. Hence,
E(cu)(x) =E&(cug)(x) = &(c)E(g)(x) =&(cy)(y) =v. Thus£(cy) = ¢y € Cr. Therefore,
£(Cr) C Cr. Similarly, e 1(Cr) c Cr.Hencef(Cr)=Cr. O

Lemma 3.2. Leté € Aut(End(F (X))) be a linearly stable automorphism. Letc,) = ¢,.
Theny (p) = x(¢) (polynomialsp andg are constructed from the same variables

Proof. Suppose thak € x(p) \ x(¢). Leta € P be a torsion free element. Consider
ga € Aut(F (X)), which assignszx to x and assigng to z for any z € X different
from x. Theng,(p) = w # p (indeed all elements of the basis are linearly independent
anda is torsion free) and,(q) = g. Therefore,g,c, = cw # cp. On the other hand,
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£(gacp) = E(8a)E(cp) = acq = cq = &(cp). It contradicts to injectivity ok. The similar
reasoning can be appliedtos x (¢) \ x(p) aswell. Thusy(¢) = x(p). O

Lemma 3.3. Any linearly stable automorphisénof End(F (X)) acts identically orCy.

Proof. Itis obviousthatany, e Cx is a rightidentity ofCr. Therefore&(cx) =c, € Cr
(Lemma 3.1) and(cy) is a right identity of Cr. Hence,cxc, = cx. It follows from
Lemma 3.2 and identityxx] = O that p = ax, a € P. Therefore,c,c, = c¢,. Thus,
§(cx)=cp=cx. O

Lemma 3.4. For any linearly stable automorphisin of End(F (X)) and for anyg €
ENd(F (X)), &(cox) = Ce()(x)-

Proof. We haV&pr = Cp(x)- Thenf(c“/,(x)) =&(pcy) =E(p)ey = Ce(p)(x)- U

Lemma 3.5. Any linearly stable automorphisra of End(F (X)) acts identically on
End(F(X)).

Proof. Let us prove first that acts identically onC;. Letc, € C;, wherep is a linear
polynomial. Letg € Aut;(F (X)) be defined byg(x) = p, x € x(p), andg(y) = y for
any othery € X. It follows from Lemma 3.3 that(cy) = ¢,. Thereforegc, = ¢, and
é(cp) =£&(g)é(cx) =gex = Cp-

Hencecy) =&(cyn) = E(@)cx = ce(p)(v), fOranyp € End (F(X)). Thus£(p)(x) =
p(x). 0O

Lemma3.6. Let& € Aut(EndF(X))) be alinearly stable automorphism. Lgtc,,,) = ¢y,
anda; e Pfori=1,2,... k. Then&(ca,pi+tappr) = Cargr+-+arge-

Proof. It follows from Lemma 3.5 tha&(cax) = cax. Therefore£(cap,) = &(cp;cax) =
Cq;Cax = Cag; -

Define ¢ € End(F (X)) as followsg(x) = p1, ¢(y) = p2. Thencp,4p, = @crty. It
follows from Lemma 3.4 tha§ (¢) (x) = g1 and& (@) (y) = g2. It follows from Lemma 3.5
thaté (cx4y) = cxqy. Therefore£ (cp,4p,) =&E(@)Cxty = Cqit¢o-

Let us prove thak (ca, py+-+agpr) = Cazgi+-+arge DY induction onk. We have proved
above the basis of the inductiof(cs, ;) = ca1q,- ASsume that the statement is true
for k < t. It follows from the assumption of the induction théca, pi+--+a,_1p_1) =
Cargit-tar_1g—1 ANAE(Cq,p,) = Carq, E(Cpip) = Cqyq. Therefore (o prtvap) =
Cﬂ1111+'“+atqt' O

Lemma3.7. Leté € Aut(End F(X))) be alinearly stable automorphism. Thegeyx, x,1) =
Calx1,xp]» Wherea € P anda # 0.

Proof. Suppose tha(cjx;,x,1) = cy-
Denote the endomorphism generated by the mappirg a;x; by 74,. 4,. It follows
from Lemma 3.5 thad (74;. 4,) = Tay...a,. Therefore (v, .a,Clxy,x1) = Tay...an € f- HENCE,
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& (Cararlxr,xal) = Crupan()- It follows from Lemma 3.6 tha (ca,ay0xq,x0]) = Caganf- THUS,
alaZf = tal...a,,(f)-

Suppose thaf = a1 f1+ - - + «; f; is the decomposition of with respect to the basis
of Hall. Observe that the decomposition®f. ., (f) contains the same elements of the
basis as the decomposition ¢fbut with different coefficients. Elements of the basis are
linearly independent oveP. Therefore, we obtain a system of equations of the form

(a]l(l .. .a,];;l — alaz)ai =0
from the equationuiaz f = t4,..4,(f). For the elementxy, x2] of the basis we get the
equation(aiaz — a1az)a = 0. In all other cases it is easy to findg, . . ., a, such that

(a]lCi .. .aﬁj‘ — alaz) #0

(for example, if chafP) # 2, takea; = ap = - -- = a,, = 2 for the monomials with the
number of multipliers different from 2 and take =a» =2, a3 =--- =a, =1 for
monomials[x;, x;1, where{i, j} # {1, 2}). Hence, all coefficients; are equal to zero
except the coefficient of the monomiak, x2]. O

Leta € P*. Consider a scalar automorphisfy of F(X) defined by the rulef, (x) =
ax, for everyx € X. It defines an inner automorphisfi of the semigroup End(X)) by
the rule f, () = fa(pfa_l. f4 acts trivially on Eng(F (X)). Thus, f, is linearly stable.

Proposition 1. Let¢ € AutA(End(F(X))) be a linearly stable automorphism. Then there
existsa € K such that = f,.

Proof. Let &(cxy,x,]) = Calxy.xo]- Take the scalar automorphisfia corresponding to the
elementa. Consider the bijectior(X) — F(X) which multiplies a monomial of the
lengthn on a”~1. Supposep is a polynomial presented as the sum of its homogeneous
componentsp = p1 + - -- + p,s, where degp;) =i or p; =0. Denotepy +ap2 + - -- +
a’*~1ps by p. Let us prove thak(c,) = ¢ for anyc, € Cr by induction on the number

of monomials of the polynomigp.

Let us prove the base of the induction fo= 1 by induction on the degree of the
monomialp = u. The base of this induction follows from the Lemma 3.5. Suppose that
&(cy) = cy-1, for anyu such thatu| =1 < k. Suppose now that| = k andu = [u1, u2],
where |u1| = k1 and |uz| = k2. Let ¢(x1) = u1, ¢(x2) = uz and p(x) = x for any
otherx € X. Thengcyyy, v, = cu. It follows from the assumption of the induction that
E(cuy) = Cak1=1y,s E(cu,) = Caka—Ly, andé(cy) = ¢, for any x € X. Therefore, it follows
from Lemma 3.4 thak (¢) (x) = ¢(x) for anyx € X. Hence,

§(cu) =§(@Clxy,x0)) = E(P)Calxi,xo] = Ci(p)alxix2l) = Capaki—Luy ako—tuy) = Cak-Ly = Ca-

Thus, we proved the basis of the first inductionfct 1.
Suppose that(c,) = ¢; for any p € F(X) which contains less thak monomials.
Suppose now thai containse monomials ang = g + g where each of the polynomiajs
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andg contains less thabh monomials. It follows from the assumption of the induction that
&(cq) =g, E(cg) = ¢z and&(cy) = ¢, for anyx € X. Hence, it follows from Lemma 3.6
thaté(cp) = &(cy+g) = cg+g = ¢j- Thus,&(c,) = cj forany p € F(X).

In particular, cgp)x) = &(@cx) = E(cpr)) = Cot) for every ¢ € End(F(X)). Thus,

E(p)(x) = @. On the other hand it is easy to see thate)(x) = ¢(x). Therefore,
é((p)(Ax) = f.(¢)(x). This equality holds for every € X and every € End(F(X)). Thus,

g: fa- O
Corollary 3.8. Any linearly stable automorphism Bhd F (X)) is inner.

Remark 3.9. (1) Let |X| > 2. Consider the automorphisme Aut(F (X)) defined by
¢(x) = x + [y, z], ¢ acts identically on the rest of variables frakh Thenfa((p)(x) =
x + aly, z]. Therefore, the linearly stable automorphis?p for a # 1 does not act
identically on the group AuF (X)).

(2) Let X = {x, y}. Then Auf(F (X)) = Aut(F (X)) [8]. In this case the automorphism
f. acts identically on the group AUE(X)). However, ifa # 1 then f, does not act
identically on the semigroup EQH(X)). Indeed, take an endomorphismsuch that

9(x) = [x, y]. Then fu(¢) (x) = alx, y].

Proposition 2. Let | X| > 2. If £ is a stable automorphisiiacts identically orAut(F (X)))
thené acts identically orEnd(F (X)).

Proof. It follows from Remark 3.9 that ifX| > 2 theng = fa is a stable automorphism if
and only ifa = 1. This proves the proposition.0

We say that an automorphisfhof Aut(F (X)) is an extendable automorphism if there
exists an automorphisgof End(F (X)) whose restriction to AG#' (X)) is f. Itis obvious
that all extendable automorphisms of AH{X)) form a subgroup of AWAuUt(F(X))).
This subgroup is the image Im) of a homomorphism defined in the introduction.

Corollary 3.10. If | X| > 2 then the grouAut(End F (X))) is isomorphic to the subgroup
of Aut(Aut(F (X))) consisting of all extendable automorphisms.

4. Quasi-stable automorphisms of End(F (X))

In this section we define the notion of the quasi-stable automorphism afFEEXq)
and prove that any quasi-stable automorphism of(Eiid)) is inner.

Define, first, the diagonal automorphisms of the group @utX)). We proceed from
the canonical isomorphistn Aut;(F (X)) — GL,(P),n = | X|. Consider the commutative
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diagram

Auty(F (X)) —— GL,(P)

T

P*.

Defineh1(A) = h1(A)A, for every matrixA € GL,(P). Thenhy is an automorphism of
GL,(P). It corresponds to the automorphignof Aut;(F (X)) defined by = §~1h15. It
is easy to see thaﬁt(g)(x) = h(g)g(x) for everyg € Aut;(F(X)) and everyx € X. The
automorphismé andh are called diagonal automorphisms.

Definition 4.1. An automorphisng € Aut(End(F (X))) is called quasi-stable if the group
Aut;(F (X)) is invariantin respect t6 and the restriction of to Aut(F (X)) is a diagonal
automorphism.

Denote the restriction of to Aut(F(X)) by to(¢). Then to(&) = h for some
homomorphisnt : Aut; (F (X)) — P*.

Consider the cask¥ = {x, y}. Inthis case AutF (X)) = Aut;(F (X)) (see[8]). Thus, we
do not need the assumption thiateaves Aut(F (X)) invariant, andrg(§) = 7(§) where
7 AUt(End(F)) — Aut(Aut(F)) is the homomorphism defined in the introduction.

Remark 4.2. For the casgX| > 2 we also could proceed from the homomorphism
h:Aut(F(X)) — P*. However, in this case the correspondings not an automorphism
of Aut(F (X)).

Let ¢ be a quasi-stable automorphism of EA@X)). Let 7o(¢) be equal tor. It means
that for anyg € Aut;(F (X)) we haves(g) = h(g)g.

Let x € X. Denote the automorphism defined by the mappitg) = y, g(y) = x
and g(z) = z for the rest of elements ok by g.,. Denoteh(g,,) = a,,. Notice that
gfy =e. Therefore,agy = 1. SinceP does not contain zero divisotg, = +1. Denote
¢ € End(F (X)) such thatp(x) = x ande(y) = axyx for any othery € X by.

Lemma 4.3. Let & be a quasi-stable automorphism &nd(F(X)). Then&(c,) = cyl,
wherel € End (F (X) is defined above. Thus(Cr) = Crl.

Proof. Let 8xy € Aut(F) and é(gxy) = dxy8xys Cu = Cu8xy, &(cy) = é(cu)axygxy-
Let £(c,)(x) = v. Therefore, for anyy € X, £(c.)(y) = axyé(cu)(x) = ¢l (y). Thus,
E(c)=cyl. O

Lemma4.4. Leté be a quasi-stable automorphism Bhd F (X)). Then for any € X we
obtain thats (cy) = ¢,1,/. In particular,§ (c,)(z) = axagty.
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Proof. Let ¢, € Cx. It follows from the previous lemma thét(c,) = ¢! for some
p € F(X).Letp =ay+b1y1+---+bryr + p1, whereps is a non-linear polynomial. Since
¢y is a right identity in the semigrou@r for anyc, € Cx we obtain tha€(c,) is a right
identity for Crl. Hencec,l&(cy) = cyl. In particular(axya + axy, b1+ - - - + axy b))y =
cyl&(cy)(x) =cyl(x) =y. Thereforer ya + axy b1+ - -+ axy, by = 1.

Suppose that # 0. Let g, be the automorphism defined by the mappipg(y) =y
andgy(z) =mz for z #y, z € X and leth(gyy) = dn # 0. Sinceg,,yc, = ¢, we obtain
A &myCp(x) = E(gmycy)(x) = &(cy) (x) = cp(x). HENCE A1t g1y (P) = Pp- Remind that we
presentp in the basis of Hall of linearly independent elements. Thus, we obtain a system
of equalities for corresponding coefficients,a = a, d,,mb; = b;, ... . Sincea # 0 we
obtain thatd,, = 1. Choosingn of infinite order we obtain that all other coefficients of
are equal to 0. Hencg = ay andayya = 1. Thus, in this casé(cy) = c1/a,,y!-

Suppose now that= 0. Thenayy, b1+ - - +axy, by = Landp = biy1+- - -+ bryc + pa.
Sinceayy, b1 + --- + axy, by = 1 at least one of the coefficients, ..., b; is non zero.
Letm,ay,...,ar € P. Let g,/ﬂy be the automorphism generated by the map@my) =
v, g;ﬂy(y,») = my; + a;y and g{ny(z) = mz for otherz € X and Ieth(g{ny) =d, #0.
Then g;nycy =cy. Therefore,d,/ng;nyc,,(x) = s(g;nycy)(x) = &(cy)(x) = cp(x). Hence,
d{ng,’ny(p) = p. Comparing the coefficients gfwe obtain that/,, (b1a1 + - - - + brax) = 0.
Since we always can choosg ..., a; € P such thabjaj + - - - + bray # 0 we obtain that
d,, = 0. But this is impossible. Thug(c,) = c1/a4,,!.

In particularg (cy)(z) = c1/a,,yl(z) = axza;yly. O

Proposition 3. Any quasi-stable automorphisfrof End(F (X)) is inner.

Proof. Remind that/: X — X is a function, assigning to x, a,,z to z for x,z € X,
ay; € P*. 1 defines the automorphismof F(X). « defines the inner automorphisim of
EndF(X)). Denotety = ggl‘l. To prove the proposition it is enough to prove thagacts
identically on En@(F (X)) and then use Corollary 3.8.

E1(c)) () =ateya(z) =a Haxy) = axaly =&(c))(2) (Lemma 4.4). Hence, =
&7 acts identically orCy.

Suppose thag € Aut;(F (X)) is presented by a diagonal matrix thaigis) = a,y for
anyy e X anda, € P*. Suppose tha§(«) = s and£(g) = tg, wheres,t € P*. Then
£2(2) () =£& T (9)(y) = E(aga™H)(y) = saxytays tagly =tayy = E(g)(y). Therefore
&2(g) = &(g)- Since we use below in the proof ofgposition only linear automorphisms
presented by a diagonal matrix we refietthis equality without explanation.

Let p be a linear polynomial. Leg, be the automorphism defined by the mapping
g(x)=p andg(y) =y for y # x, y € X. Thené&a(cp) = &2(gcx) = §2(8)62(cx) =
£(g)cx = h(g)gcx = Ch(g)g(x) = Ch(g)p- THUSE2(cp) = cip, Wherek € P*.

Let g,ux be the automorphism generated by the mapgipgx) = x andg,,x (y) = my
for y #x, y € X and leth(guy) = dp,. Sinceg,xcx = ¢, we obtain that, = &2(cy) =
E2(gmxcx) = E(mx)Cx = dgmxCx = Cdyygmy (x) = Cdyyx - Therefored,, = 1. Let p be a
linear polynomial. Letz be the sum of all coefficients gf. Thené&z(cicp) = &2(cax) =
éZ(ngany) = Cx8axCy = Cax- On the other handZ(CxCp) = éZ(Cx)SZ(Cp) = CxCkp = Cakx-
If a # 0 thenk =1, that isé2(c,) = c,,. Thusé; acts identically on eacty,, wherep is a
linear polynomial with non-zero sum of coefficients.
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Now consider the case when the sum of all coefficientsf a linear polynomial
p is zero. Letp = ax + byy1 + --- + byyk. Let g = gq4y....q, DE the automorphism
generated by the mappingx) = x, g(y1) = aiy1,...,g(yx) = axyx and g(z) = z for
otherz € X and leth(g) = h(ga,,...q) = day,....a,- ChOOSE11, . . ., a Such that the sum of
all coefficientsp of the linear polynomiag,;, ..., (p) is non zero. We have proved above
thatEZ(gal,...,ak (p) = 8an,...,ax (p). Sincegal,...,akcx = ¢, We obtain that

cx =&2(cx) = SZ(gal,...,aka) = é(gal,...,ak V2(cx) = dal,...,ak 8ay,....axCx = Cdyy, g, %
Therefore,dg;, ..o, = 1. Hence,&(8uy,...a1) = 8ay,...aqr- CONsequentlygy,  qcp =
£2(8ay,...a Cp) = &ay,...aE2(cp). SiNC€gqy. . 4 1S @an automorphism of'(X) we obtain
that&a(c,) =cp.

Thus, &; acts identically onC;. Let ¢ € End (F(X)). cyx) = &2(cpx)) = E2(pcx) =
E2(p)Ea(cx) = E2(@)cx = Cep(p)(x)- THUS,E2(9) (x) = (x). Hencega(p) =¢. O

Regarding the material of Section 4 see also [13].

5. Automor phisms of End(F (X))
In this section we prove that any automorphism of &@ng, y)) is semi-inner.
Theorem 2. Any automorphism d&nd(F (x, y)) is a semi-inner automorphism.

Proof. P. Cohn [7] proved that the group Aut(X)) is generated by linear and triangular
automorphisms. Triangular automorphisms assignt+ f(x1, ..., x;—1) to x;. Hence, for
X = {x, y} (X consists of two elements), a triangular automorphism assigns f(x)
to y. A Lie polynomial of one variable is a linear polynomial. Therefore, the group
AUt(F (x, y)) consists of linear automorphisms only. Thus, @utx, y)) is isomorphic to
GL2(P). Lets: Aut(F(x, y)) — GL2(P) be an isomorphism. Then— §~1v§ defines an
isomorphism AutGL2(P)) — Aut(Aut(F (x, y))). If v € Aut(GL2(P)) is semi-inner then
8~1vs is a semi-inner automorphism of AWt (x, y)). If v € Aut(GLx(P)) is diagonal then
5~1vs is a diagonal automorphism of AUt (x, y)). It is well known [24] that the group
of automorphisms of G4(P) is generated by semi-inner and diagonal automorphisms.
Hence, the group of automorphisms of Altx, y)) is generated by semi-inner and
diagonal automorphisms.

Let & be an automorphism of EQH(X)). In the introduction we defined a homomor-
phism 7 : Aut(End(F (X))) — Aut(Aut(F(X))), wheret (&) = &7 is the restriction of
to Aut(F(X)). Hence,z (&) is a product of semi-inner and diagonal automorphisms of
Aut(F (X)). Since a diagonal automorphism commutes with a semi-inner automorphism
we obtaint (§) = &,&4, whereé; is a semi-inner automorphism agg is a diagonal au-
tomorphism of AutF (X)). & is a semi-inner automorphism of Aut(X)) defined by
a semi-automorphisnf of F(X). f defines an automorphisg of End(F(X)). Thus,
& =¢&1. Theng{lg = &7 is an automorphism of Enid' (X)) and&; =&,. Thus,& is a
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guasi-stable automorphism. It follows from Proposition 3 thats inner. Consequently
& = &1&> is semi-inner as a product of semi-inner automorphisnts.

Now we formulate an application of Theorem 2. First, we consider two problems;Let
and F> be free Lie algebras over a fieRl Suppose that the semigroups of endomorphisms
End(F1) and EndF>») are isomorphic. Does this imply the isomorphism of algelfas
and F»? Leté be an isomorphism of Erid1) and EndF>). In which cases one can state
that there exists an isomorphism or a semi-isomorphjsniy — F> which inducest,
i.e.,&(p) = fof~ foreveryp € End(F1)? If f inducest then the pair f, £) defines the
isomorphism or semi-isomorphism of the actions of the semigroug /&htn F; and
End F») on F>.

Proposition 4. If F; = F(x, y) then for any isomorphisra: End(F1) — End(F>) there
exists a semi-isomorphisyh: F1 — F» which induceg.

Proof. Show that there exists an isomorphigim— F,. We have to show that iF; is
freely generated by a sét then |Y| = 2. Isomorphismé induces an automorphism of
groups AutF1) and Aui F»). The group AutFi) contains a non-trivial center consisting
of scalar automorphisms. IfY| £ 2 then the group A f>) does not possess such a
property. Thus|Y| = 2 and there is an isomorphisifi : F1 — F». We change thisfi
in order to get a desired semi-isomorphigm Define flenctFl) — End(F2) by the

rule fi(¢) = fapfy * for everyp e End(Fy). The productf; ¢ is an automorphism of
the semigroup End). Using Theorem 2 we get that this automorphism is semi-inner.
Thus, /i & = 2, whereg is a semi-automorphism of the algelifa Now & = /12. Semi-
isomorphismf = fi1g: F1 — F» induces the initiak. O

Problem 5.1. Does Theorem 2 admit a genegaiion for the case of arbitrady, | X| > 2?
Proposition 5. The following conditions on a free Lie algebFy X) are equivalent

(1) Any automorphism dEnd(F (X)) is semi-inner.
(2) For any automorphisn§ of End(F (X)) the groupé (Aut;(F(X))) is conjugated to
Aut;(F (X)) (in the groupAut(F(X))).

Proof. 1 = 2. There exists a semi-inner automorphigm g) of F(X) such that
for any ¢ € EndF (X)) &(¢) = gopo tg~1. For any o € Aut;(F(X)) we have
oaoc ! e Aut(F(X)). Therefore, Aut(F(X)) and &(Aut;(F(X))) are conjugated by
g € Aut(F(X)).

2= 1. Let & be an automorphism of EQ#(X)). Aut;(F (X)) and &(Aut;(F(X)))
are conjugated by € Aut(F(X)). g defines an inner automorphisgnof End(F (X)).
£g~1 = & is an automorphism of Erd (X)) which induces an automorphisg of
Aut;(F(X)). & is semi-inner and, therefore, it is extended to semi-inner automorphism
£ of End(F(X)). Automorphism& €, = & is a linearly stable automorphism of
End(F(X)). Therefore, it is inner (see Corollary 3.8). Henées £18 = £3£,4 is semi-
inner. O
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6. Reduction theorem

In this section we prove the general reduction theorem for a large class of vafieties
This theorem allows to reduce the problem of the description of automorphisms of the
category®? to the same problem for a much simptetegory (consisting of two objects).

We assume that the varie®y satisfies the following 3 conditions.

(1) The variety® is hopfian. This means that every objétt F(X) of the category°
is hopfian, i.e., every surjective endomorphistF — F is an automorphism.

(2) If X ={xp} isaone elementset ati@ = F (xp) is the cyclic free algebrathen for every
automorphismy of the category®® we requireg(Fp) is also a cyclic free algebra
F(y0).

(3) We assume that there exists a finitely generated free algebea F(x9), X0 =
{x1, ..., xx}, generating the whole variety, i.e.,® = Var(F9).

For the sake of convenience in this paper we call a variety, satisfying these conditions,
a hereditary variety.
We fix FO and Fy.

Proposition 6 ([5], see also Appendix)The conditiong1) and (2) imply that for every
F = F(X) and every: ©®° — ©0 the algebrasF and¢(F) are isomorphic.

Lemma 6.1 [5]. Any automorphisnp: ©° — ©° such that algebrag” and ¢(F) are
isomorphic has the form

¢ = Yo91,

wheregg is an inner automorphism @° and¢; does not change objects.
Consider a constant morphism: F® — Fy such thawg(x) = xo for everyx € X°.

Theorem 3 (Reduction Theorem)Let ¢ be an automorphism of the catega® which
does not change objects, and letinduce the identity automorphism of the semigroup
End(F°) andg(vg) = vo. Theng is an inner automorphism.

Note that for the varietyy of all commutative associative algebras with 1 over a field
this theorem has been proved by A. Berzins in [5].

The proof of the theorem consists of several steps.

(1) It will be convenient to attach to the categoly® the category of affine
spacesk ) (H) over the algebrad = F° [31]. The objects ofk2 (H) have the form
Hom((F(X), H), whereF is an object of the category®. Morphisms

§:Hom(F(X), H) — Hom(F(Y), H)

are defined by morphisms F(Y) — F(X) by therules(v) = vs foreveryv: F(X) - H.
We have a contravariant functdr: ©9 — Kg(H). The condition VafH) = ® implies
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that this functor yields the duality of the categori@® and Kg(H) (see [31] and
Appendix). Consider the automorphissf of the category of affine spaces which is the
image ofg under the duality above. Functer : Kg(H) — Kg(H) does not change
objects and fos : F(Y) — F(X) we definep (5) = go’(?). This definition is correct, since
§1 =52 impliessy = s».

We will show thate’ is in a certain sense a quasi-inner automorphism. First of
all, ¢ defines a substitution on each set HeMX), H). Indeed,v: F(X) - H and
o(v): F(X) — H give rise to a substitutiopn x defined byux (v) = ¢(v). The following
proposition explains the transition fro@° to Kg (H).

Proposition 7. Lets: F(Y) — F(X). Then
¢ (5) = uySuxt:Hom(F (X), H) — Hom(F (Y), H).

Proof. For everys: F(Y) — F(X) and everyv: F(X) — H the equalityp (5)(v) =
o(s)(v) = ve(s) holds. Therefore, we have

wrdpnyt o) =y (ng' 0)s) =e(e 7t 0)s) =ve) =" (F)v). O
Remark 6.2. If the automorphisnp’’ has a presentation above we call it quasi-inner.
Consider separately the ca¥%e= X° and take the substitutionyo : Hom(F©, H) —

Hom(F°, H). By the condition of the theorem the equaliiyo(v) = ¢(v) = v holds for
anyv: F® — H = FO. This means that yo = 1. Then fors: F(Y) — F(X°) we have

o (5) = Myfﬂ)_(% =jyS = ().
Fors: F(X% — F(Y) we get
o™ (5) = xoSuy T =3yt = 0(s).

Therefores = ¢?§)uy.

(2) Now we use the category of polynomial mapsdi@). Objects of this category
have the formH", wheren changes andd is fixed. Morphisms are represented by
polynomial mapss®: H" — H™ defined below. Take a sef = {x1,...,x,}. Denote
ayx :Hom(F(X), H) — H" the canonical bijection defined oy (v) = (v(x1), ..., v(xy))
for everyv:F(X) —» H. Let nows: F(Y) — F(X) be given andX = {x1,..., x,}

Y ={y1,...,ym}. Consider the diagram

Hom(F(X), H) ——= Hom(F(Y), H)
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Tsagy. Thens%(ay, ..., a,) = ayEa;(l(al, ...,ay). Take a

pointv = ot;(l(al, ...,ay) . F(X)— H.Then

R B
wheres =aySay; § =ay

s¥(a1,...,ap) = ay§(v) = ay(vs) = (vs(yl), ey vs(ym)).

Denotes(y;) = w; (x1,...,x,),i =1,...,m. We have got

s%(ag, ..., an) = (wilas, ..., an), ..., wn(a, ..., ap)).
Indeed,
s%aq, ...,an) = (v(wl(xl, ...,x,,)), ...,v(wm(xl, ...,xn)))
= (wl(x{,...,x,‘f),...,wm(x{,...,x,‘i))
= (wl(al, e, dp), ..., Why(a, . ..,a,,)).

Thus, we defined morphism8: H" — H™ in the category Pel(H).

Consider constant morphisms in the categ&®; First, take morphisms of the form:
v =y, : Fg— F(X) defined byv,(x0) = a, a € F(X). Recall that the constant morphism
vo: FO — F(x) is defined byg(x) = xo for everyx € X°.

Takev = vav0: F(X% — F(X). Thenv(x) = a for everyx € X9, andv is a constant
we will be dealing with.

Let, further,¢ be an automorphism aP® which does not change objects. This
induces a substitution on each set H@X), F(Y)) denoted byuy y. In particular,
Uy xo = mx. The substitutionu,, x on the set HortFp, F (X)) induces the substitution
ox on the algebrd@ (X) defined by the rule(v,) = Vo (a)- It is proved [31] that for every
w.F(X)— F(Y) the formula

(1) =oypoy*

holds. In this sense the automorphignis said to be a quasi-inner automorphism in the
category®?. Take nowv = v,v0. Then

P(vV) = 9(Va)9(v0) = Voy ()P (V0)-
If ¢ does not changey then
@(V) = Vo (a)VO-
For everyx € X% we getp(v)(x) = ox(a), herep(v) is also a constant.

Now we are in the position to make the next step. We return to the category of
polynomial maps and consider how the constant maps defined abaw8 Inok like
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in Polg (H). Takes: H = F(X% = F® — F(X) defined bys = s, 10, w € F(X). Then
s(x) = w for everyx € X°. Let X0 = {x1, ..., x;}. We get the commutative diagram

Hom(F (X), H) . Hom(F (x°), H)

ax \L l ¥x0
o

H" H*.

Then s%(as, ...,a,) = (w(ay,...,an),...,w(ay,...,an)), where w(as,...,a,) IS
taken k times. Considering the projectiom:H" — H, n(by,...,br) = b1 we get
ws¥(ay, ...,ay) =wl(ay,...,d,).

Take an arbitrary : F(Y) - F(X). Let X = {x1,...,x,}, andY = {y1,..., ym}. Let
s(yi) = wi(x1,...,x,) = w;. Take a constant mag = vy, vo: F(X% — F(X). The
sequencey, ..., s, depends onr and on the basis df. In this situation we denote

s =y (51, ..., 5m).

We have alsa®: H" — H™, ands®: H" — H*. There is a relation betweeff ands?,
i=1...,m:

s“aq, ...,an) = (nsf(al, cesap), ..., sy (ag, .. .,a,,)).
Indeed,
o
s¥@at, ..., an) = (wias, ... an), ..., wp(as, ..., an))
= (nsf(al, ey Gn)y o TS (a1, ...,a,,)).

This formula is a key working tool for the proof of the theorem. It was the reason to
replace the category of affine spaces by the category of polynomial maps.
Now we are able to prove the reduction theorem.

Proof of Theorem 3. Let us return to the automorphism ©° — ©°. For every algebra
F =F(X), X = {x1, ..., x,} we will construct an automorphisey : F — F depending
on¢. The collection of such automorphisms will defipes an inner automorphism.

Consider morphismsg = vy, vg: FO— F,i=1,...,n. We havep(s;) = @(vy;)vo, and
let p(vy,)(x0) = yi = @(&;)(x) for everyx e X0, LetY = {y1,..., y,}. From the proof of
Proposition 6 follows tht if the variety® is hopfian thert is also a basis itF.

Define the automorphismy : F — F by the ruleoy (x;) = y;.

Lets be an automorphism of the algeliffa= F(X), and lets(x;) = w; (x1, ..., x,) = w;.
Takev,, : Fop — F, vy, = svy, and lets; = vy, vo = svy, vo = s¢;.

We haves =x (s1, ..., s,). We will check thatp(s) =y (¢(s1), ..., @(sn).

We have to verify that ifp(s) (y;) = w] theng(s;)(x) = w; for everyx € X9, Compute
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0 () (yi) = @($)@(vx;) (x0) = @(sVy;) (x0) = @(Vy; ) (x0)
= @(Ww;)vo(x) = @ (W, )P (V0) (x) = @ (Vy; v0) (X) = @(s;)(x)

for everyx € X°. Thus,p(s)(y:) = w] = ¢(s;)(x) for everyx e X°.

This impliesg(s)ox =x (¢(s1), ..., ¢(s,). Indeedp(s)ox (x;) = @(s)(yi) = ¢(si)(x)
for everyx € X°.

Consider the image of the formula = gof(Ei/)ux, i =1,...,n, in the category of
polynomial maps P@l(H).
Take the diagram

Hom(F(X), H) ——= Hom(F(X), H)

I

H" H"

We have gota map$ = axpuxay : H" — H". In particular,u®, = axouxag. By
the condition of theoremy o = 1 andu$, = 1.

Since g™ (3) = puxsuyt = ¢(s) for ¢(s) : F(X) — F(X) the following equality holds

—~ _ _ -~ _ 1 — -1
0(5)* = axe()oy’ = axuxay axSaytoxuytayt = n%s® (1g)

Fors;: FO— F we gets; = o(s;)tx and hence,

e

-] -1 -1
57 = ayoSioy T = ayop(s)ay axuxay = @(s)*ug,

wheres = ¢(s;)* u% are polynomial mappings fromy” to H*. Fora = (a1, ...,an) €
H" we have

s“ay, ..., ap) = (nsi‘(al, ceesQn)y .., TS (A, - ..,an))
= (re(sD* (@1, ... an), ..., TO(s) Uy (@, ..., an)).
Take
p(s)ox =x ((s1). ..., 9(sn))
and apply this formula to the poipt§ (a1, ..., a,). Then

(0(5)ox)" (1§ @z, . ... an)) = (TG UG (@1, - an), -, TP(50)* 1 (L, ..., @)

=s5%(a).
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Thus,s%(a) = (¢(s)ox)* u$ (a). Since this formula holds in every poiathen
5% = (p()ox) 1y = ofe()*ug.

Hence 1 = (p(s)™H% (o H%s® = (so tp(s)™He.
Denoteéy = sa;1<p(s)—1. This is an automorphism of the algebFa= F(X) and

ug = £%. Therefore&£x = ux. In particular,éy does not depend on the choice of the
automorphisns.
Let now an arbitrary : F(X) — F(Y) be given. Then we have

0" (8) = pxduyt = ExdE = £, 15Ex = 0(5).

This givesp(8) = &, *8&x.
Since our initials is arbitrary, one can take= 1. Thenéx = 0;1.
Finally we get

9@ =oydoxt. O

7. Automor phisms of the category of freeLie algebras. The proof of the main
theorem

Return to the variety of all Lie algebras over an infinite field. We want to prove that
every automorphism of the catega®y is semi-inner.

Proof of Theorem 1. This variety® is hopfian and is generated by the free Lie algebra
FO = F(x,y) [6]. It is clear that condition 2 is ab valid. Thus, the conditions from
Section 6 are fulfilled. Therefore, the varigdyis hereditary.

It is enough to consider automorphismgswhich do not change objects [19]. Take
such ag and induce the automorphispyo of the semigroup Endg™®). According to
Theorem 2 such an automorphism is semi-inner and is defined by the semi-automorphism
(0,sp0): FO — FO. For every algebr& = F(X), which is distinct fromF© take a semi-
automorphism(o, o) : F — F. Semi-automorphism&, s) po = (0, sp,) and (o, s)r =
(0, o) define a semi-inner automorphisfnof the category®®. This ¢ does not change
objects. Automorphisma andy act in the same way on the semigroup EF%). Thus,
the automorphism; = ¥ 1 acts on Endr?) identically.

Take a constant morphismy: FO — Fy with vg(x) = vo(y) = xo. Let us verify that
¢1(vo) is also a constant. Take an automorphisof the algebraF© defined byy(x) =y,

n(y) = x. We havevon = vo. Thereforep; (von) = p1(vo)n = p1(vo). Hence g1 (vo)(x) =
@1(v0)n(x) = @1(v0)(y) = axo fora # 0.

Automorphisms of free Lie algebragy,(xo) = axp and fr(x) =x forx e X, F =

F(X) # Fy, define an inner automorphisyﬁof the category®?, which does not change
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objects. Observe that isomorphisfi acts trivially on F0. We havef (vo) = fr,vof,5
and

F@o)@) = fryvofrd(x) = frvo(x) = fro(x0) = axo.

Thus, p1(vo) and £ (vg) coincide. Thereforef ~1¢1(vo) = vo. Denote £~y —1¢ = .
Then ¥o(vo) = vo and Yo acts trivially on EAnqu(x, ¥). By Reduction Theorem the

automorphismyyg is inner. We have gap = v f o = 6 ¥1.f Yo.
Thus,g is semi-inner and the theorem is proveda

Along with the automorphisms of categories of free algebras of varieties it is natural
to consider also the autoequivalences of these categories (see Section(®).vebe an
autoequivalence of the category of free Lie algebras. We call it semi-inner if the functors
¢ andy are semi-isomorphic to the identity functor.

It was proved in [38], that for every and every autoequivalen¢eg, ) of the category
60 there are factorizations

o=gop1, ¥ =¢] Vo,

wheregg andyg are isomorphic to the identity functor apd is an automorphism.
This means that every autoequivalence is isomorphic to an automorphism. This remark
and Theorem 1 lead to thelfowing statement:

Theorem 4. Every autoequivalence of the category of free Lie algebras is semi-inner.

In the introduction we discussed the categories of algebraic BgtsH), H € ©.
The two problems were pointed out, namely, the problem of isomorphism of categories
Ko (H1) and Kg (H2) and the problem of equivalence of the same categories. For the
variety of Lie algebras and algebrag and H», satisfying VatH1) = Var(H>) = ©, the
first problem is solved in [32] with the aid of Theorem 1, while the solution of the second
problem also in [32] requires arguments from Theorem 4.

Appendix

In this section we prove two propositions we have referred to in the text.

Remind that the contravariant funcir. ©° — Kg (H) assign Hom(F (X), H) to any
F(X) e ®%andforany: F(Y) — F(X) itassigns :Hom(F (X), H) — Hom(F(Y), H)
defined by the rulé(v) = vs.

Proposition 8. The functor® : ©°0 — Kg(H) defines a duality of categories if and only if
Var(H) = 6.

Proof. In our case the duality of categories means that,if, morphismsF (Y) — F(X)
thensy # sp impliessy # §2. Lets1 # so and assume; = §». Takey € Y such thak(y) =
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w1, s2(y) = w2, andwi # w2. Show that the non-trivial identitw1 = w» is fulfilled in
algebraH . Take an arbitrary : F(X) — H. The equalitys; = 52 yieldss1(v) = 52(v). We
have alsaws; = vs2. Apply this equality toy. We getvs1(y) = v(w1) = vs2(y) = v(w2).
Sincev is arbitrary, we get that = 5> impliesw1 = w2 in H.

Assume that VaiH) = ®. Then there are no non-trivial identitiesth. This means that
the equalitys; = 5o does not hold irKg(H). We proved that if VafH) = © thensi # s2
impliess; # 52 and we get a duality of categories.

Conversely, let us prove that if @) # © then there is no duality. Since \(@) # ©
there exists a non-trivial identitw1 = w> in H, wherewj, w2 in some F(X). Take
Y = {yo}. Considers; and s> from F(Y) to F(X) defined by the rules1(yo) = w1,
s2(yo) = wz. Show thats; = §,. This will mean that there is no duality. Take an arbitrary
v:F(X)— H.Thensi(v) = vsq1, 52(v) = vsp, bothF(Y) — H. Takeyg. Thenvsy(yg) =
v(wi), vs1(yo) = v(wz). Sincewy = wz is an identity in H thenv(wi1) = v(w2) and
correspondinglyys1(yo) = vs2(yo). Since the setr consists of one elemenity then
vs1 = vsz. This equality holds for every and therefores; =5,. O

Proposition 9. Let the variety® be hopfiang an automorphism o®° and ¢(Fo) be
isomorphic toFp. Theng(F) is isomorphic toF for everyF = F(X).

We use some new notions to prove Proposition 9.

Definition 7.1. Let X be a set in a free algeba= F(Y). We say thatX defines freely
algebrafF if every mapug: X — F can be extended uniquely up to endomorphism
uF—F.

Remark 7.2. In many cases the notions “to define figend “to generate freely” coincide.
For instance, this is true for the variety of all groups (E. Rips, unpublished). If this is true
for the variety of Lie algebras we do not know.

Lemma 7.3. Let the variety® be hopfian. LetX| > |Y|. ThenX defines freelyf = F(Y)
if and only if X is a basis inF and | X| = |Y].

Proof. Take an arbitrary surjectiong: X — Y. If X defines freelyF then there exists
surjective endomorphism: F — F. SinceF is hopfian,u is automorphism. Thepg is
a bijection. The inverse bijection defines the inverse automorphism. Thergfore,|Y |
andX is a basis inF. The “only if” part is evident. O

For the sake of self-completeness we regeate material from [5]. Take a free algebra
F = F(X) and consider a system of morphismsFo — F,i=1,...,n.

Definition 7.4. A system of morphismé&sy, .. ., ¢,) defines freely an algebiif for every
sequence of homomorphisnis ..., f,, fi : Fo — F there exists a unique endomorphism
s:F — F suchthatf; =se¢; wherei =1, ..., n.

Itis proved in [5] that the systerz1, ..., €,) defines freelyF if and only if the system
of elements(e1(xp), ..., €,(x0)) defines freely the algebrA&. It is obvious, that if the
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system(es, ..., &,) defines freelyF then the systemip(e1), ..., ¢(g,)) defines freely
e(F) if (Fo) = F(yo).

Proof of Proposition 9. Let the variety® be hopfiang(Fp) = F(yo). Letp(F) = F(Y)
whereF = F(X). We prove that algebrals(X) and F(Y) are isomorphic.

Let, first, [X| > |Y] and X = {x1,...,x,}. Define the systeme(,...,¢e,) by the
conditione; (xo) = x;, for everyi. This system defines freely algebfa Then the system
(p(e1), ..., p(en)) defines freely algebra(F) = F(Y). This means that the sét of
elementsy’ = ¢(e;)(yo) defines freely algebra& (Y). Since|Y’| = |X| > |Y| then the
systemY’ is a basis inF(Y) and |Y'| = |[X| = |Y|. The mapx; — y/ defines the
isomorphism of algebrag(X) and F(Y).

Let now |X| < |Y|. Then F(X) = ¢(F(Y))~L. Applying the same method to the
automorphisny—! we get the contradiction.o
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