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Abstract. A classical theorem of R. Baer describes the nilpotent radical of a finite group
G as the set of all Engel elements, i.e. elements y € G such that for any x € G the nth
commutator [x, y, ..., y] equals 1 for n big enough. We obtain a characterization of the
solvable radical of a finite dimensional Lie algebra defined over a field of characteristic
zero in similar terms. We suggest a conjectural description of the solvable radical of a
finite group as the set of Engel-like elements and reduce this conjecture to the case of a
finite simple group.
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1. Introduction

In the present paper we study certain Engel-like characterizations of the solvable
radical of finite dimensional Lie algebras and finite groups. Such a characterization
for the nilpotent radical of a finite group is given by R. Baer [Ba], see also [H], [Ro]:

Theorem 1.1. The nilpotent radical of a finite group G coincides with the collection
of all Engel elements of G.

This theorem of Baer generalizes Zorn’s theorem [Zo] which gives a character-
ization of finite nilpotent groups in terms of special two-variable Engel identities.
Our goal is to establish an analog of Baer’s theorem for the solvable radical of a
finite group. As a first step, we consider a similar problem for finite dimensional Lie
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algebras. Towards this end, we introduce some sequences of words which provide
the solvability property. These sequences play the role of the Engel sequences that
work in the nilpotent case.

All groups in the paper are assumed to be finite, all Lie algebras are finite dimen-
sional. Observe, however, that Baer’s theorem is valid for many classes of infinite
groups satisfying some finiteness conditions. For example, Baer himself proved it
for noetherian groups, a similar result is valid for radical groups [Plol], [Plo2],
linear groups [Pla], and PI-groups [Plo3] (see also [Pr], [To]).

The paper is organized as follows. In Section 2 all main definitions and state-
ments of the problems are given. Section 3 deals with the case of Lie algebras. In
Section 4 we prove a reduction theorem for the case of groups.

2. Definitions and main problems

We follow the terminology introduced in [Plo3].
Let F, = F(x, y) be the free two generator group, Wo = W(x, y) the free two
generator Lie algebra.

Definition 2.1. We say that a sequence U = UL, UD, U3, ..., Uy, ... Of elements
from F is correct if the following conditions hold:

(i) uy(a, 1) = 1 and u,(1, g) = 1 for all sufficiently big n, every group G, and
all elements a, g € G;

(ii) if a, g are elements of G such that uy(a, g) = 1, then for every m > n we
have uy,(a, g) = 1.

Thus, if the identity u, (x, y) = 1 is satisfied in G, then for every m > n the
identity u,, (x, y) = 1 also holds in G.
A similar definition can be given for Lie algebras.

Definition 2.2. For every correct sequence W define the class of groups (resp. Lie
algebras) ©® = O (W) by the rule: a group (resp. Lie algebra) G belongs to © if
and only if there is n such that the identity u,(x, y) = 1 (resp. u, (x, y) = 0) holds
in G.

Definition 2.3. For every group (resp. Lie algebra) G denote by G () the subset
of G defined by the rule: g € G() if and only if for every a € G there exists
n = n(a, g) such thatu,(a, g) = 1 (resp. 0). Elements 0fG(7) are viewed as En-
gel elements with respect to the given correct sequence W . We call these elements
U -Engel-like or; for brevity, i -Engel elements.

Examples 2.4.
W W =7¢ =ey, e, es, ..., where
er(x,y) =[x, vl = xyx 'y e (x, y) = [enm1(x, ¥), V1

then ©(¢) is the class of all Engel groups. In the case of finite groups the class
©(7@) coincides with the class of finite nilpotent groups [Zo].
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Clearly, ?-Engel elements of any group G are none other than usual Engel
elements. If G is finite, the set G(€ ) coincides with the nilpotent radical of G
[Ba].

(2) If i is determined by the following correct sequence of words:

uy =xy " uy = ur(xy, yx) =[x, ¥], oo sty = U1 (XY, YX), ...,

then for finite groups the class ® () coincides with the class of all finite
nilpotent-by-two groups [BP].
(3) The correct sequence o, where

ui(x,y) = xfzyflx, e,

Un (X, ) = [ X ttyo1 e, )XY, yuu_ 1, )y~

determines the class @(7) which coincides with the class of finite solvable
groups [BGGKPP1], [BGGKPP2].
(4) The correct sequence 5, where

Sl(-xv y) va 7Sl’l(x’ Y) - [Sn—l(-xv y)_yvsn—l(-xa y)]a

determines the class ©® (?) which also coincides with the class of finite solvable
groups [BWW].
(5) The correct sequence W, where

wi(x,y) =[x, y],..., wa(x,y) = [[wp—1, x], [Wp—1, ¥1], ...

and [, ] stands for the Lie bracket in a Lie algebra, determines the class ® (E))
of finite dimensional solvable Lie algebras over an infinite field k, char(k) #
2, 3,5 [GKNP].

It is easy to see that if g is a % -Engel element in G then g is a 0 -Engel element in
every subgroup H containing g. If H is a normal subgroup in G and g is a i -Engel
element in G, then § = gH is a i -Engel elementin G = G/H.

The following natural problem arises:

Problem 2.5. Describe the class of sequences % such that @(7) is the class of
finite solvable groups.

Denote by Fz(")(x, y) the n-th term of the derived series of the free group
Fa(x, y).

Proposition 2.6. Let U be a correct sequence. Then O() coincides with the
class of finite solvable groups if and only if

(i) for every n there exists k = k(n) such that uy belongs to F2(")(x, ),

(ii) there is no n such that u,(x,y) = 1 is an identity in one of the following
groups: (1) G = PSL(2, F) where g > 4 is a prime power, (2) G = Sz(2™),
m € N, m > 3 and odd, (3) G=PSL(3, F3).



468 T. Bandman et al.

Here PSL(m, IF,) denotes the projective special linear group of degree m over
Fy. For g = 2™ we denote by Sz(q) the Suzuki group (the twisted form of 2B,, see
[HB, XI.3]).

Proof. The proof repeats the proof of Theorem 2.1 from [BGGKPP1] and is based
on the list of minimal simple non-solvable groups [Th]. O

Remark 2.7. Even for the case of the group G = PSL(2, F,) the basis of identi-
ties is known only for small fields IF, and not known in general [CMS], [So]. The
bases look highly complicated and do not provide any hint to check explicitly if a
particular identity follows from the basis.

Problem 2.8. Describe the class of sequences o such that 9(7) is the class of
finite dimensional solvable Lie algebras.

Denote by W2(") (x, y) the n-th term of the derived series of the free Lie algebra
Walx, y).

Proposition 2.9. Let i be a correct sequence. Then ® () coincides with the class
of finite dimensional solvable Lie algebras over an infinite field k, char(k) # 2,3, 5
if and only if

(i) for every n there exists k = k(n) such that uy belongs to Wz(")(x, ),
(ii) there is no n such that u,(x,y) = 0 is an identity in the simple Lie algebra
slp.

Proof. The proof immediately follows from the fact that if the characteristic of k
differs from 2,3,5, then every simple Lie k-algebra contains a subalgebra which has
the algebra sl, as a quotient (see [GKNP] and references therein). O

Remark 2.10. The assumption char(k) # 3,5 is technical and can probably be
dropped.

Remark 2.11. The situation with bases of identities for the minimal simple non-
solvable Lie algebras is different from the group case. A basis of identities of the
algebra sl, over a field of characteristic zero is known and consists of two identities
[Ra], [Bah] (see [MK] for the case where the ground field is finite, and [Ko] and
references therein for the case where the ground field is infinite of characteristic p).
However, it is difficult to verify whether a particular u,, is an identity in sl using
this basis.

Conjecture 2.12. There is a sequence 1 = W (x,y) such that for every finite
group G the solvable radical of G coincides with G ().

Conjecture 2.13. There is a sequence W = W (x, y) such that for every finite
dimensional Lie algebra L the solvable radical of L coincides with L().

Of course, it is highly desirable not only to prove the existence of such a %", but
to exhibit an explicit sequence in each of the above cases (groups and Lie algebras).
We give a partial positive answer to Conjecture 2.13 in Section 3 (see Theorems
3.7 and 3.12), and reduce Conjecture 2.12 to the case of simple groups in Section
4 (see Theorem 4.9).
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3. Case of Lie algebras

Let L be a finite dimensional Lie algebra over a field k. Denote by [, ] the Lie oper-
ation. For ¢ € L the linear operator ad7: L — L is defined by (ad#)x = [¢, x].

By the solvable radical of L we mean the largest solvable ideal R of L (Bour-
baki [Bou] and Jacobson [J] call R the radical of L). By the nilpotent radical of L
we mean the largest nilpotent ideal N of L (Jacobson [J] calls N nil radical, and
Bourbaki [Bou] calls it just the largest nilpotent ideal).

Define the sequence g by e1(x, y) = [x, y] and, by induction, e, +1(x, y) =
[en(x,y), y]. Then e, (x, y) = (—ad y)"x.

Definition 3.1. An element y € L is called an Engel element if it is € -Engel, i.e.
for every x € L there exists n such that e, (x, y) = 0 (i.e. (ad y)"'x = 0).

The following proposition is well known.

Proposition 3.2. An element y € L is Engel if and only if ad y is nilpotent (i.e.
there exists n such that (ad y)" = 0).

We need a lemma.

Lemma 3.3. Let V be a vector space of dimension d over a field k, let x € V, and
let A: V — V be a linear map. If A" x = 0 for some m, then A%x = 0.

Proof of the lemma. By Fitting’s lemma (see [J, Sect. I1.4]), V. = Vy & Vi, where
Vo and V| are invariant subspaces of A, the restriction Ag of A to Vj is nilpotent,
and the restriction A of A to V) is invertible. Write x = (xg, x1), where x; € V;
(i = 0,1). We have AT'x; = 0, hence x; = 0 (because A is invertible), i.e.
x € V. Since Ay is nilpotent, we have A(”)l0 = 0 where dy = dim V(. We thus have
Adx =0 (because x € Vp). Since d > dp, we conclude that Alx =0. |

Proof of the proposition. If ad y is nilpotent, then clearly y is Engel. Conversely,
if y is Engel, then by Lemma 3.3 (ad y)?x = 0 for any x € L, where d = dim L.
Hence (ad y)? = 0 and ad y is nilpotent. m|

Define the sequence ¥ by vi(x,y) = x and, by induction, v, (x,y) =
[vn(x, y), [x, y]l. Then vp41(x, y) = (—ad[x, y])"x = e, (x, [x, y]).

Theorem 3.4. Let L be a finite dimensional Lie algebra over a field k of charac-
teristic zero. Then L is solvable if and only if for some n the identity v, (x,y) =0
holds in L.

Proof. Since char(k) = 0, if L is solvable, then L’ = [L, L] is nilpotent [J, Cor.
I1.7.1]. Hence every pair z, t of elements of L’ satisfies the identity (ad r)"z = 0,
where m = dim L’. On putting z = [x, [x, y1], ¢ = [x, y], we get vy,42(x, y) = 0.

In the opposite direction, we mimic the proof of [GKNP, Thm. 3.1]. Namely, we
first reduce to the case when k is algebraically closed. This reduction immediately
follows from the following easy lemma (cf. [GKNP]).
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Lemma 3.5. Let k be an infinite field and let P(x1, ..., x,) be a polynomial in n
variables over k. If P(x1,...,x,) = O forall x1,...,x, € k, then for any field
extension K / k we have P(x1,...,x,) =0 forall x1,...,x, € K.

Proof. Since k is infinite, by [L, Cor. IV.1.7] P is the zero polynomial, and the
lemma follows. m]

Remark 3.6. A similar statement is valid for the elements of free associative and
free Lie algebras, i.e. for non-commutative associative and Lie polynomials.

Thus we now assume k algebraically closed and suppose that L satisfies
v, (x, y) = 0 and is not solvable. Denote by R the solvable radical of L. The alge-
bra L/R is not zero and semisimple and also satisfies the identity v, (x, y) = 0.
It contains a subalgebra S isomorphic to sl which also must satisfy the same
identity. Being isomorphic to sly, the Lie algebra S has a basis {e4, e_, h} such
that [k, e+] = 2ey, [h,e—] = —2e_, [e+,e_] = h. Take x = ey, y = e_.
We have [x, y] = h, hence va(x,y) = [e4, h] = —2e4, and for any n we get
v (x, y) = (=2)""le, # 0, contradiction. The theorem is proved. O

It turns out that the same sequence v;, allows one to describe the solvable radical
of L.

Theorem 3.7. Let L be a finite dimensional Lie algebra over a field k of charac-
teristic zero. Then its solvable radical R coincides with the set of all U -Engel
elements of L.

Proof. Let us first prove that every element y of R is ¥ -Engel. Since char(k) = 0,
by [J, Thm. I1.7.13], [L, R] is a nilpotent ideal. Hence every element ¢ of [L, R]
isEngelin L [J, Thm. I1.3.3],i.e. forany z € L there exists n such that (ad )"z = 0.
Let x be an arbitrary element of L. On setting t = [x,y], z = x, we get
Ung1 (x, y) = 0.

Conversely, let us prove that every v -Engel element lies in the solvable rad-
ical. Let us first consider the case where k is algebraically closed. It is enough to
prove that there are no nonzero v -Engel elements in a simple k-algebra L.

Let L be a simple Lie algebra over k. Choose a Cartan subalgebra H C L and
a Borel subalgebra B D H. Let

L=H® EB L,
aed
be the root decomposition. Here & = ®(L, H) is a reduced irreducible root sys-

tem, and all the spaces L, are 1-dimensional. Let ®* be the set of positive roots
determined by B. We have

L=L " ®H®L", where LT = @ Ly, L™ = @ L_,.
aedt acdt

We write an element y € Linthe formy =y~ +h+y", where y" e L™, h €
H, y™ e L™. For every « € ® choose a nonzero element e, € L. The set {e_ :
a € &} is abasisin L. Write y~ = Za€¢+ c_q(y)e—_qy, Where c_y(y) € k.
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Letye L,y #0,y =y +h+ y". Since ® is irreducible, it has a unique
maximal root; we denote it by y. We may assume that H and B are chosen so that
the coefficient c_, (y) of y~ at e_,, is nonzero.

Indeed, let Aut L denote the algebraic group of automorphisms of L, and let G
be the identity component of Aut L. It suffices to prove that there exists g € G (k)
such that ¢, (gy) # 0. Assume the contrary, i.e. that c_,, (gy) = 0 for any g. Set
V ={z €L |c,(z) =0}, itis a subspace of L of codimension 1. Let W(y)
denote the vector space generated by the elements of the form gy for g € G(k),
it is a nonzero G-invariant subspace of L. Since by assumption W(y) C V, we
conclude that W(y) # L. This leads to a contradiction, because the representation
of G in L is irreducible for a simple Lie algebra L.

Solety € L, y # 0,and ¢ := c_),(y) # 0. We shall find x such that
vy (x,y) # O for any n. Take x = e,,. Denote 1, = [e), e_, ], it is a nonzero
element of H. We have [h),e,] = ae, with a # 0. Since y is the maximal
root, we have [x, y] = ch, + yfr where yfr € L™. Hence we have [x, [x, y]] =
ley, chy +y; 1= —cae,, and, by induction, v, (x, y) = (—ca)""'e,.Sincea # 0
and ¢ # 0, we see that v, (x, y) # O for all n. Thus there are no nonzero 7—Engel
elements in L. This proves our theorem in the case when k is algebraically closed.

To reduce the general case to the case of the algebraically closed ground field,
we shall show that if y is a ¥ -Engel element of a finite dimensional Lie algebra
L, then one can choose n in the condition v,(x, y) = 0 to be independent of x.
Actually we shall show that one can choose 7 to be independent of x and y.

Lemma 3.8. Assume that v, (x, y) = 0 for some x, y € L and for some natural n.
Then vg4+1(x,y) =0, where d = dim L.

Proof. We apply Lemma 3.3 to the linear operator A = —ad [x, y]: z — [z, [x, y]]
in the linear space L. d

We can now complete the proof of Theorem 3.7. Let y € L be a v -Engel ele-
ment of L. This means that for any x € L there exists n such that v, (x, y) = 0. By
Lemma 3.8, we then get vy (x, y) = 0 for any x € L. This is a polynomial iden-
tity in x. Since the field k is infinite, it follows from Lemma 3.5thatvg+1(x,y) =0
for any X € L, where L = L ® k. In other words, y is a v -Engel element of L.
Since our theorem is already proved over an algebraically closed field, we see that
y € R, where R is the solvable radical of L. But R = R ® k [Bou, Ch. 1, §5, n°6],
hence y € R. O

Remark 3.9. The sequence ¥ is adjusted to the case of Lie algebras over a field of
characteristic zero. Indeed, the key point in the proof of Theorems 3.4 and 3.7 was
the fact that if L is solvable then [L, L] is nilpotent. This is no longer true in positive
characteristic. Here is an explicit counter-example to the corresponding statements
in positive characteristic, based on the fact that [L, R] is no longer contained in the
nilpotent radical of L.

Example 3.10. We use an example given in [J, I1.7, pp. 52-53]. Let k be a field of
characteristic p > 0, and L be a vector k-space of dimension p 4 2. Denote by
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{e, f.e1,...,ep} abasisof L and define a structure of Lie algebra by the following
multiplication table:

le, fl=e le,eil=eiy1 (1 <i<p—1), [e,ep] =ey,
[fieil=(G—1De; (1<i=<p)le,e]l=0 (1=<i,j=<p).
(3.1

From formulas (3.1) it follows immediately that the subalgebra M = <el s, € p)
is an abelian ideal of L and the quotient S = L/M is a two-dimensional solvable
algebra, hence L is solvable (see [J, loc. cit.]). We shall show that L does not satisfy
any of identities v, (x, y) = 0. Indeed, take x = f + e1, y = e + €. We have

t:= [-xv y] = —e, vl(x7 y) =x7v2(-x7y) = [-x’t] = €+62, v3(-x7 y) =e€3,...,

and, by induction, v, (x,y) = €p, Vp11(X,y) = €1, ..., Uppir (X, Y) = €p, ... .
Thus for all n we have v, (x, y) # 0, and Theorem 3.4 fails in characteristic p.

The same algebra L provides a counter-example in characteristic p to the state-
ment of Theorem 3.7, because it is solvable but not all of its elements are ?-Engel
(for example, y as above is not).

Let us now consider another sequence w which hopefully will be extendable
to the case of positive characteristic. Define w;(x, y) = [x, y] and, by induction,
Wpt1(x, y) = [[wa(x, ¥), x], [wa(x, y), ¥11.

Theorem 3.11. [GKNP] Let L be a finite dimensional Lie algebra over a field k of
characteristic different from 2, 3, 5. Then L is solvable if and only if for some n the
identity w, (x, y) = 0 holds in L.

We hope that the same sequence w;, allows one to describe the solvable radical
of L.

Theorem 3.12. Let L be a finite dimensional Lie algebra over an algebraically
closed field k of characteristic zero. Then its solvable radical R coincides with the
set of all W -Engel elements of L.

Proof. Let us first prove that every element y of R is E’—Engel. Since R is an ideal
of L, we have wi(x, y) € R for any x € L. From the definition of w, it follows
that wa(x, y) € [R, R], and, by induction, w, (x, y) belongs to the (n — 1)th term
of the derived series of R. Since R is solvable, for some n we have w, (x, y) = 0.

In the opposite direction, we have to prove that every w -Engel element lies
in the solvable radical. It is enough to prove that there are no nonzero w -Engel
elements in a simple k-algebra L.

Let L be asimple Lie algebra over k. As in the proof of Theorem 3.7, we choose a
Cartan subalgebra H C L and a Borel subalgebra B D H, and we choose ¢, € Ly,
ey #0,foralla € ® = R(L, H). We writeanelementy € Lasy =y~ +h+yT,
wherey™ € L™, he H, y" € L*.Writey™ =Y, g+ C—a(¥)e—q. Let y denote
the maximal root in .

Lety € L, y # 0.Asinthe proof of Theorem 3.7, we may and shall assume that
¢ :=c_,(y) # 0. We shall find x such that w,(x, y) # O for any n. Take x = e,,.
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Denote hy, = [e), e, ], it is a nonzero element of H. We have [h,, e,] = ae,
with a # 0, then [h), e_, ] = —ae_,,. Since y is the maximal root, we have

wi(x,y) =[x, y] =ch, + yr where yl+ eLt.
Hence we have
[wi(x, y), x] = [chy + ¥, e,1 = clhy, e,] = cae,

(we have [y1+, e, ] = 0 because y is the maximal root). Furthermore,

c—y (w1 (x, ¥), YD) = c—y ([chy, Y1) = c—, ([chy, ce_y]) = —c?a,

(here once again we use the assumption that y is the maximal root). As at the first
step, we obtain

wa(x,y) = [[wi(x, y), x], [wi(x, y), ¥l = —c*a*h, + y5, where yJ € L™.
By induction we conclude that for all n > 2 we have
wp(x,y) = = "1a¥ 2hy, 4y}, where y e L7,

Since ¢ # 0 and a # 0, we see that w,(x, y) # 0 for all n. Thus there are no
nonzero w -Engel elements in L. O

Remark 3.13. To extend Theorem 3.12 to the case of any field k of characteristic
zero, it is enough to show that any w -Engel element y € L remains w -Engel in
L=L® & k. To do that, it suffices to reverse the order of quantifiers in the definition
ofa W-Engel element, i.e. to show thatif y € Lisa E)-Engel element, then there
exists n (depending only on y) such that for all x € L we have w, (x, y) = 0. This
would imply that y remains an Engel element in L. Indeed, with such a choice of
n the relation w, (x, y) = 0 is a polynomial identity in L (with respect to the vari-
able x), and it remains true as an identity in L (cf. Lemma 3.5). In other words, it is
enough to show that the sequence A,(y) = {x € L : w,(x,y) =0}, n=1,2,...,
of subsets of L stabilizes provided y is a u -Engel element. In light of Theorem
3.12, this is valid in the case when k is an algebraically closed field. We can also
prove this fact for any uncountable field k, see Proposition 3.14 below.

Let k be a field. We fix an algebraically closed field €2 containing k. Let S be a
set of polynomials in the polynomial ring k[ X1, ..., X,,] in m variables. By a k-
closed set (or algebraic k-set) in the affine space A™ we mean the set B of common
zeros in Q™ of such a set of polynomials S (cf. [L, Ch. IX, §§1,2]). In particular,
we say that B = A" if B = Q™. By B(k) we denote the set of zeros of S in k™,
ie. B(k) = BNk™.

Proposition 3.14. Let k be an uncountable field, and A™ be an affine space over k.
Consider a sequence of k-closed sets B, C A™, suchthat By € B C...B, C ...
and UTO B;i(k) = A" (k). Then there is ng such that By, = A™.
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Proof. We use induction on m.

Step 1. 1f m = 1 then any k-closed set is either finite or equal to A'. Thus,

— either B; are all finite, and U‘fo B; (k) contains at most countable set of
elements, which contradicts to the assumption [ J{° B; (k) = A™ (k);

— or there is ng such that B,, = Al

Step m. Assume that the claim is valid for all m’ < m. Let xy, ..., x,, be the
coordinates in A™, and let Hy denote the hyperplane defined by the equation x| = 0.
Fix apointoe = (0, a2, ..., an) € Ho(k) and a line

Ly ={(t,ar,...,ay) |t € Q}.

Since U(B; N Ly)(k) = (UB;j(k)) N Ly(k) = Ly(k), there is n(a) such that
By N Ly = Ly (see Step 1).
For a natural number / define a set

Dy = {a € Hy(k) : n(a) <1} C Hp(k).

In other words, « € D; means that L, C Bj. Let us show that D; = V;(k) for some
k-closed subset V; of H.
Let B; be defined in A™ by a set of polynomial equations

Fro(xi,....xm) =D xipi1i(x2, ..., xn) =0;
Foi(xt, .o xm) =) x\ping(x2, ..., xp) = 0;

Foi(xt, ..., xp) = Zx{pi,xl,l(xz, o xm) = 0.
The condition L, C B; implies that
Fiit,ax,...,aun) =0
forany t € 2,1.e. p; ji(az,...,ay) = 0 for all possible 7, j. Thus
Dy = {a € Hyo(k) : pi ji(a) =0},

and clearly D; = V;(k) for the k-closed subset V; of Hy defined by these equations.
On the other hand, | J V;(k) = | D; = Hy(k). Thus, by the induction hypoth-
esis there exists /o such that V;, = Hp, and, consequently, B;, = A™. O

Corollary 3.15. Let L be a finite dimensional Lie algebra over an uncountable
field k of characteristic zero. Then its solvable radical R coincides with the set of
all W -Engel elements of L.

Remark 3.16. Proposition 3.14 is not valid for countable fields.

Here is an example. Let x1, ..., x,, ... be the countable set of all the k-points
of the affine space A™ over a countable field k for m > 1. Denote by L,, the straight
line containing x,, and the origin, and set B, = (J] L;. Then | J{° B, (k) = A™ (k).

Nevertheless, our conjecture is that Theorem 3.12 is valid for any field of char-
acteristic zero.
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Remark 3.17. Theorem 3.12 does not hold in positive characteristic because sim-
ple Lie algebras may then contain nonzero w -Engel elements (see Example 3.18
below). However, we hope that the theorem remains true for “classical” Lie algebras
(i.e. for those coming from algebraic groups).

Example 3.18. Let L = W(1; 1) be the Witt algebra defined over a field k of char-
acteristic p. Recall (see, for example, [SF, 4.2, p. 148]) that L is of dimension p
with multiplication table defined on a basis {e_1, eg, ey, ..., e, 2} as follows:

(j—i)e,‘_w‘ if —1<i+4+j<p-2,

; (3.2)
0 otherwise.

lei,ej] =

If p > 2, the algebra L is simple [SF, Thm. 2.4(1) on p. 149]. However, if p > 3, it
contains nonzero E)-Engel elements. Indeed, let y = e, 5, andletx = o_je_; +
-+ ap_2ep_2 be an arbitrary element of L. From formulas (3.2) it follows that

wi(x, y) =a_1ep—3 + apep—2.

For p > 3 this implies [w1(x, ¥), y] = 0 and hence wy(x, y) = 0. Thus y is a
W—Engel element, and the statement of Theorem 3.12 does not hold for L.

In order to extend the characterization of the solvable radical obtained in Theo-
rem 3.12 to a broader class of Lie algebras, we suggest a little change in our original
approach.

Definition 3.19. We say that an element y € L is strictly Engel, if it is Engel and
for any x € L the element [x, y] is Engel (see Definition 3.1 for the notion of an
Engel element).

For finite dimensional Lie algebras the following counterpart of Baer’s theorem
holds.

Theorem 3.20. Let L be a finite dimensional Lie algebra a field k, char(k) = 0.
The nilpotent radical N of L coincides with the set of all strictly Engel elements
of L.

Proof. By [J, Thm. I1.3.3] every element y of N is an Engel element. Since N is
an ideal, [x, y] € N forevery x € L, y € N. Thus every element of N is strictly
Engel.

Let us show that there are no nonzero strictly Engel elements outside N. Let y
be a strictly Engel element of L. Denote by R the solvable radical of L. First we
prove that y € R . Indeed, if y ¢ R, then by Theorem 3.7 there exists x € L such
that (ad [x, y])"x # O for any n. Hence [x, y] is not Engel and therefore y is not
strictly Engel.

Thus y € R. The set of Engel elements of L which are contained in R coincides
with N, see [Bou, Ch. I, §5, n°5, Cor. 7 of Thm. 1] (see also [AS, Ch. 16, §4)].
Thus y € N. O
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Remark 3.21. There is another approach allowing one to characterize the nilpotent
radical in a slightly different manner.

Let L be a finite dimensional Lie algebra, and L™ be the corresponding vector
space. Denote by (ad L)* the subalgebra of the associative algebra End (L) gener-
ated by the linear operators of the form ad x where x € L. Let y € L. Observe that
the principal ideal (y) in the Lie algebra L generated by y consists of the elements
u(y), where u € (ad L)*.

We say that an Engel element y is fotally Engel if u(y) is an Engel element for
every u € (ad L)*.

The next theorem follows from the definitions.

Theorem 3.22. Let L be a finite dimensional Lie algebra over a field k. The nilpo-
tent radical N of L coincides with the set of all totally Engel elements of L.

Proof. An argument similar to that in the proof of Theorem 3.20, using [J, Theorem
I1.3.3], shows that all elements of N are totally Engel.

Conversely, if y is totally Engel, then the ideal (y) consists of Engel elements.
By Engel’s theorem, this ideal is nilpotent and therefore is contained in N. In
particular y € N. O

Remark 3.23. Observations from the previous remark are also relevant to the case of
the solvable radical and w -Engel elements. We could define strictly (resp. totally)
W -Engel elements in the same way as it was done for strictly (resp. totally) Engel
elements. Moreover, to treat the case of positive characteristic, one may be led to
an even more restrictive definition of totally w -Engel element requiring that it
remains w -Engel after applying any (not necessary inner) derivation of L. In this
setting one can hope to get a characterization of the solvable radical as the set of
all totally w -Engel elements.

Remark 3.24. Using yet another approach, one can redefine the notion of strictly
W -Engel element using sequences of three (or more) variables. For example, define
ra(x,y,2) = [z, [x,y],..., [x, ¥]]. Then an element y € L is strictly Engel if for
every x, z there exists n = n(x, y, z) such that r,(x, y,z) = 0 and e, (x, y) = 0.

4. Group case. Reduction theorem

1

Let G be a finite group. We have [x, y] = xyx~ 1y~ = xay(x_l) where o, €

Aut G takes x to yxy~!.

Let ¥ = uy(x,y),...,uy(x,y),... be asequence in Fo = Fp(x,y). We
want to define % -Engel-like automorphisms of G.

Let G; = G X\ Aut G be the semidirect product of G and Aut G. Recall that it
can be viewed as the set of all pairs of the form (g, o), where g € G, o € AutG,
with multiplication (g1, 01) . (g2, 02) = (g101(g2), 0102). The natural embeddings
G — G| and AutG — G, together with the above formula for the group law in
G1, imply that the equality ogo~! = o (g) holds inside Gy, for any g € G and
o € AutG (informally, an arbitrary automorphism of G becomes an inner auto-
morphism inside a bigger group G1). In particular, this implies that 0 go~! belongs
to G.



Characterization of radical 477

A 7—Engel-like automorphism o of G should be defined in such a way that in
the group G| = G ™ Aut G it will be presented by a usual % -Engel-like element.

Let us take a correct sequence u (x, ) in F>(x, ). Given a group G, consider
ahomomorphism p: Fa(x,y) — G1.Denote u(x) = g, u(y) = o, where g € G,
o € Aut G, and define u, (g, o) = u(u,(x, y)) € G (informally, we “substitute”
g instead of x and o instead of y).

Lemma 4.1. Suppose that a correct sequence @ = i (x, y) in Fa(x, y) satisfies
the property:

(iii) For every x,y € F the word u, (x, y) belongs to the minimal subgroup
containing the oy-orbit of the element x.

Then for every group G N AutG, every g € G, and every o € AutG, the
element u,(g, o) belongs to G.

Proof. According to condition (iii), every element u, (x, y) can be represented as
a product of elements yxy~!, y*x~'y=* Then u,(g, o) is a product of elements
o*g*tlo=% = o (g*!) and thus belongs to G. O

Definition 4.2. We call a sequence W satisfying the hypotheses of Lemma 4.1
autocorrect.

We are now able to define % -Engel automorphisms:

Definition 4.3. Let i be an autocorrect sequence in F> and let G be a group. We
say that an automorphism o € AutG is i -Engel if for any g € G there exists n
such that u, (g,o0) = 1.

Example 4.4. For o0 € Aut (G) define [x, o] = xo(x~ 1.
Consider the Engel sequence 7 defined by

eiflx,o0)=[x,0],...,e,(x,0) =[en_1(x,0),0].

It satisfies the hypotheses of Lemma 4.1. We say that an automorphism o of G is
Engel if for any x € G there exists n such that e, (x, o) = 1.
Another example of a sequence satisfying the hypotheses of Lemma 4.1 is

W = E)(x, o), where

wy =[x,0l,...,w, = [[wy—1, x], [wy—1, o]].

Note that o = oy isa 7 -Engel automorphism if and only if y is a % -Engel
element. Thus if G has no non-trivial % -Engel automorphisms, then G has no
non-trivial 7-Engel elements. Let A be the cyclic subgroup of Aut (G) generated
by o. Denote G=G A.lfoisa 7-Engel automorphism, then o is a 7—Engel
element in G.

Let G be a finite semisimple group, i.e. R(G) = 1, and let % be an autocorrect
sequence.

Consider two classes of groups:

e the class of semisimple groups with non-trivial i7" -Engel elements;
e the class of semisimple groups with non-trivial %7 -Engel automorphisms.

Our aim is to show that for some 7 these classes are empty.
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Any finite semisimple group G contains a unique maximal normal centreless
completely reducible (CR) subgroup (by definition, CR means a direct product of
finite non-abelian simple groups) which is called the CR-radical of G (see [Ro,
3.3.16]). We call a product of the isomorphic factors in the decomposition of the
C R-radical an isotypic component of G.

Denote the C R-radical of G by V = V(G). This is a characteristic subgroup
of G.

Theorem 4.5. Let W be a correct sequence, and let G be a semisimple group of
smallest order having non-trivial W -Engel elements. Then G has the following
structure:

(i) all non-trivial quotients of G are solvable;
(ii) the CR-radical of G contains only one isotypic component.

Proof. (i) Let H be an arbitrary normal subgroup in G. Denote G = G/H. Let
R(G) = H;/H be the solvable radical of G. Then G = G/R(G) is semisimple
and of order strictly smaller than the order of G. Hence, for a  -Engel element
g € G wehave g = 1, and therefore g € H;/H. Thus g € Hj. Since Hj is normal
in G, it is semisimple. The order of H; is smaller than the order of G and g € Hj,
therefore g = 1.

Thus G = Hj,and G/H = H;/H is solvable.

(i) Take H = V(G), where V(G) is the CR-radical of G. Suppose V(G) =
G1 x G, where G| and G» are isotypic components of V (G), i.e. products of
isomorphic non-abelian simple groups. Then they are normal subgroups of G. By
(1), G/ G and G/ G are solvable, hence so is G/(G1 N G»). Since the intersection
is 1, G is solvable. The contradiction shows that V (G) consists of one isotypic
component. O

Observe that under hypotheses of Theorem 4.5, the CR-radical of G coincides
with the intersection of all its proper normal subgroups.

Let us now consider a group G which is minimal with respect to the second
property (to possess non-trivial 7 -Engel automorphisms). We need the following
auxiliary result.

Proposition 4.6. Let G be the group generated by Go and go, and let Go < G. Let
Gy be a finite semisimple group, and Vy its CR-radical. If gy acts trivially on V
then go acts trivially on Gy.

Proof. Denote R(G) = R, G = G/R. We have RN Go = 1 and [R, Gy] = 1,
Go = GoR/R = Go, Vo = VoR/R = V).

Consider the action of ggp on Go and on Go. We have 80880 I = 8088, I =
goggal, g € Go. Thus, the actions of go in G and G are isomorphic. Vj is the
CR-radical of each of the groups G and G. Suppose that gy belongs to the cen-
tralizer of Vj. Then g = 1, and g0 € R(G), go and Go commute. Hence gg acts
trivially on Go. O

Proposition 4.6 implies that if o is an automorphism of a semisimple group G
acting trivially on the CR-radical of G, then o is the identity automorphism of G.
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Theorem 4.7. Let i be an autocorrect sequence, and let G be a semisimple group
of smallest order having a non-trivial W -Engel automorphism. Then G is a direct
product of isomorphic non-abelian simple groups.

Proof. Observe, first of all, that if o is a  -Engel automorphism of G and H is
a o-invariant subgroup of G, then the corresponding restricted automorphism o
is a 0 -Engel automorphism of H. If now H is a normal subgroup of G invariant
under a % -Engel automorphism o, then &, the automorphism of the group G/ H
induced by o, is a i -Engel automorphism of G/H.

Let G be a minimal semisimple group which has a non-trivial 7-Engel auto-
morphism o. Let V be the CR-radical of G. If V < G then the restriction of o to V
induces a u -Engel automorphism oy of V which must be trivial. Then according
to Proposition 4.6, o is trivial on G. Contradiction. Thus V = G.

Suppose V = G consists of several isotypic components Vi, Vo, ..., Vi. By
the minimality hypothesis on G, o acts trivially on each component, and o once
again must be trivial. The contradiction shows that V consists of one isotypic com-
ponent. |

Conjecture 4.8. There exists an autocorrect sequence i such that no group G of
the form G = [] G;, where all G;’s are isomorphic simple non-abelian groups,
has a non-trivial i -Engel automorphism.

Theorem 4.9. Conjecture 2.12 is equivalent to Conjecture 4.8.

Proof. First note that for any G and any correct sequence i all elements of R =
R(G)are W -Engel. Hence the assertion of Conjecture 2.12 is equivalent to the fol-
lowing one: if G is semisimple, then it contains no non-trivial % -Engel elements.

1. Suppose that W is a sequence such that for any group G we have R(G) =
G(W). Let G be any finite semisimple group, and let o be a non-trivial u -
Engel automorphism of G. Let us show that 0 = 1. Let G = G X (o), and
consider G = G /R(G). This group is semisimple, and & is a 0 -Engel element
of the semisimple group G. Then by hypothesis & = 1, and ¢ is trivial. Thus
the statement of Conjecture 4.8 is fulfilled.

2. Suppose Conjecture 4.8 is true, and take 7 as in its statement. We want to
prove that there are no non-trivial 7 -Engel elements in any semisimple group.
Assume the contrary, and let G be a semisimple group of smallest order con-
taining a non-trivial % -Engel element g. Then o, is a non-trivial U -Engel
automorphism of G. According to Theorem 4.7, G = [] G;, where all G;’s
are isomorphic non-abelian simple groups. Conjecture 4.8 gives o, = 1. Hence
g=1. m|

Remark 4.10. We believe that Conjecture 4.8 can be replaced with the following, a
priori weaker

Conjecture 4.11. There exists an autocorrect sequence i such that no finite sim-
ple non-abelian group G has a non-trivial U -Engel automorphism.
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Indeed, Theorem 3.3.20 of [Ro] says thatif G = [ | ; Gi, where all G;’s are iso-
morphic simple non-abelian groups, then Aut G is isomorphic to the wreath product
Aut G; wr S,, where S, is the symmetric group of degree n. This gives some hope
to deduce Conjecture 4.8 from Conjecture 4.11.

Remark 4.12. Conjectures 4.11 and 4.8 require to specify a sequence % . One of
possible candidates is the sequence W from Example 4.4.
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