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ON FIRST ORDER RIGIDITY FOR LINEAR GROUPS

EUGENE PLOTKIN

Abstract. The paper is a short survey of recent developments in the area of
first order descriptions of linear groups. It is aimed to illuminate the known
results and to pose the new problems relevant to logical characterizations of
Chevalley groups and Kac–Moody groups.
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1. Introduction

Questions we are going to illuminate in this paper are concentrated around the
interaction between algebra, logic, model theory and geometry.

The main question behind further considerations is as follows. Suppose we have
two algebras equipped with a sort of logical description.

Problem 1. When the coincidence of logical descriptions provides an isomorphism
between algebras in question?

With this aim we consider different kinds of logical equivalences between alge-
bras. Some of the notions we are dealing with are not formally defined in the text.
For precise definitions and references use [9], [16], [23], [24], [26], [30], [31].

First, we make emphasis on elementary equivalence of groups. Importance of
the elementary classification of algebraic structures goes back to the famous works
of A.Tarski and A.Malcev. The main problem is to figure out what are the algebras
elementarily equivalent to a given one. We will describe the current state of art
of the problem: when elementary equivalence of groups implies their isomorphism.
Situation of such kind will be called, for short, elementary rigidity.

Our second aim is to describe the notions of isotypicity of algebras and logical
equivalence of algebras. These notions are much less known than elementary equiv-
alence. However, they can logically characterize algebras in a very rigid way and
one can expect affirmative answers to most of the problems formulated.

We discuss these notions from the perspectives of Chevalley groups and some
other linear groups, and Kac-Moody groups.

2. Elementary equivalence of algebras

2.1. Definitions. Given an algebra H , its elementary theory Th(H) is the set of
all sentences (closed formulas) valid on H .
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2 PLOTKIN

Definition 2. Two algebras H1 and H2 are said to be elementarily equivalent if
their elementary theories coincide.

Very often we fix a class of algebras C and ask what are the algebras elementarily
equivalent to a given algebra inside the class C. So, the rigidity question with respect
to elementary equivalence looks as follows.

Problem 3. Let a class of algebras C and an algebraH ∈ C be given. Suppose that
the elementary theories of algebras H and A ∈ C coincide. Are they elementarily
rigid, that is, are H and A isomorphic?

For example, C can be the class of all groups, the class of finitely generated
groups, the class of profinite groups, etc.

Remark 4. What we call elementary rigidity has different names. This notion
appeared in the papers by A.Nies [18] under the name of quasi definability of
groups. The corresponding name used in [1] with respect to the class of finitely
generated groups is first order rigidity. For some reasons which will be clear later
on we use another term.

In other words we ask for which algebras their logical characterization by means
of the elementary theory is strong enough and defines the algebra in the unique, up
to an isomorphism, way?

We restrict our attention to the case of groups. Elementary rigidity of groups oc-
curs not very often. Usually various extra conditions are needed. Consider examples
of elementary rigidity for linear groups. First of all, a group which is elementarily
equivalent to a finitely generated linear group is a residually finite linear group [12].
The incomplete list of known rigidity cases is given in the following theorem.

2.2. Chevalley groups.

Theorem 5. Historically, the first result was obtained by A.Malcev:

• If two linear groups GLn(K) and GLm(F ), where K and F are fields, are
elementarily equivalent, then n = m and the fields K and F are elementarily
equivalent, see [13].

• This result was generalized to the wide class of Chevalley groups. Let
G1 = Gπ(Φ, R) and G2 = Gµ(Ψ, S) be two elementarily equivalent Cheval-
ley groups. Here Φ, Ψ denote the root systems of rank > 1, R and S are
local rings, and π, µ are weight lattices. Then root systems and weight lat-
tices of G1 and G2 coincide, while the rings are elementarily equivalent. In
other words Chevalley groups over local rings are elementarily rigid in the
class of such groups modulo elementary equivalence of ground rings [4].

• Let Gπ(Φ,K) be a simple Chevalley group over the algebraically closed field
K. Then Gπ(Φ,K) is elementarily rigid in the class of all groups (cardi-
nality is fixed). This result can be deduced from [42]. In fact, this is true
for a much wider class of algebraic groups over algebraically closed fields
and, modulo elementary equivalence of fields, over arbitrary fields [42].

• Any irreducible non-uniform higher-rank characteristic zero arithmetic lat-
tice is elementarily rigid in the class of all finitely generated groups, see [1].
In particular, SLn(Z), n > 2 is elementarily rigid.

• Recently, the results of [1] have been extended to a much wider class of
lattices, see [2].
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• Let O be the ring of integers of a number field, and let n > 3. Then ev-
ery group G which is elementarily equivalent to SLn(O) is isomorphic to
SLn(R), where the rings O and R are elementarily equivalent. In other
words SLn(O) is elementarily rigid in the class of all groups modulo ele-
mentary equivalence of rings. The similar results are valid with respect to
GLn(O) and to the triangular group Tn(O) [39]. These results intersect in
part with the previous items, since the ring R = Z is elementarily rigid in
the class of all finitely generated rings [18], and thus SLn(Z) is elementarily
rigid in the class of all finitely generated groups.

• For the case of arbitrary Chevalley groups the results similar to above cited
are obtained in [35] by different machinery for a wide class of ground rings.
Suppose the Chevalley group G = G(Φ, R) of rank > 2 over the ring R is
given. Suppose that the ring R is elementarily rigid in the class C of rings.
Then G = G(Φ, R) is elementarily rigid in the corresponding class C1 of
groups if R is a field, R is a local ring and G is simply connected, R is a
Dedekind ring of arithmetic type, that is the ring of S-integers of a number
field, R is Dedekind ring with at least 4 units and G is adjoint. In particular,
if a ring of such kind is finitely generated then it gives rise to elementary
rigidity of G = G(Φ, R) in the class of all finitely generated groups (see [3]).
If R of such kind is not elementarily rigid then G = G(Φ, R) is elementarily
rigid in the class of all groups modulo elementary equivalence of rings.

• The Chevalley group G = G(Φ, R) of rank > 2 is elementarily rigid in
the class of all finitely generated groups, if R is a ring of one-variable
polynomials over the finite field, i.e., R = Fq[x], charFq 6= 2, see [35],
[3] and [5], where the bounded generation of such G(Φ, R) in elementary
generators is proven.

• The Chevalley group G = G(Φ, R) is elementarily rigid in the class of all
finitely generated groups, if R is a ring of Laurent polynomials over the
finite field, i.e., R = Fq[x, x

−1], charFq 6= 2. The proof also relies on [35],
[3] and [5].

• The Chevalley group G = G(Φ, R) is elementarily rigid in the class of all
finitely generated groups, if R is a finitely generated ring of S-integers in
a global function field of positive characteristic which has infinitely many
units and satisfy some additional condition on S, see [35], [3], [5] and [34].

For rank 1 simple linear groups the situation is quite different. For R = Z and
G = PSL2(Z) there is the following result of Z.Sela, cf., [37], see [10].

Theorem 6. A finitely generated group G is elementarily equivalent to PSL(2,Z)
if and only if G is a hyperbolic tower (over PSL(2,Z)).

Let us make some comments regarding Theorem 6. It was A.Tarski who asked
whether one can distinguish between finitely generated free groups by means of
their elementary theories. This formidable problem has been solved in affirmative,
that is all free groups have one and the same elementary theory. Moreover, all
finitely generated groups elementarily equivalent to a given non-abelian free group
have been explicitly described, see [11], [36]. Paper [37] extends this line.

The result for SL2(Z) can be deduced from Theorem 6, see [10].

Theorem 7. A finitely generated group G is elementarily equivalent to SL2(Z) if
and only if G is the central extension of a hyperbolic tower over PSL2(Z) by Z2 with
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the cocycle f : PSL2(Z) × PSL2(Z) → Z2, where f(x, x) = 1 for all x ∈ PSL2(Z)
of order 2, and f(x, y) = 0, otherwise.

However, the situation in rank one Chevalley groups over the rings with infin-
itely many invertible elements looks different. Bounded generation of SL2(R) in
elementary generators, where R is a ring of S-integers of a number field with infin-
itely many units is proved in [14]. The same fact is true if R is a ring of S-integers
in a global function field of positive characteristic which has infinitely many units
and satisfies some additional condition on S, see [34]. Hence, in these cases one can
think about elementary rigidity.

Before going over the situation for Kac-Moody groups we shall cite an important
model-theoretic result by F.Point on collaboration between Chevalley-Demazure
functor and the operation of taking ultraproducts. Let F be a non-principal ul-
trafilter on the set I and let GΦ(, ) be a simple Chevalley-Demazure group scheme
over Z defined by a root system Φ. Let Ki, i ∈ I be a collection of fields and
Gi = GΦ(Ki) be the corresponding set of Chevalley groups. Denote by

∏
F Gi the

ultraproduct of the groups Gi with respect to ultrafilter F . Theorem of F.Point
(see [33]) basically says that the functors GΦ(, ) and

∏
F commute. Namely,

Theorem 8. GΦ(
∏

F Ki) =
∏

F GΦ(Ki). Moreover the ultraproducts of the unipo-
tent, diagonal and monomial subgroups of GΦ(Ki) are isomorphic to the corre-
sponding subgroups of GΦ(

∏
F Ki).

Note that Theorem 8 remains true (modulo minor conditions on the fields) also
in the case of twisted Chevalley groups. From the perspectives of Kac-Moody
groups and elementary rigidity of Chevalley groups, the following question is of
great interest.

Question 9. Does the statement of Theorem 8 remain true for

• local rings,
• Dedekind rings of arithmetic type,
• arbitrary rings.
• Elementary subgroups of the Chevalley groups and rings as above.

2.3. Kac–Moody groups. Given a generalized Cartan matrix A and a field k (or
a ring R), the value GA(k) of the Tits functor GA : Z-Alg → Grp defines a minimal
Kac–Moody group over k, see [40] (cf. [7], [16]). One can view this functor as
a generalization of the Chevalley–Demazure group scheme. We assume that A is
indecomposable. As a rule, we assume that the functor GA is simply connected.
However, speaking about isomorphisms of affine Kac-Moody groups over fields and
Chevalley groups over rings, we will freely, often without special notice, use the
common language abuse, assuming that we go over to its subquotient, taking the
derived subgroup (resp. subalgebra) and factoring out the centre, if necessary.

If A is a definite matrix, the group GA(k) is a Chevalley group GΦ(k) where
Φ is the root system corresponding to A. These groups were considered in the
previous section. If A is of affine type, GA(k) is isomorphic to the Chevalley group
GΦ(k[t, t

−1]) where k[t, t−1] is the ring of Laurent polynomials. The general case of
Kac-Moody groups is covered by A of indefinite type. The first question is related
to Theorem 8.

Let F be a non-principal ultrafilter on the set I, let Ki, i ∈ I be a collection
of fields and let the Tits functor GA : Z-Alg → Grp defines a minimal Kac–Moody
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group over Ki. Denote by
∏

F Gi the ultraproduct of the groups Gi with respect
to ultrafilter F .

Question 10. Let A be of affine type. Is it true that the Tits functor and ul-
traproducts commute, that is the formula GA(

∏
F Ki) =

∏
F GA(Ki) holds. Is it

true that the same property is satisfied for arbitrary A. Consider separately the
hyperbolic case.

The penultimate item of Theorem 5 implies that

Theorem 11. Let GA(k) be an affine Kac-Moody group over a finite field k. Then
GA(k) is elementarily rigid in the class of all finitely generated groups.

Let now GA(k) be a Kac–Moody group of indefinite type. B. Rémy [21] and
P.-E. Caprace–B. Rémy [8] showed that the minimal indefinite adjoint Kac–Moody
groups GA(Fq) are simple provided q > n > 2 where n is the size of A. These
groups are also simple for some matrices A if n = 2 and q > 3. J. Morita and
B. Rémy [15] proved that in the case where k is the algebraic closure of Fq the
groups GA(k) are simple. P.-E. Caprace and K. Fujiwara [6] showed that over
finite fields these (infinite) simple groups have infinite commutator width. It seems
extremely unlikely that these groups are elementarily rigid.

Let GA(k) be an incomplete Kac–Moody group. There are several ways to
complete this group with respect to an appropriate topology.

Let A be of affine type, that is, GA(k) is a complete affine Kac–Moody group.
Then GA(k) is isomorphic to a Chevalley group of the form GΦ(k((t))) where k((t))
is the field of formal Laurent series over k. By Theorem 5 this group is elementarily
rigid modulo elementary equivalence of the ground field. If the field k is finite then
this group is elementarily rigid in the class of finitely generated groups.

3. Isotypic equivalence of algebras

The aim of this section is to introduce another logical invariant which describes
algebras more rigidly than elementary equivalence. Elementary equivalence of al-
gebras H1 and H2 assumes coincidence of all first order sentences valid on H1 and
H2. What we are going to introduce requires coincidence of all types valid on H1

and H2. We call such a situation isotypicity of algebras. Before going over results
in this direction, we need to make some preparations.

3.1. Basics of universal algebraic geometry. Fix a variety of algebras Θ. Let
W (X), X = {x1, . . . , xn} denote the finitely generated free algebra in Θ. By
equations in Θ we mean expressions of the form w ≡ w′, where w, w′ are words in
W (X) for some X . This is our first syntactic object. Next, let Φ̃ = (Φ(X), X ∈ Γ)
be the multi-sorted Halmos algebra of first order logical formulas based on atoms
w ≡ w′, w, w′ in W (X), see [26], [27], [31]. There is a special procedure to
construct such an algebraic object which plays the same role with respect to First
Order Logic as Boolean algebras do with respect to Propositional calculus. One
can view elements of Φ̃ = (Φ(X), X ∈ Γ) just as first order formulas over w ≡ w′.

Let X = {x1, . . . , xn} and let H be an algebra in the variety Θ. We have an
affine space Hn = HX of points µ : X → H . For every µ we have also the
n-tuple (a1, . . . , an) = ā ∈ Hn with ai = µ(xi). For the given Θ we have the
homomorphism µ : W (X) → H and, hence, the affine space Hn is viewed as the
set of homomorphisms Hom(W (X), H). The classical kernel Ker(µ) corresponds
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to each point µ : W (X) → H . This is exactly the set of equations for which the
point µ is a solution. Every point µ has also the logical kernel LKer(µ), see [30],
[25], [27]. Logical kernel LKer(µ) consists of all formulas u ∈ Φ(X) valid on the
point µ. This is always an ultrafilter in Φ(X).

So we define syntactic and semantic areas where logic and geometry operate,
respectively. Connect them by a sort of Galois correspondence.

Let T be a system of equations in W (X). The set A = T ′ in the affine space
Hom(W (X), H) consisting of all solutions of the system T corresponds to T . Sets
of such kind are called algebraic sets. Vice versa, given a set A of points in the
affine space consider all equations T = A′ having A as the set of solutions. Sets T
of such kind are called closed congruences over W .

We can do the same correspondence with respect to arbitrary sets of formulas.
Given a set T of formulas in algebra of formulas (set of elements) Φ(X), consider
the set A = TL in the affine space, such that every point of A satisfies every formula
of Φ. Sets of such kind are called definable sets. Points of A are called solutions
of the set of formulas T . Conversely, given a set A of points in the affine space
consider all formulas (elements) T = AL having A as the set of solutions. Sets T of
such kind are closed filters in Φ(X). Given arbitrary T and A we can make their

Galois closures T
′′

and A
′′

, and TLL and ALL.

3.2. Logical equivalence of algebras. All algebraic sets constitute a category
with special rational maps as morphisms [31]. The same is true with respect to
definable sets [31]. So, we can formulate logical closeness of algebras geometrically.

Definition 12. We call algebras H1 and H2 logically similar, if the categories of
definable sets LGΘ(H1) and LGΘ(H2) are isomorphic.

Definition 13. Algebras are called logically equivalent, if for every X and every
set of formulas T in Φ(X) the equality TLL

H1
= TLL

H2
holds .

The set TLL
H is called the logical radical of T with respect to H . So algebras

H1 and H2 are logically equivalent if for every set of formulas T the logical radicals
with respect to H1 and H2 coincide.

First of all, it is easy to see that if algebras H1 and H2 are logically equivalent
then they are logically similar. Now we want to understand what is the meaning
of logical equivalence.

Definition 14. Two algebras H1 and H2 are called LG-isotypic if for every point
µ : W (X) → H1 there exists a point ν : W (X) → H2 such that LKer(µ) =
LKer(ν) and, conversely, for every point ν : W (X) → H2 there exists a point
µ : W (X) → H1 such that LKer(ν) = LKer(µ).

We can reformulate isotypicity of algebras in more standard logical notations.

Definition 15. Let L be a first-order language, H and G be L-algebras. Then H

and G are isotypic, if for any finite tuple ā in Hn, there exists a tuple b̄ in Gn such
that tpH(ā) = tpG(b̄) and vice versa.

The meaning of the Definition 14 is the following. Two algebras are isotypic if
the sets of realizable types over H1 and H2 coincide. So, by some abuse of language
these algebras have the same logic of types. Some references for the notion of
isotypic algebras are contained in [29], [28], [30], [31], [32], [41]. Note that the
notion was introduced in [32], [29] while [31] gives the most updated survey.
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The principal property is as follows, see [41].

Theorem 16. Algebras H1 and H2 are logically equivalent if and only if they are
isotypic.

Definition 17. We call the condition A rigid (or A-rigid) in the class of algebras
C if two algebras H1 and H2 from C subject to A are isomorphic.

Now we are in a position to study rigidity of algebras with respect to isotypicity
property. It is easy to see that

Proposition 18. If algebras H1 and H2 are logically equivalent then they are ele-
mentarily equivalent.

3.3. Isotypic algebras. It is clear, that since isotypicity is stronger than elemen-
tary equivalence, this phenomenon can occur quite often. Let us state this problem
explicitly.

Problem 19. Let a class of algebras C and an algebra H ∈ C be given. Suppose
that algebras H ∈ C and A ∈ C are isotypic. Are they isotypically rigid, that is are
H and A isomorphic?

Remark 20. In many papers isotypically rigid algebras are called logically separable
[31], [28], or type definable [17].

The following principal problem was stated in [31], [17] and is widely open.

Problem 21 (Rigidity problem). Is it true that every two isotypic finitely gener-
ated groups are isomorphic?

Meantime, Problem 21 is answered in affirmative for many groups. Some of the
cases are collected in Theorem 22 and the consequent Corollary.

Theorem 22. The following cases of isotypically rigid groups are known:

• Every finitely generated co-Hopfian group is isotypically rigid in the class
of all groups, see [41], [38].

• Every finitely presented Hopfian group is isotypically rigid in the class of
all groups, see [38].

• Let Θ be a variety of groups. If a finitely generated free group in Θ is
Hopfian then it is isotypically rigid in the class of all groups, see [41].

• Finitely generated metabelian groups are isotypically rigid in the class of all
groups [17].

• Finitely generated virtually polycyclic groups are isotypically rigid in the
class of all groups [17].

• Finitely generated torsion free hyperbolic groups are isotypically rigid in the
class of all groups [38].

• All surface groups, which are not non-orientable surface groups of genus
1,2 or 3 are isotypically rigid in the class of all groups [17].

Corollary 23. Finitely generated absolutely free, free abelian, free nilpotent, free
solvable groups are isotypically rigid.

Conjecture 24. Every finitely generated linear group is isotypically rigid.

Conjecture 25. Let a Chevalley group GΦ(R) over a ring R be isotypic to a group
H. Then H is isomorphic to GΦ(S) such that R and S are isotypic rings.
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Problem 26. What are the isotypicity classes of fields? When two isotypic fields
are isomorphic?

Remark 27. In fact, using either logical equivalence of algebras, or what is the
same, the isotypicity of algebras, we compare the possibilities of individual points in
the affine space to define the sets of formulas (in fact ultrafilters in Φ(X)) which are
valid in these points. Given a point µ in the affine space, the collection of formulas
valid in the point µ is a type of µ. If these individual types are, roughly speaking, the
same for both algebras, then these algebras are declared isotypic. Thus, for isotypic
algebras we compare types of formulas realizable on these algebras. Of course, this
is significantly stronger than elementary equivalence, where the individuality of
points disappeared and we compare only formulas valid in all points of the affine
space.
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