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Abstract

Cloze tests, also known as gap-fill exercises,
are a popular tool for acquiring and evaluat-
ing language proficiency. A major challenge
in the way of automating scoring of cloze tests
is the yet unsolved problem of gap filler ambi-
guity. To address this challenge, we present
the concept of bundled gap filling, along with
(1) an efficient computational model for au-
tomatically generating unambiguous gap bun-
dle exercises, and (2) a disambiguation mea-
sure for guiding the construction of the exer-
cises and validating their level of ambiguity.
Our evaluation shows that our proposed exer-
cises achieve a dramatic reduction in gap filler
ambiguity, while our disambiguation measure
can be effectively used to discard exercises
that are nevertheless too ambiguous.

1 Introduction

Cloze-tests (or gap-fill tasks) (Taylor, 1953) are a
frequently used exercise type, where a target word
in a sentence is hidden and replaced with a gap.
The learner is then asked to figure out the hidden
word based on its context. While gap-fill tasks are
quite easy to generate, automated scoring is difficult
as gaps are often significantly ambiguous (Chavez-
Oller et al., 1985). For example, in the sentence ‘The
students have to the test’ most people would ac-
cept do, take, or pass as valid gap-fillers. However,
for reasons of practicability, in common test scenar-
ios this ambiguity is often ignored, which may result
in high error-rates even when testing native speakers
(Klein-Braley and Raatz, 1982).

The ambiguity of gap-fill tasks can be countered
by providing a set of answer candidates for the
learner to choose from. The candidates include a

single correct solution and a set of incorrect distrac-
tors that are –in theory– used to control the difficulty
of the task. However, providing answer candidates
encourages guessing and changes the nature of the
task from producing a solution to recognizing a so-
lution (Wesche and Paribakht, 1994).

Furthermore, in practice, it is far from trivial to
find good distractors and to resolve the trade-off be-
tween task difficulty and task ambiguity. Distractors
that have little relatedness with the sentential context
of a gap are easy to reject and therefore usually yield
unambiguous but very easy tasks. Alternatively, dis-
tractors that fit well into the gap are hard to tell from
the correct solution, but may be in fact also valid
solutions themselves, resulting in an ambiguous ex-
ercise with more than one correct answer.

In this paper, we propose a new paradigm for ad-
dressing the ambiguity problem in gap-fill exercises,
which we call bundled gap filling. A gap bundle is a
set of gaps in different sentences, all hiding the ex-
act same single word. In a gap bundle exercise, the
learner is presented with all of the gaps in a bundle
at the same time and asked to find the single word
behind all of them. Figure 1 illustrates this approach
(last row) in comparison to the traditional ones (up-
per rows).

As generating gap bundle exercises manually
would be tedious, we propose a probabilistic gap
bundle disambiguation measure based on language
models (Chen and Goodman, 1999). Guided by this
measure, we can both automatically generate gap
bundle exercises, such that ambiguity is minimized,
and discard the ones that are nevertheless too am-
biguous.

Proficient English speakers are expected to get
(near) perfect scores in non-ambiguous gap fill ex-
ercises, but much lower scores in ambiguous exer-



Figure 1: Comparison of three types of gap-fill exercises: (a) gap-fill, (b) gap-fill + distractors, (c) bundled gap-fill

cises. In our empirical evaluation, native and near-
native English speakers achieved a mean success
rate of .78 on bundled gap exercises compared to
.27 on single gap exercises in an identical setting.
This suggests that indeed the ambiguity of our gap
bundles is dramatically lower than that of traditional
single gaps.

2 Bundled Gap Filling Exercises

In this section, we describe (i) our proposed bundled
gap filling exercises, (ii) a probabilistic model for es-
timating their level of ambiguity, and (iii) a scheme
to automatically construct exercises, such that ambi-
guity is minimized.

2.1 Motivation

For a gap-fill exercise to be unambiguous, we wish
to ensure that any word other than the given target
word would be considered a highly unlikely solution
by a proficient speaker under a common-sense inter-
pretation. Unfortunately, as previously mentioned,
this is commonly not the case for a single gap, e.g.
‘The students have to the test’ has multiple so-
lutions including take and do. Similarly, take is not
the only valid gap filler in the sentence ‘All passen-
gers should their seats’. However, in this case
do would not be considered as a likely alternative,
while find would. Therefore, when asked to find
a single word that fits both gaps, a skilled speaker
would probably be able to reject both do and find.
In bundled gap filling exercises, we wish to take ad-

vantage of this variance in the ambiguity patterns of
gaps.

2.2 General Approach

We make the following approximated assumptions
regarding the reader of the gap-fill exercise. First, in
the mind of the reader there exists some probabilis-
tic distribution of the likely solutions of any given
gap. The more ambiguous the gap, the wider this
distribution is. Second, when asked to find a single
word that fits two or more gaps bundled together, the
reader attempts to ‘compute’ the joint distribution,
which is the likelihood of any word to be a gap filler
for all of these gaps at the same time. For a skilled
reader, if the likelihood of the original target word
in this joint distribution is significantly higher than
any other word, then this bundled gap filling exercise
in unambiguous. While impossible to predict pre-
cisely, we approximate the likelihood distribution in
a speaker’s mind using an n-gram language model,
which predicts the likelihood of a gap-filler based on
similar word sequences statistics observed in a large
corpus.

To construct a gap bundle for a given target word,
we start with a random seed sentence containing a
gap hiding this word. We compute an approximation
for the probabilistic distribution of its most likely
gap-fillers, and then we iteratively add more sen-
tences with gaps hiding the same target word to the
bundle to make the bundle less ambiguous. To do
this effectively, at each step we try to add the gap that



would make the original target word stand out most
in the resulting joint distribution of the gap bundle.

2.3 Probabilistic Modeling of Gap Ambiguity
We denote the probabilistic distribution for gap-filler
words of a single gap in a sentence as:

Pw∈V (F (g) = w) = pg(w) (1)

∑
w∈V

pg(w) = 1 (2)

where V is the vocabulary containing all words, w
is a single word, and F (g) is the gap filler for gap g.
This distribution can be estimated using a language
model as we show later in Section 2.5.

Next, we make the following approximation for
the joint probabilistic distribution of the word w fill-
ing the gaps in a gap bundle, given that it must be
the same word filling all of these gaps:

Pw∈V (F (b) = w)

= Pw∈V (g1 = w, ..., gn = w)

∝
∏

i∈1..n
pgi(w),

(3)

where b is a gap bundle that comprises the gaps
{g1, ..., gn}.

Finally, we define our measure D(b) for the dis-
ambiguation level of a gap bundle b, as the log of
the ratio between the probability of the target word t
and the probability of the most likely word w other
than t:

D(b) = log
P (F (b) = t)

max
w∈V \{t}

P (F (b) = w)
(4)

The greater this ratio, the more likely the target
word compared to any other word, and accordingly
we consider the gap bundle less ambiguous.1 Based
on this formalization, in the next section, we pro-
pose a scheme that can automatically construct gap
bundles with high disambiguation measure values.

Figure 2 illustrates the log probability distribu-
tions of gap-filler words for two single gaps hiding
the target word take, as well as the joint distribution

1We use the log of the ratio for convenience and arithmetic
stability.

of the gap bundle comprising these two gaps. The
ambiguity measure is illustrated as the difference be-
tween the log probability of the word take and the
other most probable word in the distribution. As can
be seen, the combination of the two gaps in a bundle
yields a much higher disambiguation level than each
of its constituents.

2.4 Constructing Disambiguated Gap Bundles
We next describe a scheme to automatically con-
struct disambiguated gap bundles based on our
model. As input to this process we assume the fol-
lowing: (1) for each desired gap bundle, a given ran-
dom seed sentence with a gap, g1, hiding some target
word t; (2) a given size m for the desired gap bun-
dle; and (3) a corpus G, where Gt is the set of gaps
in G hiding the target word t.

A straightforward approach to construct a disam-
biguated gap bundle for g1 would be to evaluate all
possible gap bundles that include g1 and (m−1) ad-
ditional gaps from Gt, and choose the one with the
highest disambiguation measure. By restricting the
bundle to gaps only from Gt, we make sure that t is a
correct answer to the exercise (i.e. a valid gap filler),
and by optimizing our disambiguation measure we
wish to increase the chances of a skilled speaker to
identify t as the only correct answer.

Unfortunately, the exhaustive search described
above is not useful from a practical point of view
as it would require O(m|Gt| · |V |) computations. We
therefore propose instead a greedy algorithm with
complexity O(m · |Gt| · |V |) that successively se-
lects the next gap to be added to the bundle, such
that its ambiguity is reduced the most:

gi+1 = argmax
g∈Gt\bi

(D(bi ∪ g)), (5)

where bi is the gap bundle after step i, and gi+1 is
the gap to be added in step (i+ 1).

Finally, a threshold on the disambiguation level of
the resulting gap bundle can be used to discard bun-
dles for which our algorithm failed to reach a satis-
factory level of disambiguation.

2.5 Estimating Gap-filler Distributions
A critical element of our proposed approach is the
ability to efficiently estimate the distribution of gap-
filler words for a given gap in a sentence. Probably



Figure 2: Two single gaps (top) combined into a gap bundle (bottom) for the target word take. The diagrams illustrate the

respective gap-filler words log probability distributions. D(g0) and D(g1) are the disambiguation measures of the single gaps -

note that D(g1) has a negative value. D(b) is the improved disambiguation measure of the gap bundle.

the most natural choice to do this is by using prob-
abilistic language modeling techniques, widely used
in NLP for various applications (Chen and Good-
man, 1999). Language models are learned from
large corpora of text and used to estimate the prob-
ability of a given sequence of words, such as a sen-
tence.

A straightforward approach to use a language
model to estimate the gap-filler distribution is to fill
the gap in a sentence with every possible word in the
vocabulary and use the language model to estimate
the probability of each resulting sentence. The prob-
ability of the gap-filler would be proportional to the
probability of its respective sentence.

The problem with the above approach is that it be-
comes computationally intensive with large vocabu-
laries, which may include hundreds of thousands of
words. Therefore, we use instead the FASTSUBS
tool (Yuret, 2012), which can efficiently compute a
pruned distribution of the top-k most probable gap
fillers, using an n-gram language model. The proba-
bility of all the words below the top-k is considered
to be zero. For this computation to be efficient, k
needs to be much smaller than the size of the vocab-
ulary. However, in practice gap fillers not in the top
1000 are usually estimated with near-zero probabili-
ties anyway. Using pruned distributions, also brings

down the complexity of our gap bundle construction
algorithm from O(m · |Gt| · |V |) to O(m · |Gt| · k).

The main risk with pruning the distributions as de-
scribed above, is that once a word is assigned with
zero probability in a given gap, it will have a zero
probability estimate in any bundle containing this
gap, no matter how probable it is in the other gaps in
the bundle. This is because the joint probability is a
product of single gap probabilities. To mitigate this
we use a simple form of additive smoothing (Chen
and Goodman, 1999), that adds the probability mass
of the k-th gap-filler to all words in the vocabulary
including the ones in the top-k.2

3 Exercise Generation Settings

When actually generating exercises following our
proposed scheme, one needs to make a few practi-
cal choices, including: (1) the corpus C for training
the language model, (2) the corpus G from which the
gaps are sampled, (3) the set of target words T , and
(4) the number of gaps (or sentences) in a bundle.

Note that C and G can be the same, but C would
preferably be a very large corpus in order to derive a
high quality language model, and G would be a pos-
sibly smaller, higher quality corpus containing sen-

2We do not normalize the probability distributions as for our
purposes we are only interested in probability ratios.



tences that are more suitable for learners.
In this section we describe some considerations

related to these choice, as well as the settings used
for generating the exercises in our experiments.

3.1 Language Model
Melamud et al. (2015) used gap-filler distributions
(also known as substitute vectors), which are based
on a language model, achieving state-of-the-art per-
formance in lexical substitution tasks. Following
their settings, we trained a 5-gram language model
using the KenLM toolkit3 (Heafield et al., 2013)
with modified Kneser-Ney smoothing on the two
billion word ukWaC English web corpus (Baroni et
al., 2009). We then used this language model with
the FASTSUBS tool4 (Yuret, 2012) to generate the
probability distribution of gap-filler words, pruned
to the top 1000 most probable gap fillers.

Using a large web corpus, such as ukWaC, entails
good coverage of diverse language styles for our lan-
guage model, at some acceptable cost of noisy low
quality texts.

3.2 Gap Bundle Corpus
While our algorithm can generate bundles given any
set of input sentences, the quality of the exercises
might vary strongly according to the corpus, from
which the sentences are selected.

By selecting a corpus focused on a certain do-
main, a teacher may tune the generated bundles to
the desired learning goals. For example, Sasaki
(2000) show that participants perform better in a
cloze exercise if it contains familiar cultural issues.

The corpus should be sufficiently large to offer
enough distinct gaps for each target word to choose
from. In contrast, if the corpus exceeds a certain
size, it makes computation expensive without adding
much value. In addition, the quality of exercises
depends on the length of the sentences in the bun-
dle. Short sentences provide little context for disam-
biguating the gap, while too long sentences are hard
to parse for the learner.

As an example for a gap bundle corpus, we select
the GUM corpus5 (Zeldes, 2016) that is sufficiently
large (44,000 tokens) and contains a good variety of

3http://kheafield.com/code/
4https://github.com/denizyuret/fastsubs-googlecode
5https://github.com/amir-zeldes/gum

topics. The corpus is created from 54 articles ex-
tracted from the collaboration platforms Wikinews,
Wikivoyage, and wikiHow. The articles contain in-
terviews, news-articles, travel guides and ‘how-to’
instructions, and represent a good trade-off between
formal and everyday language.

3.3 Target Words
In principle, our algorithm works with any target
word. However, as with the choice of the gap bundle
corpus, the selection of target words will influence
the nature of the resulting exercises.

According to Abraham and Chapelle (1992) the
difficulty of a gap is influenced by whether the omit-
ted word is a function word or a content word. In
this work we choose to focus on content words.

Another major influencing factor is the frequency
of the selected target words (Kobayashi, 2002). For
our study, we select words from the middle of the
frequency distribution avoiding the extreme ends.
For very infrequent words our gap corpus will not
contain enough gaps to choose from. Very frequent
words are mostly function words, which may behave
differently and are out of scope.

As there might still be frequency effects, we
sample the target words from different frequency
classes. We compute the frequency class f̂ of a word
w in a given vocabulary V by using:

f̂(w) = b0.5− log2(
f(w)

fmax(V )
)c,

where fmax(V ) is the frequency count of the most
frequent word in V . Table 1 shows the selected tar-
get words and their frequency classes.

There are additional attributes that influence the
resulting gaps. For example, longer target words re-
sult in increased difficulty in traditional gap-fill tasks
(Abraham and Chapelle, 1992; Brown, 1989). We
leave the examination of such factors to future work.

3.4 Gap Bundle Size
We hypothesize that generally the more sentences
with gaps we add to a bundle the less ambiguous it
would be. However, larger bundle sizes may result
in cognitive overload or shift the nature of the task
towards a test of working memory capacity. Previ-
ous work investigating multiple-choice gap-fill exer-
cises has shown that three distractors plus the correct



Target Words Frequency Class Word Class

new 5

Adjectivesbest 6
full 7
final 8

people 5

Nounslanguage 6
information 7
room 8

make 5

Verbswant 6
add 7
give 8

Table 1: List of target words

answer is the optimal number to provide (Graesser
and Wisher, 2001). Therefore, in this work we con-
sider gap bundles that include up to four sentences.

4 User Study

We conducted the user study described in this sec-
tion to evaluate our hypothesis that bundled gap ex-
ercises are less ambiguous than the traditional single
sentence cloze items. We note that the evaluation
of other educational aspects, such as learner profi-
ciency level discrimination, were left to future work.

Gap-fill exercises are typically used with lan-
guage learners, such as non-native speakers or chil-
dren. However, the premise behind our study is that
fully proficient speakers should be able to achieve
(near) perfect scores on such exercises, provided that
they are not ambiguous, i.e. that the correct answer
is much more likely than any other possible solution.
Accordingly, we consider high scores for proficient
speakers as evidence for low levels of ambiguity in
gap-fill exercises and vice versa.

4.1 Setup

We implement the user study using an online sur-
vey with 35 participants (20 female). To ensure a
high level of language proficiency, participants ei-
ther have to be native speakers of English or report
a high self-assessment score (e.g. C2 CEFR level).

To measure the impact of bundle size, for each
target word, we start with a single seed sentence (as
in the traditional cloze test scenario) and then suc-
cessively present the next sentence, chosen by our

Average Average
Success Disambiguation

Rate Measure

Single Gap .27 -0.50
Bundle2 .59 4.00
Bundle3 .68 7.75
Bundle4 .78 11.06

Table 2: Comparison of average success rate and our estimated

disambiguation measure D(b) for different bundle sizes.

automatic algorithm for the bundle, until we reach a
bundle size of four. In each step, the participant is
asked to provide a single word which fits best to all
of the gaps presented thus far. This setup is exempli-
fied in Figure 3, where we show the four test steps
for the target word new. Overall, we test this for all
12 target words (see Table 1).

For each test step, we measure average success
rate as the ratio of participants that provided the
correct target word, out of all participants. As we
conducted this study with highly proficient speakers,
we assume that participants who fail to provide the
correct answer, have a competing answer in mind,
which is also valid.

4.2 Results
We now report and discuss the results of the user
study. We address the two major points: (1) how
well gap-fill bundles resolve the ambiguity of cloze
tasks, and (2) whether we can automatically discard
low-quality gap bundles for quality assurance.

Exercise Ambiguity Our main finding is that the
average success rate for single sentence cloze items
is .27, while it steadily rises with every added sen-
tence reaching .78 for a four sentence bundle - see
Table 2. We also find that our average disambigua-
tion measure grows with the size of the bundle and
the success rate. These results suggests that our ap-
proach is extremely effective in reducing the ambi-
guity of cloze items. Still, even with four-sentence
bundles we observe a non-negligible (.22) error rate.
Part of this could be attributed to human perfor-
mance errors, but it could also be the case that some
of the bundles are still somewhat ambiguous even
with four sentences.

To get more insights into this phenomenon, we
conducted a detailed analysis of success rate per



Figure 3: Example of the setup of the user study for the target word new. In the first step we present a regular single sentence cloze

item, which was randomly selected. Then, we successively present larger bundles to reduce ambiguity. The subsequent sentences

are selected by our algorithm.

item and bundle size - see Figure 4. On average, the
biggest impact on success rate of about 30 points is
observed between the single gap and the first bun-
dle with two sentences. For some targets (best, peo-
ple, add, and new) this improvement exceeds even
50 points. On the other hand, there are a few ex-
ceptions to the monotonous growth in success rate
for some targets (e.g. give, best and final), where
we observe a decline for an increased bundle size.
Nevertheless, this decline is only local and does not
exceed 11 points. The target give is particularly ex-
traordinary as it has very high success rate across
all bundle sizes. A deeper analysis shows that its
randomly selected seed sentence uses the target in
a quite idiomatic way (“whales come to these pro-
tected waters to give birth.”), which makes the gap
unambiguous right from the start.

A further notable exception is the target word fi-
nal, for which our algorithm does not manage to
significantly dissolve the ambiguity (the overall im-
provement is just 12 points). An analysis of the vari-
ety of answers given by the study participants shows
that they tended to include more adjectives that are
highly related to final (e.g. last or first) when pre-
sented with the larger bundles. Here, the algorithm
fails to provide a sentence that removes this ambigu-
ity. We manually checked all sentences containing
the word final in the gap bundle corpus and found
that none of them could be used to really rule out
last or first. This could indicate that our gap sen-

tence corpus is not diverse enough, as it doesn’t in-
clude a sentence, such as: “This is the last and final
call for flight 123 to San Diego”. However, we must
also acknowledge that some words may have very
close synonyms (as in final and last) that could be
very hard to distinguish. In such cases, where our
algorithm generates an ambiguous exercise, we wish
to be able to automatically detect and discard it for
quality assurance, as discussed next.

Quality Assurance In this analysis, we try to an-
swer the question whether it is possible to automati-
cally reject gap bundles that are likely to yield a low
success rate due to ambiguity. We propose to use a
threshold on our ambiguity measure D(b) and ana-
lyze our study results to estimate the threshold value.

In Figure 5, we visualize the relationship between
success rate in a given exercise and our model’s cor-
responding disambiguation estimate D(b). The es-
timated correlation between these two variables is
decent (r = 0.66) though not perfect. However, a
nice property with respect to thresholding is that our
measure is rather conservative and does not overes-
timate the ambiguity reduction. This means that, for
example, by discarding all items with D(b) < 4.0
we can remove almost all items with success rate be-
low 50%, while keeping more than 80% of the items
with success rate above 50%. This suggests that we
are able to guarantee high-quality gap bundles, as
long as we are allowed to reject some items (e.g. by
flagging the teacher that for a certain seed sentence
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Figure 4: Success rate and disambiguation measure per item.

no good gap bundle can be generated).

5 Related Work

To the best of our knowledge, bundled gap filling is
introduced in this work for the first time. Therefore,
there is no directly related previous work.

However, in a broader sense, our work contin-
ues research on automated handling of ambiguity in
cloze tests. Horsmann and Zesch (2014) control for
ambiguity of cloze tests by selecting low ambiguity
sentences based on a series of (dis-)ambiguity indi-
cators. However, they fail to reduce the ambiguity to
a sufficient degree and limit the practical relevance,
as a user is limited to a narrow set of gaps that fit
their approach.

As mentioned before, probably the most popular
method for resolving ambiguity is to use a multiple-
choice format, providing a set of distractors that may
be generated automatically. These distractors may

be generated from common confusions (Lee and
Seneff, 2007), typical learner errors (Sakaguchi et
al., 2013) or by selecting words with the same word-
class or frequency in a reference corpus (Hoshino
and Nakagawa, 2007).

A major problem of gap-fill exercises with dis-
tractors is that they are often too easy – especially
for advanced learners –, as the generated distractors
do not make sense in the context of the gap. There-
fore, some approaches go one step further consid-
ering distractor candidates that are highly compat-
ible with the context of the gaps. Then they need
to automatically judge that such distractors are not
in fact correct answers themselves, e.g. by consider-
ing collocations of targets and distractors (Pino and
Eskenazi, 2009; Smith et al., 2010; Sumita et al., ).
For example, Sumita et al. () check whether replac-
ing the target with the distractor results in a sentence
that exists on the web. If so, they conclude that the
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distractor is invalid. However, their approach seems
to be limited, as it relies on finding exact matches of
sentences which even on the web is rather unlikely.
Zesch and Melamud (2014) generate distractors that
are semantically similar to the target word in some
sense, but not in the particular sense induced by the
gap-fill context. While their approach points in a
promising direction it fails to model a sufficiently
large difficulty continuum, especially when target-
ing a group with high level of language proficiency.

Ultimately, a disadvantage of gap-fill tests with
distractors is that the test is a recognition task rather
than a production task and therefore considerably
easier. In contrast, our bundled gap-filling approach
has the advantage that there is no recognition stimuli
and therefore the test remains a production task.

6 Conclusions & Future Work

In this work, we presented bundled gap-filling ex-
ercises and an efficient algorithm for automatically
generating them. Our evaluation provides evidence
that gap bundles are significantly less ambiguous
than regular gap-fill exercises. This gives our ap-
proach the important advantage of supporting high
automation for both generation and scoring of the
exercises.

We see two main directions of research for future
work. First, we want to improve the quality of the

generated exercises by optimizing different parame-
ters of the model. For example, we expect that using
a larger gap sentence base or using a better language
model, such as a recurrent neural network (RNN)
language model, could improve the results. Second,
although our bundled gap filling test is basically still
a cloze test, the format change might alter the nature
of the required knowledge. Consequently, we want
to determine what kind of knowledge the gap bun-
dles are actually measuring by applying it to real-
life testing scenarios and examining the relations to
other established measures of language proficiency.
Thereby, we also want to examine the test’s abil-
ity to discriminate learners with different proficiency
levels by considering relations to other established
measures of language proficiency and variations of
the cloze test paradigm.
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