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Abstract

Registration of multiple source imagery is one of the most important issues when
dealing with Earth science remote sensing data where information from multi-
ple sensors exhibiting various resolutions must be integrated. Issues ranging from
different sensor geometries, different spectral responses, to various illumination
conditions, various seasons and various amounts of noise, need to be dealt with
when designing a new image registration algorithm. This chapter represents a first
attempt at characterizing a framework that addresses these issues, in which possible
choices for the three components of any registration algorithm are validated and
combined to provide different registration algorithms. A few of these algorithms
were tested on three different types of datasets: synthetic, multitemporal and mul-
tispectral. This chapter contains the results of these experiments and introduces a
prototype registration toolbox.

14.1 Introduction

In Chapter 1, we showed how the analysis of Earth science data for applications,
such as the study of global environmental changes, involves the comparison, fusion,
and integration of multiple types of remotely sensed data at various temporal,
spectral, and spatial resolutions. For such applications, the first required step is fast
and automatic image registration which can provide precision correction of satellite
imagery, band-to-band calibration, and data reduction for ease of transmission.
Furthermore, future decision support systems, intelligent sensors and adaptive
constellations will rely on real- or near-real-time interpretation of Earth observation
data, performed both onboard and at ground-based stations. The more expert the
system and far-reaching the application, the more important will it be to obtain
timely and accurately registered data.
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In Chapter 3, we surveyed many different registration techniques developed for
different applications, for example, military, medical, as well as remote sensing,
from aircraft and from spacecraft. Despite the wide variety of algorithms available
for image registration, no commercial software seems to fully respond to the needs
of Earth and space data registration. Many of the methods presented in Chapter 3
are or may be applicable to remote sensing problems but, with such a wide choice, it
is necessary to develop a framework to evaluate their performance on well-chosen
remote sensing data. Our objective is to carry out systematic studies to support
image registration users in selecting appropriate techniques for a remote sensing
application based on accuracy and suitability for that application. We carry this
out by surveying, designing, and developing different components of the registra-
tion process to enable the evaluation of their performance on well-chosen multiple
source data, to provide quantitative intercomparison, and to eventually build an
operational image registration toolbox. Of course, the main evaluation of auto-
matic image registration algorithms is performed with regards to their accuracy,
but it is also useful to relate the accuracy to “initial conditions,” that is, the distance
between the initial navigation geolocation and the correct result. As was described
in Chapter 1, depending on the quality of the navigation model and of the ephemeris
data, such initial geolocation may be accurate from within one pixel to tens of pix-
els. Other ways to evaluate image registration algorithms are in terms of their range
of application, geometric and radiometric, and their robustness or reliability. In this
chapter, we present the first steps of such an evaluation using representative regis-
tration components to build a few image registration algorithms. First, a potential
evaluation framework is described. Then, choices for the different components of
image registration are reviewed, and the algorithms combining these components
are described along with their tests on several test datasets. The first two datasets
were synthetic datasets incorporating geometric warping, noise, and radiomet-
ric distortion. The algorithms were tested utilizing multitemporal data from the
Landsat instrument, and multisensor data acquired over several Earth Observing
System (EOS) Land Validation Core Sites. These last datasets include data from the
IKONOS, Landsat-7, Moderate Resolution Imaging Spectroradiometer (MODIS),
and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) sensors featuring multiple
spatial and spectral resolutions.

14.2 A framework for the evaluation of image registration
of remote sensing data

The NASA Goddard Image Registration group was started in 1999 with the goal of
developing and assessing image registration methodologies that will enable accu-
rate multisource integration. In our work, we assume that the data have already
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been corrected according to a navigation model and that they are at a level equiv-
alent to the EOS Level 1B (see Chapter 1 for a definition of EOS data levels).
Assuming that the results of the systematic correction are accurate within a few
or a few tens of pixels, our precision-correction algorithms utilize selected image
features or control points to refine this geolocation accuracy within one pixel or a
subpixel.

Our studies have been following the first two steps (or components) that define
registration algorithms as described in Brown (1992). These are summarized in
Chapter 3:

(1) Extraction of features to be used in the matching process.
(2) Feature matching strategy and metrics.
(3) Resampling or indexing of the data.

For alignment, we consider transformations that vary, from translation only in x
and y, to rotation, scale and translation (RST).

The long-term goal of our research is to build a modular image registration
framework based on these first two components. The concept guiding the develop-
ment of this framework is that various components of the registration process can
be combined in several ways in order to reach optimum registration on a given type
of data and under given circumstances. Thereby, the purpose of this framework is
twofold:

� It represents a testing framework for:
– assessment of various combinations of components as a function of the applications,
– assessment of a new registration component compared to other known ones.

� Eventually, it could be the basis of a registration tool where a user could “schedule”
a combination of components as a function of the application at hand, the available
computational resources, and the required registration accuracy.

Many choices are available for each of the three components defined above.
Our experiments deal with components 1 and 2, first focusing on various types of
features utilizing only correlation-based methods and then looking at these features
with different similarity metrics and strategies.

14.2.1 Feature extraction

14.2.1.1 Correlation-based experiments

Using cross-correlation as a similarity metric, features such as gray levels, edges,
and Daubechies wavelet coefficients were compared using monosensor data (Le
Moigne et al., 1998). Gray level features were matched using either a basic spatial
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correlation or a phase correlation. When using edge features, the registration was
performed in an iterative manner, first estimating independently the parameters of
a rigid transformation on the center region of the two images, and then iteratively
refining these parameters using larger and larger portions of the images (Le Moigne
et al., 1997). Wavelet features were also extracted and registered after decomposing
both images with a discrete orthonormal basis of wavelets (Daubechies’ least asym-
metric filters; see Daubechies, 1992 in a multiresolution fashion. Low-pass features,
which provide a compressed version of the original data and some texture informa-
tion, and high-pass features, which provide detailed edge-like information, were
both considered as potential registration features (see Le Moigne et al., 2002a, and
Chapter 11). This work was focused on correlation-based methods combined with
an exhaustive search. One of the main drawbacks of this method is the prohibitive
amount of computation required when the number of transformation parameters
increases (e.g., affine transformation vs. shift-only), or when the size of the data
increases (full-size scenes vs. small portions; multiband processing vs. monoband).
To answer some of these concerns, we investigated different types of similarity met-
rics and different types of feature matching strategies (Subsection 14.2.2).

For this first evaluation, we use three datasets: two synthetic datasets for
which the true transformation parameters were known, and one dataset for which
no ground truth was available but manual registration was computed. Accuracy
and computation times were used as evaluation criteria. Results showed that, as
expected, edges or edge-like features like wavelets are more robust to noise, local
intensity variations or time-of-the day conditions than original gray level values.
On the other hand, when only looking for translation on cloud-free data, phase
correlation provides a fast and accurate answer. Comparing edges and wavelets,
orthogonal wavelet-based registration is usually faster, although not always as accu-
rate as a full-resolution edge-based registration. This lack of consistent accuracy
of orthogonal wavelets is mainly due to the lack of translation invariance, and is
presented in more detail in the second set of experiments.

14.2.1.2 Wavelet-based experiments

Chapter 11 describes the set of experiments that we performed using wavelets or
wavelet-like features. These experiments verified that separable orthogonal wavelet
transforms are not translation- and rotation-invariant. By lack of translation (resp.
rotation) invariance, we mean that the wavelet transform does not commute with
the translation (resp. rotation) operator. The two studies described in Chapter 11
showed that:

(1) Low-pass subbands of orthogonal wavelets are relatively insensitive to translation,
provided that the features of interest have an extent at least twice the size of the
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wavelet filters, while high-pass subbands are more sensitive to translation, although
peak correlations are high enough to be useful (Stone et al., 1999).

(2) Simoncelli’s steerable filters perform better than Daubechies’ filters. Rotation errors
obtained with steerable filters are minimum, independent of rotation size or noise
amount. Noise studies also reinforced the results that steerable filters show a better
robustness to larger amounts of noise than do orthogonal filters (Zavorin and Le Moigne,
2005).

14.2.2 Feature matching

We then considered various similarity metrics and various matching strategies that
can be utilized for feature matching of remote sensing data. As an alternative to
correlation, mutual information is another similarity metric that was first intro-
duced in Maes et al. (1997) and was used very successfully for medical image
registration. Mutual information, or relative entropy, is a basic concept from infor-
mation theory which measures the statistical dependence between two random
variables; or, equivalently, it measures the amount of information that one vari-
able contains about another. Experiments described in Cole-Rhodes et al. (2003)
show that mutual information may be better suited for subpixel registration as it
produces consistently sharper optimum peaks than correlation, thereby yielding
higher accuracy.

Mutual information is particularly efficient when used in conjunction with an
optimization method, for example, a steepest gradient-based type method like the
one described in Irani and Peleg (1991) or a Levenberg-Marquardt optimization
like the one utilized for medical image registration and described in Thévenaz et al.
(1998). Different optimization methods are described in Chapter 12 and in Eastman
and Le Moigne (2001). Gray levels, edge magnitudes or low-frequency wavelet
information could be used as input to these optimization methods. In Cole-Rhodes
et al. (2003), mutual information was combined with a stochastic gradient search
and the results showed that mutual information is generally found to optimize with
one-third the number of iterations required by correlation.

We also studied the use of a statistically robust feature matching method based
on the use of nearest-neighbor matching and a generalized Hausdorff distance met-
ric (Mount et al., 1999; Netanyahu et al., 2004). This method (also described in
Chapter 8) is based on the principle of point mapping with feedback. Specifically,
given corresponding sets of control points in the reference and the input images
within a prespecified transformation (e.g., rigid, affine), this method derives a
computationally efficient algorithm to match these point patterns. The algorithms
described use the partial Hausdorff distance and derive the matching transforma-
tion either by a geometric branch-and-bound search of transformation space or by
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Figure 14.1. Modular approach to image registration combining various choices
for feature extraction, similarity metrics, and matching strategy. (Source: Le
Moigne et al., 2003, c© IEEE, reprinted with permission.)

using point alignments. This method has been applied successfully to multitem-
poral Landsat data using Simoncelli’s overcomplete wavelet features; results are
described in Subsection 14.3.2.2 (see also Netanyahu et al., 2004, for details).

14.2.3 Testing framework

The investigations described in Subsections 14.2.1 and 10.4.2 led to a first version
of a testing framework illustrated in Fig. 14.1, in which a registration algorithm is
defined as the combination of a set of features, a similarity measure, and a matching
strategy. In this framework, features can be either gray levels, low-pass features
from Simoncelli steerable filters decomposition or from a spline decomposition, or
Simoncelli band-pass features; similarity metrics can be either cross-correlation,
the L2-norm, mutual information or a Hausdorff distance; matching strategies are
based either on a fast Fourier correlation, one of the three optimization meth-
ods (steepest gradient descent, a Levenberg-Marquardt technique and a stochastic
gradient algorithm), or a robust feature matching approach.

By combining these different components, five algorithms were developed and
tested. These are compared in Subsection 10.4.3:

� Method 1: Gray levels matched by fast Fourier correlation (Stone et al., 2001). We will
label it FFC.

� Method 2: Spline or Simoncelli pyramid features matched by optimization and an L2-
norm using the algorithm developed by Thévenaz et al. (1998) and Zavorin and Le
Moigne (2005). We will label it TRU.
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� Method 3: Spline or Simoncelli pyramid features matched by optimization and a mutual
information criterion using the algorithm developed by Thévenaz et al. (1998) and
Zavorin and Le Moigne (2005). We will label it TRUMI.

� Method 4: Spline or Simoncelli pyramid features matched by optimization of the mutual
information criterion using the Spall algorithm (Cole-Rhodes et al., 2003). We will label
it SPSA.

� Method 5: Simoncelli wavelet features using a robust feature matching algorithm and a
generalized Hausdorff distance (Netanyahu et al., 2004). We will label it RFM.

For some of the methods (1 and 5), registration is computed on individual
subimages and then integrated by computing a global transformation. For the
others (2 through 4), registration is computed on the entire images but iteratively,
using pyramid decompositions. Another method, called GGD, and based on gray-
level matching using a gradient descent algorithm with an L2-norm, was utilized as
a reference in early experiments, but since it can be considered as a special case of
Method 2, TRU, it will not be systematically evaluated in most of the experiments
described in Section 14.3. More details on GGD can be found in Eastman and Le
Moigne (2001).

14.3 Comparative studies

In this section, we describe systematic studies that were performed to compare the
five algorithms defined in Subsection 14.2.3. Assessing an image registration algo-
rithm for subpixel accuracy and for robustness to noise and to initial conditions,
using remote sensing data, presents some difficulty since often ground truth is
not available. Interleaving two images for visual assessment can detect gross mis-
matches and global misalignment but is difficult to extend to quantitative subpixel
evaluation. In a few cases, a limited number of control points are known with highly
accurate and absolute Ground Positioning System (GPS) information and are used
to compute an approximation of the algorithm’s accuracy. Manual registration can
be used to calculate the unknown transformation but it is uncertain if it is accurate
enough to test subpixel accuracy on small regions. Another approach is to generate
synthetic image pairs by matching one image against a transformed and resampled
version of itself with or without added noise. To avoid some resampling issues
this can be done by using high-resolution imagery and downsampling to a lower
resolution using an appropriate point spread function to generate both images in
a pair. While useful, this approach is limited in realistically modeling noise, tem-
poral scene changes or cross-sensor issues. Yet another approach is to use circular
registration results on natural imagery when three or more overlapping images are
available. In this case, the transformations should compose to yield the identity – for
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three images registered pairwise by T1, T2, and T3, the composition T1 o T2 o T3

should be close to the identity transformation (Le Moigne et al., 2002b).
For our experiments, we utilize three types of test data: synthetic data, multitem-

poral data and multisensor data. This section describes the test datasets, followed
by the corresponding experiments and the results obtained when testing the five
algorithms described in Subsection 14.2.3.

14.3.1 Test data

14.3.1.1 Synthetic datasets

Our goal is to evaluate the strength of various algorithms when applied to many
types of satellite data, so test data sets should include imagery from different
platforms, with different spatial and spectral resolutions, taken at various dates.
The disadvantage of such data is that in the majority of cases, ground truth, if
available at all, is approximate at best. Therefore, in our experiments, we first
use synthetic images created by a controlled process, designed to emulate real
data (Zavorin and Le Moigne, 2005). Three types of transformations were applied
in various combinations to a given “source” image to produce synthetic test data,
namely, (1) geometric warping, (2) radiometric variations, and (3) addition of noise:

� Geometric warping was introduced by simply applying an RST transformation with
predetermined amounts of shift, rotation and/or scale to the source image. The resulting
warped image is radiometrically identical to the source. The scale was fixed at a value
close to 0.95 while “bundling together” the different shifts and rotations. This was done
by varying an auxiliary parameter α and assigning its value to tx, ty and θ . The use of this
parameter decreases the amount of required computations, thus making the experiments
faster and easier to interpret, while still keeping the essence of significantly varying shifts
and rotations.

� Radiometric variations were introduced to mimic how an instrument would actually
process a scene. To do this an image representing the “real” scene is convolved with a
point spread function (PSF) (Lyon et al., 1997). The PSF may or may not correspond to a
specific sensor, but it is very important that it does not introduce any geometric warping
to the image. In this chapter, we use a simple PSF that was constructed by convolving
with itself a 512-by-512 image that was “black” except for the 5-by-5 “white” center.
A similar approach for synthetic image generation was used in Stone et al. (2001) and
Foroosh et al. (2002), where Gaussian point spread functions were applied. This general
approach can potentially be used to synthesize various multisensor satellite data.

� Gaussian noise was added to emulate imperfections of optical systems and of models
used in preprocessing of satellite data. The amount of additional noise is usually specified
in terms of signal-to-noise ratio (SNR). The SNR of n dB is defined as:

n = 10 · log10
Var (image)

Var (noise)
.
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By using these transformations, two synthetic datasets were created:

(1) Warping & noise (or “SameRadNoisy”): The first dataset was created by combining
geometric warping with noise. The auxiliary parameter α, defining the shifts and
rotation, was varied between 0 and 1 (corresponding to shifts between 0 and 1 pixels,
and rotations between 0 and 1 degrees), with a step of 0.025, while noise varies
between −15 dB and 20 dB with a step of 1. The parameter α was chosen relatively
small, compared to the experiments reported in Zavorin and Le Moigne (2005), to
ensure convergence in most cases. A total of 1476 ref-input pairs was generated for
this dataset.

(2) Warping & PSF (or “DiffRadNoiseless”): The second dataset was created by combining
geometric warping with radiometric variations using the PSF described above. Again
shifts and rotation were varied, using the auxiliary parameter α, before the warped
image was convolved with the PSF. A total of 3321 ref-input pairs was generated for
this case.

Figures 14.2(a)–(c) show the original image and examples of the synthetic
images created from it.

14.3.1.2 Multitemporal datasets

The multitemporal datasets have been acquired over two different areas: (1) the
Washington DC/Baltimore area (Landsat WRS-2 Path 15, Row 33) and (2) Cen-
tral Virginia (Path 15, Row 34). A multitemporal dataset of Landsat-5/Thematic
Mapper (TM) and Landsat-7/Enhanced Thematic Mapper (ETM+) images was
assembled for each region (see Table 14.1 and Netanyahu et al., 2004). For each
region, one ETM+ scene was picked as the “reference” scene; the systematic
navigational information provided with the reference scene was considered to be
“the truth.” A number of reference chips (eight 256 × 256 pixel subregions for
Washington DC/Baltimore and six 256 × 256 pixel subregions for Central Vir-
ginia) were extracted from these reference scenes. For an operational system, it
is reasonable to assume that a database would include between 5 and 10 well-
distributed “reference chips” per Landsat scene; they are usually defined as small
subimages representing well-contrasted visual landmarks, such as bridges, city
grids, islands, or high-curvature points in coastlines, and correspond to cloud-free,
different seasons and/or different reflectance conditions of each landmark area.
With regards to our multitemporal datasets, we have only one reference chip for
each landmark area, so only one season and one radiometry are available for ref-
erence; therefore these datasets present the following challenges. The Washington
DC/Baltimore data involves multiple sensors (ETM+ and TM), and although the
band definitions of these sensors are identical, their spectral responses are dif-
ferent; thus those scenes present a challenge due to spectral differences. On the
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(a) (b)

(c)

Figure 14.2. Synthetic image samples: (a) Original image; (b) warping & noise;
(c) warping & PSF. (Source: Le Moigne et al., 2004, c© IEEE, reprinted with
permission.)

other hand, the Central Virginia dataset spans multiple seasons, and thus presents a
challenge in matching features that have very different appearances due to seasonal
effects.

All scenes, reference and input, were projected using a WGS-84 model (National
Imagery and Mapping Agency, 2000). Using the Universal Transverse Mercator
(UTM) coordinates of the four corners of each chip and the UTM coordinates of
the four corners of each input scene, a corresponding window was extracted for
each chip and each input scene. Figures 14.3 to 14.6 show four of the reference
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Table 14.1 Multitemporal Landsat datasets. (Source: Netanyahu et al., 2004,
c© IEEE, reprinted with permission)

Location Acquisition date Platform/sensor

Washington, DC (P15 R33) July 28, 1999 (990728) (reference) Landsat-7 ETM+
August 27, 1984 (840827) Landsat-5 TM
May 16, 1987 (870516) Landsat-5 TM
August 12, 1990 (900812) Landsat-5 TM
July 11, 1996 (960711) Landsat-5 TM

Central Virginia (P15 R34) October 7, 1999 (991007) (reference) Landsat-7 ETM+
August 4, 1999 (990804) Landsat-7 ETM+
November 8, 1999 (991108) Landsat-7 ETM+
February 28, 2000 (000228) Landsat-7 ETM+
August 22, 2000 (000822) Landsat-7 ETM+

Figure 14.3. Washington DC/Baltimore area: Landsat multitemporal dataset. A
reference chip and four input subwindows.

chips and, for each, four corresponding windows from the input scenes, for both
the Washington DC/Baltimore and the Central Virginia areas.

For the experiments presented below, each input Landsat-5/ETM or Landsat-
7/ETM+ window is registered to its corresponding chip. In our work, we also
assume that the transformation between incoming Landsat scenes and reference
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Figure 14.4. Washington DC/Baltimore area: Landsat multitemporal dataset.
Another reference chip and four input subwindows.

Figure 14.5. Central Virginia area: Landsat multitemporal dataset. A reference
chip and four input subwindows.
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Table 14.2 Manual registration of all multitemporal
datasets. (Source: Netanyahu et al., 2004, c© IEEE,
reprinted with permission)

Manual ground truth
Reference Input
scenes scenes θ tx ty

DC – 990728 840827 0.026 5.15 46.26
870516 0.034 8.58 45.99
900812 0.029 15.86 33.51
960711 0.031 8.11 103.18

VA – 991007 990804 0.002 0.04 3.86
991108 0.002 1.20 13.53
000228 0.008 1.26 2.44
000822 0.011 0.35 9.78

Figure 14.6. Central Virginia area: Landsat multitemporal dataset. Another refer-
ence chip and four input subwindows.

chips is limited to the composition of a rotation and a translation. Then, for each pair
of scenes, a global registration can be computed with a generalized least-squares
method that combines all previous local registrations (see Netanyahu et al., 2004,
for more details). Manual registration is available for this dataset to compute
algorithm accuracies; see Table 14.2. According to the manual ground truth,
the DC datasets present much larger transformations, with rotations of about
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0.03 radians and shifts varying between 33 and 103 pixels in the vertical direction.
On the other hand, the transformations of the VA datasets have rotations ranging
from 0.002 radians to 0.011 radians, with the largest translation shift of about
13 pixels.

14.3.1.3 Multisensor datasets

The multisensor datasets used for this study were acquired by four different sensors
over four of the MODIS Validation Core Sites (Morisette et al., 2002). The four
sensors and their respective bands and spatial resolutions are:

(1) IKONOS bands 3 (red; 632–698 nm) and 4 (near-infrared (NIR); 757–853 nm), at a
spatial resolution of 4 meters per pixel,

(2) Landsat-7/ETM+ bands 3 (red; 630–690 nm) and 4 (NIR; 750–900 nm), at a spatial
resolution of 30 meters per pixel,

(3) MODIS bands 1 (red; 620–670 nm) and 2 (NIR; 841–876 nm), at a spatial resolution
of 500 meters per pixel,

(4) SeaWiFS bands 6 (red; 660–680 nm) and 8 (NIR; 845–885 nm), at a spatial resolution
of 1000 meters per pixel.

The four sites represent four different types of terrain in the United States:

(1) A coastal area with the Virginia site, data acquired in October 2001;
(2) An agricultural area with the Konza Prairie in the state of Kansas, data acquired July

to August 2001;
(3) A mountainous area with the Cascades site, data acquired in September 2000;
(4) An urban area with the USDA, Greenbelt, Maryland site, data acquired in May 2001.

Figures 14.7 to 14.9 show some examples of extracted subimages from the
IKONOS, Landsat and MODIS sensors.

14.3.2 Experiments and results

For all experiments, when accurate ground truth is available, a standard way of
assessing registration accuracy is by using the root mean square (RMS) error.
Details of how to compute RMS are given in Zavorin and Le Moigne (2005),
but briefly, if a ground truth transformation is given by (tx1 , ty1 , θ1) and a com-
puted transformation is given by (tx2 , ty2 , θ2), then the RMS error is given by the
following:

E = (N2
x + N2

y )

3
· 2 cos θε + (

t2
xε

+ t2
yε

)

+ (Nxtxε
+ Nytyε

) cos θε − (Nxtyε
− Nytxε

) cos θε, (14.1)
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ETM+

IKONOS

Figure 14.7. ETM+ and IKONOS data of the Virginia coastal area. See Plate 7
in color plates section. (Source: Le Moigne et al., 2004, c© IEEE, reprinted with
permission.)

ETM+ IKONOS

Figure 14.8. ETM+ and IKONOS data of the Cascades mountainous area. See
Plate 8 in color plates section. (Source: Le Moigne et al., 2004, c© IEEE, reprinted
with permission.)
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Figure 14.9. ETM+ and MODIS data of the Konza agricultural area. See Plate 9
in color plates section.

where (txε
, tyε

, θε) represents the “error” transformation between (tx1 , ty1 , θ1) and
(tx2 , ty2 , θ2), Nx represents the size of the images in the x direction, and Ny represents
the size of the images in the y direction.

14.3.2.1 Synthetic data experiments

Using the two synthetic datasets described in Subsection 14.3.1.1, we tested four
of the algorithms defined in Subsection 14.2.3, namely FFC, TRU, TRUMI and
SPSA. For each of the three last algorithms, we utilized three wavelet-like types
of features: spline (SplC), Simoncelli low-pass (SimL) and Simoncelli band-pass
(SimB). For all three variations of all algorithms, the initial guess was chosen as
(tx, ty, θ ) = (0, 0, 0), and four pyramid levels were utilized.

Accuracy is measured using Eq. (14.1), so that the RMS error is obtained as a
function of either shifts, rotation, and noise (for the first group of datasets), or as
a function of shifts, rotation, and radiometric difference (for the second group).
Each time an algorithm is run on a pair of images, the resulting RMS error is
computed and compared to several thresholds, {0.025, 0.05, 0.075, 0.1, 0.2, 0.25,
0.5, 0.75, 0.75, 1}. Table 14.3 shows the results obtained in this experiment, where
for each data type, algorithm, and threshold value, an integer value between 0 and
100 represents the percentage of cases for which the RMS error was below the
corresponding threshold value, out of all cases tested. Essentially, the bigger the
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Table 14.3 Summary of experimental results for synthetic data; percentage of
cases for which RMS is below threshold

TRU TRUMI SPSA FFC
Thresh SplC SimB SimL SplC SimB SimL SplC SimB SimL Gray

SameRadNoisy
0.025 27 31 35 1 0 2 2 3 12 10
0.05 35 47 41 25 26 29 11 16 28 33
0.075 39 53 43 33 42 41 18 26 37 44
0.1 42 59 44 41 52 45 23 34 41 51
0.2 51 75 50 61 70 62 45 52 54 58
0.25 53 80 53 67 74 65 50 58 58 60
0.5 63 91 63 81 85 75 63 72 75 67
0.75 68 95 68 83 90 80 70 80 83 70
1 74 97 72 83 93 83 74 83 88 71

DiffRadNoiseless
0.025 1 2 0 1 1 1 1 3 1 1
0.05 1 28 0 5 5 9 1 19 6 3
0.075 1 47 0 17 14 19 5 39 18 9
0.1 1 63 0 27 23 29 19 54 44 20
0.2 1 86 1 59 51 60 85 80 98 41
0.25 20 86 17 72 62 76 89 86 100 43
0.5 83 86 85 86 74 97 90 92 100 50
0.75 88 86 91 86 74 97 90 92 100 56
1 90 86 93 86 74 97 90 92 100 60

Legend: Best (bold); Second best (underlined); Third best (italic).

number the better is the algorithm. The table also shows, for each threshold, the
best algorithm (in bold), the second best (underlined), and the third best one (in
italic).

In summary, the results show that for the “SameRadNoisy” dataset, TRU with
SimB features performs consistently the best for nearly all thresholds, with an
accuracy of 0.25 pixels 80% of the time, with TRUMI using SimB features being
second best most of the time. For the “DiffRadNoiseless” dataset, TRU with SimB
is best for smaller thresholds, which means that when it converges, it is more
accurate, but SPSA with SimL converges more often for higher thresholds and we
can say that it reaches accuracies of 0.2 pixels with a 98% probability. Overall,
these results show that:

(1) Simoncelli-based methods outperform those with the spline pyramid.
(2) TRUMI (based on the mutual information) does not really perform better than TRU

(based on an L2-norm).
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Figure 14.10. Contour plot “SameRadNoisy” dataset; TRU algorithm and a
threshold of 0.5.

(3) SimL performs better than SimB for images of different radiometry, but overall all
other algorithms seem to perform more poorly for different radiometries than for noisy
conditions.

Figures 14.10 to 14.13 show the contour plots corresponding to the results
obtained by the four algorithms for the “SameRadNoisy” dataset and a threshold of
0.5, where the white areas depict the regions of convergence of the algorithms with
an error less than the threshold. As expected from the results shown in Table 14.3,
the plots show that TRU used with SimB (Fig. 14.10) has the largest convergence
region, followed by TRUMI with any features (Fig. 14.11). Similarly, Figs. 14.14–
14.17 show the contour plots for the “DiffRadNoiseless” dataset and a threshold
of 0.2. Again, as expected from Table 14.3, the plots show that for this dataset,
SPSA has the largest region of convergence for all types of features, followed by
TRU-SimB.

These experiments do not include a study of the sensitivity of the different
algorithms to the initial conditions, but previous results reported in Le Moigne
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Figure 14.11. Contour plot “SameRadNoisy” dataset; TRUMI algorithm and a
threshold of 0.5.

et al. (2004) showed that SimB was more sensitive to the initial guess than
SplC or SimL and that SPSA was more robust to initial conditions than TRU or
TRUMI.

14.3.2.2 Multitemporal experiments

FFC and optimization-based methods Similarly to the experiments performed on
the synthetic datasets, for both DC and VA datasets, we compare the four algorithms,
FFC, TRU, TRUMI and SPSA, using the three types of wavelets, SplC, SimB, and
SimL for the three latter ones. In this case, not only do we compare the accuracy of
the different algorithms but we also assess the sensitivity of the optimization-based
methods to the initial conditions, by setting the initial guess of the ground truth to
the values given in Table 14.2; that is, if (tx0 , ty0 , θ0) is the ground truth between
Scenes 1 and 2, the registration is started with the initial guess (d · tx0 , d · ty0 , d · θ0)
with d taking the successive values {0.0, 0.1, 0.2, 0.3, . . . , 0.9, 1.0}.
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Figure 14.12. Contour plot “SameRadNoisy” dataset; SPSA algorithm and a
threshold of 0.5.

Results show that for the VA dataset, all four algorithms perform well. There is
very little difference between their accuracy regardless of the initial guess or of the
wavelet type used. Tables 14.4a–14.4d show these results for d = 0.0 and the four
algorithms.

For the DC dataset, unlike the results obtained for VA, we observe that TRU,
TRUMI, and SPSA exhibit significant sensitivity to the initial guess, while FFC is
essentially insensitive and produces overall the best results. Table 14.5 shows the
numbers of correct runs, out of the total of 32 (4 scenes by 8 chip-window pairs)
for each algorithm, each pyramid type, and each value of d between 0.0 and 1.0.
The results show the following:

� Except for FFC, which is the most insensitive to the initial guess, the algorithms improve
performance more or less monotonically as the initial guess gets closer to the ground
truth.
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Figure 14.13. Contour plot “SameRadNoisy” dataset; FFC algorithm and a thresh-
old of 0.5.

� TRU, TRUMI, and SPSA are comparable in terms of initial guess sensitivity, with SPSA
performing slightly better than the other two.

� Among the three pyramids, SimL seems to perform best in terms of initial guess
sensitivity.

These very different results between the DC dataset and the VA dataset might
be explained by the characteristics described for the DC area, different sensors and
different seasons, as well as by the fact that the DC images tend to have higher
frequencies than the VA images. When the images contain high frequencies there
is more probability for the optimization algorithms to fall into a local optimum,
especially when the initial guess is not very close to the correct solution. Also, FFC
is not a local algorithm, it finds the best correlation for each chip, wherever that
correlation lies in the image; the algorithm diminishes the effect of false features
by correlating a large number of chips, and removing the outliers. The difference
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Figure 14.14. Contour plot “DiffRadNoiseless” dataset; TRU algorithm and a
threshold of 0.2.

in results between the VA and DC datasets can also be explained by the amount
of shifts between reference and input scenes in the DC area being much larger
than the ones found in the Virginia area (probably due to the fact that the input
DC scenes were acquired by Landsat-5 and the reference by Landsat-7, which has
much better navigation capabilities).

Robust feature matching Although the RFM algorithm was not tested simultane-
ously with the previous algorithms on the multitemporal datasets, results previously
obtained in Netanyahu et al. (2004), which are summarized in Tables 14.6a and
14.6b, show the following:

� The rotation angle obtained in each case is very small (on the order of a few hundredths of
a degree at most). Thus the affine transformation computed can be viewed as essentially
“translation only,” which is in accordance with Landsat’s specifications.
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Figure 14.15. Contour plot “DiffRadNoiseless” dataset; TRUMI algorithm and a
threshold of 0.2.

� There is a very good agreement between the transformation parameters obtained by RFM
and the ground truth shown in Table 14.2. The average errors for the shifts in x and y
were 0.21 and 0.59, respectively, for the DC scenes, and 0.26 and 0.49, respectively, for
the Virginia scenes.

RFM was not studied for its sensitivity to initial conditions and this will need to
be investigated and compared to the other methods in the future. More details on
this method can be found in Netanyahu et al. (2004) and in Chapter 8.

14.3.2.3 Multisensor experiments

Algorithm comparison For these experiments, multisensor registrations were per-
formed in “cascade”: IKONOS to ETM+, ETM+ to MODIS, and MODIS to
SeaWiFS. Wavelet decomposition was utilized, not only to compute registration
features, but also to bring various spatial resolution data to similar resolutions, by
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Figure 14.16. Contour plot “DiffRadNoiseless” dataset; SPSA algorithm and a
threshold of 0.2.

performing recursive decimation by 2. For example, after three levels of wavelet
decomposition, the IKONOS spatial resolution was brought to 32 meters that, com-
pared to the Landsat spatial resolution, corresponds to a scaling of about 1.07. This
was the scaling expected when registering IKONOS to Landsat data.

For all scenes, we extracted subimages from the original images so that their
dimensions in x and y were multiples of 2L, where L is the maximum number of
wavelet decomposition levels used in the registration process.

We first performed a comparison of the algorithms with the Konza agricultural
dataset, using exhaustive search: in order to simplify this comparison, we resam-
pled the IKONOS and ETM+ data to the respective spatial resolutions of 3.91
and 31.25 meters, using the commercial software, PCI R©. This slight alteration in
the resolution of the data enables us to obtain compatible spatial resolutions by
performing recursive decimation by 2 of the wavelet transform, and therefore to
only search for translations and rotations. Overall, we considered eight different
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Figure 14.17. Contour plot “DiffRadNoiseless” dataset; FFC algorithm and a
threshold of 0.2.

subimages, two for each band of the four sensors. We performed manual registra-
tion for two pairs of data (the two bands of IKONOS and ETM data) and found
the transformation tx = 2, ty = 0, and θ = 0◦. Then, five methods were applied:
(a) FFC, (b) GGD, defined in Section 14.2.3, (c) exhaustive search using Simoncelli
band-pass and correlation, (d) exhaustive search using Simoncelli band-pass and
mutual information, and (e) RFM, defined in Subsection 14.2.3. Results are shown
in Table 14.7. All methods confirm the coregistration of the two ETM bands, red and
NIR; methods (b), (c), and (d) all found the correct transformation for the registra-
tion of IKONOS to ETM, while methods (a) and (e) had 1 or 2 pixel misregistration;
all algorithms discovered a misregistration between the MODIS and the SeaWiFS
datasets, which was then confirmed manually to be of −8 pixels in the x direction.
Overall, all results obtained by the five algorithms were similar within 0.5◦ in
rotation and 1 pixel in translation. More details can be found in Le Moigne et al.
(2001).
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324 Part IV Applications and Operational Systems

Table 14.4d Results of multitemporal experiments for the
Central Virginia area using FFC and an initial guess of (0, 0, 0)

FFC Algorithm tx ty θ RMS error

990804
Chip1 Wind1 0.218 −3.724 −0.053 0.204
Chip2 Wind2 0.038 −4.001 −0.008 0.322
Chip3 Wind3 0.056 −4.030 0.025 0.358
Chip4 Wind4 −0.001 −3.975 0.007 0.298
Chip5 Wind5 0.145 −4.022 −0.009 0.382
Chip6 Wind6 −0.022 −4.115 0.006 0.455

MEDIAN 0.047 −4.011 −0.001 0.340

991108
Chip1 Wind1 1.152 −13.537 0.007 0.114
Chip2 Wind2 1.297 −13.782 0.035 0.294
Chip3 Wind3 1.286 −13.675 0.070 0.247
Chip4 Wind4 1.138 −13.267 0.005 0.285
Chip5 Wind5 1.140 −13.913 0.027 0.398
Chip6 Wind6 0.975 −13.296 0.014 0.324

MEDIAN 1.146 −13.606 0.020 0.289

000228
Chip1 Wind1 −1.234 −2.348 −0.084 0.191
Chip2 Wind2 −1.078 −2.899 −0.052 0.504
Chip3 Wind3 −1.057 −2.600 0.030 0.272
Chip4 Wind4 −1.017 −2.083 0.025 0.434
Chip5 Wind5 −0.986 −2.891 −0.013 0.529
Chip6 Wind6 −1.268 −2.187 −0.001 0.263

MEDIAN −1.068 −2.474 −0.007 0.353

000822
Chip1 Wind1 0.524 −9.513 −0.021 0.406
Chip2 Wind2 0.053 −9.677 −0.104 0.398
Chip3 Wind3 0.186 −9.848 −0.059 0.227
Chip4 Wind4 0.614 −9.594 −0.106 0.370
Chip5 Wind5 0.127 −9.887 0.021 0.262
Chip6 Wind6 −126.590 −45.147 76.912 273.851

MEDIAN 0.157 −9.763 −0.040 0.384

We performed registrations of all ETM and IKONOS multisensor data using
five of the algorithms defined in Subsection 14.2.3: (a) FFC, (b) TRU with SplC,
(c) TRU with SimB, (d) TRU with SimL, and (e) SPSA with SimB (Le Moigne
et al., 2003). Overall, for each site, six different registrations are performed, cor-
responding to inter- and intra-sensor registrations, including cross-spectral (multi-
modal) matching. Results are shown in Tables 14.8 and 14.9 for two of the sites,
Cascades-Mountainous and Virginia-Coast. For this study, no exact ground truth is
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Table 14.5 Number of cases that converged (out of 32) for the DC dataset,
running four algorithms with the initial guess varying between the origin
(d = 0.0) and ground truth (d = 1.0)

TRU TRUMI SPSA

d SplC SimB SimL SplC SimB SimL SplC SimB SimL FFC

0.0 7 5 12 10 2 14 5 3 7 30
0.1 8 4 14 8 4 12 5 4 11 30
0.2 8 6 16 8 7 15 7 5 15 30
0.3 8 8 16 11 6 19 11 12 17 30
0.4 10 14 21 10 9 17 16 16 20 30
0.5 15 19 25 15 12 21 17 17 24 30
0.6 16 23 27 15 16 25 22 26 27 30
0.7 22 26 28 20 26 29 24 27 28 30
0.8 24 31 31 27 28 30 31 29 32 30
0.9 30 32 31 29 32 31 32 32 32 30
1.0 31 32 31 32 32 31 32 32 32 30

Table 14.6a Global transformation versus ground truth parameters for the four
scenes in the DC/Baltimore area. The rotation angle is in degrees. (Source:
Netanyahu et al., 2004, c© IEEE, reprinted with permission)

RFM registration Manual ground truth Absolute error

Scene θ tx ty θ tx ty |�θ | |�tx | |�ty |
840827 0.031 4.72 −46.88 0.026 5.15 −46.26 0.005 0.43 0.62
870516 0.051 8.49 −45.62 0.034 8.58 −45.99 0.017 0.09 0.37
900812 0.019 17.97 −33.36 0.029 15.86 −33.51 0.010 0.11 0.15
960711 0.049 8.34 −101.97 0.031 8.11 −103.18 0.018 0.23 1.21

Table 14.6b Global transformation versus ground truth parameters for the four
scenes in the Virginia area. The rotation angle is in degrees. (Source: Netanyahu
et al., 2004, c© IEEE, reprinted with permission)

RFM registration Manual ground truth Absolute error

Scene θ tx ty θ tx ty |�θ | |�tx | |�ty |
990804 0.009 0.36 3.13 0.002 0.04 3.86 0.011 0.40 0.73
991108 0.000 1.00 13.00 0.002 1.20 13.53 0.002 0.20 0.53
000228 0.005 0.88 −2.32 0.008 1.26 2.44 0.003 0.38 0.12
000822 0.002 0.41 9.22 0.011 0.35 9.78 0.013 0.06 0.56
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Table 14.8 Results of five algorithms on the Cascades-Mountainous area (initial
guess = (1.0, 0.0, 0.0, 0.0))

Cascades FFC TRU/SplC TRU/SimB TRU/SimL SPSA/SimB Median

1. IKO-red/IKO-NIR
Scale 1.000 1.000 1.000 1.000 1.000 1.000
θ 0.000 0.001 0.001 0.001 0.018 0.001
tx 0.014 −0.024 −0.036 −0.046 0.020 −0.024
ty 0.014 −0.160 −0.183 −0.209 0.054 −0.160

2. IKO-red/ETM-red
Scale 1.064 1.138 1.064 1.179 1.065 1.065
θ 0.092 1.567 0.074 2.542 0.130 0.130
tx 8.674 10.918 8.652 8.993 8.777 8.777
ty 10.162 15.750 10.044 11.330 10.039 10.162

3. IKO-red/ETM-NIR
Scale 1.065 1.064 1.065 1.000 1.064 1.064
θ 0.088 0.091 0.084 0.000 0.114 0.088
tx 8.694 8.542 8.641 0.000 8.898 8.641
ty 10.217 10.153 10.129 0.000 10.224 10.153

4. IKO-NIR/ETM-red
Scale 1.064 1.097 1.150 no convrg 1.066 1.081
θ 0.039 −1.153 2.108 no convrg 0.128 0.083
tx 8.562 13.130 3.150 no convrg 8.732 8.647
ty 10.164 12.494 9.572 no convrg 9.924 10.044

5. IKO-NIR/ETM-NIR
Scale 1.065 1.065 1.065 1.065 1.065 1.065
θ 0.109 0.068 0.070 0.066 0.110 0.070
tx 8.668 8.687 8.704 8.663 8.663 8.668
ty 10.167 10.148 10.140 10.153 10.156 10.153

6. ETM-red/ETM-NIR
Scale 1.000 1.000 1.000 1.000 1.000 1.000
θ −0.001 0.000 0.000 0.000 0.093 0.000
tx 0.079 0.000 0.000 0.000 0.734 0.000
ty −0.029 0.000 0.000 0.000 0.942 0.000

7. IKO-red to IKO-NIR to ETM-NIR to ETM-red
tx 8.761 8.663 8.668 8.617 9.417
ty 10.151 9.988 9.957 9.944 11.152

Round-robin error |7 – 2|
tx 0.087 2.255 0.016 0.377 0.641
ty 0.010 5.762 0.087 1.387 1.112

8. IKO-red to ETM-red to ETM-NIR
tx 8.754 10.918 8.652 8.993 9.511
ty 10.133 15.750 10.044 11.330 10.981

(cont.)
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Table 14.8 (cont.)

Cascades FFC TRU/SplC TRU/SimB TRU/SimL SPSA/SimB Median

Round-robin error |8 – 3|
tx 0.059 2.377 0.011 8.993 0.613
ty 0.085 5.597 0.085 11.330 0.757

9. IKO-NIR to ETM-NIR to ETM-red
tx 8.747 8.687 8.704 8.663 9.397
ty 10.138 10.148 10.140 10.153 11.098

Round-robin error |8 – 4|
tx 0.186 4.443 5.554 no convrg 0.665
ty 0.026 2.346 0.567 no convrg 1.174

available, but we expect the multimodal intra-sensor registrations to be scale s = 1,
tx = 0, ty = 0, and θ = 0◦, with s = 1.07 for the IKONOS to Landsat registrations.
All results for which these results are not obtained or which seem to fall far from the
median result are highlighted in red. The results of Tables 14.8 and 14.9 show that,
as expected, the registrations based on gray levels are less reliable on cross-spectral
data than those based on edge-like (band-pass) features, but, when reliable, these
results are more accurate. Also, most results are within 1/4 to 1/3 pixels of each
other (by looking at the median values).

In the absence of ground truth, to assess the accuracy of the registrations in
Tables 14.8 and 14.9, one can make use of a technique called round-robin regis-
tration. The idea is to use three or more images of the same scene, and to form
pairwise registrations of those images. For example, the pairwise registrations can
be A to C, C to B, and A to B. The registrations of A to C and C to B give one
calculation for the relative registration of A with B. That relative registration ideally
should be identical to what is obtained when registering A directly to B. In reality,
there is always some registration error in the round-robin registrations of A to B,
B to C, and C to A. The value of round-robin registrations is that when the error
estimate is low, e.g., a fraction of a pixel, there is great confidence that each of the
pairwise registrations has low error. Conversely, if the error estimate is high, e.g.,
several pixels, then at least one and possibly more than one pairwise registration is
off by several pixels. However, the analysis gives no indication as to which of the
pairwise registrations has high error in the latter case.

Round robin computations performed on the results in Tables 14.8 and 14.9
show that FFC and SPSA/SimB generally result in a smaller round-robin error
than the other algorithms. Because round-robin error measures the cumulative
error from several pairwise registrations, if only a single pairwise registration has
significant error the round-robin error will be significant. For round-robin error
to be small, each pairwise registration in the sequence of registrations should be
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Table 14.9 Results of five algorithms on the Virginia-Coast area (initial guess =
(1.0, 0.0, 0.0, 0.0))

VA-COAST FFC TRU/SplC TRU/SimB TRU/SimL SPSA/SimB Median

1. IKO-red/IKO-NIR
Scale 1.000 1.000 0.999 1.000 1.001 1.000
θ −0.001 0.000 0.002 0.000 0.081 0.000
tx 0.007 −0.148 0.052 −0.243 0.922 0.007
ty −0.054 −0.484 −0.560 −0.532 0.751 −0.484

2. IKO-red/ETM-red
Scale 1.066 1.064 1.066 1.066 1.066 1.066
θ 0.001 0.030 0.019 0.045 0.104 0.030
tx 12.858 13.357 12.944 13.100 13.024 13.024
ty 13.172 12.957 13.200 13.222 14.138 13.200

3. IKO-red/ETM-NIR
Scale 1.619 1.048 1.075 1.049 1.066 1.066
θ −0.121 −1.096 −1.546 −1.041 0.010 −1.041
tx 12.395 11.099 8.465 11.099 12.216 11.099
ty 12.218 9.276 12.714 9.529 13.156 12.218

4. IKO-NIR/ETM-red
Scale 1.061 1.055 0.997 1.097 1.067 1.061
θ −0.903 −1.095 −0.665 −1.342 0.972 −0.903
tx 10.329 27.921 −2.465 23.063 16.090 16.090
ty 11.549 6.665 −3.043 12.034 16.097 11.549

5. IKO-NIR/ETM-NIR
Scale 1.065 1.000 1.066 1.064 1.066 1.065
θ −0.109 −0.001 0.011 0.024 0.006 0.006
tx 12.591 −5.760 12.861 13.123 12.856 12.856
ty 12.898 9.914 13.169 13.048 13.246 13.048

6. ETM-red/ETM-NIR
Scale 1.000 0.098 0.999 0.995 1.000 0.999
θ 0.002 −1.266 0.003 −0.111 −0.002 −0.002
tx −0.067 −1.918 −0.272 −0.374 0.851 −0.272
ty −0.014 −3.849 0.358 −0.457 0.665 −0.014

7. IKO-red to IKO-NIR to ETM-NIR to ETM-red
tx 12.531 −7.826 12.641 12.506 14.629
ty 12.831 5.581 12.967 12.059 14.662

Round-robin error |7 – 2|
tx 0.326 21.183 0.302 0.594 1.604
ty 0.342 7.376 0.233 1.164 0.524

8. IKO-red to ETM-red to ETM-NIR
tx 12.791 11.439 12.672 12.727 13.875
ty 13.159 9.108 13.558 12.766 14.803

(cont.)
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Table 14.9 (cont.)

VA-COAST FFC TRU/SplC TRU/SimB TRU/SimL SPSA/SimB Median

Round-robin error |8 – 3|
tx 0.395 0.340 4.206 1.628 1.659
ty 0.941 0.168 0.844 3.237 1.647

9. IKO-NIR to ETM-NIR to ETM-red
tx 12.524 −7.678 12.589 12.749 13.706
ty 12.885 6.065 13.527 12.591 13.912

Round-robin error |8 – 4|
tx 2.1949 35.5989 15.0546 10.3137 2.3837
ty 1.3357 0.6000 16.5696 0.5567 2.1856

small. For the Cascades mountainous region study summarized in Table 14.8, FFC
and SPSA/SimB yielded very consistent results, with FFC producing results that
were consistent within 0.18 pixels, and SPSA/SimB results being consistent within
1.11 pixels for all but one of the offsets. The results were much less robust for the
Virginia coast region summarized in Table 14.9, where FFC produced results that
were within 2.2 pixels and SPSA/SimB results were within 2.4 pixels. The other
algorithms generally produced results that revealed significant inconsistencies in
the round-robin sense. Therefore, one or more of the pairwise registrations produced
by the other algorithms was inaccurate, but no pairwise registration in the sequences
for FFC and for SPSA/SimB were inaccurate by more than that indicated by the
round robin results.

The Virginia coast region and the Cascades mountainous region produced very
different results for the round-robin data. This is possibly due to the differences in
the registration features available in the image sets. The mountainous region has
many edges visible in each of the images in the set, and the edges provide excellent
registration characteristics. Edges are less prevalent in the Virginia coast dataset.

Since the TRU algorithm produced results less reliable than FFC and SPSA for
all three types of features, further experiments were performed with TRU where
the initial guess was given closer to the expected transformations. Tables 14.10
and 14.11 show the results of these experiments, and for both areas, Cascades
and Virginia, it can be seen that the results improved significantly for TRU used
in combination with SimB, although the round-robin results are still better for
Cascades than for Virginia. For the low-pass features, spline (SplC) and SimL
features, the results improved much less significantly. These results are in agreement
with the conclusions drawn from the synthetic data experiments.

Overall, these experiments also show that using several algorithms in combi-
nation might be a solution to obtain accurate and robust multimodal registration,
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Table 14.10 Results of TRU algorithm with three different
features on the Cascades-Mountainous area (initial guess =
(1.07, 0.0, 8.0, 10.0))

CASCADES TRU/SplC TRU/SimB TRU/SimL

1. IKO-red/IKO-NIR
Scale 1.000 1.000 1.000
θ 0.001 0.001 0.001
tx −0.024 −0.036 −0.046
ty −0.160 −0.183 −0.209

2. IKO-red/ETM-red
Scale 1.067 1.065 1.070
θ 0.015 0.065 0.074
tx 8.384 8.626 9.225
ty 10.225 10.083 10.423

3. IKO-red/ETM-NIR
Scale 1.065 1.065 1.066
θ 0.054 0.078 0.044
tx 8.292 8.470 8.207
ty 10.315 10.133 10.235

4. IKO-NIR/ETM-red
Scale 1.070 1.065 no convrg
θ 0.000 0.084 no convrg
tx 8.000 8.641 no convrg
ty 10.000 10.130 no convrg

5. IKO-NIR/ETM-NIR
Scale 1.065 1.065 1.065
θ 0.068 0.070 0.066
tx 8.687 8.704 8.662
ty 10.148 10.140 10.153

6. ETM-red/ETM-NIR
Scale 1.000 1.000 1.000
θ 0.000 0.000 0.000
tx 0.000 0.000 0.000
ty 0.000 0.000 0.000

7. IKO-red to IKO-NIR to ETM-NIR to ETM-red
tx 8.663 8.668 8.616
ty 9.988 9.957 9.944

Round-robin error |7 – 2|
tx 0.279 0.042 0.609
ty 0.237 0.126 0.479

(cont.)
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Table 14.10 (cont.)

CASCADES TRU/SplC TRU/SimB TRU/SimL

8. IKO-red to ETM-red to ETM-NIR
tx 8.384 8.626 9.225
ty 10.225 10.083 10.423

Round-robin error |8 – 3|
tx 0.092 0.156 1.018
ty 0.090 0.050 0.188

9. IKO-NIR to ETM-NIR to ETM-red
tx 8.687 8.704 8.662
ty 10.148 10.140 10.153

Round-robin error |8 – 4|
tx 0.687 0.063 no convrg
ty 0.148 0.010 no convrg

for example, by using as a final result the median values of all transformation
parameters.

14.3.2.4 Subpixel accuracy assessment

This section discusses a technique for estimating registration accuracy in the
absence of ground truth. The registration experiment uses a set of images from
different spectra and different resolutions of the same Earth region. When register-
ing images of different resolutions, the registration algorithm matches the coarse
image to the fine image and to the nearest fine image pixel. Because the resolution
of the fine image is a multiple of the resolution of the coarse image, the nearest
pixel of the fine image corresponds to a fractional pixel (a phase) of the coarse
image. To assess the accuracy of the registration, the registrations were compiled
for a collection of image pairs such that there are two or sequences of pairwise
registrations from which one can find the relative registration on an image A with
respect to an image B, which permits the use of a round-robin analysis as discussed
in the previous section. The results discussed in this section show a few instances
where the registration error is on the order of a tenth of a pixel, others where it is
on the order of 1 or 2 pixels, and still others where the error is substantially higher.

In the experiment described in Le Moigne et al. (2002b), our objective was to
register a coarse image to a fine image at the resolution of the fine image, and
therefore to assess the subpixel registration capabilities of our algorithms. For this
purpose, we utilized a multiphase filtering technique, in which all possible phases
of the fine image are registered with respect to the coarse image. Each different
phase was filtered and downsampled to the coarse resolution. The phase that gives
the best registration metric gives the registration to the resolution of the fine image.
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Table 14.11 Results of TRU algorithm with 3 different features on
the Virginia-Coast area (initial guess = (1.07, 0.0, 12.0, 12.0))

VA-COAST TRU/SplC TRU/SimB TRU/SimL

1. IKO-red/IKO-NIR
Scale 1.000 0.999 1.000
θ 0.000 0.002 0.000
tx −0.148 0.052 −0.243
ty −0.484 −0.560 −0.532

2. IKO-red/ETM-red
Scale 1.064 1.066 1.066
θ 0.049 0.019 0.039
tx 13.179 12.944 13.126
ty 13.050 13.200 13.176

3. IKO-red/ETM-NIR
Scale 1.048 1.075 1.049
θ −1.097 −1.546 −1.041
tx 11.097 8.465 11.099
ty 9.279 12.174 9.259

4. IKO-NIR/ETM-red
Scale 1.100 1.075 1.117
θ 0.232 1.591 0.395
tx 20.835 15.209 24.201
ty 17.181 16.597 21.848

5. IKO-NIR/ETM-NIR
Scale 1.215 1.066 1.064
θ −0.396 0.011 0.015
tx 17.695 12.861 13.127
ty 24.171 13.169 13.126

6. ETM-red/ETM-NIR
Scale 0.098 0.999 0.995
θ −1.266 0.003 −0.111
tx −1.918 −0.272 −0.374
ty −3.849 0.358 −0.457

7. IKO-red to IKO-NIR to ETM-NIR to ETM-red
tx 15.629 12.641 12.510
ty 19.838 12.967 12.137

Round-robin error |7 – 2|
tx 2.450 0.303 0.616
ty 6.788 0.233 1.039

8. IKO-red to ETM-red to ETM-NIR
tx 11.261 12.672 12.752
ty 9.201 13.558 12.719

(cont.)
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Table 14.11 (cont.)

VA-COAST TRU/SplC TRU/SimB TRU/SimL

Round-robin error |8 – 3|
tx 0.164 4.207 1.653
ty 0.078 1.384 3.460

9. IKO-NIR to ETM-NIR to ETM-red
tx 15.777 12.589 12.753
ty 20.322 13.527 12.669

Round-robin error |8 – 4|
tx 5.0580 2.6200 11.4475
ty 3.1410 3.0700 9.1788

We registered this data using two different criteria, normalized correlation and
mutual information.

In practice, we utilized two of the images prepared in the first part of the
experiment described in Subsection 14.3.2.3, where the IKONOS and ETM+ data
have been resampled to the respective spatial resolutions of 3.91 and 31.25 meters.
IKONOS red and near-infrared (NIR) bands (of size 2048 × 2048) were shifted
in the x and y directions by the amounts {0, . . . , 7}, thus creating 64 images for
each band, for a total of 128 images. We used the centered spline, SplC, filters
(Unser et al., 1993) to downsample with no offset bias. The 128 phase images
were downsampled by 8 to a spatial resolution of 31.25 meters and dimensions
of 256 × 256. At the coarse resolution, the integer pixel shifts now correspond
to subpixel shifts of {0, 1/8, . . . , 7/8}. We constructed reference chips of size
128 × 128 from the ETM-red and ETM-NIR images by extraction at position (64,
64) of the initial images. We know from the results in Subsection 14.3.2.3 that the
offset between the original downsampled IKONOS image and the ETM reference
image is (2, 0), we expected to find the (x, y) offset of the IKONOS image to the
ETM image at about (66, 64).

The complete experiment involved the registration of the 128 × 128 extracted
red-band (resp. NIR-band) ETM chips to the 64 phased and downsampled
256 × 256 red-band (resp. NIR-band) IKONOS images. For each 128 × 128 ETM
chip and for each of the 64 phase IKONOS images, we computed the maximum
correlation (resp. mutual information) and the associated location at which this
maximum occurs. Then, we found the phase that gave the maximum correlation
(resp. mutual information) out of all phases, and we recorded the corresponding
shift and the offset computed in this registration. These are shown in Tables 14.12
and 14.13 under “Coarse resolution (X, Y) phase” and under “(Peak X, Peak Y).”
Notice that to all peaks, locations have been approximated to the nearest integers.
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Table 14.14 Self-consistency study of the normalized correlation results

Image name Computed x Computed y Comes from registered pair

IKONOS-red 0 0 (Starting point)
IKONOS-NIR −0.2500 −0.2500 IKO-red to ETM-red and

ETM-red to IKO-NIR
IKONOS-NIR −0.2500 −0.3125 IKO-red to ETM-NIR and

ETM-NIR to IKO-NIR

To find the relative offset of an IKONOS pattern to an ETM reference (in the
last two columns of Tables 14.12 and 14.13), we subtracted the coarse resolution
phase offset (X, Y) (in columns 3 and 4) from the corresponding peak offset (Peak
X, Peak Y) (in columns 6 and 7). The two tables agree to within 0.25 pixels for
all relative offsets except for the X offset from IKONOS-NIR to ETM-red. They
disagree by about 0.75 pixels in that case. There are some small inconsistencies in
the tables. If the two IKONOS images were registered to the nearest pixel before
downsampling, the offsets that produce maximum correlation peaks should be iden-
tical when the downsampled patterns are registered to the same image. But when
both IKONOS patterns are registered to “ETM-red,” the offsets that produce the
highest correlations are different. The same phenomenon also occurs in the mutual
information-based registrations. One explanation would be that IKONOS-red and
IKONOS-NIR are misregistered by 1 or 2 pixels. Another possible explanation is
that cross-spectral registration between IKONOS (downsampled by 8) with respect
to ETM has an extra offset of 0.25 pixels when compared to within-spectrum regis-
tration. It is uncertain where this offset comes from. It is probably an artifact of the
cross-spectral data wherein some edges in the image appear to be shifted because
of the spectral responses, and these cause registration peaks to shift. More data are
required to study this phenomenon. Overall, we can see that the average absolute
difference between computed relative offsets and the expected (64, 66) is about
0.5 pixels for both correlation and mutual information metrics.

Another way to look at the data is to analyze the self-consistency of all four
measurements. For this analysis, we computed the (x, y) offset of one of the
images from the other three in two different ways. If the data are self-consistent,
the answers should be the same. To do this, we established an x base point for
“IKONOS-red”, and let this be x = 0. Then, we use the previous relative offsets
shown in Tables 14.12 and 14.13 to determine (x, y) offsets for each of the other
three images. Tables 14.14 and 14.15 show these results.

Note that both measures show a displacement of “IKONOS-red” from
“IKONOS-NIR” of either 0.25 or 0.125 pixels, and the signs of the relative
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Table 14.15 Self-consistency study of the mutual information results

Image name Computed x Computed y Comes from registered pair

IKONOS-red 0 0 (Starting point)
IKONOS-NIR 0.2500 0.0000 IKO-red to ETM-red and

ETM-red to IKO-NIR
IKONOS-NIR 0.1250 −0.1250 IKO-red to ETM-NIR and

ETM-NIR to IKO-NIR

displacements differ for mutual information and normalized correlation registra-
tions. For these two images, the two measures are self-consistent in their estimates
of a relative displacement to within 1/8 of a coarse pixel.

14.4 Conclusions

The studies presented in this chapter investigated the use of various feature extrac-
tion and feature matching components for the purpose of remote sensing image
data registration. Results were provided on a variety of test datasets, synthetic
(including noise and radiometric variations), multitemporal, and multisensor. The
performances of six different algorithms utilizing gray levels and wavelet-like
features combined with correlation, mutual information, and partial Hausdorff dis-
tance as similarity metrics, and Fourier transform, optimization, and robust feature
matching as search strategies were evaluated. Two of the metrics, correlation and
mutual information, were further studied for subpixel registration.

Using synthetic data, we demonstrated that the algorithm based on a Levenberg-
Marquardt optimization using the L2-norm and band-pass wavelet-like features was
the most accurate and the most robust to noise. Nevertheless, using Simoncelli’s
low-pass features with the same type of algorithm was less sensitive to the initial
guess. Overall, an approach based on a stochastic gradient technique with a mutual
information metric was more robust to initial conditions. If the transformations are
very large and if the images contain many high-frequency features, the approach
based on a global fast Fourier correlation of multiple chips seemed to work the
best.

More generally, we can estimate two regions of interest in the space of registra-
tion parameters based on how the collection of registration algorithms we studied
behaves for various parameter sets. We say that an algorithm converges for a set
of registration parameters if it converges to a global optimum, that is, to the right
answer when two images differ by that set of registration parameters. The first
region of interest is the region of convergence, within which all the algorithms that
we studied are likely to converge:
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Figure 14.18. User interface of the TARA web-based image registration toolbox.
See Plate 9 in color plates section.

� If only shift, it is the region that ranges from −20 to 20 pixels.
� If only rotations, between −10◦ and 10◦.
� If only scale, between 0.9 and 1.1.
� If rotation and shift, then it is when the shift is between −15 and 15 pixels and the rotation

between −5◦ and 5◦.
� If rotation, shift and scale, the region of convergence is defined by a shift between −10

and 10 pixels, a rotation between −5◦ and 5◦, and a scale between 0.9 and 1.1.

The second region is the region of divergence within which all the algorithms
will most likely diverge:

� If the shift is more than 30 pixels.
� If the rotation is more than 15◦.
� If the scale is less than 0.8 or more than 1.2.
� If together, the rotation and shift are more than 20◦ and 10 pixels, respectively.
� If rotation, shift and scale, when the shift is larger than 15 pixels, the rotation more than

10◦, and the scale less than 0.85 or more than 1.15.

The region between the two is the one where some algorithms converge and
some do not. These regions were estimated fairly conservatively, based on a limited
number of sample images. To get a more precise estimate, we would need to run
more thorough testing with more images of various types.

Based on these first studies, we developed the first prototype of a web-based
image registration toolbox (called TARA for “Toolbox for Automated Registration
and Analysis”) that is depicted in Figure 14.18. At present, this first prototype
includes TRU, TRUMI and SPSA with the choice of spline, Simoncelli band-pass
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or Simoncelli low-pass features. The toolbox’s interface is implemented in Java,
and the algorithms are implemented in C or C++, but integrated in the toolbox as
Java Native Interface (JNI) wrapped functions. The synthetic experiments enable us
to define for each method an applicability range that will be provided as guidance
to the users of the toolbox. At the same time, these methods continue to be tested
on other sensor data, for example, the ALI multispectral sensor and the Hyperion
hyperspectral sensor, both carried on the EO-1 platform. Eventually, we hope that
TARA will be used to assess other registration components and will be extended
to include other methods, to compute more general transformations and to process
other types of imagery, such as aerial images or other planetary data, for example,
from the Moon or Mars.
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