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Initial attempts to leverage jointcontext information
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A Multiple context words
co-occur with the
target word at the
same time

A The order of the
context words

Probabilistic Distributional Similarity (PDS)
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A forest surrounds
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The entire
context around
a target word Is
considered as a
single feature.
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Evaluation

PDS is designed to

model joint-contexts
Language Model
“Plug-in”

Not a vector-space model

Probabilistic
Distributional
Similarity (PDS)
Scheme

A probabilistic approach

Leverages the power of
Language Models

“words are similar in meaning
if they occur in similar contexts”

.

“words are similar in meaning
if they are likely to occur in the same contexts”

.

“words v and w are similar in meaning
if wis likely in the contexts of v and vice versa”

Conclusions and future work

Our PDS scheme with a KN Language Model shows significant improvement

for verbs and comparable performance for nouns.

Future directions:

A Try other language models, such as neural network LMs, spaised LMs
A Enhance PDS for contesgnsitive similarity

A Improve computational efficiency

How likely Is target wordwv In the contexts of target wordrs ?
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Final proposed measure:

Leveraging the power of language models:
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Main evaluationsetting:;

Learningcorpus 100M wordsfrom ReutersRC\L
Gold standardWordNetsynonyms and semantic neighbors

Compared models:

Model Params
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VerbSimEvaluation(Yang& Powers20006):

Model Spearm_an

Similarto WordSin853, but includesonly Correlation
verb pairs PDSW-4 0.616
CBOW \Ab 0.528
CFV W2 0.477
SKIP \M4 0.469
iz 0.467



