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Abstract

In this paper we study the Diophantine problem in Chevalley groups Gπ(Φ, R), where Φ is
an indecomposable root system of rank > 1, R is an arbitrary commutative ring with 1.

We establish a variant of double centralizer theorem for elementary unipotents xα(1). This
theorem is valid for arbitrary commutative rings with 1. The result is principle to show that any
one-parametric subgroup Xα, α ∈ Φ, is Diophantine in G. Then we prove that the Diophantine
problem in Gπ(Φ, R) is polynomial time equivalent (more precisely, Karp equivalent) to the
Diophantine problem in R. This fact gives rise to a number of model-theoretic corollaries for
specific types of rings.

Key words: Diophantine problem, Diophantine set, Chevalley groups, double centralizer
theorem.

1. Introduction and State of Art

Recall that the Diophantine problem (also called the Hilbert’s tenth problem or the generalized
Hilbert’s tenth problem) in a countable algebraic structure A, denoted D(A), asks whether there
exists an algorithm that, given a finite system S of equations in finitely many variables and
coefficients in A, determines if S has a solution in A or not. In particular, if R is a countable
ring then D(R) asks whether the question if a finite system of polynomial equations with
coefficients in R has a solution in R is decidable or not. It is tacitly assumed that the ring R
comes with a fixed enumeration, i, e., a function ν : N → R, which enables one to enumerate all
polynomials in the ring of all non-commutative polynomials R〈x1; x2; . . . 〉 (in countably many
variables x1; x2; . . . ), as well as all finite systems of polynomial equations p(x1; . . . ; xn) = 0,
where p(x1; . . . ; xn) ∈ R〈x1; x2; . . . 〉, so one can provide them as inputs to a decision algorithm.
If the ring R is commutative (it is our case) then by tradition only commutative polynomials
from R[x1; x2; . . . ] are considered. The original version of this problem was posed by Hilbert
for the ring of integers Z. This was solved in the negative in 1970 by Matiyasevich [75] building
on the work of Davis, Putnam, and Robinson [30]. Subsequently, the Diophantine problem has
been studied in a wide variety of commutative rings R, where it was shown to be undecidable by
reducing D(Z) to D(R). By definition the Diophantine problem in a structure A reduces to the
Diophantine problem in a structure B, symbolically D(A) 6 D(B), if there is an algorithm that
for a given finite system of equations S with coefficients in A constructs a system of equations
S∗ with coefficients in B such that S has a solution in A if and only if S∗ has a solution in B.
So if D(Z) 6 D(R) then D(R) is undecidable. If the reducing algorithm is polynomial-time
then the reduction is termed polynomial-time (or Karp reduction). In this paper we show that
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the Diophantine problems in Gπ(Φ, R) and R are polynomial time equivalent which means,
precisely, that D(Gπ(Φ, R)) and D(R) reduce to each other in polynomial time. In particular
they are either both decidable or both undecidable. If R and hence Gπ(Φ, R) are uncountable
one needs to restrict the Diophantine problems in R and Gπ(Φ, R) to equations with coefficients
from a fixed countable subset of R or Gπ(Φ, R). After a proper adjustment in definitions the
Diophantine problems in R and Gπ(Φ, R) are still polynomial time equivalent (we will say more
about this later).

A lot of research has been done on equations in commutative rings. Nevertheless, the Dio-
phantine problem is still open in Q and fields F which are finite algebraic extensions of Q.
Much more is known on the Diophantine problem in the rings of algebraic integers O of the
fields F . Namely, it was shown that D(Z) reduces to D(O) for some algebraic number fields O,
hence in such O the Diophantine problem D(O) is undecidable. We refer to [86], [83], [95] for
further information on the Diophantine problem in different rings and fields of number-theoretic
flavour. There are long-standing conjectures (see, for example, [32], [83]) which state that the
Diophantine problems in Q; F , and O, as above, are all undecidable. The following result is
important for our paper. If a commutative unitary ring R is infinite and finitely generated then,
in the case of a positive characteristic, D(R) is undecidable, and in the case of characteristic
zero, D(O) polynomial-time reduces to D(R) for some ring of algebraic integers O (Kirsten
Eisentraeger’s PhD thesis (Theorem 7.1), which is available on her website, see also [47]).

In the class of non-commutative associative unitary rings it was shown recently by Kharlam-
povich and Myasnikov in [60] that the Diophantine problem is undecidable in free associative
algebras over fields and in the group algebras of a wide variety of torsion-free groups, including
toral relatively hyperbolic groups, right angled Artin groups, commutative transitive groups,
and the fundamental groups of various graphs of groups. For non-associative rings it was proved
that the Diophantine problem is undecidable in free Lie algebras of rank at least three with co-
efficients in an arbitrary integral domain [59]. A general approach to the Diophantine problem
in non-commutative rings (via reductions to the commutative ones) was developed in [46].

In another direction, coming from model theory, it was shown that the first-order theory of
some classical fields is decidable: Tarski proved it for for complex numbers C and reals R [104],
and Ershov, Ax and Kochen for p-adic numbers Qp and Zp ([40], [5], [6]). The statement that
a given finite system of equations has a solution in R can be represented by a very particular
existential formula (a positive-primitive formula) with coefficients in R, so the Diophantine
problem seems to be a part of the first-order theory of R, but the coefficients are getting
involved, and this complicates the whole picture. In fact, involvement of constants (coefficients)
makes Diophantine problems rather different from the classical model-theoretic problems of
elementary equivalence and decidability of first order theories in the standard languages of
groups or rings. We will say more on this later, specifically for the linear groups and Chevalley
groups.

Similar to the Diophantine problem in rings if a structure A is countable or finite then we
assume that it comes equipped with an enumeration ν : N → A, which enables one to enumerate
all terms in the language of A with constants in A, hence all equations (which in this case are
represented by equalities of two terms), as well as all finite systems of equations over A. On
the other hand, if A is uncountable then, by definition, one has to consider only equations
with constants from a fixed arbitrary countable (or finite) subset C of A. We denote this form
of the Diophantine problem by DC(A). This modification allows one to consider Diophantine
problems over arbitrary structures in a more precise and also a more uniform way. As we
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will see below it may happen that the Diophantine problem DC(A) is decidable for one subset
C ⊆ A and undecidable for another one, even in countable structures A. Moreover, it may
depend on a chosen enumeration of a countable set C. It is easy to see that for a countable
(or finite) subset C of A the Diophantine problems DC(A) and D〈C〉(A) reduce to each other,
where 〈C〉 is the substructure generated by C in A. Furthermore, if DC(A) is decidable then
〈C〉 is computable (recursive, constructible) in the sense of Maltsev [72] and Rabin [87], so if
〈C〉 is not computable, and this may depend on the enumeration of C, the Diophantine problem
DC(A) is undecidable. Therefore, from the beginning one may consider only enumerations of
C with computable substructure 〈C〉.

Research on systems of equations and their decidability in groups has a very long history,
it goes back to 1912 to the pioneering works of Dehn on the word and conjugacy problems in
finitely presented groups. Recall that an equation in a group G is an expression of the type
w(x1; . . . ; xn; g1; . . . ; gm) = 1, where w is a group word in variables x1; . . . ; xn and constants
g1; . . . ; gm ∈ G. Currently, there are two main approaches to the Diophantine problems in
groups. In the first approach one given a fixed group G tries to find a commutative unitary
ring A such that the Diophantine problem in A algorithmically reduces to the Diophantine
problem in G. In this case if D(A) is undecidable then D(G) is also undecidable. The first
principle result in this vein is due to Romankov, who showed that the Diophantine problem is
undecidable in any non-abelian free nilpotent group N of nilpotency class at least 9 (he proved
that D(Z) 6 D(N) even one considers only single equations in the group N) [91]. Recently,
Duchin, Liang and Shapiro showed in [39] that D(Z) 6 D(N) for any nonabelian free nilpotent
group N , hence D(N) is undecidable. A far-reaching generalizations of these were obtained by
Garreta, Myasnikov and Ovchinnikov in [45] where they proved that for any finitely generated
non-virtually abelian nilpotent group G there exists a ring of algebraic integers O (depending
on G) interpretable by equations in G, hence D(O) is Karp reducible to D(G). Furthermore,
in [44] they gave a general sufficient condition for the ring O to be isomorphic to Z, so in this
case the Diophantine problem in G is undecidable. Based on this, they proved that a random
nilpotent group G (given by a random presentation in the variety Nc of nilpotent groups of
class at most c, for any c > 2) has O ∼= Z, hence the undecidable Diophantine problem.
These results on nilpotent groups allow numerous applications to the Diophantine problems
in non-nilpotent groups H either via suitable Diophantine nilpotent subgroups of H or via
suitable Diophantine nilpotent quotients of H [45]. For example, this technique allows one to
show that the Diophantine problem in any finitely generated free solvable non-abelian group is
undecidable.

This line of results changes drastically in the second approach, where one tries to show that
the Diophantine problem in a given group G is decidable by reducing it to the Diophantine
problem in a non-abelian free group F or a free monoid M (see, for example, Rips and Sela [90],
Damani and Guirardel [29], Diekert and Muschol [38], Casals-Ruiz and Kazachkov [23], [22], and
Diekert and Lohrey [37]). We refer to [58] for further results in this area. The principal results
here are due to Makanin [68], [69] and Razborov [88], [89] who showed that the Diophantine
problems D(M) and D(F ) are decidable and, in the case of the free group F , further provided
a description of the solution sets to arbitrary finite systems of equations in terms of Makanin–
Razborov’s diagrams. Another description of solutions sets in F in terms of NTQ systems (also
termed ω-residually free towers) was obtained in [57]. NTQ systems give an effective approach
to algebraic geometry and model theory of free groups. Recently, an entirely different method
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of solving equations in free groups, free monoids, and hyperbolic groups was developed in a
series of papers [36], [54], [55], [24], [25].

In his classical paper [70] A.I.Maltsev studied elementary equivalence of matrix groups Gn(F )
where Gn is one of the GL n, SL n, PGL n, PSL n, n > 3, and F is a field. Namely, he showed
that Gn(F ) ≡ Gm(L) if and only if n = m and F ≡ L. His proof was based on two principal
results. The first one states that for any integer k > 3 and Gn as above there is a group
sentence Φk,G such that for any n, and a field F , Φk,G holds in Gn(F ) if and only if k = n.
The second one is that F and Gn(F ) are mutually interpretable in each other. More precisely,
Gn(F ) is absolutely interpretable in F (i. e., no use of parameters), while F is interpretable
in Gn(F ) uniformly with respect to some definable subset of tuples of parameters (so-called
regular interpretability). This implies that the theories Th(F ) and Th(Gn(F )) are reducible to
each other in polynomial time, hence Th(Gn(F )) is decidable if and only if Th(F ) is decidable.
Later Beidar and Mikhalev introduced another general approach to elementary equivalence of
classical matrix groups [9]. Their proof was based on Keisler–Shelah theorem (two structures
are elementarily equivalent if and only if their ultrapowers over some non-principal ultraflters
are isomorphic (see [56], [94]) and the description of the abstract isomorphisms of the groups
of the type Gn(F ). E.Bunina extended their results to unitary linear and Chevalley groups
(see [14], [16], [17], [15]). Note that in all the results above the first-order theories include only
the standard constants from the languages of groups and rings. The model theory of the group
UTn(R), where n > 3, and R is an arbitrary unitary associative ring, was studied in details
by O.Belegradek [10]. He used heavily that the ring R is interpretable (with parameters) in
UTn(R). A.Myasnikov and M. Sohrabi studied model theory of groups SL n(O), GL n(O), and
Tn(O) over fields and rings of algebraic integers in [79] and [78]. Their method exploits the
mutual interpretability (and also bi-interpretability) of the group and the ring. In a similar
manner N.Avni, A. Lubotsky, and C.Meiri in [7] studied the first order rigidity of non-uniform
higher rank arithmetic groups (see also [8]). Recently, D. Segal and K.Tent (see [92]) showed
that for Chevalley groups Gπ(Φ, R) of rank > 1 over an integral domain R if Gπ(Φ, R) has finite
elementary width or is adjoint, then Gπ(Φ, R) and R are bi-interpretable. In [20] E.Bunina
proved that over local rings Chevalley groups Gπ(Φ, R) of rank > 1 are regularly bi-interpretable
with the corresponding rings.

Though related, all the model-theoretic results above do not shed much light on the Dio-
phantine problem in the corresponding groups. Because to relate the Diophantine problems
in Gn(R) or Gπ(Φ, R) and R one needs to have their mutual interpretability by equations, not
by arbitrary first-order formulas. This is precisely what Myasnikov and Sohrabi did in their
paper [77] for classical linear groups GL n(R), SL n(R), Tn(R), UTn(R) and what we do in this
paper for Chevalley groups Gπ(Φ, R).

Recall that a subset (in particular a subgroup) H of a group G is Diophantine in G if it is
definable in G by a formula of the type

Φ(x) = ∃y1 . . .∃yn

(
k∧

i=1

wi(x, y1, . . . , yn) = 1

)
,

where wi(x, y1, . . . , yn) is a group word on x, y1, . . . , yn. Such formulas are called Diophantine
(in number theory) or positive-primitive (in model theory). Following [47], we say that a
structure A is e-interpretable (or interpretable by equations, or Diophantine interpretable) in a
structure B if A is interpretable (see below) in B by Diophantine formulas. The main point of
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this definition is that if A is e-interpretable in B then the Diophantine problem in A reduces
in polynomial time (Karp reduces) to the Diophantine problem in B. On the one hand, it
is harder to get e-interpretability than just interpretability, since in the latter you can use
arbitrary formulas (not only the Diophantine ones), but on the other hand, to study first-order
equivalence of structures one does not usually use the constants in the language, while in the
Diophantine problems the constants are required.

A subgroup G ⊆ GL n(R) is termed large if it contains the subgroup En(R) generated in
GL n(R) by all transvections tij(α), i 6= j, and α ∈ R. In particular, the subgroups SL n(R)
(when R is commutative) and En(R) itself are large. Similarly a subgroup G ⊆ Gπ(Φ, R)
of a Chevalley group is called large if it contains the elementary Chevalley group (subgroup)
Eπ(Φ, R) generated by all elementary unipotents xα(t), α ∈ Φ, t ∈ R. Introduction of large
subgroups of GL n(R) (Gπ(Φ, R)) allows one to unify similar arguments, otherwise used sepa-
rately for each of the groups GL n(R), SL n(R) and En(R). This also emphasize the fact that
the methods of the paper [77] as well as this paper, unlike the one used in Maltsev’s papers [70],
is based solely on transvections and nilpotent subgroups (elementary unipotents). Below by
Xα, α ∈ Φ, we denote the one-parametric subgroup {xα(t) | t ∈ R}. In Section 5 we study
Diophantine subgroups of large subgroups Gπ(R). In particular, we prove the following key
technical result (compare with [77]):

Result 1 (Propositions 3 and 5). Let G be a large subgroup of Gπ(Φ, R), rankΦ > 1. Then for
any α ∈ Φ the one-parametric subgroup Xα is Diophantine in G (defined with constants from
the set {xα(1) | α ∈ Φ}).

This result is similar to the corresponding one from [77], but it mostly based on the description
of centralizers of certain sets in all Chevalley groups Gπ(Φ, R) of rankΦ > 1 over arbitrary
commutative rings. This description is proved in Sections 2–4: in Section 2 it is done for
Chevalley groups over all fields, using Bruhat decomposition and direct calculations; in Section
3 it is done for Chevalley groups over all local rings, using Gauss decomposition, results of the
previous section and also direct calculations; in Section 4 it is generalized for all commutative
rings, using localization method and results of the previous section. Finally we prove the
following result (that has an independent value):

Result 2 (Theorem 3). For any Chevalley group (or its large subgroup) G = Gπ(Φ, R), where
Φ is an irreducible root system of a rank > 1, R is an arbitrary commutative ring with 1, if for
some α ∈ Φ an element g ∈ CG(Γα), then g = cxα(t), where t ∈ R, c ∈ Z(G), except the case
Φ = Cl, l > 2, and α is short.

In the case Φ = Cl = {±ei ± ej | 1 6 i, j 6 l, i 6= j} ∪ {±2ei | 1 6 i 6 l} and α = e1 + e2 if
g ∈ CG(Γα), then

g = cxe1+e2(t1)x2e1(t2)x2e2(t3), c ∈ Z(G).

Result 1 helps to prove

Result 3 (Theorem 4). Let G be a large subgroup of a Chevalley group Gπ(Φ, R), where Φ
is indecomposable root system of the rank ℓ > 1, R is an arbitrary commutative rings with 1.
Then the ring R is e-interpretable in G (using constants from the set CΦ = {xα(1) | α ∈ Φ}).

This last theorem gives us the result about Karp equivalence of (elementary) Chevalley groups
and the correslonding rings:
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Result 4 (Theorems 6 and 7). If Φ is an indecomposable root system of a rank > 1, R is
an arbitrary commutative ring with 1, then the Diophantine problem in any Chevalley group
Gπ(Φ, R) is Karp equivalent to the Diophantine problem in R. More precisely:

1) If C is a countable subset of Gπ(Φ, R) then DC(Gπ(Φ, R)) Karp reduces to DRC
(R).

2) If T is a countable subset of R then there is a countable subset CT of Gπ(Φ, R) such
that DT (R) Karp reduces to DCT

(Gπ(Φ, R)).

If the elementary Chevalley group Eπ(Φ, R) has bounded elementary generation, then the
Diophantine problem in Eπ(Φ, R) is Karp equivalent to the Diophantine problem in R.

Section 6 is devoted to applications of the main theorems. In [77] similar corollaries were
proved for classical linear groups, here we repeat them for Chevalley groups.

Result 5 (Theorem 8). If Φ is a indecomposable root system of a rank > 1, then the Diophantine
problem in all Chevalley groups Gπ(Φ,Z) is Karp equivalent to the Diophantine problem in Z,
in particular, it is undecidable.

The following is one of the major conjectures in number theory:
The Diophantine problem in Q, as well as in any number field F , or any ring of algebraic

integers O, is undecidable.
The following result moves the Diophantine problem in Chevalley groups over number fields

or rings of algebraic integers from group theory to number theory.

Result 6 (Theorem 9). Let Φ be an indecomposable root system of a rank > 1 and R either a
number field or a ring of algebraic integers. Then the above conjecture holds for R if and only
if the Diophantine problem in the Chevalley group Gπ(Φ, R) is undecidable.

The following result from [47] describes the current state of the Diophantine problem in
finitely generated commutative rings:

Let R be an infinite finitely generated associative commutative unitary ring. Then one of
the following holds :

(1) If R has positive characteristic n > 0, then the ring of polynomials Fp[t] is e-interpretable
in R for some transcendental element t and some prime integer p; and D(R) is unde-
cidable.

(2) If R has zero characteristic and it has infinite rank then the same conclusions as above
hold: the ring of polynomials Fp[t] is e-interpretable in R for some t and p; and D(R)
is undecidable.

(3) If R has zero characteristic and it has finite rank then a ring of algebraic integers O is
e-interpretable in R.

This fact, together with Result 4, implies the following theorem which completely clarifies
the situation with the Diophantine problem in Chevalley groups over infinite finitely generated
commutative unitary rings:

Result 7 (Theorem 10). Let Φ be an indecomposable root system of a rank > 1, R is an
arbitrary infinite finitely generated commutative ring with 1, and Gπ(Φ, R) the corresponding
Chevalley group. Then:

1) If R has positive characteristic then the Diophantine problem in Gπ(Φ, R) is undecidable.
2) If R has zero characteristic and it has infinite rank then the Diophantine problem in

Gπ(Φ, R) is undecidable.
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3) If R has zero characteristic and it has finite rank then the Diophantine problem in some
ring of algebraic integers O is Karp reducible to the Diophantine problem in Gπ(Φ, R).
Hence if Conjecture 1 holds then the Diophantine problem in Gπ(Φ, R) is undecidable.

If R is an algebraically closed field, then

1) If A is a computable subfield of R then the first-order theory ThA(R) of R with constants
from A in the language is decidable. In particular, the Diophantine problem DA(R) is
decidable.

2) If A is a computable subfield of R then the algebraic closure Ā of A in R is computable.

Combining the fact above with Theorems 6 and 7, we obtain

Result 8 (Theorem 12). Let Φ be an indecomposable root system of a rank > 1, R an alge-
braically closed field, and Gπ(Φ, R) the corresponding Chevalley group. If A is a computable
subfield of R, then the Diophantine problem in Gπ(Φ, R) with constants from Gπ(Φ, A) is de-
cidable (under a proper enumeration of Gπ(Φ, A)).

Let R = R be the field of real numbers and A a countable (or finite) subset of R. Our
treatment of the Diophantine problem in Chevalley groups over R is based on the following two
results on the Diophantine problem in R which are known in the folklore:

Let A be a finite or countable subset of R. Then the Diophantine problem in R with coefficients
in A is decidable if and only if the ordered subfield F (A) is computable. Furthermore, in this
case the whole first-order theory ThA(R) is decidable.

A real a ∈ R is computable if one can effectively approximate it by rationals with any
precision. The set of all computable reals Rc forms a real closed subfield of R, in particular Rc

is first-order equivalent to R. A matrix A ∈ GL n(R) is called computable if all entries in A
are computable real numbers. Chevalley groups Gπ(Φ,R) are matrix algebraic groups over R,
hence one can view their elements as matrices.

Result 9 (Theorem 13). Let Φ be an indecomposable root system of a rank > 1 and Gπ(Φ,R)
the Chevalley group over the field of real numbers R. If A is a computable ordered subfield
of R then the first-order theory Th(Gπ(Φ,R)) with constants from Gπ(Φ, A) is decidable. In
particular, the Diophantine problem in Gπ(Φ,R) with constants from Gπ(Φ, A) is decidable
(under a proper enumeration of Gπ(Φ, A)).

Result 10 (Theorem 14). Let Φ be an indecomposable root system of a rank > 1 and Gπ(Φ,R
c)

the Chevalley group over the field of computable real numbers Rc. Then the following holds:

1) The Diophantine problem in the computable group Gπ(Φ,R
c) is undecidable.

2) For any finitely generated subgroup C of Gπ(Φ,R
c) the Diophantine problem in Gπ(Φ,R

c)
with coefficients in C is decidable.

Result 11 (Theorem 15). Let Φ be an indecomposable root system of a rank > 1 and Gπ(Φ,R)
the corresponding Chevalley group over the field of computable real numbers Rc. If an element
g ∈ Eπ(Φ,R) is not computable then the Diophantine problem for equations with coefficients in
{xα(1) | α ∈ Φ} ∪ {g} is undecidable in any large subgroup of Gπ(Φ,R).

Similar to the case of reals one can define computable p-adic numbers for every fixed prime
p.

Result 12 (Theorem 16). Let Φ be an indecomposable root system of a rank > 1. Then the
following holds:
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1) Let a1, . . . , am ∈ Qc
p and A = Q(a1, . . . , am) is the subfield of Qp generated by a1, . . . , am.

Then the first-order theory Th(Gπ(Φ,Qp)) with constants from Gπ(Φ, A) is decidable.
In particular, the Diophantine problem in Gπ(Φ,Qp) with constants from Gπ(Φ, A) is
decidable (under a proper enumeration of Gπ(Φ, A)).

2) Let a1, . . . , am ∈ Zc
p and A = Z(a1, . . . , am) is the subring of Zp generated by a1, . . . , am.

Then the first-order theory Th(Gπ(Φ,Qp)) with constants from Gπ(Φ, A) is decidable.
In particular, the Diophantine problem in Gπ(Φ,Qp) with constants from Gπ(Φ, A) is
decidable (under a proper enumeration of Gπ(Φ, A)).

Result 13 (Theorem 17). Let Φ be an indecomposable root system of a rank > 1 and Gπ(Φ,Qp)
(Gπ(Φ,Zp), p 6= 2) the corresponding Chevalley group over Qp (Zp). If an element g ∈ Eπ(Φ,Qp)
(g ∈ Eπ(Φ,Zp), p 6= 2) is not computable then the Diophantine problem for equations with
coefficients in {xα(1) | α ∈ Φ} ∪ {g} is undecidable in any large subgroup of Gπ(Φ,Qp)
(Gπ(Φ,Zp), p 6= 2).

2. Chevalley groups

In this section we establish some notation and recall technical results that are used throughout
the paper.

For a group G and x, y ∈ G we denote by xy the conjugate yxy−1 of x by y, and by
[x, y] the commutator xyx−1y−1. For a subset A ⊆ G by CG(A) we denote the centralizer
{x ∈ G | [x, a] = 1 ∀a ∈ A}, in particular, Z(G) = {x ∈ G | [x, y] = 1 ∀y ∈ G} is the
center of G. For subsets X, Y ⊆ G by [X, Y ] we denote the subgroup of G generated by all
commutators [x, y], where x ∈ X , y ∈ Y . Then [G;G] is the derived subgroup G′ of G (the
commutant of G).

In the rest of the paper by R we denote an arbitrary associative commutative ring with
identity 1. By R∗ we denote the multiplicative group of invertible (unit) elements of R and by
R+ the additive group of R.

2.1. Root systems and semisimple Lie algebras.

We fix an indecomposable root system Φ of the rank ℓ > 1, with the system of simple roots ∆,
the set of positive (negative) roots Φ+ (Φ−), and the Weil group W . Recall that any two roots
of the same length are conjugate under the action of the Weil group. Let |Φ+| = m. More
detailed texts about root systems and their properties can be found in the books [51], [13].

Recall also that for α, β ∈ Φ

〈α, β〉 = 2
(α, β)

(β, β)
,

where (α, β) stands for the standard scalar product on the root space.
Suppose now that we have a semisimple complex Lie algebra L with the Cartan subalgebra H

(more details about semisimple Lie algebras can be found, for instance, in the book [51]).
Lie algebra L has a decomposition L = H⊕

∑
α6=0

Lα,

Lα := {x ∈ L | [h, x] = α(h)x for every h ∈ H},

and if Lα 6= 0, then dimLα = 1, all nonzero α ∈ H such that Lα 6= 0, form some root system Φ.
The root system Φ and the semisimple Lie algebra L over C uniquely (up to automorphism)
define each other.
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On the Lie algebra L one can introduce a bilinear Killing form κ(x, y) = tr ( adx ad y), that
is non-degenerated on H. Therefore we can identify the spaces H and H∗.

We can choose a basis {h1, . . . , hl} in H and for every α ∈ Φ elements xα ∈ Lα so that
{hi; xα} is a basis in L and for every two elements of this basis their commutator is an integral
linear combination of the elements of the same basis. This basis is called a Chevalley basis.

2.2. Elementary Chevalley groups.

Introduce now elementary Chevalley groups (see [99]).
Let L be a semisimple Lie algebra (over C) with a root system Φ, π : L → gl(V ) be its

finitely dimensional faithful representation (of dimension n). If H is a Cartan subalgebra of L,
then a functional λ ∈ H∗ is called a weight of a given representation, if there exists a nonzero
vector v ∈ V (that is called a weight vector) such that for any h ∈ H π(h)v = λ(h)v.

In the space V in the Chevalley basis all operators π(xα)
k/k! for k ∈ N are written as integral

(nilpotent) matrices. An integral matrix also can be considered as a matrix over an arbitrary
commutative ring with 1. Let R be such a ring. Consider matrices n × n over R, matrices
π(xα)

k/k! for α ∈ Φ, k ∈ N are included in Mn(R).
Now consider automorphisms of the free module Rn of the form

exp(txα) = xα(t) = 1 + tπ(xα) + t2π(xα)
2/2 + · · ·+ tkπ(xα)

k/k! + . . .

Since all matrices π(xα) are nilpotent, we have that this series is finite. Automorphisms xα(t)
are called elementary root elements. The subgroup in Aut (Rn), generated by all xα(t), α ∈ Φ,
t ∈ R, is called an elementary Chevalley group (notation: Eπ(Φ, R)).

In elementary Chevalley group we can introduce the following important elements and sub-
groups:

• wα(t) = xα(t)x−α(−t−1)xα(t), α ∈ Φ, t ∈ R∗;
• hα(t) = wα(t)wα(1)

−1;
• N is generated by all wα(t), α ∈ Φ, t ∈ R∗;
• H is generated by all hα(t), α ∈ Φ, t ∈ R∗;
• The subgroup U = U(R) of the Chevalley group G (E) is generated by elements xα(t),
α ∈ Φ+, t ∈ R, the subgroup V = V (R) is generated by elements x−α(t), α ∈ Φ+ t ∈ R.

The action of xα(t) on the Chevalley basis is described in [21], [106].
It is known that the groupN is a normalizer ofH in elementary Chevalley group, the quotient

group N/H is isomorphic to the Weil group W (Φ).
All weights of a given representation (by addition) generate a lattice (free Abelian group,

where every Z-basis is also a C-basis in H∗), that is called the weight lattice Λπ.
Elementary Chevalley groups are defined not even by a representation of the Chevalley

groups, but just by its weight lattice. Namely, up to an abstract isomorphism an elemen-
tary Chevalley group is completely defined by a root system Φ, a commutative ring R with 1
and a weight lattice Λπ.

Among all lattices we can mark two: the lattice corresponding to the adjoint representation,
it is generated by all roots (the root lattice Λad) and the lattice generated by all weights of all
reperesentations (the lattice of weights Λsc). For every faithful reperesentation π we have the
inclusion Λad ⊆ Λπ ⊆ Λsc. Respectively, we have the adjoint and universal (simply connected)
elementary Chevalley groups.

Every elementary Chevalley group satisfies the following relations:
(R1) ∀α ∈ Φ ∀t, u ∈ R xα(t)xα(u) = xα(t+ u);
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(R2) ∀α, β ∈ Φ ∀t, u ∈ R α + β 6= 0 ⇒

[xα(t), xβ(u)] = xα(t)xβ(u)xα(−t)xβ(−u) =
∏

xiα+jβ(cijt
iuj),

where i, j are integers, product is taken by all roots iα + jβ, taken in some fixed order; cij are
integer numbers not depending on t and u, but depending on α and β and the order of roots
in the product.

(R3) ∀α ∈ Φ wα = wα(1);
(R4) ∀α, β ∈ Φ ∀t ∈ R∗ wαhβ(t)w

−1
α = hwα(β)(t);

(R5) ∀α, β ∈ Φ ∀t ∈ R∗ wαxβ(t)w
−1
α = xwα(β)(ct), where c = c(α, β) = ±1;

(R6) ∀α, β ∈ Φ ∀t ∈ R∗ ∀u ∈ R hα(t)xβ(u)hα(t)
−1 = xβ(t

〈β,α〉u).
For a given α ∈ Φ by Xα we denote the subgroup {xα(t) | t ∈ R}.

2.3. Chevalley groups over rings.

We briefly recall some basics related to the definition of Chevalley groups. For more details
on Chevalley groups over rings see [99], [27], [11], [21], [31], [105], [106], and references therein.

Let Φ be a reduced irreducible root system of rank > 2, and W = W (Φ) be its Weyl group.
Consider a lattice Λπ intermediate between the root lattice Λ ad and the weight lattice Λsc. Let
R be a commutative ring with 1, with the multiplicative group R∗.

These data determine the Chevalley group G = GΛπ
(Φ, R), of type (Φ,Λπ) over R. It is usu-

ally constructed as the group of R-points of the Chevalley–Demazure group scheme GΛπ
(Φ,−)

of type (Φ,Λπ). In the case Λπ = Λsc the group G is called simply connected and is denoted
by Gsc(Φ, R). In another extreme case Λπ = Λ ad the group G is called adjoint and is denoted
by G ad (Φ, R). Many results do not depend on the lattice Λπ and hold for all groups of a given
type Φ. In all such cases, or when Λπ is determined by the context, we omit any reference to
π in the notation and denote by G(Φ, R) any Chevalley group of type Φ over R.

In what follows, we also fix a split maximal torus T = T (Φ, R) in G = G(Φ, R). This
choice uniquely determines the unipotent root subgroups, Xα, α ∈ Φ, in G, elementary with
respect to T . As usual, we fix maps xα : R 7→ Xα, so that Xα = {xα(t) | t ∈ R}, and require
that these parametrizations are interrelated by the Chevalley commutator formula with integer
coefficients, see R1–R2. The above unipotent elements xα(t), where α ∈ Φ, t ∈ R, elementary
with respect to T (Φ, R), are also called elementary unipotent root elements or, for short, simply
root unipotents.

Further,

E(Φ, R) =
〈
xα(t), α ∈ Φ, t ∈ R

〉

denotes the elementary subgroup of G(Φ, R), spanned by all elementary root unipotents, or,
what is the same, by all root subgroups Xα, α ∈ Φ.

This is precisely the elementary Chevalley group defined in the previous section. One can
look at Chevalley groups also from the positions of algebraic groups. This point of view is of
special importance for many application.

All these groups are defined in SL n(R) as common set of zeros of polynomials of matrix en-
tries aij with integer coefficients (for example, in the case of the root system Cℓ and the universal
representation we have n = 2l and the polynomials from the condition (aij)Q(aji) − Q = 0).
It is clear now that multiplication and taking inverse element are also defined by polynomials
with integer coefficients. Therefore, these polynomials can be considered as polynomials over
arbitrary commutative ring with a unit. Let some elementary Chevalley group E over C be
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defined in SL n(C) by polynomials p1(aij), . . . , pm(aij). For a commutative ring R with a unit
let us consider the group

G(R) = {(aij) ∈ SL n(R) | p̃1(aij) = 0, . . . , p̃m(aij) = 0},

where p̃1(. . . ), . . . p̃m(. . . ) are polynomials having the same coefficients as p1(. . . ), . . . , pm(. . . ),
but considered over R.

Semisimple linear algebraic groups over algebraically closed fields K are precisely Chevalley
groups G(K) = E(Φ, K) (see. [99], § 5).

The standard maximal torus of the Chevalley group Gπ(Φ, R) is denoted usually by Tπ(Φ, R)
and is isomorphic to Hom (Λπ, R

∗).
Let us denote by h(χ) the elements of the torus Tπ(Φ, R), corresponding to the homomor-

phism χ ∈ Hom(Λ(π), R∗).
In particular, hα(u) = h(χα,u) (u ∈ R∗, α ∈ Φ), where

χα,u : λ 7→ u〈λ,α〉 (λ ∈ Λπ).

2.4. Connection between Chevalley groups and their elementary subgroups.

Connection between Chevalley groups and corresponding elementary subgroups is an impor-
tant problem in the theory of Chevalley groups over rings. For elementary Chevalley groups
there exists a convenient system of generators xα(ξ), α ∈ Φ, ξ ∈ R, and all relations between
these generators are well-known. For general Chevalley groups it is not always true.

If R is an algebraically closed field, then

Gπ(Φ, R) = Eπ(Φ, R)

for any representation π. This equality is not true even for the case of fields, which are not
algebraically closed.

However if G is a simply connected group and the ring R is semilocal (i.e., contains only
finite number of maximal ideals), then we have the property

Gsc(Φ, R) = Esc(Φ, R).

[74], [1], [98], [3].
Let us show the difference between Chevalley groups and their elementary subgroups in the

case when a ring R is semilocal and a corresponding Chevalley group is not simply connected. In
this case Gπ(Φ, R) = Eπ(Φ, R)Tπ(Φ, R)] (see [1], [3], [74]), and the elements h(χ) are connected
with elementary generators by the formula

(1) h(χ)xβ(ξ)h(χ)
−1 = xβ(χ(β)ξ).

Remark 1. Since χ ∈ Hom(Λ(π), R∗), if we know the values of χ on some set of roots which
generate all roots (for example, on some basis of Φ), then we know χ(β) for all β ∈ Φ and
respectively all xβ(ξ)

h(χ) for all β ∈ Φ and ξ ∈ R∗.
Therefore in particular if for all roots β from some generating set of Φ we have [xβ(1), h(χ)] =

1, then h(χ) ∈ Z(Eπ(Φ, R) and hence h(χ) ∈ Z(Gπ(Φ, R).
We will use this observation in the next section many times.

If Φ is an irreducible root system of a rank ℓ > 2, then E(Φ, R) is always normal and even
characteristic in G(Φ, R) (see [103], [49]). In the case of semilocal rings it is easy to show
that

[G(Φ, R), G(Φ, R)] = E(Φ, R).
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except the cases Φ = B2,G2, R = F2.
However in the case ℓ = 1 the subgroup of elementary matrices E2(R) = Esc(A1, R) is not

necessarily normal in the special linear group SL 2(R) = Gsc(A1, R) (see [28], [101], [100]).
In the general case the difference between Gπ(Φ, R) and Eπ(Φ, R) is measured by K1-functor.

3. The Diophantine problem

3.1. Equations, constants and computable structures.

Recall, that the Diophantine problem in an algebraic structure A (denoted D(A)) is the
task to determine whether or not a given finite system of equations with constants in A has
a solution in A. D(A) is decidable if there is an algorithm that given a finite system S
of equations with constants in A decides whether or not S has a solution in A. Here, the
structure A is assumed to be countable, moreover, supposedly it comes equipped with a fixed
enumeration A = {a1, a2, . . . }, which is given by a surjective function ν : N → A (the function
is not necessary injective). One can use the function for enumeration of all finite systems
of equations with coefficients in A in countably many variables x1, x2, . . . , and then provide
them as inputs to a decision algorithm in the Diophantine problem D(A). The first question
to address here is how much decidability of D(A) depends on the choice of the enumeration
ν : N → A. It turns out, that decidability of D(A) does depend on the enumeration ν,
so for some ν, D(A) can be decidable, and for others can be not. For example, every non-
trivial finite or countable group has an infinite countable presentation with undecidable word
problem, so the Diophantine problems in the group with respect to the enumerations related to
such infinite presentations are undecidable. However, researchers are usually interested only in
“natural” enumerations ν, which come from finite descriptions of the elements of A that reflect
the nature of the structure A. For instance, if A is a finitely generated group then one may
describe elements of A by finite words in a fixed finite set of generators, and use known effective
enumerations of words, while if A is, say, a group GL n(R) over a ring R, then elements of
GL n(R) can be described by n2-tuples of elements from R, so one can use enumerations of R
to enumerate elements of GL n(R). Here, and in all other places, by an effective enumeration
of words (or polynomials, or any other formulas of finite signature) we understand such an
enumeration µ : n 7→ wn of words in a given finite or countable alphabet that for any number
n ∈ N one can compute the word wn and for any word w in the given alphabet one can
compute a number n such that w = wn. If A is a finitely generated associative unitary ring R
then elements of A can be presented as non-commutative polynomials with integer coefficients
in finitely many variables (which can be also viewed as elements of a free associative unitary
ring of finite rank) and then effectively enumerated. Similarly, for commutative rings R the
usual commutative polynomials can be used. There are two ways to make the formulation of the
Diophantine a bit more precise, either explicitly fix the enumeration ν of A in the Diophantine
problem (denote it by Dν(A)), or to term that D(A) is decidable if there exists an enumeration
ν of A such that D(A) is decidable. To study which enumerations are “reasonable” in the
discourse of Diophantine problems we need to digress to the theory of computable algebra, or
computable model theory, that stem from pioneering works of Rabin [87] and Maltsev [72] (for
details see a book [41] and a more recent survey [43]).

Recall that a structure A of finite signature is computable with respect to an enumeration ν :
N → A if all the basic operations and predicates (including the equality) on A are computable
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with respect to the enumeration ν. In particular, a group G is computable with respect to ν, if
there are two computable functions f(x, y) and h(x, y) such that for any i, j ∈ N the following
holds: ν(i) · ν(h) = ν(f(i, j)) and ν(i) = ν(j) ⇐⇒ h(i, j) = 1. Similarly, a countable ring R
is computable with respect to enumeration ν : N → R if in addition to the conditions above
there is a computable function g(x, y) such that ν(i) + ν(j) = ν(g(i, j)).

The following observation shows the connection between decidability of Diophantine problems
and computable structures.

Lemma 1. Let A be a countable structure given with an enumeration ν : N → A. If the
Diophantine problem Dν(A) is decidable then the structure A is computable with respect to ν.

Lemma 1 shows that the only interesting enumerations of A with respect to the Diophantine
problem are those that make A computable, they are called constructivizations of A. The
question whether a given countable structure A has a constructivization is a fundamental one
in computable model theory, so there are a lot of results in this direction (see [41], [43], [42])
that can be used here.

Let µ and ν be two enumerations of A. By definition µ reduces to ν (symbolically �) if there
is a computable function f(x) such that µ = ν ◦f . Furthermore, µ and ν are termed equivalent
(symbolically ∼) if µ � ν and ν � µ.

Lemma 2 ([41]). Let A be a finitely generated structure that have at least one constructiviza-
tion. Then all constructivizations of A are equivalent to each other.

It follows that a finitely generated structure A has a constructivization if and only if the
word problem in A with respect to some (any) finite generating set is decidable. In this case,
any other constructivization is equivalent to the one that comes as described above from any
fixed finite set of generators. This is why for finitely generated structures the enumerations
usually are not mentioned explicitly.

If A is uncountable then, as we mentioned in Introduction, one has to consider only equations
with constants from a fixed countable (or finite) subset C of A which comes equipped with an
enumeration ν : N → C. This form of the Diophantine problem is denoted by DC(A). It
will be convenient to consider instead of the set C the substructure 〈C〉 generated by C in A.
In this case one needs to consider enumerations of 〈C〉 that are “compatible” with the given
enumeration of C. To this end we introduce the following notion from computable model theory
(see [41]). Let S be a set with an enumeration ν : N → S and ϕ : S → S∗ an embedding of
sets. We say that an enumeration ν∗ : N → S∗ extends the enumeration ν if there exists a
computable function f : N → N such that ϕ◦ν = ν∗ ◦f . It is easy to construct an enumeration
of 〈C〉 that extends a given enumeration of the generating set C (see [41], Ch. 6, Section 1,
Theorem1). In the case of the subset C of A we will always, if not said otherwise, consider
enumerations ν∗ : N → 〈C〉 that extend a given enumeration ν : N → C. Furthermore, we
will always assume that for a given n ∈ N one can compute the term t of the language of the
structure A with constants from C which represents the element ν∗(n) in the structure 〈C〉.
And conversely, for every term t in the language of A with constants from C one can compute
a number n ∈ N such that ν∗(n) = t. We call such enumerations ν∗ effective. To construct an
effective enumeration of 〈C〉 in the case when A is a group one needs only effectively enumerate
all words in the alphabet C±1, while in the case when A is a commutative unitary ring one
needs to enumerate all polynomials from Z[C].

The following lemma from [77] is useful.
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Lemma 3. Let A be a structure, C a finite or countable subset of A equipped with an enu-
meration ν, and 〈C〉 the substructure generated by C in A with an effective enumeration that
extends ν. Then the following hold:

1) The Diophantine problems DC(A) and D〈C〉(A) are equivalent (reduce to each other).
2) If DC(A) is decidable then 〈C〉 is computable with respect to any enumeration of 〈C〉 that

extends the enumeration ν of the generating set C.

From now on we will always assume, without loss of generality, that coefficients in the
Diophantine problem is taken from a countable substructure C rather than from the set C.

3.2. Diophantine sets and e-interpretability.

To prove that D(A) reduces to D(M) for some structures A and M it suffices to show that
A is interpretable by equations (or e-interpretable) in M.

The notion of e-interpretability was introduced in [45], [44], [46]. Here we remind this notion
and state some basic facts we use in the sequel.

In what follows we often use non-cursive boldface letters to denote tuples of elements: e.g.
a = (a1, . . . , an). Furthermore, we always assume that equations may contain constants from
the algebraic structure in which they are considered.
Definition 1. A subset D ⊂ Mm is called Diophantine, or definable by systems of equations
inM, or e-definable inM, if there exists a finite system of equations, say ΣD(x1, . . . , xm, y1, . . . , yk),
in the language of M such that for any tuple a ∈ Mm, one has that a ∈ D if and only if the
system ΣD(a,y) on variables y has a solution in M. In this case ΣD is said to e-define D
in M.

Remark 2. Observe that, in the notation above, if D ⊂ Mm is e-definable then it is definable
in M by the formula ∃yΣD(x,y). Such formulas are called positive primitive, or pp-formulas.
Hence, e-definable subsets are sometimes called pp-definable. On the other hand, in number
theory such sets are usually referred to as Diophantine ones. And yet, in algebraic geometry
they can be described as projections of algebraic sets.

Definition 2. An algebraic structure A = (A; f, . . . , r, . . . , c, . . . ) is called e-interpretable in
another algebraic structure M if there exists n ∈ N, a subset D ⊆ Mn and an onto map (called
the interpreting map) ϕ : D → A, such that:

1. D is e-definable in M.
2. For every function f = f(x1, . . . , xn) in the language of A, the preimage by ϕ of the graph

of f , i. e. the set
{(x1, . . . , xk, xk+1) | ϕ(xk+1) = f(x1, . . . , xk)},

is e-definable in M.
3. For every relation r in the language of A, and also for the equality relation = in A, the

preimage by ϕ of the graph of r is e-definable in M.
Let A be e-interpretable in M as in definition above. This interpretation is completely

determined by the map ϕ and a tuple Γ of the Diophantine formulas that are defining the
set D from 1), the functions f from 2), and the relations r from 3). By PΓ ⊆ M we denote
the finite set of constants (parameters) that occur in formulas from Γ. E-interpretability is a
variation of the classical notion of the first-order interpretability, where instead of arbitrary
first-order formulas finite systems of equations are used as the interpreting formulas.

The following is a fundamental property of e-interpretability. Intuitively it states that if A
is e-interpretable in M by formulas Γ and an interpreting map ϕ : D → A, then any system
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of equations in A can be effectively “encoded” by an equivalent system of equations in M. To
explain we need the following notation. Let C be a finite or countable subset of A equipped
with an enumeration ν : N → C. For every ci = ν(i) ∈ C fix an arbitrary tuple di ∈ ϕ−1(ci).
Denote by DR the set of all elements in M that occur as components in tuples di from R.
Denote by CΓ the set DR ∪ PΓ. We say that enumeration ν∗ : N → C is compatible with the
enumeration ν (with respect to the set of representatives R) if there is an algorithm that for
every i ∈ N computes the ν∗-numbers of the components of the tuple di. For example, one can
enumerate first all elements in PΓ and then for i = 1, 2, . . . enumerate in the natural order all
the components of d1, d2, . . . .

Lemma 4 ([45]). Let A be e-interpretable in M by a set of formulas Γ with an interpreting
map ϕ : D → A. Let C be a finite or countable subset of A equipped with an enumeration ν.
Then there is a polynomial time algorithm that for every finite system of equations S(x) in A
with coefficients in C constructs a finite system of equations S∗(y, z) in M with coefficients
in CΓ (given via a compatible enumeration ν∗ : N → CΓ), such that if (b, c) is a solution to
S∗(y; z) in M, then b ∈ D and ϕ(b) is a solution to S(x) in A. Moreover, any solution a to
S(x) in A arises in this way, i. e. a = ϕ(b) for some solution (b; c) to S∗(y, z) in M.

Now we show two key consequences of Lemma 4.

Corollary 1. Let A be e-interpretable in M by a set of formulas Γ with an interpreting map
ϕ : D → A. Let C be a finite or countable subset of A equipped with an enumeration ν. Then
the Diophantine problem in A with coefficients in C is reducible in polynomial time (Karp re-
ducible) to the Diophantine problem in M with coefficients in CΓ with respect to any compatible
with ν enumeration ν∗. Consequently, if DC(A) is undecidable, then DCΓ

(M) (relative to ν∗)
is undecidable as well.

Corollary 2. e-interpetability is a transitive relation, i. e., if A1 is e-intepretable in A2, and
A2 is e-interpretable in A3, then A1 is e-interpretable in A3.

4. Double centralizers of uniponent elements in Chevalley groups

For the purposes of our paper, we want to prove that in the Chevalley group or its large
subgroup G over arbitrary commutative ring R with unity, the subgroup C · Xα, where C =
Z(G), is a centralizer of some finite set of elementary unipotents of the Chevalley group. This
result holds for all root systems, except for the short roots of Cl, where the answer will be
slightly different.

Quite similar problems were considered in a number of papers (see [92], [20], [66]). We cannot
take these results for granted, since for our aims we need a version of double centralizer theorem
for arbitrary commutative rings. With this end we use a localization method, which requires
conjugations with the elements of the form xα(1) only.

4.1. Localization of rings and modules; injection of a ring into the product of its

localizations.

Definition 3. Let R be a commutative ring. A subset S ⊂ R is called multiplicatively closed
in R, if 1 ∈ S and S is closed under multiplication.
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Introduce an equivalence relation ∼ on the set of pairs R× S as follows:

a

s
∼

b

t
⇐⇒ ∃u ∈ S : (at− bs)u = 0.

By a
s
we denote the whole equivalence class of the pair (a, s), by S−1R we denote the set of all

equivalence classes. On the set S−1R we can introduce the ring structure by

a

s
+

b

t
=

at + bs

st
,

a

s
·
b

t
=

ab

st
.

Definition 4. The ring S−1R is called the ring of fractions of R with respect to R.
Let p be a prime ideal of R. Then the set S = R\p is multiplicatively closed (it is equivalent

to the definition of the prime ideal). We will denote the ring of fractions S−1R in this case
by Rp. The elements a

s
, a ∈ p, form an ideal M in Rp. If b

t
/∈ M, then b ∈ S, therefore b

t
is

invertible in Rp. Consequently the ideal M consists of all non-invertible elements of the ring Rp,
i. e., M is the greatest ideal of this ring, so Rp is a local ring.

The process of passing from R to Rp is called localization at p.

Proposition 1. Every commutative ring R with 1 can be naturally embedded in the cartesian
product of all its localizations by maximal ideals

S =
∏

m is a maximal ideal of R

Rm

by diagonal mapping, which assigns every a ∈ R to the element
∏

m

(a
1

)

m

of S.

4.2. Double centralizers of unipotent elements in Chevalley groups over fields.

In the next sections we use relations between elements from Chevalley groups from [99]
without special notice.
Definition 5. For any Chevalley group Gπ(Φ, R) and for any α ∈ Φ let

Γα = {xβ(1) | β ∈ Φ and [xβ(1), xα(1)] = e}.

Recall also that by CG(M) we denote the centralizer of the set M in the group G.
The goal of this section is to prove the following theorem, which can be viewed as a variant

of the double centralizers theorem:

Theorem 1 (compare with [92]). For any Chevalley group (or its large subgroup) G = Gπ(Φ,F),
where F is an arbitrary field, Φ is an irreducible root system of a rank > 1, if some element
g ∈ CG(Γα), then g = cxα(t), where t ∈ F, c ∈ Z(G), except the case Φ = Cl, l > 2, and α is
short.

In the case Φ = Cl = {±ei ± ej | 1 6 i, j 6 l, i 6= j} ∪ {±2ei | 1 6 i 6 l} and α = e1 + e2 if
g ∈ CG(Γα), then

g = cxe1+e2(t1)x2e1(t2)x2e2(t3), c ∈ Z(G).

Remark 3. Note that if Φ = Cl and α is an arbitrary short root, then it is always conjugate
to e1+ e2 by some element of W . Therefore we do not lose any generality, considering the root
α = e1 + e2.
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We will use in this section the Bruhat decomposition

G = BWB =
⋃

w∈W

BwB

in the following form

Proposition 2 (see [99]). Any element g ∈ G can be uniquely represented in the form

g = txα1
(a1) . . . xαm

(am)wxα1
(b1) . . . xαm

(bm), where t ∈ T,w ∈ W,

α1, . . . , αm are all positive roots of Φ with an arbitrary fixed order, bi = 0 if w(αi) ∈ Φ+.

Since all roots of the same length are conjugate by the action of W , we can enumerate simple
roots of our root system Φ so that α = α1 (the first simple root) and all simple roots α3, . . . , αl

are orthogonal to α1.
Also we suppose that α1, . . . , αm have non-decreasing heights, i. e. we start from simple roots

α1, α2, . . . , αl, then their sums etc.
In this situation the roots α3, . . . , αl are orthogonal to α1, therefore

∀i = 3, . . . , l [x±αi
(1), xα1

(1)] = 1 =⇒ x±αi
(1) ∈ Γα.

Also we know that for the maximal root γ of Φ

γ + α1 /∈ Φ =⇒ xγ(1) ∈ Γα.

Besides that,
xα1

(1), x−α2
(1) ∈ Γα.

Suppose that we have some g in Bruhat decomposition

g = txα1
(a1) . . . xαm

(am)wxα1
(b1) . . . xαm

(bm) ∈ CG(Γα).

Our first and the most important goal is to prove that w = eW .

Lemma 5. Given the maximal root γ ∈ Φ, w(γ) = γ.

Proof. First of all, it is useful to have formulas of conjugation for different elements by the
element xβ(1).

For t ∈ T we have

txβ(1) = tt−1xβ(1)txβ(−1) = txβ(c
β
t )xβ(−1) = txβ(c

β
t − 1), cβt ∈ F∗.

For w ∈ W we have

wxβ(1) = xβ(1)wxβ(−1)w−1w = xβ(1)xw(β)(−1)w.

In our case of the maximal root γ we know that [xαi
(1), xγ(1)] = 1 for all i = 1, . . . , m, therefore

gxγ(1) = txγ(c
γ
t − 1)xα1

(a1) . . . xαm
(am)xγ(1)xw(γ)(−1)wxα1

(b1) . . . xαm
(bm) =

= txα1
(a1) . . . xαm

(am)xγ(c
γ
t )xw(γ)(−1)wxα1

(b1) . . . xαm
(bm) =

= g = txα1
(a1) . . . xαm

(am)wxα1
(b1) . . . xαm

(bm).

Using uniqueness of Bruhat decomposition and comparing the parts of the equality we see that:
(1) w(γ) = γ, what was required;
(2) cγt = 1, i. e. t commutes with xγ(1). �
Recall that the set of simple roots ∆ consists of α1, . . . , αl. We suppose that the roots

α3, . . . , αl are orthogonal to α1.
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Lemma 6. For any root β ∈ {α1, α3, . . . , αl} we have w(β) ∈ Φ+.

Proof. Suppose that β ∈ {α1, α3, . . . , αl}, β = αi, it is clear that in this case xβ(1) ∈ Γα.
Suppose that w(β) = δ ∈ Φ−. Then, using (R3) relation,

txα1
(a1) . . . xαm

(am)wxα1
(b1) . . . xαm

(bm) = g =

= gxβ(1) = txβ(c
β
t − 1)xα1

(a1) . . . xαl
(al)xαl+1

(ãl+1) . . . xαm
(ãm)xβ(1)w·

· xβ(−1)xα1
(b1) . . . xαl

(bl)xαl+1
(̃bl+1) . . . xαm

(̃bm) =

= tũwxα1
(b1) . . . xαi

(bi − 1) . . . xαl
(bl)xαl+1

(̃b′l+1) . . . xαm
(̃b′m).

To bring this last expression into the usual form of the standard Bruhat decomposition, we
still need to move all the unipotents that correspond to the roots which do not change their
signs, to the left of w. But when we do it, the parameter in xβ(·) does not change under the
action of w. Therefore we have two distinct Bruhat decompositions of the same element. The
difference is in parameters of the unipotent xβ(·) from the right-hand side of w. Contradiction,
hence w(β) ∈ Φ+. �

Lemma 7. For any root β ∈ {α3, . . . , αl} we have w(β) = β.

Proof. If β ∈ {α3, . . . , αl}, then xβ(1), x−β(1) ∈ Γα, therefore wβ(1) commutes with g. Also
let us mention that from the right side of w in the Bruhat decomposition of g the element xβ(·)
is omitted, since w(β) ∈ Φ+ (by the previous lemma).

Since β is a simple root, wβ maps all positive roots (except β) also to positive roots.
Therefore,

txα1
(a1) . . . xβ(aβ) . . . xαm

(am)wxα1
(b1) . . . xαm

(bm) = g = gwβ(1) =

= t̃x
wβ(α1)(a1) . . . xwβ(β)(aβ) . . . xwβ(αm)(am)w

wβ(1)x
wβ(α1)(b1) . . . xwβ(αm)(bm) =

= t̃xα1
(ã1) . . . x−β(aβ) . . . xαm

(ãm)w
wβ(1)x

wβ(α1)(b1) . . . xwβ(αm)(bm) =

(since for any δ ∈ Φ+ [xδ(a), x−β(aβ)] does not contain any unipotents with negative roots)

= t̃xα1
(ã1) . . . xαm

(ãm)x−β(aβ)w
wβ(1)x

wβ(α1)(b1) . . . xwβ(αm)(bm) =

= t̃xα1
(ã1) . . . xαm

(ãm)wβ(1)xβ(aβ)wwβ(1)
−1x

wβ(α1)(b1) . . . xwβ(αm)(bm) =

= t̃xα1
(ã1) . . . xαm

(ãm)wβ(1)wx
w(β)(aβ)wβ(1)

−1x
wβ(α1)(b1) . . . xwβ(αm)(bm) =

= t̃xα1
(ã1) . . . xαm

(ãm)w
wβ(1)x

wβw(β)(aβ)xwβ(α1)(b1) . . . xwβ(αm)(bm).

Since w(β) ∈ Φ+, β is a simple root, then either wβ(w(β)) ∈ Φ+ or w(β) = β (in this last
case our lemma is already proven). In the first case all unipotents from the right side of w
correspond to positive roots. Hence from the uniqueness of Bruhat decomposition it follows

w = wwβ(1) =⇒ w(β) = ±β.

Since w(β) ∈ Φ+ we have w(β) = β, what was required. �

Lemma 8. Suppose that g is in Bruhat decomposition

g = txα1
(a1) . . . xαm

(am)wxα1
(b1) . . . xα1

(bm) ∈ C(Γα),
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where α is a simple root for all systems except Cl, l > 2 and a long simple root for the system
Cl, l > 2. And if Φ = Cl, α is short, then we suppose that

α1 = e1 − e2, α2 = e2 − e3, . . . , αl−1 = el−1 − el, el = 2el and α = e1 + e2.

In all these cases w = eW .

Proof. Note that the roots α3, . . . , αl, γ are linearly independent and generate in the space V
of the root system Φ a hyperspace V ′. The root α1 is orthogonal to the vectors {α3, . . . , αl}.

Since according to the previous Lemmas 5 and 7 our w acts identically on the basis of the
hyperplane V ′, therefore it either is an identical mapping, or is a reflection wδ, where δ is a
root orthogonal to all α3, . . . , αl, γ.

Let us search for such δ in different roots systems.
1. The root system Al. In Rl+1, αi = ei − ei+1, 3 6 i 6 l, γ = e1 − el+1. Since all roots

of Al have the form ej − ek, the required δ does not exist, therefore w = eW .
2. The root system Bl, l > 3. The root system is {±ei,±ei ± ej | 1 6 i < j 6 l},

{α3, . . . , αl} = {e3 − e4, . . . , el−1 − el, el} or {e1 − e2, . . . el−2 − el−1} depending of the length
of α. The maximal root γ is e1 + e2. In the first case δ = e1 − e2 = α, in the second case
δ = el = α. Both these cases are impossible, since we know that w(α) ∈ Φ+.

3. The root system Cl, l > 2. The root system is {±2ei,±ei ± ej | 1 6 i < j 6 l},
{α3, . . . , αl} = {e3−e4, . . . , el−1−el, 2el} or {e1−e2, . . . el−2−el−1} also depending of the length
of α. The maximal root γ is 2e1. In the first case δ = 2e2, in the second case δ = 2el = α1,
which is impossible, since w(α1) ∈ Φ+.

Let us suppose now that we have the same set of simple/positive roots, but α = e1 + e2. In
this case also δ = 2e2,

g = txα1
(a1) . . . xαm

(am)wδxe2−e3(be2−e3) . . . xe2−el(be2−el)xe2+e3(be2+e3) . . . xe2+el(be2+el)x2e2(b2e2),

since only positive roots e2 − ei, e2 + ei and 2e2 are mapped to negative roots under the action
of wδ. But for all these roots their sum with α = e1+e2 is not a root, therefore xα(1) commutes
with this right part. Consequently,

g = gxα(1) = (txα(c
α
t − 1))xα1

(a1) . . . xαi
(a′i) . . . xαm

(a′m)xe1+e2(1)w2e2xe1+e2(1)
−1·

· xe2−e3(be2−e3) . . . xe2−el(be2−el)xe2+e3(be2+e3) . . . xe2+el(be2+el)x2e2(b2e2) =

= (txα(c
α
t − 1))xα1

(a1) . . . xαi
(a′i) . . . xαm

(a′m)xe1+e2(1)xe1−e2(±1)w2e2·

· xe2−e3(be2−e3) . . . xe2−el(be2−el)xe2+e3(be2+e3) . . . xe2+el(be2+el)x2e2(b2e2) =

= txα1
(a1) . . . xe1−e2(ae1−e2 ± 1) . . . xe1+e2(ct + ae1+e2) . . . xαi

(a′′i ) . . . xαm
(a′′m)w2e2·

· xe2−e3(be2−e3) . . . xe2−el(be2−el)xe2+e3(be2+e3) . . . xe2+el(be2+el)x2e2(b2e2),

since w2e2(e1 + e2) = e1 − e2 and new xe1−e2(. . . ) or xe1+e2(. . . ) cannot appear from any other
conjugations. Therefore this situation is impossible and w = eW .

4. The root system Dl, l > 4. The root system is {±ei ± ej | 1 6 i < j 6 l},
{α3, . . . , αl} = {e3 − e4, . . . , el−1 − el, el−1 + el}, γ = e1 + el+1. Since all roots of Dl have the
form ±ej ± ek, the required δ does not exist, therefore w = eW .

5. The root system El, l = 6, 7, 8. We will not present here all lists of roots, taking them
from [13]. The explicit check shows that in all three cases δ = α1, which is impossible, since
w(α1) ∈ Φ+.
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6. The root system F4. The roots of the system F4 are

±ei, i = 1, 2, 3, 4, ±ei ± ej , i, j = 1, 2, 3, 4, i 6= j,
1

2
(±e1 ± e2 ± e3 ± e4);

we suppose that ∆ = {1
2
(e1−e2−e3−e4), e4, e3−e4, e2−e3.} Therefore {α3, α4} = {e3−e4, e2−e3}

or {1
2
(e1 − e2 − e3 − e4), e4}, γ = e1 + e2. In the first case δ = 1

2
(e1 − e2 − e3 − e4) = α1, in

the second case such δ does not exist. The first case is also impossible, since we know that
w(α) ∈ Φ+.

7. The root system G2. If α is the long simple root of G2, β is the short simple root, then
in any case δ is orthogonal to the maximal root 2α+ 3β, i. e. δ = β. Certainly it is impossible
if our initial α1 is β, so let us assume α1 = α.

Suppose that w = wβ,

g = txα(a1)xβ(a2)xα+β(a3)xα+2β(a4)xα+3β(a5)x2α+3β(a6)wβxβ(b2).

Since xα+2β(1) ∈ Γα, we can conjugate g by xα+2β(1):

gxα+2β(1) = (txα+2β(c
α+2β
t − 1))xα(a1)(xβ(a2)xα+3β(±2a2))(xα+β(a3)x2α+3β(±2a3))·

· xα+2β(a4)xα+3β(a5) · x2α+3β(a6)xα+2β(1)wβxα+2β(1)
−1xβ(b2) =

= (txα+2β(c
α+2β
t − 1))xα(a1)(xβ(a2)xα+3β(±2a2))(xα+β(a3)x2α+3β(±2a3))·

· xα+2β(a4)xα+3β(a5) · x2α+3β(a6)xα+2β(1)xα+β(±1)wβxβ(b2) =

= txα(a1)xβ(a2)xα+β(a3 ± 1)xα+2β(. . . )xα+3β(. . . )x2α+3β(. . . )wβxβ(b2),

which is impossible, since a3 6= a3 ± 1. Therefore w = eW . �
Therefore one can assume that if g ∈ CG(Γα), then g has a form txα1

(a1) . . . xαm
(am), i. e.,

g ∈ B.
It remains to prove that any g ∈ B ∩ CG(Γα) has a form specified in Theorem 2.
We will prove this fact by inspection of all root systems consequently.

Remark 4. All calculations below remain valid for an arbitrary commutative ring with unity.

Lemma 9. If Φ = G2 and

g = txα1
(a1) . . . xαm

(am) ∈ C(Γα),

then a2 = · · · = am = 0 and t ∈ Z(G).

Proof. If α and β are simple roots of the system G2, α is long and β is short, then (see [99],
Lemma 57):

[xα(t), xβ(u)] = xα+β(tu)xα+3β(−tu3)xα+2β(−tu2)x2α+3β(t
2u3),

[xα+β(t), xβ(u)] = xα+2β(2tu)xα+3β(−3tu2)x2α+3β(3t
2u3),

[xα(t), xα+3β(u)] = x2α+3β(tu),

[xα+2β(t), xβ(u)] = xα+3β(−3tu),

[xα+β(t), xα+2β(u)] = x2α+3β(3tu).

Case 1, α1 = α is a long root. Then

xα(1), xα+β(1), xα+2β(1), x2α+3β(1), x−β(1), x−α−2β(1), x−α−3β(1) ∈ Γα.
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If

g = txα(t1)xβ(t2)xα+β(t3)xα+2β(t4)xα+3β(t5)x2α+3β(t6) ∈ C(Γα),

then

gxα(1) = (txα(c
α
t − 1))xα(t1)(xβ(t2)xα+β(t2)xα+3β(−t32)xα+2β(−t22)x2α+3β(t

3
2))·

· xα+β(t3)xα+2β(t4)(xα+3β(t5)x2α+3β(t5))x2α+3β(t6) =

= txα(c
α
t − 1 + t1)xβ(t2)xα+β(t2 + t3)xα+2β(t4 − t22)xα+3β(t5 − t32)x2α+3β(t6 + t5 + t32 − 3t22t3).

From the uniqueness of Bruhat decomposition we have

cαt = 1, t2 = 0, t5 = 0,

therefore

[t, xα(1)] = 1 and g = txα(t1)xα+β(t3)xα+2β(t4)x2α+3β(t6).

Since xα+β(1) ∈ Γα, we have (similarly) [t, xα+β(1)] = 1 and 3t4 = 0, therefore t ∈ Z(G)
according to Remark 1.

Now let us use x−β(1), taking into account that [t, x
β
(1)] = 1 and 3t4 = 0:

gx−β(1) = txα(t1)(xα(3t3)xα+β(t3))(xα+β(2t4)xα(−3t4)x−β(3t
2
4)xα+2β(t4))x2α+3β(t6) =

= txα(t + 3t3)xα+β(t3 + 2t4)xα+2β(t4)x2α+3β(t6),

so 2t4 = 0 and together with 3t4 = 0 it gives t4 = 0, and therefore

g = txα(t1)xα+β(t3)x2α+3β(t6), 3t3 = 0, t ∈ Z(G).

Let us now apply x−α−2β(1):

gx−α−2β(1) =

= txα(t1)(x−β(±2t3)xα(±3t23)x−α−3β(±3t3)xα+β(t3))(x−α−2β(1)x2α+3β(t6)x−α−2β(1)
−1) =

= txα(t1)x−β(±2t3)xα+β(t3)xα+β(t6)x−β(−t6)x−α−3β(t6)xα(t
2
6)x2α+3β(t6),

therefore t6 = 0, then 2t3 = 0 and together with 3t3 = 0 it implies t3 = 0.
So we proved that g = txα(t1), where t ∈ Z(G).

Case 2, α1 = β is a short root. Then

xβ(1), xα+3β(1), x2α+3β(1), x−α(1), x−2α−3β(1) ∈ Γβ.

If

g = txβ(t2)xα(t1)xα+β(t3)xα+2β(t4)xα+3β(t5)x2α+3β(t6) ∈ C(Γβ),

then

gxα+3β(1) = (txα+3β(c
α+3β
t − 1))xβ(t2)xα(t1)x2α+3β(t1)xα+β(t3)xα+2β(t4)xα+3β(t5)x2α+3β(t6),

therefore [t, xα+3β(1)] = 1 and t1 = 0.
Now

gxβ(1) = (txβ(c
β
t − 1))·

·xβ(t2)(xα+β(t3)xα+2β(2t3)xα+3β(−3t3)x2α+3β(3t
2
3))(xα+2β(t4)xα+3β(−3t4))xα+3β(t5)x2α+3β(t6) =

= txβ(c
β
t − 1 + t2)xα+β(t3)xα+2β(2t3 + t4)xα+3β(−2t3 − 3t4 + t5)x2α+3β(3t

2
3 + t6),
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so [t, xβ(1)] = 1 (and consequently by Remark 1 t ∈ Z(G)), 2t3 = 3t23 = 0 (therefore t23 = 0)
and 3t4 = 0.

Let us apply x−α(1), taking into account t23 = 0:

gx−α(1) = txβ(t2)(xα+β(t3)xβ(±t3))xα+2β(t4)xα+3β(t5)x2α+3β(t6)xα+3β(±t6),

consequently t3 = t6 = 0.
Since x2α+3β(1) and x−2α−3β(1) are both in Γβ, then [w2α+3β(1), g] = 1, and since w2α+3β(α+

2β) = −α − β, w2α+3β(α + 3β) = −α, then t4 = t5 = 0, what was required. �

Lemma 10. If Φ = Al,Dl or El, l > 2,

g = txα1
(a1) . . . xαm

(am) ∈ C(Γα),

then a2 = · · · = am = 0 and t ∈ Z(G).

Proof. In this simply laced case all roots has the same length and are conjugated up to the
action of the Weil group, therefore we can always suppose that α = α1.

If β 6= α is some positive root, then either it is orthogonal to α, or α and β are simple roots
of A2 (if the angle between them is 120◦), or α and γ = β − α are simple roots of A2 (if the
angle between them is 60◦).

In the second and third cases we have the roots α, β, α + β, forming the system A2, where
xα(1), xα+β(1) and x−β(1) belong to Γα.

If
g = txα(t1) . . . xβ(tβ) . . . xα+β(tα+β) . . . ,

then
gxα(1) = txα(c

α
t − 1 + t1) . . . xβ(tβ)xα+β(tβ) . . . xα+β(tα+β) . . . ,

where xα(. . . ), xβ(. . . ), xα+β(. . . ) do not appear in any other places. Therefore [t, xα(1)] = 1
and tβ = 0.

Now
g = txα(t1) . . . xα+β(tα+β) . . .

and
gx−β(1) = (tx−β(c

−β
t − 1))xα(t1) . . . xα(tα+β)xα+β(tα+β) . . . ,

where xα(. . . ), x−β(. . . ), xα+β(. . . ) do not appear in any other places, for all other xγ(. . . ),

except x−β(c
−β
t − 1), γ are positive. Therefore [t, x−β(1)] = 1 and tα+β = 0.

We see now that if for γ 6= α an element xγ(. . . ) appears in g, then γ is orthogonal to α.
But in this case both xγ(1), x−γ(1) ∈ Γα, therefore [wγ(1), g] = e. Starting with simple roots γ
we see that

gwγ(1) = t̃xα(t1)x−γ(tγ) . . . xwγ(δ)(tδ) . . . ,

where all wγ(δ) ∈ Φ+. Therefore [t, xγ(1)] = 1, tγ = 0. The element t commutes with all xγ(1)
for simple roots γ, therefore by Remark 1 we have t ∈ Z(G).

Also we proved that in g there are no elements xγ(tγ) with simple γ, except xα(t1). Continuing
with roots of the height 2, we do the same and notice that for all of them also tγ = 0. Continuing
this procedure to the roots of the height 3, 4, . . . , we come out with the fact that for all γ ∈ Φ+\α
we have tγ = 0, what was required. �

Lemma 11. For the root system B2 = {α, β, α+β, α+2β} and g = txα(t1)xβ(t2)xα+β(t3)xα+2β(t4):
(1) if g ∈ C(Γα), then g = txα(t1) with t ∈ Z(G);
(2) if g ∈ C(Γα+β), then g = txα(t1)xα+β(t3)xα+2β(t4) with t ∈ Z(G).



23

Proof. Let us remind the formula for the commutator of elementary unipotents for the simple
roots in the system B2 (see [99], Lemma 33). If α is a long simple root, β is a short simple
root, then

[xα(t), xβ(u)] = xα+β(±tu)xα+2β(±tu2),

[xα+β(t), xβ(u)] = xα+2β(±2tu).

Case 1, g ∈ C(Γα). In this case

xα(1), xα+β(1), xα+2β(1), x−β(1), x−α−2β(1) ∈ Γα.

Starting with xα(1) we obtain

g = txα(t1)xβ(t2)xα+β(t3)xα+2β(t4) =

= gxα(1) = (txα(c
α
t − 1))xα(t1)(xβ(t2)xα+β(±t2)xα+2β(±t22))xα+β(t3)xα+2β(t4),

therefore [t, xα(1)] = 1, t2 = 0.
Then

gx−β(1) = (tx−β(c
−β
t − 1))xα(t1)(xα(±2t3)xα+β(t3))(xα+β(±t4)xα(±t4)xα+2β(t4)),

therefore [t, x−β(1)] = 1 (and so t ∈ Z(G) by Remark 1), t4 = 0 and 2t3 = 0.
Consequently,

g = txα(t1)xα+β(t3), t ∈ Z(G), 2t3 = 0.

Since [wα+2β(1), g] = 1, then

g = gwα+2β(1) = txα(t1)xwα+2β(α+β)(t3) = txα(t1)x−β(±t3),

therefore t3 = 0.
The first case is complete.

Case 2, g ∈ C(Γα+β). In this case only

xα(1), xα+β(1), xα+2β(1) ∈ Γβ.

Starting with xα(1) we obtain

gxα(1) = (txα(c
α
t − 1))xα(t1)(xβ(t2)xα+β(±t2)xα+2β(±t22))xα+β(t3)xα+2β(t4),

therefore t2 = 0, [t, xα(1)] = 1 and g = txα(t1)xα+β(t3)xα+2β(t4).
Let us use xα+β(1):

gxα+β(1) = (txα+β(c
α+β
t − 1))xα(t1)xα+β(t3))xα+2β(t4),

therefore [t, xα+β(1)] = 1, and thus

g = txα(t1)xα+β(t3)xα+2β(t4), t ∈ Z(G),

what was required. �

Lemma 12. If Φ = Bl,Cl,F4, l > 3, g = txα1
(t1) . . . xαm

(tm), α1, . . . , αm ∈ Φ+, the roots
α1, . . . , αm are ordered by their heights, g ∈ C(Γα), then:

(1) if α is a long root or α is short and Φ = F4 or Bl for l > 3, then g = txα1
(t1), where

t ∈ Z(G);
(2) if α = e1+e2 in the standard system Cl, l > 3, then g = txe1+e2(t1)x2e1(t2)x2e2(t3), where

t ∈ Z(G).
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Proof.

Step 1. Suppose that α = α1 is a long simple root of Φ. In this case any other positive root
γ of Φ form together with α the following configuration:

(1) α and γ are orthogonal (and their sum is not a root);
(2) α and γ or α and γ − α are simple roots of the system A2;
(3) α and γ or α and γ − α are simple roots of the system B2, where α is long.
In the second case according to Lemma 10 in xγ(tγ) and xα+γ(tα+γ) (or xγ−α(tγ−α)) we have

tγ = tγ±α = 0, also [xα(1), t] = 1, [xγ(1), t] = 1.
In the third case according to Lemma 11 in xγ(tγ), xα+γ(tα+γ) and xα+2γ(tα+2γ) we have

tγ = tα+γ = tα+2γ = 0, also [xγ(1), t] = 1.
Applying these arguments we obtain g = txα(t1) . . . xγ(tγ) . . . , where all γ appeared in g are

orthogonal to α.
After that we use the same arguments as in Lemma 10 with conjugating g by wγ(1) starting

from simple roots γ and finishing by the highest roots.
Therefore for all long roots α the lemma is proved.
Now we can assume that α is short.

Step 2. Let us look at the system Bl, l > 3.
The roots of this system are {±ei,±ei ± ej | 1 6 i < j 6 l}, where e1, . . . , el is a standard

basis of the Euclidean space. We can suppose in our case, that α = α1 = el, α2 = el−1− el, . . . ,
αl = e1 − e2.

Let us start with conjugation by xα(1) ∈ Γα:

gxα(1) = (txα(c
α
t − 1))xα(t1) . . . (xei(tei)xei+el(±2tei)) . . .

. . . (xei−el(tei−el)xei(±tei−el)xei+el(±tei−el)) . . . ,

therefore [xα(1), t] = 1 and tei−el = 0 for all i = 1, . . . , l − 1.
Similarly let us conjugate g by xel−ei(1) ∈ Γα:

gxel−ei
(1) = (txel−ei(c

el−ei
t − 1))xα(t1) . . . (xei+ej (tei+ej)xej+el(tei+ej)) . . .

. . . (xei(tei)xel(±tei)xel+ei(±t2ei)) . . . ,

therefore [xel−ei(1), t] = 1 (and so t ∈ Z(G)) and tei+ej = 0 for all i 6= j, i, j 6= l, and tei = 0 for
all i 6= l.

Now

g = txα(t1) . . . xei−ej(tei−ej ) . . . xei+el(tei+el) . . . , where i, j 6= l, i < j.

Let us conjugate g by xej+el(1) ∈ Γα:

gxej+el
(1) = txα(t1) . . . (xei−ej(tei−ej)xei+el(tei−ej)) . . . xei+el(tei+el) . . . ,

therefore tei−ej = 0 and

g = txα(t1)xel−1+el(tel−1+el) . . . xe1+el(te1+el).

Since l > 3, for every i 6= l we have k 6= i, l. Taking for such k the element xek−ei(1) ∈ Γα, we
have

gxek−ei
(1) = txα(t1) . . . . . . (xei+el(tei+el)xek+el(tei+el)) . . . ,

therefore tei+el = 0 and g = txα(t1), what was required.
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Step 3. Looking at the system F4, the same arguments as on the step 2 with conjugation
consequently by xα(1), x−α2

(1), x−α3
(1), x−α4

(1), etc., yield the same result: g = txα(t1), where
t ∈ Z(G).

Step 4. The last case is the most interesting: the root system Cl, l > 3. The roots are

±2ei and ± ei ± ej, where 1 6 i < j 6 l,

the set of positive roots is

ei − ej, i > j, ei + ej , i 6= j, 2ei.

As above we suppose here that α = e1 + e2.
The set Γα consists of

{e1 + e2; 2e1; 2e2;±2ei, e1 ± ei, e2 ± ei, i > 3;±ei ± ej , i 6= j, i, j > 3}.

Conjugating g by xe1+ei(1), i > 3, we have

gxe1+ei
(1) = (txe1+ei(c

e1+ei
t − 1))xe1+e2(te1+e2) . . . (xe2−ei(te2−ei)xe1+e2(te2−ei)) . . .

. . . (xek−ei(tek−ei)xe1+ek(tek−ei) . . . , 3 6 k < i,

and these additional xe1+e2(. . . ) and xe1+ek(. . . ) cannot appear from any other elements under
this conjugation. Therefore tek−ei = 0 for all 2 6 k < i 6 l. Also [t, xe1+ei(1)] = 1.

Conjugating g by xe2+ei(1), i > 3, we have

gxe2+ei
(1) = (txe2+ei(c

e2+ei
t − 1))(xe1−e2(te1−e2)xe1+ei(te1−e2)) . . .

. . . (xe1−ei(te1−ei)xe1+e2(te1−ei)) . . . ,

and these additional xe1+e2(. . . ) and xe1+ei(. . . ) cannot appear from any other elements under
this conjugation. Therefore te1−e2 = 0 and te1−ei = 0 for all 3 6 i 6 l. Also [t, xe2+ei(1)] = 1.

Conjugating g by xe1+e2(1), we have

gxe1+e2
(1) = (txe1+e2(c

e1+e2
t − 1))xα1

(a1) . . . xαm
(am).

Therefore [t, xe1+e2(1)] = 1.
Conjugating g by xe2−ei(1), i > 3, we have

gxe2−ei
(1) = (txe2−ei(c

e2−ei
t −1)) . . . (xe1+ei(te1+ei)xe1+e2(te1+ei)) . . . (x2ei(t2ei)xe2+ei(±t2ei)x2e2(±t2e2))

. . . (xei+ej (tei+ej)xe2+ej(tei+ej )) . . . (xe2+ei(te2+ei)x2e2(±2te2+ei)), j > 3, j 6= i.

Therefore te1+ei = 0 and t2ei = 0 for i > 3, tei+ej = 0 for all 3 6 i, j 6 l, i 6= j. Also
[t, xe2−ei(1)] = 1.

The same situation is with conjugating by xe1−ei(1), i > 3, which gives us te2+ei = 0 for i > 3
and [t, xe1−ei(1)] = 1.

Therefore t ∈ Z(G) and

g = txe1+e2(te1+e2)x2e1(t2e1)x2e2(t2e2).

what was required. Direct (and easy) calculations show that such g is always in C(Γα) for this
root system. �

So Theorem 2 is proved.
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4.3. Double centralizers of unipotent elements in Chevalley groups over local rings.

In this section we will prove the same theorem for large subgroups of the Chevalley groups
over local rings. In the paper [20] we already obtained a similar result for local rings, but we
supposed their that in some root systems these rings contain 1/2 or 1/3. Now it is important
to prove the result for all local rings, with no restrictions.

Theorem 2 (c.f. [20]). For any Chevalley group (or its large subgroup) G = Gπ(Φ, R), where
Φ is an irreducible root system of a rank > 1, R is a local ring, if for some α ∈ Φ an element
g ∈ CG(Γα), then g = cxα(t), where t ∈ R, c ∈ Z(G), except the case Φ = Cl, l > 2, and α is
short.

In the case Φ = Cl = {±ei ± ej | 1 6 i, j 6 l, i 6= j} ∪ {±2ei | 1 6 i 6 l} and α = e1 + e2 if
g ∈ CG(Γα), then

g = cxe1+e2(t1)x2e1(t2)x2e2(t3), c ∈ Z(G).

Proof. Let Γα = {xβ(1) | [xβ(1), xα(1)] = e}, g ∈ CG(Γα).
Let us denote the residue field R/RadR by k and the images of the elements g, xβ(1), t, u

etc. in the quotient group G = Gπ(Φ, k) by g, xβ(1), t, u, respectively.

Since g ∈ CG(Γα), we have g ∈ CG(Γα), where Γα = {xβ(1) | [xβ(1), xα(1) = e}. Since G is
the Chevalley group over a field, by Theorem 2

g = cxα(t), c ∈ Z(G) (or cxe1+e2(t1)x2e1(t2)x2e2(t3), if Φ = Cl, l > 2, α = e1 + e2).

As in the previous section we assume that α = α1 is the first simple root.
In a Chevalley group G over a local ring there exists a Gauss decomposition of the form

G = UTV U (see [97], [1], [3], [52]). So we fix a representation of g as

g = xα1
(r1) . . . xαm

(rm)tx−α1
(s1) . . . x−αm

(sm)xα1
(t1) . . . xαm

(tm),

where αi are positive roots, ri, si, ti ∈ R, t ∈ T (R). Since the image of g under canonical
homomorphism is

xα(r1)t (or xe1+e2(r1)x2e1(r2)x2e2(r3)t in the case Φ = Cl, l > 2, α = e1 + e2).

Therefore in all cases the elements s1, . . . , sm, t1, . . . , tm ∈ RadR.
According to the formula

x−γ(s)xγ(t) = hγ

(
1

1 + st

)
xγ(t(1 + st))x−γ

(
s

1 + st

)
for all γ ∈ Φ (∗)

(it is checked directly through a representation of xγ(·), x−γ(·), hγ(·) by matrices from SL 2).
Since 1 + st ∈ R∗ if s ∈ RadR or t ∈ RadR, we can move all xβ(ti) from the right side of
decomposition to its left side. So we obtain a representation of g of the form

g = xα1
(r1) . . . xαm

(rm)tx−α1
(s1) . . . x−αm

(sm), s1, . . . , sm ∈ RadR.

Note that, unlike the original Gauss decomposition, such a decomposition is uniquely defined.
Indeed, suppose that

u1t1v1 = u2t2v2.

If we move all the positive roots to one side: t1v1v
−1
2 t−1

2 = u−1
1 u2, then since TV ∩ U = 1,

therefore u1 = u2 and v1v
−1
2 = t2t

−1
1 . Since T ∩ V = 1, we have v1 = v2, t1 = t2, so this form of

decomposition is unique.
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Let us use also the formula

xγ(1)x−γ(s)xγ(1)
−1 = hγ

(
1

1− s

)
xγ(s

2 − s)x−γ

(
s

1− s

)
for all γ ∈ Φ (∗∗)

which follows directly from (∗).
As in previous section we suppose that the roots α1, . . . , αm are ordered by their heights.
In our case of Gauss decomposition UTV it is convenient to suppose that for g = utv ∈ UTV

always

u = xα1
(r1) . . . xαm

(rm)tx−αm
(sm) . . . x−α1

(s1).

Case 1. Root systems with the roots of the same length: Al, Dl, El.
Consider a root β ∈ Φ such that α+β /∈ Φ, and consequently the element xβ(1) ∈ Γα. Since

g ∈ C(Γα), then gxβ(1) = g. Let us consider, how conjugation by this element acts on g and its
factors (assume that β is positive):

g = gxβ(1) = xα1
(r1)

xβ(1) . . . xαm
(rm)

xβ(1)txβ(1)x−αm
(sm)

xβ(1) . . . x−α1
(s1)

xβ(1) =

= xα1
(r1) . . . (xαi

(ri)xαi+β(±ri)) . . . xαm
(rm) · (xβ(c

β
t − 1)t)·

· (x−αm
(sm)x−αm+β(±sm)) . . .

(
hβ

(
1

1− s−β

)
xβ(s

2
−β − s−β)x−β

(
s−β

1− s−β

))
. . . x−α1

(s1).

Let us analyze the obtained equality.
Note that from the left-hand side of t there are only unipotent elements with positive roots,

that is, an element of U . From the right side of t there is an element hβ

(
1

1−s
−β

)
of the

torus T . Since torus obviously normalizes any Xα, we can move this element to the left and

obtain t · hβ

(
1

1−s
−β

)
instead of t. Since all unipotents with positive roots which can appear by

conjugation of any unipotent with a negative root −γ by xβ(1), have heights strictly smaller
than γ, then one can move them to the left towards T and U , and it is impossible during this
movement to meet unipotents with opposite roots. This means that it is possible to move all
unipotents with positive roots that are located to the right of t, to the left of t. Therefore t and

hβ

(
1

1−s
−β

)
will not be changed. After that, gxβ(1) will be written in the form of UTV , that is

t = t · hβ

(
1

1− s−β

)
,

hence s−β = 0.
Therefore any new xβ(·) cannot appear from the left-hand or right-hand part of t in gxβ(1).

Consequently, in the expression txβ(1) = xβ(c
β
t − 1) we necessarily have cβt = 1, that is

[t, xβ(1)] = 1.

If β ∈ Γα ∩ Φ+ and γ = β − α ∈ Φ, then

g = gxβ(1) = u′tx−αm
(sm)

xβ(1) . . . x−αi
(si)

xβ(1) . . . x−γ(sγ)
xβ(1) . . . x−α1

(s1) =

= u′tx−αm
(sm)x−αm+β(±sm) . . . x−αi

(si)x−αi+β(±si) . . . x−γ(s−γ)xα(±s−γ) . . . x−α1
(s1).

In the part V a new element xα(±s−γ) appeared, and it is impossible to obtain xα(·) from any
other conjugation xδ(·)xβ(1). When we move xα(±s−γ) and other x−δ+β(·), −δ+β ∈ Φ+, to the
left side, we also cannot obtain any new xα(·). Therefore s−γ = 0.
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So we see that s−γ = 0 for all roots γ ∈ Φ+ such that α + γ /∈ Φ, and for all roots γ ∈ Φ+

such that α+ γ ∈ Φ, but α+2γ /∈ Φ. But for simply laced root systems all positive roots have
one of these properties.

Therefore g ∈ UT and we come to the situation of Lemma 10, which was proved for arbitrary
commutative rings. By this lemma g = cxα1

(r1), where c ∈ Z(G). Consequently, Theorem 3 is
proved for the root systems Al,Dl,El, l > 2.

Case 2. The root system G2.
Let us repeat that this root system has simple roots α, β, positive roots α, β, α + β, α +

2β, α+ 3β, 2α+ 3β,

Γα = {xα(1), xα+β(1), xα+2β(1), x2α+3β(1), x−β(1), x−α−2β(1), x−α−3β(1)}

and
Γβ = {xβ(1), xα+3β(1), x2α+3β(1), x−α(1), x−2α−3β(1)}.

In the first case g ∈ C(Γα) by the same arguments as in the previous case

s−α = s−α−β = s−α−2β = s−2α−3β = rβ = rα+2β = rα+3β = 0 and t ∈ Z(G),

therefore

g = xα(rα)xα+β(rα+β)x2α+3β(r2α+3β)tx−β(s−β)x−α−3β(s−α−3β), t ∈ Z(G).

Conjugating g by x2α+3β(1), we have

gx2α+3β(1) = xα(rα)xα+β(rα+β)x2α+3β(r2α+3β)tx−β(s−β)x−α−3β(s−α−3β)xα(±s−α−3β),

therefore s−α−3β = 0 and

g = xα(rα)xα+β(rα+β)x2α+3β(r2α+3β)tx−β(s−β), t ∈ Z(G).

Conjugating g by x−β(1), we have

gx−β(1) = xα(rα)xα(±3rα+β)xα+β(rα+β)x2α+3β(r2α+3β)tx−β(s−β),

therefore 3rα+β = 0.
Conjugating g by xα+2β(1), we have

gxα+2β(1) =

= xα(rα)xα+β(rα+β)x2α+3β(r2α+3β ± 3rα+β)tx2α+3β(±3s−β)xα(±3s2−β)xα+β(±2s−β)x−β(s−β) =

= xα(rα ± 3s2−β)xα+β(rα+β ± 2s−β)x2α+3β(r2α+3β ± 3rα+β ± 3s−β)txβ
(s−β),

since 3rα+β = 0, we have 2s−β = 3s−β = 0, so s−β = 0.
Now g ∈ UT and our result follows from Lemma 9.

In the second case g ∈ C(Γβ) we have

s−β = s−α−3β = s−2α−3β = rα = r2α+3β = 0 and t ∈ Z(G),

therefore

g = xβ(rβ)xα+β(rα+β)xα+2β(rα+2β)xα+3β(rα+3β)tx−α(s−α)x−α−β(s−α−β)x−α−2β(s−α−2β).

Conjugating g by x−α(1), we have

gx−α(1) = xβ(rβ)(xα+β(rα+β)xβ(±rα+β)xα+2β(±r2α+β)x2α+3β(±r3α+β)xα+3β(r
3
α+3β))·

· xα+2β(rα+2β)xα+3β(rα+3β)tx−α(s−α)x−α−β(s−α−β)x−α−2β(s−α−2β),
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therefore rα+β = 0.
In a similar way if we conjugate g by xα+3β(1), we obtain s−α−2β = 0.
Therefore on this stage

g = xβ(rβ)xα+2β(rα+2β)xα+3β(rα+3β)tx−α(s−α)x−α−β(s−α−β).

Conjugating now g by x2α+3β(1), we have

gx2α+3β(1) = xβ(rβ)xα+2β(rα+2β)xα+3β(rα+3β)t(xα+3β(±s−α)x−α(s−α))·

· (x−α−β(s−α−β)xα+2β(±s−α−β)xβ(±s2−α−β)x−α(±s3−α−β)xα+3β(±s3−α−β)),

therefore s−α = s−α−β = 0 and g = xβ(rβ)xα+2β(rα+2β)xα+3β(rα+3β)t.
Now again g ∈ UT and the result if Theorem 3 follows from Lemma 9.

Case 3. The root systems Bl, l > 3, and F4.
We remember that Bl consists of the roots {±ei,±ei± ej | 1 6 i, j 6 l, i 6= j}. If α is a long

root e1 − e2, then

Γα = {xe1±e2(1), x−e1−e2(1), xe1±ei(1), x−e2±ei(1), x±ei±ej (1), xe1(1), x−e2(1), x±ei(1)},

where 3 6 i, j 6 l, i 6= j.
Therefore by the same reasons as above

s−e1±e2 = re1+e2 = s−e1±ei = re2±ei = r±ei±ej = s−e1 = re2 = r±ei = 0, t ∈ Z(G),

where 3 6 i, j 6 l, i 6= j.
Therefore

g = xe1−e2(re1−e2) . . . xe1−el(re1−el)xe1+e3(re1+e3) . . . xe1+el(re1+el)xe1(re1)t·

· x−e2−e3(s−e2−e3) . . . x−e2−el(s−e2−el)x−e2+e3(s−e2+e3) . . . x−e2+el(s−e2+el)x−e2(s−e2).

Conjugating g by x−e2+ei(1), we have

gx−e2+ei
(1) = xe1−e2(re1−e2) . . . (xe1−ei(re1−ei)xe1−e2(±re1−ei)) . . .

. . . xe1−el(re1−el)xe1+e3(re1+e3) . . . xe1+el(re1+el)xe1(re1)t·

· x−e2−e3(s−e2−e3) . . . x−e2−el(s−e2−el)x−e2+e3(s−e2+e3) . . . x−e2+el(s−e2+el)x−e2(s−e2),

therefore for all 3 6 i 6 l we have re1−ei = 0.
Conjugating g by x−e2−ei(1), we similarly obtain re1+ei = 0 for all 3 6 i 6 l.
So we see that

g = xe1−e2(re1−e2)xe1(re1)t·

· x−e2−e3(s−e2−e3) . . . x−e2−el(s−e2−el)x−e2+e3(s−e2+e3) . . . x−e2+el(s−e2+el)x−e2(s−e2).

The case when we conjugate g by xe1+ei(1) and then by xe1−ei(1) for 3 6 i 6 l is treated in the
very similar way. We drop the corresponding calculations. We obtain

g = xe1−e2(re1−e2)xe1(re1)tx−e2(s−e2).

Conjugating g by x−e1−e2(1), we obtain re1 = 0, and conjugating g by xe1+e2(1), we obtain
s−e2 = 0, what was required.

It was the case Bl, l >, where α is a long root. Now let us suppose that α is short, for
example, α = e1.
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In this case

Γα = {xe1(1), xe1±ei(1), x±ei±ej(1)}, where 2 6 i, j 6 l, i 6= j.

Therefore
s−e1 = s−e1±ei = r±ei±ej = 0 for 2 6 i, j 6 l, i 6= j

and

g = xe1(re1) . . . xel(rel)xe1−e2(re1−e2) . . . xe1−el(re1−el)xe1+e2(re1+e2) . . . xe1+el(re1+el)t·

· x−e2(s−e2) . . . x−el(s−el).

Conjugating g by xe2−ei(1), we obtain

gxe2−ei
(1) = xe1(re1) . . . (xei(rei)xe2(±rei)xe2+ei(±rei)

2) . . . xel(rel)·

· (xe1−e2(re1−e2)xe1−ei(±re1−e2)) . . . xe1−el(re1−el)xe1+e2(re1+e2) . . .

. . . (xe1+ei(re1+ei)xe1+e2(±re1+ei)) . . . xe1+el(re1+el)t·

· (x−e2(s−e2)x−ei(±s−e2)x−e2−ei(±s2−e2
)) . . . x−el(s−el),

which directly implies

rei = re1−e2 = re1+ei = s−e2 = 0 for all 3 6 i 6 l.

Conjugating g by xe2+ei(1) we similarly obtain

re1−ei = s−ei = 0 for all 3 6 i 6 l.

Therefore
g = xe1(re1)xe2(re2)xe1+e2(re1+e2)t.

Conjugating g now by xe3−e2(1), we obtain

gxe3−e2
(1) = xe1(re1)(xe2(re2)xe3(±re2)xe2+e3(±r2e2)) · (xe1+e2(re1+e2)xe1+e3(±re1+e2)) · t,

therefore g = xe1(re1)t, t ∈ Z(G), what was required.

The case Φ = F4 is treated in the very similar way. We drop the corresponding calculations

4. The case Φ = Cl, l > 2, α is long. Let (as above)

Φ = {±ei ± ej,±2ei | 1 6 i, j 6 l, i 6= j}, α = 2e1.

Then
Γα = {x2e1(1), x±2ei(1), xe1±ei(1), x±ei±ej(1)}, where 2 6 i, j 6 l, i 6= j.

Therefore in g
s−2e1 = r2ei = s−2ei = s−e1±ei = r±ei±ej = 0, t ∈ Z(G)

and
g = x2e1(r2e1)xe1−e2(re1−e2) . . . xe1−el(re1−el)xe1+e2(re1+e2) . . . xe1+el(re1+el)t,

i. e. g is the same as in Lemma 12 and by the same argument g = x2e1(r2e1)t, t ∈ Z(G).

5. The case Φ = Cl, l > 2, α is short.
We suppose that α = e1 + e2. Then

Γα = {x2e1(1), x2e2(1), x±2ei(1), xe1±ei(1), xe2±ei(1), x±ei±ej(1)}, where 3 6 i, j 6 l, i 6= j,

therefore in g

s−2e1 = s−2e2 = r2ei = s−2ei = s−e1±ei = s−e2±ei = r±ei±ej = 0, t ∈ Z(G),
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therefore g ∈ UT and the same Lemma 12 completes the proof. �

4.4. Double centralizers of unipotent elements in Chevalley groups over arbitrary

commutative rings.

Finally we are able to prove the same theorem for arbitrary commutative rings with unity.

Theorem 3. For any Chevalley group (or its large subgroup) G = Gπ(Φ, R), where Φ is an
irreducible root system of a rank > 1, R is an arbitrary commutative ring with 1, if for some
α ∈ Φ an element g ∈ CG(Γα), then g = cxα(t), where t ∈ R, c ∈ Z(G), except the case
Φ = Cl, l > 2, and α is short.

In the case Φ = Cl = {±ei ± ej | 1 6 i, j 6 l, i 6= j} ∪ {±2ei | 1 6 i 6 l} and α = e1 + e2 if
g ∈ CG(Γα), then

g = cxe1+e2(t1)x2e1(t2)x2e2(t3), c ∈ Z(G).

Proof. We embed our ring R in the Cartesian product of all its localizations by maximal
ideals:

R ⊂ R̃ =
∏

m is a maximal ideal of R

Rm.

Respectively the Chevalley group G = Gπ(Φ, R) is naturally embedded into the Chevalley
group

G̃ = Gπ(Φ, R̃) =
∏

m is a maximal ideal of R

Gπ(Φ, Rm).

Suppose that some g ∈ G commute with all elements of the set Γα. Since G ⊂ G̃, we have
g ∈

∏
mGπ(Φ, Rm) and we can represent g as g = (gm)m∈M, gm ∈ Gπ(Φ, Rm), where M is the

set of all maximal ideals of R.
Since for any different maximal ideals m1 and m2 if x = (xm)m∈M, where xm = eRm

for all
m 6= m1 and y = (ym)m∈M, where ym = eRm

for all m 6= m2, these x and y commute, then
[g,Γα] = 1 implies

∀m ∈ M ∀β ∈ Γα [gm, xβ(1Rm
)] = eGm

.

Therefore if g belongs to the centralizer of the set Γα in the whole Chevalley group G̃, then
each its component gm belongs to the centralizer of the corresponding set

Γα,m = {xβ(1Rm
) | [xβ(1Rm

), xα(1Rm
)] = e}.

Since all Rm are local rings, from the previous section we see that

∀m ∈ M gm = xα(tm) · Cm, where tm ∈ Rm and Cm ∈ Z(Gπ(Φ, Rm))

(or in the case Cl, l > 2,

∀m ∈ M gm = xe1+e2(tm)x2e1(rm)xe2(sm) · Cm, where tm, rm, sm ∈ Rm and Cm ∈ Z(Gπ(Φ, Rm)).

It means that

g = (xα(tm) · Cm)m∈M = xα(t) · C, where t ∈ R̃ and C ∈ Z(G̃)

(or in the case Cl, l > 2,

g = (xe1+e2(tm)x2e1(rm)xe2(sm)·Cm)m∈M = xe1+e2(t)xe1(r)x2e2(s)·C, where t, r, s ∈ R̃ and C ∈ Z(G̃)

The theorem is completely proved. �
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5. Diophantine structure in large subgroups of Chevalley groups Gπ(Φ, R)

In this section we show that many important subgroups of the Chevalley groups are Dio-
phantine. We freely use notation from Preliminaries.

5.1. One-parametric subgroups Xα are Diophantine in large subgroups of Gπ(Φ, R).
We start with the following key result.

Proposition 3. Let G be a large subgroup of Gπ(Φ, R), where Φ is indecomposable root system
of the rank ℓ > 1, Φ 6= C2, R is an arbitrary commutative rings with 1. Then for any root
α ∈ Φ the subgroup Xα is Diophantine in G (defined with constants x = {xβ(1) | β ∈ Φ}).

Proof. By the Theorem 3 for all root systems except Cℓ, ℓ > 2, for any α ∈ Φ we have

CG(Γα) = Xα · Z(G),

where Z(G) is the center of the group G.
In all root systems Φ 6= Cℓ of the rank > 1 there exist two roots α and β forming together

the basis of the root system A2.
Therefore,

Xα+β = [CG(Γα), xβ(1)],

so the subgroup Xα+β is Diophantine in G.

1. Roots systems Aℓ,Dℓ,Eℓ,F4. Since all roots of the same length are conjugated up to
action of the group W , we proved now that for the root systems Aℓ,Dℓ,Eℓ,F4 all subgroups
Xα, α ∈ Φ, are Diophantine in G; for the root systems G2 and Bℓ, ℓ > 3, the subgroups Xα,
α is long, are Diophantine in G.

2. Roots system G2. In the case Φ = G2 all Chevalley groups are adjoint, therefore their
centers are always trivial (see [4]). So for G2 we have CG(Γα) = Xα for all α ∈ Φ.

3. Roots systems Bℓ, ℓ > 3. For the case Bℓ, ℓ > 3, we already proved that all Xα for
long roots α and all XβZ(G) for short roots β are Diophantine in G. Let us take two roots
α, β ∈ Φ, where α is long, β is short and they form the system B2.

Since
[xα(t), xβ(1)] = xα+β(±t)xα+2β(±t), α + β is short, α + 2β is long,

let w ∈ W be such that w(α) = α + 2β, let for the sake of certainty both signs are +, then

Xα+βZ(G) ∩ [Xα, xβ(1)] ·Xα+2β

is precisely Xα+β . Therefore Xα+β and then Xβ are Diophantine in G as intersection of two
Diophantine sets.

4. Roots systems Cℓ, ℓ > 3. Now we only need to prove our statement for the root system
Φ = Cℓ, ℓ > 3. In this system

CG(Γe1−e2) = Xe1−e2X2e1X−2e2C,

and
[xe1−e2(t)x2e1(r)x−2e2(s)c, xe2−e3(1)] = xe1−e3(t)x−e2−e3(s)x−2e3(s),

after that
[xe1−e3(t)x−e2−e3(s)x−2e3(s), xe1+e2(1)] = xe1−e3(s),
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therefore
[[CG(Γe1−e2), xe2−e3(1)], xe1+e2(1)] = Xe1−e3 ,

therefore Xα for any short α ∈ Φ is Diophantine in G.
Now we know that Xα ·Z(G) for any long α ∈ Φ and Xβ for any short β ∈ Φ are Diophantine

in G. Let us again take two roots α, β ∈ Φ, where α is long, β is short and they form the system
C2 = B2. Then the set

Xα+2β = Xα+2βZ(G) ∩ [XαZ(G), xβ(1)] ·Xα+β

is Diophantine in G as the intersection of two Diophantine sets. �

Proposition 4. Let G be a large subgroup of Gπ(C2, R), C2 = {±e1 ± e2,±2e1,±2e2}, where
R is an arbitrary commutative ring with 1 and either π = ad or 1/2 ∈ R. Then for every
γ ∈ Φ the subgroup Xγ is Diophantine in G.

Proof. Case 1. If our Chevalley group is adjoint (π = ad ), then its center is trivial. For any
long root γ ∈ Φ we know that Xγ = XγZ(G) = CG(Γγ) is Diophantine in G.

Let
[x2e1(t), xe2−e1(u)] = xe1+e2(±tu)x2e2(±tu2),

for example
[x2e1(t), xe2−e1(u)] = xe1+e2(tu)x2e2(tu

2).

Suppose also that for w ∈ W we have w(2e1) = 2e2. Then

Xe1+e2 = {[y, xe2−e1(1)] · wy
−1w−1 | y ∈ X2e1}.

Therefore Xγ are Diophantine in G for all short roots γ ∈ Φ.

Case 2. Let us suppose that 1/2 ∈ R. As above we will use that for any long root γ ∈ Φ
the set XγZ(G) is Diophantine in G. According to the previous case it is evident that the set
XγZ(G) is Diophantine in G also for any short root. Then using the relation

[xe1+e2(t), xe2−e1(u)] = x2e2(±2tu).

we have
[Xe1+e2Z(G), xe2−e1(1/2)] = X2e2 ,

therefore Xγ is Diophantine in G for any long γ, and as in the case 1 for any short root γ. �
In the case C2, π = sc, 1/2 /∈ R we need the special auxiliary set Y to be Diophantine.

Proposition 5. Let G be a large subgroup of Gsc(C2, R), where R is an arbitrary commutative
rings without 1/2. Then the subgroup Ye1+e2 = {xe1+e2(t)x2e2(t) | t ∈ R} is Diophantine in G.

Proof. In the case C2 we know that

CG(Γ±2ei) = X±2eiC, i = 1, 2, C = Z(G)

and
CG(Γ±e1±e2) = X±e1±e2X±2e1X±2e2C, C = Z(G).

Also we remember

[x2e1(t), xe2−e1(u)] = xe1+e2(±tu)x2e2(±tu2),

[xe1+e2(t), xe2−e1(u)] = x2e2(±2tu).

Therefore
[CG(Γ2e1), xe2−e1(1)] = Ye1+e2.
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5.2. E-interpretability of Chevalley groups.

Theorem 4. Let G be a large subgroup of a Chevalley group Gπ(Φ, R), where Φ is indecom-
posable root system of the rank ℓ > 1, R is an arbitrary commutative rings with 1. Then the
ring R is e-interpretable in G (using constants from the set CΦ = {xα(1) | α ∈ Φ}) on every
Xα, α ∈ Φ, except the case G = Gsc(C2, R), 1/2 /∈ R, where R is e-interpretable in G on the
set Yα from Proposition 5.

Proof. There are four cases to consider:
— roots included in the system A2,
— short roots of the system G2,
— roots included in the system B2/C2, where all Xα are Diophantine,
— and C2 with the sets Yα.

Case 1. Suppose that we have a root system A2 = 〈α, β〉 and we want to interpret the
ring R on Xα+β . We will turn the set Xα+β into a ring 〈Xα+β,⊕,⊗〉 as follows.

For x, y ∈ Xα+β we define

x⊕ y = x · y.

Note that if x = xα+β(a), y = xα+β(b), then xy = xα+β(a + b), which corresponds to the
addition in R.

To define x⊗ y for given x, y ∈ Xα+β we need some notation. Let x1, y1 ∈ G be such that

x1 ∈ Xα and [x1, xβ(1)] = x; y1 ∈ Xβ and [xα(1), y1] = y.

Note that such x1, y1 always exist and unique, if x = xα+β(a), y = xα+β(b), then x1 = xα(a),
y1 = xβ(b). Now define

x⊗ y := [x1, y1].

Observe, that in this case

[x1, y1] = [xα(a), xβ(b)] = xα+β(ab).

so corresponds to the multiplication in R. To finish the proof we need two claims.
Claim 1. The map a 7→ xα+β(a) gives rise to a ring isomorphism R → 〈Xα+β,⊕,⊗〉.
This is clear from the argument above.
Claim 2. The ring 〈Xα+β,⊕,⊗〉 is e-interpretable in G.
To see this, observe first that, as was mentioned above, Xα+β is Diophantine in G. The

defined addition is clearly Diophantine in G. Since the subgroups Xα and Xβ are Diophantine
in G the multiplication ⊗ is also Diophantine in G. This proves the case 1.

Case 2. Suppose that we want to interpret a ring R on some short root of the system G2.
Since long roots of G2 form the subsystem A2, then the ring R is already interpreted on all Xα

for long roots α and it is sufficient to find a Diophantine isomorphism µ : Xα → Xα+β , where
α is long and β is short.

We will use the relation

[xα(t), xβ(u)] = xα+β(tu)xα+3β(−tu3)xα+2β(−tu2)x2α+3β(t
2u3),

that shows

xα+β(t) = µ(xα(t)) = Xα+β ∩ [xα(t), xβ(1)]X2α+3βXα+3βXα+2β .
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Since µ is Diophantine, and R is e-interpretable in G on Xα, then R is e-interpretable in G also
on Xα+β and therefore on all Xγ for all roots.

Case 3. Now let us consider the root system C2, where all Xγ, γ ∈ Φ, are Diophantine.
Of course, for x, y ∈ Xγ we define

x⊕ y = x · y

and it is equivalent to addition in R for any root γ ∈ Φ.

To define x⊗ y for given x, y ∈ Xγ we will start with defining an isomorphism µ between Xα

and Xα+β, where α is long, β and α + β are short, with µ(xα(t)) = xα+β(t).
This isomorphism µ can be determined for example by

xα+β(t) = µ(xα(t)) = Xα+β ∩ [xα(t), xβ(1)] ·Xα+2β .

Now when µ is defined it is evidently sufficient to define the operation ⊗ only for one Xγ .
We will do it for γ = α + β = e1 + e2.

Let x, y ∈ Xα+β and x1 ∈ Xα be defined as µ−1(x), y2 ∈ Xβ be yw
−1
e1 . Then we will define

x⊗ y as
x⊗ y = Xα+β ∩ [x1, y2] ·Xα+2β.

If x = xα+β(a), then x1 = xα(a); if y = xα+β(b), then y2 = xβ(b). In this case [x1, y2] =
xα+β(ab) · xα+2β(±ab2) and

Xα+β ∩ xα+β(ab) · xα+2β(±ab2) ·Xα+2β = xα+β(ab).

Therefore the ring 〈Xα+β,⊕,⊗〉 ∼= R is e-interpretable in G.

Case 4. If Φ = C2 and the sets Xα are not Diophantine in G, then by Proposition 5 the
subgroup Ye1+e2 = {xe1+e2(t)x2e2(t) | t ∈ R} is Diophantine in G.

We e-interpret R on Ye1+e2 turning it into a ring 〈Ye1+e2,⊕,⊗〉 as follows.
For x, y ∈ Ye1+e2 we define

x⊕ y = x · y.

Note that if x = xe1+e2(a)x2e2(a), y = xe1+e2(b)x2e2(b), then

xy = xe1+e2(a)x2e2(a)xe1+e2(b)x2e2(b) = (xe1+e2(a)xe1+e2(b))(x2e2(a)x2e2(b)) = xe1+e2(a+b)x2e2(a+b),

which corresponds to the addition in R.
To define x⊗ y for given x, y ∈ Ye1+e2 we need to use several tricks.
First, let x1 ∈ G be such that

x1 ∈ X2e1C = C(Γ2e1) and [x1, xe2−e1(1)] = x.

Note that if x = xe1+e2(a)x2e2(a), then necessarily x1 = x2e1(a)c, c ∈ Z(G).
Second, let y2 be

yw2e1
(1) = x

w2e1
(e1+e2)(b)xw2e1

(2e2)(b) = xe2−e1(b)x2e2(b).

We see that

[x1, y2] = [x2e1(a), xe2−e1(b)x2e2(b)] = [x2e1(a), xe2−e1(b)] = xe2+e1(ab)x2e2(ab
2).

If we set
x⊗ y := ([x1, y1]C(Γ2e2) ∩ Ye1+e2) = xe1+e2(ab)x2e2(ab),

since [x1, y1]C(Γ2e2) = xe2+e1(ab)x2e2(t)c, t ∈ R, c ∈ Z(G).
Therefore the case 4 is also complete. �
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Now we prove the converse of Theorem 4. The result, we believe, is known in folklore.

Proposition 6. All Chevalley groups Gπ(Φ, R), where R is an arbitrary commutative ring are
all e-interpretable in R (not using constants from R other then integers).

Proof. We represent an n × n-matrix x = (xij) with entries in R by an n2-tuple x over R,
where

x = (x11, . . . , x1n, x21, . . . , xn1, . . . , xnn).

The matrix multiplication ⊗ on tuples from Rn2

is defined by

x⊗ y = z ⇐⇒
n∧

i,j=1

zij = Pij(x, y),

where Pij(x; y) is integer polynomial
n∑

k=1

xikykj. The multiplication ⊗ is clearly Diophantine.

To finish the description of the interpretations of the groups Gπ(Φ, R) in R it suffices to define

the corresponding subsets of Rn2

by Diophantine formulas.
But it is so by definition of Chevalley groups, which are all defined by finite system of

polynomial equations with integer coefficients. �
We are not able to show that the elementary Chevalley group Eπ(Φ, R) is e-interpretable

in R for any commutative ring R.
However, the following holds.

Theorem 5. If an elementary Chevalley group Eπ(Φ, R) has bounded elementary generation,
then Eπ(Φ, R) is e-interpretable in R.

6. Diophantine problem in Chevalley groups

In this section we study Diophantine problem in Chevalley groups over rings. Our arguments
are often similar to the corresponding ones for classical linear groups from [77], so we either
state the results without proofs and refer the reader to [77] or give a short sketch of the proof.

6.1. General reductions. We consider here the Diophantine problems of the typeDC(Gπ(Φ, R)),
where C is a countable subset of Gπ(Φ, R) equipped with an enumeration ν : N → C. Denote
by RC the set of all elements of R that occur in matrices from C. The enumeration ν gives rise
to an enumeration µ : N → RC , where to construct µ it suffices to enumerate matrices in C
with respect to ν, for each matrix ν(n) enumerate its entries in some fixed order, and combine
all these into an enumeration µ.

Now we can prove the main result of the paper.

Theorem 6. If Φ is an indecomposable root system of a rank > 1, R is an arbitrary commutative
ring with 1, then the Diophantine problem in any Chevalley group Gπ(Φ, R) is Karp equivalent
to the Diophantine problem in R. More precisely:

1) If C is a countable subset of Gπ(Φ, R) then DC(Gπ(Φ, R)) Karp reduces to DRC
(R).

2) If T is a countable subset of R then there is a countable subset CT of Gπ(Φ, R) such
that DT (R) Karp reduces to DCT

(Gπ(Φ, R)).

Proof. 1) follows directly from Proposition 6 (see Lemma 7.1 from [77]). 2) comes from
Theorem 4. �
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Theorem 7. Let Φ be an indecomposable root system of a rank > 1 and R an arbitrary com-
mutative ring with 1. If the elementary Chevalley group Eπ(Φ, R) has bounded elementary
generation, then the Diophantine problem in Eπ(Φ, R) is Karp equivalent to the Diophantine
problem in R.

Proof. The result follows from Theorem 5. �

6.2. Diophantine problem in Chevalley groups over rings of algebraic integers and

number fields. By a number field F we mean a finite algebraic extension of Q. The ring of
algebraic integers OF of a number field F is the subring of F consisting of all roots of monic
polynomials with integer coefficients.

It is a classical result that the Diophantine problem in Z is undecidable [75].

Theorem 8 (compare with Theorem 7.2 from [77]). If Φ is a indecomposable root system of a
rank > 1, then the Diophantine problem in all Chevalley groups Gπ(Φ,Z) is Karp equivalent to
the Diophantine problem in Z, in particular, it is undecidable.

The following is one of the major conjectures in number theory.

Conjecture 1. The Diophantine problem in Q, as well as in any number field F , or any ring
of algebraic integers O, is undecidable.

For Q and any its finite extension F the conjecture above is wide open. However, for the
rings of algebraic integers OF of the fields F there are results where the undecidability of
the Diophantine problem is confirmed. Namely, it is known that Z is Diophantine in OF if
[F : Q] = 2 or F is totally real [33, 35], or [F : Q] > 3 and F has exactly two nonreal
embeddings into the field of complex numbers [84], or F is an Abelian number field [96]. We
refer to two surveys and a book [83, 85, 95] for details on this matter.

The following result moves the Diophantine problem in Chevalley groups over number fields
or rings of algebraic integers from group theory to number theory.

Theorem 9. Let Φ be an indecomposable root system of a rank > 1 and R either a number field
or a ring of algebraic integers. Then Conjecture 1 holds for R if and only if the Diophantine
problem in the Chevalley group Gπ(Φ, R) is undecidable.

6.3. Diophantine problem in Chevalley groups over finitely generated commutative

rings. To move forward we need to recall some definitions.
The characteristic of a ring with multiplicative identity (i.e. a unitary ring) is the minimum

positive integer n such that 1 + n. . . + 1 = 0. By rank of a ring R we refer to the rank of R
seen as an abelian group (i.e. forgetting its multiplication operation): that is, the maximum
number m of nonzero elements r1, . . . , rm ∈ R such that whenever a1r1 + · · · + amrm = 0 for
some integers r1, . . . , rm, we have riai = 0 for all i = 1, . . . , m. If R is an integral domain, then
its rank coincides with its dimension as a Fp-vector space if R has positive characteristic p, and
otherwise it coincides with the dimension of R seen as a Z-module.

The following result from [47] describes the current state of the Diophantine problem in
finitely generated commutative rings. Note that in [33, 34] Denef showed that the Diophantine
problems in polynomial rings with coefficients in integral domains are undecidable.

Theorem 10 ([47]). Let R be an infinite finitely generated associative commutative unitary
ring. Then one of the following holds:
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(1) If R has positive characteristic n > 0, then the ring of polynomials Fp[t] is e-interpretable
in R for some transcendental element t and some prime integer p; and D(R) is unde-
cidable.

(2) If R has zero characteristic and it has infinite rank then the same conclusions as above
hold: the ring of polynomials Fp[t] is e-interpretable in R for some t and p; and D(R)
is undecidable.

(3) If R has zero characteristic and it has finite rank then a ring of algebraic integers O is
e-interpretable in R.

This together with Theorem 6 implies the following result which completely clarifies the
situation with the Diophantine problem in Chevalley groups over infinite finitely generated
commutative unitary rings.

Theorem 11. Let Φ be an indecomposable root system of a rank > 1, R is an arbitrary infinite
finitely generated commutative ring with 1, and Gπ(Φ, R) the corresponding Chevalley group.
Then:

1) If R has positive characteristic then the Diophantine problem in Gπ(Φ, R) is undecidable.
2) If R has zero characteristic and it has infinite rank then the Diophantine problem in

Gπ(Φ, R) is undecidable.
3) If R has zero characteristic and it has finite rank then the Diophantine problem in some

ring of algebraic integers O is Karp reducible to the Diophantine problem in Gπ(Φ, R).
Hence if Conjecture 1 holds then the Diophantine problem in Gπ(Φ, R) is undecidable.

6.4. Diophantine problem in Chevalley groups over algebraically closed fields. Let
R be an algebraically closed field. We need the following known results about R (see [77] for
details and references).

1) If A is a computable subfield of R then the first-order theory ThA(R) of R with constants
from A in the language is decidable. In particular, the Diophantine problem DA(R) is
decidable.

2) If A is a computable subfield of R then the algebraic closure Ā of A in R is computable.

Theorem 12. Let Φ be an indecomposable root system of a rank > 1, R an algebraically closed
field, and Gπ(Φ, R) the corresponding Chevalley group. If A is a computable subfield of R, then
the Diophantine problem in Gπ(Φ, R) with constants from Gπ(Φ, A) is decidable (under a proper
enumeration of Gπ(Φ, A)).

6.5. Diophantine problem in Chevalley groups over reals. Let R = R be the field of
real numbers and A a countable (or finite) subset of R.

Our treatment of the Diophantine problem in Chevalley groups over R is based on the
following two results on the Diophantine problem in R which are known in the folklore. For
details we refer to [77].

Proposition 7 ([77], Proposition 7.4). Let A be a finite or countable subset of R. Then the
Diophantine problem in R with coefficients in A is decidable if and only if the ordered subfield
F (A) is computable. Furthermore, in this case the whole first-order theory ThA(R) is decidable.

Recall that a real a ∈ R is computable if its standard decimal expansion a = a0.a1a2 . . . is
computable, i.e., the integer function n 7→ an is computable. In other words, a is computable
if and only if one can effectively approximate it by rationals with any precision. The set of all
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computable reals Rc forms a real closed subfield of R, in particular Rc is first-order equivalent
to R.

In the following Proposition we collect some facts about computable ordered subfields of R.

Proposition 8 ([77], Proposition 7.5). The following holds:

1) Every ordered computable subfield of R is contained in Rc.
2) The ordered subfield Rc ≤ R with the induced order from R is not computable.
3) If F is a computable ordered field, then its real closure is also computable. In particular,

if F is a computable subfield of R then the algebraic closure F̄ of F in R is a computable
ordered field.

4) If a1, . . . , am are computable reals then the ordered subfield Q(a1, . . . , am) ≤ R with the
induced order from R is computable.

Corollary 3. The following holds:

• The Diophantine problem in R with coefficients in Rc is undecidable;
• The Diophantine problem in R with coefficients in any finite subset of Rc is decidable;
• The Diophantine problem in R with coefficients in {a}, where a is not computable, is
undecidable.

Recall that a matrix A ∈ GL n(R) is called computable if all entries in A are computable real
numbers.

Chevalley groups Gπ(Φ,R) are matrix algebraic groups over R, hence one can view their
elements as matrices

Theorem 13. Let Φ be an indecomposable root system of a rank > 1 and Gπ(Φ,R) the Chevalley
group over the field of real numbers R. If A is a computable ordered subfield of R then the
first-order theory Th(Gπ(Φ,R)) with constants from Gπ(Φ, A) is decidable. In particular, the
Diophantine problem in Gπ(Φ,R) with constants from Gπ(Φ, A) is decidable (under a proper
enumeration of Gπ(Φ, A)).

Theorem 14. Let Φ be an indecomposable root system of a rank > 1 and Gπ(Φ,R
c) the Cheval-

ley group over the field of computable real numbers Rc. Then the following holds:

1) The Diophantine problem in the computable group Gπ(Φ,R
c) is undecidable.

2) For any finitely generated subgroup C of Gπ(Φ,R
c) the Diophantine problem in Gπ(Φ,R

c)
with coefficients in C is decidable.

We say that a matrix A ∈ GL n(R) is computable if all entries in A are computable reals,
i.e., A ∈ GL n(R

c). Hence the computable matrices in SL n(R) are precisely the matrices
from SL n(R

c). Since elements of a Chevalley group Gπ(Φ,R) are represented by matrices from
SL n(R) we say that an element g ∈ Gπ(Φ,R) is computable if it is represented by a computable
matrix from SL n(R

c).

Theorem 15. Let Φ be an indecomposable root system of a rank > 1 and Gπ(Φ,R) is the
corresponding Chevalley group over the field of reals R. If an element g ∈ Eπ(Φ,R) is not
computable then the Diophantine problem for equations with coefficients in {xα(1) | α ∈ Φ}∪{g}
is undecidable in any large subgroup of Gπ(Φ,R).

6.6. Diophantine problem in Chevalley groups over p-adic numbers. Similar to the
case of reals one can define computable p-adic numbers for every fixed prime p. Recall, that
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every p-adic number a ∈ Qp has a unique presentation in the form a = pmξ, where m ∈ Z and ξ
is a unit in the ring Zp. In its turn, the unit ξ is uniquely determined by a sequence of natural
numbers {ξ(i)}i∈N, where

0 ≤ ξ(i) < pi+1, ξ(i+ 1) = ξ(i)( mod pi+1), (i ∈ N).

The p-adic number a = pmξ is computable if the sequence i → ξ(i) is computable. In this
case the sequence {ξ(i)}i∈N gives an effective p-adic approximation of ξ. It is known (see, for
example [76]), that the set Qc

p of all computable p-adic numbers forms a subfield of Qp, such
that Qp ≡ Qc

p. Observe also that the ring Zp is Diophantine in Qp. More precisely, if p 6= 2,

then Zp is defined in Qp by formula ∃y(1 + px2 = y2), while if p = 2 then Zp is defined by the
formula ∃y(1 + 2x3 = y3) (see [41]).

The following results were shown in [76]:

a) Th(Zp, a1, . . . , an) is decidable if and only if each of a1, . . . , an is a computable p-adic
number.

b) Th(Qp, a1, . . . , an) is decidable if and only if each of a1, . . . , an is a computable p-adic
number.

c) If a p-adic integer a is not computable then equations with constants from Q ∪ {a} are
undecidable in Zp.

d) If a p-adic number a ∈ Qp is not computable then equations with constants from Q∪{a}
are undecidable in Qp.

Theorem 16. Let Φ be an indecomposable root system of a rank > 1. Then the following holds:

1) Let a1, . . . , am ∈ Qc
p and A = Q(a1, . . . , am) is the subfield of Qp generated by a1, . . . , am.

Then the first-order theory Th(Gπ(Φ,Qp)) with constants from Gπ(Φ, A) is decidable.
In particular, the Diophantine problem in Gπ(Φ,Qp) with constants from Gπ(Φ, A) is
decidable (under a proper enumeration of Gπ(Φ, A)).

2) Let a1, . . . , am ∈ Zc
p and A = Z(a1, . . . , am) is the subring of Zp generated by a1, . . . , am.

Then the first-order theory Th(Gπ(Φ,Qp)) with constants from Gπ(Φ, A) is decidable.
In particular, the Diophantine problem in Gπ(Φ,Qp) with constants from Gπ(Φ, A) is
decidable (under a proper enumeration of Gπ(Φ, A)).

Proof. It follows from Theorem 6 and the results a) and b) above. �
We say that a matrix A ∈ GL n(Qp) is computable if all entries in A are computable p-adic

numbers, i.e., A ∈ GL n(Q
c
p). Hence the computable matrices in SL n(Qp) are precisely the

matrices from SL n(Q
c
p). Since elements of a Chevalley group Gπ(Φ,Qp) are represented by

matrices from SL n(Qp) we say that an element g ∈ Gπ(Φ,Qp) is computable if it is represented
by a computable matrix from SL n(Q

c
p). Similarly, we define computable elements in a Chevalley

group Gπ(Φ,Zp).

Theorem 17. Let Φ be an indecomposable root system of a rank > 1 and Gπ(Φ,Qp) (Gπ(Φ,Zp), p 6=
2) the corresponding Chevalley group over Qp (Zp). If an element g ∈ Eπ(Φ,Qp) (g ∈
Eπ(Φ,Zp), p 6= 2) is not computable then the Diophantine problem for equations with coefficients
in {xα(1) | α ∈ Φ} ∪ {g} is undecidable in any large subgroup of Gπ(Φ,Qp) (Gπ(Φ,Zp), p 6= 2).
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