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Abstract: This paper surveys results related to well-known works of B. Plotkin and V. Remeslennikov
on the edge of algebra, logic and geometry. We start from a brief review of the paper and motivations.
The first sections deal with model theory. In the first part of the second section we describe the
geometric equivalence, the elementary equivalence, and the isotypicity of algebras. We look at
these notions from the positions of universal algebraic geometry and make emphasis on the cases
of the first order rigidity. In this setting Plotkin’s problem on the structure of automorphisms
of (auto)endomorphisms of free objects, and auto-equivalence of categories is pretty natural and
important. The second part of the second section is dedicated to particular cases of Plotkin’s problem.
The last part of the second section is devoted to Plotkin’s problem for automorphisms of the group of
polynomial symplectomorphisms. This setting has applications to mathematical physics through the
use of model theory (non-standard analysis) in the studying of homomorphisms between groups of
symplectomorphisms and automorphisms of the Weyl algebra. The last sections deal with algorithmic
problems for noncommutative and commutative algebraic geometry.The first part of it is devoted to
the Gröbner basis in non-commutative situation. Despite the existence of an algorithm for checking
equalities, the zero divisors and nilpotency problems are algorithmically unsolvable. The second part
of the last section is connected with the problem of embedding of algebraic varieties; a sketch of the
proof of its algorithmic undecidability over a field of characteristic zero is given.

Keywords: universal algebraic geometry; affine algebraic geometry; elementary equivalence;
isotypic algebras; first order rigidity; Ind-group; affine spaces; automorphisms; free associative
algebras; Weyl algebra automorphisms; polynomial symplectomorphisms; deformation quantization;
infinite prime number; semi-inner automorphism; embeddability of varieties; undecidability;
Noncommutative Gröbner-Shirshov basis; finitely presented algebraic systems; algorithmic
unsolvability; turing machine

Dedicated to the 70-th anniversary of A.L. Semenov
and to the 95-th anniversary of B.I. Plotkin.

Mathematics 2020, 8, 1694; doi:10.3390/math8101694 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-1371-7479
https://orcid.org/0000-0003-4708-3977
https://orcid.org/0000-0002-2235-5588
http://www.mdpi.com/2227-7390/8/10/1694?type=check_update&version=1
http://dx.doi.org/10.3390/math8101694
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 1694 2 of 33

Contents

1 Introduction 2

2 Model-Theoretical Aspects 6
2.1 Algebraic Geometry over Algebraic Systems . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Three Versions of Logical Rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Between Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Galois Correspondence in the Logical Geometry . . . . . . . . . . . . . . . . . . . 7
2.1.4 Logical Similarities of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Geometric Equivalence of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.6 Elementary Equivalence of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.7 Logical Equivalence of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Plotkin’s problem: automorphisms of endomorphism semigroups and groups of
polynomial automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 On the Independence of the B-KK Isomorphism of Infinite Prime and Plotkin Conjecture
for Symplectomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Plotkin’s Problem for Symplectomorphism and the Kontsevich Conjecture . . . . 14
2.3.2 Ultrafilters and Infinite Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Algebraic Closure of Nonstandard Residue Field . . . . . . . . . . . . . . . . . . 15
2.3.4 Extension of the Weyl Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.5 Endomorphisms and Symplectomorphisms . . . . . . . . . . . . . . . . . . . . . 18
2.3.6 On the Loops Related to Infinite Primes . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Algorithmic Aspects of Algebraic Geometry 24
3.1 Finite Gröbner Basis Algebras with Unsolvable Nilpotency Problem and Zero Divisors

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 The Sketch of Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Defining Relations for the Nilpotency Question . . . . . . . . . . . . . . . . . . . 25
3.1.3 Defining Relations for a Zero Divisors Question . . . . . . . . . . . . . . . . . . . 25
3.1.4 Zero Divisors and Machine Halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 On the Algorithmic Undecidability of the Embeddability Problem for Algebraic Varieties
over a Field of Characteristic Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 The Case of Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 The Complex Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

References 29

1. Introduction

The connections between algebraic geometry and mathematical logic are extremely important.
First of all, notice a deep connection between algebra, category theory and model theory inspired by
the results of Plotkin and his school (see References [1–5]. Note that this research is related to the one
of most striking examples of interaction between model theory and geometry given by solutions of
the famous Tarskii’s problem, see References [6,7]. Another outstanding achievement is the theory
of Zariski geometries developed by B. Zilber and E. Hrushovski [8–10]. In addition, the use of
non-standard analysis has allowed progress in the theory of polynomial 64 automorphisms. See the
work of Belov and Kontsevich [11,12]. For a detailed bibliography see Reference [13].

The foundations of algebraic geometry had an important part of the translation of topological and
arithmetical properties into a purely algebraic language ([14]). Translation of the algebraic properties
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of a variety into the language of mathematical logic can be considered somehow in the spirit of
this program.

This short survey is related to ideas contained in the works of B. Plotkin and V. Remeslennikov
and their followers. We assume that lots of questions still require further illumination.

In particular, the following question is of interest: given two algebraic sets. Is there an algorithm
for checking isomorphism? Similarly for birational equivalence. Is there a solution to the nesting
problem of two varieties? For characteristics 0, the answer is not Reference [15], but for a positive
characteristic the answer is unknown.

On should mention a number of conjectures related to the theory of models and polynomial
automorphisms expressed in the paper by Belov-Kontsevich [11]. The investigations of the Plotkin
school are far from completion, thus the relationship between the theory of medallions and the theory
of categories is relevant.

One of the goals of this paper is to narrow the gap and to draw attention to this topic. We deal
with commutative and non-commutative algebraic geometry. The latter notion can be understood in
several ways. There are many points of view on the subject. We touch universal algebraic geometry,
some of its relations with reformational quantization and Gröbner basis in non-commutative situation.

The paper is organized as follows—Section 2 is devoted to various model-theoretical aspects and
their applications. More precisely, Section 2.1 deals with universal algebraic geometry and is focused
around the interaction between algebra, logic, model theory and geometry. All these subjects are
collected under the roof of the different kinds of logical rigidity of algebras. Under logical rigidity
we mean some logical invariants of algebras whose coincidence gives rise to structural closeness of
algebras in question. If such an invariant is strong enough then there is a solid ground to look for
isomorphism of algebras whose logical invariants coincide.

We are comparing three types of logical description of algebras. Namely, we describe geometric
equivalence of algebras, elementary equivalence of algebras and isotypicity of algebras. We look at
these notions from the positions of universal algebraic geometry and logical geometry. This approach
was developed by B. Plotkin and resulted in the consistent series of papers where algebraic logic,
model theory, geometry and categories come together. In particular, an important role plays the study
of automorphisms of categories of free algebras of the varieties. This question is highly related to
description of such objects as Aut(Aut)(A) and Aut(End)(A), where A is a free algebra in a variety.

We formulate the principal problems in this area and make a survey of the known results. Some of
them are very recent while the others are quite classical. In any case we shall emphasize that we attract
attention to the widely open important problem whether the finitely generated isotypic groups are
isomorphic.

The line started in Section 2.1 is continued in Section 2.2. Problems related to universal algebraic
geometry (i.e., algebraic geometry over algebraic systems) and logical foundations of category theory
gave rise to natural questions on automorphisms of categories and their auto-equivalences. The latter
ones stimulate a new motivation to investigation of semigroups of endomorphisms and groups of
automorphisms of universal algebras (Plotkin’s problem) (see Reference [16]).

Let Θ be a variety of linear algebras over a commutative-associative ring K and W = W(X) be
a free algebra from Θ generated by a finite set X. Let H be an algebra from Θ and AGΘ(H) be the
category of algebraic sets over H. Throughout the work, we refer to References [13,17] for definitions
of the Universal Algebraic Geometry (UAG).

The category AGΘ(H) is considered as the logical invariant of an algebra H. By Definition
1, two algebras H1 and H2 are geometrically similar if the categories AGΘ(H1) and AGΘ(H2) are
isomorphic. It has been shown in Reference [17], (cf., Proposition 3) that geometrical similarity of
algebras is determined by the structure of the group Aut(Theta0), where Θ0 is the category of free
finitely generated algebras of Θ. The latter problem is treated by means of Reduction Theorem (see
References [17–20]). This theorem reduces investigation of automorphisms of the whole category Θ0

of free algebras in Θ to studying the group Aut(End(W(X))) associated with W(X) in Θ0.
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In Section 2.2 we provide the reader with the results, describing Aut(End(A)), where A is finitely
generated free commutative or associative algebra, over a field K.

We prove that the group Aut(End(A)) is generated by semi-inner and mirror automorphisms of
End(A) and the group Aut(A◦) is generated by semi-inner and mirror automorphisms of the category
of free algebras A◦.

Earlier, the description of Aut(A◦) for the variety A of associative algebras over algebraically
closed fields has been given in Reference [21] and, over infinite fields, in Reference [22]. Also in the
same works, the description of Aut(End(W(x1, x2))) has been obtained.

Note that a description of the groups Aut(End(W(X))) and Aut(Θ◦) for some other varieties Θ
has been given in References [18,19,21–29].

A group of automorphisms of ind-schemes was computed in Reference [30]. In investigating
the Jacobian conjecture and automorphisms of the Weyl algebra, Plotkin’s problem for
symplectomorphisms is also extremely important. Such problems are associated with mathematical
physics and the theory of D-modules.

Section 2.3 is devoted to mathematical physics and model theory. This relation deals with
nonstandard analysis. We refer the reader to the review in Reference [31].

The Belov–Kontsevich conjecture [11], sometimes Kanel-Belov–Kontsevich conjecture, dubbed
B−KKCn for positive integer n, seeks to establish a canonical isomorphism between automorphism
groups of algebras

Aut(An,C) ' Aut(Pn,C).

Here An,C is the n-th Weyl algebra over the complex field,

An,C = C〈x1, . . . , xn, y1, . . . , yn〉/(xixj − xjxi, yiyj − yjyi, yixj − xjyi − δij),

and Pn,C ' C[z1, . . . , z2n] is the commutative polynomial ring viewed as a C-algebra and equipped
with the standard Poisson bracket:

{zi, zj} = ωij ≡ δi,n+j − δi+n,j.

The automorphisms from Aut(Pn,C) preserve the Poisson bracket.
Let ζi, i = 1, . . . , 2n denote the standard generators of the Weyl algebra (the images of xj, yi

under the canonical projection). The filtration by total degree on An,C induces a filtration on the
automorphism group:

Aut≤N(An,C) := { f ∈ Aut(An,C) | deg f (ζi), deg f−1(ζi) ≤ N, ∀i = 1, . . . , 2n}.

The obvious maps
Aut≤N(An,C)→ Aut≤N+1(An,C)

are Zariski-closed embeddings, the entire group Aut(An,C) is a direct limit of the inductive system
formed by Aut≤N together with these maps. The same can be said for the symplectomorphism group
Aut(Pn,C).

The Belov–Kontsevich conjecture admits a stronger form, with C being replaced by the rational
numbers. The latter conjecture will not be treated here in any way.

Since Makar-Limanov [32,33], Jung [34] and van der Kulk [35], the B-KK conjecture is known to
be true for n = 1. The proof is essentially a direct description of the automorphism groups. Such a
direct approach however seems to be completely out of reach for all n > 1. Nevertheless, at least one
known candidate for isomorphism may be constructed in a rather straightforward fashion. The idea is
to start with an arbitrary Weyl algebra automorphism, lift it after a shift by a certain automorphism of
C to an automorphism of a larger algebra (of formal power series with powers taking values in the
ring ∗Z of hyperintegers) and then restrict to a subset of its center isomorphic to C[z1, . . . , z2n].
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This construction goes back to Tsuchimoto [36], who devised a morphism Aut(An,C)→ Aut(Pn,C)

in order to prove the stable equivalence between the Jacobian and the Dixmier conjectures. It was
independently considered by Kontsevich and Kanel-Belov [12], who offered a shorter proof of the
Poisson structure preservation which does not employ p-curvatures. It should be noted, however, that
Tsuchimoto’s thorough inquiry into p-curvatures has exposed a multitude of problems of independent
interest, in which certain statements from the present paper might appear.

The construction we describe in detail in the following sections differs from that of Tsuchimoto in
one aspect: an automorphism f of the Weyl algebra may in effect undergo a shift by an automorphism
of the base field γ : C→ C prior to being lifted, and this extra procedure is homomorphic. Taking γ

to be the inverse nonstandard Frobenius automorphism (see below), we manage to get rid of the
coefficients of the form a[p], with [p] an infinite prime, in the resulting symplectomorphism. The key
result here is that for a large subgroup of automorphisms, the so-called tame automorphisms, one can
completely eliminate the dependence of the whole construction on the choice of the infinite prime [p].
Also, the resulting ind-group morphism ϕ[p] is an isomorphism of the tame subgroups. In particular,
for n = 1 all automorphisms of A1,C are tame (Makar-Limanov’s theorem), and the map ϕ[p] is the
conjectured canonical isomorphism.

These observations motivate the question whether for any n the group homomorphism ϕ[p] is
independent of infinite prime.

The next Section 3 makes emphasis on algorithmic questions. First we dwell on Non-Commutative
Gröbner basis. Questions of algorithmic decidability in algebraic structures have been studied since
the 1940s. In 1947 Markov [37] and independently Post [38] proved that the word equality problem in
finitely presented semigroups (and in algebras) cannot be algorithmically solved. In 1952 Novikov
constructed the first example of the group with unsolvable problem of word equality (see References
[39,40]). In 1962 Shirshov proved solvability of the equality problem for Lie algebras with one
relation and raised a question about finitely defined Lie algebras [41]. In 1972 Bokut settled this
problem. In particular, he showed the existence of a finitely defined Lie algebra over an arbitrary field
with algorithmically unsolvable identity problem [42].

Nevertheless, some problems become decidable if a finite Gröbner basis defines a relations ideal.
In this case it is easy to determine whether two elements of the algebra are equal or not (see Reference
[43]). In his work, D. Piontkovsky extended the concept of obstruction, introduced by V. Latyshev (see
References [44–47]). V.N. Latyshev raised the question concerning the existence of an algorithm that
can find out if a given element is either a zero divisor or a nilpotent element when the ideal of relations
in the algebra is defined by a finite Gröbner basis.

Similar questions for monomial automaton algebras can be solved. In this case the existence
of an algorithm for nilpotent element or a zero divisor was proved by Kanel-Belov, Borisenko and
Latyshev [48]. Note that these algebras are not Noetherian and not weak Noetherian. Iyudu showed
that the element property of being one-sided zero divisor is recognizable in the class of algebras with
a one-sided limited processing (see References [49,50]). It also follows from a solvability of a linear
recurrence relations system on a tree (see Reference [51]).

An example of an algebra with a finite Gröbner basis and algorithmically unsolvable problem of
zero divisor is constructed in Reference [52].

A notion of Gröbner basis (better to say Gröbner-Shirshov basis) first appeared in the context of
noncommutative (and not Noetherian) algebra. Note also that Poincaré-Birkhoff-Witt theorem can be
canonically proved using Gröbner bases. More detailed discussions of these questions see in References
[42,48,53].

To solve these two problems we simulate a universal Turing machine, each step of which
corresponds to a multiplication from the left by a chosen letter.

The problem of the algorithmic decidability of the existence of an isomorphism between
two algebraic varieties is extremely interesting and fundamental. A closely related problem is the
embeddability problem. In the general form, it is formulated as follows.
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Embeddability problem. Let A and B be two algebraic varieties. Determine whether or not there exists
an embedding of A in B. Find an algorithm or prove its nonexistence.

In this paper, a negative solution to this problem is given even for affine varieties over an arbitrary
field of characteristic zero whose coordinate rings are given by generators and defining relations.

Questions related to the Gröbner basis were investigated in [54–58]. For details of nonstandard
analysis see [59–61].

2. Model-Theoretical Aspects

Algebraic geometry over algebraic systems was investigated by B.I. Plotkin and his school.
The Section 2.1 is devoted to this approach. In connection with this approach, Plotkin’s problem
about the automorphism of semigroups of endomorphisms of free algebra and categories (and
also of groups of automorphisms) arose. The Section 2.2 is devoted to Plotkin’s problem of
endomorphisms and automorphisms. The problem of describing automorphisms for groups of
polynomial symplectomorphisms and automorphisms of the Weyl algebra is extremely important,
both from the point of view of mathematical physics and from the point of view of the Jacobian
conjecture. Section 2.3 is dedicated to this problem.

2.1. Algebraic Geometry over Algebraic Systems

2.1.1. Three Versions of Logical Rigidity

Questions we are going to illuminate in this section are concentrated around the interaction
between algebra, logic, model theory and geometry.

The main question behind further considerations is as follows. Suppose we have two algebras
equipped with a sort of logical description.

Problem 1. When the coincidence of logical descriptions provides an isomorphism between algebras in question?

With this aim we consider different kinds of logical equivalences between algebras. Some of the
notions we are dealing with are not formally defined in the text. For precise definitions and references
use References [1,2,17,62–65].

2.1.2. Between Syntax and Semantics

By syntax we will mean a language intended to describe a certain subject area. In syntax we ask
questions, express hypotheses and formulate the results. In syntax we also build chains of formal
consequences. For our goals we use first-order languages or their fragments. Each language is based
on some finite set of variables that serve as the alphabet, and a number of rules that allow us to
build words based on this alphabet. In general, its signature includes Boolean operations, quantifiers,
constants, and also functional symbols and predicate symbols. The latter ones are included in atomic
formulas and, in fact, determine the face of a particular language. Atomic formulas will be called
words. Words together with logical operations between them will be called formulas.

By semantics we understand the world of models, or in other words, the subject area of our
knowledge. This world exists by itself, and develops according to its laws.

Fix a variety of algebras Θ. Let W(X), X = {x1, . . . , xn} denote the finitely generated free algebra
in Θ. By equations in Θ we mean expressions of the form w ≡ w′, where w, w′ are words in W(X) for
some X. This is our first syntactic object. Next, let Φ̃ = (Φ(X), X ∈ Γ) be the multi-sorted Halmos
algebra of first order logical formulas based on atoms w ≡ w′, w, w′ in W(X), see References [17,65,66].
There is a special procedure to construct such an algebraic object which plays the same role with
respect to First Order Logic as Boolean algebras do with respect to Propositional calculus. One can
view elements of Φ̃ = (Φ(X), X ∈ Γ) just as first order formulas over w ≡ w′.



Mathematics 2020, 8, 1694 7 of 33

Let X = {x1, . . . , xn} and let H be an algebra in the variety Θ. We have an affine space HX of
points µ : X → H. For every µ we have also the n-tuple (a1, . . . , an) = ā with ai = µ(xi). For the given
Θ we have the homomorphism

µ : W(X)→ H

and, hence, the affine space is viewed as the set of homomorphisms

Hom(W(X), H).

The classical kernel Ker(µ) corresponds to each point µ : W(X) → H. This is exactly the set of
equations for which the point µ is a solution. Every point µ has also the logical kernel LKer(µ),
see References [3,64,66]. Logical kernel LKer(µ) consists of all formulas u ∈ Φ(X) valid on the point
µ. This is always an ultrafilter in Φ(X).

So we define syntactic and semantic areas where logic and geometry operate, respectively.
Connect them by a sort of Galois correspondence.

Let T be a system of equations in W(X). The set A in the affine space Hom(W(X), H) consisting
of all solutions of the system T corresponds to T. Sets of such kind are called algebraic sets. Vice versa,
given a set A of points in the affine space consider all equations T having A as the set of solutions.
Sets T of such kind are called closed congruences over W.

We can do the same correspondence with respect to arbitrary sets of formulas. Given a set T of
formulas in algebra of formulas (set of elements) Φ(X), consider the set A in the affine space, such that
every point of A satisfies every formula of Φ. Sets of such kind are called definable sets. Points of A are
called solutions of the set of formulas T. Conversely, given a set A of points in the affine space consider
all formulas (elements) T having A as the set of solutions. Sets T of such kind are closed filters in Φ(X).

Let us formalize the Galois correspondence described above.

2.1.3. Galois Correspondence in the Logical Geometry

Let us start with a particular case when the set of formulas T in Φ(X) is a set of equations of the
form w = w′, w, w′ ∈W(X), X ∈ Γ.

We set
A = T′H = {µ : W(X)→ H | T ⊂ Ker(µ)}.

Here A is an algebraic set in Hom(W(X), H), determined by the set T.
Let, further, A be a subset in Hom(W(X), H). We set

T = A′H =
⋂

µ∈A
Ker(µ).

Congruences T of such kind are called H-closed in W(X). We have also Galois-closures T′′H and A′′H .
Let us pass to the general case of logical geometry. Let now T be a set of arbitrary formulas in

Φ(X). We set
A = TL

H = {µ : W(X)→ H | T ⊂ LKer(µ)}.

We have also
A =

⋂
u∈T

ValX
H(u).

Here A is called a definable set in Hom(W(X), H), determined by the set T. We use the term “definable”
for A of such kind, meaning that A is defined by some set of formulas T.

For the set of points A in Hom(W(X), H) we set

T = AL
H =

⋂
µ∈A

LKer(µ).
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We have also
T = AL

H = {u ∈ Φ(X) | A ⊂ ValX
H(u)}.

Here T is a Boolean filter in Φ(X) determined by the set of points A. Filters of such kind
are Galois-closed and we can define the Galois-closures of arbitrary sets T in Φ(X) and A in
Hom(W(X), H) as TLL and ALL.

Remark 1. The principal role in all considerations plays the value homomorphism Val : Φ̃ → HalΘ, where
HalΘ is a special Halmos algebra associated with the vector space Hom(W(X), H), see References [65,66]. Its
meaning is to make the procedure of verification whether a point satisfies the formula a homomorphism.

2.1.4. Logical Similarities of Algebras

Now we are in a position to introduce several logical equivalences between algebras. Since the
Galois correspondence yields the duality between syntactic and semantic objects, every definition of
equivalence between algebras formulated in terms of formulas, that is logically, has its semantical
counterpart, that is a geometric formulation, and vice versa.

All algebraic sets constitute a category with special rational maps as morphisms [65]. The same is
true with respect to definable sets [65]. So, we can formulate logical closeness of algebras geometrically.

Definition 1. We call algebras H1 and H2 geometrically similar if the categories of algebraic sets AGΘ(H1)

and AGΘ(H2) are isomorphic.

By Galois duality between closed congruences and algebraic sets, H1 and H2 are geometrically
similar if and only if the corresponding categories CΘ(H1) and CΘ(H2) of closed congruences over
W(X) are isomorphic.

Definition 2. We call algebras H1 and H2 logically similar, if the categories of definable sets LGΘ(H1) and
LGΘ(H2) are isomorphic.

By Galois duality between closed filters in Φ(X) and definable sets, H1 and H2 are logically
similar if and only if the corresponding categories FΘ(H1) and FΘ(H2) of closed filters in F(X) are
isomorphic.

We will be looking for conditions A on algebras H1 and H2 that provide geometrical or logical
similarity.

Let two algebras H1 and H2 subject to some condition A be given. Here A is any condition of
logical or, dually, geometrical character, formulated in terms of closed sets of formulas or definable sets.

Definition 3. We call the conditionA rigid (orA-rigid) if two algebras H1 and H2 subject toA are isomorphic.

2.1.5. Geometric Equivalence of Algebras

Definition 4. Algebras H1 and H2 are called AG-equivalent, if for every X and every system of equations T
holds T′′H1

= T′′H2
.

AG-equivalent algebras are called also geometrically equivalent algebras, see References [3,64,65].
The closure T′′H is called, sometimes, a radical of T with respect to H. This is a normal subgroup and an
ideal in cases of groups and associative (Lie) algebras, respectively.

The meaning of Definition 4 is as follows. Two algebras H1 and H2 are AG-equivalent if they
have the same solution sets with respect to any system of equations T. We have the following criterion,
see Reference [65].

Proposition 1. If algeras H1 and H2 are AG-equivalent, then they are AG-similar.
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So, geometric equivalence of algebras provides their geometrical similarity. The next statement
describes geometrically equivalent algebras. Assume, for simplicity, that our algebras are geometrically
noetherian (see References [3,63]), which means that every system of equations T is equivalent to a
finite subsystem T′ of T. Then, see Reference [67],

Proposition 2. Geometrically noetherian algebras H1 and H2 are AG-equivalent if and only if they generate
the same quasi-variety.

Hence, two algebras H1 and H2 are AG-equivalent if and only if they have the same
quasi-identities. If we drop the condition of geometrical noetherianity, then algebras H1 and H2

are AG-equivalent if they have the same infinitary quasi-identities.
Let Θ be the variety of all groups. Now the question of AG-rigidity for groups reduces to the

question when two groups generating one and the same quasi-variety are isomorphic. Of course the
condition on groups to have one and the same quasi-identities is very weak and the rigidity of such
kind can happen if both groups belong to a very narrow class of groups. In general, such a condition
does not seem sensible.

Geometrical equivalence of algebras gives a sufficient condition for AG-similarity. It turns out
that for some varieties Θ this condition is also sufficient.

Theorem 1. Let Var(H1) = Var(H2) = Θ. Let Θ be one of the following varieties

• Θ = Grp, the variety of groups,
• Θ = Jord, the variety of Jordan algebras,
• Θ = Semi, the variety of semigroups,
• Θ = Inv, the variety of inverse semigroups,
• Θ = Nd, the variety of nilpotent groups of class d.

Categories AGΘ(H1) and AGΘ(H2) are isomorphic if and only if the algebras H1 and H2 are geometrically
equivalent (see References [68–71]).

Let Θ0 be the category of all free algebras of the variety Θ. The following proposition is the main
tool in the proof of Theorem 1.

Proposition 3 ([5]). If for the variety Θ every automorphism of the category Θ0 is inner, then two algebras H1

and H2 are geometrically similar if and only if they are geometrically equivalent.

So, studying automorphisms of Θ0 plays a crucial role. The latter problem is treated by means of
Reduction Theorem (see References [17–20]). This theorem reduces investigation of automorphisms
of the whole category Θ0 of free in Θ algebras to studying the group Aut(End(W(X))) associated
with a single object W(X) in Θ0. Here, W(X) is a finitely generated free in Θ hopfian algebra, which
generates the whole variety Θ. In fact, if all automorphisms of the endomorphism semigroup of a free
algebra W(X) are close to being inner, then all automorphisms of Θ0 possess the same property. More
precisely, denote by Inn(End(W(X))) the group of inner automorphisms of Aut(End(W(X))). Then
the group of outer automorphisms Aut(End(W(X)))/Inn(End(W(X))) measures, in some sense, the
difference between the notions of geometric similarity and geometric equivalence.

2.1.6. Elementary Equivalence of Algebras

As we saw in the previous section AG-equivalence of algebraic sets reduces to coincidence of
quasi-identities of algebras. This is a weak invariant, a small part of elementary theory, and, of course,
coincidence of quasi-identities does not imply isomorphism of algebras. Hence AG-equivalence does
not make much sense from the point of view of rigidity. Now we recall a more powerful logical
invariant of algebras.
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Given algebra H, its elementary theory Th(H) is the set of all sentences (closed formulas) valid on H.
We modify a bit this definition and adjust it to the Galois correspondence. Fix X = {x1, . . . , xn}. Define
X-elementary theory ThX(H) to be the set of all formulas u ∈ Φ(X) valid in every point of the affine
space Hom(W(X), H). In general we have a multi-sorted representation of the elementary theory

Th(H) = (ThX(H), X ∈ Γ),

where Γ is a certain system of sets.

Definition 5. Two algebras H1 and H2 are said to be elementarily equivalent if their elementary
theories coincide.

Remark 2. From the geometric point of view this definition does not make difference between different points of
the affine space. Given algebras H1 and H2, we collect all together formulas valid in every point of the affine
spaces Hom(W(X), H1) and Hom(W(X), H2), and declare algebras H1 and H2 elementarily equivalent if
these sets coincide.

Importance of the elementary classification of algebraic structures goes back to the famous works
of A.Tarski and A.Malcev. The main problem is to figure out what are the algebras elementarily equivalent
to a given one. Very often we fix a class of algebras C and ask what are the algebras elementarily
equivalent to a given algebra inside the class C. So, the rigidity question with respect to elementary
equivalence looks as follows.

Problem 2. Let a class of algebras C and an algebra H ∈ C be given. Suppose that the elementary theories of
algebras H and A ∈ C coincide. Are they elementarily rigid, that is, are H and A isomorphic?

Remark 3. What we call elementary rigidity has different names. This notion appeared in the papers by A. Nies
[72] under the name of quasi definability of groups. The corresponding name used in Reference [73] is first order
rigidity. For some reasons which will be clear in the next section we use another term.

In other words we ask for which algebras their logical characterization by means of the elementary
theory is strong enough and define the algebra in the unique, up to an isomorphism, way?

We restrict our attention to the case of groups, and, moreover, assume quite often that our groups
are finitely generated. Elementary rigidity of groups occurs not very often. Usually various extra
conditions are needed. Here is the incomplete list of some known cases:

Theorem 2. We will consider the following cases

• Finitely generated abelian groups are elementarily rigid in the class of such groups, see References [74,75].
• Finitely generated torsion-free class 2 nilpotent groups are elementarily rigid in the class of finitely

generated groups, see References [76,77] (this is wrong for such groups of class 3 and for torsion groups of
class 2, see Reference [78] ).

• If two finitely generated free nilpotent groups are elementarily equivalent, then they are isomorphic, that is
a free finitely generated nilpotent group is elementarily rigid in the class of such groups, see References
[79,80].

• If two finitely generated free solvable groups are elementarily equivalent, then they are isomorphic, that
is a free finitely generated solvable group is elementarily rigid in the class of such groups, see References
[79,80].

• Baumslag-Solitar group BS(1, n) is elementarily rigid in the class of countable groups, see Reference [81].
General Baumslag-Solitar groups BS(m, n) are elementarily rigid in the class of all Baumslag-Solitar
groups, see Reference [81].

• Right-angled Coxeter group is elementarily rigid in the class of all right-angled Coxeter groups, see
Reference [82].
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• A good rigidity example is provided by profinite groups: if two finitely generated profinite groups are
elementarily equivalent (as abstract groups), then they are isomorphic [83].

Consider, separately, examples of elementary rigidity for linear groups. First of all, a group which
is elementarily equivalent to a finitely generated linear group is a residually finite linear group [84].
The rigidity cases are collected in the following theorem.

Theorem 3. We will consider the following cases.

• Historically, the first result was obtained by Malcev [85]. If two linear groups GLn(K) and GLm(F),
where K and F are fields, are elementarily equivalent, then n = m and the fields K and F are
elementarily equivalent.

• This result was generalized to the wide class of Chevalley groups. Let G1 = Gπ(Φ, R) and G2 = Gµ(Ψ, S)
be two elementarily equivalent Chevalley groups. Here Φ, Ψ denote the root systems of rank ≥ 1, R
and S are local rings, and π, µ are weight lattices. Then root systems and weight lattices of G1 and G2

coincide, while the rings are elementarily equivalent. In other words Chevalley groups over local rings are
elementarily rigid in the class of such groups modulo rigidity of the ground rings [86].

• Let Gπ(Φ, K) be a simple Chevalley group over the algebraically closed field K. Then Gπ(Φ, K) is
elementarily rigid in the class of all groups (cardinality is fixed). This result can be deduced from Reference
[87]. In fact, this is true for a much wider class of algebraic groups over algebraically closed fields and,
modulo elementary equivalence of fields, over arbitrary fields [87].

• Any irreducible non-uniform higher-rank characteristic zero arithmetic lattice is elementarily rigid in the
class of all groups, see Reference [73]. In particular, SLn(Z), n > 2 is elementarily rigid.

• Recently, the results of Reference [73] have been extended to a much more wide class of lattices, see Reference
[88].

• Let O be the ring of integers of a number field, and let n > 3. Then every group G which is elementarily
equivalent to SLn(O) is isomorphic to SLn(R), where the rings O and R are elementarily equivalent.
In other words SLn(O) is elementarily rigid in the class of all groups modulo elementary equivalence of
rings. The similar results are valid with respect to GLn(O) and to the triangular group Tn(O) [89]. These
results intersect in part with the previous items, since the ring R = Z is elementarily rigid in the class of
all finitely generated rings [72], and thus SLn(Z) is elementarily rigid in the class of all finitely generated
groups.

• For the case of arbitrary Chevalley groups the results similar to above cited are obtained in Reference [90]
by different machinery for a wide class of ground rings. Suppose the Chevalley group G = G(Φ, R) of
rank > 2 over the ring R is given. Suppose that the ring R is elementarily rigid in the class C of rings.
Then G = G(Φ, R) is elementarily rigid in the corresponding class C1 of groups if R is a field, R is a local
ring and G is simply connected, R is a Dedekind ring of arithmetic type, that is the ring of S-integers of
a number field, R is Dedekind ring with at least 4 units and G is adjoint. In particular, if a ring of such
kind is finitely generated then it gives rise to elementary rigidity of G = G(Φ, R) in the class of all finitely
generated groups. If R of such kind is not elementarily rigid then G = G(Φ, R) is elementarily rigid in
the class of all groups modulo elementary equivalence of rings.

Absolutely free groups lie on the other side of the scale of groups. It was Tarski who asked
whether one can distinguish between finitely generated free groups by means of their elementary
theories. This formidable problem has been solved in affirmative, that is all free groups have one and
the same elementary theory [6,7]. In fact, the variety of all groups is the only known variety of groups,
such that a free in this variety finitely generated group is not rigid in the class of all such groups.

Problem 3. Construct a variety of groups different from the variety of all groups such that all free finitely
generated groups in this variety have one and the same elementary theory.
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2.1.7. Logical Equivalence of Algebras

In this Section we introduce the notion of logical equivalence of algebras which can be viewed
as first order equivalence. We proceed following exactly the same scheme which was applied in
Section 2.1.5 with respect to the definition of geometric equivalence of algebras.

Let H1 and H2 be two algebras. We will be looking for semantic logical invariant of these algebras,
that is compare the definable sets over H1 and H2. Recall that according to Definition 2 two algebras H1

and H2 are logically similar, if the categories of definable sets LGΘ(H1) and LGΘ(H2) are isomorphic.
Using the duality provided by Galois correspondence from Section 2.1.3 we will raise logical

similarity to the level of syntax. The principal Definition 6 is the first order counterpart of Definition 4.

Definition 6. Algebras H1 and H2 are called LG-equivalent (aka logically equivalent), if for every X and every
set of formulas T in Φ(X) the equality TLL

H1
= TLL

H2
holds .

It is easy to see that

Proposition 4. If algebras H1 and H2 are LG-equivalent then they are elementarily equivalent.

Now we want to understand what is the meaning of logical equivalence.

Definition 7. Two algebras H1 and H2 are called LG-isotypic if for every point µ : W(X)→ H1 there exists a
point ν : W(X)→ H2 such that LKer(µ) = LKer(ν) and, conversely, for every point ν : W(X)→ H2 there
exists a point µ : W(X)→ H1 such that LKer(ν) = LKer(µ).

The meaning of Definition 7 is the following. Two algebras are isotypic if the sets of realizable
types over H1 and H2 coincide. So, by some abuse of language these algebras have the same logic of
types. Some references for the notion of isotypic algebras are contained in References [64,65,67,91–93].
Note that the notion was introduced in Reference [91,92] while Reference [65] gives the most updated
survey.

The main theorem is as follows, see Reference [93].

Theorem 4. Algebras H1 and H2 are LG-equivalent if and only if they are LG-isotypic.

Now we are in a position to study rigidity of algebras with respect to isotypicity property. It is
clear, that since isotypicity is stronger than elementary equivalence, this phenomenon can occur quite
often. Let us state this problem explicitly.

Problem 4. Let a class of algebras C and an algebra H ∈ C be given. Suppose that algebras H ∈ C and A ∈ C
are isotypic. Are they isotypically rigid, that is are H and A isomorphic?

Remark 4. In many papers from the list above isotypically rigid algebras are called logically separable [65,67],
or type definable [94].

Theorem 5. We will consider the following cases of rigidity:

• Finitely generated free abelian groups are isotypically rigid in the class of all groups, see Reference [93].
• Finitely generated free nilpotent groups of class at most n are isotypically rigid in the class of all groups [93].
• Finitely generated metabelian groups are isotypically rigid in the class of all groups [94].
• Finitely generated virtually polycyclic groups are isotypically rigid in the class of all groups [94].
• Finitely generated free solvable groups of derived length d > 1 are isotypically rigid in the class of all

groups [94].
• All surface groups, which are not non-orientable surface groups of genus 1,2 or 3 are isotypically rigid in

the class of all groups [94].
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• Finitely generated absolutely free groups are isotypically rigid in the class of all groups, see Reference [95]
based on Reference [96] (also follows from References [97,98]).

• Finitely generated free semigroups are isotypically rigid in the class of semigroups, see Reference [93].
• Finitely generated free inverse semigroups are isotypically rigid in the class of inverse semigroups,

see Reference [93].
• Finitely generated free associative algebras are isotypically rigid in the class of such algebras.

The number of examples can be continued to co-Hopf groups, some Burnside groups, and so
forth.

In fact, using either logical equivalence of algebras, or what is the same, the isotypicity of algebras,
we compare the possibilities of individual points in the affine space to define the sets of formulas
(in fact ultrafilters in Φ(X)) which are valid in these points. Given a point µ in the affine space, the
collection of formulas valid on the point µ is a type of µ. If these individual types are, roughly speaking,
the same for both algebras, then these algebras are declared isotypic. Thus, for isotypic algebras we
compare types of formulas realizable on these algebras. Of course, this is significantly stronger than
elementary equivalence, where the individuality of points disappeared and we compare only formulas
valid in all points of the affine space.

The following principal problem was stated in Reference [65] and is widely open.

Problem 5 (Rigidity problem). Is it true that every two isotypic finitely generated groups are isomorphic?

We will finish with the one more tempting problem of the same spirit.

Problem 6. What are the isotypicity classes of fields? When two isotypic fields are isomorphic?

The elementary equivalence of fields was one of motivating engines for Tarski to develop the
whole model-theoretic staff related to elementary equivalence. Problem 6, in a sense, takes us back to
the origins of the theory.

2.2. Plotkin’s problem: automorphisms of endomorphism semigroups and groups of polynomial automorphisms

In the light of B.I. Plotkin’s activity on creation of algebraic geometry over algebraic systems, he
drew a special attention to studying the groups of their automorphisms, see Reference [16]. Later
on he emphasized that automorphisms of categories of free algebras of the varieties play here a role
of exceptional importance. This role was underlined in Proposition 3 of Section 2.1. The meaning
of Reduction Theorem (see References [17–20]) was explained just after this proposition. Reduction
Theorem reduces investigation of automorphisms of the whole category Θ0 of free in the variety Θ
algebras to studying the group Aut(End(W(X))) associated with a single object W(X) in Θ0. Here,
W(X) is a finitely generated free in Θ algebra. In fact, if all automorphisms of the endomorphism
semigroup of a free algebra W(X) are close to being inner, then all automorphisms of Θ0 possess the
same property.

This philosophy forms a clear basis for investigation of automorphisms of the semigroup of
polynomial endomorphisms and the group of polynomial automorphisms. The automorphisms of the
endomorphism semigroup of a free associative algebra A were given by Belov, Berzins and Lipyanski,
(see Reference [99] for details and definitions of semi-inner and mirror automorphisms):

Theorem 6. The group Aut(End(A)) is generated by semi-inner and mirror automorphisms of End(A).
Correspondingly, the group of automorphisms of the category of free associative algebras is generated by
semi-inner and mirror automorphisms of this category.

In the same spirit, the description of an endomorphism semigroup of the ring of commutative
polynomials A is given by Belov and Lipyanski in Reference [100]:
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Theorem 7. Every automorphism of the group Aut(End(A)) is semi-inner.

The automorphisms of the group of polynomial automorphisms on free associative algebras
and commutative algebras at the level of Ind-schemes were obtained by Belov, Elishev and J.-T.Yu
in Reference [30]. Let K[x1, . . . , xn] and K〈x1, . . . , xn〉 be the free commutative polynomial algebra
and the free associative algebra with n generators, respectively. Denote by NAut the group of nice
automorphisms, that is, the group of automorphisms which can be approximated by tame ones. One
can prove that in characteristic zero case every automorphism is nice.

Theorem 8. Any Ind-scheme automorphism ϕ of NAut(K[x1, . . . , xn]) for n > 3 is inner, that is,
it is a conjugation via some automorphism of K[x1, . . . , xn]. Any Ind-scheme automorphism ϕ of
NAut(K〈x1, . . . , xn〉) for n > 3 is semi-inner (see Reference [30] for the precise definition).

Here, the Ind-scheme is defined as follows:

Definition 8. An Ind-variety M is the direct limit of algebraic varieties M = lim−→{M1 ⊆ M2 · · · }. An
Ind-scheme is an Ind-variety which is a group such that the group inversion is a morphism Mi → Mj(i) of
algebraic varieties, and the group multiplication induces a morphism from Mi ×Mj to Mk(i,j). A map ϕ is a
morphism of an Ind-variety M to an Ind-variety N, if ϕ(Mi) ⊆ Nj(i) and the restriction ϕ to Mi is a morphism
for all i. Monomorphisms, epimorphisms and isomorphisms are defined similarly in a natural way.

2.3. On the Independence of the B-KK Isomorphism of Infinite Prime and Plotkin Conjecture
for Symplectomorphisms

2.3.1. Plotkin’s Problem for Symplectomorphism and the Kontsevich Conjecture

Observe that the study of automorphisms of the group of polynomial symplectomorphisms, as
well as automorphisms of the Weyl algebra (Plotkin’s problem) is extremely important in course of the
Kontsevich conjecture, as well as the Jacobian conjecture.

2.3.2. Ultrafilters and Infinite Primes

Let U ⊂ 2N be an arbitrary non-principal ultrafilter on the set of all positive numbers (in this note
N will almost always be regarded as the index set). Let P be the set of all prime numbers, and let PN

denote the set of all sequences p = (pm)m∈N of prime numbers. We refer to a generic set A ∈ U as an
index subset in situations involving the restriction p|A : A → P. We will call a sequence p of prime
numbers U -stationary if there is an index subset A ∈ U such that its image p(A) consists of one point.

A sequence p : N→ P is bounded if the image p(N) is a finite set. Thanks to the ultrafilter finite
intersection property, bounded sequences are necessarily U -stationary.

Any non-principal ultrafilter U generates a congruence

∼U⊆ PN × PN

in the following way. Two sequences p1 and p2 are U -congruent iff there is an index subset A ∈ U
such that for all m ∈ A the following equality holds:

p1
m = p2

m.

The corresponding quotient
∗P ≡ PN/ ∼U

contains as a proper subset the set of all primes P (naturally identified with classes of U -stationary
sequences), as well as classes of unbounded sequences. The latter are referred to as nonstandard, or
infinitely large, primes. We will use both names and normally denote such elements by [p], mirroring
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the convention for equivalence classes. The terminology is justified, as the set of nonstandard primes
is in one-to-one correspondence with the set of prime elements in the ring ∗Z of nonstandard integers
in the sense of Robinson [101].

Indeed, one may utilize the following construction, which was thoroughly studied (also cf.
Reference [102]) in Reference [103]. Consider the ring Zω = ∏m∈N Z - the product of countably many
copies of Z indexed by N. The minimal prime ideals of Zω are in bijection with the set of all ultrafilters
on N (perhaps it is opportune to remind that the latter is precisely the Stone-Cech compactification βN
of N as a discrete space). Explicitly, if for every a = (am) ∈ Zω one defines the support complement as

θ(a) = {m ∈ N | am = 0}

and for an arbitrary ultrafilter U ∈ 2N sets

(U ) = {a ∈ Zω | θ(a) ∈ U},

then one obtains a minimal prime ideal of Zω. It is easily shown that every minimal prime ideal is of
such a form. Of course, the index set N may be replaced by any set I, after which one easily gets the
description of minimal primes of ZI (since those correspond to ultrafilters, there are exactly 22|I| of
them if I is infinite and |I| when I is a finite set). Note that in the case of finite index set all ultrafilters
are principal, and the corresponding (U ) are of the form Z× · · · × (0)× · · · ×Z - a textbook example.

Similarly, one may replace each copy of Z by an arbitrary integral domain and repeat the
construction above. If for instance all the rings in the product happen to be fields, then, since the
product of any number of fields is von Neumann regular, the ideal (U ) will also be maximal.

The ring of nonstandard integers may be viewed as a quotient (an ultrapower)

Zω/(U ) = ∗Z.

The class of U -congruent sequences [p] corresponds to an element (also an equivalence class) in ∗Z,
which may as well as [p] be represented by a prime number sequence p = (pm), only in the latter case
some but not too many of the primes pm may be replaced by arbitrary integers. For all intents and
purposes, this difference is insignificant.

Also, observe that [p] indeed generates a maximal prime ideal in ∗Z: if one for (any) p ∈ [p]
defines an ideal in Zω as

(p, U ) = {a ∈ Zω | {m | am ∈ pmZ} ∈ U},

then, taking the quotient Zω/(p, U ) in two different ways, one arrives at an isomorphism

∗Z/([p]) '
(

∏
m

Zpm

)
/(U ),

and the right-hand side is a field by the preceding remark. For a fixed non-principal U and an infinite

prime [p], we will call the quotient
Z[p] ≡ ∗Z/([p])

the nonstandard residue field of [p]. Under our assumptions this field has characteristic zero.

2.3.3. Algebraic Closure of Nonstandard Residue Field

We have seen that the objects [p] - the infinite prime - behaves similarly to the usual prime number
in the sense that a version of a residue field corresponding to this object may be constructed. Note
that the standard residue fields are contained as a degenerate case in this construction, namely if we
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drop the condition of unboundedness and instead consider U -stationary sequences, we will arrive at a
residue field isomorphic to Zp, with p being the image of the stationary sequence in the chosen class.
The fields of the form Z[p] are a realization of what is known as pseudofinite field, cf. Reference [104].

The nonstandard case is surely more interesting. While the algebraic closure of a standard residue
field is countable, the nonstandard one itself has the cardinality of the continuum. Its algebraic closure
is also of that cardinality and has characteristic zero, which implies that it is isomorphic to the field of
complex numbers. We proceed by demonstrating these facts.

Proposition 5. For any infinite prime [p] the residue field Z[p] has the cardinality of the continuum (There is a
general statement on cardinality of ultraproduct due to Frayne, Morel, and Scott [105]. We believe the proof of
this particular instance may serve as a neat example of what we are dealing with in the present paper.).

Proof. It suffices to show there is a surjection

h∗ : Z[p] → P,

where P = {0, 1}ω is the Cantor set given as the set of all countable strings of bits with the
2-adic metric

d2(x, y) = 1/k, k = min{m | xm 6= ym}.

The map h∗ is constructed as follows. If Z ⊂ P is the subset of all strings with finite number of
ones in them, and

e : Z+ → Z, e

(
∑

k<m
fk2k

)
= ( f1, . . . , fm−1, 0, . . .)

is the bijection that sends a nonnegative integer to its binary decomposition, then for a class
representative a = (am) ∈ [a] ∈ Z[p] set h∗(a) to be the (unique) ultralimit of the sequence of points
{xm = e(am)}. The correctness of this map rests on the property of the Cantor set being Hausdorff
quasi-compact. Surjectivity is then established directly: consider an arbitrary x ∈ P. For each m ∈ N
the set

Pm = {e(0), e(1), . . . , e(pm − 1)}

consists of pm distinct points. Let xm be the nearest to x point from this set with respect to the 2-adic
metric. The sequence (pm) is unbounded, so that for every m ∈ N the index subset

Am = {k ∈ N | pk > 2m}

belongs to the ultrafilter U . It is easily seen that for every k ∈ Am one has:

d2(x, xk) < 1/m

But that effectively means that the sequence (xm) has the ultralimit x, after which am = e−1(xm) yields
the desired preimage.

As an immediate corollary of this proposition and the well-known Steinitz theorem, one has

Theorem 9. The algebraic closure Z[p] of Z[p] is isomorphic to the field of complex numbers.

We now fix the notation for the aforementioned isomorphisms in order to employ it in the
next section.

For any nonstandard prime [p] ∈ ∗P fix an isomorphism α[p] : C → Z[p] coming from the
preceding theorem. Denote by Θ[p] : Z[p] → Z[p] the nonstandard Frobenius automorphism - that is, a
well-defined field automorphism that sends a sequence of elements to a sequence of their pm-th powers:
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(xm) 7→ (xpm
m ).

The automorphism Θ[p] is identical on Z[p]; conjugated by α[p], it yields a wild automorphism
of complex numbers, as by assumption no finite power of it (as always, in the sense of index subsets
A ∈ U ) is the identity homomorphism.

2.3.4. Extension of the Weyl Algebra

The n-th Weyl algebra An,C ' An,Z[p]
can be realized as a proper subalgebra of the following

ultraproduct of algebras

An(U , [p]) =

(
∏

m∈N
An,Fpm

)
/U .

Here for any m the field Fpm = Zpm is the algebraic closure of the residue field Zpm . This larger
algebra contains elements of the form (ζ Im)m∈N with unbounded |Im| - something which is not present
in An,Z[p]

, hence the proper embedding. Note that for the exact same reason (with degrees |Im| of

differential operators having been replaced by degrees of minimal polynomials of algebraic elements)
the inclusion

Z[p] ⊆
(

∏
m∈N

Fpm

)
/U

is also proper.

It turns out that, unlike its standard counterpart An,C, the algebra An(U , [p]) has a huge center
described in this proposition:

Proposition 6. The center of the ultraproduct of Weyl algebras over the sequence of algebraically closed fields
{Fpm} coincides with the ultraproduct of centers of An,Fpm

:

C(An(U , [p])) =

(
∏
m

C(An,Fpm
)

)
/U .

The proof is elementary and is left to the reader. As in positive characteristic the center C(An,Fp)

is given by the polynomial algebra

Fp[x
p
1 , . . . , xp

n, yp
1 , . . . , yp

n] ' Fp[ξ1, . . . , ξ2n],

There is an injective C-algebra homomorphism

C[ξ1, . . . ξ2n]→
(

∏
m

Fpm [ξ
(m)
1 , . . . ξ

(m)
2n ]

)
/U

From the algebra of regular functions on A2n
C to the center of An(U , [p]), evaluated on the

generators in a straightforward way:

ξi 7→ [(ξ
(m)
i )m∈N].

Just as before, this injection is proper.
Furthermore, the image of this monomorphism (the set which we will simply refer to as the

polynomial algebra) may be endowed with the canonical Poisson bracket. Recall that in positive
characteristic case for any a, b ∈ Zp[ξ1, . . . , ξ2n] one can define
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{a, b} = −π

(
[a0, b0]

p

)
.

Here π : An,Z → An,Zp is the modulo p reduction of the Weyl algebra, and a0, b0 are arbitrary
lifts of a, b with respect to π. The operation is well defined, takes values in the center and satisfies the
Leibnitz rule and the Jacobi identity. On the generators one has

{ξi, ξ j} = ωij.

The Poisson bracket is trivially extended to the entire center Fp[ξ1, . . . , ξ2n] and then to the ultraproduct
of centers. Observe that the Poisson bracket of two elements of bounded degree is again of bounded
degree, hence one has the bracket on the polynomial algebra.

2.3.5. Endomorphisms and Symplectomorphisms

The point of this construction lies in the fact that thus defined Poisson structure on the (injective
image of) polynomial algebra is preserved under all endomorphisms of An(U , [p]) of bounded degree.
Every endomorphism of the standard Weyl algebra is specified by an array of coefficients (ai,I) (which
form the images of the generators in the standard basis); these coefficients are algebraically dependent,
but with only a finite number of bounded-order constraints. Hence the endomorphism of the standard
Weyl algebra can be extended to the larger algebra An(U , [p]). The restriction of any such obtained
endomorphism on the polynomial algebra C[ξ1, . . . , ξ2n] preserves the Poisson structure. In this setup
the automorphisms of the Weyl algebra correspond to symplectomorphisms of A2n

C .

Example 1. If xi and yi are standard generators, then one may perform a linear symplectic change of variables:

f (xi) =
n

∑
j=1

aijxj +
n

∑
j=1

ai,n+jyj, i = 1, . . . , n,

f (di) =
n

∑
j=1

ai+n,jxj +
n

∑
j=1

ai+n,n+jyj, aij ∈ C.

In this case the corresponding polynomial automorphism f c of

C[ξ1, . . . , ξ2n] ' C[x[p]1 , . . . , x[p]n , y[p]1 , . . . , y[p]n ]

acts on the generators ξ as

f c(ξi) =
2n

∑
j=1

(aij)
[p]ξ j,

where the notation (aij)
[p] means taking the base field automorphism that is conjugate to the nonstandard

Frobenius via the Steinitz isomorphism.

Let γ : C → C be an arbitrary automorphism of the field of complex numbers. Then, given
an automorphism f of the Weyl algebra An,C with coordinates (ai,I), one can build another algebra
automorphism using the map γ. Namely, the coefficients γ(ai,I) define a new automorphism γ∗( f ) of
the Weyl algebra, which is of the same degree as the original one. In other words, every automorphism
of the base field induces a map γ∗ : An,C → An,C which preserves the structure of the ind-object. It
obviously is a group homomorphism.

Now, if Pn,C denotes the commutative polynomial algebra with Poisson bracket, we may define
an ind-group homomorphism ϕ : Aut(An,C)→ Aut(PnC) as follows. Previously we had a morphism
f 7→ f c, however as the example has shown it explicitly depends on the choice of the infinite prime [p].
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We may eliminate this dependence by pushing the whole domain Aut(An,C) forward with a specific
base field automorphism γ, namely γ = Θ−1

[p] - the field automorphism which is Steinitz-conjugate
with the inverse nonstandard Frobenius, and only then constructing the symplectomorphism f c

Θ as
the restriction to the (nonstandard) center. For the subgroup of tame automorphisms such as linear
changes of variables this procedure has a simple meaning: just take the [p]-th root of all coefficients
(ai,I) first. We thus obtain a group homomorphism which preserves the filtration by degree and is in
fact well-behaved with respect to the Zariski topology on Aut (indeed, the filtration AutN ⊂ AutN+1

is given by Zariski-closed embeddings). Formally, we have a proposition:

Proposition 7. There is a system of morphisms

ϕ[p],N : Aut≤N(An,C)→ Aut≤N(Pn,C).

such that the following diagram commutes for all N ≤ N′:

Aut≤N(An,C) Aut≤N(Pn,C)

Aut≤N′(An,C) Aut≤N′(Pn,C).

ϕ[p],N

µNN′ νNN′

ϕ[p],N′

The corresponding direct limit of this system is given by ϕ[p], which maps a Weyl algebra automorphism f
to a symplectomorphism f c

Θ.

The Belov – Kontsevich conjecture then states:

Conjecture 1. ϕ[p] is a group isomorphism.

Injectivity may be established right away.

Theorem 10. ϕ[p] is an injective homomorphism.

(See Reference [11] for the fairly elementary proof).

2.3.6. On the Loops Related to Infinite Primes

Let us at first assume that the Belov – Kontsevich conjecture holds, with ϕ[p] furnishing the
isomorphism between the automorphism groups. This would be the case if all automorphisms in
Aut(An,C) were tame, which is unknown at the moment for n > 1.

The main result of the paper is as follows:

Theorem 11. If one assumes that ϕ[p],N is surjective for any infinite prime [p], then ΦN is
quasifinitedimensional and its eigenvalues are roots of unity.

Let [p] and [p′] be two distinct classes of U -congruent prime number sequences - that is, two
distinct infinite primes. We then have the following diagram:

Aut(An,C) Aut(Pn,C)

Aut(An,C) Aut(Pn,C)

ϕ[p]

isom isom
ϕ[p′ ]
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with all arrows being isomorphisms. Vertical isomorphisms answer to different presentations of C as
Z[p] and Z[p′ ]. The corresponding automorphism C→ Z[p] is denoted by α[p] for any [p].

The fact that all the arrows in the diagram are isomorphisms allows one instead to consider a loop
of the form

Φ : Aut(An,C)→ Aut(An,C).

Furthermore, as it was noted in the previous section, the morphism Φ belongs to Aut(Aut(An,C)).
We need to prove that Φ is a trivial automorphism. The first observation is as follows.

Proposition 8. The map Φ is a morphism of algebraic varieties.

Proof. Basically, this is a property of ϕ[p] (or rather its unshifted version, fp 7→ f c
p). More precisely, it

suffices to show that, given an automorphism fp of the Weyl algebra in positive characteristic p with
coordinates (ai,I), its restriction to the center (a symplectomorphism) f c

p has coordinates which are
polynomials in (ap

i,I).

The switch to positive characteristic and back is performed for a fixed f ∈ Aut(An,C) on an index
subset A f ∈ U .

Let f be an automorphism of An,C and let N = deg f be its degree. The automorphism f is given
by its coordinates ai,I ∈ C, i = 1, . . . , 2n, I = {i1, . . . , i2n}, obtained from the decomposition of algebra
generators ζi in the standard basis of the free module:

f (ζi) = ∑
i,I

ai,Iζ
I , ζ I = ζ i1

1 · · · ζ
i2n
2n .

Let (ai,I,p) denote the class α[p](ai,I), p = (pm), and let {Rk(ai,I | i, I) = 0}k=1,...,M be a finite set
of algebraic constraints for coefficients ai,I . Let us denote by A1, . . . , AM the index subsets from the
ultrafilter U , such that Ak is precisely the subset, on whose indices the constraint Rk is valid for (ai,I,p).
Take A f = A1 ∩ . . . ∩ AM ∈ U and for pm, m ∈ A f , define an automorphism fpm of the Weyl algebra
in positive characteristic An,Fpm

by setting

fpm(ζi) = ∑
i,I

ai,I,pm ζ I .

All of the constraints are valid on A f , so that f corresponds to a class [ fp] modulo ultrafilter U of
automorphisms in positive characteristic. The degree of every fpm (m ∈ A f ) is obviously less than or
equal to N = deg f .

Now consider f ∈ Aut≤N(An,C) with the index subset A f over which its defining constraints
are valid. The automorphisms fpm = fp : An,Fp → An,Fp defined for m ∈ A f ∈ U provide arrays of
coordinates ai,I,p. Let us fix any valid pm = p denote by Fpk a finite subfield of Fp which contains
the respective coordinates ai,I,p (one may take k to be equal to the maximum degree of all minimal
polynomials of elements ai,I,p which are algebraic over Zp).

Let a1, . . . , as be the transcendence basis of the set of coordinates ai,I,p and let t1, . . . , ts denote s
independent (commuting) variables. Consider the field of rational functions:

Fpk (t1, . . . , ts).

The vector space

DerZp(Fpk (t1, . . . , ts), Fpk (t1, . . . , ts))
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of all Zp-linear derivations of the field Fpk (t1, . . . , ts) is finite-dimensional with
Zp-dimension equal to ks; a basis of this vector space is given by elements

{eaDtb | a = 1, . . . , k, b = 1, . . . , s}

where ea are basis vectors of the Zp-vector space Fpk , and Dtb is the partial derivative with respect to
the variable tb.

Set a1, . . . , as = t1, . . . , ts (i.e., consider an s-parametric family of automorphisms), so that the
rest of the coefficients ai,I,p are algebraic functions of s variables t1, . . . , ts. We need to show that the
coordinates of the corresponding symplectomorphism f c

p are annihilated by all derivations eaDtb .
Let δ denote a derivation of the Weyl algebra induced by an arbitrary basis derivation eaDtb of the

field. For a given i, let us introduce the short-hand notation

a = fp(ζi), b = δ(a).

We need to prove that

δ( f c(ξi)) = δ( fp(ζ
p
i )) = 0.

In our notation δ( fp(ζ
p
i )) = δ(ap), so by Leibnitz rule we have:

δ( fp(ζ
p
i )) = bap−1 + abap−2 + · · ·+ ap−1b.

Let adx : An,Fp → An,Fp denote a Zp-derivation of the Weyl algebra corresponding to the adjoint
action (all Weyl algebra derivations are inner!):

adx(y) = [x, y].

We will call an element x ∈ An,Fp locally ad-nilpotent if for any y ∈ An,Fp there is an integer D = D(y)
such that

adD
x (y) = 0.

All algebra generators ζi are locally ad-nilpotent. Indeed, one could take D(y) = deg y + 1 for every ζi.
If f is an automorphism of the Weyl algebra, then f (ζi) is also a locally ad-nilpotent element for

all i = 1, . . . , 2n. That means that for any i = 1, . . . , 2n there is an integer D ≥ N + 1 such that

adD
fp(ζi)

(δ( fp(ζi))) = adD
a (b) = 0.

Now, for p ≥ D + 1 the previous expression may be rewritten as

0 = adp−1
a (b) =

p−1

∑
l=0

(−1)l
(

p− 1
l

)
albap−1−l ≡

p−1

∑
l=0

albap−1−l (mod p),

and this is exactly what we wanted.

We have thus demonstrated that for an arbitrary automorphism fp of the Weyl algebra in
characteristic p the coordinates of the corresponding symplectomorphism f c

p are polynomial in p-th
powers of the coordinates of fp, provided that p is greater than deg fp + 1. As the sequence (deg fpm)

is bounded from above by N for all m ∈ A f , we see that there is an index subset A∗f ∈ U such that
the coordinates of the symplectomorphism f c

pm for m ∈ A∗f are polynomial in pm-th powers of ai,I,pm .

This implies that f c in characteristic zero is given by coefficients polynomial in α[p](ai,I)
[p] as desired.
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It follows, after shifting by the inverse nonstandard Frobenius, that Φ is an endomorphism of the
algebraic variety Aut(An,C).

The automorphism Φ acting on elements f ∈ Aut(An,C), takes the set of coordinates (ai,I) and
returns a set (Gi,I(ak,K)) of the same size. All functions Gi,I are algebraic by the above proposition. It is
convenient to introduce a partial order on the set of coordinates. We say that ai,I′ is higher than ai,I
(for the same generator i) if |I| < |I′| and we leave pairs with i 6= j or with |I| = |I′| unconnected. We
define the dominant elements ai,I (or rather, dominant places (i, I)) to be the maximal elements with
respect to this partial order, and subdominant elements to be the elements covered by maximal ones
(in other words, for fixed i, subdominant places are the ones with |I| = |Imax| − 1).

The next observation follows from the fact that the morphisms in question are algebra
automorphisms.

Lemma 1. Functions Gi,I corresponding to dominant places (i, I) are identities:

Gi,I(ak,K) = ai,I .

Proof. Indeed, it follows from the commutation relations that for any i = 1, . . . , 2n and
fp, p = pm, m ∈ A f ∈ U , the highest-order term in f c

p(ξi) = fp(ζ
p
i ) = fp(ζi)

p has the coefficient ap
i,I,p.

The shift by the inverse Frobenius then acts as the p-th root on the dominant place, so that we deduce
that the latter is independent of the choice of [p].

Let us now fix N ≥ 1 and consider

ΦN : Aut≤N An,C → Aut≤N An,C

– the restriction of Φ to the subvariety Aut≤N An,C, which is well defined by the above lemma.
The morphism corresponds to an endomorphism of the ring of functions

Φ∗N : O(Aut≤N An,C)→ O(Aut≤N An,C)

Let us take a closer look at the behavior of ΦN (and of Φ∗N , which is essentially the same up to
an inversion), specifically at how ΦN affects one-dimensional subvarieties of automorphisms. Let
XN be the set of all algebraic curves of automorphisms in Aut≤N An,C; by virtue of Lemma 2 we may
without loss of generality consider the subset of all curves with fixed dominant places—we denote
such a subset by X ′N , and, for that same matter, the subsets X (k)

N of curves with fixed places of the form
(i, I′), which are away from a dominant place by a path of length at most (k− 1). In particular one has
X ′N = X (1)

N .
The morphism ΦN yields a map

Φ̃N : XN → XN

and its restrictions
Φ̃(k)

N : X (k)
N → XN .

Our immediate goal is to prove that for all attainable k we have

Φ̃(k)
N : X (k)

N → X (k)
N ,

that is, the map ΦN preserves the terms corresponding to non-trivial differential monomials.
In spite of minor abuse of language, we will call the highest non-constant terms of a curve in X (k)

N
dominant, although they cease to be so when that same curve is regarded as an element of XN .

Let A ∈ XN be an algebraic curve in general position. Coordinate-wise A answers to a set
(ai,I(τ)) of coefficients parameterized by an indeterminate. By Lemma 3.3, ΦN leaves the (coefficients
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corresponding to) dominant places of this curve unchanged, so we may well set A ∈ X (1)
N . In fact, it

is easily seen that the subdominant terms are not affected by ΦN either, thanks to the commutation
relations that define the Weyl algebra: for every p participating in the ultraproduct decomposition,
after one raises to the p-th power one should perform a reordering within the monomials – a procedure
which degrades the cardinality |I| by an even number. Therefore, nothing contributes to the image of
any subdominant term other than that subdominant term itself, which therefore is fixed under ΦN .
We are then to consider the image

Φ̃(2)
N (A) ∈ X (2)

N .

Again, given a positive characteristic p within the ultraproduct decomposition, suppose the curve
A (or rather its component answering to the chosen element p) has a number of poles attained on
dominant (With respect to X (2)

N , that is, the highest terms that actually change - see above where we
specify this convention.) terms. Let us pick among these poles the one of the highest order k, and
let (i0, I0) be its place. By definition of an automorphism of Weyl algebra as a set of coefficients, the
number i0 does not actually carry any meaningful data, so that we are left with a pair (k, |I0|). As
we can see, this pair is maximal from two different viewpoints; in fact, the pair represents a vertex
of a Newton polygon taken over the appropriate field, with the discrete valuation given by |I|. The
coordinate function ai0,I0 corresponding to this pole admits a decomposition

ai0,I0 =
a−k

tk + · · · ,

with t a local parameter. Acting upon this curve by the morphism ΦN amounts to two steps: first,
we raise everything to the p-th power and then assemble the components within the ultraproduct
decomposition, then we take the preimage, which is essentially the same as taking the p′-root,
with respect to a different ultraproduct decomposition. The order of the maximal pole is then multiplied
by an integer during the first step and divided by the same integer during the second one. By maximality,
there are no other terms that might contribute to the resulting place in Φ̃(2)

N (A). It therefore does not
change under ΦN .

We may process the rest of the dominant (with respect to X (2)
N ) terms similarly: indeed, it

suffices to pick a different curve in general position. We then move down to X (k)
N with higher k and

argue similarly.

After we have exhausted the possibilities with non-constant terms, we arrive at the conclusion
that all that ΦN does is permute the irreducible components of Aut≤N An,C. That in turn implies the
existence of a positive integer l such that

Φl
N = Id.

In fact, the preceding argument gives us more than just the observation that ΦN is unipotent.
Let Φ∗N,M denote the linear map of finite-dimensional vector spaces obtained by restricting Φ∗N to
regular functions of total degree less than or equal to M. Then the following proposition holds.

Proposition 9. If λ is an eigenvalue of Φ∗N,M, then λk = 1 for some integer k.

Proof. Indeed, should there exist λ0 6= 1, we may find an exceptional curve whose singularity changes
under ΦN , note that coefficients are products of normalization coordinates.

2.3.7. Discussion

The investigation of decomposition of polynomial algebra-related objects into ultraproducts over
the prime numbers P leads to a problem of independence of the choice of infinite prime. In the case of
the Tsuchimoto – Belov – Kontsevich homomorphism the answer turns out to be affirmative, although
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there are other constructions, which are of algebraic or even polynomial nature but for which the
independence fails. The reason for such arbitrary behavior has a lot to do with growth functions
(in which case the situation is similar to the one described in Reference [106], and in fact in Reference
[107], where one has a non-injective endomorphism fp : An,Fp → An,Fp , whose degree grows with
p, which disallows for the construction of a naive counterexample to the Dixmier Conjecture in the
ultralimit). It is, in our view, worthwhile to study such behavior in greater detail.

3. Algorithmic Aspects of Algebraic Geometry

The section contains two subsections: the first one is devoted to noncommutative Finite Gröbner
basis issues and the second one is devoted to algorithmic inclusion undecidability.

3.1. Finite Gröbner Basis Algebras with Unsolvable Nilpotency Problem and Zero Divisors Problem

3.1.1. The Sketch of Construction

Let A be an algebra over a field K.
The set of all words in the alphabet {a1, . . . , aN} is a semigroup. The main idea of the construction

is a realization of a universal Turing machine in this semigroup. We use the universal Turing machine
constructed by Marvin Minsky in Reference [108]. This machine has 7 states and 4-color tape. The
machine can be completely defined by 28 instructions.

Note that 27 of them have a form

(i, j)→ (L, q(i, j), p(i, j)) or (i, j)→ (R, q(i, j), p(i, j)),

where 0 ≤ i ≤ 6 is the current machine state, 0 ≤ j ≤ 3 is the current cell color, L or R (left or right) is
the direction of a head moving after execution of the current instruction, q(i, j) is the state after current
instruction, p(i, j) is the new color of the current cell.

Thus, the instruction (2, 3) → (L, 3, 1) means the following: “If the color of the current cell is 3
and the state is 2, then the cell changes the color to 1, the head moves one cell to the left, the machine
changes the state to 3.

The last instruction is (4, 3)→ STOP. Hence, if the machine is in state 4 and the current cell has
color 3, then the machine halts.

Letters

By Qi, 0 ≤ i ≤ 6 denote the current state of the machine. By Pj, 0 ≤ j ≤ 3 denote the color of the
current cell.

The action of the machine depends on the current state Qi and current cell color Pj. Thus every
pair Qi and Pj corresponds to one instruction of the machine.

The instructions moving the head to the left (right) are called left (right) ones. Therefore there
are left pairs (i, j) for the left instructions, right pairs for the right ones and instruction STOP for the
pair (4, 3).

All cells with nonzero color are said to be non-empty cells. We shall use letters a1, a2, a3 for
nonzero colors and letter a0 for color zero. Also, we use R for edges of colored area. Hence, the word
Rau1 au2 . . . auk QiPjav1 av2 . . . avl R presents a full state of Turing machine.

We model head moving and cell painting using computations with powers of ai (cells) and Pi and
Qi (current cell and state of the machine’s head).

We use the universal Turing machine constructed by Minsky. This machine is defined by the
following instructions:

(0, 0)→ (L, 4, 1) (0, 1)→ (L, 1, 3) (0, 2)→ (R, 0, 0) (0, 3)→ (R, 0, 1)
(1, 0)→ (L, 1, 2) (1, 1)→ (L, 1, 3) (1, 2)→ (R, 0, 0) (1, 3)→ (L, 1, 3)
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(2, 0)→ (R, 2, 2) (2, 1)→ (R, 2, 1) (2, 2)→ (R, 2, 0) (2, 3)→ (L, 4, 1)
(3, 0)→ (R, 3, 2) (3, 1)→ (R, 3, 1) (3, 2)→ (R, 3, 0) (3, 3)→ (L, 4, 0)
(4, 0)→ (L, 5, 2) (4, 1)→ (L, 4, 1) (4, 2)→ (L, 4, 0) (4, 3)→ STOP
(5, 0)→ (L, 5, 2) (5, 1)→ (L, 5, 1) (5, 2)→ (L, 6, 2) (5, 3)→ (R, 2, 1)
(6, 0)→ (R, 0, 3) (6, 1)→ (R, 6, 3) (6, 2)→ (R, 6, 2) (6, 3)→ (R, 3, 1)

We use the following alphabet:

{t, a0, . . . a3, Q0, . . . Q6, P0 . . . P3, R}

For every pair except (4, 3) the following functions are defined: q(i, j) is a new state, p(i, j) is a
new color of the current cell (the head leaves it).

3.1.2. Defining Relations for the Nilpotency Question

Consider the following defining relations:

tRal = Rtal ; 0 ≤ l ≤ 3 (1)

tal R = al Rt; 0 ≤ l ≤ 3 (2)

takaj = aktaj; 0 ≤ k, j ≤ 3 (3)

takQiPj = Qq(i,j)Pktap(i,j); for left pairs (i, j) and 0 ≤ k ≤ 3 (4)

tRQiPj = RQq(i,j)P0tap(i,j); for left pairs (i, j) and 0 ≤ k ≤ 3 (5)

talQiPjakan = alap(i,j)Qq(i,j)Pktan; for right pairs (i, j) and 0 ≤ k ≤ 3 (6)

talQiPjakR = alap(i,j)Qq(i,j)PkRt; for right pairs (i, j) and 0 ≤ k ≤ 3 (7)

tRQiPjakan = Rap(i,j)Qq(i,j)Pktan; for right pairs (i, j) and 0 ≤ k ≤ 3 (8)

tRQiPjakR = Rap(i,j)Qq(i,j)PkRt; for right pairs (i, j) and 0 ≤ k ≤ 3 (9)

talQiPjR = alap(i,j)Qq(i,j)P0Rt; for right pairs (i, j) and 0 ≤ l ≤ 3 (10)

tRQiPjR = Rap(i,j)Qq(i,j)P0Rt; for right pairs (i, j) (11)

Q4P3 = 0. (12)

The relations (1) and (3) are used to move t from the left edge to the last letter al standing before QiPj
which represent the head of the machine. The relations (4)–(11) represent the computation process.
The relation (2) is used to move t through the finishing letter R.

Finally, the relation (12) halts the machine.
Let us call tRau1 au2 . . . auk QiPjav1 av2 . . . avl R the main word.

Theorem 12. Consider an algebra A presented by the defining relations (1)–(12). The word tRUQiPjVR is
nilpotent in A if and only if machine M(i, j, U, V) halts.

Actually we can prove that multiplication on the left by an element t leads to the transition to the
next state of the machine.

3.1.3. Defining Relations for a Zero Divisors Question

We use the following alphabet:

Ψ = {t, s, a0, . . . a3, Q0, . . . Q6, P0 . . . P3, L, R}.

For every pair except (4, 3) the following functions are defined: q(i, j) is a new state, p(i, j) is a
new color of the current cell (the head leaves it).
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Consider the following defining relations:

tLak = Ltak; 0 ≤ k ≤ 3 (13)

takal = aktal ; 0 ≤ k, l ≤ 3 (14)

sR = Rs; (15)

sak = aks; 0 ≤ k ≤ 3 (16)

takQiPj = Qq(i,j)Pkap(i,j)s; for left pairs (i, j) and 0 ≤ k ≤ 3 (17)

tLQiPj = LQq(i,j)P0ap(i,j)s; for left pairs (i, j) (18)

talQiPjak = alap(i,j)Qq(i,j)Pks; for right pairs (i, j) and 0 ≤ k, l ≤ 3 (19)

tLQiPjak = Lap(i,j)Qq(i,j)Pks; for right pairs (i, j) and 0 ≤ k ≤ 3 (20)

talQiPjR = alap(i,j)Qq(i,j)P0Rs; for right pairs (i, j) and 0 ≤ l ≤ 3 (21)

tLQiPjR = Lap(i,j)Qq(i,j)P0Rs; for right pairs (i, j) (22)

Q4P3 = 0; (23)

The relations (13)–(14) are used to move t from the left edge to the letters Qi, Pj which present the
head of the machine. The relations (15)–(16) are used to move s from the letter Qi, Pj to the right edge.
The relations (17)–(21) represent the computation process. Here we use relations of the form tU = Vs.

Finally, the relation (23) halts the machine.

3.1.4. Zero Divisors and Machine Halt

Let us call Lau1 au2 . . . auk QiPjav1 av2 . . . avl R the main word.

Theorem 13. The machine halts if and only if the main word is a zero divisor in the algebra presented by the
defining relations (13)–(23).

Remark. We can consider two semigroups corresponding to our algebras: in both algebras each relation is
written as an equality of two monomials. Therefore the same alphabets together with the same sets of relations
define semigroups. In both semigroups the equality problem is algorithmically solvable, since it is solvable in
algebras. However in the first semigroup a nilpotency problem is algorithmically unsolvable, and in the second
semigroup a zero divisor problem is algorithmically unsolvable.

The entire proofs can be found at Reference [109].

3.2. On the Algorithmic Undecidability of the Embeddability Problem for Algebraic Varieties over a Field of
Characteristic Zero

3.2.1. The Case of Real Numbers

By a Matiyasevich family of polynomials we mean a family of polynomials

Q(σ1, . . . , στ , x1, . . . , xs)

for which the existence of a solution for a given set of parameters of the polynomial is undecidable.
As was established in Reference [110], such a polynomial exists.

Consider the affine space of dimension 5d + 1. We denote coordinates in this space by
Xi, Yi, Zi, Ui, Wi, 1 ≤ i ≤ d, and T. Consider the variety B(d) given by the following system of
generators and relations:
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
X2

i −
(
T2 − 1

)
Y2

i = 1,
Yi − (T − 1)Zi = Vi,
ViUi = 1,

(24)

where 1 ≤ i ≤ d. For fixed i, the admissible values of the coordinates Xi, Yi, Zi, Ui, and Wi are
determined by the same value of T. Consider the “short” subsystem

X2 −
(
T2 − 1

)
Y2 = 1,

Y− (T − 1)Z = V,
VU = 1,

(25)

Lemma 2. The following assertions hold for every solution of system (25):

(1) U and V are nonzero constants in F[t] (deg U = deg V = 0);
(2) either T = ±1 and X = ±1 or

Y =
[N/2]

∑
k=0

(
N

2k + 1

)(
T2 − 1

)k
TN−1−2k

for some integer N.

Let R denote a root of the equation R2 = T2 − 1 such that R belongs to the algebraic extension
F[t]. Then the element (T + R)n can be uniquely represented in the form Xn + RYn, where Xn and Yn

are polynomials in F[t]. All solutions of the equation

X2 − (T2 − 1)Y2 = 1 (26)

are of the form X = ±Xn, Y = ±Yn (see Reference [111]).
The structure of this set depends on T. In the case T = ±1, the first equation of the system

imposes no conditions at all on Y. In turn, the other equation implies Y = (T − 1)Z + V. For every
choice of V ∈ F \ {0} and Z ∈ F[t], the corresponding solution exists and is unique.

Lemma 3. If deg T > 0, then V = Ymod(T − 1) = N for an integer N and Z = (Y − N)/(T − 1). If
T = const 6= ±1, then Y and Z are constants in F[t].

Thus, the following three cases are possible:

(1) for deg T > 0, to every set of integers Ni there correspond polynomial solutions Yi and Xi
determined up to sign, as well as the constants Vi = Ni and Ui = 1/Vi, and Zi = (Yi−Vi)/(T− 1);

(2) for deg T = 0 and T 6= ±1, there are constant solutions for Yi chosen from a given sequence; the
values Xi, Zi, Vi and Ui are also constants, and they are determined by the chosen values of Yi;

(3) for T = ±1, we obtain Xi = ±1; for arbitrarily chosen constants Vi and polynomials Zi, we set
U1 = 1/Vi and Yi = (T − 1)Zi + Vi.

So far, these considerations are valid for an arbitrary ground field F of characteristic zero. In
the case F = R, we introduce a new coordinate S by completing the main system of equations by
the equation

T = S2 + 2, (27)

which ensures the impossibility of T = ±1. All common solutions of systems (24) and (27) either
are constants (if deg T = 0, T 6= ±1) or correspond to some set of integer parameters (N1, . . . , Nd).
We refer to solutions of the first kind as “bad” and to those of the second kind as “good”.
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Consider a Matiyasevich family of polynomials Q(σ1, . . . , στ , x1, . . . , xs). Let d ≤ s. Then,
adding the new equation Q(σ, V1, . . . , Vs) = 0 to systems (24) and (27), we obtain a system defining a
new variety. We denote this variety by B′(d),σ.

If Q = 0 has no integer solutions, then the original system has no good solutions. In this case,
the variety B′(d),σ is zero-dimensional, and there are no embeddings of A in B′(d),σ.

Otherwise, for every solution N1, . . . , Ns, we can explicitly construct functions Yi(S), Xi(S),
and Zi(S) which are solutions. They define an embedding of the line in the variety B′(d),σ.

Since the existence of integer solutions for Q is undecidable, it follows that so is the embeddability
of A in B′(d),σ (in particular, in B′(s),σ). Here the input data is the equations defining B′(d),σ. We have
proved the following theorem.

Theorem 14. The problem of the embeddability of the affine line (and, therefore, the general embedding problem
for an arbitrary variety) over R in an arbitrary algebraic variety B (defined by generators and relations)
is undecidable.

3.2.2. The Complex Case

In this case, the situation is more complicated: it is hard to eliminate the case in which T = ±1
and Xi = ±1, since no constraints on Yi arise in this case. Therefore, we consider the problem of
the embeddability of an affine space Am in a given variety B and construct a class of varieties such
that it is impossible to decide whether a desired embedding exists from the defining relations for
representatives of this class (for a certain suitable integer m). We define the coordinate ring of the
variety B(d,e) by the following system of generators and relations:

X2
ij −

(
T2

j − 1
)

Y2
ij = 1,

Yij −
(
Tj − 1

)
Zij = Vij,

VijUij = 1,
Tj+1 = ∏

j
k=1

((
T2

k − 1
)

Wk
)

Wj+1,

(28)

where 1 ≤ i ≤ d and 1 ≤ j ≤ e. In fact, we compose a system of many “clones” of the main system of
the previous subsection and augment it by the “linking” relations between the parameters Tj. Let us
study the solutions of the resulting system in C[t].

The relations for Xij, Yij, Zij, Uij, and Vij for each fixed Tj are similar to those considered above.
For a fixed set of Tj, the set of solutions is the direct sum of the sets B(d), which have already been
studied above.

As above, for each j, the following cases can occur: Tj = ±1 and deg Tj = 0; Tj 6= ±1,
and deg Tj > 0.

The case most important from the point of view of “elimination” is the case where Tĵ = ±1 for

some ĵ. In this case, T2
ĵ
− 1 = 0, and for all j < ĵ, we obtain

Tj =
j−1

∏
k=1

((T2
k − 1)Wk)Wj.

Lemma 4. If TN = CN 6= 0 for some N, then all Wk with k ≤ N and all Tk with k ≤ N − 1 are constants.

By Lemma 4, we have Tj = Cj for j < ĵ. Here Cj 6= ±1 (otherwise Cj+1 = 0). Thus, if Tĵ = ±1

for some ĵ, then the corresponding component has dimension d. However, in this case, all other
components are zero-dimensional, and the total dimension of the variety does not exceed d.

In the second case, we have Tĵ = Cĵ 6= ±1 for some ĵ. The corresponding component of the variety

has dimension 0. Moreover, Lemma 4 implies Tj = Cj for j < ĵ. The corresponding ĵ− 1 components
of the variety are zero-dimensional as well.
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The case deg Tj > 0 was considered in Section 3.2.1. Each component of the variety is parametrized
by a set of integers N1j, . . . , Ndj,for which the corresponding solutions for Xij, Yij, Zij, Uij, and Vij are
constructed explicitly. The corresponding component has dimension 1.

Consider a Matiyasevich family of polynomials Q(σ1, . . . , στ , x1, . . . , xs). The solvability problem
of the Diophantine equation Q(σ1, . . . , στ , V1j, . . . , Vsj) = 0 is algorithmically undecidable. Let d ≤ s.
Adding the new equations Q(σ, Vi1, . . . , Vis) = 0 to system 28, we obtain a system defining a new
variety. We denote it by B′(d,e),σ.

If Q = 0 has no integer solutions, then the original system has no solutions for which deg T0 > 0.
In this case, the possible solutions correspond either to the case where Tj = ±1 for some j (and the
set of solutions has dimension d) or to the case Tj = Cj 6= ±1. In the latter case, assuming that j is
the maximum index for which Tj = Cj 6= ±1, we see that all the succeeding e− j components are
one-dimensional and the total dimension of the set equals precisely e− j ≤ e− 1. Setting e = s and
d = s− 1, we obtain

dim B′(d,e) ≤ max(e− 1, d) = s− 1 < s.

Obviously, in this case, for m ≥ s, there is no embedding of A = Am in B′(d,e),σ = B′(s−1,s),σ.
In particular, As cannot be embedded in B′(s−1,s),σ.

If Q has integer solutions, then, for every such solution N1, . . . , Ns, we can explicitly construct
functions Yij(T), Xij(T), and Zij(T) which are solutions. These functions define an embedding of
A = As in the variety B′(d,e),σ.

Since the existence of integer solutions for Q is undecidable, it follows that the embeddability of
As in B′(s−1,s),σ is undecidable as well (the input data is the equations defining B′(s−1,s),σ). The proof is
valid for any field K of of characteristic zero. The following theorem holds.

Theorem 15. There is a positive integer s for which the embeddability of an affine space As over K in an arbitrary
algebraic variety B (defined by generators and relations) is undecidable. Thus, the general embeddability problem
for an arbitrary algebraic variety is undecidable as well.
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