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Abstract. It was proven in [P11] that to each variety of algebras ©® and each algebra
G € O a special O-algebraic geometry over GG is associated. Classic algebraic geometry
is based, by definition, on the variety of associative commutative algebras with identity
element over a given field P. This variety we call classic (over P) and denote Var — P.

Let, ©® be the variety of associative commutative rings with identity element, and a
field P be an algebra in ©. Consider a new variety O(P), whose objects have the form
h: P — H , where H € © and h is a morphism in ©. Here, H is an extension of the field
P defined by the injection h. The field P plays the role of a constant field. It is easy to
see that Var — P coincides with O(P).

One can proceed in the similar way from the arbitrary variety of algebras © and
distinguish an algebra G to be an algebra of constants. We come to a new variety 0(G).
Elements of G are additional nullary operations, which mayv be not included in the signature
of the variety ©.

Algebraic geometry in such ©(G) is the subject of this paper. The main results of the

paper are the theorems 7, 11, 14.
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§1. Universal algebraic geometry
1. Basic notions Let © be a variety of algebras, X a finite set and W = W(X) the
free in © algebra over X. Consider an arbitrary algebra G € ©. The set Hom(W,G) is
viewed as an affine space whose points are homomorphisms.
Take a set of points A in Hom(W,G) and a binary relation 7' in . The Galois
correspondence between such A and T is defined by the rule
A=T ={p|T c Keru}
T=A= ﬂ Kerp
peEA
Here, Kerp denotes the kernel of a homomorphism p: W — G. This kernel is a congruence
in W. Let us look at Keru from the different point of view.
Given free algebra W, consider all formulas of the type w = w’, w,w’ € W. For every
G € 0O, each formula of such type can be treated as an equation, which is denoted by
w = w’. Every solution of an equation w = w’ is a homomorphism pu: W — G (a point in
Hom(W,G)), such that w* = w’* in G. Thus, Kerp can be viewed as a collection of all

equations w = w’, for which g is a solution. In the notations above we have
Kerp = {u}'.

Binary relation T also can be treated as a system of equations. Having the Galois corre-
spondence, one can define the Galois closure.

A closed set A, A =T, is called an affine algebraic variety over the algebra G. Closed
relation T, T = A’| is a G-closed congruence in W. For every A its closure is A” = (A’)’,
and for every T we have T = (T"). If T is a congruence in W, then the universal Hilbert
Nullstelensatz [P13] gives the relation between T and T".

2. Lattices and categories of algebraic varieties

Intersection A N B of algebraic varieties A and B is also an algebraic variety. Union
AU B of algebraic varieties A and B is not necessarily an algebraic variety. If A = Ty,
B =T}, then AU B C (T; NTy)". Definition 1 An algebra G € O is called stable in O, if
for every W = W(X) and every Ty and T5 there is the equality

(TyNTy) =Ty UT,,
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where ’ is taken on G, T} and T, are G-closed relations in W.

This means, that G is stable, if the union of algebraic varieties over GG is an algebraic
variety.

If G is stable then every affine space Hom(W,G) can be treated as a topological space
in Zarisky topology. In this topology the closed sets are algebraic varieties.

For every algebra G and every W = W (X) denote by
Alvg (W)

the set of all algebraic varieties in Hom(W, G). The set Alvg(W) can be considered as a

lattice, where the union AUB of two varieties A and B is defined by
AUB = (Au B)".

The lattice Clg(W) of all G-closed congruences in W is defined in a similar way. The
lattices Alvg(W) and Clg(W) are antiisomorphic. Both of them are distributive if G is
stable.

Algebras G and Gy are called equivalent, if for every W = W (X),

Cle,(W) = Clg, (W).

For every variety of algebras © denote by O the category of all free in © algebras W =
W(X) with finite X. This is a full subcategory in ©. Then we can reformulate the

definition above, introducing the functors:
Alvg: 0" — Set, and Clg: 0 — Set.

Algebras G; and Gy are equivalent if the functors Clg, and Clg, coincide.
If G; and G5 are equivalent, then Var G, = Var Gs.
Algebras G and G are called (geometrically) similar, if there exists an isomorphism

of categories

©: (Var G1)° — (Var Gy)°,

which induces the isomorphism of the corresponding functors Clg, and Clg, .

If Var Gy = Var Gy and ¢ = 1, then (G; and GGy are equivalent.

4



Now consider the categories Kg(G) and Cg(G). The second category is the full
subcategory of ©, whose objects are algebras of the form W (X)/T, where T is a G-closed
congruence in W. Objects of Kg(G) are algebraic varieties (A, X'). Here X shows that A
is a variety in the space Hom (W (X),G). Morphisms in Kg(G) have the form

(5,8): (A, X) — (B,Y),
where
s:W(Y) — W(X)

is a morphism in the category 0%, 5:4 — B is induced by s. We have the following

commutative diagram

W(Y) ——— W(X)

o) Jix

W(Y)/B — W(X)/A’

Here, py, pux are natural homomorphisms and 5 is a morphism in Cg(G), which is dual

to 5: A — B. The categories Kg(G) and Cg(G) are dually isomorphic by the transition
(A, X) = W(X)/A.

Algebras G; and Gy are called categorically equivalent, if the categories Kgo(G1) and
Ko(G3) are isomorphic. One of the main problems is to study relations between equiva-
lence, similarity and categorical equivalence.

In the classical case for the ground field P and its extension L the corresponding
category of algebraic varieties is denoted by Kp(L). See also [Hart], [Schal, [SZ].

3. Some information

The category Kg(G) is a geometrical invariant of the algebra G. This invariant
“measures” possibilities of (G in respect to solution in it systems of equations of the form
w = w'. In other words, we can consider the category Kg(G) as a measure of “algebraic
closedness” of the algebra G. Algebras G; and Gy have equal possibilities if Kg(G1) and
Ko(G3) are isomorphic, i.e. G7 and Gy are categorically equivalent. It is easy to see
that if algebras G; and (G5 are equivalent, then they are categorically equivalent, i.e. they

have equal possibilities in the sense above. Besides, if G; and (Go are equivalent, then for
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every W = W(X) the lattices Alvg, (W) and Alvg, (W) are isomorphic. In particular, if
one of the algebras, say, G is stable, then both the lattices Alvg, (W) and Alvg, (W) are
distributive. However, we cannot state that if G; and (G are equivalent, and (1 is stable,
then Gy is stable (see Section 3).

As we have noticed, equivalence of algebras G; and G5 implies their similarity. Let us
go back to isomorphism of the categories Kg(G1) and Kgo(G3). An isomorphism of these
categories is called correct isomorphism, if it deals with both the components s and s in
the definition of categorical morphisms. Not every isomorphism is correct. The following
theorem ([P12]) takes place.

Categories Ko(G1) and Kg(G3) are correctly isomorphic if and only if the algebras
(G1 and G5 are similar.

In particular, similarity implies categorical equivalence. In some cases the notions of
similarity and equivalence coincide.

Let us note, at last, that if G is stable, then the functor Alvg is a functor from the
category ©° to the category of distributive lattices.

§2. Variety of algebras with the given algebra of constants

1. Definitions Fix a variety of algebras ©. Consider the category C:), whose objects are
morphisms in © of the form h:G — H. We call h embedding, while & is not necessarily
an injection. Morphisms in O are represented by diagrams

Gy e Hy
SO
ha
Gy —— Hs
Morphisms in O we consider also as pairs (o, u) with pairwise multiplication. This rule

follows from the commutativity of the diagrams

Gy M 1y

gll lm

Gy 2+ H,

ng lm

Gy -2, Hy

For an arbitrary G € O consider the full subcategory O(G) in 6 whose objects are embed-
dings h: G — H with the fixed G. The algebra GG plays the role of algebra of constants.
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The objects of ©(G) are called G-algebras or algebras over G. Morphisms in ©(G) have

the form .,
G —+ H,

ha
G —— H
where o is an endomorphism of the constant algebra G.

Morphisms of such form are called semimorphisms of the new category, which is also

denoted by ©(G). Morphisms in this new O(G) have the form

G-, g

N

or, what is the same,
G L,. H,

idg=1| |

G "2 H,
We consider this new ©(G) with fixed G.

If the algebra G is defined by generators and relators, the category ©(G) can be
considered as a variety. Generators are treated as additional nullary operations, while
defining relations are added to identities of the variety ©. The varieties ©(G) are different,
if G is defined in different way by generators and relators. We will assume that all elements
of G are generators.

Given a set of variables X, the free in ©(G) algebra W = W(X) is the free in ©
product

W =G xWy(X),

where Wy is the free in © algebra over X. The corresponding embedding is
iG: G —Gx* M”Tg.

We have also
ipvul M”Tg — G * M”Tg.
For every pg: Wy — G we have u: W — G, such that
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W,

G Wy G Wy

\/=\/

In particular, the embeddmg h = i¢ is an injection.

In what follows we proceed from varieties of the type ©(G), and consider algebraic
geometry in a variety ©(G) over a G-algebra H from O(G).
2. Additional remarks on varieties O(G)

Let the homomorphism
G L,. H,

)
Hy
be given and Kerp = T' be its kernel in H;. Consider the homomorphism hy = hypg: G —
Hy/T defined by

G—>H1 ——>H1/T

Such hg is considered as a factor embedding by the congruence 7', which assumed to be a

congruence of G-algebra H,. We have

G-M.mg e, gyT

H/

Hy

o

with the injection pq. This gives

Hy)T

\/

Thus, congruences of algebras H in © are, at the same time, congruences of GG-algebras
H. It is easy to see, that a subalgebra of G-algebra H with the embedding h: G — H is
the subalgebra Hy in H, which contains I'm h. Correspondingly one can define

hi = h:G — H;.
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Cartesian and free products in ©(G) are constructed naturally. Namely, fix a set I. For
every a € I there is G-algebra h,:G — H,, H, € ©. Let H = [][ H, be the Cartesian

product in © and w,: H — H, be the corresponding projections. Define h: G — H by the

hma

rule g"(a) = g"~ = g"™=, g € G. We have the commutative diagram

G-—l.H

|

H,
and 7, are morphisms in O(G). Check that we obtained a Cartesian product in the

category O(G). Take a G-algebra f:G — F and let the homomorphisms

a1, F

N

be given. The following diagram

takes place in ©. We want to make this diagram commutative in ©(G). It suffices to

consider the commutative diagram

ha

where h: G — H, v,:F — H,. Now suppose Gy is a subalgebra in G. Then the free
algebras in ©(Gy) and O(G) are G * Wy(X) and G * Wy(X) respectively. The second one
can be presented as an amalgamated product GG éku(Gg %« Wy(X)). In this situation the part
Gy of constants from G is already included in the signature of the variety ©(Gy).

3. Examples

Let © be the variety of all commutative and associative rings with unit and P be a
field. Consider ©(P) and Var — P. If H is an algebra over the field P, 1 is its unit, then
for every A € P take A" = \ - 1. This gives embedding h: P — H, where H is considered

as H € ©. Let now h: P — H be an embedding of rings. For every A € P and every
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a € H define A\a = A" -a. If a = 1 then A1 = A" -1 = A\". Note that h is an injection,
since 1 is introduced in the signature. One can check that such Aa defines a structure of
P-algebra on H.
Let now p: Hy — Hs be a homomorphism of P-algebras. For every A € Pand a € H
we have (Aa)* = Aa*. For a = 1 we have (\-1)# = X - 1#, N"# = X"z and thus
P H
b
Hy
If, on the other hand, the diagram above holds, then A"1# = A2 \ € P, and for every

a € Hy; we have

(Aa)H = (A" g)t = Nk gl = N2 gkt = \at.

Thus, the varieties O(P) and Var — P can be identified.

Let now Z[X] be the ring of polynomials over Z, which is the free ring in ©, and P[X]
be the algebra of polynomials over P, which is free in Var — P. Consider the presentation
P[X] = P+Z[X]. We have embeddings i¢; : P — P*Z[X]and iz x) = m: Z[X] — P*Z[X].
The first one is always injection. If charP = 0 then 7 is injection too. If char P = p then
Kerm is the ideal I in Z[X], consisting of all polynomials with the coefficients, dividing p.
In this case the free product P % Z[X] is presented as P * Z,[X].

Let us give one remark about semimorphisms in this example.

Consider the commutative diagram
Py
.
P, g,
then, for A € P we have \"# = "2 Let now a € H;. Then (Aa)* = (\'a)* =
Ak gt = \9h2 . g = X\?qH. This means that (Aa)* = A\%a*.

We can also consider the situation when © consists of not necessarily commutative
rings. In this case in order to get the variety of P-algebras, also not necessarilyv commu-
tative, we have to take embeddings h: P — H, such that I'm(h) lies in the center of H. If
this condition is not fulfilled, then we get another variety over P with A(ab) = (A(a))b but

not necessarily a(Ab). In this way one can consider algebras over skew fields.
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The notion of G-algebra has been considered in [BMR] and [P11,2,3].

§3. Stable algebras

1. Multioperator groups

Every field P is stable in the variety Var— P. On the other hand, commutative groups
are not stable. Property being stable is connected with the idea of anticommutativity. The
last notion can be well formulated for multioperator groups (£2-groups).

Recall that multioperator group is a group, not necessarily commutative, with the
operation written additively, which is endowed, possibly, with some additional signature
(). Rings, groups and Lie algebras are 2-groups.

In every (-group its zero element is an {2-subgroup. Congruences of (2-groups are
realized by ideals. In rings these are usual ideals, in groups we get normal subgroups, etc.

The notion of multioperator group is discussed in detail in [Hig], [Ku], [P17].

Let G be an Q-group. If a,b € G then [a,b] = —a — b+ a+ b. Let w be a n-ary
operation from 2. Then define

[a1, ... an; byy.ony by w] =
=—ay...a,w—"by...byw+(a; +by1)...(an+ by)w,
where a;,b; € G. If such a commutator is identically zero in G, this means that addition
commutes with the operation w.

Q-group is called abelian if its additive group is abelian and addition commutes with
every w € ().

Abelian groups and Lie algebras are abelian in the usual sense, while for associative
rings this notion means that product of any two elements is zero.

Ideal H of an Q-group G is defined as an Q-subgroup, such that [a,b] € H for a € H,
b € G, and for every n-ary operation w € {2 and for every ay,...,a, € H, by,...,b, € G
we have

[a1,...,an;b1, ... by; w] € H.

2. Anticommutative Q-groups Definition 2 An Q-group G is called anticommutative, if the
following conditions are fulfilled
1. G does not have nontrivial abelian ideals

2. Every two non-trivial ideals Hy and Hs has non-trivial intersection.
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Consider this notion for groups, rings and Lie algebras. Theorem 1 [P16] A group G is
anticommutative if and only if for every two its elements a and b, (a,b # 1) there exists
c1, co such that cl_lacl and CQ_IbCQ does not commute. Theorem 2 An associative ring G is
anticommutative if and only if for every nonzero elements a,b € G there exist ¢; and ¢,
co and ¢4, such that

crach - eabeh, # 0 or

cobcy - cyacy # 0.
Proof Assume that the condition on every a and b in G holds. Show that G is anticom-
mutative.

Let H be an abelian ideal in G. This means that ab = 0 for every a,b € H. Since H is
an ideal, elements cyac], and eabc), belong to H. Therefore ciac’cobcy, = 0, eabcheiac =0
for every nonzero a,b € H, c1,¢],ca,¢h € G. We get the contradiction, thus H cannot be
abelian.

Let now Hy # 0, Hy # 0, but Hy N Hy = 0. Take a € Hy,b € Hy,a,b # 0. Then
a' = crach € Hy, b = eabch € Ho, o'V = b'a’ = 0. Contradiction, and Hy; N Hy # 0.

Conversely, let the ring G be an anticommutative Q-group. Take a,b € G, a,b # 0,
and let Hy, H> be the ideals, generated by a and b respectively.

Every element from H; is a sum of elements of the kind @’ = ¢jac], and every element
from Hy is a sum of elements of the kind b’ = c3bchy. If all @’ and b’ pairwise “commute”
then commute the elements hy € Hy; and ho € Hs, hiho = hohy = 0. Then nontrivial
intersection Hy N Hjy is abelian, which contradicts the condition. Therefore, there exist a’
and b’ such that a’d’ # 0 or b’'a’ # 0. The theorem is proved.

Theorem 3 A Lie algebra G is anticommutative if and only if for every a,b € G, a,b # 0

such that [a’,b’] # 0. Proof In the

there exist a’ = [a,cq,...,¢,] and b = [b, e}, ... ¢l ],

statement [a,b] denotes Lie commutator of a and b, and [[a,cq],...,¢,] is denoted by
[a,cq1,. .. ¢p].

Let all elements a, b satisfy the condition and let H be an abelian ideal in G, a,b € H,
a,b # 0. All @’ and b’ lie in H, [a’,b'] = 0. Contradiction. Let Hy, Hy be non-trivial
ideals in G, and H{ N Hy = 0. Take a € Hy,b € Hy. All @’ lie in Hy, all b’ lie in Ho.

Then [a’,b'] = 0. Contradiction, Hy N Hy # 0. Conversely, let G be anticommutative;
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a,b € G,a,b # 0, and let H; and Hs be ideals, generated by a and b respectively. H;
consists of all linear combinations of all a’, Hs consists of all linear combinations of all .
If always [a’,b"] =0, then H = Hy N Hs is non-trivial abelian ideal. Therefore, there exist
a’ and b’ such that [a’,b"] # 0.

We have proved parallel theorems for three particular cases of (2-groups. It would
be very desirable to get the similar result for arbitrary multioperator groups. The main
difficulty is that there is no good description of ideals in terms of generators (see [P18]).

3. Stable algebras

Taking into account theorems 1, 2, 3 we define algebras H, anticommutative with
respect to an algebra (G, which serves as an algebra of constants. Definition 3 G-group H
with h : G — H is called anticommutative (in respect to G), if for all elements a and b,
from H, a,b # 1 there exists elements ¢; and ¢, from G, such that the elements (c})~tacl
and (c})~'bch does not commute.

Theorem 4 If G-group H is anticommutative, then H is stable in the variety of all
G-groups O(G). Proof Take free in ©(G) G-group W(X) = W = G x Wy(X) with the
embedding ig:G — W. Let now A and B be two algebraic varieties over H connected

with W. Take A’ = T, B’ = T5. Ty and T5 are normal subgroups in W. Check that
AUB = (T1NT,)

It is sufficient to show that if u: W — H, does not lie in A U B, then pu does not lie in
(TyNTy)'. Since p ¢ A, there is u € Ty such that u* = a # 1. Since p ¢ B thereis v € Ty

such that v# = b # 1. Find constants ¢; and ¢ € G such that (¢] ')"ac} and (c; ) bek

does not commute. Take element (¢i¢) luci® in Ty and (cb¢)~lvck® in Th and let w be

their commutator. It belongs to T N 7T5. Take the diagram

and compute w#. We have



Thus, w ¢ Kerp, Ty N Ty ¢ Kerp, pu & (Ty N To) . g

Now take the variety of rings for O, consider ©(G), G € O and take the embedding h: G —
H. Definition 4 G-ring H is called anticommutative, if for any non-zero elements a,b € H,
there exist constants ¢y, ¢}, cg, ¢}, such that clacl and chc’Qh does not commute Theorem
5 If G-ring H is anticommutative, then it is stable in the variety ©(G). Proof Take
W = W(X) = G *Wy(X) with ig:G — W. Let A and B be algebraic varieties over
H, defined in W. Take in W the corresponding ideals Ty = A’ T, = B’. Show that
AUB = (TyNTy)". Take p: W — H and let p ¢ AU B. Choose u € Ty, v € Ty such that
u* =a#0, v* =b #0. For a and b find constants ¢y, ¢}, ca, ¢y in G, such that elements

c‘;‘ acl and c; E:ac"g”1 does not commute. Let for example

bl lacl #0.

Take v/ = ¢i¢ u,cl € Ty and v' = ci¢ve¢ € Ty. Consider w = v’ - v/ € Ty N Ty. We have
wh = v’ u'* = chb cQ cclacy™ #0, wé Kerp, TyNTy ¢ Kerp, p¢ (TyNT) . g

Let now © be the variety of Lie algebras over a field, G € ©. Definition 5 G-algebra
H with h : G — H is called anticommutative, if for any non-zero a,b € H there ex-

ist ¢1,...,¢, and ¢f,...,cl; ¢;,¢i € G such that the elements a’ = [a;c},... ] and

b = [b,c™y,...,c™,] does not commute, i.e., [a’,b'] # 0. Theorem 6 If G-algebra H
is anticommutative, then H is stable in ©(G). Proof It goes in a similar way. Take
W =W(X)=Gx*«Wy(X) and iq:G — W. Let A, B be algebraic varieties over H. Take

A" =T, and B’ = T and check
AUB = (T1NTy)".

Take pu: W — H and let p ¢ AU B. Choose u € Ty, v € Ty, such that u#* = a # 0, v =

b#0. For a and b in G there are cy,...,c,:ch,...,ch, such that a’ = [a,c},...,c!], b =
th th : . .
b,cy ..., c,] does not commute. Take u’ = [u,cl¢, ..., ¢i¢] € Ty and v = [v,c}C, ..., cC]

€ Ty and let w = [v/,v'] € Ty N Ty,
We have w* = [a’,b'] #0, w & Kerp, Ty N Ty ¢ Kerp, p & (T1NT,) . g
All three theorems can be applied for the case H = G. Then we have (absolutely)

anticommutative Q-group G and the following theorems holds: Theorem 4’ If a group G
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is anticommutative, then G is stable in the variety of all G-groups. Theorem 5" If a ring
K is anticommutative, then K is stable in the variety of all K-rings. Theorem 6’ If a Lie
algebra L is anticommutative, then L is stable in the variety of all L-algebras,

Simple groups, free groups, free Lie and associative algebras, simple Lie and associative
algebras, fields and skew fields: all of them are stable.

Let us notice the following general problem. For an arbitrary variety of algebras ©
find necessary and sufficient conditions on algebra G € © to be stable in the variety of
G-algebras ©(G).

In such general form the problem is hard to solve. However, it is solved for groups, Lie
algebras and associative algebras. It turns out that sufficient conditions introduced above,
are also necessary conditions (A. Berzins) Theorem 7 A group G is stable in the variety
O(G), where O is the variety of all groups, if and only if G is anticommutative. The same
is true for associative and Lie algebras. Proof Sufficiency has been proved above.
Necessity. Let first, © be the variety of all groups, and G stable in ©(G). The free group
in ©(G) has the form F(X) = G x Fy(X), Fy is the free group in ©. Take X = {z,y}.

Let A be the variety over GG, defined by equation = = e, e is identity element in G,
B be the variety, defined by y = e. The corresponding affine space is represented as
G x G. A consists of points (e,b), B of points (a,e), a,b € G. Take AU B and consider
(AUB) =T aF(X). T consists of “polynomials” f(z,y), such that f(e,b) =e = f(a,e),
for every a and b € G. Suppose G is not anticommutative. This means that there are
elements a, b, (a,b # €), such that for any inner automorphisms ¢ and 7 elements a” and
b™ commute, i.e., a and b absolutely commute.

It is clear that every element f(z,y) € F(X) can be represented as a product of

1o where ¢ are inner automorphisms, defined by

elements of the form z%, 2717, y%, 4y~
elements of G and by one more multiple ¢ € G in the end of the presentation. Apply
this to f(z,y) € T. Since f(e,e) = e, then ¢ = e. Take for z and y in f(x,y) absolutely
commuting a and b. Then f(a,b) =[] a; [] i, where [] a; belongs to G-normal closure of
a and []b; belongs to the same closure of b.

We have [[a; = f(a,e) = e; [[b; = f(e,b) = e, then f(a,b) = e. Now (a,b) € T’
= (AU B)" (a,b) ¢ AU B. Thus, if G is not anticommutative, then the union AU B is
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not a variety and consequently GG is not stable.

Consider now the case of associative algebras. Let © be a variety of associative
algebras, K € ©, and take ©(K). Let K be anticommutative. This means that there are
a,b;a,b # 0, such that acb = bea = 0 for every c € K.

Again, take the varieties A and B over K defined by the equalities z = 0, and y = 0
respectively. If f(z,y) € (AU B)’, then f(z,0) = f(0,y) = 0.

We have

f(z,y) = fi(z) + f2(y) + f3(z,9) + ¢,

where all monoms of f; contain z, of fs contain y and of f3 contain x and y.

Since f(0,0) = 0, then ¢ = 0. Let now a and b absolutely commute. Then f3(a,b) = 0,

fla,b) = fi(a) + f2(b) = f(a,0) + f(0,b) =0.

Therefore (a,b) € (AU B)” and clearly (a,b) ¢ AU B.

For Lie algebras note that if L is not anticommutative, then there exist non-zero a
and b, such that every monom, containing a and b is equal to zero.

In the following proposition variety © is arbitrary and G is an arbitrary algebra of
©. Proposition 1 [Be2] If algebra H € O(G) has non-trivial cartesian decomposition
H = H; x Hy, then H is not stable in O(G). Proof We have hy:G — Hy, hy: G — Hy and
h:G — H,h(g) = (h1(g), ha(g)). Take X = {z}, and W(X) = GxWy(X). For every point
p: W(X) — H we have

G — W(X)
ig
R l“
H
For every word w = w(z,cq,...,¢,), ¢; € G, ¢; is identified with igc;, we have wh =
w(xk, ..., cl). Here w is a ©-word. Take two points vy: W(z) — H and vy : W(z) — H
by the rule

vi(x) = h(g1) = (h1(g1), h2(g1)) = (a1, b1),
va(x) = h(g2) = (h1(g2), h2(g2)) = (az,b2),

g1, g2 € G. The points v; and 1, are varieties over H. These varieties A and B respectively,

are defined by equalities z = g; and z = g». Show that AU B is not a variety. Take an
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arbitrary equation w = w’, w = w(zy,c1,...,¢p,), w = w'(z,dy,...,dy,). Points vy and

Vo satisfy this equation.

We have
w’ = w(z, ) =w((ag,by), (bt e, (b ehz)) =
(wlay, e, ) wiby, 2, d9)).
Similarly:
w" = (w'(ay,d}?, ... d),w' (by,dy?, ... dl2)).
Now w?* = w'"* gives
1. wlay, .. e =w(ay,di, ... d)
2. w(by, 2, ) =w! (b, i, d2)
Similarly w2 = w2 gives
3. wlag, ... M) =w'(ag,d, ... d)
4. w(by, 2, .. ) = w! (b, di2, ..., dP2).

Take p1: W (z) — H by therule py (z) = (ay,by). Combining (1) and (4) we see wH! = w'H.
Analogously, combining (3) and (2) we have w2 = w'*2 if ps(z) = (ag, by).

Thus, gy and pg belong to the closure (AU B)” and does not lie in A U B.

Apply this proposition. Let H be stable in ©(G). Take H x H, which is not stable
and equivalent to H. Thus, two algebras H; and Hy where H; is a stable algebra while
Hs is not stable, can be equivalent.

Let us mention the following two problems Problem 1 For which H the lattices
Alvy (W) are always distributive? Is it true that such H is equivalent to some stable
algebra? Problem 2 For which H are the lattices Alvy (W) always modular? How does it
look in the variety of all groups? Is it true that the lattices Alvgy (W) are always modular
if H is abelian?

Let us add some comments about the definition of anticommutative G-group. We
take the set of equations

T={a%y"]=1, 9,4 €G}.
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[t is easy to see that a G-group H is anticommutative if and only if the algebraic variety
A =T}y, is trivial. So the notion of anticommutativity, which is a structure notion, can be
given in terms of algebraic geometry over the group H.

§4. Semiisomorphisms and geometric similarity of algebras

1. Preliminary remarks Let © be an arbitrary variety of algebras, G € © and O(G)
be the corresponding variety of (G-algebras.

Two algebras Hy an Hy from O(G) are called semiisomorphic, if there is a commutative

diagram in ©:
G L,. H,

ol |

a2, [,

where o is automorphism of constant algebra GG, u is ©-isomorphism of algebras H; and
Hs. The main topic of this section is the following theorem. Theorem &8 If G-algebras Hy
and Hs are semiisomorphic, then they are similar and, therefore, the categories K@(G)(Hl)
and K@(G)(Hg) are isomorphic. For the classical situation this theorem has been proved
by A. Berzins [Bel]. He noticed that semiisomorphism of algebras H; and Hy does not
imply equivalency. Proof of the theorem We will prove the theorem in a few steps and first
note some facts on free products in ©.

1 Let A and B be algebras from © and A% B their free product. Denote the projections
by is:A— Ax B and ig: B — A B. Given

a:A— H and 3:B — H,

corresponds

ax 3 AxB— H.

Then, iq(ax3) =a, ig(ax3) =p3. Wehave iq xig: A* B — Ax B, and
E =& A+B = iA *iB-

Indeed, iqse =iq,ige = ip and 4« = i4 * ig, since extension of morphisms is unique.
Take a: A x B — H. We have i ya: A — H,iga: B — H,and o« —ia*xiga: Ax B — H.

In particular, once more e = g =14 *ige =14 *ip.
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2 Apply remarks above to free product W = G % Wy with projections ig: G — W;
iw,: Wo — W. Let 0 be an automorphism of algebra GG. Define
a=0ig:G—=GxWy=W,
B=tiw, Wy — GxWy=W.
Now let
ow = 0ig*xiw, = ax :Gx Wy — G Wy.

Check that oy is an automorphism of of G * Wy. Take (o 1)y = o1

that (ow ) ! = (07 !)w. We have

ig * iy, and check

igow = ig(0ig*iw,) = oig,

W, OW = TWp;

iclo Nw =0 lig,

iw, (0" D w = iwy,

(e Hwow =iglo” Hwow *iw,) (0™ Hwow =

1

:(J_lig)dpv * iVVDJVV =0 “Oig * ipvu =

:iG * ipvu =&

Analogously: ow (0 Y)w = e. Thus, oy, exists and it coincides with (7). This
means that oy is an automorphism of G * Wy = W. We have to check that the pair
(o, 0w ) is a semiautomorphism of G-algebra G x Wy. In other words, we have to check the

commutativity of the diagram _
G —“ G* W,

gi l”"‘"

G —S G Wy
This was already done. 3 In the category ©(G)° consider automorphism ¢: ©(G)? —
O(G)°. For every W = G * Wy set (W) = W. Let W! =G+ W} and W? = G x W§ be

two objects in ©(G) and let the morphism

.1
i
G —Gr- G*M’r&

b

Gx W3
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be given. Define p(v) = J,;,ll vowz:: G * Wt — G+ W and check that this is a morphism

in the ©(G). We have to check that the diagram

.1
i
G —Gr- G*M’r&

AN
(=

Gx W3

1s commutative. We have

1"190;‘}1 Vowz = J_lz’}gvawz = J_liQGO'sz = J_IJiQG = zQG
Thus, ¢ is defined on objects and morphisms of the category ©(G)Y, is invertible and is
compatible with multiplication of morphisms. So, ¢ is automorphism of ©(G)°.

4 Let T be a congruence in W = GG * Wy. Define a new congruence oy /1" by the rule:

w(o_u]T)wf = wG’u_rwaG'u_r

Taking into account that a congruence of G-algebra H is the same as a congruence of H
in © we get that oy T is also a congruence in W. Elements w and w’ are elements in
G-algebra W.

5 Now, we take the semiisomorphism

G L,. H,
¢
ha
G —— H
and all constructions above apply to the given . Check that the congruence 7' is Hq-closed

if and only if JE,IT is Ha-closed. Consider the diagram

(o,0w)

w w

. b

Here, in horizontal rows stand semiisomorphisms and in vertical ones stand morphisms in
O(G). Arrows a and 3 can be represented as (1,«) and (1,3). Then we can use pairwise

multiplication of semimorphisms.
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We have

(]-1-6) = (o'_l,o'];,l)(]_,og)(o",u) = (1,0,}105;1)

and, thus

8= J;Vlaf,u : a= O’pvﬁp:_l.

Thus, morphisms oy and g give a one to one correspondence between a and 3. Check
that Kera = oy (Kerf).
Take w and w’ € W and let w(Kera)w', w* = w'™. Take wy = wW, w'y = w7W.
-1 —1 -1
Tyar O —1 T yar O Fer e e 1, - -
Then wi" = w7w % wiV ™ = w" " wl = wl, wi(Kerp)w), wow(Kerf)ww,
w(ow KerpB)w'.
—1
Conversely, let w(ow Ker@)w', woW(KerB3)ww wowh = ' w8, Then wowFH =
w oWl and w® = w'™ w(Kera)w'. Thus Kera = oy (Ker3); Kerf = (K
= , . =ow(KerB); Kerf3 = o, (Kera).

Let the congruence T be Hy-closed, i.e. T = [| Kera. Then T = () ow (Kerj) =
acA aEA

ow( [ Kerp). Let B= {3 = J,;}af,u,af e A}, Ty = () Kerp. Then T = oy Ty, T1 =
aEA BeB

O';VIT. So, we get that 77 is Hs-closed if T' is Hi-closed. Since one can proceed from
Hs-closed congruence, we get that T' is Hq-closed if and only if T7 = O';VIT is Ho-closed.

6 Connect now T and oy, T using automorphism ¢ (see [P12]). For given T <9 W
consider the equivalence p = p(T') in End W. It is defined by the rule: vpv', v, v € EndW
if wTw" for every w € W. Analogously, for T; = JE,IT take p* = p(Ty). We want to
check that p* = ¢(p). This means that vpr' < o(v)p*e(V').

We take vpr, so Vw € W, w”Tw” . This gives wYoW oW Ty oWy and, therefore,
w'oW (o T w? o, woW (@ VoW T yow(@w' Y'ow) - Element wy = wW is an arbitrary
element in W and we have wf(y)lef(y!). This means ¢(v)p*o(v'). The converse can
be checked in a similar way and p* = ¢(p). This means that ¢ is compatible with the
transition 7" — J;VIT.

7 We have to check one more compatibility. Let Wl = G« W} and W2 = G « W¢ be
two objects in ©(G) and let T be a congruence in W2. Define the relation 7 = 7(T) on

the set Hom(W*, W?) by the rule:

r
sts' s, € Hom(WLHLW?) if w*Tw® for every w € W1

21



Similarly, 7% = 7(T}), Ty = 0;,5T. We need to check that 7* = (7).
Let s7s’. This means that w*Tw* for every w € W'. We have
—1 ! —1 v
w W2 7wz Tyy® W2%w2 and this gives w*ow2 Tyw® w2, Take an arbitrary element woW1 =

B 1 G’;rll 80 2
wy In W We have w,

leg;fllsg"‘"z, ie. wf(s)lef(sf). Thus, s7s’ implies that
©(s)Typ(s"). The converse is true similarly. This means that automorphism , determined
by o, induces isomorphism of functors Cly, and Cly,¢ (See [P15], [P16]).

Thus, G-algebras H; and Hs are similar. In fact, we proved that H; and Hs are
weakly equivalent, (see P15), and this implies similarity.

We see also that if H; and Ho are semiisomorphic, then the categories K@(G)(Hl) and
K@(G)(Hg) are isomorphic, i.e., H; and Hy are categorically equivalent. Note also that
automorphism ¢ here is semiinner (see §6).

§5. Automorphisms of the free algebras category

1. Categories ©(G)Y and Kg)(G) Take a variety of algebras O, and consider O(G),
where G € © is an algebra of constants. Consider the category of free algebras ©(G)°. We
will study automorphisms of this category. This problem is of interest by itself, and it is

also connected with the problem of similarity of GG-algebras.

We will proceed from the additional condition (x*):
G — algebra G generates the variety O(G). (x)

This condition is fulfilled in the classical situation Var — P if P is infinite, it is fulfilled in
the situation where © is the variety of all groups and G = F is a free non-commutative
group [Me]. Tt is fulfilled in the case when O is the variety of Lie algebras over an infinite
field and G is a free Lie algebra (R.Lipjanskii, unpublished).

Condition (x) is of special interest. If algebra G generates a variety O, this, probably,
does not imply that G-algebra G generates ©(G). But how the situation looks if G is a
free algebra which generates ©7 This problem is connected with consideration of identities
with constants and can be studied for special varieties ©.

Assume that (x) is fulfilled. Then, every free algebra W = W (X) with finite X is
an object in the category Ce(c)(G) (see [P11]) and the category ©(G)? can be considered

as a subcategory in the category Ceg()(G), which is dually isomorphic to the category
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of algebraic varieties Kg()(G). This isomorphism assigns to each free algebra W(X) =
G * Wp(X) in ©(G) the algebraic variety Hom(W,G). Morphisms in this category of
affine spaces are the same s: W — W?2, but they act in the opposite direction. To each

morphism s corresponds the map of sets of points
5:Hom(W?2 G) — Hom(W', G)

acting by the rule: if v:W? — G then 5(v) = vs, where first s acts, then v. Recall that

every point v: W — G satisfies the commutative diagram

G W=GsxW
idg l”
G
Denote the category of affine spaces by Kg)(G)(G) = Kg)(G).
Categories ©(G)" and Kg)(G) are dually isomorphic, which gives connection between au-
tomorphisms of the categories.

2. Quasiiner automorphism Let v: W — G be a point. Consider the homomorphism

T/I’r v G ig - T/I’r

Check that igrv: W — W is an endomorphism of the algebra W in the variety ©(G). We

have to check that there is the commutative diagram

G5, W

Ny

w
We have
(igv)ig = ig(Vig) = igidg = ig.
Denote i - v = v. For every w € W element v(w) = ig(v(w)) is a constant in W and,
therefore, v is called a constant endomorphism. Endomorphism v defines the map
7 Hom(W,G) — Hom(W,G).

23



Every endomorphism s: W — W leaves constants and, therefore, (sv)(w) = v(w), sv = v.
Note that for every vp: W — G we have 5(1}0) = v. Indeed, 5(1}0) =1y - = wligr) =
(wig)y =idg - v =v.

Thus, the map v takes an arbitrary vy to one and the same element v, and, therefore
v is a constant map.

Consider an arbitrary o: W — W, such that so = o for every s: W — W. Since one
can take for s an endomorphism taking w to a constant, o takes any w to a constant.

Show that & takes all v: W — G to the same element. Take vy and vq. Then &(vp) =

voo — vpso. For s takes 1. Then
() = (nin)o =vi(g) - 0 =10 = 6(1y).

Denote &(vp) = v. Then V(1) = v, 6(vp) = V(1) and vo = voiv for every vp.

Show that o = v. Take an arbitrary free algebra W of a countable rank. The condition
(%) implies that for some I there is an injection u: W — G'. Then there is the similar
injection for every W = W(X) with finite X.

For every a € I take a projection 7,:G! — G and consider v, = 7 pu: W — G.

Suppose that v,s; = v, S92, where s; and s, are endomorphisms of W.

Check that s; = s9. Take an arbitrary w € W. Then:
psi(w)(a) = (rapsi)(w) = (vas1)(w) = (vas2)(w) =
= pso(w)(a), for every a € I and ps;(w)=
= pso(w), p(s1w) = p(saw).
Since pu is injection, then syw = sow for every w, i.e., s; = s9. In particular, o = v.
Let now ¢:0(G)? — O(G)? be an automorphism of the category ©(G)Y and let
T: Kg)(G) — Kg)(G) be the corresponding automorphism in the category of affine spaces.
For every object W = W(X) in ©(G)Y, we have (W) = W! = W(Y). We assume
that |X| = |Y|. We have

T(Hom(W,G)) = Hom(p(W),G), 57 = @(s).

As we see, the constant

v: Hom(W,G) — Hom(W,G)
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is characterized by the condition sv = I/ for every s. This condition can be rewritten as

~

V=, Apply 7. We have

~ ~T ~T
(v3)" =v -5 =v :Hom(W' G) — Hom(W',Q)
~T ~T ~
Since 57 is an arbitrary, v is a constant, ¥ = vy, where v;: W! — G is a point. Denote

vy = p(v). The map

1= pw:Hom(W,G) — Hom(W?',G) = Hom(p(W), Q)

—

~T - =
is a bijection. If v: W — G then v = puw (v).
Now we want to restore the action of the automorphism 7 on an arbitrary s in terms
of the function gy .

Let now s: W! — W2 W! = W(X), W? = W(Y) be given. It corresponds the map
5:Hom(W? G) — Hom(W*',G).
Take an arbitrary point v: W? — G with the map
v: Hom(W?2,G) — Hom(W?2G).

Then take
sv: Hom(W2,G) — Hom(W',G)

and apply 7. We get

—

(sv)7" 5T = 5" w2 (v): Hom(p(W?),G) —
— Hom(p(W?),G).

Check the equality



This gives the equality. Applying 7

~T T - T @
=50 5 = ) - 5,

~ ~T

5w () = i G) - 57

Definition 6 An automorphism 7 of the category Kg)(G) is called quasiinner, if for an

arbitrary §: Hom(W?2,G) — Hom(W',G),

§T = p:vvlgpla;lg.
Theorem 9 (see [Be2] for Var — P) Every automorphism 7 of the category Kg)(G) is
quasiinner. Proof Take any vp: (W?) — G and apply to it the equality above. We have:

—

8 pw2(v)(vo) = 8™ (kw=(v)) = " pw=(v)

— —

pw (3())37) (v0) = pw (3(1)) (87 (w0)) =
= pwr(5(v)) = (pwr - 5) ().
Thus, for every v we have
§T - pwa (v) = (pwa - 8)(v).
This gives
ST pwz = Hw s,

which proves the theorem.
We note here, that realization of the given ¢ and 7 as a quasiinner automorphism
is determined by a function g, which is defined on objects W = W(X) of the category

©(G)°. For every W it gives bijection
pw: Hom(W,G) — Hom(p(W),G).

It depends on ¢ and 7.
Assume now that we proceed from a pair of functions (u,¢), defined on objects of

0(G)°, such that
1. Function ¢ is a substitution on the set of objects W = W(X),
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2. Function p for every W gives a bijection
pw: Hom(W,G) — Hom(p(W),G)
For such pair of functions (y, ) and for every morphism s: W' — W? one can define
57 = pwdpg s Hom(p(W?),G) — Hom(p(W),G).

However, in this definition s” is not necessarily a morphism in the category Kg)(G), there-
fore 7 is given by the formula above is not an automorphism of the category Kg)(G).
Correspondingly, ¢ is not an automorphism of the category ©(G)°.

We show another special construction.

§6. Inner and semiinner automorphisms

For the given ©(G)" and Kg)(G) consider pairs of functions (1, ¢) defined on objects
of the category ©(G)", satisfing

1. Function ¢ is a substitution on objects, and if

e(W(X)) =W(Y), then |X|=[Y|
2. Function v attaches to every W a semiisomorphism vy = (o, ,u?,v) of W and (W)
determined by a commutative diagram

G—S W =G*W,

a l l#%ﬁ-’
r

G — s G(W) = G * W

Here, automorphism o does not depend on W. Theorem 10 For every morphism s: W! —
W2 set p(s) : (W) — ©(W?) by the rule o(s) = ,u?,vzs,u?,;. This extension of the
function ¢ to morphisms defines the automorphism of the category ©(G)°. Proof Consider
semiautomorphisms

(0, i), (0, =) and (1, s).
Applying pairwise multiplication, we get

—1 1

(0. 1ya(L, ) (0 ) = (L iyaspiyn).
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The righthand side in this equality is a semimorphism, and since the first component is 1,

this is a morphism in the category ©(G). So, we have that
—1
P(s) = pyzsppa: (W) — @(W?)

is a morphism in @(G)O. Let now s1: W — W2, 59: W2 — W3 and s981: W — W3 be
given. Then:

-1 - -1

P(s251) = pisasip) = pgsopd  pdsipy =

= (s2)p(s1): (W) — @(W?).
Clearly, ¢ is invertible and, therefore, ¢ is automorphism. Definition 7 An automorphism
¢ determined by a pair (v, ¢) with conditions 1 and 2 is called semiinner. If in (¢, ¢) the
automorphism o = 1 then the corresponding ¢ is called inner.

Variety ©(G) is called perfect, if every automorphism of ©(G) is inner.

Variety O(G) is called semiperfect, if every automorphism of ©(G) is semiinner.

[t is easy to see that semiinner, as well as inner automorphisms form a subgroup in
the group of all automorphisms of the category ©(G). This can be checked by studying
pairs of the type (1, ¢). Indeed, if ¢ = 102, ¥ = (¥, 9), 1 = (V' 01), Y2 — (¥*,92),
then (v, ¢) = (Y'¥?, p102) and (V'9?)w = Yy, ) Vi

Example Let o be an automorphism of the constant algebra GG. For every W = G x 1
there is a semiautomorphism vy = (o, oy ). Consider a pair (1, @), where the substitution
¢ is trivial. This pair defines semiiner automorphism ¢ of the category ©(G)°, which was
considered in §4.

2. Ties with quasiinner automorphisms

Our nearest goal is to present semiinner automorphism ¢ as a quasiinner automor-

phism of the category Kg)(G). Let us take ¢ and define 7 by the rule
T(Hom(W,G)) = Hom(p(W),G).
If, further, s: W' — W? is a morphism in O(G)O, then it corresponds

5:Hom(W?,G) — Hom(W!, Q).
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—

Let 87 = (s). Then (31 - §3)7 = 87 - 8%, and 7 is automorphism of the category Kg)(G).
Define the bijection
v Hom(W, G) — Hom((W), G),

by the rule

~T

v = puw(v) for every v:W — G.

Proceeding from (1, ) for the given W consider the diagram

w Y G
1w l l"
e(W) —~ G

Here v; = O’Vp:?,;l. Define pw (v) = v = O’Vp:?,;l. We have a bijection
pw: Hom(W,G) — Hom(p(W),G).

Check that this bijection is well coordinated with the automorphism 7. We have

T — —— ——

oy — 0 0l 0!
= @(V) = pyyicriy, = Iigovuy,

<R

— —

pw (v) = igovigy,”.

We obtained the following main equality

—

pw (V) =

<R

Thus the function g can be constructed from the given pair (7, ). Simultaneously we

have (u, ). Now for given p check that
=T __ ~ —1
S —p:uflsplvvg.

Take v1: (W) — G. Then

~ — —1
87 (1) = ¢(s)(11) = nip(s) = Vlﬂ?zvﬁﬂ?wa
(gwl§pza,12)(yl) = ﬂuzl(J_IVlﬂ?,VzS) =

-1 -1

—1 0 0 0 0
=0(07 Vipy2S) iy = Viflya iy, -
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Therefore, s™ = ,uW1§,ua,12. Thus, if automorphism ¢ is semiinner and is defined by a
pair (1, ¢), then this pair defines (y, ) which, in its turn, determines presentation of 7 as
quasiinner automorphism.

3. Additional remarks

Define a substitutional automorphism ¢ for the category ©(G)°. First consider substi-
tution ¢ on objects W with the standard condition: (W (X)) = W(Y') implies | X| = |Y|.
Let X ={zy,--- ,2,}, Y ={y1, -+ ,yn}. Define isomorphism sy : W(X) — (W (X)) by

sw(z) =yi,i =1,--- ,n. If, further, v: W' — W? is a morphism, then set
P(v) = swavsyh: (W) — o(W?).

From the substitution ¢ we come to the automorphism ¢. We call ¢ substitutional auto-
morphism. This ¢ is an inner automorphism of the category ©(G)°.
Proposition 2 Every automorphism ¢: 0(G)? — O(G)° can be decomposed in the
form
Y = 1,
where ¢ is a substitutional automorphism and ¢, does not change objects. Proof. Let ¢ be
an arbitrary automorphism of the category ©(G)°. As usual, assume that if (W (X)) =
W(Y) then |X| = |Y|. We will dwell on this condition in the sequel.
Take ¢ as a substitution on objects and take the corresponding @. Take ¢ and .
Let o1 = @ Y. For every W we have: ¢ (W) = ¢ lo(W) = W. For v:W! — W?
we have ¢ (v) = sa,lzgo(v)swlzﬂfl — W?2. Hence, ¢; is an automorphism which does
not change objects. We have the canonical decomposition ¢ = @p;. Since ¢ is an inner
automorphism, ¢; is semiinner if and only if ¢ is semiinner.
We now consider an automorphism ¢ which does not change objects.
Let us consider a commutative diagram
G W=GxW,
gl l
G W=GxW,
where o, s are automorphisms in ©, Wy = Wy(zy,...,z,) = Wy(X) is free in ©. Consider

also iyy,: Wy — W.
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To each z; € X corresponds siy,(z) € W. Since all x; are free generators, we have

an endomorphism of G-algebra sg: W — W, represented by

G S, W
[k
G S, W

Following g4, consider a diagram _
G W
G’l lc}'ur
G S W

Now we can get semiendomorphism

G5, W
G’l 300'14-’l
G S, W

Show, that s = sgou . For every g € G we have
soowia(g) = iqo(g) = sia(g).
For every z € X we have sgiw,(z) = siw,(x), and ow (iw,(x)) = iw,(x). This gives
soow (iw (z)) = soiw, (z) = siw, (z).

Thus, sgow and s coincide on G and on Wy. Then they coincide on G * Wy and s = sgow .
This gives canonical decomposition of semiautomorphism (o, s). We have also sg = 30,}1
and, hence, s, is an automorphism of G-algebra W.

Return to the automorphism ¢: ©(G)? — ©(G)° which does not change objects and
consider 7 and the pair (u, ).

Suppose that bijection
pw: Hom(W,G) — Hom(W,G)

is defined by the diagram
w z G
sl la pw (V) = ovs™

W pw (V) G
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Consider semiautomorphism

G5, W

G, W

1

and take canonical decomposition s™* = 300,}1, where sq is an automorphism of G-algebra

W. We have
pw (v) = ovs™! = ovsooyt = o(30(v)oyt =
= (050) (V) oy

Take w = w(xy,...,2,) = w(X) € W. For every z € X we have

(050) () oy (i, () = 050 (V) (i, (2)).
This means that py () and 05¢(v) coincide on every xz € X. We get

pw (V) (w) = w(pw (V)(21), - s pw (V) (20)) =

= w(ovso(z1),...,0vse(xy)) = (ovwy(zy, ... 25), ...,
ovwy (T1, ..., Ty)).
Here w;(xy,...,2,) = so(z;). If 0 =1 we have

pw (V) = s0(v), pw = So.

We get additional information about bijection py using canonical decomposition of semi-
automorphism.

§7. Category of polynomial maps

1. Category Pol-G In the first section we considered Hom(W(X),G) as an affine
space. Now affine space is the usual cartesian product G, This is the set of points
a = (ai,...,a,),a; € G. We have bijection ax: Hom(W(X),G) — G, Here X =
{z1,...,2,} and ax(v) = (v(z1),...,v(z,)), v € Hom(W,G). Fix a variety ©, take
G € © and define the category Pol-G. Tts objects are cartesian products G(™. Morphisms
depend on ©.

Define a morphism G(™ — G, Consider a homomorphism s: W(X) — W(Y),
where X = {zy,....2,}, Y = {y1,...,ym}. We have s(z1) = wi(y1,.. - ,Ym), - ,s(xy) =

wn(yla e 1ym)-
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Homomorphism s is determined by ©-“polynomials” wy,--- ,w,. Define s*: G("™) —

G™ by the rule

sUay, ..y am) = (wilay, .oy am)s - cywp(ag, ... am)).

This is a morphism in Pol-G. Define multiplication of morphisms. Let s{: Gm — g™
and s§: G — G® be given. Take Z = {z1,...,2,}, W(Z) and sp: W(Z) — W(X).
Proceeding from s; = (w11,...,W1n), 82 = (wa1,...,wy,) define s§ - s§ according to the

rule s§'s§ = (s182)%. We have

(3132)(Z1) - le(wll(yla ey ym)a ey wln(yla ey ym))a
(3132)(Zp) - pr(w11(y1, s aym)a sy wln(yla s :ym))

Define s§ - s¢: G™) — GP) by the rule:

8§ - s (ay, ... am) = (wor(wrr(ag, .. am), ..., wiplay, ..., amn)),
cooswap(wir(a, ..o am), . wip(ar, .o am))).
Return to the category KQ(G) and construct the functor a: K (G) — (Pol — G).

If Hom(W(X),G), X = {z1,...,2,}, is an object in KJ(G), then it corresponds
G . To every morphism s:W(X) — W(Y) in ©° corresponds 5: Hom(W(Y),G) —
Hom(W(X),QG) in the category K3(G), and in Pol — G we have s*: G™) — G("). Define
a(3) = s*. Here a is a covariant functor.

From the commutative diagram

Hom(W(Y),G) ——+ Hom(W(X),G)

| Jeox

Gm) 8 > (1)

we have s% = O:X§o:;,1, 5= af)_cl.so‘o:y.

2. Applications to ©(G) Apply this construction to the variety ©(G) and G-algebra
G. Let ¢ be an automorphism in ©(G)", p(W(X)) = W(Y). Suppose |X| = |Y| and
Y = ¢(X). Automorphism ¢ defines automorphism 7 of the category Kg)(G). Suppose @

acts identically on objects. Then one can define the morphism 7% of the category Pol —G.
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Morphisms 7 and 7 also act identically on objects. If, further, s*: G(™) — G(™ is given,
then 7%(s%) = ax7(3)ay’, where 5 = ay's*ay. Here 7® is an automorphism of the
category Pol — G. To automorphism 7 corresponds a pair of functions (u, ). For every

X ={xzy1,...,z,} we have bijection
px = pw(x) = pw: Hom(W,G) — Hom(W,G).
In order to consider Pol — G define a bijection
L g _, g,
Take a = (ay,...,a,) € G™. Let

pn(a) = ax(ux(ax'(a)) = axpxay'(a).
Then,
Hn = QXP:XC“)_(Ia Hx = a)_(lounofX-

Let us make a remark about constant maps.

Take v: W(X) — G and consider a point
ax(v) =c= w(z),...,v(zy)) = (c1,...,¢,) € G,
We have v = iquv: W(X) — W(X). For every z; € X we get
v(x;) =igu(z;) = ig(e) = ;.

Thus, endomorphism 7 is represented in the form v = (ey,...,¢,), where all ¢; = w;
are considered as constant polynomials, which are elements of W (X). For every point

a = (ay,...,a,) we obtain

7%(a) = (c1(ay,. .. an), ..y enlas, ... an)) = (c1,... en) = c = ax(v),

i.e. v%(a) does not depend on a. Denote v* = ¢(a) = c.
Now make some remarks on semiautomorphisms in Pol — G, which are connected with

semiautomorphisms in ©(G)°.
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Consider diagram

where W = W(X) = G« Wy(X), s and o are automorphisms in ©.
As it was done earlier, we can pass to
W(X) —~ G
Wf(l X) _Hw @) (l;
and define puy: Hom(W,G) — Hom(W,G) by the rule puy (v) = ovs~!. We can write

s71= 300;‘,1, where sg: W — W is an automorphism of G-algebras. Then we have

pw (V) = ovsgoy,” and

ax(uw(v)) = axpway ax(v) = p(a),
where a = ax(v). Note that application of ax to the righthandside of the formula re-
quires some commentary. By definition ax(v) = (v(zy),...,v(z,)), where v: W — G is a

homomorphism. The map O’VSOO';VII W — G can be not a homomorphism. Therefore, we

have to define ax by the same rule for any map W — G. We get

ovsooy () = 0, (so(zi)) = ov(wi(zy,. .. ,2,)) =
=o(wi(v(zy),...,v(z,)) = ocw;(ay,...,ay)), a; = v(x;).
This gives
ax(ovseoyt) = (owi(ay,...,a,),...,cw, (a1, ... a,)).
Here (wq,...,w,) is a presentation for the automorphism sg.

Now we define

pn(a) = (owi(a),...,ow,(a)) = o(wi(a),...,wu(a)).

This p,: G™ — G is considered as a semipolynomial map.
Return to Kg)(G) and to its automorphism 7, defined by an automorphism ¢ of ©(G)°.
For homomorphism s: W (X) — W(Y), |X| = n,|Y| = m, we have §: Hom(W(Y),G) —
Hom(W(X),G) and
5T = uxsuy =51 Hom(W(Y),G) — Hom(W(X),Q).
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—

Write px 5§ = Sy, 51 = ¢(s). Let us pass to the category Pol — G. We use

1

L]

=1 & ~ -1 -1 -1
= QxS Ay, 81 = A S1Qy, U = Oy Hpnx, ly = Oy Uy Gy .

Then . .
= — -1 _«
XS = Q" HpXXQy S Ay =
—1 [o1 .
= Qx HpS Ay,
- _ -1 & —1 _
Sy = Gy S1QyQy Uy, Qy =
=1 &
= ay 8] UmQy.
Thus,

(a3 (a3
HnS = S1Hm.

3. W and (W)
We consider our condition on connections between W and ¢(W) for an arbitrary ©.

Consider s: W(X) — W(X),X = {z1,...,z,} and present it as s = (s1,...,S,), where all

8i, i = 1,...,n are morphisms from W (z) — W(X). Here, s; are defined by the condition
33-(117) = 3($i) = wi(xla S 13771) = W;.

The presentation s = (sy,...,8,) depends on the basis X. We have written earlier s =

(w1, ..., w,). Consider an automorphism ¢: ©° — ©Y. What can be said about

@(s) = (@(s1), .., @(8n)).

We will see that application of ¢ preserves the corresponding presentation, but this is a
presentation in some special base, connected with .

Consider a system of injections (e1,...,&,),
g W(z) — W(X).

Definition 9 We say that (z1,...,&,) freely defines an algebra W, if for any morphisms
fiseeos Juy fi: W(z) — W(X), there exist unique s: W(X) — W(X), such that f; = se;,i =
1,2,...,n. Proposition 3 A collection (eq,...,&,) freely defines an algebra W if and only

if the elements 1(x),...,e,(z) freely generate W. Proof Let elements £1(z), ..., e,(z),
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gi(z) = z} freely generate W, X’ = {z},..., 2.}, and let fi,..., fo: W(z) — W(X)
be given. Define pu: X’ — W by the rule u(z)) = fi(z). The map g uniquely defines
endomorphism s: W — W, such that s(z.) = p(z}) = fi(x). Besides s(z.) = s¢;(x). Thus,
se; = fi, i.e., the set (eq,...,&,) freely generates W.

Let now a set (e1,...,&,) freely define W. Take z! = ¢;(z),i = 1,2,...,n. Show that
the set X' = {z},..., 2} freely generates W. Take an arbitrary pu: X’ — W.

Define fy,..., fn by the rule fi(z) = ps;(z). Find s such that f; = sg;,i = 1,... ,n.
Then

fiz) = sei(x) = s(x}) = pei(z) = p(z7),
s(xi) = p(af).
Hence, the endomorphism s is uniquely defined by the map .

We see, also, that if a set (eq,...,&,) freely generates W, then the set fi,..., f,
defines presentation for the corresponding s in the basis €1(x), ..., &,(z). Indeed, for every
zi = g;(z) we have s(z}) = sg;(z) = fi(z).

Consider, further, automorphism ¢ of the category ©° with the condition (W (z)) =
W(y). Proposition 4 Let the set of morphisms (z1,...,5,), ;:W(z) — W(X) freely
define W = W(X), X = {z1,...,2,}. Then the set (p(c1),...,0(cn)), ©(ci): (W (z)) =
W(y) — o(W(X)) = W(Y) freely defines W(Y). Proof Although the proof is clear, we give
the formal computations. Take fy,..., f, fl:W(y) — W(Y). We have to check that there
exists unique s: W(Y) — W(Y), such that f/ = s’¢(e;), i = 1,...,n. Take f;: W(z) —
W(X), fi = ¢~ 1(f!). There is unique s, such that f; = se;. Then o(fi) = f! = o(s)p(;).
For s’ take ¢(s), f/ = s'p(e;), i = 1,...,n. Since s is unique, s’ is unique as well. Corol-
lary Algebra W(Y) has a system of free generators, consisting of n elements. Proof Take
i W(z) — W(X), such that g;,(z) = z;,7 = 1,2,...,n. Then the set (g1,...,e,) freely
defines W = W(X). The set (p(z1),...,0(c,)) freely defines (W) = W(Y'). Then the el-
ements ©(e1)(y), ..., p(en)(y), freely generates W(Y'). Definition 10 A variety © is called a

regular variety, if for any free algebra
W = W(X),|X| = n, every other system of free generators of W, also consists of n
elements.

Now we can state that if W(Y) = o(W(X)), then |Y| = |X| if © is regular. Fix
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(€1, sen),i(@) = @i, take (@(e1), ... p(en)) and ¥ = @(€1)(Y), -+, yp = len) (), Y' =
{yi, ...y, }. Proposition 5 If an endomorphism s : W — W in the basis X = {zq,...,z,}
has presentation s = (s1,...,8,), then in the base Y’ we have ¢(s) = (p(s1),...,0(s,)).
Proof

@(s)(y;) = @(s)wlei) (y) = w(sei) (y) = @(si)(y)-

§8. Perfect and semiperfect varieties

1. Some reductions In this section we consider conditions on ©(G) to be perfect or
semiperfect. Take an automorphism ¢: ©(G)? — ©(G)°. It corresponds ¢; which does not
change objects, and such that ¢ is inner (semiinner) if and only if ¢, is inner (semiinner).
Thus, the first reduction is to consider ¢ which does not change objects. Now, let the
decomposition ¢ = 19 be given. Consider 7 defined by . For every W = W (X) we

have
T(Hom(W,G)) = Hom(p(W),G) =
= Hom(p1(p2(W)),G) = mi(Hom(pe(W),G) =

= 1i(ra(Hom(W,G)) = 71 - mo(Hom(W, G)).
Here, 7,7 corresponds to i, s respectively. On objects we have 7 = 7y79. Check

on morphisms. Let s: W' — W?2. It corresponds 5: Hom(W?2,G) — Hom(W1!,G). We
e e e —— T e

have 57 = o(s) = @12(s) = @1(p2(s)). 57 = (57)™ = p(s) = @1(p2(s)). Thus,
7172(8) = 7(8) and T = 717 takes place also on morphisms.

Let us pass to the pair of functions (u, @) defined by ¢ and 7, where ¢ does not change
objects. For every W = W (X) an automorphism 7 and the function p are connected by

the rule

—

=pw(v), for v: W — G.

=T

Let now 7 = 71 - 7. Then

—— T
P =5 = i ) = ke ()

Here p1! corresponds to 7 and p? corresponds to 72, Thus, if (1!, 1) and (12, p2) are given,
then (i, ) = (utp?, p199). Here, (ptp?)w = ,uioz(w),u%,v. This rule for multiplication of

pairs (pu, @) was the second reduction. Consider the third reduction.
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Let an automorphism ¢: ©(G)" — ©(G) be given, and let ¢ does not change objects.
For every W = W(X) automorphism ¢ induces an automorphism of the semigroup EndW.
Take W = W (x), the free algebra with one generator. Denote by ¢q the automorphism of
EndW (z), induced by ¢.

Let ¢p:0(G)? — O(G)Y be the automorphism of ©(G)°, constructed by (g, which
coincides with g on EndW (z) and which also does not change objects.

Suppose (g is semiinner and make gy also semiinner. Consider a semiautomorphism

G 9 W(z) =G Wy(x)

ol g

G —9 v W(z) = G * Wy(z)

such that for every endomorphism n: W(z) — W (z), 7¥° = snps~! holds. Consider the

diagram
W(x) z G
M’r(fﬂ) pa (V) G
P::I:(V) = JVS_la 3_1 = 3001}11

where sg is automorphism of W (z) as G-algebra. From p, we come to p1: G — G in the
category Pol—G. A point v(z) = a corresponds to homomorphism v. Then p1(a) = cw(a),
where w(z) = so(x). Such representation of p; reconstructs ¢g as semiinner automorphism.

Construct fi,: G™ — G For a point a = (ay,...,a,) we set

P:n(a) = J(w(al): SO w(an))'

Having fi, we construct gy for W = W(X),|X| = n, X = {z1,...,2,}. Define an
automorphism

So: W(X) — W(X)

by the rule 5y9(z;) = w(z;). This is an automorphism and fi,,(a) = osf(a). Now pw (v) =

va_gar,}l and we have _
G %+ W(X)

“l | l

G %+ W(X)
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where s~ ! = .§ga,}1. Take a function ¢ by the rule ¥y, = (0, s). It determines semiinner
automorphism @y which coincides with ¢y on W(z).

Return to the initial p. Let ¢ = p100,01 = @+ <,?70_1. Decomposition of ¢ gives rise
to decomposition of 7, T = 71Ty, where Ty corresponds to the automorphism @g. If now
@ is a function for 7, then p = plp?, pw = pl, - pé,. Let now Wy = W(z). Then
Hw, = ,u%,VD -,u%VD. But pw, = ,u%VD since ¢ and @y, 7, and 7o coincide on Wy, Therefore
iy, = L.

We will show that 7 with this property is an inner automorphism. Let us find out
what the condition gy = 1 means. Take an arbitrary v: Wy — G and let py, = 1 for ¢.

Then

—

- P:VVD(V) =

ET

<

Thus, v is fixed under 7. Then endomorphism : Wy — Wy is invariant under automor-
phism ¢. By definition v = iqu,v(z) = ig(v(z)) = ig(a), where a = v(z) € G. In other
words, v takes x to constant and ¢ leaves every such constant fixed.

So, the condition gy, = 1 means that automorphism ¢ does not change automor-
phisms of Wy = W (z) which take variable z to a constant.

Every such ¢ which also does not change objects will be called a special automorphism
of the category ©(G)°.

2. The main theorem Theorem 11 Let the semigroup EndW) is perfect in ©(G). Then
the variety ©(G) is perfect too. If the semigroup EndWj is semiperfect then the variety
©(@G) is semiperfect. Proof Take an arbitrary automorphism ¢: ©(G)? — ©(G)", and show
that ¢ is either inner (in the first case), or semiinner. We can assume that ¢ does not
change objects. Then ¢ = ¢y - ¥y. If (g is inner, or semiinner, then g is the same type.

Thus, the theorem will be proved, if ¢; is inner. So, we are going to prove the
following fact. Let ¢ be a special automorphism of the category ©(G)Y. Then ¢ is inner
automorphism.

Let us pass to the categories Kg)(G) and Pol — G. Automorphism 7 of Kg)(G) corre-

sponds to the automorphism ¢. For every X, |X| = n, we have a bijection

pw = pw(x): Hom(W,G) — Hom(W,G)
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and, correspondingly, we have

p: G — G,

We want to compute py and p,. Show that for some automorphism
Cw:W — W, we have pw = (w, fn = (-

Take an arbitrary automorphism s:W — W and let X = {zy,...,2,}. Then s =
(81,...,8,), where s;: W(z) — W(X) are morphisms in O(G), i = 1,...,n, and s(z;) =

33-(117) = wi(xla . '13771)‘

Take also e;: W(z) — W(X), defined by £;(z) = z;. The set (£1,...,5,) freely
defines W. Take a new basis Y = {y1,...,yn}, where y; = ¢(s;)(z). In this new basis

99(3) = (99(31)1 - 99(371))‘
Return to the basis X. Consider an automorphism oy : W — W, defined by oy (z;) =

y;. In the base Y we have ¢(s)(y;) = ¢(s:)(z) = wi(y1,...,y). In the base X we have
o(s)(ox;) = (p(8) - o) (x;) = wi(ozy,...,00,) =
=ow(z1,...,7,) = @(s7)(z).

Thus, morphisms ¢(s1),...,(s,) present in the base X the automorphism ¢(s) - o.

Using s;: W(z) — W(X), we have

— —

57 = padipy = ¢(s:), 5i = p(si)ux,
since p, = 1.
In the category Pol — G we have
5 = So(si)aouna i=12...,n

We have a system of equations, which defines pu,,.

If s = (s1,...,5,), then for every a € G("™ we have

s%(a) = (s1(a), ..., s, (a)).
In our case
s%(a) = (s7(a), ..., s5(a)) = (p(s1)“pn(a), ..., p(sn) " pn(a)) =
(e(81)*(kn(a)), ..., p(sn)* (pn(a)).
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As we know, the sequence ((s1),...,¢(s,)) in the base X presents automorphism ¢(s)o.

Therefore,
(p(8)0)*(un(a)) = (@(s1)*(kn(a)), ..., ¢(sn)*(pn(a)).
Thus, for every a € G(™, we have s%(a) = (¢(s)0)*(un(a)). Hence, ((¢(s)o)

pn(@);
((p())o) ) *s%(a) = (so ™ p(s) ") (a) = pnla),
for every a. Then
pn = (50" () 1)

Take Cw = so to(s)~'. Now p, = (& pw = Cw. Here, (i depends on s, but pu,
does not depend on s. Hence, (-, indeed does not depend on s. Take now an arbitrary

morphism s: W1 — W? in ©(G)°. Pass from s to 5. We have

—
=T

~ -1 X -x1 -1
5T =(s) = w1t Sphyyrs = CwrSCyrz = CprasCwi.

Hence,
o(s) = (sl

The theorem is proved.

§9. The classic variety. Problems and applications

1. Varieties Var — P and Grp— F

Variety Var — P is a classical variety over the field P. Variety Grp — F' is, in fact,
O(G), where O is the variety of groups and G = F(ay,...,a,,) is a free group with free
generators ajy, ..., Q.

In the papers [Bel], [Be2| it was proved that:

1. If P[z] is algebra of polynomials with one variable z, then the semigroup EndP|z] is
semiperfect, i.e. every its automorphism is semiinner.

For ©(F) = Grp — F every free group is the free product F = F(X).

2. The semigroup End(F = {z}) is semiperfect.
So we have Theorem 12 The variety Var — P is semiperfect. If the field P does not

have automorphisms, then Var— P is perfect. Theorem 13 Variety Grp — F'is semiperfect.
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Let the variety Var — P be perfect and the field P have no automorphisms. In this case the
similarity of the two extensions L; and Ly of the field P became an equivalence [P15]. Thus,
if the field P does not have non-trivial automorphisms, then the corresponding categories
Kp(Ly) and Kp(Ly) are (correctly) isomorphic if and only if the extensions L; and Ly are
geometrically equivalent.

2. Problems Consider other varieties ©(G). We have here morphisms and semimor-

phisms. The last are represented by diagrams

G+ H

i b

G H
where o is an endomorphism of the algebra of constants. In particular, for every G-
algebra H we have the usual semigroup EndH in ©(G), and SEnd(H) in ©(G) with
semimorphisms. Similarly, there are AutH and SAutH. The semigroup EndH is called
perfect if every automorphism of this semigroup is inner, i.e., induced by some invertible
element from EndH. We say that EndH is semiperfect if every automorphism of this
semigroup is semiinner, i.e., induced by some invertible element from SEndH.

Let now H = W(X). Problem 3 When the semigroup EndH is perfect (semiperfect)?

This problem is similar to the well-known investigations in matrix semigroups, groups
and algebras (see, for example [OMe]).

Let © be a variety of Lie algebras over a field P, charP = 0, and let L = L(ay, ..., a,)
be the free algebra in ©, ©(L) = Lie — L. As it was noticed, R. Lipjansky has shown that
the condition (x) is fulfilled in this situation. Take in Lie — L a free algebra W (z), z is a
variable. Problem 4 Is it true that the semigroup EndW (x) is semiperfect?

If yes, then Lie — L is semiperfect. R. Lipjansky also has noticed that the algebra L
in Lie — L is anticommutative, and, therefore is stable.

We have here the general problem to consider algebraic geometry in Lie — L. In
comparison, algebraic geometry in Grp— F now attracts a lot of efforts, see [ BMR], [ChM],
[Ri], [RS], [Ma], [Ra], etc. Problem 5 As we have seen, if two G-algebras H and H' are
semiisomorphic, then they are similar. Thus, relation of semiisomorphism and relation

of equivalence generate a relation, which imply similarity. In which cases similarity is
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generated by these two relations? In other words, the question is as follows. Let H and

H’ be similar. When one can state that there is a sequence
H=H, Hy, ... .H,=H

such that H; and H;; are semiisomorphic or equivalent.

As we know, similarity of algebras H and H’ is defined with the diagram

Q0 L, gt

|

@0

One can ask about the following decomposition of the diagram
@0

991l Y&Hl

'l
"2 Get

@n—ll AH,Z,

a0

Y =%¥n-1"""¥1.

Here, the question is whether it is possible to find an appropriate H; in case the
decomposition of ¢ is known? (See Theorem 14.)

Problem 6 To study what this decomposition gives for similarity of algebras.

Problem 7 What common features have similar algebras H; and Hs.

If Hy and Hy are equivalent, then they have the same quasiidentities [PPT]. Do we
have some statement of the same nature for similar algebras H; and Hs?

Problem 7 can be considered separately in the varieties of the type ©(G). What one
can say about G-algebras H; and Hs, if they are similar and equivalent as algebras in ©7

Definition G-algebra H is called algebraically closed if for every W = W(X) = G
Wy(X) and every proper congruence T' < W there is G-homomorphism pu: W — H with
T C Kerp.

Problem 8 What can be said on equivalence or similarity of two G-algebras H; and

Hs if GG is algebraically closed.
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From Hilbert Nullstellensatz it follows that if P is algebraically closed, then L, and
Lo are equivalent.

[t would the of special interest to find out how Hilbert Nullstellensatz looks like for
variety ©(G) with algebraically closed G.

3. Similarity of algebras in semiperfect varieties ©(G)

First, let us discuss some details of the notion of similarity. The definition was given
in [PL5], [P16]. We repeat it here with some modifications in the notations.

Consider two functions 3 and ~ which determine the maps 3y and vy defined on
the objects of the category ©°. The map Sy assigns to each congruence T in W the
equivalence p = By (T) on the semigroup EndW, defined by the rule: vpv' if and only if
wTw" for every w € W.

The map ~y assigns to each equivalence p on EndW some relation 7' on . By the
definition, wiTws if wy = w", we = w”’ , for some w € W, v, € EndW, and vpv'.

We have: vy (8w (T) =T, if T is a congruence in W.

Let the algebras H,H’ from © be given. We have the functors

Cly:Var(H)" — Set
and
Cle:Var(H’)o — Set.

The algebras H and H’ are similar, if there exists an isomorphism of categories

w:Var(H)? — Var(H'))?, which induces a commutative diagram

Vv ar 0_*% vy ar

\ P

Here, the commutativity of the dlagram means that the functors Cly and Clyp are

r 0

isomorphic. We have an isomorphism o = a(y): Cly — Clyr ¢, which depends on .
Now we want to study the relation between a and .

By the definition:

a(@)w(T) = vow)(e(Bw(T)), T €Cly(W).
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Here, o(Bw (T)) is the relation in Endp(W) defined by the rule
pe(Bw(T)p & p=pv), p =¢@), v €EndW, v(bw(T))V.

Simultaneously,
(Bw (1)) = Bow) (a(@)w(T)).

For every W we have a bijection a(p)w:Cly (W) — Cly (p(W)), and for every v: Wy —

/5> there is a commutative diagram

7 a(p)w, 7
Cly(Wa) ——2"2 4 Ol (W)
cthv)l l{czw)tv)
7 a(p)w, 7
Cly(Wh) —2"0y Ol (W)

We assume that the isomorphism «a should satisfy the additional condition. Namely, con-
sider a function 7, defined for every pair of objects W and W’ in Var(H)". It takes a
congruence 7' in Wy to the relation p = Tw, w,(T) on Hom(Wy,W3) by the rule: sps’,
where s and s’ € Hom(Wy, W) if and only if w*Tw?® for every w € Wj.

The isomorphism a should be coordinated with the function 7 in the following sense

To(W1),(Wa2) (05(99) Wa (T)) = SO(TWH,VVz (T) ) :

Note here, that the bijection a(p): Cly(W) — Cly (p(W)) preserves the natural
ordering for congruences.

Assume further, that for ¢ the decomposition ¢ = @oq is given. Here,
o1:Var(H) — Var(H)°, wo: Var(Hy)? — Var(H')®,

for some Hy, and ¢y, @ are isomorphisms.
We want to find out how « is coordinated with this decomposition. Along with Clgy

and Clys we have also the functor Cly,. We will calculate a(papy).

Take T' € Cly (W). Then

ow (Bw (T)) = (w201)w (Bw (1)) = w2, (wyerw (Bw (T).
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Further,
a(@)w(T) = vow) (ew (Bw (T)) = vow) (P20, (wye1w (Bw (T)).

Since a1 = a(p1) and az = a(pz), we have 1w (8w (1) = By, (w)(alw1)w(T)).
Denote a(p1)y (T) = T*. This is a congruence in Cly, (¢1(W)). Then,

(@) w (T') = Yo W) (P20, (W) Bior (W) (T7)) = You (00 (W) (92000 (W) Bior () (T7)) =

a(p2) o, (w) (1) = alw2) o (wya(er) w(T).
Thus,

al(papr)w = @(992)¢1(uf)@(891)uf-

We note now the proposition, which, in fact, is contained in [P15, Proposition 8].
Proposition 6. Let Var(H) = Var(H') = ©, and H and H' are similar with respect to an
inner automorphism ¢: Y — . Then H and H’ are equivalent.

Let us pass now to the our main goal

Theorem 14 Let H and H' be algebras from the variety ©(G), Var(H) = Var(H') =
©(G), and let they are similar with respect to semiinner automorphism ¢: 9(G)? — 6(G)°.
Then there exists an algebra Hy € ©(G), such that H and H; are semiisomorphic, H; and
H' are equivalent.

Proof Let ¢ is determined by the function ¥ = (0, s) as a semiinner automorphism.
Using H and o € Aut(G), construct an algebra H;. We have h: G — H. Take h; = ho,
hi1:G — H. Denote the new G-algebra by H;. The algebra H; coincides with H as an
algebra in ©, but in ©(G) these H and H; are semiisomorphic. We have

G, @

|
G+ H
By Theorem 8 G-algebras H and H; are similar, and the similarity is given by a
semiinner automorphism ,: 9(G)? — O(G)°. The corresponding 1, = (o,s;) is defined
by 1w = (0,0w), s1w = ow, 1 does not change objects.
Decomposing ¢ = o we get s = <,o<,91_1. We show that o is inner automorphism

which determines the equivalence of algebras H; and H'.
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For ¢ we have ) = (0, s)) and for W

G —S W =GxW,

We have also

This gives decomposition

(O’,Spv) = (1,3%;)(0, O’pv), Sw = S?VJVV:

where 3%, is an isomorphism of G-algebras W and ¢(W).

We have also

=020 Y = (0,sw) = V5, )l = Uiy Uiy = Yiy(o,ow).

Hence, 'I,b%,v = (1, 3%,). Since ¢ and ¢ are semiinner, the automorphism s is also semiin-
ner. It is defined by the function 2 = (1, s”). Hence (5 is inner automorphism.
Now we have to check that 1)? gives the similarity of the algebras H; and H’. This

means that if we define ay = a(p2) by the rule

aow (T') = Yo, (w) (2w (Bw (T)),

then we get a bijection agy: Cly, (W) — Clg (w2(WW), and ay defines an isomorphism of
functors Cly, and Clgs w9, which is coordinated with the corresponding function 7.

For ¢ = pop1 we have

ap)w = a(pre2)w = ap2) o w)aler)w.

Here, a(p)w is the bijection Cly(W) — Cly (p(W)), and a(p1)w is the bijec-
tion Cly (W) — Cly, (W). Therefore, a(ps)
CEHJ((,OQ(M’T)).

o (W) = Qow is the bijection Cly, (W) —
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We need to check that as is an isomorphism of functors. Take a morphism of G-
algebras v: W; — Ws. Since a is isomorphism of functors Cly and Clgr ¢, for any T €
Cly (W3) we have

a(@)w, (VT) = p(v)a(e)w,(T).

Since,
a(P)w, = alp2)w,a(e1)w,
a(@)w, = alv2)w,ale1)ws,
then

a(2)w, ale1)w, (VT) = pa(e1(v)) a2 wyaler) w, (T).
We have also a(@1)w, (VT) = @1 (¥)a(1)w,(T). This gives
a(2)w,p1(V)ale)w,(T) = 2 (e1(v)alez)wyaer) wy (T).
Denote @1 (v) = 11: Wy — Wa, and a(p1)w,(T) = T* € Cly, (Ws). Then,
a(2)w, (1) = @a(v1)a(e2)w, T

This means that as defines isomorphism of functors Cly, and Clgips.
It remains to check the coordination with 7.

Take W7 and Wy from ©(G). Consider Hom(Wy, Wy), T <Wy, Tw, w, = p. We have
T{@(M’l),@(u’z)(Q(SO)W’Q(T)) = SO(TWH,VVz (T))

Since ¢ = a1,
T(p2 (01 (W), (21 (W) ((p2) wy () w, (T) =
w2 (01 (Tw, wo(T) = ©2(Tu, (w1),00 (W) (1) wr, (1))

We have @1 (W7) = Wy, p1(Ws) = Wh, and let a(p1)w,(T) = T*. Then,

Y2 (T(W’Yl),(ufz) (T* ) = T (W1),02(W2) (05(992) W (T* ) ) .

This gives compatibility as with 7. Thus, 9 gives similarity of algebras H; and H’. Since

(09 is inner, by the proposition 6 algebras H; and H' are equivalent. Corollary If the variety
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O(G) is semiperfect, then its algebras H and H' such that Var(H) = Var(H') = ©(G) are
similar if and only if there exists H; such that H; is semiisomorphic to H and equivalent
to H'.

The existence of such H; is regarded as an equivalence of H and H' up to some
semiisomorphism.

This corollary solves Problem 5 for semiperfect variety ©(G). In particular, this can
be applied to Var — P and Grp — F.

In the classical situation we have, in particular,

Theorem 15 Let P be an infinite field, and L, Lo two its extensions. Categories of
algebraic varieties Kp(Ly) and Kp(Ly) are (correctly) isomorphic if and only if Ly and Ly
are equivalent up to some semiisomorphism.

Let , further, H and H’ are similar in ©(G). We are interested in correspondence
between the identities of H and H' . Suppose that ©(G) is semiperfect. Then there is an
algebra Hy in ©(G), which is semiisomorphic to H and equivalent to H'. Algebras H; and
H' have the same identities. Therefore it is sufficient to take H; with the semiisomorphism

Gy,
|

G—repqg
Take W = G * Wy and consider the diagram

G W=G*W,

gi l”"‘"

G W =G*W,
Let T be the congruence of identities of the algebra H in W. It is defined by the

algebraic variety Hom(W, H). We have T* = o,,'T (see §4). This is a congruence of
identities of the algebra H;. Indeed, T is the minimal H-closed congruence in W, hence,
T™ is the minimal H closed congruence in WW. It coincides with the congruence of identities
of the algebra H,.

We have T' = ow T and w1Twy < w{"VTwy"™. Thus, w; = wsy is an identity of the

TW

algebra H if and only if w{" = wy" is an identity of the algebra H;. In particular, H

and H' have the same identities without constants.
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