
P1: SFK Trim: 174mm × 247mm Top: 0.553in Gutter: 0.747in
CUUK1136-03 cuuk1136/Le-Moigne ISBN: 978 0 521 51611 2 September 15, 2010 10:17

3

Survey of image registration methods

roger d. eastman, nathan s. netanyahu,

and jacqueline le moigne

3.1 Introduction

Automatic image registration, bringing two images into alignment by computing
a moderately small set of transformation parameters, might seem a well-defined,
limited problem that should have a clear, universal solution. Unfortunately, this
is far from the state of the art. With a wide spectrum of applications to diverse
categories of data, image registration has evolved into a complex and challenging
problem that admits many solution strategies. The growing availability of digital
imagery in remote sensing, medicine, and numerous other areas has driven a
substantial increase in research in image registration over the past 20 years. This
growth in research stems from both this increasing diversity in image sources,
as image registration is applied to new instruments like hyperspectral sensors in
remote sensing and medical imaging scanners in medicine, and new algorithmic
principles, as researchers have applied techniques such as wavelet-based features,
information theoretic metrics and stochastic numeric optimization.

This chapter surveys the diversity of image registration strategies applied to
remote sensing. The objectives of the survey are to explain basic concepts used in
the literature, review selected algorithms, give an overall framework to categorize
and compare algorithms, and point the reader to the literature for more detailed
explanations. While manual and semi-manual approaches are still important in
remote sensing, our primary intent is to review research approaches for building
fully automatic and operational registration systems. Following the survey article
by Brown (1992), we review an algorithm by considering the basic principles from
which it is constructed. These principles include, among others, the measure of
similarity used to compare images and the optimization algorithm used to optimize
the measure. Most image registration algorithms in the literature and those used
in practice are based on variations on these basic elements and their combination.
Indeed, a reader familiar with the basic, major principles and their various combi-
nations, can easily gain a good understanding of a new image registration technique
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or system. A survey of the scientific literature on image registration specifically for
remote sensing is provided by Fonseca and Manjunath (1996). Previous surveys
of the general image registration literature include Brown (1992) and Zitová and
Flusser (2003), while general books on registration include Modersitzki (2004) and
Goshtasby (2005). Surveys limited to medical applications, with specific focus on
mutual information, include Maintz and Viergever (1998) and Pluim et al. (2003).

Within the wide spectrum of image registration principles and applications, this
chapter focuses on techniques relevant to automatic registration of regular two-
dimensional image data from Earth satellite instruments used for remote sensing,
primarily those instruments sensing in the visible or near-visible spectra. We do not
treat extensively methods for instruments that use radar, those that directly produce
range information, or sensors borne aloft by airplanes and balloons. These forms of
imagery may differ from satellite imagery in perspective and other characteristics.
However, since new image registration techniques are often imported into remote
sensing from research undertaken in other fields, we also review some methods from
those fields as appropriate. Other fields with active research in image registration
include medical imaging, video analysis for multimedia, and robotics. These fields
differ from remote sensing in their requirements for image registration. In contrast
to remote sensing, medical image registration works with a large number of imaging
modalities from whole body to retinal scans, and involves tissues that can deform
or change drastically. Similarly, image registration for multimedia video analysis
and robotics works on short-range imagery of complex 3D scenes, rather than
long-range imagery of planetary surfaces. We specifically do not include in our
review articles on elastic or nonrigid registration, 3D volumetric registration, and
3D range registration. Readers interested in the latter topics are referred to Maintz
and Viergever (1998), Lester and Arridge (1999), Goshtasby (2005), and Salvi
et al. (2006).

Regardless of the field of application, the articles reviewed in this chapter
originate roughly from three overlapping communities. The image processing
community focuses on developing methodologies and techniques, and a research
contribution presents usually a novel technique or an evaluation method. Such
contributions include mostly proof-of-concept demonstrations on limited image
sets so the techniques described can be considered promising prototypes. A sec-
ond set of contributions comes from the community of ground support satellite
teams. This community specializes in the design of effective, practical algorithms
used to create orthorectified image products for a limited set of instruments. The
techniques they describe serve as a basis for successful operational systems run on
extensive datasets. Operational satellite teams have an end-to-end understanding of
data processing used in their satellite system, with inside knowledge of sensor and
satellite engineering. They use image registration to update orbital and navigational
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models, calibrate sensors, and validate image products. Given the initial satellite
position and orientation, their imagery may be closely aligned prior to registration,
which reduces the search time during registration. The last set of contributions is
made by the remote sensing user community. The articles by this community raise
various issues and describe common practice of using image registration in the
analysis of imagery for specific applications, such as land use planning or crop
yield forecasting. The remote sensing user community has a broad set of interests,
including determining the best algorithm to use for remotely sensed datasets, the
extent to which misregistration errors impact their analyses, whether their data have
been registered properly, and which algorithm best combines heterogeneous satel-
lite image sources with maps, Geographic Information Systems (GIS), airborne
instrument imagery, and field data. End user datasets may vary greatly in initial
alignment, so fully automatic registration software would need to be more robust
to large geometric transformations. In Eastman et al. (2007) we briefly surveyed
current practice by the operational and user communities, and noted the different
requirements for them.

Each article on image registration addresses some variation of the general prob-
lem. The variation addressed may vary by community or application, or the research
intentions of the authors. An overriding objective is to develop an accurate, fully
automatic registration algorithm that is successful without human intervention.
Other objectives an article may address include:

(1) Improving robustness and reliability, so a registration algorithm better handles noise,
occlusions, and other problems.

(2) Refining the geometric transformation to better model the complex physical imaging
process of an instrument and satellite.

(3) Increasing the subpixel accuracy of the transformation computed to meet higher oper-
ational requirements.

(4) Speeding up the registration process to handle greater throughput and more complex
algorithms.

(5) Handling large and unknown initial transformation estimates, so an algorithm can
match across greater displacements.

(6) Managing multimodal registration, so an algorithm can be applicable to images with
radiometric, scale, and other differences that might be present across band, instrument,
or platform.

As the topic of image registration for remote sensing is broad and can be broken
down into many different categorical schemes, this chapter addresses each subtopic
from different aspects. In Section 3.2 we define a terminology for the components
of image registration. This terminology will allow us to decompose systems into
their major components. In Section 3.3 we review major algorithmic categories to
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examine how these various components are most commonly combined into full
systems. In Section 3.4 and Section 3.5 we review, respectively, particular charac-
teristics of geometric and radiometric transformations relevant to remote sensing.
In Section 3.6 we review articles that evaluate image registration algorithms and
systems. Finally, Section 3.6 contains concluding remarks.

3.2 Elements of image registration algorithms

An instance of a pairwise image registration problem is to align one image, the
sensed image, onto a second image, the reference image, by computing a transfor-
mation that is optimal in some sense. We will define an image registration problem
by the following five elements:

(1) Reference image, I1 (x, y), that is generally taken to be unchanged.
(2) Sensed image, I2 (x, y), that is transformed to match the reference.
(3) Geometric transformation, f, that maps spatial positions in one image to the other.
(4) Radiometric transformation, g, that transforms intensity values in one image to the

other.
(5) Noise term, n (x, y), that models sensor and other imaging noise.

These definitions lead to the following relationship between the reference and
sensed images, where (x, y) represent the coordinate system in the reference image,
and (u, v) the coordinate system in the sensed image. Two image locations in the
reference and sensed image are said to correspond or to be corresponding points if
they are mapped into each other under the geometric transformation, i.e.,

I1(x, y) = g(I2(fx(u, v), fy(u, v))) + n(x, y). (3.1)

The above informal model is only intended to provide context for our review.
Readers interested in a formal mathematical definition of the image registration
problem are referred to Modersitzki (2004).

Intuitively, solving an instance of the image registration problem requires com-
puting the geometric and radiometric transformations, so that Eq. (3.1) holds. More
generally, the image registration problem is to devise an algorithm that, for all pairs
of images from two sets of images in the domain of interest, will compute the
optimal transformations for any instance, where the definition of optimal depends
on the choice of similarity measure as defined below.

This simplified, general model has three immediate caveats. Requiring strict
equality between corresponding image intensities in the reference and sensed
images is a strong constraint. This constraint is frequently relaxed to a statisti-
cal relationship (Roche et al., 2000) or an information-theoretic one (Maes et al.,
1999), which require that corresponding regions show similar distributions under
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the optimal transformations. Also, the noise term can confound a number of fac-
tors, both additive and multiplicative, so a single additive term is only a weak
approximation. Some image differences can be the result of atmospheric or sensor
noise, while others could stem from temporal ground changes that are the signal of
interest. Thus, care must be used in defining image differences as “noise.”

From the general model relating the reference and sensed image, we may cat-
egorize algorithms according to the widely accepted framework given in Brown
(1992). Brown’s review described four standard elements in the design of an image
registration algorithm:

(1) Search space that defines the possible transformations between the reference and target
images, both geometric and radiometric, that will be considered.

(2) Feature space of information content extracted from the images to be used in their
comparison.

(3) Similarity metric that defines the merit of matching image features under given trans-
formations.

(4) Search strategy used to find the optimal transformation, i.e., the transformation in the
parameter space that maximizes the similarity metric.

Beyond these four standard elements of an image registration scheme, there is
a fifth element critical to their understanding, namely the validation of an image
registration algorithm as accurate and reliable. While not an integral component of
the registration scheme itself, the procedures of testing, evaluating and validating
these schemes comprise an important element in studying various approaches of
image registration.

3.3 General approaches to registration

Image registration algorithms are often characterized as area-based or feature-
based. In area-based algorithms, areas or regions of the original image data are
matched with minimal preprocessing or with preprocessing that preserves most
of the image data. These algorithms may compute the differences of raw image
pixel values, or use all pixel values to compute an intermediate full-information
representation like the Fourier coefficients. Area-based methods are often labeled
correspondence-less matching, as an entire area is matched without constructing
an explicit correspondence between points in the two images. In feature-based
algorithms, on the other hand, the original images are preprocessed to extract dis-
tinctive, highly informative features that are used for matching. These algorithms
may extract a few distinctive control points (CPs), or detect dense edges/contour
maps for matching. Image registration systems for remote sensing often com-
bine the two approaches at different levels. At one stage the system may use
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feature-based control points, followed at a later stage by area-based matching. This
may be very appropriate when large distortions or displacements make feature-point
matching more robust. This is because local regions are warped, so individual pix-
els align very poorly, but derived features are more invariant to the distortions.
After those large transformations are initially accounted for, area-based matching
can be effectively performed.

3.3.1 Manual registration

While laborious and prone to error, manual registration, which is based on selection
of control points, is still widely used and highly regarded in the remote sensing
community. The user visually selects distinctive matching points from two images
to be registered, and then uses those points to compute and validate a geometric
transformation. Remote sensing software packages, such as ITT’s ENVI and PCI
Geomatics’ Geomatica, typically support manual selection. One advantage to man-
ual registration is that it is easy to understand and implement. Manual selection
allows the user to refine the set of control points for a number of reasons, including
focusing on a region of interest while ignoring sections of the image that are not
under study, fine-tuning the geometric transformation to meet accuracy objectives,
and basing the control points on known ground features. And, while some imagery
can be difficult for manual control point selection, in general, users can adapt to
more data sources than a typical algorithm. In some cases, considerable effort and
care goes into the selection of ground control points. Researchers may visit a study
site to select and label with Global Positioning System (GPS) coordinates a set
of robust ground features like road intersections (Wang and Ellis, 2005b). These
georeferenced control points are then located in the imagery and integrated into an
image-to-image registration scheme. Manually selected control points have been
used to initialize automatic matching steps (Kennedy and Cohen, 2003) and are
often used for accuracy studies on automatic systems. The research emphasis with
manual registration is typically on the quality of the final geometric transforma-
tion, as the software systems support complex empirical and physical models such
as rational polynomials. In addition to manual selection of control points, remote
sensing software packages usually support the automatic selection and correlation-
based registration of control points, although they vary in the nature and extent of
the automatic selection.

3.3.2 Correlation-related methods

Correlation-related methods directly compute a similarity measure for correspond-
ing image regions by pixelwise comparisons of intensity values. Often called
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template matching, a region from one image is translated around the other to find
the alignment that optimizes the similarity measure. The similarity measure for the
absolute difference of pixel intensities is given by

D[�x, �y] =
∑

x

∑
y

|I1 (x, y) − I2 (x + �x, y + �y)|, (3.2)

where �x, �y denote, respectively, the horizontal and vertical shifts in the sensed
image, and the summation is carried out over all x, y locations of an image region.
The above similarity measure, expressed by the L1-norm as the sum of absolute
differences, can be expressed alternatively in terms of the L2-norm as the sum of
squared differences. The correlation coefficient itself sums the product of intensity
values, in essence maximizing an inner product. The naive brute-force search
approach is to evaluate these similarity measures according to Eq. (3.2), that is,
by summing over all x, y in the region, and letting �x, �y vary over a predefined
search window until finding the optimal translations. Although correlation-related
methods are fundamental to image registration, they have a number of drawbacks
that need to be addressed for practical applications.

First, the brute-force approach is computationally expensive. Specifically, it
requires O(n2m2) operations, where n and m denote, respectively, the dimension
of the image region and search window. Although this may be acceptable for lim-
ited size regions and search windows, faster methods should be used, in general.
Indeed, there are a number of methods for speeding up the calculation of the above
correlation measures. A fast computation of the correlation coefficient in the fre-
quency domain deserves special consideration. See Subsection 3.3.3 below. Other
approaches include partial computations, coarse-to-fine pyramid search, special-
ized parallel hardware, and numerical optimization.

For partial computation, the full similarity measure is not computed for all
locations in the search window. Instead, it is computed at sampled locations in the
search window (Althof et al., 1997). Alternatively, the computation can be truncated
if it exceeds a certain threshold or a previously computed minimum. The sequential
similarity detection algorithm (SSDA) accumulates the sum of absolute differences
until the measure becomes too large for the current alignment to provide the likely
minimum (Barnea and Silverman, 1972). Huseby et al. (2005) used the SSDA
method to register Advanced Very High Resolution Radiometer (AVHRR) and
Moderate Resolution Imaging Spectraradiometer (MODIS) data. Another method,
which projects a 2D region into two 1D correlations, lowers the computational cost
and adds a noise-smoothing effect (Cain et al., 2001). The 2D to 1D projection is
handled as follows. The columns and of the subimage being matched are summed
to produce a vertical, 1D array. Similarly, the rows are summed to produce a
horizontal, 1D array.
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For coarse-to-fine pyramid search, the image is blurred and decimated into
a sequence of smaller, lower-resolution images of sizes that are a decreasing
sequence, typically of powers of two. Translations in a given image are clearly
reduced in the smaller images, so the search window for these images becomes
smaller accordingly. Once a solution is found for a smaller image, the resulting
alignment is extrapolated to the next higher-resolution image. The search result is
refined repeatedly in this fashion through the highest-resolution image. Coarse-to-
fine search has the added advantage that the blurring and decimation can smoothen
the objective function (i.e., the similarity measure), thereby reducing the impact of
local minima and noise.

Regarding specialized hardware, the inherent parallel nature of the problem can
be exploited to parallelize the correlation computation by using parallel processing
units (Le Moigne et al., 2002), application specific integrated circuits (ASICs)
(Gupta, 2007), field-programmable gate arrays (FPGAs) (Sen et al., 2008), or
general purpose graphics processing units (GPUs) in graphics cards (Köhn et al.,
2006).

Finally, another alternative to brute-force search is a variant of gradient descent
numerical optimization. In this approach the L2-norm similarity measure is com-
puted by an iterative solution to a least-squares formulation (Dewdney, 1978; Lucas
and Kanade, 1981; Irani and Peleg, 1991; Thévenaz et al., 1998; Irani and Anandan,
1999; Baker and Matthews, 2001). Assuming that the similarity measure is smooth
without local minima, the iterative process will converge to the minimum cost
alignment in O(n2) time (Dewdney, 1978).

The brute-force approach becomes more expensive when used for subpixel
accuracy, as the use of fractional pixel increments increases the computational cost
over integral increments. The previously mentioned gradient descent approach
can address this, as the iterative process naturally converges to subpixel accuracy
(Irani and Peleg, 1991; Baker and Matthews, 2001). An alternative approach is to
compute the similarity measure at integral displacements, and then use polynomials
computed over a local neighborhood to interpolate a subpixel optimum (Lee et al.,
2004). Even when interpolated over small 3 × 3 neighborhoods, the latter can be
effective to a tenth of a pixel.

The computational cost of the brute-force approach can be even more significant
with a complex geometric transformation beyond translation. The addition of each
parameter, due to rotation, scale, skew, and high-order distortions, multiplies the
size of the search space. In practice, correlation is often used on small image
regions or chips, where translation is an adequate approximation, even if the entire
image is to be registered by a complex physical model (Theiler et al., 2002). When
more complex models are required, albeit still relatively low order, such as rotation,
scale, and translation (RST), affine, or homography, the extra parameters can be
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incorporated into the least-squares formulation by a linearized approximation (Irani
and Peleg, 1991; Thévenaz et al., 1998).

The basic correlation similarity measures can be weakened by noise, occlu-
sions, temporal changes, radiometric differences in multimodal imagery, and other
sources that may influence pixel differences. This is a major reason for the develop-
ment of more statistically complex similarity measures, or feature-based methods,
as discussed later in this section.

Still, correlation measures themselves can be made more robust and more
adapted to complex imagery. Images can be preprocessed to enhance image fre-
quencies less susceptible to noise sources, either by similar smoothing due to the
coarse-to-fine projection approaches mentioned previously, or by edge enhance-
ment (Andrus et al., 1975). Keller and Averbuch (2006) presented an implicit
similarity measure, which treats the two images asymmetrically by computing the
gradient magnitude in one image, and edges in the other. For any displacement,
the measure is computed by summing the gradient magnitude covered by edges
in the second image. Kaneko et al. (2003) dealt with occlusion by selective mask-
ing. Robust statistical measures, such as M-estimators, can be used to reduce the
influence of outlying noise values. Arya et al. (2007) presented a version of normal-
ized correlation, based on M-estimators, which is robust to occlusions and noise.
Kim and Fessler (2004) used M-estimators in intensity correlation for a medical
application, and demonstrated better performance than that obtained by using the
mutual information (MI) measure. Radiometric differences between images can
also be handled by a gradient descent approach to the least-squares formulation,
provided that they can be modeled by a small set of parameters. Examples include
affine radiometric transforms (Gruen, 1985) and gamma correction (Thévenaz
et al., 1998). Georgescu and Meer (2004) integrated radiometric correction with
robust M-estimators in a gradient descent approach. Statistical alternatives to basic
correlation are the correlation ratio and the Woods measure (Roche et al., 2000).

While the deficiencies of correlation methods are often cited in papers on new
registration techniques, the approach is important and remains widely used in
remote sensing applications (Emery et al., 2003; Lee et al., 2004). In Eastman
et al. (2007) we reviewed several image registration schemes in major satellite
ground systems, six of which used area-based correlation. These schemes are
presented in Table 3.1 and described below. All the operational systems were
developed by ground support teams, and they share a number of characteristics
beyond the use of normalized intensity correlation. They all perform matching in
local regions (rather than global matching), deal only with translation (since it
dominates in small regions), and use preconstructed databases of carefully selected
image regions, topographic relief correction of features before correlation, and
cloud masking or thresholds to eliminate cloudy regions. Most systems use subpixel
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Table 3.1 Operational image registration systems based on correlation

Instrument Satellite Resolution Similarity

ASTER Terra 15–90 m Correlation to DEM corrected CPs
MISR Terra 275 m Correlation to DEM corrected CPs
MODIS Terra 250 m–1 km Correlation to DEM corrected CPs
HRS SPOT 2.5 m Correlation to DEM corrected data
ETM+ Landsat-7 15–60 m Correlation to arid region CPs
VEGETATION SPOT 1 km Correlation to DEM corrected CPs

estimation but vary in how the subpixel transformation components are computed.
Also, operational groups report the following practical registration issues that need
to be addressed: effectiveness of normalized correlation in cross-band registration,
adaption to thermal changes in satellite geometry and minor problems in orbit data,
inadequate uniform sampling of CPs across the image, and suitability of a specific
ground location for correlation for different reasons. A ground location can be
unsuitable for correlation because the ground features are uniform and indistinct,
because seasonal changes in temperature and vegetation cause the imagery to
significantly vary, or because human activity causes the imagery to vary.

Iwasaki and Fujisada (2005) described the image registration system for the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a
14-band multispectral imager launched in 1999 on the Terra (EOS-AM1) satellite.
Registration was done to a database of about 300–600 CPs which were mapped
onto topographic maps. The similarity measure used was normalized correlation
with transformation limited to translation. Matches were rejected for correlation
less than 0.7 or if clouds were detected. Subpixel estimation was calculated by
fitting a second-order polynomial to the correlation values. In a retrospective study
the authors cited accuracies of 50 m, 0.2 pixels and 0.1 pixels, respectively, for
three bands of different resolution. Jovanovic et al. (2002) described the geometric
correction system for the Multiangle Imaging SpectroRadiometer (MISR) instru-
ment on the Terra satellite. Registration was conducted on a database of 120 ground
control points (GCPs) represented by nine 64 × 64 image chips from Landsat The-
matic Mapper (TM) images, one chip from each spectral band. Each control CP was
of an identifiable ground feature that could be located to 30 m, and was selected
for seasonally invariant features. The chips were mapped onto terrain-corrected
imagery and a ray-casting algorithm was used to warp each chip to the appro-
priate geometry for the appropriate MISR camera. Chip matching was done to
subpixel accuracy for translation, potentially to 1/8 of a pixel, using least-squares
optimization (Ackerman, 1984).
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Wolfe et al. (2002) described a geolocaton system (see also Xiong et al., 2005)
for the MODIS instrument on the Terra satellite. Registration was carried out on
a database of 605 land CPs known to 15 m in 3D. For each CP, 24-km2 chips
(of 30-m/pixel resolution) were constructed from Landsat TM bands 3 and 4 over
cloud-free areas, predominantly along coastlines and waterways. Higher-resolution
TM chips were resampled to MODIS resolution, using the MODIS point spread
function and nominal MODIS position information. A fractional sampling interval
was used to get subpixel accuracy with a threshold of 0.6 for rejection.

Baillarin et al. (2005) described the automatic orthoimage production system,
ANDORRE, with its algorithmic core TARIFA (French acronym for Automatic
Image Rectification and Fusion Processing) for the SPOT-5 High Resolution Stereo-
scopic (HRS) instrument, launched in 2002. (The French satellite SPOT stands for
Earth observation satellite.) ANDORRE uses an extensive database of orthoim-
agery tiles integrated with Digital Elevation Model (DEM) data to generate, via ray
tracing, a simulated image for matching. Matching is done using multiresolution
search with the number of levels set to keep a 5 × 5 pixel size search window. CPs
are automatically found, matched by correlation, and used to calibrate a paramet-
ric model. Geometric outliers and CPs with correlation coefficient below 0.80 are
rejected.

Lee et al. (2004) described image registration for the geolocation of ETM+, an
instrument on the Landsat-7 satellite that was launched in 1999. ETM+ specifica-
tions include locating an image pixel to 250-m absolute geodetic accuracy (namely,
each pixel is off by at most 250 m from its true ground position), 0.28 pixels band-
to-band (that is, bands have a relative misregistration of less than a 1/3 of a pixel
at most), and 0.4 pixels temporal registration (i.e., images taken of the same area
over time have less than 1/2 pixel misregistration). These three requirements lead
to multiple registration approaches for calibration and assessment. Geodetic accu-
racy is updated by correlating systematically corrected panchromatic band regions
against a database of CP image chips extracted from USGS digital orthophotos. A
second correlation algorithm evaluates band-to-band alignment by subpixel regis-
tration with second-order fit to the correlation surface.

Sylvander et al. (2000) described the geolocation system for the VEGETA-
TION instrument on the SPOT satellites, which became operational since the
launch of SPOT-4 in 1999. A database of approximately 3500 CPs was built from
VEGETATION images. Each distinct ground CP location was represented in the
database as four image chips taken from images of different seasons and orienta-
tions. Correlation-based matching was done under the control of human operators
who ensure that there are ten matched points per orbit to compute satellite posi-
tion corrections. Multispectral registration to subpixel accuracy of 0.11 pixels was
reported.
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3.3.3 Fourier-domain and other transform-based methods

Frequency domain methods provide primarily a fast alternative for computing the
correlation coefficient similarity measure. A frequency transform converts a digital
signal, or an image, to a collection of frequency coefficients that represent the
strength of each frequency in the original signal. For example, if the original image
has a large number of ridges, then the frequency domain will have large coefficients
related to the regular distance between the ridges. Transform-based registration
methods are based on the premise that the information in the transformed image
will make the geometric transformation easier to recover.

Fourier domain methods are based on Fourier’s shift theorem, which states that
if g(x, y) is a translated version of a signal f(x, y) in the spatial xy domain, then the
corresponding Fourier transforms G(u, v) and F(u, v) in the frequency uv domain are
related by a phase shift that can be recovered efficiently. For image registration, the
two images are transformed to the frequency domain by the fast Fourier transform
(FFT). These transforms are then multiplied efficiently in the frequency domain,
and their product is transformed back (via the inverse FFT) to the spatial domain
for recovery of the translation. (The desired translation is found at the location of
the inverse transform peak.) While the computation itself is equivalent to that of the
correlation coefficient in the spatial domain, the computational cost of the above
method is O((n + m)2log(n + m)), rather than the brute-force O(n2m2) (Dewdney,
1978).

Notwithstanding the relative computational efficiency of standard Fourier-based
methods, in comparison to the brute-force computation of the correlation coeffi-
cient in the spatial domain, the two approaches share many drawbacks in terms
of handling subpixel displacements, geometric transformations beyond translation,
and sensitivity to noise. Also, it would be difficult for the Fourier approach to
recover large displacements. Thanks to various modifications, however, Fourier-
based registration in the frequency domain can be adapted to handle these problems.
De Castro and Morandi (1987) extended the method to rotation, while Chen et al.
(1994) and Reddy and Chatterji (1996) extended it to transformations that consist
of rotation and scale, as well as translation. Specifically, Chen et al. (1994) com-
bined the shift-invariant Fourier transform and the scale-invariant Mellin transform,
leading to the term “Fourier-Mellin transform.” Their method is also known in the
literature as symmetric phase-only matched filtering (SPOMF). Abdelfattah and
Nicolas (2005) applied the invariant Fourier-Mellin transform to register Interfero-
metric Synthetic Aperture Radar (In-SAR) images, and demonstrated an improved
signal-to-noise ratio (SNR) over standard correlation. Keller et al. (2005) used the
pseudopolar Fourier transform for computing rotation in a more robust and efficient
manner.
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Shekarforoush et al. (1996) extended the method to subpixel displacements. This
was further refined by Stone, Orchard, Chang and Martucci (2001) and Foroosh,
Zerubia and Berthod (2002) who demonstrated effective registration across spectral
bands in SPOT satellite imagery. The high accuracy required of subpixel extensions
emphasizes aliasing artifacts from rotation effects at image boundaries. These
effects, which come from interpolation of rotated images, were addressed by Stone
et al. (2003). The same authors also addressed the integration of cloud masks into
Fourier methods in McGuire and Stone (2000). Zokai and Wolberg (2005) adapted
the method to large displacements with perspective distortions. Orchard (2007) also
addressed the recovery of large displacements and rotations, integrating the Fourier
transform into a gradient descent framework for an exhaustive global search, while
demonstrating robustness to multimodal radiometric differences in remote sensing
and medical imagery. An additional Fourier-based method is due to Leprince et al.
(2007), who combined a Fourier method on local image regions with a global model
of the imaging systems to achieve subpixel registration within 1/50 of a pixel.

The Fourier basis functions have infinite support and they do not spatially
localize the frequency response. On the other hand, wavelet basis functions, such
as the Haar, Gabor, Daubechies, finite Walsh and Simoncelli wavelets used in image
registration (Li et al., 1995; Hsieh et al., 1997; Le Moigne et al., 2000; Zavorin and
Le Moigne, 2005; Lazaridis and Petrou, 2006), do have finite support and thus do
localize the frequency response of an image feature. A Fourier coefficient represents
a particular frequency but does not indicate where in the image features with that
frequency occurred. Wavelet features, on the other hand, give both frequency
and position information. As a result, wavelets are not used in the same way as
Fourier coefficients. Rather than apply the shift theorem (as in the Fourier case),
wavelets are used to decompose the image into higher-frequency, edge-like features,
and lower-frequency features. The higher-frequency features are used typically as
dense edge features for correlation- or feature-based matching. This will be further
discussed in Subsection 3.3.5.

3.3.4 Mutual information and distribution-based approaches

Requiring equality between image intensities is a strong constraint, which is not
valid in many cases. For cross-band and cross-instrument fusion, the image intensi-
ties may be related by nonmonotonic or even nonfunctional relationships, requiring
powerful similarity measures for effective matching that are based on statistical
relationships. In this case, the similarity measure is based on comparing local
intensity distributions rather than individual pixel values.

The most effective of these measures has proven to be the mutual information
(MI) measure and its variants. MI-based registration was first introduced in the
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medical imaging domain by Maes et al. (1997) and Viola and Wells (1997). See
also Pluim et al. (2000), Thévenaz and Unser (2000) and the review of MI-based
methods in medical imaging (Pluim et al., 2003). These methods make very weak
assumptions about the relationship between pixel intensities in the two images, and
they do not require a monotonic or any functional model. Mutual information is
an information-theoretic quantity that measures the spread of the values in a joint
histogram represented by a 2D matrix. If two images match perfectly, then the
joint histogram of their intensities should cluster around the diagonal of the matrix;
otherwise, the values spread off the diagonal. Denoting the image intensities by the
random variables X and Y, the mutual information measure is defined by

MI (X; Y ) =
∑
xεX

∑
yεY

pX,Y (x, y) log

(
pX,Y (x, y)

pX (x) pY (y)

)
, (3.3)

where pX (x) and pY (y) denote, respectively, the probability density function (PDF)
of X and Y, and pX,Y (x, y) denotes the joint PDF of X and Y.

A number of authors have addressed various issues, such as efficiency, accuracy,
and robustness, regarding the application of MI in image registration. Maes et al.
(1999) looked at ways of obtaining efficient speedups, by investigating a mul-
tiresolution pyramid approach in combination with several (non)gradient-based
optimization algorithms. Shams et al. (2007) applied MI to gradient values to
compute more efficiently an initial scale and translation estimate before refining
the registration by a variation of Powell’s numeric optimization. The MI measure
is subject to scalloping artifacts that stem from interpolation errors that introduce
false local optima. The scalloping artifacts show up as ridges in the similarity
measure surface. A number of authors have considered refinements to improve the
computation of the joint histogram. See, for example, Chen et al. (2003), Dowson
and Bowden (2006), Ceccarelli et al. (2008), Dowson et al. (2008), and Rajwade
et al. (2009). Other authors have looked at improving, generalizing, and unifying
MI with other information-theoretic measures. See Bardera et al. (2004), Pluim
et al. (2004), and Knops et al. (2006).

Despite its wide use in medical imaging and good potential for multimodal
fusion, MI-based methods have yet to be used extensively in remote sensing appli-
cations. Still, research-oriented articles have demonstrated promising approaches
on limited image sets. Kern and Pattichis (2007) gave a thorough review of MI
implementation details, and developed a gradient descent version that was exten-
sively tested on synthetically generated, cross-band image pairs acquired by the
Multispectral Thermal Imager (MTI) satellite. Cole-Rhodes et al. (2003) integrated
MI with a wavelet pyramid, and used a stochastic gradient numeric optimization
search approach to register multimodal, multiscale imagery acuired by IKONOS,
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Landsat ETM, MODIS, and Sea-viewing Wide Field-of-view Sensor (SeaWiFS).
Chen et al. (2003) applied MI with different interpolations (nearest neighbor,
linear, cubic, and partial volume) to register Landsat TM, Indian Remote Sens-
ing Satellite (IRS), Panchromatic (PAN), and Radarsat Synthetic Aperture Radar
(Radarsat/SAR) images over the San Francisco Bay Area, California. (Partial vol-
ume interpolation was found to be most effective.) In similar tests, Chen et al.
(2003) used Landsat TM imagery to establish the ability of generalized partial vol-
ume algorithms to reduce interpolation artifacts in the similarity measure. Inglada
and Giros (2004) systematically investigated the application of different similarity
measures to multisensor satellite registration of SPOT and ERS-2 data, including
correlation, correlation ratio, normalized standard deviation, MI and the related
Kolmogorov measure. Cariou and Chehdi (2008) used MI with gradient descent
to register airborne pushbroom sensor data to a reference orthoimage, comput-
ing a geometric transformation based on explicit airplane orientation parameters.
A recent report (Nies et al., 2008) has discussed the application of MI to the
rather noisy SAR imagery. He et al. (2003) applied a generalization of MI, the
Jensen-Rènyi divergence measure, to the registration of airplane profiles in Inverse
Synthetic Aperture Radar (ISAR) images.

3.3.5 Feature point methods

A feature-point registration algorithm first extracts a set of distinctive, highly
informative feature points from both images, and then matches them based on local
image properties. Feature points are referred to by different names in the literature,
including control points, ground control points, tie-points, and landmarks. Care
must be taken, though, with respect to the terminology used in a paper to distinguish
feature points defined only by local, syntactic image calculations from other types
of control points, such as those manually selected or on the basis of semantic
characteristics. Feature points are determined by the application of an interest
operator to the images for finding candidate feature points, and the subsequent
extraction of feature descriptors to be used in computing pointwise similarity
measures between corresponding features. After individual pairs of feature points
are tentatively matched between images, the algorithm often applies a geometric
consistency similarity measure to verify individual matches and reject outliers.
(Note that this overlaps with area-based methods that register local regions or chips,
essentially treating them as control points, so there is no clear distinction between
feature- and area-based methods.) Feature-based methods can be quite complex,
involving multiple passes of registration, geometric transformations that contain
several parameters, various similarity measures, and different search approaches.
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We can categorize feature-point methods into two general classes: A class of
methods that match dense sets of low-information-content features (typically edge
points or wavelets), and a class of methods that match smaller sets of features
that contain higher-information content, where the feature extraction and and the
pointwise similar measure are more complex to evaluate. Methods based on dense
feature sets may require less initial work but a more sophisticated geometric con-
sistency measure (for defining a match), as well as a more intensive search effort
on the feature sets. In the extreme, each feature point is considered individually
without any additional information, and the problem reduces to a purely geometric
one of geometric point set matching in a robust and efficient manner.

In dense feature point matching, the similarity measure is based on large sets or
neighborhoods of point features. One approach is to apply binary or edge correlation
to regions of points (Andrus et al., 1975), but these measures do not allow significant
local distortions in the feature sets. Huttenlocher et al. (1993) introduced an efficient
algorithm for computing a variant of the Hausdorff distance measure, a geometric
consistency measure based on the maximum of the minimum distances between
points in the two sets. In effect, the Hausdorff measure evaluates a match based on
the greatest remaining outlier. Mount et al. (1999) tested this variant on Landsat
images using the original Huttenlocher branch and bound algorithm along with a
Monte Carlo variation to accelerate the search. Chen and Huang (2007) presented
a multilevel algorithm for the subpixel registration of high-resolution SAR data.
They employed a Hausdorff metric with bi-tree searching to a pyramid of edge
maps to compute a rough alignment. The SSDA area measure (mentioned in the
previous subsection) was then employed to acquire tie-points, which were used to
refine the alignment to subpixel accuracy.

A large number of papers have been written on the point pattern matching
problem in the fields of image processing, pattern recognition, and computational
geometry. In dense feature point matching, the similarity measure is based on large
sets or neighborhoods of point features. One approach is to apply binary or edge
correlation to regions of points (Andrus et al., 1975), but these measures do not
allow significant local distortions in the feature sets. Perhaps the simplest simi-
larity measure among point sets involve the Hausdorff distance and its variants
(Alt et al., 1994; Chew et al., 1997; Goodrich et al., 1999; Huttenlocher et al.,
1993). The Hausdorff distance is a geometric measure based on the maximum
of the minimum distances between points in the two sets. The standard notion
of the Hausdorff distance, however, is not suitable for typical remote sensing
applications, since it requires that every point (from at least one set) have a nearby
matching point in the other set. Also, computing the optimal alignment of two-point
sets even under the relatively simple Hausdorff distance is computationally inten-
sive. In an attempt to alleviate the high complexity of point pattern matching, some
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researchers have considered alignment-based algorithms. These algorithms use
alignments between small subsets of points to generate potential aligning transfor-
mations, the best of which are then subjected to more detailed analysis. Examples
of these approaches include early work in the field of image processing (Stockman
et al., 1982; Goshtasby and Stockman, 1985; Goshtasby et al., 1986) and more
recent work in the field of computational geometry (Heffernan and Schirra 1994;
Goodrich et al., 1999; Gavrilov et al., 2004; Cho and Mount, 2005; Choi and Goyal,
2006). Alignments can also be part of a more complex algorithm. For example,
Kedem and Yarmovski (1996) presented a method for performing stereo matching
under translation based on propagation of local matches for computing good global
matches.

For remote sensing applications it is important that the distance measure be
robust, in the sense that it is insensitive to a significant number of feature points
from either set that have no matching point in the other set. Examples of a robust
distance measures include the partial Hausdorff distance (PHD) introduced by
Huttenlocher and Rucklidge (1993) and Huttenlocher et al. (1993), and symmet-
ric and absolute differences discussed in Alt et al. (1996) and Hagedoorn and
Veltkamp (1999). (See Chapter 8 for specific details.) Both measures were used
within a branch-and-bound algorithmic framework for searching in transformation
space. Drawing on this framework, Mount et al. (1999) proposed two ways of reduc-
ing the computational complexity of feature-point matching for image registration.
Specifically, they considered an approximation branch-and-bound algorithm and a
randomized, Monte Carlo algorithm (called bounded alignment) to further accel-
erate the search. A robust, hierarchical image registration scheme based on this
algorithmic approach was applied by Netanyahu et al. (2004) for georegistering
Landsat data to subpixel accuracy.

Also, Chen and Huang (2007) presented a multilevel algorithm for the subpixel
registration of high-resolution SAR data. They employed a Hausdorff metric with
bi-tree searching to a pyramid of edge maps to compute a rough alignment. The
SSDA area measure (mentioned in the previous subsection) was then employed to
acquire tie-points, which were used to refine the alignment to subpixel accuracy.

As noted above, large or moderate sets of feature points can be contaminated
with many outliers and spurious points that do not have proper correspondences.
Wong and Clausi (2007) described the system, Automatic Registration of Remote
Sensing Images (ARRSI), which uses a variation on the random sample consensus
(RANSAC) algorithm to match the control points. The system works by selecting
random subsets of control points from which a tentative geometric transformation
is computed. If the transformation consistently extends to a significant portion
of the full set, then it is accepted as correct. The authors tested their approach
on cross-band and cross-sensor Landsat and X-SAR images. Similarity, voting
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or accumulation schemes like the Hough transform (Yam and Davis, 1981; Li
et al., 1995) can be used for potential matching of pairs to vote on the most likely
transformation. In the Hough transform two feasible feature matches, whether
correct or not, are used to compute a set of geometric transformations that map the
feature in one image into the feature in the second image. Those sets are combined
in a voting scheme, and the transformation chosen that gathers the most votes from
the most potential matches. Correct matches are assumed to vote consistently for the
correct match, while incorrect matches are assumed to vote for a random collection
of inconsistent matches. Yang and Cohen (1999) computed affine invariants and
convex hulls from local groups of points to drive the matching process.

Methods based on smaller, sparse sets of feature points require more effort to
locate and describe the feature points. As mentioned, the first step is to apply an
interest operator to the images for finding distinctive points. A syntactic interest
operator is based only on general image properties, such as the magnitude of a local
image derivative, or the persistence of the feature across scales. On the other hand,
a semantic feature is based on the interpretation of the local image region as a road
intersection, building corner, or other real world entity that can be stable over time.
The same ground feature may be available for a long period of time for registration
applications (Wang et al., 2005). In Subsection 3.3.2 we described six operational
systems that used databases of manually selected ground control points (GCPs)
represented as image chips. Remote sensing users often give semantic rules for
the selection of GCPs (Sester et al., 1998; Wang et al., 2005). In other registration
applications, for example, in robotic vision or medical imaging, the constant flow
of new images emphasizes the use of real-time syntactic interest operators, while
in remote sensing it is appropriate to invest considerable effort in collecting feature
points for long-term use.

A preliminary phase in image registration involves the detection and extraction
of image features that have suitable content for reliable matching. In other words,
the original images are converted into feature sets for computing an optimal match.
Syntactic interest operators look for distinctive regions with high-content infor-
mation that can be localized in two directions simultaneously, such as corners or
line intersections. They do so by computing local image properties (such as first
and second image derivatives). Commonly used operators are due to Harris and
Stephens (1988) and Förstner and Gülch (1987). Schmid et al. (2000) systemati-
cally reviewed and evaluated a number of interest operators and concluded, based
on the criterion they defined, that the Harris operator was the most repeatable and
informative. Mikolajczyk and Schmid (2004) extended the Harris detector to an
affine invariant, scale space version (Harris-affine), that detects local maxima of the
detector at multiple image scales. Mikolajczyk et al. (2005) reviewed six different
affine invariant operators, including the Harris-affine, and concluded under what
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conditions each operator was most useful. Kelman et al. (2007) evaluated the three
interest operators: Laplacian-of-Gaussian, Harris, and maximally stable extremal
regions (MSERs), for the repeatability of their locations and orientations. The topic
is rich enough to support a book surveying interest and feature operators (Tuyte-
laars and Mikolajczyk, 2008). However, much of the literature does not account
for the complexity of remote sensing imagery. Hong et al. (2006) emphasized the
complexity of extracting GCPs in remote sensing data, as the extraction operator
needs to account for the physical imaging models of the sensor, the satellite orbit,
and the terrain’s DEM to accurately recover invariant feature points in SAR and
optical images.

Once feature points have been detected, a feature descriptor operator extracts
local information to define a similarity measure for point-to-point matching. By
reducing a neighborhood to a smaller set of descriptors relatively invariant to
geometric and radiometric transformations, the matching process can be made more
efficient and robust. Local descriptors include moments of intensity or gradient
information, local histograms of intensity of gradients, or geometric relationships
between local edges.

Lowe defined the scale-invariant feature transform (SIFT) (Lowe, 1999; Lowe,
2004), which is a weighted, normalized histogram of local gradient edge directions
invariant to minor affine transformations. The SIFT operator has been widely
used in a number of registration applications. Yang et al. (2006) used SIFT in an
extension of the dual bootstrap iterative closest point (ICP) algorithm, originally
developed for retinal image registration. As originally defined by Stewart et al.
(2003), dual bootstrap is a robust algorithm that proved successful on more than
99.5% of retinal image pairs, and 100% on pairs with an overlap of at least 35%. The
dual bootstrap ICP algorithm is a multistage procedure. It starts by matching interest
points found in retinal vessel bifurcations. In the retinal version, the invariants
used were the ratio of blood vessel widths and their orientations, yielding a five-
component feature-point descriptor. The SIFT operator was then employed to
obtain an extended version that performed successfully on the challenging image
pairs that were experimented with. Li et al. (2009) have recently refined the SIFT
operator to increase its robustness and applied it to cross-band and cross-sensor
satellite images. The reader is referred to the following additional relevant papers:
Ke and Sukthankar (2004); Mikolajczyk and Schmid (2004); Mikolajczyk and
Schmid (2005); Mikolajczyk et al. (2005); and Dufournaud et al. (2004).

In remote sensing, there have been a number of applications of feature point
detectors and descriptors. Igbokwe (1999) performed subpixel registration of Land-
sat Multi Spectral Scanner (MSS) and TM data to 0.28 pixel accuracy. They
located feature points using the interest operator, target defined ground operator
(TDGO), described in Chen and Lee (1992), and then applied least-squares iterative
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subpixel matching in local regions. Grodecki and Lutes (2005) performed registra-
tion for redundant validation of IKONOS geometric calibration. They used two test
sites with features points selected manually and automatically with the Förstner
and Gülch interest operator. Bentoutou et al. (2005) registered SPOT and SAR
images to subpixel accuracy, with a root mean square error (RMSE) of 0.2 pixels.
They located feature points using an enhanced Harris detector, and then matched
the points with affine invariant region descriptors with a subpixel interpolation
of the similarity measure. Carrion et al. (2002) described the GEOREF system that
the authors tested with Landsat imagery. In the GEOREF system, features extracted
by the Förstner operator are located and matched at multiple levels using an image
pyramid. An interesting twist is that once two feature points are matched, the match
is refined in a local neighborhood around the feature point by a least-squares, area-
based method. Here, feature- and area-based approaches are combined to best
match two feature points.

At an extreme for the semantic content of features, Growe and Tönjes (1997)
used a semantic, expert system approach to segment and understand image features
for matching. Raw, low-level image features like edges were interpreted through a
semantic net as meaningful high-level features like roads and houses. They matched
the resulting feature with the A* algorithm to control search.

Arevalo and Gonzalez (2008b) presented a complex algorithm for a nonrigid,
piecewise local polynomial geometric transformation that integrates a number of
the methods explained above. Control points were detected by the Harris operator
and then matched to subpixel accuracy using gradient descent. An initial transform
was then estimated with RANSAC, followed by a computation of a triangular mesh
of the control points. Since some of the triangular regions in the mesh may overlap
discontinuities, such as building edges, the mesh was refined through an iterative
process to swap edges until regions became more homogenous. The homogeneity
was evaluated by a mutual information measure.

3.3.6 Contour- and region-based approaches

Contour- and region-based approaches use extended features such as lines, con-
tours, and regions. These extended features, which can be obtained by connecting
edge points, or segmenting the images into compact regions, can prove robust
in cross-band and cross-sensor registration. Contour- and region-based approaches
are particularly useful for water features, such as lakes, rivers, and coastlines, or for
man-made structures like roads. However, these features are all subject to change
over time so they cannot be assumed constant.

Line matching, based on linear features extracted in IKONOS and SPOT
imagery, was described in Habib and Alruzouq (2004) and Habib and Al-Ruzouq
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(2005). Manually outlined linear segments of road networks were provided as
input. The collections of these line primitives were then compared by a modified
iterated Hough transform (MIHT) to compute the desired affine transformation.
Wang and Chen (1997) performed line matching by using invariant properties of
line segments.

Contour matching uses pixel sequences or polynomial curves fit to edge data,
such as non-uniform rational B-splines (NURBS), to compute optimal geometric
transformations for matching and registration. See, for example, Li et al. (1995),
Carr et al. (1997), Eugenio and Marques (2003), and Pan et al. (2008). We briefly
review a few related methods below. Dai and Khorram (1999) derived a contour-
based matching scheme, and demonstrated its applicability on Landsat TM images.
Edge pixels were first extracted by a Laplacian-of-Gaussian (LoG) zero-crossing
operator, and then linked/sorted to detect contours. Regions defined by these closed
contours were then matched (in feature space), combining invariant moments of
the planar regions and chain-code representations of their contours. Finally, the
initial registration step was refined (in image space) by matching a set of GCPs
defined by centers of gravity of matched regions. Subpixel accuracy of roughly
0.2 pixels (in terms of the RMSE at the GCPs) was reported. Similarly, Eugenio
and Marques (2003) registered AVHRR and SeaWiFS images by extracting closed
and open-boundary contours of SeaWiFS island targets. They combined invari-
ant region descriptors, individual contour matching, and a final global registration
step on all contour points. Govindu and Shekhar (1999) carried out image match-
ing by using contour invariants under affine transformations for both connected
and disconnected contours. Xia and Liu (2004) performed efficient matching by
using “super-curves,” which are formed by superimposing pairs of affine-related
curves in one coordinate system, and then finding simultaneously their B-spline
approximations and registration.

Madani et al. (2004) described the operational AutoLandmark system for regis-
tration of the Geostationary Operational Environmental Satellite (GOES) imagery.
GOES I-M is a series of 7-band weather satellites, which were launched from
1994 to 2001. Since the satellite images contain considerable ocean regions, the
registration could be complicated. On the other hand, this type of image could
support a coastline matching strategy. Note that the daily warming/cooling cycle
affects the infrared bands, in the sense that land and water can reverse in radiation,
causing coastal edges to invert, migrate, or even disappear. To avoid these radio-
metric effects, the registration was performed on a database of coastlines, which
were represented in vector format. Specifically, 24 × 24 (or 96 × 96) landmark
neighborhoods were extracted from the sensed image, and edge pixels (for each
neighborhood) were detected using the Sobel operator. The edge map obtained
was matched against a binary image rasterized from the coastline vector database,
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taking the sum of relevant edge strengths as a measure of correlation, and limiting
the transformation to translations only. Cloud regions were masked out along the
process. Bisection search was finally used to obtain subpixel accuracy. The over-
all quality measure of the registration was defined as a combination of the edge
correlation, the fraction of cloud contamination, and the contrast (and possibly
illumination) in the image.

Registration based on region matching uses local patches or closed boundary
curves, found by intensity segmentation or curve extraction. Dare and Dowman
(2001) segmented SPOT and SAR images into homogenous patches, and then used
straightforward parameters like area, perimeter, width, height, and overlapping
area to compute a similarity measure between regions. Following this, they matched
strong edge pixels by dynamic programming. Flusser and Suk (1994) detected close
boundaries (from edge pixels obtained by the Sobel operator) and then used affine
invariant moments of closed boundaries to register SPOT and Landsat images to
subpixel accuracy under an affine transformation. See also Goshtasby et al. (1986)
and Yuan et al. (2006) for additional related papers.

3.4 Geometric transformations

Image registration assumes a coherent geometric transformation between the sensed
and reference images. If sufficient knowledge is available about the imaging model
of the sensor, geometric distortions from satellite orbit and attitude variations,
atmospheric effects, and topographic relief, then a physically accurate model of
the transformation can be constructed, and an appropriate algorithm for the model
can be chosen (Huseby et al., 2005). If the above information is not available
or is too complex, an approximate empirical model can be used. A physically
accurate model is of course most suitable for refining a raw remote sensing image
into an orthoimage, that is, a distortion-free version of the image that represents
an ideal projection onto geodetic coordinates of the ground plane. Fully corrected
orthoimages are best suited for integration into geographic information systems and
fusion with all types of geographic data. Toutin (2004) noted several factors that
drive the use of physical models of higher accuracy for orthorectification. These
factors include higher-resolution sensors, additional imagery taken from off-nadir
viewing angles, greater precision needed for digital processing, and the fusion of
data from multiple image and vector sources. Armston et al. (2002) compared
the use of physical and empirical geometric models in landcover mapping in
Australia, using models available in commercial software packages. They evaluated
the models used on field-collected GCPs and manually selected tie-points initially
found using syntactic and semantic properties and then refining the GCP matches
by image chip correlation. Using the RMSE of the GCPs as a quality metric,
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they found that empirical rational polynomial models gave higher errors than the
physical models.

Still, the transformations used in the matching phase of image registration are
usually based on empirical models that offer sufficient accuracy for the task but are
not physically accurate. In particular, when an image registration algorithm is based
on matching small image regions as chips or control points, empirical models of
a simple geometric transformation as translation can be sufficiently accurate even
without taking into account additional elements such as perspective. Thus, many
image registration algorithms use empirical, low-order geometric models over
small regions as chips or control points, and then use the control points to compute
more accurate, parametric geometric models of higher order. Many algorithmic
techniques, such as those based on numerical optimization or the Fourier transform,
are primarily designed for the explicit recovery of the parameters of a low-order
model, such as translation, rotation, and scale. Empirical models include:

(1) Rotation, scale, and translation (RST), i.e., transformations with four parameters. The
RST model is a useful subset of the affine transformations.

(2) Affine transformation of six parameters.
(3) Projective transformation of eight parameters.
(4) Homography, which consists of eight degrees of freedom.
(5) Higher order 2D and 3D polynomial functions.
(6) Rational polynomials.

There are many sources of information on the mathematical details of geometric
transformations, and we do not pursue the details here. For a general treatment, the
reader is referred to Goshtasby (2005), and for details on projective and homography
transformations the reader is referred to Faugeras (1993). Toutin (2004) is a review
article on empirical and physical geometric models, including rational polynomials.

While the geometric transformations used for local matching are usually global
and rigid, nonrigid or locally rigid transforms are important to account for distor-
tions that vary across an image pair. Here, global means a single transformation
is used across the entire image. Sharp topography, such as tall buildings and
steep natural features, can introduce significant local perspective effects that are
not accounted for in global, low-order transformations. Goshtasby (1988) intro-
duced methods for piecewise local nonrigid methods, in which the images are seg-
mented into regions in which local polynomial functions are used. In Zagorchev and
Goshtasby (2006), the authors reviewed and compared these methods, including
thin-plate spline, multiquadric, piecewise linear and weighted mean transforma-
tions. Arevalo and Gonzalez (2008a) compared nonrigid geometric transformations
on QuickBird imagery. These transformations included piecewise (linear or cubic)
functions, weighted mean functions, radial basis functions, and B-spline functions.
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Approximate image alignment was first done manually. This was then refined
using feature points that were obtained due to the Harris detector. Finally, gradient
descent was used to achieve subpixel accuracy. The authors found the piecewise
polynomial model superior on nonorthorectified imagery, and global fourth-order
polynomials most adequate for orthorectified images.

3.5 Radiometric transformations and resampling

Under the correct geometric transformation, two corresponding image points
should have related intensity values. If we assume that the corresponding image
points represent the same ground feature, then the radiometric readings of that
feature should have some consistency between two sensing events. That consis-
tency or relationship confounds a number of factors, for example, the radiometric
responses of the two sensors, the time of day and other environmental factors, the
angle of view, the specular response of the ground feature, etc. All this is further
confounded by multiband sensors, so in registering two images we may be relating
two spectral bands which may or may not overlap. If we can account for all these
factors, we can build a radiometric model (or function g) that maps intensities in
one image to another, and use this model in designing a registration algorithm.
However, few image registration algorithms use explicit radiometric relationships
during the matching process. This is because the relationship may be difficult to
calibrate, the algorithm may be used on many sensors (so a single relationship is
not useful or appropriate), and the confounding environmental factors may over-
whelm the relationship. Instead, most registration algorithms base their similarity
measures on general assumptions made about the relationship, either explicitly or
implicitly. Thus, choosing the appropriate assumptions is important in algorithm
design and selection. The assumptions made about the radiometric model were
classified in Roche et al. (2000) as follows:

(1) Identity relationship, i.e., assuming that the image intensity is invariant. This assumption
is explicit in methods based on similarity measures that sum directly the square of
absolute values of intensity differences.

(2) Affine relationship, i.e., assuming that the intensities differ by a linear gain and bias.
This assumption is implicit in methods based on the correlation coefficient or least-
squares minimization.

(3) Functional relationship, i.e., assuming that the intensities differ by a general function.
This assumption is implicit in a few measures, including the correlation and Woods
measures.

(4) Statistical relationship, i.e., assuming that while individual corresponding points may
have differing intensities, in local neighborhoods they are drawn from the same statis-
tical distribution. This is implicit in mutual information and similar approaches.
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There are algorithms that integrate an explicit radiometric term during the match-
ing process. Georgescu and Meer (2004) integrated a radiometric correction with
robust M-estimators in a gradient descent approach. Thévenaz et al. (1998) inte-
grated an exponential gamma model in a least-squares gradient descent approach,
while Bartoli (2008) used a general multiband affine relationship to combine dif-
ferent color channels dynamically during gradient descent registration. Orchard
(2007) used linear regression to estimate a piecewise linear relationship between
semi-registered images. Hong and Zhang (2008) considered different radiometric
normalization methods for high-resolution satellite images, such as scattergrams
and histogram matching, to bring different sensors into the same color metric. This
approach might be appropriate to preprocess images before matching.

Since digital images are represented by values on a discrete grid, typically a
uniformly spaced rectangular grid, for one image to be geometrically transformed
to match another, the values have to be resampled to the new grid locations. This
can be done for two purposes: (1) Obtain an end product of image registration for
further use in remote sensing applications, and (2) produce intermediate images
(during the registration process) for incremental use, for example, an iterative
computation of the geometric transformation. Greater care must be taken in the
former case than in the latter, since values in the final image product may be used
in further image analysis steps, while the intermediate resampled images are only a
means to registration and will be deleted after use. As a result, an image registration
system may use multiple resampling techniques. In both cases, it is important to
avoid resampling artifacts, as this may degrade the data itself or the accuracy of
the image registration.

Resampling is commonly done by reverse sampling of image values to remap
the sensed image to a new image. If f (u, v) is the geometric transformation that
maps the sensed image into the reference image, then the inverse transformation
f −1 (x, y) is applied to map a pixel in the new sensed image to a subpixel location
(u′, v′) between four surrounding input pixels in the grid of the old sensed image.
(See Fig. 3.1.) The values of these four pixels (or pixels in a larger surrounding
neighborhood) are then interpolated to compute the new pixel value. Increasing
fidelity of the interpolation usually incurs greater computational cost.

The basic interpolation methods below are well documented in Goshtasby
(2005). These methods include, in order of computational effort:

(1) Nearest neighbor, where the output pixel is given the value of the input pixel whose
location is closest to the reverse sampled position (x, y). The advantage of nearest
neighbor resampling is that the output image only contains intensity values present
in the original image. However, it can produce aliasing “jaggies,” particularly with
rotation.
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f
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Input image Output image

Figure 3.1. Resampling neighborhood.

(2) Bilinear, where the output pixel value is a linear interpolation of the local neighborhood,
usually the four surrounding input pixels. The advantage of bilinear interpolation is
that it is fast. Also, its results are visually similar to those obtained by more complex
interpolators, although it is not as accurate as the bicubic interpolator or the other
higher-order methods.

(3) Bicubic, where the output pixel value is obtained by a cubic polynomial interpolation
of the values in a local neighborhood.

(4) Spline, where the output pixel value is computed by a polynomial spline interpolation
(e.g., B-spline) of the local neighborhood.

(5) Sinc function, where the output pixel value is obtained by an interpolation based on the
sinc function, sin(x, y)/r (where r =

√
x2 + y2) over a local neighborhood.

Each method can result in resampling (or interpolation) artifacts in the result-
ing image and in similarity measures derived from the image values. Inglada et al.
(2007) reported on artifacts from bilinear, bicubic, and sinc interpolators, and noted
that the interpolators had the effect of blurring the sensed image, although the mag-
nitude of the blurring depended on the subpixel value of the shift. For example,
integral shifts land exactly on a pixel and result in little blurring, while shifts of
half a pixel result in maximum blurring. This can result in a “scalloping” effect that
introduces artificial local maxima at subpixel shifts in similarity measures, such as
mutual information (Pluim et al., 2000; Tsao, 2003; Thévenaz et al., 2008) and cor-
relation measures (Salvado and Wilson, 2007; Rohde et al., 2008). These artifacts
can be addressed by careful prefiltering to reduce noise (Salvado and Wilson, 2007)
or by proper randomized sampling (Tsao, 2003; Thévenaz et al., 2008). However,
this must be done carefully, as noise blurring contributes to the scalloping effect.

3.6 Evaluation of image registration algorithms

A typical satellite is very expensive to develop and operate, and the data pro-
duced can influence major governmental and industrial decisions on land use, crop
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production and other economic or political issues. Given the commercial and social
impacts of research and development in remote sensing, proper evaluation of image
registration reliability and accuracy is thus an essential component.

In general, performance evaluation may be associated with different aspects of
the image analysis process. The image registration research community, by and
large, is concerned with the derivation of proper metrics for technique evaluation
and ranking. This community works to evaluate and rank basic registration algo-
rithms, with the objective of choosing the best registration algorithms for general
classes of data. On the other hand, the operational community focuses on validat-
ing the performance specifications of its image products, and end users focus on
whether the image products meet their needs for commercial and scientific analysis.
They are more concerned with the quality of the ultimate data of interest than with
the best registration algorithm. Ideally, metrics for image registration evaluation
would articulate and incorporate end-user requirements so the imaging community
could better serve and communicate with end users.

The evaluation of image registration is relatively well established within the
medical imaging community, which has access to techniques that are not as easily
available in remote sensing. For example, in medical image registration, ground
truth (or “gold standards”) are produced by introducing fiducial marks into images
or using phantom targets (Penney et al., 1998), which facilitates algorithm compar-
ison. In contrast, it is harder in remote sensing to produce ground truth for naturally
collected data.

In this section we look into the issue of registration evaluation in two respects.
First, we review evaluation aspects concerning the operational and user commu-
nities, for example, the impact of registration errors on operational teams and
practitioners. Secondly, we discuss evaluation issues concerning the image regis-
tration algorithms themselves.

3.6.1 Operational and user oriented evaluation

How good must an image registration algorithm have to be? To answer this, one
should consider the application in question. If used to mosaic multiple images for
a visual display, the requirements from an algorithm may be less rigorous than
for aligning two images to detect small changes in vegetative cover. Operational
satellite teams have performance requirements set during the system design, which
they work to meet. Users set requirements that come from the needs of their
analytic techniques. Both sets of requirements can be informative in the design and
evaluation of registration algorithms.

Accuracy needs of image registration for change detection has been one of the
most studied application needs. Townshend et al. (1992) studied four regions in
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Landsat TM imagery, and found that to keep the Normalized Difference Vege-
tation Index (NDVI) pixel-based change estimations down to an error of 10%,
the registration subpixel accuracy had to be within 0.2 pixels. Studying, however,
three additional homogenous, arid regions, they found that the registration accu-
racy required for the above 10% error was within 0.5 to 1.0 pixels. For detection
of changes over time, Dai and Khorram (1998) showed that a registration accuracy
of less than 1/5 of a pixel was required to achieve a change detection error of less
than 10%. Other articles on the impact of misregistration on change measurements
include, for example, Roy (2000), Salas et al. (2003), and Wang and Ellis (2005a).
Bruzzone and Cossu (2003) formulated an approach to evaluate change detec-
tion that adapts to and mitigates misregistration errors. Other issues that influence
the impact of misregistration on change detection include the number of classes,
region heterogeneity (Verbyla and Boles, 2000), and the resolution at which change
detection is computed (Wang and Ellis, 2005b). In the latter paper the authors con-
sidered how measures of region heterogeneity in high-resolution imagery interact
with change resolution and misregistration errors. Specifically, these authors have
considered how to adapt to misregistration errors either by estimating them or
lowering the resolution of change detection (Verbyla and Boles, 2000; Bruzzone
and Cossu, 2003; Wang and Ellis, 2005b).

Another well-studied area is the evaluation of errors in orthorectified imagery,
which is critical for operational teams. Zhou and Li (2000), Toutin (2003), Grodecki
and Lutes (2005), and Wang et al. (2005) all addressed the geometric accuracy
of IKONOS images. Looking at IKONOS panchromatic and multiband images
over seven study sites in Canada, Toutin investigated the relationship between the
accuracy of GCPs and its effect on precision correction of IKONOS for orthorec-
tification. He found that the accuracy of GCPs affected how many of them were
required to compute accurate geometric models for orthorectification, but that the
error sensitivity of the model was low and good results could be obtained despite
inaccurate GCPs. Zhou and Li (2000) performed a similar analysis to compare the
influence of the number of GCPs, their distribution, and their measurement error,
as well as the order of the geometric correction polynomial on the error obtained.
Grodecki and Lutes (2005) performed backup validation of IKONOS geometric
calibration through manually and automatically selected GCPs, and found that
it met the operational specifications. Wang et al. (2005) looked specifically at
four geometric models (translation, translation and scale, affine, and second-order
polynomial models) to further reduce ground point errors in IKONOS, with the
objective of determining if lower cost IKONOS geosatellite imagery could be
adequately refined for practical use.

Ideally, there should be mechanisms for the propagation analysis of image reg-
istration errors through the processing of remotely sensed images. Krupnik (2003)
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developed a mathematical formulation for error propagation in orthorectified image
production for predicting the accuracy of the orthoimage obtained. The formulation
combined several parameters, such as the accuracy of the digital elevation model,
control points, and image measurements, as well as the configuration of fiducial,
tie, and control points, and the ground slope. Poe et al. (2008) developed a similar
formulation for geolocation errors observed with data from the Special Sensor
Microwave Imager/Sounder (F-16 SSMIS) radiometer observations.

3.6.2 Algorithm evaluation

A traditional means of evaluating registration and geolocation accuracy is through
the residual error of manually selected control points, that is, their root mean
square error (RMSE). The assessment of transformations produced by manually
selected CPs is often judged by repeatability and precision rather than formal
accuracy, as the RMSE and variance evaluate the tightness of the CP residuals in
the absence of ground truth data. This is often done by computing residuals under
a transformation in question with respect to a separate set of independent check
points using hold-out validation (HOV), or by recomputing the residual of one
control point via leave-one-out cross-validation (LOOCV) (Brovelli et al. 2006).
(In each iteration, a different control point is left out.) In general, the accuracy
increases with the number of CPs up to a diminishing return (Toutin, 2004; Wang
and Ellis, 2005a). Spatial and orientation distributions of residuals have also been
considered (Buiten and van Putten, 1997; Fitzpatrick et al., 1998; Armston et al.,
2002). Felicsimo et al. (2006) verified registration by careful analysis of residuals,
looking at homogeneity and isotropy of spatial uncertainty by means of GPS
kinematic check lines and circular statistics.

In addition to evaluating the end result of registration algorithms, image regis-
tration research can concentrate on evaluating alternative elements of registration
algorithms. Maes et al. (1999) evaluated alternative optimization methods for use
with mutual information. Recently, Klein et al. have also evaluated optimization
methods (Klein et al., 2007); (Klein et al., 2009). Jenkinson and Smith (2001)
looked at the efficiency and robustness of global optimization schemes, observing
that local optimization schemes often did not find the optimum in their test
medical imagery. They also tested alternative statistical similarity measures. A
number of other articles focused on surveying, comparing, and unifying similarity
measures. Kirby et al. (2006) implemented and compared several measures on
images from the airborne Variable Interference Filter Imaging Spectrometer
(VIFIS). The measures included normalized correlation, ordinal correlation, and
invariant intensity moments. They found normalized correlation the most effective.
In a medical application, Skerl et al. (2006) proposed an evaluation protocol
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for evaluation of similarity measures independent of the optimization procedure
used. They implemented nine different multimodal statistical measures, including
mutual information, normalized mutual information, correlation ratio and Woods
criterion, and applied them to different image types. The authors compared the
performance obtained with these measures with respect to several parameters, such
as accuracy, capture, distinctiveness of the global optimum, and robustness. Their
results varied for the image types studied, so their protocol can be seen as a way of
recommending a similarity measure according to the relevant application. Inglada
and Giros (2004) systematically investigated the application of different similarity
measures to multisensor satellite registration of SPOT and ERS-2 data, including
correlation, correlation ratio, normalized standard deviation, mutual information,
and the related Kolmogorov measure. Pluim et al. (2004) compared the perfor-
mance with respect to seven different information-theoretic similarity measures
(including mutual information) on medical images. They considered specifically
issues, such as smoothness of the optimization surface, accuracy, and optimization
difficulty.

One problem in evaluating image registration algorithms is the comparison of
apples to oranges, that is, the comparison of algorithms implemented by different
research groups using software components that may not be directly equivalent.
It can be hard to compare search strategies, for example, while holding all other
elements of the algorithm fixed, as two implementations may differ slightly in
edge detection or other processing details. In Le Moigne et al. (2003), the authors
presented a modular framework for implementing several algorithms in a common
software system so as to hold processing details fixed, and to allow systematic vari-
ation on elements such as feature extraction, similarity measure and search strategy.
This approach is often taken for comparison of a single element, such as variations
in search or similarity measure, but rarely as to allow variation of several elements.
A second problem for evaluation of registration algorithms is the development of
useful metrics for algorithm performance. In Le Moigne et al. (2004), the authors
extended the previously described general framework to studies of the sensitivity of
registration algorithms to initial estimates of transformation parameters. The study
found that the domains of parameter convergence for different algorithms can be
complex in shape and extent.

Change detection, that is, the recovery of significant temporal or modal changes
between two images, is an important analytic tool in remote sensing, which is
closely related to similarity measure. An underlying assumption associated with
similarity measure is that two corresponding image regions are related. This
assumption is invalid, however, under various circumstances, for example, a forest
has been cut down or a field has been converted to houses. In other words, whereas
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most of the image may match perfectly, certain isolated regions do not. If these
regions can be detected as outliers, then the registration algorithm can ignore them.
For example, cloud detection and masking are essential elements. Radke et al.
(2005) surveyed change detection algorithms, while Hasler et al. (2003) modeled
outliers by finding regions with differing statistics. Im et al. (2007) demonstrated
change detection using correlation image analysis and image segmentation.

3.7 Summary

Image registration is a key, essential element in analysis of Earth remote sensing
imagery. Registration is critical both for initial processing of raw satellite data
for validation, preparation, and distribution of image products, and for end-user
processing of those image products for data fusion, change detection, cartography,
and other analyses. Given the increasing, immense rate of image capture by satellite
systems and the growing complexity of end-user analyses, there is a stronger need
for accurate, validated, fully automatic, and efficient registration algorithms and
software systems. This chapter has surveyed the recent image registration literature
to provide an overview of the current best approaches to this broad, multifaceted
problem.

The image registration literature continues to grow, and the reader may wish to
pursue more recent publications in specialized venues. General surveys and books
on image registration were previously mentioned in the introduction. Examples of
publication venues that frequently include articles on image registration for remote
sensing are the IEEE Transactions on Geoscience and Remote Sensing (TGRS)
and the IEEE Transactions on Image Processing (TIP), which deal, respectively,
with remote sensing issues and image processing and mathematical models. Other
venues where readers can keep their knowledge up-to-date include the yearly IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), the American
Geophysical Union (AGU) Fall and Spring meetings, the annual IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), the IEEE International Con-
ference on Image Processing (ICIP), and the conferences on Neural Information
Processing Systems (NIPS). This short list of venues provides merely a starting
point for further exploration of numerous relevant papers in the area of image
registration.
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