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Abstract

The theory of small cancellation groups is well known. In this paper we study the notion of Group-like Small
Cancellation Ring. We define this ring axiomatically, by generators and defining relations. The relations must
satisfy three types of axioms. The major one among them is called the Small Cancellation Axiom. We show that
the obtained ring is non-trivial and enjoys a global filtration that agrees with relations, find a basis of the ring as a
vector space and establish the corresponding structure theorems. It turns out that the defined ring possesses a kind
of Gröbner basis and a greedy algorithm. Finally, this ring can be used as a first step towards the iterated small
cancellation theory which hopefully plays a similar role in constructing examples of rings with exotic properties
as small cancellation groups do in group theory.

1. Introduction

The Small Cancellation Theory for groups is well known (see [13]). The similar theory exists also for
semigroups and monoids (see [10], [9], [22]). However, the construction of such a theory for systems with
two operations faces severe difficulties.

In the present paper we develop a small cancellation theory for associative algebras with a basis of
invertible elements. In fact, in course of studying the question:

“what is a small cancellation associative ring?”
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plotkin.evgeny@gmail.com (E. Plotkin ), eliyahu.rips@mail.huji.ac.il (E.Rips).



we axiomatically define a ring, which can reasonably be called a ring with small cancellation properties
and conditions. We also determine the structure and properties of this ring.

1.1. Motivation, objectives, results

The motivation for developing a ring-theoretical analog of small cancellation comes from the fact that
small cancellation for groups and, especially, its more far-reaching versions, provide a very powerful
technique for constructing groups with unusual, and even exotic, properties, like for example, infinite
Burnside groups [15]–[17], [1], [20], [11], [14], Tarski monster [19], finitely generated infinite divisible
groups [8], and many others, see e.g., [18].

On the other hand, there is a conceptual desire to understand what negative curvature could mean for
ring theory.

For any group with fixed system of generators, its Cayley graph can be considered as a metric space.
This leads to Gromov’s program “Groups as geometric objects” [6], see also [7]. In particular, a finitely
generated group is word-hyperbolic when its Cayley graph is δ-hyperbolic for δ > 0 (see [4], [5] for modern
exposition and references).

So far, we do not know a way to associate a geometric object to a ring. Thus, having in mind the
negative curvature as a heuristic and indirect hint for our considerations, we, nevertheless, follow a more
accessible combinatorial line of studying rings. Therefore, small cancellation groups appear naturally at
the stage.

Finitely generated small cancellation groups turned out to be word hyperbolic (when every relation
needs at least 7 pieces). So, if we could generalize small cancellation to the ring theoretic situation, it
would provide examples to the yet undefined concept of a ring with a negative curvature. Another source
of potential examples are group algebras of hyperbolic groups.

Following this reasoning, we introduce the three types of axioms for rings called Compatibility Axiom,
Small Cancellation Axiom and Isolation Axiom. We study rings A with the basis of invertible elements
that satisfy these axioms with respect to a fixed natural constant τ > 10. We show that:

• Such rings A are non-trivial;
• Such rings A enjoy a global filtration that agrees with the relations;
• An explicit basis of A as a linear space is constructed and the corresponding structure theorems are

proved;
• These rings possess algorithmic properties similar to the ones valid for groups with small cancella-

tion. In particular they have solvable equality problem and enjoy a greedy algorithm;
• These rings also possess a Gröbner basis with respect to some sophisticated linear order on mono-

mials.

The list of facts above can be viewed as a major result of the paper. In what follows we describe and
illuminate all these items. The detailed exposition of these results is contained in the paper [3]. Note that
the axiomatic theory presented in this paper is modeled after a particular case we have treated in [2].

1.2. Small cancellation groups, background

Consider a group presentation G = 〈X | R〉 where we assume that the set of relations R is closed under
cyclic permutations and inverses and all elements of R are cyclically reduced. The interaction between
the defining relations is described in terms of small pieces. A word s is called a small piece with respect
to R (in generalized group sense, see [21], [13]) if there are relations of the form sr1 and sr2 in R such
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that r1r
−1
2 6= 1 and r1r

−1
2 is not conjugate to a relator from R in the corresponding free group, even after

possible cancellations.
Remark. The geometric way to think about small pieces is seeing them as words that may appear on the
common boundary between two cells in the van Kampen diagram [18], [13]. In particular, if r1r

−1
2 ∈ R,

then we can substitute these cells by a simple cell, so we are entitled to assume from the beginning that
r1r
−1
2 /∈ R.

The small cancellation condition says that any relation in R cannot be written as a product of too few
small pieces. For most purposes seven small pieces suffice since the discrete Euler characteristic per cell
becomes negative [13], [12].

To ensure this, we can assume that the length of any small piece is less than one sixth of the length
of the relation in which it appears. The Main Theorem of Small Cancellation Theory can be stated as
follows.

Let w1, w2 be two words that do not contain occurrences of more than a half of a relation from R.
They represent the same element of G if and only if they can be connected by a one-layer diagram ([13],
especially see Greendlinger’s Lemma). The transition from w1 to w2 can be divided into a sequence of
elementary steps called turns [15]-[17]. Each turn reverses just one cell.

1.3. Small cancellation axioms for the ring case

First of all, given a field k and the free group F , denote by kF the corresponding group algebra. Elements
of F and kF are called monomials or words and polynomials, respectively. Let a set of polynomials R
from kF be fixed. Define I to be the ideal generated by the elements of R.

Let the free group F be freely generated by an alphabet S. Assume

R =

pi =

n(i)∑
j=1

αijmij | αij ∈ k,mij ∈ F , i ∈ I


is a (finite or infinite) set of polynomials that generates the ideal I (as an ideal). We denote this way of
generating by 〈〉i. So,

I = 〈R〉i =

〈
pi =

n(i)∑
j=1

αijmij | αij ∈ k,mij ∈ F , i ∈ I

〉
i

.

We assume that the monomials mij are reduced, the polynomials pi are additively reduced, I is some
index set. In particular, we assume that all coefficients αij are non-zero. Denote the set of all monomials
mij of R by M. Throughout the paper we reserve small Greek letters for non-zero elements of the field
k.
Condition 1 (Compatibility Axiom) The axiom consists of the following two conditions.

(1) If p =
n∑

j=1

αjmj ∈ R, then βp =
n∑

j=1

βαjmj ∈ R for every β ∈ k, β 6= 0.

(2) Let x ∈ S ∪ S−1 where S is an alphabet which freely generates F , p =
n∑

j=1

αjmj ∈ R. Suppose there

exists j0 ∈ {1, . . . , n} such that x−1 is the initial symbol of mj0 . Then

xp =

n∑
j=1

αjxmj ∈ R

(after the cancellations in the monomials xmj).
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We require the same condition from the right side as well.
From the second condition of Compatibility Axiom it immediately follows that the setM is closed under
taking subwords. In particular, the empty word always belongs to M.

Now we state a definition of a small piece with respect to R in the algebra kF . The definition of a
small piece given in (see [13]) can be viewed as follows. A word is called a small piece if it occurs in two
different relations which are not a cyclic shift of each other or in one relation in two essentially different
places. The later means that the occurrences of this subword are not obtained by a shift of a period of
the corresponding relation. A straightforward way to generalize this for the ring case is to say that if
c ∈ F and we have two different polynomials p =

∑n1

j=1 αjaj + αc and q =
∑n2

j=1 βaj + βc, then c is a
small piece. However, it turns out that the this way does not work for our needs (see Section 1.9 with
examples). So, we need a special intuition in order to see what “essentially different places in relations”
means for rings. This is reflected in our Definition 1.1 of a small piece. This definition plays a central role
in the further argument.
Definition 1.1 Let c ∈M. Assume there exist two polynomials

p =

n1∑
j=1

αjaj + αa ∈ R, q =

n2∑
j=1

βjbj + βb ∈ R,

such that c is a subword of a and a subword of b. Namely,

a = â1câ2, b = b̂1cb̂2,

where â1, â2, b̂1, b̂2 are allowed to be empty. Assume that

b̂1â
−1
1 p = b̂1â

−1
1 (

n1∑
j=1

αjaj + αâ1câ2) =

n1∑
j=1

αj b̂1â
−1
1 aj + αb̂1câ2 /∈ R

(even after the cancellations ), or

pâ−12 b̂2 = (

n1∑
j=1

αjaj + αâ1câ2)â−12 b̂2 =

n1∑
j=1

αjaj â
−1
2 b̂2 + αâ1cb̂2 /∈ R

(even after the cancellations). Then the monomial c is called a small piece.
We denote the set of all small pieces by S. Clearly, S ⊆M. From the definition it follows that the set

S is closed under taking subwords. In particular, if the set S is non-empty, the empty word is always a
small piece. If the set S is turned out to be empty, then we still assume that the empty word is a small
piece.

Let u ∈ M. Then either u = p1 · · · pk, where p1, . . . , pk are small pieces, or u cannot be represented
as a product of small pieces. We introduce a measure on monomials of M (aka Λ-measure). We say that
Λ(u) = k if u can be represented as a product of small pieces and minimal possible number of small
pieces in such representation is equal to k. We say that Λ(u) = ∞ if u can not be represented as a
product of small pieces.

We fix a constant τ ∈ N, τ > 10.

Condition 2 (Small Cancellation Axiom) Assume p1, . . . , pn ∈ R and a linear combination
n∑

s=1
γsps

is non-zero after additive cancellations. Then there exists a monomial a in
n∑

s=1
γsps with a non-zero

coefficient after additive cancellations such that either a can not be represented as a product of small
pieces or every representation of a as a product of small pieces contains at least τ + 1 small pieces. That
is, Λ(a) > τ + 1, including Λ(a) =∞.
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Definition 1.2 Let p =
∑n

j=1 αjaj ∈ R. Then we call the monomials aj1 , aj2 , 1 6 j1, j2 6 n, incident
monomials (including the case aj1 = aj2). Recall that αj 6= 0, j = 1, . . . , n.

Now we introduce the last condition, we call it Isolation Axiom. Unlike two previous axioms this is
entirely a ring-theoretic condition. Here we use the notions of maximal occurrence of a monomial of M
and of overlap.

Let U be a word and Û be its subword. We call the triple that consists of U , Û and the position of Û
in U an occurrence of Û in U . In fact, we consider occurrences of the form a ∈M in U , that is U = LaR,
where L, R can be empty. Since a ∈ M, there exists a polynomial p ∈ R such that a is a monomial of
p. An overlap is defined as a common part of two occurrences. Under maximal occurrence we mean an
occurrence of a monomial of M which is not contained in a bigger such occurrence. We shall underline
that the a common part of two maximal occurrences is a small piece.

The complexity of formulation of Isolation Axiom may perflex the reader. This axiom works in the
transition from monomials to tensor products and, thus, to structure theory of rings with small cancella-
tion. It imposes essential constraints on rings under consideration. That is why we have chosen its weakest
form to make the corresponding class of rings wider. This resulted in a somewhat cumbersome definition.
Condition 3 (Isolation Axiom, left-sided) Let m1,m2, . . . ,mk be a sequence of monomials of M
such that m1 6= mk and mi,mi+1 are incident monomials for all i = 1, . . . , k − 1, and Λ(mi) > τ − 2 for
all i = 1, . . . , k. Let us take a monomial a ∈M with the following properties.

1. Λ(a) > τ − 2;
2. am1, amk /∈M, am1 has no cancellations, amk has no cancellations;
3. m1 is a maximal occurrence in am1, mk is a maximal occurrence in amk.
4. Let ap1(a) be a maximal occurrence in am1 that contains a, let apk(a) be a maximal occurrence in
amk that contains a (that is, p1(a) is the overlap of ap1(a) and m1, p1(a) may be empty, and pk(a)
is the overlap of apk(a) and mk, pk(a) may be empty). Assume that there exist monomials l, l′ ∈M
such that
— l, l′ are small pieces;
— la, l′a ∈M, la has no cancellations, l′a has no cancellations;
— there exists a sequence of monomials b1, . . . , bn from M such that b1 = lap1(a), bn = l′apk(a),

bi, bi+1 are incident monomials for all i = 1, . . . , n− 1, and Λ(bi) > τ − 2 for all i = 1, . . . , n.

m1

p1(a)

l
a

mk

pk(a)

l′
a

Notice that since a is not a small piece, then we get that lap1(a), l′apk(a) ∈ M, and lap1(a) is a
maximal occurrence in lap1(a)m1, l′apk(a) is a maximal occurrence in l′apk(a)mk.

Then we require that p1(a)
−1 ·m1 6= pk(a)

−1 ·mk for every such a ∈M.
The right-sided Isolation Axiom is formulated symmetrically.

Let us notice that in the examples that we consider (see Section 1.9 and [2]) we have special properties
of the list of defining relations R that help us to check Isolation Axiom. In particular, in these cases it is
enough to check Isolation Axiom for sequences of monomials m1, . . . ,mk of length k = 2 and this yields
Isolation Axiom for sequences of monomials of arbitrary length.
Definition 1.3 We say that A = kF/I(R) is C(τ)-small cancellation ring if it satisfies Compatibility
Axiom, Small Cancellation Axiom (with respect to τ+1 small pieces) and at least one of Isolation Axioms.

In the further argument we assume that τ > 10 (recall that in a small cancellation group we require
that every relator is a product of not less than 7 small pieces, see [13]).
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1.4. Towards a filtration on kF : multi-turns, replacements, virtual members of the chart and numerical
characteristics of monomials

All the way further we will study the ring A = kF/I, with R subject to three small cancellation
conditions.

Now we indicate a ring-theoretic counterpart of the notion of turn.
Definition 1.4 Let U be a monomial. We define the chart of U as the set of all maximal occurrences of
monomials of M in U and call them elements of the chart. The elements of the chart mi ∈M such that
Λ(mi) > τ are called members of the chart.
So, we distinguish between elements and members of the chart. Namely, we count as members of the chart
only big enough occurrences of monomials from M. Now we define a multi-turn that is a ring-theoretic
analog of a group turn.

In the case of groups we have the following situation. Let G be a small cancellation group, Ri = M1M
−1
2

be a relator of its small cancellation presentation. Assume LM1R and LM2R are two words, then the
transition from LM1R to LM2R

L

M2

M1

R

is called a turn of an occurrence of the subrelation M1 (to its complement M2). Analogously, in our case
we define a multi-turn.

Definition 1.5 Let p =
n∑

j=1

αjaj ∈ R. For every h = 1, . . . , n we call the transition

ah 7−→
n∑

j=1,j 6=h

(−α−1h αjaj),

an elementary multi-turn of ah with respect to p.

Let p =
n∑

j=1

αjaj ∈ R. Let ah be a maximal occurrence in U , U = LahR. The transformation

U = LahR 7−→
n∑

j=0,j 6=h

(−α−1h αjLajR)

with the further cancellations if there are any, is called a multi-turn of the occurrence ah in U that comes
from an elementary multi-turn ah 7→

∑n
j=1,j 6=h(−α−1h αjaj). Obviously,

U −
n∑

j=0,j 6=h

(−α−1h αjLajR) = α−1h LpR ∈ I.

In this case the polynomial LpR =
∑n

j=1 αjLajR (after the cancellations) is called a layout of the multi-
turn.

In what follows we undertake a very detailed study of the influence of multi-turns on charts of the
monomials. We will trace transformation of a chart under the given multi-turn or set of multi-turns. We
also take care of transformations of individual monomials Uh = LahR 7→ Uj = LajR called replacements.

Applying the multi-turns of ah in Uh = LahR we arrive at monomials Uj = LajR. We describe precisely
how the corresponding maximal occurrences in Uj look like comparatively to maximal occurrences in Uh .
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We consider three variants for the resulting monomial Uj = LajR: aj is not a small piece; aj is a small
piece; aj is 1. We show that in the first case the structure of the chart remains almost stable after a
multi-turn, in the second case the replacement ah by aj can cause merging and restructuring of the chart,
and in the third case strong cancellations resulting in complete modification of the chart are possible.

We produce the full list of all appearing arrangements of maximal occurrences. The calculations are
based on thorough analysis of all combinatorial possibilities. This list is in fact a Theorem that provides
ground to further considerations towards a filtration on kF .

Our goal is constructing a special ordering on monomials. This ordering is far from being usual DegLex-
order. In more precise terms our objective is to build numerical characteristic of a chart that allows to
define a filtration on monomials which behaves well with respect to replacements of the monomials caused
by multi-turns.

On the way we have to treat several caveats. When we define members of a chart in the terms of their
Λ-measure, such definition is not stable enough under multi-turns. So, we define a quite delicate notion of
a virtual member of a chart. Virtual members of the chart of a monomial U are those maximal occurrences
b which originally are not necessarily members of the chart but they are rather big with Λ(b) > τ −2, and
after a series of admissible replacements of maximal occurrences by incident monomials become members
of the chart (for precise definitions see [3], Definition 6.2 of an admissible replacement and Definition 6.5
of a virtual member of the chart).

Definitions of admissible replacements and virtual members of the chart takes much of preparatory
work. So, in order to give the reader a conceptual understanding of these notions we prefer to give here
a number of illustrative examples instead of precise definitions.

First of all we give an example which illuminates the notion of an admissible replacement. Let Uh be
a monomial, ah be a maximal occurrence in Uh, Uh = LahR, and ah and aj be incident monomials.
We consider the replacement of ah to aj in Uh. Then the resulting monomial is LajR. The important
particular case of an admissible replacement in Uh that illustrates the whole idea is the replacement of
ah by aj such that Λ(ah) > τ − 2 and Λ(aj) > 3 (that is, ah and aj are big enough, and aj can be either
of bigger, or smaller, or of the same Λ-measure as ah). Roughly speaking, all admissible replacements are
of such form.

Now we are in a position to illustrate the notion of a virtual member of the chart. Let a monomial
U = LbR be given, where b is a maximal occurrence in U . Assume Λ(b) = τ − 1, so b is not a member
of the chart of U . Let U = LbahR

′ where ah is a maximal occurrence in U . Assume ah and aj are
incident monomials, Λ(ah) > τ − 2, Λ(aj) > 3. That is, the replacement of ah by aj in U is an admissible
replacement. Let b′ be a maximal occurrence that contains b in the resulting monomial LbajR

′. It can
happen that b′ prolongs b to the right. Because of our definition of a small piece, b′ can prolong b to the
right only by a small piece. So, it is possible that Λ(b′) = Λ(b) + 1 = τ . Then b′ is a member of the chart
of LbajR

′. In this case b is a virtual member of the chart of U . Graphically this example looks as follows.

L R′b ah

L R′b

b′

aj

The same effect can take place not only locally. Namely, let U = Lba
(1)
h a

(2)
h . . . a

(t)
h R′, where Λ(b) =

τ − 1, Λ(a
(i)
h ) = τ − 3 for 1 6 i 6 t− 1 and Λ(a

(t)
h ) > τ − 2. Let a

(t)
h and a

(t)
j be incident monomials, and

Λ(a
(t)
j ) > 3. We make the replacement of a

(t)
h to a

(t)
j in U , let U ′ be the resulting monomial. Assume the

maximal occurrence ã
(t−1)
h that prolongs a

(t−1)
h in the resulting monomial U ′ = Lba

(1)
h a

(2)
h . . . a

(t)
j R′ from

the right becomes of Λ-measure equal to τ − 2.
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U

L R′b a
(1)
h a

(t−1)
h a

(t)
h. . .

U ′ L R′b a
(1)
h a

(t−1)
h a

(t)
j

ã
(t−1)
h â

(t)
j

. . .

Assume it is possible to find an admissible replacement of ã
(t−1)
h to ã

(t−1)
j in U ′ such that Λ(ã

(t−2)
h ) = τ−2,

where ã
(t−2)
h is the maximal occurrence that prolongs a

(t−2)
h in the resulting monomial of this replacement.

Move from right to left closer and closer to b keeping doing admissible replacements of such kind. Suppose

that as a result of the last admissible replacement of ã
(1)
h to ã

(1)
j the maximal occurrence b′ that contains

b in the last resulting monomial is of Λ-measure equal to τ . That is, b′ is a member of the chart of the
last resulting monomial in the sequence. Then b is also a virtual member of the chart of U .

U

L R′b a
(1)
h a

(t)
h. . .

L R′b

b′

ã
(1)
j â

(t)
j

. . .

Roughly speaking, all virtual members of the chart of U are defined with the use of a process similar
to the above done either from the right side of b, or from the left side of b, or both from the left and the
right of b.

Let U be a monomial. Consider subsets ofM(U) that cover the same letters in U as the wholeM(U).
A covering of such type consisting of the smallest number of elements is called a minimal covering. Of
course, such covering is not, necessarily, unique.

Given a monomial U , we define MinCov(U) to be the number of elements in a minimal covering of
U . Denote the number of virtual members of the chart of U by NVirt(U). It is clear that NVirt(U) 6
MinCov(U).

The next proposition aggregates all calculations beforehand.
Proposition 1.6 Assume Uh is a monomial, ah is a virtual member of the chart of Uh. Let ah and aj be
incident monomials. Consider the replacement ah 7→ aj in Uh. Let Uj be the resulting monomial. If aj is a
virtual member of the chart of Uj, then MinCov(Uh) = MinCov(Uj) and NVirt(Uh) = NVirt(Uj). If aj is not
a virtual member of the chart of Uj, then either MinCov(Uj) < MinCov(Uh), or MinCov(Uj) = MinCov(Uh)
but NVirt(Uj) < NVirt(Uh).
Definition 1.7 Let U be a monomial. We introduce f -characteristic U by the rule:

f(U) = (MinCov(U),NVirt(U))).

If U1 and U2 are monomials, we say that f(U1) < f(U2) if and only if either MinCov(U1) < MinCov(U2),
or MinCov(U1) = MinCov(U2) but NVirt(U1) < NVirt(U2).

We define derived monomials of U as the result of applying of a sequence of replacements of virtual
members of the chart by incident monomials, starting from U .
Lemma 1.8 Assume U and Z are monomials, Z is a derived monomial of U . Then f(Z) 6 f(U).
Moreover, f(Z) < f(U) if and only if in the corresponding sequence of replacements there exists at least
one replacement of the form LahR 7→ LajR such that ah is a virtual member of the chart of LahR and
aj is not a virtual member of the chart of LajR.

The introduced f -characteristic gives rise to a certain function t on natural numbers defined as follows.
We put t(0) = (0, 0). Assume t(n) = (r, s), then we put
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t(n+ 1) =

 (r, s+ 1) if r > s,

(r + 1, 0) if r = s.

Definition 1.9 We define an increasing filtration on kF by the rule:

Fn(kF) = 〈Z | Z ∈ F , f(Z) 6 t(n)〉.

That is, the space Fn(kF) is generated by all monomials with f -characteristics not greater than t(n).

1.5. Derived monomials and dependencies

We need a set of new notions. Let U be a monomial. By 〈U〉d we denote a linear subspace of Fn(kF)
generated by all derived monomials of U . By L〈U〉d we denote the subspace generated by all derived mono-
mials of U with f -characteristic smaller than f(U). The next principal object is the set of dependencies,
defined as follogradingws. Suppose Y is a subspace of kF linearly generated by a set of monomials and
closed under taking derived monomials. We take the set of all layouts of multi-turns of virtual members
of the chart of monomials of Y and look at its linear envelope Dp(Y ), which is our set of dependencies
related to Y . We prove that Dp(kF) = I.

The key statement is the following Proposition which describes nice interaction between dependencies
and filtration:
Proposition 1.10

Dp(Fn(kF)) ∩ Fn−1(kF) = Dp(Fn−1(kF)).

This proposition yields
Proposition 1.11 Suppose X,Y are subspaces of kF generated by monomials and closed under taking
derived monomials, Y ⊆ X. Then Dp(X) ∩ Y = Dp(Y ).
Proof of Proposition 1.10 is based on Main Lemma. Namely,
Lemma 1.12 (Main Lemma) Let U be an arbitrary monomial, U ∈ Fn(kF) \ Fn−1(kF). Then

Dp〈U〉d ∩ L〈U〉d ⊆ Dp(Fn−1(kF)).

Here is the place to make some comments. Main Lemma says that there is a natural interaction between
dependencies and reduction of f -characteristic, and this interaction causes descending in the filtration.
This yields, in essence, that in the quotient algebra kF/I there are no unexpected linear dependencies.
But, first, one has to explain what are the expected linear dependencies.

Consider the filtration Fn(kF), n > 0, on kF defined as above. Let U ∈ Fn(kF) be a monomial
such that its chart has m virtual members u(i), U = L(i)u(i)R(i), i = 1, 2, . . . ,m. For any p ∈ R of the
form p = αu(i) +

∑k
j=1 αjaj , α 6= 0, we consider the polynomial L(i)pR(i) ∈ kF . All such polynomials

obviously belong to Fn(kF) ∩ I and regarded as expected dependencies. We shall emphasize that in
case the relations R do not satisfy special conditions, the term Fn(kF) ∩ I may contain also arbitrary
unexpected dependencies.

In fact, Proposition 1.11 claims that the opposite is also true. In more detail, Proposition 1.11 implies
that Fn(kF) ∩ I = Fn(kF) ∩ Dp(kF) = Dp(Fn(kF)). That is, Fn(kF) ∩ I is linearly generated by
expected linear dependencies related to Fn(kF). This can be restated as follows.
Theorem 1.13 Fn(kF) ∩ I is linearly spanned by all polynomials of the form L(i)pR(i), i = 1, . . . ,m,
for all monomials U ∈ Fn(kF) and polynomials p ∈ R as above, n > 0.
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1.6. Grading on small cancellation ring

First of all, it can be seen that Dp(kF) = I. The quotient space kF/I naturally inherits the filtration
from kF , namely,

Fn(kF/I) = (Fn(kF) + Dp(kF))/Dp(kF) = (Fn(kF) + I)/I.

We define a grading on kF/I by the rule:

Gr(kF/I) =

∞⊕
n=0

Grn(kF/I) =

∞⊕
n=0

Fn(kF/I)/Fn−1(kF/I).

The next theorem establishes the compatibility of the filtration and the corresponding grading on kF
with the space of dependencies Dp(kF). It states that
Theorem 1.14

Grn(kF/I) ∼= Fn(kF)/(Dp(Fn(kF)) + Fn−1(kF)).

1.7. Non-triviality of kF/I. Construction of a basis of kF/I

Lemma 1.15 Let {Vi}i∈I be all different spaces {〈Z〉d | Z ∈ F}. Then not all spaces Vi/(Dp(Vi)+L(Vi)),
i ∈ I, are trivial. Namely, the space 〈X〉d/(Dp〈X〉d + L〈X〉d), where X is a monomial with no virtual
members of the chart, is always non-trivial, and of dimension 1. In particular, 〈1〉d/(Dp〈1〉d +L〈1〉d) 6= 0,
where 1 is the empty word.

Proof. Let X be a monomial with no virtual members of the chart. Then there are no derived monomials
of X except X itself, and there are no multi-turns of virtual members of the chart of X. So, by definition,
〈X〉d is linearly generated by X and, therefore, is of dimension 1; Dp〈X〉d = 0; L〈X〉d = 0. Therefore,

〈X〉d/(Dp〈X〉d + L〈X〉d) = 〈X〉d = 〈X〉 6= 0,

and 〈X〉d/(Dp〈X〉d + L〈X〉d) is of dimension 1.
By definition, the empty word 1 is a small piece. Therefore, 1 has no virtual members of the chart. So,

it follows from the above that 〈1〉d/(Dp〈1〉d + L〈1〉d) 6= 0.
Now we can prove that the quotient ring kF/I is non-trivial.

Corollary 1.16 The quotient ring kF/I is non-trivial.
Proof. Let U be a monomial. Consider the space 〈U〉d and the corresponding subspace in kF/I, namely,
(〈U〉d + I)/I. From the isomorphism theorem it follows that

(〈U〉d + I)/I ∼= 〈U〉d/(〈U〉d ∩ I).

Recall that I = Dp(kF). From Proposition 1.11 it follows that 〈U〉d ∩Dp(kF) = Dp〈U〉d. Hence,

(〈U〉d + I)/I ∼= 〈U〉d/Dp〈U〉d.

By Lemma 1.15, there exists a space 〈U0〉d, U0 ∈ F , such that 〈U0〉d/(Dp〈U0〉d + L〈U0〉d) 6= 0. Hence,
we see that 〈U0〉d/Dp〈U0〉d 6= 0 and (〈U0〉d + I)/I 6= 0. So, there exists a non-trivial subspace of kF/I.
Thus, kF/I itself is non-trivial.

Now we are able, at last, to describe a basis of kF/I. This is done in two steps. First, we construct a
basis for non-trivial graded components of our filtration on kF/I:

Grn(kF/I) = Fn(kF/I)/Fn−1(kF/I).

Given n we consider the set of spaces {〈Z〉d | Z ∈ F , Z ∈ Fn(kF)\Fn−1(kF)}, such that 〈Z〉d/(Dp〈Z〉d+

L〈Z〉d) 6= 0. Let {V (n)
i }i∈I(n) be all different spaces from this set. Then,
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Grn(kF/I) ∼=
⊕

i∈I(n)

V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )).

Assume {W (i,n)

j }j is a basis of V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )), i ∈ I(n). Let W

(i,n)
j ∈ V (n)

i be an arbitrary

representative of the coset W
(i,n)

j . Then⋃
i∈I(n)

{
W

(i,n)
j + I + Fn−1(kF/I)

}
j

is a basis of Grn(kF/I).
Finally, the next Theorem describes a basis of kF/I. We have

Theorem 1.17 Let {Vi}i∈I be all different spaces {〈Z〉d | Z ∈ F}. Then

kF/I ∼=
⊕
i∈I

Vi/(Dp(Vi) + L(Vi)),

as vector spaces, and the right-hand side is explicitly described via a tensor product of subspaces.

Assume {W (i)

j }j is a basis of Vi/(Dp(Vi) + L(Vi)), i ∈ I. Let W
(i)
j ∈ Vi be an arbitrary representative

of the coset W
(i)

j . Then ⋃
i∈I

{
W

(i)
j + I

}
j

is a basis of kF/I.
Remark 1.18 We shall informally explain the essence of Isolation axioms. Given a monomial U , consider
the set of its non-degenerate derived monomials (see Subsection 1.5). Every derived monomial can be
imagined as a result of a sequence of replacements of virtual members of a chart by incident monomials.
If two essentially different sequences of replacements result in one and the same derived monomial, the
exotic dependencies appear in the ideal I. Isolation Axiom guarantees that essentially different sequences
of replacements result in different monomials. Hence, exotic dependencies are not present in I.

1.8. Algorithmic properties

We study algorithmic properties of the constructed small cancellation ring. We show that they are as
expected to be for small cancellation objects and similar in a sense to the ones valid for small cancellation
groups. However, in the ring case the essential peculiarities arise in many places. Recall that small
cancellation groups enjoy Dehn’s algorithm [13]. In this section we define and study a corresponding
greedy algorithm for rings.

Let a ring A = kF/I with small cancellation condition be given. We extend our set of relations R
to a certain additive closure Add(R). It is important that R = Add(R) for natural examples of the
ring A considered below. We define a linear order on all monomials, based on f -characteristic and other
considerations, and denote it by <f . Then, given the order <f and the set Add(R), we define a special
greedy algorithm (with external source of knowledge) for small cancellation rings. This algorithm has the
similar meaning as Dehn’s algorithm does for the case of groups. Denote it by GreedyAlg(<f ,Add(R)).

This algorithm works as follows. Let
∑k

i=1 γiWi ∈ kF , γi 6= 0, and let Wi0 be its highest monomial
with respect to the order <f . Then we try to make the highest monomial smaller using a multi-turn
of a virtual member of the chart of Wi0 . Namely, we take a polynomial p =

∑n
j=1 αjLajR such that∑n

j=1 αjaj ∈ Add(R), Wi0 = LahR is its highest monomial and ah is a virtual member of the chart of
Wi0 , and make a transformation
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k∑
i=1

γiWi 7−→
k∑

i=1

γiWi − γα−1h p.

Then the highest monomial of
∑k

i=1 γiWi − γα−1h p is strictly smaller than Wi0 because Wi0 is cancelled
out. If there is no suitable polynomial in Add(R), then the algorithm terminates. The external source of
knowledge answers if there exist appropriate polynomials in Add(R) and in case they exist it gives such
a polynomial.

Recall that given a small cancellation group G = 〈X | RG〉, a word W from a free group is equal to 1 in
G if and only if Dehn’s algorithm, starting from W , terminates at 1, [13]. Our Theorem 1.19 establishes
the similar properties in much more complicated situation of rings.

Namely, assume W1, . . . ,Wk are different monomials. We take an element
∑k

i=1 γiWi ∈ kF , γi 6= 0.
Theorem 1.19 The following statements are equivalent:
• some branch of the algorithm GreedyAlg(<f ,Add(R)), starting from

∑k
i=1 γiWi, terminates at 0;

•
∑k

i=1 γiWi ∈ I;

• every branch of the algorithm GreedyAlg(<f ,Add(R)), starting from
∑k

i=1 γiWi, terminates at 0.
Corollary 1.20 We have
• GreedyAlg(<f ,Add(R)) solves the Ideal Membership Problem for I,
• Add(R) is a Gröbner basis of the ideal I with respect to monomial ordering <f .

1.9. Examples

Example A. First of all , let us notice that the group algebra of a small cancellation group satisfying
a small cancellation condition with C(m) for m > 22 (see [13]) is a small cancellation ring (see [3],
Section 11.1, for details).

Example B. Let us consider another example of a small cancellation ring, which is studied in detail
in [2] and in [3], Section 11.2. See also [2] regarding the motivation for studying such rings.

Let w be a primitive (not a proper power) cyclically reduced word. Let x and y be letters from the set
of free generators of F such that the initial and the final letter of w and w−1 differ from x±1 and y±1.
So, we need a free group F with at least 4 free generators. Take the word

v = xn1yxn1+1y · · ·xn2y, n1, n2 ∈ N,

such that n1 − |w| > 0 and n2 − n1 > 21. We consider kF/I such that I = 〈v−1 − 1− w〉i.
The word v exhibits small cancellation properties, because a subword of vm, m ∈ Z, containing at least

two letters y±1, appears in vm uniquely modulo a shift by multiple of |v|. So, it seems natural to have
the same non-small pieces in a sense of Definition 1.1.

Notice that R = {v−1−1−w} itself does not satisfy Axioms 1—3. However, it is possible to extend the
set R to R1 such that R1 generates the same ideal and satisfies Axioms 1—3. Namely, we consider non-
commutative Laurent polynomials P (x1, x2) such that P ((1+t)−1, t) = 0. One can show that P (v, w) ∈ I.
Then R1 = {γA·P (v, w)·B | γ ∈ k}, where P runs through Laurent polynomials with the above property,
a monomial A runs through the set

{vf , v−1i , wf , w
−1
i |

vi is a prefix of v, vf is a suffix of v,

wi is a prefix of w,wf is a suffix of w},
and a monomial B runs through the similar set {vi, v−1f , wi, w

−1
f }. Then one can prove that every subword

of vm, m ∈ Z, containing at least two letters y±1, is a non-small piece with respect to R1 (see [3],
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Section 11.2). Notice that v can appear in two different polynomials from R1 but naturally v is not a
small piece. So, straightforward intuition, which we mention in Section 1.3, does not work for our needs.

In groups we represent defining relations as a cyclic words and they correspond to closed paths in a
Cayley graph. We do not have Cayley graphs for rings, however, we can produce a similar illustration for
our case. Namely, we consider a graph of the form

v

O

w

and call it v-figure. Then every relation from R1 corresponds to a collection of paths in this graph with a
fixed initial point and a fixed final point. We show that a monomial is not a small piece with respect to R1

if and only if it corresponds to a unique path in the above graph (see [3], Section 11.2, Proposition 11.7).
This is similar to the group case, where a non small piece appears uniquely in the cyclic path that
corresponds to a relation (modulo a period of the relation).

Now we give some comment regarding Isolation Axiom. Roughly speaking, Isolation Axiom says that
incident monomials and monomials that are connected by a sequence of incident monomials have a
significant difference. Namely, they can not differ only by small pieces at their ends. Notice, that for
groups such a property is rather trivial (see [3], Section 11.1, Part 3). In the current case monomials
that are considered in Isolation Axiom correspond to paths in v-figure with the same initial points and
the same final points. So, we check it only for such pairs of monomials. It could be verified via direct
calculation that uses the explicit form of our relations (see [3], Section 11.2, Part 3). Let us also note that
for more complicated defining relations such a verification can cause significant difficulties.
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