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We depict the weight diagrams (alias, crystal graphs) of basic and adjoint representa-
tions of complex simple Lie algebras/algebraic groups and describe some of their uses.

0. Introduction

In this paper we collect the weight diagrams (alias, crystal graphs) of basic
representations of complex simple Lie algebras as well as of those adjoint repre-
sentations, which are not basic. These pictures arise in a number of contexts, but
their main significance stems from the fact that they allow the visualization of cal-
culations with root systems, Weyl groups, Lie algebras, Chevalley groups and their
representations, to a large extent replacing (or sometimes enhancing) such tools as
calculations with matrices or Bruhat decompositions.

These pictures and related combinatorial objects appeared dozens (hundreds?)
of times in various contexts, such as representation theory and structure theory of
semisimple Lie algebras, algebraic groups and Lie groups, invariant theory, algebraic
K-theory, combinatorial geometries, Schubert calculus, Jordan systems, Hermitian
symmetric spaces, combinatorics, computer algebra, etc. Our primary emphasis in
this paper are the pictures themselves, rather than their uses. In this sense it is
a pendant to [120, 121] which contain a detailed description of significance of the
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62 E. PLOTKIN et al.

pictures and various numerical invariants connected with them, as well as proofs of
some results quoted here en passant.

The paper is organized as follows. In Sec. 1 we recall the notation. In Sec. 2
we define weight diagrams, discuss various ways to draw them and explain how
the diagrams in the atlas were constructed. Finally, Sec. 3 discusses some of the
applications of the pictures referring to [5, 11, 12, 27, 30, 36, 37, 44, 45, 47, 49-51, 55,
81, 85-87, 100, 110, 112, 115, 117, 119-125, 128] for a detailed explanation of these
and further examples and many additional references. In the bibliography we cite
further papers containing these and similar pictures. Tables 1 and 2 reproduce the
numbering of the fundamental roots and the list of basic and adjoint representations.
The core of the paper, its raison d’étre, are the pictures themselves, Figs. 1-28.

Weight diagrams have been around for about half a century (see comments in
Sec. 2 below) and first appeared in print a quarter of a century ago in [36]. But
during the last few years they gained an entirely new significance. This is primarily
due to the fact that — at least for the cases we consider in this paper — they
coincide with the corresponding crystal graphs of M. Kashiwara [60-62], which,
in turn, are intimately related to canonical bases of G. Lusztig [72-75] and the

Table 1. Numbering of the fundamental roots.
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Table 2. Minimal representations.

7 Type dim

Microweight representations:

B, 1<k<l A% (natural) (H’;l)

iy spin 2!

i1 natural 21

W natural 2

Wy—1,W1 half-spin g1

Wi, W minimal 27

wy minimal 56

Short-root representations:

£1 — E[41 adjoint 12 +21

w1 natural A+1

5} short-root 22 —1-1

W2 adjoint A% -1

Wy adjoint 78

@1 adjoint 133

g adjoint 248

W4 minimal 26

w1 minimal 7
Non-basic adjoint representations:

T adjoint 2% +1

2@ adjoint 2% +1

Wy adjoint 52

wso adjoint 14
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Fig. 8. (Bs,wa)
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Fig. 12. (De,ws)

path model of P. Littelmann [69-71] (one can find a brilliant presentation of this
circle of ideas in [57, 78]). For the microweight cases this is obvious (in the ter-
minology of Kashiwara microweight representations do not melt, i.e. they always
behave like at temperature 0). For the adjoint representations it is established in

the thesis of R. J. Marsh, see [77] for example. Some further related references are
listed in the bibliography.
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Fig. 14. (B, wz)

This stresses the significance of weight diagrams as at least a powerful
mnemotechnical and computational device, completely describing semi-simple Lie
algebras/algebraic groups in some small representations in an extremely transparent
and compact form. This is, of course, especially relevant for the exceptional algebras
and groups, where weight diagrams serve as a substitute of matrix computations. In
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Fig. 17. (D4, w2)

fact, in the vast majority of publications weight diagrams were considered as a purely
combinatorial object, describing induced Bruhat order on some quotients of the
Weyl group (“first look” ). At least after 79, 110] it became clear that they are much
more, namely that they describe action of a Lie algebra or a Chevalley group at least
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Fig. 20. (Ee,@1)

up to signs (“second look”, see the exposition in [117]). But remarkable properties
of crystal bases allow much more, namely it follows that in fact weight diagrams
completely describe the actions, including signs (“third look”). Of course, for small
representations it is easy to give direct proofs which make no use whatsoever of
quantum deformations (see [120, 121, 125]). In particular, encoding the explicit
action of the fundamental/negative fundamental root elements in the 27, the 56
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Fig. 23. (Er,@)

Fig. 24. (Eg,ws)
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Fig. 28. (Ga,@2)

and the 248 dimensional representations, our figures 20, 21 and 24 are as complete
and elementary definitions of the simply-connected Chevalley groups of types Es,
E; and Eg, respectively, as one can imagine.

1. Basic Notions

In this section we briefly recall the notation used in the sequel and the notion of
a basic representation. All background information on root systems, Lie algebras,
algebraic groups, Chevalley groups and representations may be found in [13, 14, 16,
17, 21, 48, 52-54, 56, 106, 107, 111].

(1) Root systems and Weyl groups. Let ® be a reduced irreducible root system
of rank I, @(®) be the root lattice, P(®) be the weight lattice. Fix an order
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on @, and let @+, @ and Il = {a,...,a;} be the sets of positive, negative and
fundamental roots respectively. Our numbering of the fundamental roots follows
that of [16] (see Table 1). By @1, . ..,w; one denotes the corresponding fandamental
weights.

Let W = W (®) be the Weyl group of the root system &, i.e. the group generated
by the set of fundamental reflections wey, ..., Wa,. For brevity we write 8; = wa,.
Denote the set {s;,, 1 < ¢ < [}, of fundamental reflections by S. A conjugate
t of a fundamental reflection, t = ww,, w ', is called a reflection and the set of
all reflections will be denoted by T". Let I be the length function on W, ie. I(w)
is the length of the shortest expression of w € W in terms of the fundamental
reflections.

There are two partial orders on the group W called the strong and the weak
Bruhat orders. Namely, for u,v € W we write v < v and say that u precedes v
in the strong Bruhat order (usually called simply the Bruhat order), if there exist
reflections t1,tz2,...,4k € T such that l(utitz---ty) = u)+m, for 1 < m <
k, and utits---ir = v. Similarly, the element u precedes v in the weak Bruhat
order (sometimes also called the Duflo order), u =< v, if there exist fundamental
reflections #1,ta,...,tx € S such that {(utits - tm) = {u)+m, for 1 < m < k, and
utyta -+ -tx = v (see [7, 8] for additional references).

For any subset J C S let W; be the parabolic subgroup of W generated by J.
The set of left cosets WY/ = W/W; inherits the structure of a partially ordered
set according to both orderings. Indeed, there is a well known characterization
of the set W7 in terms of the length function {16, 21]. Let D; be the set of
elements w € W, such that {(ws) > I(w) for all s € J. Then the map Dy — W’/
sending u € Dy to «W; is a bijection. Each element w € W can be uniquely
expressed in the form w = wv, where v € Wy, u € Dy and l(w) = [(u) + I(v). In
other words, u is the unique shortest representative of the coset wWj . The Bruhat
order (weak Bruhat order) on W/W; is induced by the corresponding order on
the set Dy, namely: w, Wy < waWy (respectively w;W; < w,W;) if and only if
w1 < ug (respectively u; < up) for the shortest representatives u, ug of these cosets:
Ui,z € Dy, uys € Wy, ug € waWj.

(2) Chevalley algebras and groups. We denote by L = L¢ the complex semisimple
Lie algebra of type ®, by | , | the Lie bracket on L and by H its Cartan subalgebra.
Then L admits rost decomposition L = H D >" Ly, where L, are the root subspaces,
i.e. one-dimensional subspaces, invariant with respect to H. For each root « denote
by the same letter the linear functional on H, such that [h,e,] = a(h)e,. We can
identify H and H* via the Killing form and consider a’s as elements in /. However,
it is more convenient to consider coroots ho = 2e/(a, c) instead of roots. A choice of
non-zero elements e, € Lo, a € @7, uniquely determines the elements ¢_, € L_,,
a € &%, such that [eq,e_o] = ho. Then the set {eqa, @ € ®; hg, B € IT} is a base
of the Lie algebra L, called a Weyl base of L.

Usually one normalizes a Weyl base in such a way that all the structure constants
Nog, where |ey, eg] = Nypeq g, become integers. Such a normalized base is called
a Chevalley base. Let Lz be the integral span of a Chevalley base, it is a Z-form
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of L, called an admissible Z-form or a Chevalley order. For any commutative ring
R we set Lr = Lz ®z R. In other words Ly is the free R-module with the base
eq =€ ®1, hg = hg®1, with the same multiplication table as over C. The algebra
Ly, is called the Chevalley olgebra of type @ over R.

To a reduced irreducible root system ® and a lattice P, Q(®) < P < P(®),
there corresponds a (unique) affine group scheme G = Gp(®, ) over Z, called
the Chevalley—Demazure group scheme of type (®, P), see (23]. The value of the
functor G on a commutative ring R with identity is called the Chevalley group of
type (@, P) over R. When R = K a field, this group, i.e. the group of rational points
G(®, K) with coefficients in K, is the split semisimple algebraic group of type (®, P)
over K.

In the sequel we always assume that the group G(®, R) = Gp(®, R) is simply
connected, or, in other words, P = P(®). Fix a split maximal torus T(®, ) of
G =G(®, ). Its value T = T(@, R) on a ring R will be called the split mazimal
torus of the group G(@, R). We denote by z4(£), & € &, £ € R, the elementary root
unipotents of the group G(®, R) with respect to the given torus T(®, R). The group
E(®, R) generated by all the elementary unipotents z,(£) is called the elementary
subgroup of G(®, R). As usual for an £ € RB* we set wa(c) = za(e)z—a(—")zale)
and ha(g) = wa(e)wa (1)~

(3) Weyl modules. Let = : L — gl(V) be a representation of L in a finite
dimensional vector space V over C. For an element A € H* denote by V* the
corresponding weight subspace of the space V regarded as an H-module, i.e.

VA= {v eV |n(h)v = A(k)v, h € H}.

We say, that ) is a weight of the representation 7 if V* # 0. The dimension
my = mult(\) of the space V* is called the multiplicity of the weight A. Let
us denote by A(m) the set of weights of the representation m, and by A(r) the
set of weights with multiplicities, This means that all the weights from A(w) are
distinct, and we assign to each weight A € A(wr) a collection of m distinct “weights”
A1, -2 Am € A(n), where m = mult()). We denote by A () and by A*(r) the
sets of non-zero weights and non-zero weights with multiplicity, respectively. Let
P = P(m) be the lattice of weights of the representation m, i.e. the subgroup in
P(®) generated by A(r). Then, V = @V*, A € A(xr). In particular, for the
adjoint representation 7 = ad, we have V = L, A*(7) = @, A(7r) = @U{04,...,0:},
P=Q(®),V*=1Ly forac ®and V' = H.

Let p € A(m) and v* € V. The weight p is called the highest weight of the
representation m and the vector v is called a highest weight vector (or a primitive
element) if w(ey)v" = 0 for all @ € ®+. Of course, this notion depends on the
choice of order on the root system ®. The representation 7 is irreducible if and
only if V is generated as an L-module by a vector of the highest weight. The
multiplicity of the highest weight of an irreducible representation is equal to 1,
hence a primitive element in this case is uniquely determined up to multiplication
by a non-zero scalar. It is well known, that the correspondence between the finite



74 E. PLOTKIN et al.

dimensional irreducible modules and their highest weights yields a bijection of the
set of isomorphism classes of irreducible finite dimensional L-modules and the set

P(®)++ ={ne P(®)|(p,a) >0, a I}

of dominant integral weights (with respect to a fixed order).

The Chevalley—Ree theorem asserts, that each finite dimensional L-module V
contains a Z-lattice M, invariant with respect to all divided powers n(e,)™/m!,
a € B, m € ZT, and that such a lattice is the direct sum of its weight components
M>* = MNV? (see [21, 53, 98, 111]). Such a lattice M = Vg is called an admissible
Z~form of the module V or simply an admissible lattice. A base v*, A € A(w), of
the space V, consisting of weight vectors, such that M = Y Zv* is an admissible
lattice, is called an admaissible base of V.

Let again R be an arbitrary commutative ring. Set Vg = Vz ®z R. In other
words, Vg is the free R-module with the base v* = v* ® 1, A € A(w). It is clear
that Vp is a module over the Chevalley algebra Lg. Indeed, e, and h, act on the
first component of the product v ® &, v € Vg, £ € R, while the scalars of R act on
the second one. If V is an irreducible L-module with the highest weight y, then Vg
is called the Weyl module of the Chevalley algebra R with the highest weight p.

Clearly Vg may be considered also as a representation of the (simply connected)
Chevalley group G(@, R). It will also be referred to as the Weyl module with the
highest weight p. Even when R = K is a feld, this representation does not in
general coincide with the irreducible representation with the highest weight p. In
fact it is only indecomposable, not irreducible (of course, it is irreducible for fields
of characteristic 0). In the sequel we deal exclusively with the Weyl modules.

(4) Basic representations. Let us recall that an irreducible representation 7 of
the complex semi-simple Lie algebra L is called basic® if the Weyl group W = W(®)
acts transitively on the set A" (m) of non-zero weights of the representation 7. This
is equivalent to saying that if for any two non-zero weights A, p their difference is
a fundamental root & = A — p, then w,A = p for the corresponding fundamental
reflection we € W.

It is straightforward to enumerate basic representations. First of all, it is clear
that the non-zero weights of such a representation have multiplicity 1 (they are in
the Weyl orbit of the highest weight). Thus A*(x) = A" (). It is easy to show [22]
that the multiplicity of the zero weight is m = |A(w)|, where A(m) = IINA*(r) is
the set of fundamental roots which are weights of the representation 7. Therefore
we may speak about m “zero-weights” &, where @ € A(x).

Now if m actually has zerc weight then all the remaining weights of # must be
the short roots of the root system ®. Thus every complex semisimple Lie algebra
has a unique such representation, called the “short-root representation”. Its highest
weight x coincides with the short dominant root of ®. If there is just one root length
LThis usage follows [22] and [79]. Many authors, especially in physics, use ‘basic’ as a substitute

of ‘fundamental’. In [102] ‘basic’ refers to a subclass of infinitesimally irreducible representations.
However we always use the word ‘basic’ in the same sense as [79].



VISUAL BASIC REPRESENTATIONS: AN ATLAS 75

then p is the maximal root and this representation is the adjoint representation of L.
If there is no zero weight then A(n) = A*(7) and all the weights of 7 form one Weyl
orbit. Such a representation is called a microweight or minuscule representation
and of course a list of these representations is very well known (see [17]). Many
further details and references concerning these representations may be found in
(50, 82, 89, 117, 120, 125]. For the types ® = G3, F4, Eg there are no microweight
representations. The total number of basic representations of the Lie algebra L of
type @ equals |P(®) : Q(®)| (see [79}).

In Table 2 we reproduce an explicit list of basic representations for all root
systems &, giving the corresponding highest weight y, type and dimension. With
the sole exception of the adjoint representation for A; all these representations are
fundamental. The last column refers to the corresponding figures in the atlas. For
the classical types we cannot of course draw all of the pictures and in the next
section we explain how to construct them (see [82, 120] for details).

Besides basic representations, we include the diagrams of adjoint representations
for the root systems By, C;, F4 and Ga. Of course, these representations are not
basic, since the roots have different length and therefore the Weyl group has two
orbits on non-zero weights. However, they also have the property that all non-zero
weights have multiplicity one, and in this sense they are close to the basic ones.
In these cases A(r) = II is the set of all fundamental roots and the multiplicity
m of the zero weight equals 1. We refer to the modules in Table 2 as the minimal
modules?®.

(5) Action on a minimal module. Fix a basic representation 7 of a Cheval-
ley group G = G(®, R) on the free R-module V = Vg = Vz ®z R. We tend to
identify G with its image (@) = G,(®, R) under this representation and often
omit the symbol 7 in the action of G on V. Thus foran z € G and v € V we
write zv for m(z)v. Decompose the module R into the direct sum of its weight
submodules

v=> VeV’ eA(n).

H. Matsumoto [79, Lemma 2.3], has shown that one may normalize a base of weight
vectors v* € V2, A € A*(n), v2 € VP, a € A(r), in such a way that the action of
the root unipotents z(£), o € ®, £ € R, is described by the following very nice
formulas:

if A€ A*(m), A+ a@A(r), then 2,{E)v =2

i, if AA+oaeA*(r), then z,(E)v* = v + £t
iii. if agA*(x), then 2,{€)v® =19, for any v° € VY,
iv. if a€A*(m), then x,(&)v™* = v+ &%a) + %%,

£o(£)v0 = v° £ Lo (vO)v°;

2There is no consensus on the usage of the word ‘minimal’ either. In [58] ‘minimal’ is used for
what we call ‘basic’. Some authors use ‘minimal’ as a synonym of “minuscule’, some others reserve
it solely for the modules of the smallest dimension.
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where a, is a certain unimodular element of the dual space (V°)* = Homg(V?, R)
and v°(a) is a unimodular element of V' (recall that an element v of a free R-
module V is unimodular if the submodule generated by v is a direct summand of V,
or, equivalently, if there exists a ¢ € V* = Hompg(V, R), such that ¢(v) € R*). We
refer to this fact as Matsumoto’s Lemma. In fact since the only basic representations
which actually have zero weights come from the adjoint ones, it is easy to give
explicit formulas for v%(a), a.(v) as well, see [125]. For the sake of brevity we write
® instead of v2. Then our base {1} of V is indexed by all the weights A € A(w)
with multiplicities.

Now we may expand any v € V in the chosen base, v = Y exv* + 3,20l
A € A*(m), @ € A(x). Usually we suppress distinction between zero and non-
zero weights and write simply v = Y. exv*, A € A(w). Then c, is called the A-th
coordinate of v. Matsumoto’s lemma provides explicit formulas for the action of
24 (€) on v and on its coordinates.

2. Weight Diagrams

In this section we briefly recall how the weight diagrams of the above representa-
tions are constructed. Once more our usage dramatically differs from that common
in physics (and though less common, still present in mathematics, see [113] as a re-
cent example), where ‘weight diagram’ denotes the actual configuration of weights
in the /-dimensional Fuclidean space. Weight diagrams in our sense were first drawn
by E. B. Dynkin and his school in mid-fifties (private communication with E. B.
Vinberg), but to the best of our knowledge never officially appeared in print. In
fact already [42] and the supplement to [43] show that Dynkin was well aware of the
combinatorial and geometric properties of weights expressed by weight diagrams.
His expression “spindle-shaped” refers to what would nowdays be called “rank sym-
metry” and “rank unimodality” (see [8, 82, 88-90, 108]). The first appearance of
these pictures in print, which we could trace, was in [36]. Weight diagrams were
systematically used starting with the paper of M. R. Stein [110]. They preserve
most of the essential information about the configuration of weights.

(1) Weight diegrams. It is well known that a choice of a fundamental system
II defines a partial order of the weight lattice P(®) as follows: A > p if and only
if A — p is a linear combination of the fundamental roots with non-negative inte-
gral coefficients. Let us associate with a representation m a graph which is almest
the Hasse diagram of the set A(m) of its weights with respect to the above order.
Actually, for the representations where all weights have multiplicity one, it will be
precisely this Hasse diagram. However in general we want the nodes of the diagram
to correspond to the base vectors of the corresponding representation space, rather
than the weights themselves, so we need mult(u) nodes corresponding to a weight
. Fortunately for the basic and adjoint representations, all non-zero weights have
multiplicity one, so this problem arises only for the zero weight.

We construct a labeled graph (or, in the terminology of M. Kashiwara, a colored
graph) in the following way. Its vertices correspond to the weights A € A(w) with
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multiplicities of the representation m, and the vertex corresponding to A is actually
marked by A (usually these labels are omitted). This means that there is one node
corresponding to each non-zero weight and that to the zero weight there correspond
m distinct nodes @&, o € A(n). We read the diagram from right to left and from
bottom to top, which means that a larger weight tends to stand to the left of and
higher than a smaller one, with the landscape orientation being primary.

The vertices corresponding to the weights A,z € A(n) are joined by a bond
marked a; (or simply ¢ — in the terminology of M. Kashiwara, of color £) if and
only if their difference A—u = a; € Il is a fundamental root3. We draw the diagrams
in such a way that the marks on the opposite sides of a parallelogram are equal and
in that case at least one of them is omitted.

When A and p are non-zero weights this definition is unambiguous. It remains
to explain how we understand the equality when A or p is a zero weight. If A = @,
where o € A(mr), then we stipulate p = —a and a; = a, so that & = (~a) + a. If
p =2, a € Alr), then A = @; = a and o = & + . This means that to any root
a € A(m) there corresponds the following weight chain of length three:

(04 &
o————0———0

a & -

and & is not adjacent to any other vertex.

The above convention may seem somewhat arbitrary. To really calculate in the
presence of zero weights one has to introduce also another sort of bonds, which we
used to denote by dotted lines and which join & to =8 if o, § € A(nw), @ # 3, are
not orthogonal. These bonds have to be read in one direction, from a zero weight
to a non-zero one, see [117, 125] for details. (In fact the dotted bonds are precisely
the ones which come from those covering relations of the strong Bruhat order which
are not present in the weak Bruhat order, see the two following subsections for the
explanation and an example). But there is a much deeper explanation of why we
draw the weight diagrams the way we do. In this way they describe the action
of Kashiwara’s raising and lowering operators at temperature 0. It is shown in the
thesis of R. J. Marsh (see, for example, [77]) that our weight diagrams coincide with
crystal graphs for these cases.

(2) Hasse diagrams of Bruhat order. For the case of microweight representations
there is another natural way to look at these diagrams. Let w = W be the highest
weight of a microweight representation. Then all the other weights lie in the Weyl
orbit of w and thus correspond bijectively to the cosets W/Wj, where Wy is the
Weyl subgroup of the Weyl group W = W(®) generated by reflections in all the
fundamental roots except a. As recalled in Sec. 1, there is a usual way to introduce
a partial order on the set of such cosets, viz. the (induced) Bruhat order. The

3There is another graph, associated with a representation, in which the nodes are as above and
two nodes are joined by a bond if their difference is any root, not necessarily fundamental. We
refer to this graph as the weight graph of a representation, see the next section. One may find
discussion of some examples in [15, 31, 33, 99].
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following result is essentially contained in {88, 89] (although never stated there in
this form, see [121] for a proof).

Lemma 1. Let w = W be a microweight and W; = Wy, be its stabilizer in
the Weyl group. Then the Bruhat order on WY = W/W; coincides with the weak
Bruhat order and the poset W7 is anti-isomorphic to the poset Ww with respect to
the usual ordering of weights. In other words

w Wy 2 waWy — w; Wy < woWjy — WiW > Watw .

This lemma tells us that for the microweight representations the diagrams de-
scribed in the preceding subsection are precisely the duals of the Hasse diagrams
of the Bruhat order (which in these cases coincides with the weak Bruhat order)
on the coset spaces WY modulo the corresponding parabolic subgroups Wy of W.
This explains why precisely the same pictures appear in a variety of contexts, see,
for example, (11, 12, 27, 30, 36, 37, 44, 45, 49, 51, 55, 82, 83-87, 89, 90, 100, 110,
115, 117, 119-122, 125, 128).

When there is a zero-weight the dotted lines occur precisely because the corre-
sponding Bruhat order on the non-zero weights is actually stronger then the weak
order: a pair of an ordinary and a dotted line with a common vertex corresponds
to a bond in the Hasse diagram of the Bruhat order which does not come from a
fundamental reflection.

(3) An example. In this subsection we compare different ways to draw the weight
diagrams and the Hasse diagrams of the Bruhat order for the case of the adjoint
representation of a group of type A,. First, in the literature on physics the ‘weight
diagram’ of this representation would be something like

o

o 0
o]

o o]
o

In M. R. Stein’s paper [110] the weight diagram of this representation is depicted
as follows (no multiplicities!):

Our way to draw this picture, according to the above convention is:
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8

This way was used in the papers by the present authors and A. E. Zalesskii, see [83-
87, 102, 114, 115, 117, 119, 123, 128]. This is the way how we draw the diagrams
in the present paper and it is exactly the one which leads to crystal graphs [77].

The same diagram with the ‘dotted’ lines read in one direction, see [117, 125]
looks as follows:

It remains to compare these diagrams with the diagrams of the weak Bruhat
order
)
0) »]
() L &
L)

on the Weyl group of type Az (no zero weight!).

As observed in the preceding subsection, for a microweight all these modes to
draw the diagram coincide — what a relief!

and the strong Bruhat order
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(4) Construction of weight diagrams. In this subsection we explain how the
weight diagrams in this atlas have been drawn and how to draw the diagrams
for the classical groups, which are not there. The general idea is to construct
the diagrams inductively, i.e. to build them from the weight diagrams correspond-
ing to a proper subsystem. In fact both [62] and [70] describe an algorithm how
to construct crystal graphs of all representations of classical groups in terms of
Young diagrams, and [70] constructs crystal graphs for some further fundamental
representations.

Take (A;,wy) as an example. For this case we construct the weight diagram
according to the ‘Pascal triangle’. The weights of this representation have the form
€i, +...+e;, where 1 <14; <... < i € {41. Clearly, there are (3-;1 ) such weights.
Now consider the root subsystem A;_1 in Aj, generated by all the fundamental
roots, except o, and restrict the representation (A;, @) to this subsystem. Clearly
with respect to this subsysiem there are two orbits of weights, those without ey
and those with ezy1. There are (i) weights of the form e;, + ... + e;,, where
1<y <...<ip <1, and (kil) weights of the form e;, + ...+ e;_, + €11,
where 1 < 43 < ... < ig—1 < [, and they form precisely the weight diagrams of
the representations (A;_1,wy) and (A;_1,@k—1) respectively. All the bonds of these
diagrams are marked with the fundamental roots a1, . .., @;_; and it remains only to
fit oy in the picture. This is done as follows. Clearly, the only weights from which one
can subtract o = e;—e;11 are the weights of the form e;, +...+e;, ,+e;, where 1 <
i1 < ... <ip—1 £1— 1. There are ( :::11) such weights. Thus we have described an
inductive procedure to construct the weight diagram of the representation (A;, wg):
we have to take the diagrams of the representations (A;_1,@x) and (A;_1,@x—1) and
glue them with the bonds with label [ along the weight diagram of (A;_2,@x—1)}. In
all other cases we proceed similarly.

Consider the spin and half-spin representations as another example. In this
case one has to restrict to the subsystem generated by all the fundamental roots
except c;. For example, a weight of the spin representation for B; has the form
%(:I:el +...2 ¢) and will be denoted in the sequel simply by the sequence of signs
(&, %,...,%). There are 2* such weights. Clearly, restricting to the subsystem B;_;
generated by the fundamental roots aw, ..., oq, we fix the first component to be + or
—. There are 2/~ weights which start with + and 2/~ weights which start with —.
Thus the weight diagram (B;, ;) consists of two weight diagrams of type (By_1,@;).
It remains to establish how they are glued together by the root e;. Clearly, the only
weights, from which one can subtract a1 = e; — ez have the form (+,—, +,...,=+
and there are 2/~2 such weights. Thus we glue the two copies of (B;_1,@;) by the
bonds with label 1 along the weight diagram of (B;—3,w;).

The same procedure works for the half-spin (D;,@; 1) and (Dy,@;). Their
weights may be presented by the same sequences of signs (£,+,...,L), with the
number of pluses even in one case and odd in another one. As graphs without labels
they are isomorphic to the weight diagrams of type (Bj—;,w;—1). To construct, say,
(D, ;1) one has to take a copy of (D;_;,W; 2) and a copy of (D;_1,@;-1) and
glue them along (Di_z,wi-2).
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Exactly the same procedure has been applied to construct the weight diagrams
in all other cases. For example, the weight diagram for the adjoint representation
of the Lie algebra of type Eg was constructed as follows. The dimension of this
representation equals 248. Its restriction to E; clearly gives a copy of the adjoint
representation of the Lie algebra of type E7, two copies of the minuscule module of
type E7 (in positive and negative roots respectively) and three copies of the trivial
representation (the maximal and the negative maximal root and the one dimen-
sional toral subalgebra, corresponding to ag): 248 = 133456 + 56 + 1+ 1 + 1.
Now we do the same with the representations of Ev, considering their branching
with respect to E¢. Thus the restriction of the adjoint representation of type E7
to Eg decomposes into the direct sum of the adjoint representation of Eg, the two
minuscule modules (the one with the highest weight @; in the positive roots and
its dual with the highest weight @ in the negative ones) and a trivial summand
(the toral subalgebra, corresponding to a7): 133 = 78 + 27 + 27 + 1. Further
we restrict the adjoint representation of the Lie algebra of type Eg to a subal-
gebra of type Ds, etc. By the same token we restrict the 56-dimensional repre-
sentation of E7 to Es to get the two minuscule and two trivial summands, then
we restrict the 27-dimensional representations of Eg to Ds, etc. Looking at the
weights we find out in each case how the pieces are glued together. The details
of the inductive procedure should be clear in each case from the way we draw the
diagrams.

For three cases, namely for (A;,@x), k > 3, spin and half-spin representations,
we do not draw general patterns, since they are too messy. In these cases we restrict
ourselves to few examples, Figs. 5-12, which should explain how to construct the
diagrams in the general case. On the other hand for the adjoint representation of
type Eg we draw the diagram in two different ways, acoording to D5 and according
to As. The diagrams for the adjoint representations of types E7 and Eg do not
fit into a page. For these cases we draw one half of the diagram, representing the
positive roots and how they are joined to the zero weight. Most of the pictures were
contained in our theses [84, 102, 114].

3. Some Applications

In this section we sketch some of the uses of the weight diagrams. Many more
details and additional references may be found in [5, 11, 12, 27, 30, 36, 37, 44, 45,
47, 49-51, 55, 81, 82, 85-87, 100, 110, 115, 117, 119-125, 128]. No attempt to be
complete is being made here. We know of many similar recipies and it might be
useful to collect them in one place, but this is far beyond the scope of the present
paper.

(1) Root systems. Even at the level of the root systems weight diagrams may
be very useful, especially for the exceptional types. In fact, the diagrams of the
adjoint representations visualize the order relation at the set of roots. This may
be very helpful, for example, for calculations in the maximal unipotent subgroup
U(®, R) of a Chevalley group or the maximal nilpotent subalgebra n(®, R) of the
corresponding Chevalley algebra.
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More precisely, for the adjoint representation of the group of type @ the non-zero
weights are precisely the roots of ®. The bonds represent covering relations with
respect to the usual partial ordering of the roots, associated with the choice of a
fundamental system I1:

a>f g a—ﬁ=zmeas, m; > 0.

This means that o covers 3 if @ — f is a fundamental root, the mark 7 at the bond
tells us that in fact o — 8 = a;.

Another visualization of roots which works for all diagrams is via equivalence
classes of paths. As we know, the bonds represent fundamental roots. A pos-
itive/negative root a = ) m;a; is represented by strictly increasing/decreasing
paths which has |m;| bonds with the label 1, |m2| bonds with the label 2, ..., |my|
bonds with the label [. For example, the sum of a weight A with a given positive
root @ = @, +...+;  is a weight if and only if there is a strictly increasing path
with the origin A and the labels i1,...,i, (in any order). All directed paths with
the same origin A and the same terminus p are equivalent.

After some practice with the weight diagrams a combination of the two above
interpretations makes calculations in Eg not much more complicated than the calcu-
lations in Gz, based on the usual two-dimensional picture. For example, the weight
diagram replaces tables of roots. Thus, to recall the coefficients of the maximal root
one has simply to count the number of labels in a path from zero to the leftmost
node of the diagram.

(2) Weight graphs. With every representation one can associate other graphs,
where the nodes are again the weights of this representation — or sometimes the
extremal weights — and two weights are joined by a bond if their difference is a
root. These graphs often have extremely strong symmetry properties. They arise in
a number of contexts, for instance, as regular graphs [15, 19]; as adjacency graphs
of regular polytopes [35]; as kissing graphs for sphere packings and in coding theory
[31]; and in finite geometries [34, 99]. Many of these graphs have special names.
For example, the weight graph of (Eg,w;) is called the Schlifli graph, whereas the
weight graph of (E7,@7) is the Gosset graph.

An attempt to draw these graphs produces a mess and they are usually depicted
by various shorthand pictures, showing some of their subgraphs and the way how
they are glued together. However a weight diagram together with the table of roots
(or, what is the same, together with the weight diagram of the adjoint representation
of the corresponding type) contains all the information necessary to reconstruct
the graph completely. In fact the weight diagrams are very faithful and practical
graphical presentation of the graphs.

For example, Fig. 24 represents the 240 non-intersecting equal spheres in the 8-
dimensional Euclidean space kissing a central sphere of the same radius (one should
drop the zero weights, corresponding to the central sphere). The whole configuration
of spheres is made extremely transparent by contemplating the picture. T'wo spheres
kiss each other exactly when their difference is a root. Thus, the sphere represented
by the leftmost node kisses 56 further spheres, apart from the central one, and these
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are exactly all other spheres lying in the two upper layers of the diagram. In turn,
these spheres form a configuration presented at Fig. 21 and it is easy to see, that
there are exactly 27 spheres kissing the central one and two further kissing spheres,
see Fig. 20, etc.

(3) Weyl groups. The pictures provide also a very convenient vizualization of
some permutation actions of the Weyl groups, as well as very powerful tools for cal-
culations in these groups. Namely, the pictures contain detailed information about
the action of the Weyl group on the extremal weights of a minimal representation.
The Weyl group W = W (®) is generated by the fundamental reflections s1, ..., s;.
For a microweight representation a fundamental reflection s; transposes the pairs
of nodes joined by a bond marked ¢ and leaves all other nodes invariant. The only
other possibility which may occur for any minimal representation is a chain of two
consecutive bonds marked 7 which passes through a zero weight. In this case s;
transposes the non-zero nodes of such a chain.

In general, for an arbitrary element w € W one proceeds as follows: One decom-
poses w as a product of the fundamental reflections s;,,...,s;,, and looks at the
paths whose bonds have labels 41,...,imy. The paths do not have to be monotonous
this time, but the order of labels is important, s;s; does not in general coincide
with s;s;. This interpretation of W is especially convenient when one is given two
weights A and p and wants to find an element w of the Weyl group sending X to .
To do this one has only to find a path from A to p and then to take w = s;, ... 85,
where iy,...,%n are the labels at the path in the inverse order.

As we know from the previous section, for a microweight representation with
the highest weight w our diagram is anti-isomorphic to the Hasse diagram of the
induced Bruhat order on W/W;, where W is the stabilizer of w in W. In other
words, the nodes of the diagram are the cosets wW; of W modulo W and two cosets
w; W and wo Wy are joined by a bond marked 1 if s;u Wy = weW;. However now
the leftmost node represents the coset W;. This interpretation may be used, for
example, to find the shortest element in a coset (one has to find a shortest path
from the leftmost node to the node representing a given coset and then to multiply
the corresponding fundamental reflections) or to find the decomposition of W into
(Wx, Wj)-double cosets (say, if K is a maximal subset of II obtained by dropping
@, one has simply to cut the diagram through the bonds marked h, see [36, 82, 100]
and the subsection “Branching rules” below).

(4) Action constants. In Secs. 1°-5° we described the action of G(®,R) on a
minimal module (V, 7). This action is most suggestively described in the following
way. Conceive a vector v = 3 a)v* € V as the marked graph which is obtained
by putting marks ay to the corresponding vertices of the weight diagram of type
(®,m). Thus, the components of a vector are partially ordered and not linearly
ordered. Expand a root o € ® in the fixed base of the root system: o =) m;ay, as
in Sec. 2. Then the action of z,(£) on v looks as follows: it adds the A-th coordinate
of v multiplied by +£ to the coordinate standing in the vertex p such that there is a
directed path (we go in the positive/negative direction if m; are positive/negative)
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from A to p having precisely |m;| bonds with the label i for any i = 1,...,1.
There are slightly more complicated rules if the path starts/stops at zero and the
path which has 2|m;| bonds with the label 7 has to be taken into account too (see
[79, 110, 117] for details).

Let for simplicity V' be a minuscule representation. Then the above paragraph
shows that the weight diagram completely determines the structure constants ¢ya,

Zo(1)v* = 0> + crav™e,

of the action G x V —> V up to sign. A slightly more delicate analysis allows
to read off the signs of these constants as well, see [120, 125]. For example, look
at Fig. 20, representing the action of G(Es, R) on a 27-dimensional module. In
can be easily checked, that with respect to an appropriate base all the c) o for a
fundamental or a negative fundamental root o take values 0 or 1 (this is exactly
the crystal base of this module). In this base there is a simple rule, which allows
to read off the signs of ¢y o for all @ by looking at the order of labels in the paths
representing a. For example, let & = ay + a3. Then an inspection of the diagram
shows that out of the six paths representing o three have the labels (1,3), whereas
the remaining three have the labels (3,1) (as read in the positive direction, from
right to left). This means precisely, that in the first three cases ¢y, = 1, while
in the remaining three cases c) o = —1, where A is the origin of the corresponding
path.

This interpretation has been used, for example, to calculate the orbits of these
representations, stabilizers of vectors, etc. In many instances this is very important
to understand the structure of the groups, both over fields (in the study of internal
modules, see the next subsection) and over rings, where the study of groups in
specific representations may be the only approach that works (see Sec. 10 below).

(5) Internal Chevalley modules. One of the most important applications of the
fact that we can explicitly control the action constants by the weight diagram is to
the structure theory of the group G itself. First, the structure constants appearing
in the Chevalley commutator formula may be themselves interpreted as a special
case of the action constants and may be read off from the weight diagram. Second,
many important calculations have to be performed not in the whole group but in
one of its parabolic subgroups, usually a maximal one.

The representations occurring as the conjugation action of the Levi factor Lp of
a parabolic subgroup P on the consecutive factors of the descending central series
of its unipotent radical Up are called internal Chevalley modules. These modules
have been extensively studied [4, 91, 96, 97]. For a maximal parabolic subgroup
they are usually basic [4]. This means that the pictures collected in this atlas give
an important tool for vizualizing the structure of parabolic subgroups of G.

Let u € IIzo(aq) be an element of the unipotent radical Up of a parabolic
subgroup P. Look at its projection @ to Up/[Up,Up). In many calculations (com-
putation of Bruhat decompaosition, classification of conjugacy classes, etc.) the only
thing that matters is whether some entries can be made zeros or not by the action
of the Levi factor or its Borel subgroup. Weight diagrams are very suitable for such
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calculations. For example, if we know that the entry a, is non-zero, we may assume
that all entries ag, such that o — 3 is a root of Lp, are zeros. Very often such easy
arguments allow to reduce to groups of smaller rank, where everything can be done
by hand. Roughly speaking, this procedure stands to the usual calculations with
the Chevalley commutator formula as the calculations with block matrices do to
the calculations with ordinary matrices.

It is particularly efficient when [Up,Up]| is very small, for example, for the cases
when Up is abelian (these are exactly the parabolic subgroups corresponding to the
microweights of the dual root system and there is an a priori explanation due to
R. Steinberg [89] for the coincidence of the nsual order on the roots in the unipotent
radical with the induced Bruhat order) or eztraspecial, see [92, 98, 115, 119] and
references there. Thus, in the case of an extraspecial parabolic subgroup the above
argument immediately reduces analysis to the case of Ds. Analogous arguments
work more generally, but then one has to iterate them in consecutive layers of Up.

(6) Tensor products. It is very easy to construct the weight diagram of a tensor
product of two distinct groups. It is simply the direct product of the weight diagrams
of the factors. Thus, for example, the weight diagram of the natural representation
of A; is a chain of length I + 1. This means that the weight diagram of the tensor
product of the natural representations of A; and A, looks as follows

where the subscribed indices refer to the fundamental roots of A;, whereas the
superscribed ones refer to the fundamental roots of A,,. As one can expect, this
diagram often arises as a subdiagram of the diagrams for other types.

Quite remarkably, the diagrams allow the visualization of the decomposition
of the tensor product of two representations of the same group into irreducible/
indecomposable summands®. It is easy to describe a simple transformation rule,
which breaks such a tensor product into indecomposable summands (see [60, 78]).
4Here, as in the next subsection discussing branching rules, one should be cautious about charac-

teristic. Microweight representation remains irreducible after reduction. Otherwise to be on the
safe side one should assume that R = K is a field of characteristic 0.
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We do not intend to go into details here, restricting ourselves to the following self-
explanatory example. The simplest case of the basic rule is presented below:

Already this simple rule suffices to see the difference in the decomposition of
w1 X Wy and @y X Wq for Ag:

Indeed, in the first case the left and the right squares must be contracted, whereas
in the second case the top and the bottom ones. The general algorithm uses Kashi-
wara’s definition of the product of coloured graphs, see [60, 78].

(7) Branching rules. From the weight diagram it is immediate to read off the
branching of the corresponding representation with respect to a subsystem sub-
group. In the case when A = (II \ {a}) is the symmetric part of the maximal
parabolic subset obtained by dropping the Ath fundamental root the procedure is
particularly easy. Then the restriction of 7 to G(A, R) looks as follows: One has
to cut the diagram of 7 through the bonds with the label . In general, when
A = (J), J C1I, is the symmetric part of a parabolic subset, one has to simply cut
the diagram through all the bonds having labels not in J.

For example, to restrict a 27-dimensional module of type Eg to Dg or to As
one has to cut the weight diagram at Fig. 20 through the bonds marked with 1 or
with 2, respectively®. In this way one gets summands of degrees 1,16 and 10, or,
respectively, 6, 15 and 6. One may go one step further and restrict to Dy, cutting
both 1 and 6 and getting three summands of degrees 8 and three summands of
degree 1; or to A4, cutting both 2 and 6 and getting three summands of degree 5,
one summand of degree 10 and 2 summands of degree 1.

For the remaining subsystem subgroups the procedure is only slightly more
complicated. It is classically known that any subsystem of ® is obtained by span-
ning a subsystem by a subset of the eztended fundamental system II = I1 U {ag}

5 As shown in [82] for microweight representations there is an a priori correspondence between the
irreducible constituents of the restriction to a subsystem subgroups and the corresponding double
cosets of the Weyl group, see Sec. 3 above.
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and then repeating this procedure for every irreducible component of the resulting
systems, etc. In other words, the negative maximal root has to be introduced in
the picture as well. As observed by C. Parker, an advanced way to do this is to
draw the corresponding weight diagram for the affine Weyl group, cut it along
the bonds labelled i, where A = (11 \ {c;}), and then to identify the weights
in one wg-orbit again. (The genuine Russian approach was, of course, to roll a
sheet with the weight diagram in the form of a cylinder, glue it up and cut it
elsewhere.)

Not to go into details here, we illustrate the idea of Parker’s method by the
following self-explanatory example:

This picture shows that the restriction of the 27-dimensional module for Eg to
3 As is the direct sum of three 9-dimensional modules, each of which is the tensor
product of the natural module for one copy of As with the dual natural module for
another copy.

(8) Orbit of the highest weight vector. It is well known that the orbit Gv* of
the highest weight vector v+ € V is an intersection of quadrics [68]. For example,
when (®,w) = (A},Wy), the equations defining these quadrics are precisely the
Pliicker equations. At a seminar C. M. Ringel asked one of us “Does the fact
that 10 out of the 27 quadratic equations defining the orbit of the highest weight
vector for the 27-dimensional representation of Eg are algebraically independent
anything to do with the fact that the corresponding weight diagram (Fig. 20) has 10
squares?”. It does indeed, and the answer is called the theory of standard monomials
(27, 63-65, 104, 105].

Let R = K be a field. Then any unimodular row of length [ + 1 over K can
be the first row of SL(l + 1, K) in the natural representation (for a commutative
ring there are further K-theoretical obstructions which depend on a ring and which
we do not discuss here). The only other representation which has this property is
the natural representation of Sp(2l, K). In the diagrams of these representations
(Figs. 1 and 3) this is expressed by the fact that they do not have neither squares,
nor two consecutive bonds with the same label. The orbit of the highest weight
vector in the natural representation of an orthogonal group is a guadric, or, in
other words, it is defined by one homogeneous quadratic equation. This equation
is visible in the corresponding diagrams (Figs. 2 and 4). Namely the diagram for
the case B; has two consecutive bonds in the middle labeled by I. On the other
hand, the diagram for the case D; is not a chain anymore, it has a square in the
middle.
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In general, any occurrence of either of these situations drops the dimension of
the orbit of the highest weight vector by 1. For example, a square

corresponds to the tensor product of the natural representations of A; = (a;) and
A; = (a;). To be the first column of a matrix of SL(2, K) x SL(2, K) in such a
representation, a column (21, Zs, T3, %4)* must satisfy the equation z 24 = z2z3. In
general, counting the squares in the weight diagram of the tensor product of the
natural representations of A; and A,, convinces us that in this case the dimension
of the orbit of the highest weight vector is [+ m+1 (there are (I +1)(m+ 1) vertices
and Im small squares). This is, of course, classically known (Segre embedding). As
another example, Fig. 8 suggests that the dimension of the orbit of the highest
weight vector in the spin representation of B4 equals 16 — 5 = 11.

The same argument works for more complicated pictures. For example, it is
easy to check that a cube:

(which corresponds to the tensor product of the natural representations of Ay =
(0u), Ax = (a;) and Ay = (ag)) gives us 4 independent quadratic equations. Now
Fig. 21 convinces us that the orbit of the highest weight vector in (E,@7) has
dimension 56 — 24 — 4 = 28.

However weight diagrams contain much more information than just the dimen-
sions of the orbits. Figure 20 has 10 small squares, but even more remarkably,
it has 27 rectangles. Each of these rectangles represents an equation and in fact a
slightly more delicate analysis shows that one can read off the shape of the equation
and the corresponding signs from the weight diagram [120, 122]. No wonder, since
the theory of standard monomials [63—65, 104, 105] tells us that for microweight
representations the equations come from subsystems of type Dy, in other words
they have the shape

x0Ty, k@, T, =0,

where Ay + g1 = ... = A + fm and there is exactly one pair ();, ;) such that )
and pu; are not comparable.

(9) Multilinear invariants. The quadratic equations described in the preceding
subsection are a part of a more general problem: to describe all equations among
matrix entries of a matrix representing an element of a Chevalley group G in a
representation (V, 7). Indeed, we seldom think of the split classical groups as being
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generated by the root unipotents z,(£). For most mathematicians they are rather
the isometry groups of certain bilinear/quadratic forms.

Analogous realizations of some of the exceptional groups in terms of multilinear
forms/forms of higher degree were known already to L. E. Dickson. Later in the
fifties and early sixties such realizations were extensively studied by H. Freuden-
thal, C. Chevalley, T. A. Springer, J. Tits, F. Veldkamp, N. Jacobson and others.
However in the mid sixties this theory went out of fashion.

Now after the works of M. Aschbacher, A. M. Cohen and others [1-3, 26-29, 117,
124], etc., it is gradually becoming clear that the approach of H. Freudenthal was
the correct approach to the exceptional groups. These realizations are extremely
useful even to study exceptional groups over finite fields, where there are a variety
of other methods that work. For example, the corresponding geometries are much
richer than buildings and allow to construct subgroups of the exceptional groups
more easily (it has been used by M. Aschbacher and others to classify the maximal
subgroups of the finite exceptional groups). Over rings this might be even the only
reasonable approach.

The characteristic free multilinear invariants for the exceptional groups may be
very easily reconstructed from the diagram. Once more, this applies not only to
their shape, but also to the corresponding signs. This has been demonstrated in
[117] in an easy example of (@, 7) = (E¢,@1). In this case the monomials appearing
in the cubic form invariant under the action of G (®, R) form one orbit under the
action of the eztended Weyl group W = (wq (1), @ € ®). Thus one fixes the sign of
a single monomial, say xxz,z,, where A is the leftmost node of the diagram, p is
the upper middle node and v is the rightmost node, and applies the elements of W
t0 it to get the signs of other monomials. As a permutation of the one-dimensional
subspaces (v*) the preimage w;(1) of a fundamental reflection s; acts exactly as
does s;, but it also changes sign of v* if A — a; is a weight of 7, see [117, 120] for a
detailed analysis in this case and [122] in general.

(10) Matrices for Chevalley groups. For the natural representations of the clas-
sical Chevalley groups (that is SL(I + 1, R), SO(2] + 1, R), Sp(2, R) and SO(2!, R)
for types A;, By, C; and D; respectively, Figs. 1-4) it is easy to perform calcula-
tions involving the whole matrix 7(g). The use of matrices is especially important,
when everything else does not work, i.e. for groups over rings of large dimension,
which have few units. In these cases the corresponding groups do not admit any-
thing like Bruhat or Gaul decomposition. This inhibits efficient use of elementary
calculations.

It is our belief that the easiest and one of the most efficient ways to think about
the groups of types Gz, Fy, Eg, E7 and Eg over rings is precisely to think of them
as certain groups of 7 X 7, 26 x 26, 27 x 27, 56 x 56 or 248 x 248 matrices. Let (V, )
be a representation of G = G(®, R). Then an element g € G may be represented by
a matrix 7(g) = (gau), A4 € A(m), with respect to an admissible base (recall, that
we always consider weights with multiplicities). It is crucial here, that the rows
and columns of the matrices w(g) are partially ordered by the corresponding weight
diagram and not linearly ordered.



90 E. PLOTKIN et al.

For example, the puth column g, , of the matrix 7 (g) consists of the coefficients
in the expansion of m(g)v* with respect to v*. In other words, columns above are
obtained by freezing the second index in (gx,). Such columns may be identified
with the corresponding elements of V. Analogously the rows g, . are obtained by
freezing the first index and correspond to the vectors from the dual module V*. As
we know from Secs. 4 and 8, one can very efficiently calculate with such columns
and rows using the corresponding weight diagrams.

As has been observed in [126], many usual calculations with Chevalley groups
over rings may be reorganized in such a way, that they would involve only elementary
calculations (the ones based on the Steinberg relations among the elementary root
unipotents, [21, 111]) and the stable calculations (i.e. calculations involving only one
row or one column of a matrix at a time, {79, 110]). In particular, this applies to
the calculations needed to prove the main structure theorems for Chevalley groups
over commutative rings and stability of K-functors. See [117, 124] for a detailed
description of the whole project and exhaustive references. Further papers are
forthcoming. The same techniques have been applied by L. Di Martino and N. A.
Vavilov to study generation of finite Chevalley groups [41].
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