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New approaches to robust, point-based
image registration
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Abstract

We consider various algorithmic solutions to image registration based on the align-
ment of a set of feature points. We present a number of enhancements to a branch-
and-bound algorithm introduced by Mount, Netanyahu, and Le Moigne (Pattern
Recognition, Vol. 32, 1999, pp. 17–38), which presented a registration algorithm
based on the partial Hausdorff distance. Our enhancements include a new distance
measure, the discrete Gaussian mismatch, and a number of improvements and
extensions to the above search algorithm. Both distance measures are robust to the
presence of outliers, that is, data points from either set that do not match any point
of the other set. We present experimental studies, which show that the new distance
measure considered can provide significant improvements over the partial Haus-
dorff distance in instances where the number of outliers is not known in advance.
These experiments also show that our other algorithmic improvements can offer
tangible improvements. We demonstrate the algorithm’s efficacy by considering
images involving different sensors and different spectral bands, both in a traditional
framework and in a multiresolution framework.

8.1 Introduction

Image registration involves the alignment of two images, called the reference
image and the input image, taken of the same scene. The objective is to determine
the transformation from some given geometric group that most nearly aligns the
input image with the reference image. Our interest in this problem stems from
its application in remote sensing, and in particular in the alignment of satellite
images of the Earth taken possibly at different times, by different sensors, and
from different spectral bands. The goal is to establish very close alignment, say
to within a fraction of a pixel. The problem is complicated by issues such as
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obscuration due to the presence of cloud cover, variations caused by time (such as
coastline changes due to tidal effects or variations in shadows at different times of
the day), and variations to surface features due to the differences in the sensors and
spectral bands. Image registration and point pattern matching are closely related
computational problems. We refer the reader to surveys by Ton and Jain (1989),
Brown (1992), and Zitová and Flusser (2003), and Alt and Guibas (1999) for further
information on the many approaches to these problems.

There are two common approaches to image registration. One approach makes
direct use of the original image data and the other is based on matching discrete
geometric feature points. Both approaches have their relative advantages and dis-
advantages. This chapter focuses on methods based on matching feature points.
Features may be extracted by a number of methods. In our experiments, we have
used a feature extraction process based on identifying relatively high-valued coef-
ficients from a wavelet decomposition of the image (Le Moigne et al., 2002). This
approach has the advantage that it can produce feature points at multiple levels of
resolution. This can be used to drive a progressive multiresolution registration algo-
rithm, which registers images at increasing levels of accuracy (Cole-Rhodes et al.,
2003; Netanyahu et al., 2004; Zavorin and Le Moigne, 2005). For the applications
we have in mind, the transformations to be considered involve two-dimensional
geometric similarities, that is, transformations resulting from the composition of
rotation, translation, and uniform scaling.

Accurate image registration (whether point-based or image-based) is a compu-
tationally expensive task, especially when large images or point sets are involved
and when the transformation space has many degrees of freedom. Hence, it is of
interest to develop algorithms that are both accurate and efficient. The formulation
that we shall consider in this chapter is based on the following characteristics,
founded on the taxonomy proposed by Brown (1992):

Input space: The images are assumed to be presented as a discrete set of two-dimensional
feature points. In our experiments, extracted feature points were based on the most
significant coefficients of a wavelet decomposition of each of the images (Le Moigne
et al., 2002).

Search space: Our software system supports affine registration transformations (allow-
ing for translation, rotation, uniform and nonunifom scaling, and shearing). All of our
experiments were conducted on a subspace consisting of similarity transformations
(allowing for translation, rotation, and uniform scaling). The user provides intervals
limiting the maximum and minimum degree of translation, rotation, and scaling.

Search strategy: Our algorithm is based on a search of the transformation space for
the optimal aligning transformation. Specifically, it employs a geometric variant of
a branch-and-bound search. See Section 8.3 for a detailed description. This is an
extension of the algorithm presented by Mount et al. (1999).
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Distance metric: We used two different robust measures as the objective function of
our search algorithm, the (directed) partial Hausdorff distance (PHD) (Huttenlocher
and Rucklidge, 1993; Huttenlocher et al., 1993) and a new smoothed version of
the symmetric difference distance called the discrete Gaussian mismatch (DGM).
Both measures are robust in that they allow for missing, as well as spurious data
points.

A large number of papers have been written on the point pattern matching
problem in the fields of computer vision, pattern recognition, and computational
geometry. It is beyond the scope of this chapter to survey the area in detail, and
so we will focus on the most relevant results. Perhaps the simplest similarity
among point sets involve the Hausdorff distance and its variants (Huttenlocher
et al., 1993; Alt et al., 1994; Chew et al., 1997; Goodrich et al., 1999). The
standard notion of Hausdorff distance is not suitable for our application, since it
requires that every point (from at least one set) have a nearby matching point in
the other set. Computing the optimal alignment of two-point sets even under the
relatively simple Hausdorff distance is computationally intensive. In an attempt to
circumvent the high complexity of point pattern matching, some researchers have
considered alignment-based algorithms. These algorithms use alignments between
small subsets of points to generate potential aligning transformations, the best of
which are then subjected to more detailed analysis. Examples of these approaches
include work in the field of image processing (Stockman et al., 1982; Goshtasby
and Stockman 1985; Goshtasby et al., 1986) and in the field of computational
geometry (Heffernan and Schirra, 1994; Goodrich et al., 1999; Gavrilov et al.,
2004; Cho and Mount, 2005; Choi and Goyal, 2006). Alignments can also be
part of a more complex algorithm. For example, Kedem and Yarmovski (1996)
presented a method for performing stereo matching under translation based on
propagation of local matches for computing good global matches.

For our applications it will be important that the distance measure be robust, in
the sense that it is insensitive to a significant number of feature points from either set
that have no matching point in the other set. Examples of a robust distance measures
include the partial Hausdorff distance (PHD) (Huttenlocher and Rucklidge, 1993;
Huttenlocher et al., 1993) and symmetric and absolute differences (Alt et al., 1996;
Hagedoorn and Veltkamp, 1999). (See Section 8.2 for definitions.)

In this chapter we discuss a number of extensions to the prior work of Mount
et al. (1999) on the problem of feature-based image registration. We have extended
the software system of theirs to include the following new elements:

New distance measure: In addition to PHD, we introduce a new distance measure,
called the discrete Gaussian mismatch (DGM), which offers a number of advantages
over PHD.
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New search algorithms: In addition to the two search algorithms introduced by Mount
et al. (1999) (pure branch-and-bound and bounded alignment), we introduce a new
search algorithm called bounded least-squares alignment. We demonstrate that in
many cases this new algorithm exhibits significantly better performance. We have
also added new variants in which the aforementioned algorithms perform their search,
and showed that these variants were considerably more efficient than those of Mount
et al. (1999).

More extensive experiments: We extend the experimental results of Mount et al.
(1999) to consider registration of satellite images arising from different platforms
and covering different spectral bands.

The rest of this chapter is organized as follows. In Section 8.2 we present the two
distance functions that will be used by our algorithm. In Section 8.3, we present
our registration algorithm. In Section 8.4 we discuss the results of our experiments
on these algorithms.

8.2 Distance measures

The point-based registration can be defined abstractly as follows: We are given
two point sets A and B. We refer to A as the input set and B as the reference set.
We are given a space T of geometric transformations, including some a-priori
limits on the range of transformations. (For example, we may limit the range of
rotations to some interval of angles.) We are also given some distance function that
measures the degree of dissimilarity of the two-point sets. The problem is to find
the transformation τ ∈ T that minimizes the distance between τ (A) and B.

There are two natural sources of error. The feature extraction process is subject
to noise, that is, small errors in the coordinates due to sensing errors and digitiza-
tion. The second source of error is the presence of outliers, that is, feature points
from either image that are not present in the other image. As mentioned in the
introduction, outliers can result from many different sources, and may constitute a
relatively large (often unknown) fraction of the feature points. Following terminol-
ogy from statistics (Rousseeuw and Leroy, 1987), we say that a distance measure
is robust if it is insensitive to the presence of outliers.

In this chapter we consider two robust distance measures. The first is the partial
Hausdorff distance (PHD) introduced by Huttenlocher and Rucklidge (1993) and
Huttenlocher et al. (1993). Consider the set of distances resulting from taking each
point in one set, and finding the nearest point to it in the other set. Rather than taking
the sum or the maximum of these distances, which may be affected by outliers, we
consider the median or, in general, the kth smallest distance. More formally, given a
set S ⊂ R, and 1 ≤ k ≤ |S|, let rankkS denote the kth smallest element of S. Given
a point set B and a point a, let dist(a, B) denote the distance from a to its closest
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point of B. Given two-point sets A and B, and an integer parameter 1 ≤ k ≤ |A|,
the directed partial Hausdorff distance of order k from A to B is defined to be

PHDk(A, B) = rankk{dist(a, B) | ∀a ∈ A}.
(Note that the standard directed Hausdorff distance arises as a special case when
k = |A|.) To avoid the dependence on the size of A, we will replace the integer
parameter k with a quantile q, where 0 < q ≤ 1 represents the fraction of inliers
of A. We then set k = �q · |A|. The resulting measure is denoted by PHDq(A, B).

One shortcoming of the PHD is the need to estimate the value of k (or q), that
is, the expected number of inliers. Since this quantity depends on characteristics
of the images (such as the degree of cloud cover) that may be unknown at the
time of registration, we introduce an alternative distance measure. This measure is
motivated by the symmetric difference of two sets, that is, the number of points
that are present in one set but not in the other. To allow for the presence of noise,
we attach a weight to the existence of a match by a function that decreases with the
distances between each point of A and its nearest neighbor of B. The user provides
a positive real parameter σ , which intuitively represents the standard deviation of
a Gaussian distribution. Each point a ∈ A is assigned a weight based on a variant
of the Gaussian distribution function applied to the distance to its nearest neighbor
of B, such that,

wσ (a) = exp

(
−dist(a, B)2

2σ 2

)
.

Note that the weight is 1 if and only if a coincides with a point of B, and (depending
on σ ) decreases to zero as the distance increases. We define the discrete Gaussian
mismatch distance (DGM) between A and B to be

DGMσ (A, B) = 1 −
∑

a∈A wσ (a)

|A| .

Observe that if every point a ∈ A coincides with some point b ∈ B, then
DGMσ (A, B) = 0, and the distance increases to a maximum value of 1 as the
degree dissimilarity between the two-point sets increases.

8.3 Framework of the registration algorithm

Our registration algorithms are based on a geometric branch-and-bound framework.
This framework has been used by others including Huttenlocher and Rucklidge
(1993), Rucklidge (1996), Rucklidge (1997), Hagedoorn and Veltkamp (1999),
and Mount et al. (1999). Recall that we are given two-point sets, an input set A and
a reference set B and a space of transformations T . The problem is to find τ ∈ T
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that minimizes the distance function, which is either PHD or DGM. The PHD is also
parameterized by the inlier quantile 0 < q ≤ 1 and the DGM is parameterized by
the standard deviation σ . Let us assume that A and B will be fixed for the remainder
of the discussion, and let us define PHDq(τ ) and DGMσ (τ ) to be the respective
distance measures between the transformed input set τ (A) and the reference set B.
Let PHDopt and DGMopt denote the minimum distances under PHD and DGM,
respectively, over all transformations τ ∈ T .

There are a number of different ways to represent a transformation of T . Hence-
forth we assume that T consists of the space of geometric similarities (allowing for
rotation, translation, and uniform scaling). We represent each such transformation
by a four-element vector, whose entries are the rotation θ , the translation vector
(tx, ty), and the scaling factor s.

There are also a number of ways to define the approximation error for each of
our distance measures. We introduce four nonnegative error parameters:

� εrm: the relative metric error bound,
� εam: the absolute metric error bound,
� εrq : the relative quantile error bound,
� εaq : the absolute quantile error bound.

Only three of these parameters will be relevant to a particular distance measure.
Intuitively, the metric error involves errors in the distance between points and
quantile error involves errors in the number of points. First, for PHD, define
q− = (1 − εrq)q. Note that since q− ≤ q, we have PHDq−(τ ) ≤ PHDq(τ ), for
any τ . We say that a transformation τ is approximately optimal for PHD relative
to these parameters if either

PHDq−(τ ) ≤ (1 + εrm) PHDopt or PHDq−(τ ) ≤ PHDopt + εam.

Thus, the approximate PHD solution is allowed to be less robust by a factor of
(1 − εrq), and it may exceed the optimum distance by a relative error of εrm or an
absolute error of εam.

For DGM, define σ+ = (1 + εrm)σ . Observe that DGMσ+(τ ) ≤ DGMσ (τ ), for
any τ . We say that a transformation τ is approximately optimal for DGM relative
to these parameters if either

DGMσ+(τ ) ≤ (1 + εrq) DGMopt or DGMσ+(τ ) ≤ DGMopt + εaq.

Thus, the approximate DGM solution is allowed to match points in a neighborhood
that is larger by a factor of (1 + εrm), and it may exceed the optimum mismatch
distance by a relative error of εrq or an absolute error of εaq . Note that the parameters
εrm and εrq are used for both distance functions. Their meanings are slightly
different but closely related.
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Note that the earlier branch-and-bound algorithms of Huttenlocher and Ruck-
lidge (1993) and Hagedoorn and Veltkamp (1999) implicitly provide εam but not the
other two parameters. The algorithm of Mount et al. (1999) does allow for the same
error settings as used for PHD above, but it does not include the DGM distance.

We begin by describing the general structure of the algorithm. We will not prove
the algorithm’s correctness formally, but it is a straightforward modification of
the proof of Mount et al. (1999). As mentioned earlier, the algorithm is based
on a geometric branch-and-bound search of transformation space. The algorithm
implicitly generates a search tree, where each node of the tree is identified with an
axis-parallel hyperrectangle in four-dimensional transformation space (for rotation,
x-translation, y-translation, and scale). Each such rectangle, or cell, represents a
subspace of possible transformations. The user provides initial limits on the subset
of transformations to be considered, and the root of the search tree is associated
with the associated cell.

The search processes each cell in a recursive manner, starting with the root cell.
At any time there are a collection of active cells and a candidate transformation
that is the best seen so far by the search. Let τ ∗ denote this best transformation, and
let dist* denote the associated distance. When it can be determined that a cell does
not contain a transformation whose distance is smaller than dist*, the algorithm
kills the cell, that is, it eliminates it from further consideration. If a cell cannot be
killed then it is processed as discussed below. The processing will generally involve
hierarchically partitioning the cell into smaller cells, which will then be added to
the list of active cells. The algorithm terminates when all cells have been killed, or
when a user-supplied upper bound on the maximum number of cells to be processed
has been exceeded. Upon termination, the best transformation encountered, τ ∗, is
returned.

Let us now present the algorithm in greater detail. For each cell T that we process,
we are interested in the transformation of this cell, for which the distance measure
is smallest. We compute an upper bound dist+(T ) and a lower bound dist−(T ) on
this smallest distance (explained below). For each upper bound, there will be a
specific transformation that serves as a witness to this upper bound.

Upper bound. To compute the upper bound, we may sample any transformation
from within the cell. There are a few ways in which to do this. Our software
implements three different approaches. The first two were introduced by Mount
et al. (1999), and the third is new to this chapter.

Pure: (PURE) The midpoint of the cell is selected as the candidate transformation to be
used for the upper bound.

Bounded Alignment: (BA) When the cell satisfies a given set of conditions (details
given by Mount et al. (1999)) a small number of point pairs is sampled repeatedly
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Reference point (in B)

Feature point (in A)

Uncertainty region

Figure 8.1. Uncertainty regions.

and at random from the subset of points of A that have a unique nearby point of B (after
applying the cell’s midpoint transformation). Each such pair a1, a2 ∈ A is associated
with its respective closest points b1, b2 ∈ B. There is a unique transformation τ

mapping the pair (a1, a2) to (b1, b2). The distance (i.e., the similarity measure) of this
transformation is computed. The transformation that produces the smallest distance
is chosen to provide the upper bound for the cell. In our experiments, 10 samples
were used.

Bounded Least-Squares Alignment: (BLSA) Each point of A is associated with its
closest point of B (after applying the cell’s midpoint transformation). Given the
resulting correspondences, the similarity transformation that minimizes the sum of
squared distances between corresponding points is computed. This is done by an
approach that first computes the transformation that aligns the centroids of the point
sets, then computes the scale factor that aligns their spatial variances, and finally
computes the rotation the minimizes the sum of squared distances. This is similar to
an approach by Goshtasby et al. (1986) and Agarwal and Phillips (2006).

Nearest neighbors are computed by storing the points of B in a kd-tree data
structure, and applying known efficient search techniques (Friedman et al., 1977;
Arya et al., 1998; Arya and Mount, 2001). Let dist+(T ) be the distance of the
resulting sampled transformation.

Lower bound. To compute the lower bound, we use a technique presented by Mount
et al. (1999), which is similar to that described by Huttenlocher and Rucklidge
(1993) and Hagedoorn and Veltkamp (1999). Given any cell T ⊂ T , and given any
point a ∈ A, consider the image of a under every τ ∈ T .

We compute a bounding rectangle enclosing this region, which we call the
uncertainty region of a relative to T. In this way, each cell is associated with a
collection of uncertainty regions, one for each point of A. (See Fig. 8.1.)

Define the distance between an uncertainty region and a point b ∈ B to be the
minimum distance between b and any part of the uncertainty region. (If b lies inside
the uncertainty region, then the distance is zero.) To derive our lower bound for T,
for each point a ∈ A, we compute the distance from the corresponding uncertainty
region to its nearest neighbor of B. Observe that this distance is a lower bound on
the distance from τ (a) to its nearest neighbor of B, for any τ ∈ T . We then apply
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the distance computation to these lower bounds. For example, for the PHD we
compute the qth smallest among these nearest neighbor distances, and for DGM
we compute the match weights based on these distances. Let dist−(T ) denote the
result. Because it can never overestimate the distance from any point of A to its
closest point of B, it is a lower bound on the actual PHD or DGM distance for
any τ ∈ T , and hence is indeed a lower bound for the cell. The nearest neighbor
to an uncertainty region is computed by a straightforward generalization of the
kd-tree-based nearest neighbor method described above.

Cell processing. As mentioned above, the algorithm operates by selecting an
active cell T and processing it. Processing consists of the following steps. (A
more detailed description is given by Mount et al., 1999.) First, we compute the
uncertainty regions for each point a and apply the aforementioned procedures to
compute the upper and lower bound distances, dist+(T ) and dist−(T ). In the case
of the PHD distance we kill the cell if either of the following two conditions hold:

dist−(T ) >
dist∗

1 + εrm

or dist−(T ) > dist∗ − εam.

The rule for DGM is the same but replacing metric error parameters with their
quantile counterparts. If dist+(T ) < dist∗, we set dist∗ ← dist+(T ) and save the
associated transformation in τ ∗. We then split the cell into two smaller subcells, T1

and T2, which replace T in the set of active cells.
There are three strategies that we implemented for selecting the next cell to be

processed:

Maximum Uncertainty (MAXUN): The next cell is the active cell with the largest
average diameter of its uncertainty regions.

Minimum Upper Bound (MINUB): The next cell is the one with the smallest upper
bound.

Minimum Lower Bound (MINLB): The next cell is the one with the smallest lower
bound.

We refer to the above choices as the search priority. The MAXUN method was
used by Mount et al. (1999) and the other two are new. Based on the fact that it
demonstrated the best performance in our preliminary analysis, we used MINLB
in all of our experiments.

8.3.1 Multiresolution registration

A common approach for improving the efficiency of image registration is to apply
a multiresolution framework. This framework has been considered extensively in
the context of image registration for remotely sensed images. See, for example,
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Cole-Rhodes et al. (2003), Netanyahu et al. (2004), and Zavorin and Le Moigne
(2005). The approach involves representing the two images at a series of increas-
ingly finer spatial resolutions. Feature points are extracted from each of these
images. This is followed by progressive registration of the resulting point sets by
applying the registration process from the coarsest level to the finest. As we pro-
ceed from one level to the next, the spatial resolution increases by a factor of two.
Thus, the coarsest level involves the greatest degree of spatial uncertainty, but also
involves the smallest number of feature points. The process begins by registering
the images at the coarse level, using a significantly wider range of transformations.
The transformation generated by our program at each stage is used as a center
point for the transformation cell at the next stage. Thus, as we proceed level by
level, the accuracy of the aligning transformation is expected to improve, while
the running time increases, due to the increased number of feature points expected
with higher-resolution images.

As observed by Zavorin and Le Moigne (2005), there are a number of advan-
tages of using a multiresolution approach compared to working solely with the
original images. It can reduce computation time by performing much of the work
at coarse resolutions, leaving minor adjustments to later stages. Since this type of
image decomposition usually involves low-frequency smoothing, this regularizes
the registration problem thus yielding better convergence properties and improved
accuracy of the search algorithm. Finally, if image scales differ significantly, decom-
position could be used to bring the two images into similar scales, which may be
advantageous for some registration algorithms.

8.4 Experimental studies

In order to assess the performance of our registration algorithms, we have imple-
mented a number of variants and tested their performance on a combination of
remotely-sensed satellite imagery. The algorithms have been implemented in C++
(g++ version 3.2.3), and all experiments were run on a PC with a 2.4-GHz proces-
sor running Linux 2.4. Nearest neighbor and range queries were performed using
kd-trees as generated by the ANN library for approximate nearest neighbor search-
ing (Arya et al., 1998). In particular, we were interested in studying the relative
performance of:

Distance function: DGM versus PHD.
Search algorithm: PURE versus BA versus BLSA.

Our experiments involved satellite images that were taken from three distinct
locations: Konza (Konza Prairie in the state of Kansas, July to August 2001),
Virginia (Virginia’s Hog Island Coast Reserve Area, October 2001), Cascades
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(Cascades Mountains, September 2000). In each case the images were taken from
two satellite platforms (sensors), IKONOS (4 meters per pixel) and ETM+ (30
meters per pixel), and involved the red and near infrared (NIR) spectral bands.
Thus, by considering all possible combinations, we have four images, denoted
IKONOS-red (IR), IKONOS-NIR (IN), ETM+-red (ER), and ETM+-NIR (EN),
for each location, resulting in six possible ways of pairing them for registration.
Some examples are shown in Fig. 8.2.

We tested the performance of our algorithms for both the single-pair and mul-
tiresolution frameworks. The results of the multiresolution experiments will be
discussed in Subsection 8.4.3. In all of our experiments we considered matches
under similarity transformations. Unless otherwise stated, the transformation width
allows 4◦ of rotation, 4 pixels of x- and y-translation, and 20% of scaling. The initial
cell of the search was centered at a random point whose maximum distance from
the ground truth transformation was 25% of the transformation width. For the PHD
we used an inlier quantile of q = 0.5 and for DGM we used a standard deviation of
σ = 1.0. In all cases the program was allowed to execute for at most 10 000 cells,
but it usually terminated well before then. We also used the following settings for
the various error parameters:

Relative metric error: εrm = 0.1 (for both PHD and DGM),
Relative quantile error: εrq = 0.2 (for both PHD and DGM),
Absolute metric error: εam = 0.4 (for PHD),
Absolute quantile error: εaq = 0.05 (for DGM).

Most of our experiments involve computing two measures of performance.
The first is running time, measured in CPU seconds. The second is a measure
of accuracy, called the transformation distance. This is designed to measure how
close the computed transformation is to our best estimate of “ground truth.” We
estimated the ground truth by visual inspection of the datasets and consensus of
other image registration programs combined with prior analysis of these image (Le
Moigne et al., 2003). Examples of alignments produced for three of the data sets
under the ground truth transformation are shown in Fig. 8.2. The transformation
distance of a transformation τ is defined to be the average Euclidean distance of
each point p ∈ A of the input dataset from its image under this transformation,
τ (p), and its image under the ground truth transformation.

8.4.1 Experiment 1: Comparison of distance functions

Our first experiment involves a comparison of the effectiveness of each of
the distance functions. We used the simplest of the algorithms, namely pure
branch-and-bound (PURE) together with the minimum lower bound (MINLB)
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Figure 8.2. Feature-point sets for Experiment 3. Pixels of input and reference
images are shown, respectively, as hollow and black points. Both sets are shown
on the left, under our estimate of best aligning transformation. Detailed figures of
highlighted subimages are shown on the right.
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Figure 8.3. Results of Experiment 1 comparing the various distance functions.
Relative performance, in terms of speed and accuracy, is shown as a function of
distance measures.

search priority. We tested all six combinations of sensor-band pairs for each
of the three images. For the discrete Gaussian mismatch, we tested values of
σ ∈ {0.5, 1.0, 2.0}. For each experiment, we computed both execution time and
transformation distance, and reported the average over five trials in each case. The
results are presented in Fig. 8.3.
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There are a number of conclusions that can be drawn from the experiments.
First, increasing the standard deviation parameter σ in DGM tends to result in
faster execution times, but also results in poorer performance with respect to
transformation distance. (This is most clearly seen in the cases of Virginia and
Cascades.) This is because increasing σ has the effect of making each feature
point “fuzzier,” which in turn makes it easier to localize matches but makes the
algorithm less sensitive to minor errors in placement. If we compare PHD with
DGM 0.5, we see that DGM takes comparable time to compute and achieves as
good or better transformation distances than PHD. In one case (Virginia IR-IN)
the difference is quite dramatic. The problem with this dataset is evident from
Fig. 8.2. This dataset has a high number of distinctive features that match very
well, and it has a much lower number of outliers that do not match at all. The
DGM measure seeks to match as many points as possible, while PHD is satisfied
once it has matched the given quantile of points (which was q = 0.5 in this case).
We feel that its greater degree of sensitivity to the actual number of outliers is the
principal strength of DGM. Note that many of the Konza registrations were not
successful. With the exception of IR-ER and IN-EN (both of which involve the
same spectral band) the sets of feature points between the two images are very
different.

A deeper understanding of the nature of distance functions is illustrated in
Fig. 8.4. We first computed the value of the distance function with respect to
ground truth. We then applied an additional horizontal shift of the input set A to
both the left and right and reevaluated the cost function. One would expect the
distance function to achieve a minimum at an offset of 0 and then to increase
on either side. The ideal shape of an objective function is one that gradually
descends towards a single, well-concentrated global minimum (at 0). The figure
illustrates the challenges of doing this with the existing images. First, observe that
both distance functions for Virginia exhibit not one, but many local minima. The
PHD cost function is worse (note the different vertical scales), since it exhibits
multiple local minima with identical distance values for q = 0.25 and q = 0.5.
Thus, it is not surprising that the algorithm does not distinguish among these
minima and produces an erroneous transformation. In the case of DGM, as the
value of σ increases, the local minima are smoothed out (which explains the faster
execution times) but the accuracy decreases as well. In the case of Konza, the
objective function shows a single global minimum, but the objective function is
not well concentrated for all parameter settings. Setting the σ value too small is
problematic (as seen in the case of Konza for σ = 0.1) since there may be no trans-
formation under which a significant number of feature points match within the σ

bound.



P1: SFK Trim: 174mm × 247mm Top: 0.553in Gutter: 0.747in
CUUK1136-08 cuuk1136/Le-Moigne ISBN: 978 0 521 51611 2 September 15, 2010 10:21

8 Point-based image registration 193

–5 –4 –3 –2 –1 10 32 54
translation [pixels]

0

1

2

3

4

5
P

H
D

 c
os

t f
un

ct
io

n 
[p

ix
el

s]
PHD 0.25
PHD 0.50
PHD 0.75
PHD 1.00

Virginia (IR-IN)

–5 –4 –3 –2 –1 10 32 54
translation [pixels]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
G

M
 c

os
t f

un
ct

io
n 

[p
ix

el
s]

DGM 0.1
DGM 0.5
DGM 1.0
DGM 2.0

Virginia (IR-IN)

–5 –4 –3 –2 –1 10 32 54
translation [pixels]

0

1

2

3

4

5

P
H

D
 c

os
t f

un
ct

io
n 

[p
ix

el
s]

PHD 0.25
PHD 0.50
PHD 0.75
PHD 1.00

Konza (IR-ER)

–5 –4 –3 –2 –1 10 32 54
translation [pixels]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
G

M
 c

os
t f

un
ct

io
n 

[p
ix

el
s]

DGM 0.1
DGM 0.5
DGM 1.0
DGM 2.0

Konza (IR-ER)

Figure 8.4. Comparison of objective functions subject to a horizontal shift relative
to the ground truth transformation (at 0).

8.4.2 Experiment 2: Different sensors and bands

Given the relatively large number of possible experimental combinations (six pairs
for registration from each of the three principal locations, for a total of 18), in our
next experiment we compared the performance of the algorithms in all instances,
in order to identify a relatively small set of representative cases. The hypothesis on
which this experiment is based, is that the greater degree of commonality among
the input images, the easier the registration should be in terms of running time
and accuracy. Because some features are apparent only at certain spectral bands,
we have noted that in the images tested, differences in the spectral band seem to
be more significant the differences in the sensor. To test these effects, we grouped
registration pairings into the following three groups:

Case 1: Images of the same spectral band but from different sensors (IR-ER, IN-EN).
Case 2: Images from the same sensor but from different spectral bands (ER-EN, IR-IN).
Case 3: Images from different spectral bands and different sensors (IR-EN, IN-ER).
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Figure 8.5. Results of Experiment 2 comparing the performance of the algorithms
for various choices of sensor and spectral bands. See Plate 5 in color plates section.

For each of the three locations, we ran all six combinations of image pairings.
The interpretation of the labels is given below. Based on the results of Experiment
1, we set σ = 0.5 for our experiments involving DGM, since this almost always
produced the most accurate results. Throughout we considered matching under
similarity transformations and used MINLB as the search priority. We tested all
three search algorithms. As before, we measured execution time and transformation
distance averaged over five trials. The results are presented in Fig. 8.5. Each plot is
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split into three groups; the leftmost group corresponds to Case 1, the middle group
to Case 2, and the right group to Case 3.

The experiments show that there are similarities among the various cases. This
is most dramatically true for Konza and Cascades, where the patterns of execution
times and transformation distances are notably similar within each group and
dissimilar between groups. Among the different search algorithms, PURE and
BLSA demonstrated generally steady and predictable performance. In contrast,
BA was almost always the fastest of the algorithms, but it demonstrated the highest
degree of variation in the quality of the results. In some instances (e.g., Virginia
ER-EN), the BA algorithm convincingly outperformed the optimal transformation.
However, in other instances (e.g., Virginia IR-EN and IN-ER), its performance was
significantly worse. Inspection of the individual trials showed that in two out of five
trials it found the optimal transformation, and in three cases it was off by a full pixel.

8.4.3 Experiment 3: Multiresolution framework

For this experiment we considered the performance of the algorithm in a multires-
olution framework as described in Subsection 8.3.1. The algorithm was applied to
four different resolution levels, and in each case the output from one level was used
as the starting transformation for the next level. At the coarsest level of resolution
we used a relatively high range of transformations, allowing for 16◦ of rotation,
32 pixels of x- and y-translation, and 30% of scaling. At all the other levels the
transformation width allows 6◦ of rotation, 6 pixels of x- and y-translation, and
30% of scaling. Subsequent levels used the more restrictive transformation ranges
described at the start of Section 8.4. Otherwise, we used the same parameter set-
tings as in Experiment 2. As always, the results were averaged over five trials, each
with a different random starting transformation. The other parameter settings were
the same as in Subsection 8.4.2. We tested three cases, Virginia IR-IN (Case 2),
Cascades IN-ER (Case 2), and Konza IR-ER (Case 1).

To determine the relative performance of our algorithms in the multiresolution
framework, we measured execution time and transformation distance. The results
are shown in Fig. 8.6. (Note that plots are on a logarithmic scale, and values less than
0.01 have been rounded up to 0.01.) A number of trends are apparent from the plots.
First, as expected, the running times of the algorithm increase roughly exponentially
with each subsequent level, since the image sizes and, hence, number of feature
points increase similarly. Also, as expected, the transformation distances tend to
decrease monotonically, since the accuracy of the feature points is increasing. There
are two notable exceptions. In the case of PHD for Virginia IR-IN, the accuracy
either exhibits very little change or actually gets worse (in the case of BLSA).
Virginia is known to be a hard case for PHD, and this anomalous behavior reflects
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Figure 8.6. Results of Experiment 3 on multiresolution registration. The units for
transformation distance are pixels at the highest level of resolution.

this fact. In contrast, DGM does quite well in this case. Other than this anomaly,
both distance functions and all algorithms tended to perform quite similarly. As in
the previous experiment, BA is the fastest of the methods. In terms of accuracy, it
tends to be slightly worse in some instances than others.

Conclusions

In this chapter we have presented a number of enhancements to a feature-based
registration algorithm introduced by Mount et al. (1999). In particular, we have
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considered a new distance measure, the discrete Gaussian mismatch (DGM), new
search algorithms based on a new method (BLSA) for computing the upper bound
associated with a cell, and variants for selecting the next active cell to be processed,
based on the cell’s lower or upper bounds (MINLB and MINUB, respectively). Our
experimental studies show that DGM is almost always as good as PHD, provid-
ing significant improvement in a few difficult cases. The other innovations offer
tangible improvements, but these improvements are less pervasive and of lesser
significance. Finally, we have demonstrated the algorithm’s efficacy in signifi-
cantly more general instances than reported by Mount et al. (1999), by considering
images from different sensors and covering various spectral bands. We have further
demonstrated the algorithm’s efficacy in both a traditional single-pair framework
and in a multiresolution framework.
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