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�� Introduction

Algorithmic problems in modern algebra had their origins in logic and topology � in
the works of Thue ������ Tietze ���	� and Dehn ��
� at the beginning of the century�
They showed that the problem of deducibility of relations in associative calculi� the
homeomorphism problem for topological manifolds and the homotopy equivalence
problem in �nite dimensional manifolds all turned out to be equivalent to algebraic
problems� namely the word problem for �nitely presented semigroups and groups
and the isomorphism and conjugacy problems for �nitely presented groups�
Let V be a variety of universal algebras� let FX be the �nitely generated free

object in V with a set X of free generators� Let � be a congruence on FX generated
by �nitely many pairs R � f�ui� vi� � i � �� �� � � �g� Then the factor algebra FX��
is called �nitely presented inside V � We will denote this algebra by � X � R�V ��
If it is clear what variety V we are dealing with� we will omit V from this notation�
We say that the word problem is decidable �solvable� in FX�� if there exists an
algorithm which tells us for every pair of elements �x� y� from FX if �x� y� � ��
As is well known the unsolvability of the word problem for semigroups was proved

in ��� by A�A�Markov ���� and E�L�Post ���� and signi�cantly more di�cult results
on the unsolvability of the three group problems� the word problem� the conjugacy
problem and the isomorphism problem � were proved by P�S�Novikov ��� at the
beginning of the �fties� A few years later W�W�Boone ���� gave another proof of the
unsolvability of the word problem in groups�
The investigation of algorithmic problems� stimulated initially from problems

in logic and topology� is largely motivated now by the internal needs of algebra�
Algorithmic problems lie very often at the heart of di�cult algebraic problems� For
example� central to the deep results on Burnside problems for periodic groups is the
solution to the word and conjugacy problems in the Burnside groups ���� ���� �����
����� �
���
While the main algorithmic problems were proved to be unsolvable in general�

further investigations have been carried out in two directions� The �rst direction
deals with algebras given by de�ning relations which satisfy certain restrictions�
for example groups and semigroups with small cancellation restrictions� hyperbolic
groups� automatic groups and semigroups� groups and semigroups given by a small
number of relations� There are many deep theorems obtained in this direction �see
�
	�� ����� ����� and many deep problems� Among these problems one can mention
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the word problem for one�relator semigroups� It is known that every semigroup given
by a relation of the form w � � has solvable word problem� but the general case is
still unsolved in spite of �	 years of continuous attempts� For other partial results
see the surveys ��� and ����� Recall that in the case of groups Magnus� theorem states
that the word problem is solvable in every one�relator group �
	��
Another direction investigates algorithmic problems in some subclasses of semi�

groups� groups� etc� Algorithmic problems are important from a general� �philo�
sophical�� point of view also� Thus� the solvability of the word problem in a class of
algebraic systems usually means that it is possible to study structural properties of
systems in this class� Conversely unsolvability of the word problem usually means
that there will be major di�culties in the investigation of this class �as a whole��
Among all possible subclasses� the most natural and important ones are� of course�
varieties � classes given by identities� The remarkable role they play in algebra and
the fact that it is very natural to consider algorithmic problems in varieties induced
a large and robust interest in this branch of algebra during the last �
��	 years�
This study occupied a major part in most surveys devoted to algorithmic problems
in algebra �see e�g� ��
�� ���� ��
�� ����� ��
���
Varieties are the most intensively studied classes of universal algebras because

they combine the most natural operations on both syntactic and semantic levels�
Birkho��s fundamental theorem connecting these two points of view leads to a rich
interplay between combinatorics on words and structural methods� We recall the
basic de�nitions here�

Syntactic� a variety of algebras of a given type is a collection of algebras all satis�
fying a given set of identities�

Semantic� a variety of algebras of a given type is a collection of algebras closed
under the operations of taking subalgebras� quotients and direct products�

Birkho��s theorem then says that these two de�nitions de�ne the same classes of
algebras� In this paper we will be interested in �nitely described varieties of groups�
semigroups and inverse semigroups� Clearly� there is both a syntactic and semantic
notion of the term ��nitely described��

Syntactically �nitely described� a variety is �nitely based if it is de�ned by a
�nite set of identities�

Semantically �nitely described� a variety is �nitely generated if it is the smallest
variety containing a �xed �nite algebra�

Given a property � of varieties one can ask for an algorithm which decides if a
�nitely described variety has the property �� If we �nd such an algorithm then we
will say that we have an algorithmic description of those varieties that satisfy our
property ��
The last ten years have yielded algorithmic descriptions of varieties with many

important properties� Among all properties � of semigroup varieties which have
been studied� two turned out to be of major importance� the Burnside property and



� S� MARGOLIS� J�MEAKIN� M�SAPIR

the �nite basis property �see de�nitions later in the paper�� In this paper we will
show surprisingly close connections between these properties and other properties�
During the last �	��	 years another source of algorithmic problems appeared�

namely theoretical computer science� In particular the theory of �nite automata
and formal languages has served as a source of many algorithmic problems� Several
algorithmic problems about the formal language aspects of �nite automata are de�
cidable� while their computational complexity tends to be high� For example� the
question as to whether two non�deterministic �nite automata recognize the same
language is PSPACE complete� Many other problems� especially those concerned
with the semigroup theoretic aspects of the theory of �nite automata� are undecid�
able� Further in�uences included an analysis of the complexity of algorithms in the
case where the algorithmic problem is decidable� For example it is known that the
word problem in any commutative semigroup may be solved in polynomial time�
There is also a very large literature devoted to e�cient algorithms for computations
in �nite groups �see ���� and other areas of algebra�
The present paper is concerned primarily with a study of algorithmic problems

in semigroups� groups and inverse semigroups� The study of such problems for semi�
groups and groups is a classical part of algebra� Inverse semigroups were introduced
into the literature in the papers ����� and ���� in the early ��
	�s� They may be
regarded as semigroups of partial one � one transformations �see ������ Algorithmic
problems for inverse semigroups are natural and have received considerable atten�
tion in the literature during the past �
 � �	 years� While algorithmic problems
for semigroups and groups are basically problems about words� the corresponding
problems for inverse semigroups are essentially problems about �nite labelled trees�
Indeed the free inverse semigroup may be regarded as a semigroup of �nite �bi�
rooted� labelled trees �see �
��� There is a developing theory of varieties of inverse
semigroups �see ���� for a brief introduction� and of algorithmic problems for �nitely
presented inverse semigroups� Inverse semigroups form in a sense an intermediate
class between groups and semigroups and have in�uenced both group theory and
semigroup theory� For example� congruences on free monoids may be classi�ed via
inverse submonoids of the polycyclic monoid ���� and �nitely generated subgroups
of free groups may be classi�ed via �nite inverse semigroups �
��� ����� We will pro�
vide some details of these and other connections between inverse semigroups� groups
and semigroups later in the paper�
We shall employ geometric� topological� and combinatorial methods to study

algorithmic problems for groups� semigroups� and inverse semigroups�

�� Some Geometric Methods

���� Groups

Geometric methods have played an important role in combinatorial group theory
since the inception of work in that �eld� We shall not attempt to provide a detailed
survey of such methods here� but rather we draw the reader�s attention to two stan�
dard general ways in which geometric methods have been used to study algorithmic
problems for group presentations�
Let G � gp � X � R � be a presentation of a group G� Here X is a non�empty
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set and we may assume that R � fRi � i � Ig is a �possibly empty� set of non�
trivial cyclically reduced words in �X�X����� Thus G � FG�X��N � where FG�X�
denotes the free group on X and N is the normal closure of R in FG�X�� Denote
by � the canonical projection of FG�X� onto G� We shall adhere to this notation
throughout this section�
There are various ways to construct ��complexes from the presentation� For

example we denote byK � K�X � R� the two�dimensional CW�complex with a single
	�cell whose ��cells are in one�one correspondence with X� and whose ��cells are in
one�one correspondence with R� a given ��cell being attached by the boundary path
determined by reading the corresponding member of R� The underlying ��skeleton
�graph� of K is BX � the bouquet of X circles� It is well known that ���K� � G �see
�
	� or ������
It is also standard to consider the universal cover �K � �K�X � R� of K� This

is constructed in the following way� We may take G � ���K� as the set of 	�cells
of �K� Next� for each g � G and x � X� we attach a ��cell �g� x� joining g and
g��x�� we orient �g� x� from g to g��x� and write �g��x�� x��� for the corresponding
inverse� Then for each g � G and r � R we attach a ��cell �g� r� via the boundary
path �g�� x���g�� x������gn� xn� where r � x�x����xn� xi � X � X��� g� � g� gi�� �
gi��xi�� i � �� � � � � n��� The ��skeleton �graph� of �K is called the Cayley graph of the
presentation and is denoted by ��X � R�� One obtains the Cayley complex C�X � R�
from �K�X � R� by identifying all the faces �g� r�� �g��s�� r�� � � � � �g��sm���� r� where
r � sm�m � � and s is not a proper power in FG�X�� The ��skeleton of C�X � R�
is again the Cayley graph ��X � R� of course�
The ��complexes described above �and in particular the Cayley complex and its

��skeleton� play a prominent role in the theory� We refer the reader to the third
chapter of �
	� for basic information along these lines� In particular� the structure
of groups with a presentation whose Cayley complex is planar is studied in �
	� and
it is shown that the word problem for such a presentation is decidable� Also in
�
	� the notion of asphericity of group presentations is introduced� In fact there are
several somewhat di�erent notions of asphericity that have been considered in the
literature� We refer the reader to ���� where �ve notions of asphericity �all related
to the complexes discussed above� are studied in detail�
It is easy to see that the word problem for the presentation G � gp � X � R �

is decidable if the ball Bn of radius n in the Cayley graph ��X � R� is� for all n�
�nite and e�ectively constructable� There is a standard procedure �essentially the
Todd�Coxeter method of coset enumeration� for inductively constructing ��X � R�
as a limit of a sequence of graphs �i under graph morphisms �i�j � �i � �j for all
i � j� Since this procedure is closely related to much of what follows� we sketch a
version of it here and at the same time introduce some notation and terminology
that will be used in subsequent parts of the paper� The version that we present is a
slight variation on the version discussed in ����� There seem to be several versions
of this algorithm that appear throughout the literature�
We restrict attention to the case that the presentationG � gp � X � R � is �nite

�i�e X and R are �nite�� The idea is to build the Cayley graph iteratively from the
origin �the vertex representing the identity of G� by using the relators to combine
vertices and create loops� At each stage of the procedure we will have constructed
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a �nite graph �i and a graph morphism �i � �i � �i��� The graphs �i enjoy the
following properties�

�P�� each graph �i is connected with directed edges labelled by the elements of
X �X�� and such that if there is an edge labelled by x from v� to v� � then there
is also an edge labelled by x�� from v� to v��

�P�� no two directed edges with the same initial vertex have the same label�

Graphs with these properties are referred to as �unambiguous partial Cayley
graphs� in ���� and �inverse word graphs over X� in ������ There is an evident
notion of morphism between inverse word graphs �a graph homomorphism that
preserves labels and directions�� If � is an inverse word graph over X there is an
obvious morphism f � �� BX from � to the bouquet of X circles � f takes an edge
labelled by x in � onto the edge labelled by x in BX � It is clear that this morphism
is locally injective at each vertex of � � i�e f is an �immersion� in the sense of ������
We sometimes abuse notation slightly and refer to � itself as an immersion over BX �
Graph immersions have been used by a number of authors ������� ����� ����� �
��� to
study subgroups of free groups and submonoids of free inverse monoids� We shall
consider these ideas in more detail in the next section of this paper�
The reason for the name �inverse word graph over X� to describe a graph satis�

fying properties �P�� and �P�� above is that the transition monoid of such a graph
�i�e� the monoid of partial transformations of the vertices of � induced by the action
of the letters in X �X��� is an inverse monoid� An inverse monoid �semigroup� is a
monoid �semigroup�M such that for each x �M there is a unique element �denoted
by x��� in M such that

x � xx��x and x�� � x��xx���

Such monoids may be viewed as monoids of injective �partial� functions on a set A�
Indeed the monoid SIM�A� of all injective partial functions onA �with respect to the
usual composition of partial functions� is an inverse monoid �called the �symmetric
inverse monoid on A�� and the Preston�Wagner theorem asserts that every inverse
monoid may be embedded in a suitable symmetric inverse monoid� We refer the
reader to ���� for much basic information about inverse monoids� We shall return to
a discussion of inverse monoids later in this paper�
We also mention at this stage that an inverse word graph � over X may be viewed

as an automaton over the alphabetX�X�� if we distinguish an initial vertex �state�
� and a terminal vertex �state� 	 of �� Such an automaton is the minimal automaton
of the language that it accepts and is referred to in this paper and in the literature
as an �inverse automaton over X�� The transition monoid of such an automaton is
an inverse monoid �which is �nite if � is �nite�� The inverse word graphs �i that
we are about to construct will have a �xed base point� which may be viewed as the
initial and terminal vertex of �i� so we may think of each �i as an inverse automaton
over X� Recall that an inverse automaton over an alphabet X is an automaton over
X �X�� such that each x � X �X�� induces an injective function on the state set
and such that the inverse letter induces the inverse injective function�
In order to describe the graphs �i associated with the �nite presentation G �
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gp � X � R � we consider three types of operations that we will perform on a �nite
labelled graph � that satis�es property �P���

�O�� Loop closings� if in � there is a path p from vertex v� to vertex v� �� v�
labelled by a relator r � R� then we form a new graph �� obtained from � by
identifying v� and v�� Since R and � are �nite and �� has one less vertex than
� it follows that� by starting with � and applying successive loop closings a �nite
number of times� we will reach a �unique� graph �l to which no further loop closings
are applicable�

�O�� Adding hairs� if in � there is a vertex v and a letter x � X � X�� such
that � has no edge with label x starting at v� then we create a new graph �� from �
by adding to � a new vertex v� and a new edge e with label x� initial vertex v and
terminal vertex v� �and an inverse edge e� from v� to v with label x���� Since � and
X are �nite� there are only �nitely many hairs that can be added to the vertices of
�� thereby obtaining a new graph �h�

�O�� Folding� if in � there are two �directed� edges with the same initial vertex
�or terminal vertex� and the same label x � X �X��� then we create a new graph
�� from � by identifying these edges� One can check that folding is con�uent� so
that after �nitely many foldings one reaches a graph �f to which no further foldings
apply� clearly �f is an inverse word graph over X�

We construct a sequence of inverse word graphs ��� ��� � � � �i� associated with
G � gp � X � R � as follows� Start by taking a base point � and attaching to it
a loop for each relator in R� Each loop starts and ends at � and successive edges
describe the word in R� Next apply successive foldings until no more can be applied�
Then close the resulting graph under loop closings� This may create more vertices at
which foldings may be applied� Continue applying loop closings and foldings until
no more loop closings or foldings may be applied� Finiteness of ��X and R and
con�uence of the operations guarantees that after �nitely many steps we reach an
inverse word graph ��� If we regard the base point as the initial �terminal� vertex�
then �� becomes an inverse automaton�
Assume inductively that we have constructed �i� If� for each vertex v in �i and

each letter x � X � X��� there is an edge in �i with label x and initial vertex v�
then G must be �nite and �i is the Cayley graph ��X � R�� Then de�ne �i�� � �i
and �i to be the identity map on �i� Otherwise we add all missing hairs to the
vertices of �i �obtaining the graph ��i�h� and then apply all possible loop closings
and foldings until no more can be applied� Call the resulting graph �i���
Note that each vertex and edge of �i has a natural image in �i�� after all the

foldings and loop closings are applied� so there is a natural morphism �i � �i � �i���
This gives rise to morphisms �i�j � �i � �j for i � j and it is not too di�cult to
see that ��X � R� is the direct limit of this family f�i� �i�jg of inverse word graphs
and morphisms� If Bn is the ball of radius n in ��X � R�� then there is some integer
i �depending on n� but in general not an e�ectively computable function of n� such
that Bn is contained in �i�

Theorem ��� Let G � gp � X � R � be a �nitely presented group and let
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f�i� �i�jg be the system of inverse word graphs and graph morphisms constructed
according to the Todd�Coxeter algorithm described above� Then ��X � R� is the
direct limit of this system of graphs and graph morphisms�

The theorem essentially shows that every �nitely presented group may be natu�
rally approximated by �nite inverse monoids �the transitionmonoids of the graphs �i
constructed above�� In fact inverse monoids often arise naturally when given partial
information about a group� We shall see other examples of this sort of phenomenon
later in the paper�
We turn now to a very brief indication of a second standard way in which geomet�

ric methods have played a prominent role in combinatorial group theory� Again let
G � gp � X � R � be a �nitely presented group� where the notation is as speci�ed
above� It is standard to study membership in N �the normal closure of R in FG�X��
by associating with each word in N a planar map �diagram� which is referred to in
the literature as a van Kampen diagram �or a singular disk diagram�� Brie�y� the
de�nition of such a diagram may be stated in the following way� We de�ne a map to
be a �nite� planar� connected and simply connected ��complex� A diagram  over
an alphabet of the form X �X�� is a map such that every edge e �i�e�� a ��cell� of
 is provided a label ��e� in X � X�� such that ��e��� � ��e��� � �X � X�����
The label of a path p � e�e����en in  is by de�nition the word ��e����e�� � � � ��en��
We call a diagram  over X �X�� a �van Kampen� diagram over the presentation
G � gp � X � R � if the label of a boundary path of every face �i�e�� a ��cell� is a
cyclic permutation of some relator r �or r��� in R� The van Kampen Lemma then
says that a word w � �X �X���� is in N if and only if there exists a diagram over
G such that w is the label of the boundary of the diagram� In fact one may assume
that the diagram is reduced� A diagram  is said to be reduced if there are no
opposite faces in  � Two faces !� and !� are called �opposite� if there is an edge
e in the intersection of their boundaries such that the labels of !� and !�� starting
at e� coincide� �That is� !� and !� are �mirror images� of each other�� For a proof
of this lemma� and for further de�nitions and results about van Kampen diagrams�
we refer the reader to Chapter V of �
	�� There are slightly di�erent de�nitions that
appear at various places in the literature� The reader is referred to Ol�shanskii�s
book ���� for a deep analysis of the use of these methods in combinatorial group
theory� The methods of small cancellation theory �
	� and much of the recent deep
work of Ivanov on the Burnside problem ���� is based on these methods�
We remark that there is a natural graphmorphism from any van Kampen diagram

over G into the Cayley graph ��X � R�� We de�ne such a map 
 as follows� Let
 be a van Kampen diagram over G � gp � X � R � and suppose that p is a
boundary path of  with initial �and terminal� vertex O� De�ne 
�O� � � �the
vertex representing � in ��X � R�� and for an arbitrary vertex v of  let 
�v� be
the element of G represented by the word ��q�� where q is any path in  between
the vertex O and v� In view of the van Kampen lemma the vertex 
�v� of ��X � R�
depends only on v and not on the path q� For an edge e of  with initial vertex v let

�e� be the edge of ��X � R� with initial vertex 
�v� and label ��e�� It is clear that

 de�nes a graph morphism from �the ��skeleton of�  into ��X � R�� Of course 

is not in general an embedding since distinct vertices �edges� of  may be identi�ed
under 
� The interplay between van Kampen diagrams and Cayley graphs indicated
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above is used throughout the literature in combinatorial group theory� For a nice
recent application of these ideas we refer to Ol�shanskii�s recent elementary proof
���� that groups with subquadratic isoperimetric inequality are hyperbolic�

���� Semigroups

We turn now to the use of geometric methods for semigroup presentations analogous
to the methods discussed above for group presentations� Throughout this section we
let S � sgp � X � R � be a semigroup presentation� Here X is a non empty set and
we will take R to be a �nite set of relations of the form ui � vi where ui and vi are
non empty words in the free semigroup X�� There is a well developed analogue of
the planar van Kampen diagrams of combinatorial group theory in this setting and
also an appropriate but somewhat less well developed analogue of the Cayley graph
for a group presentation� We provide a brief discussion of both methods below�
We begin with a description of the planar semigroup diagrams associated with the
semigroup presentation S above�
A semigroup diagram �or s�diagram� over the presentation S � sgp � X � R �

for a pair �u� v� of non empty words in X� is a diagram  over X �X�� with the
following properties�

�SD�� each face �i�e� bounded ��cell� of  is labelled in the clockwise direction
by a word of the form rs�� for some �r� s� such that r � s �or s � r� is a relation in
R�

�SD�� the boundary of  carries a clockwise label uv���

�SD�� there are no interior sources or sinks �a source is a vertex of indegree 	 � i�e
a vertex with no positively labelled edge coming in to it� a sink is the dual concept��

It is clear that if F is any face of such a diagram then there is a unique vertex
F� such that the clockwise boundary cycle of F starting at F� is of the form �����
where ���� � r and ���� � s� We denote the terminal point of � �� the terminal
point of �� by F� and refer to � ��� as the left �right� boundary of F� Similarly
the whole diagram  has a left boundary labelled by u starting at  � and a right
boundary labelled by v ending at  �� An important property of such diagrams is
that every positively labelled edge of  lies on some positively labelled directed path
running from  � to  �� �Such a path is sometimes referred to as a �transversal�
of  �� The analogue of the van Kampen lemma in this setting is that there is a
sequence of elementary transitions u � u� � u� � � � � � un � v with respect to
the presentation S � sgp � X � R � if and only if there is a �u� v� diagram over this
presentation with exactly n regions �bounded faces��
Semigroup diagrams of this type were introduced into the literature by Remmers

���� and have been used by a number of authors to study semigroup presentations�
We refer the reader to the book of Higgins ���� for an exposition of some of the uses
that have been made of these diagrams � in particular for some results on �small
overlap� semigroups and for a version of Remmer�s proof of a result of Adian about
the embeddability of a semigroup that is left and right �cycle free� in a group�
We turn now to an exposition of some recent �as yet unpublished� work of

Kilibarda concerning the algebra of semigroup diagrams� Semigroup diagrams have
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in general a much simpler structure than group diagrams �van Kampen diagrams��
In particular� the fact that every positively labelled path in a semigroup diagram
may be extended to a transversal in the sense described above is very useful and
imposes severe restrictions on the common boundary of two faces of such a diagram�
For example� no edge can be on the left boundary of two distinct faces of a semigroup
diagram� Using ideas of this type� one is able to de�ne a process of reduction on
semigroup diagrams and a natural multiplication on the set of semigroup diagrams
associated with a given presentation�
A pair of faces F� and F� of a semigroup diagram  is called a �reducible pair� if

F� and F� are mirror images of each other� i�e�� F� has a boundary cycle of the form
���� and F� has a boundary cycle of the form �
�� where �� � and 
 are positively
labelled paths and ���� � ��
�� In this case one can form a new semigroup diagram
 � by eliminating the common boundary � from  and then extracting the new
region that is formed from F� and F� by identifying the paths � and 
� In this case
we say that  � has been constructed from  by one elementary reduction� We de�ne
a semigroup diagram  to be reduced if it does not have any reducible pair of faces�
If  and  � are two semigroup diagrams over the same presentation we say that
they are equivalent if and only if either  is identical to  � or there is a sequence
 �  �� �� � � � � k �  � for some k� such that for each j � k� one of  j�� and
 j comes from the other by elementary reduction� It is clear that equivalence of
diagrams de�ned this way is an equivalence relation�

Lemma ��� �Kilibarda� There is exactly one reduced diagram in each equivalence
class�

We denote by r� � the unique reduced diagram that is equivalent to  � The
lemma enables us to introduce a natural multiplication on the set of reduced semi�
group diagrams associated with a �xed presentation S � sgp � X � R � in the
following way� Let � be a reduced �u� v� diagram over S and �� a reduced �t� w�
diagram over S� The product of � and �� will be de�ned if and only if v � t� In
this case we can form a new diagram �a �u�w� diagram over S� by identifying the
right boundary of � with the left boundary of �� and taking the union of the two
diagrams under this identi�cation� Denote the new diagram by � � ��� Then de�ne

� � �� � r�� � ����

With respect to this multiplication� the set of reduced semigroup diagrams over S
becomes a groupoid� The identities �objects� of this groupoid may be identi�ed with
the �u� u� diagrams that have no faces � a reduced �u� v� diagrammay be viewed as an
arrow �morphism� in this category from the trivial �u� u� diagram to the trivial �v� v�
diagram� The maximal subgroups �loop monoids� of this category provide a measure
of the essentially di�erent elementary transitions with respect to the presentation
that take us from a word u to itself� In particular� the maximal subgroups are all
trivial if and only if the presentation is aspherical in the sense of Ivanov ����� This
is a somewhat more restricted notion of asphericity than that of Cho and Pride
���� and may be best thought of as an analogue for semigroups of the notion of
�diagrammatic asphericity� in the sense of �����
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The groupoid of semigroup diagrams over the presentation S � sgp � X � R �
de�ned above may be identi�ed with the fundamental groupoid ��KS� of a certain
complex KS � We refer to ��	� or ���� or �
	� for the notion of the fundamental
groupoid of a complex� The complex KS is de�ned as follows�

V �KS�� the set of vertices of KS is X� �the set of all words over X��
E�KS�� there is an edge e in KS with initial vertex ��e� � w� � X� and terminal

vertex ��e� � w� � X� whenever there exists a pair of words x� y � X� and a relation
r � s �or s � r� in R such that w� � xry and w� � xsy� The edge e depends not
only on r and s but also on the context �x� y� in which they occur� Thus there
may be multiple edges between w� and w� corresponding to application of the same
relation but in di�erent contexts� The inverse of the edge e de�ned above has initial
edge w� and terminal edge w� and is determined by the same relation that was used
to de�ne e� in the same context�

C�KS�� there is a ��cell �face� F in KS with boundary path e�e�e�e� whenever
there are two disjoint appearances of relators in a word w � X�� such as w � xr�yr�z
for some x� y� z � X� and some relations r� � s� and r� � s� in R� Then e�� e�� e�
and e� are edges with initial and terminal vertices given by�

��e�� � w � ��e��� ��e�� � xs�yr�z � ��e���

��e�� � xs�ys�z � ��e��� ��e�� � xr�ys�z � ��e���

This ��cell has an obvious inverse with boundary path �e�e�e�e�����

Theorem ��� �Kilibarda�� Let S � sgp � X � R � be any semigroup presenta�
tion� Then the groupoid of semigroup diagrams over S is isomorphic to the funda�
mental groupoid ��KS� of the complex KS de�ned above� In particular� the maximal
subgroups of this groupoid of semigroup diagrams are the fundamental groups of KS�

REMARKS� ��� Theorem ��� may be used to calculate the maximal subgroups
of the groupoid of semigroup diagrams over a presentation� For example if S �
sgp � x� y � xy � yx � �the free commutative semigroup on two generators� then
one sees that all of the corresponding maximal subgroups of the associated groupoid
are trivial� so this presentation is aspherical in the sense described above� This
observation also essentially follows from the results of Adian ��� or Ivanov �����
However the free commutative semigroup on more than � generators is not aspherical�
��� It can be shown fromTheorem��� that the maximal subgroups of the groupoid

of semigroup diagrams over any �nitely presented semigroup have decidable word
problem� It can also be shown that any �nite direct product of �nitely generated
free groups arises this way� A complete characterization of the class of groups that
arise in such a way is at present unknown�
��� It is interesting to note that a complex isomorphic to KS has been intro�

duced independently by S�Pride ���� in connection with his work on low dimensional
homotopy of monoid presentations�

We turn now to a discussion of the analogue of the Cayley graph of a group
presentation in the setting of monoid presentations� For the remainder of this section�
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M will denote a monoid presentation of the form M � mon � X � R � where R is
a set of monoid relations of the form u � v� for some u� v � X�� Such presentations
include the semigroup presentations considered above but we do not now explicitly
exclude the case that some of the relations may be of the form u � � for some
u � X�� In any case we want to view M as a monoid now� even if there are no
relations of this form in R� We let � denote the natural map from X� onto M� One
may form the Cayley graph ��X � R� for such a presentation just as for a group
presentation� The vertices of ��X � R� are the elements of M and there is an edge
labelled by x from m to m��x� for each m in M and x in X�We regard ��X � R� as
a word graph over X �i�e�� a graph whose edges are labelled over X� in this case� but
note that it is not an inverse word graph since there is no �inverse edge� labelled by
x�� from m��x� to m�
In order to study the word problem for a monoid presentation M as above�

Stephen showed in his thesis ���� that it is convenient to introduce a family of
birooted word graphs B��w�� one for each word w in X�� The graphs B��w� are
de�ned as follows� The underlying graph is the restriction of the Cayley graph
��X � R� to the set of elements n in M such that ��w�M is contained in nM in
the monoidM �i�e� n is greater than or equal to ��w� in the R�class order on M��
Thus the set of vertices of B��w� is the set of all such elements de�ned above and
the edges are just the edges of ��X � R� that connect vertices of this form� There are
also two distinguished vertices �roots� namely � �the initial vertex� and ��w� �the
terminal vertex�� One may view B��w� as an automaton over X with states the
vertices of the graph and initial state � and terminal state ��w�� Stephen shows in
���� that the language accepted by this automaton is exactly the set of words in X�

that are equivalent to w under the presentation� Thus one solves the word problem
forM if one has an e�ective procedure for constructing the automataB��w� �or the
language accepted by these automata� for each w in X��
There is an iterative construction of the automaton B��w� starting from the

�linear automaton� of the word w� If w is the word w � x�x����xn in X� then the
linear automaton of w is the automaton with n " � states v�� v�� ���� vn and an edge
labelled by xi from vi�� to vi for i � �� � � � � n� The initial state is v� and the terminal
state is vn� Clearly the language accepted by this automaton is just fwg� Starting
with this automaton� one then builds a sequence of automata obtained by applying
operations of the following types�

�M�� Expansions� if in an automaton A over X �i�e� a birooted word graph over
X� there are two states v� and v� and a path p from v� to v� labelled by one side
�say u� of a relation u � v in R� but no path from v� to v� labelled by the other
side� then we expand the automaton A by adding a new path from v� to v� labelled
by v� The resulting automaton A� is said to be obtained from A by an expansion�

�M�� Foldings� if in a birooted word graph �automaton� over X there are two
edges with the same initial vertex and the same label� then we identify these edges�
The resulting automaton A� is said to be obtained from A by folding edges� Note
that this is the same as the operation �O�� that was used in the Todd�Coxeter
algorithm outlined above� the di�erence being that in this case we only fold edges
with the same initial vertex and the same label� whereas in �O�� we also fold edges
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with the same terminal vertex and the same label� If we perform all possible foldings
to a �nite automaton A the result is a deterministic automaton� but not necessarily
an injective automaton� By an injective automaton we mean an automaton where
every letter induces a partial one�one function�

Stephen has shown ���� that the operations �M�� and �M�� are con�uent � i�e��
if we start with an automaton A and apply one of these operations to obtain A� and
a possibly di�erent operation to A to obtain A��� then there is a third automaton
B such that B can be obtained from A� by applying a �nite sequence of operations
of the form �M�� or �M�� and also B can be obtained from A�� by applying a
�nite sequence of these operations� The idea then is that we can build B��w� by
starting with the linear automaton of w and applying operations of the form �M��
or �M�� successively �in any order�� The resulting automata become �better and
better approximations� to B��w� and �in the limit� we obtain B��w� this way�
These ideas are made precise in ����� We include some brief explanation of the
details below and refer to ���� for more detail� We also refer to �
�� for the relevant
de�nitions and concepts from category theory�
In ���� it is shown that the class of birooted word graphs over X is a cocomplete

category �see �
�� for the de�nition of this concept� and so in particular this category
has colimits� If ����� �� and ������� ��� are birooted word graphs obtained from the
linear automaton of w by repeated applications of operations �M�� and �M�� and if
������� ��� is obtained from ����� �� by one application of one of these operations�
then the language accepted by ����� �� is contained in the language accepted by
������� ��� and there is a natural morphism of birooted word graphs from ����� ��
to ������� ���� So there is a natural diagram �directed system� of birooted word
graphs obtained from the linear graph of w this way� Stephen shows that B��w� is
the colimit of this diagram of birooted word graphs in the category of all birooted
word graphs over X�

Theorem ��� �Stephen� ����	�� Let M � mon � X � R � be a monoid presen�
tation and let w be any word in X�� Then B��w� is the colimit �direct limit� in the
category of birooted word graphs over X of the diagram of birooted word graphs that
are obtained from the linear graph of w by repeated applications of operations �M��
and �M
� relative to this presentation�

REMARKS� ���� In order to apply Theorem ��� to construct the automata
B��w� relative to some given presentation� one uses the con�uence of the operations
�M�� and �M�� to devise a scheme for iteratively applying these operations so that
one �eventually� builds in all applications of all possible expansions and all possible
foldings� In practice this can be very di�cult� especially if the resulting automaton
B��w� is in�nite� and there has not been extensive use of this technique in the
literature to date�
���� In his paper ����� McCammond constructs automata somewhat similar to the

automata B��w� to solve the word problem for the free semigroups in the Burnside
variety of semigroups de�ned by an identity of the form xa � xa�b for a � 
�
However the automata that McCammond uses are essentially non � deterministic�
unlike the automata B��w� of Stephen�
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���� Inverse Monoids

Inverse monoids arise naturally whenever one is concerned with injective partial
functions �i�e�� partial one�one functions on a set�� The class of inverse monoids
forms a variety of algebras of type � �� �� 	 � de�ned by associativity and the
identities

x � xx��x� �x����� � x� x � � � � � x � x� xx��yy�� � yy��xx���

This last law expresses the fact that idempotents commute and is one of the crucial
properties of inverse monoids� As a consequence of this� the setE�M� of idempotents
of an inverse monoid forms a semilattice with respect to the multiplication� which
may be extended to the natural partial order on M by de�ning a � b i� a � eb for
some e in E�M�� Inverse monoids have been considered extensively in the literature�
We refer to the book of Petrich ���� for much basic information about inverse monoids
and in particular for various ways in which they may be constructed from groups
and semilattices�
The study of algorithmic problems in inverse semigroups may be traced back

to the work of Gluskin ���� who studied the structure of the free inverse monoid
on one generator� but it was not until the work of Munn �
� and Scheiblich ���	�
that the structure of the free inverse monoid on a set X was known and the word
problem for the free inverse monoid was solved� Subsequently� Stephen ����� �����
developed a framework for studying the word problem for presentations of inverse
monoids� Stephen�s work built on the work of Munn �
� and Margolis and Meakin
�
��� where graphical methods akin to those commonly used in combinatorial group
theory were introduced� This work has led to a substantial amount of subsequent
work by Margolis� Meakin� Stephen and others on the word problem for inverse
monoids �
�� �

�� ����� ������ ���� and varieties of inverse monoids �
��� ����� Many
other results on varieties of inverse monoids� properties of the free inverse monoid
and the elementary theory of the free inverse monoid have appeared in the literature�
Closed inverse submonoids of the free inverse monoid have been studied by Margolis
and Meakin �
�� and applications of these ideas to the study of subgroups of free
groups have been developed in �
�� and ����� These ideas will be discussed in the
next section of this paper� Much of this work on algorithmic problems in inverse
semigroups has been discussed in the survey article of Meakin ����� so we shall include
only a brief discussion of part of this theory here�
The structure of the free inverse monoid FIM�X� on a set X can be elegantly

described via the Cayley graph �tree� of the free group FG�X� on X� We present
this as a special case of a more general construction of Margolis and Meakin �
��
here� since we will need the ideas of this more general construction in Section ��
of this paper� Let G � gp � X � R � be a group presentation and let ��X � R�
be the corresponding Cayley graph� We build an inverse monoid from ��X � R� in
the following way� De�ne M�X � R� � f��� g� � � is a �nite connected subgraph of
��X � R� containing the vertices � and g of ��X � R�g with multiplication

��� g� � � � h� � ��� g � � gh��

where g �  denotes the translate of  on the left by g in ��X � R� and � � g �  
simply denotes the union of the corresponding subgraphs of ��X � R�� In �
�� it is
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shown thatM�X � R� is an inverse monoid with maximal group homomorphic image
G and that the passage from G to M�X � R� de�nes a functor from the category of
X�generated groups to the category of X�generated �E�unitary� inverse monoids
that is a left adjoint to the maximal group image functor� We recall that an inverse
monoid M is said to be E�unitary if the natural map � from M onto its maximal
group image is �idempotent�pure� �i�e�� the inverse image of � under � is just E�M���
The monoids M�X � R� constructed above have many pleasant properties� In

particular� if G � gp � X � � � � FG�X�� then the corresponding inverse monoid
M�X � �� is isomorphic to the free inverse monoid FIM�X� on X� Thus the
elements of FIM�X� may be thought of as birooted inverse word trees of the form
����� g� where � is a �nite subtree of the tree ��X � �� containing � and g� and the
multiplication is as speci�ed above� If w is a word in �X �X���� then the birooted
word tree associated with w is ���MT �w�� r�w��� where r�w� is the reduced form
of w in the usual group theoretic sense and MT �w� is the �Munn tree� of w � i�e��
MT �w� is the subtree of ��X � �� traversed when one reads the word w in ��X � ���
starting at the vertex � and ending at the vertex r�w�� Munn�s solution to the word
problem in FIM�X� is� if u and v are two words in �X � X����� then u � v in
FIM�X� if and only if MT �u� �MT �v� and r�u� � r�v��
The Munn treeMT �w� of a word wmay be regarded as a �nite inverse automaton

over X �X�� in the usual way �with initial state � and terminal state r�w��� The
vertices of this graph �automaton� are the elements of FIM�X� that are related to
w via Green�s R�relation on FIM�X� and the language accepted by this automaton
is the set of words v in �X �X���� such that v � w in the natural partial order on
FIM�X�� These ideas have been extended by Stephen ����� ����� to study arbitrary
presentations of inverse monoids�
We denote by inv � X � T � the inverse monoid presented by the set X of

generators and the set T of relations� Here we may consider T as a set of relations
of the form ui � vi where ui and vi are elements of the free monoid �X � X����

and we interpret inv � X � T � as the image of �X �X���� obtained by imposing
the relations in T together with all of the identities that de�ne the variety of inverse
monoids� alternatively� one may view the ui and vi as elements of FIM�X� and
inv � X � T � as the image of FIM � X � obtained by imposing these relations�
It follows immediately by universal considerations that gp � X � T � is the maximal
group homomorphic image of inv � X � T ��
There is a well developed and useful analogue of the Cayley graph for studying

presentations of inverse monoids� but no analogue at the present time of the meth�
ods of van Kampen diagrams or semigroup diagrams discussed above� We brie�y
indicate the situation with respect to the Cayley graph� One may de�ne the Cayley
graph ��X � T � of an inverse monoid presentation in the obvious way� just as for
semigroup presentations or group presentations� It turns out to be useful in this set�
ting� however� to restrict this Cayley graph to the set of vertices that are R�related
to the word under consideration�
Let M � inv � X � T � and let w be any word in �X � X����� Denote the

natural map from �X � X���� onto M by �� We de�ne a word graph S��w� over
X � X�� as follows� The vertices of S��w� consist of the elements m of M that
are related via Green�s R�relation to ��w�� There is an edge labelled by x from
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m to m��x� for each x in X � X�� provided both m and m��x� are R�related
to ��w� in M� This implies that there is also an edge labelled by x�� from m��x�
to m in S��w�� which we take as the inverse of the original edge� Thus S��w� is
in fact an inverse word graph over X in the sense discussed above� The birooted
inverse word graph A�w� � ���ww���� S��w�� ��w�� may be regarded as an inverse
automaton in the usual way �with initial state ��ww��� and terminal state ��w���
This automaton has been referred to as the �Schutzenberger automaton of w� in
the literature and the underlying graph S��w� as the �Schutzenberger graph of
w� since S��w� is the graph of the Schutzenberger representation of M relative to
the R�class in consideration� Note the distinction between S��w� and the graph
B��w� constructed above in connection with a monoid presentation� Note also that
if M � FIM�X� � inv � X � � � then for each word w in �X �X����� there is an
isomorphism between A�w� and the birooted inverse word graph ���MT �w�� r�w���
In his work ������ Stephen shows that the language accepted by A�w� is in fact

the set of words v in �X � X���� such that v � w in the natural order on M and
that two words u and v in �X � X���� are equal in M if and only if A�u� and
A�v� accept the same language� i�e�� if and only if A�u� and A�v� are isomorphic as
birooted word graphs over X� Thus we have a solution to the word problem forM if
we have an e�ective procedure for constructing each automaton A�w� for each word
w in �X�X����� Stephen goes on to provide an iterative procedure for constructing
the automata A�w�� We brie�y describe this procedure below�
We again start with the linear automaton of the word w� as described in the

previous section� However we now regard this automaton as an inverse automaton
over X �i�e�� we associate with each edge labelled by x in X �X�� an inverse edge
labelled by x�� in the usual way�� Let us denote the resulting linear automaton of
w by LinA�w�� Note that w is in the language accepted by LinA�w�� but that this
language is in�nite if w �� � �for example� �ww���nw is in this language for each
n � ��� It is not di�cult to see that the language accepted by LinA�w� is contained
in the language accepted by A�w�� as described above� Starting with LinA�w��
one builds a sequence of automata obtained by applying operations of the following
types�

�I�� Expansions� this is exactly the same as the expansion operation �M�� dis�
cussed in the previous section� However we build in the additional requirement that
each edge with label x fromX�X�� in the new automatonmust come equipped with
its natural inverse edge labelled by x���The resulting automaton satis�es condition
�P�� of section ����

�I�� Foldings� this is exactly the same as the folding operation �O�� discussed
in section ���� Note that if we apply all possible foldings to a �nite automaton
that satis�es condition �P�� we obtain an inverse automaton� Note the distinction
between this operation and the folding operation �M�� of section ����

Once again the e�ect of applying an expansion or a folding to an automaton that
satis�es �P�� is to obtain another such automaton which accepts all words in the
language of the original automaton and there is a morphism from the �rst birooted
word graph to the second� Thus one may again consider the diagram �directed
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system� of all birooted word graphs obtained from the linear automaton LinA�w�
by successive applications of the expansion and folding operations �I�� and �I��� and
A�w� is the colimit �direct limit� of this diagram of automata�

Theorem ��� �Stephen� ����	� Let M � inv � X � T � be an inverse monoid
presentation and let w be any word in �X �X����� Then A�w� is the colimit �direct
limit� in the category of birooted word graphs over X �X�� of the diagram �directed
system� of birooted word graphs that are obtained from the linear graph LinA�w� of
w by repeated applications of operations �I�� and �I
� relative to this presentation�

Note that the operations �I�� and �I�� are again con�uent in this setting� so
that one may proceed to construct A�w� from LinA�w� by applying a sequence
of expansions and foldings in any desired order� so long as one eventually builds
in all possible expansions and foldings� In practice� one usually arranges that all
intermediate automata in such a sequence are inverse automata� by applying all
possible foldings to the automaton under consideration� Note also that the Todd�
Coxeter algorithm for constructing the Cayley graph of a �nitely presented group is
in fact a special case of this general construction of Stephen� corresponding to the
presentationM � inv � X � R�xx�� � x��x � � for all x � X � �
The iterative construction of the automata A�w� associated with an inverse

monoid presentation M � inv � X � T � has proved to be a powerful tool in
analysing such monoids� In his original paper and thesis ����� ������ Stephen exam�
ines several examples where these methods enable him to solve the word problem for
classes of inverse monoid presentations that could not be handled e�ectively using
the usual �linear� arguments on words that are often used in semigroup theory� We
shall not cite a list of all other instances in the literature where these methods have
been used� but we refer the reader to the following papers where very signi�cant use
of these methods has been made�
�a� the paper �

� where the word problem is solved for inverse monoids presented

by �nitely many relations of the form ei � fi� where ei and fi are idempotents of
the free inverse monoid�
�b� the paper �
�� where the word problem for the free semigroups in the Burnside

variety of inverse semigroups de�ned by the identity �xa � xa�b� for b � a is solved�
This problem is surprisingly easy to solve� quite in contrast to the situation for
Burnside varieties of semigroups or groups �see ��
� for references and discussions��
�c� the paper ���� where free combinatorial strict inverse semigroups are studied�
�d� the paper ���� where these methods are used to study the structure of free

products of inverse semigroups�
�e� the paper ���� where undecidability of the word problem for the Mal�cev

product of the variety of semilattices and the variety of abelian groups is proved�
this result will be discussed in more detail in Section ��
�f� the paper ���� where wreath products of varieties of inverse semigroups are

studied�
�g� the paper ���� where it is shown that the word problem for one relator inverse

monoids of the form M � inv � X � e � � � �for e an idempotent of FIM�X��
can be solved in polynomial time� this is in contrast to the general situation for the
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inverse monoids considered in �a� above� where the complexity of the solution to the
word problem appears very high�
It is perhaps worth mentioning here that the word problem for one relator inverse

monoids of the form M � inv � X � w � � � remains unsolved� Even in the case
where w is a reduced word� it can be proved that a positive solution to this problem
would imply a positive solution to the one relator semigroup problem for semigroups
of the form S � sgp � X � u � v �� The situation here is in sharp contrast to the
situation for one relator groups� where the word problem was solved by Magnus in
the early ���	�s and one relator monoids of the form M � mon � X � w � � �
where the word problem was solved by Adian ���� Some recent �unpublished� work
of Ivanov� Margolis and Meakin shows that there may be a reasonable chance of
settling the word problem for inverse monoids of the form M � inv � X � w � � �
in the case where w is cyclically reduced� In this case it is possible to use the van
Kampen diagrams of combinatorial group theory to show that M is E�unitary� We
refer the reader to the paper �
� for some early ideas about this problem�

�� Immersions� Inverse Automata and Algorithmic Problems for Sub�
groups of Free Groups

���� Preliminaries

The notion of an immersion� that is a locally injective graph morphism� has been
used to prove a number of results about free groups ����� ������ We show here that
inverse monoids play the same role in the theory of immersions that groups play in
the theory of coverings� Just as a cover over the bouquet of X circles is �essentially�
a representation of the free group FG�X� by permutations� we will see that an
immersion over the bouquet of X circles is �essentially� a representation of the free
inverse monoid FIM�X� by partial one to one maps� We make this precise by
showing that the category of immersions over the bouquet of X circles is naturally
equivalent to the category of representations of FIM�X��
By picking two distinguished vertices to be regarded as a start and terminal state

we can think of immersions as inverse automata� If the terminal state coincides with
the start state then the subset of FIM�X� accepted by this inverse automaton is a
closed inverse submonoid� This means that this submonoid is a �lter in the natural
partial order on FIM�X� �x � y 	 x � xx��y�� Conversely� every closed inverse
submonoid is accepted by such an inverse automaton� Under this identi�cation�
�nitely generated closed inverse submonoids correspond to �nite inverse automata�
Furthermore� we will see that �nitely generated closed inverse submonoids are pre�
cisely the closed inverse submonoids of �nite index in the sense of inverse semigroup
theory ���� and that they are also exactly the closed submonoids that are rational
subsets of FIM�X� in the sense of formal language theory�
We can also associate an inverse automaton with every subgroup H of the free

group FG�X�� This construction� to be explained below� is usually more �compact�
than the corresponding permutation automaton �that is� the cover corresponding to
H�� In this way� just as subgroups of �nite index correspond to �nite covers� that
is �nite permutation automata� �nitely generated subgroups correspond exactly to
�nite inverse automata� This observation then gives a quick proof of many �niteness
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results for subgroups of free groups� Furthermore� this allows us to use algebraic
properties of the transition �inverse� monoid of an inverse automaton to give a
�syntactic� classi�cation of �nitely generated subgroups of free groups� We exploit
this in two ways� First of all� we develop an analogue of Eilenberg�s Theorem that
gives a bijection between pseudo�varieties of �nite monoids and semigroups and
classes of regular languages called varieties of languages ���� ����� ��	��
Secondly� we show that certain algorithmic questions about subgroups of free

groups can be shown to be polynomial equivalent to corresponding properties of
inverse automata and their transition monoids� This allows us to prove for example�
that the problem of testing whether a �nitely generated subgroup is pure or p�pure
for a given prime p is PSPACE�complete�
Finally we return to inverse semigroup theory by showing how to construct all

closed inverse submonoids of a free inverse monoid by looking at actions of groups
on trees� For detailed proofs of the material presented here� see �
��� �����

���� Covers are Permutation Automata

In this section we recall some basic de�nitions and establish the connection between
covers of graphs and permutation automata� All our graphs will be in the sense of
������ Let �� and � be graphs� A morphism  � �� � � is a cover if for all vertices
v� � Vert�����  induces a bijection�

v� � Starv� � Starv��

where Starv � fe � Edge��� j e starts at vg� A permutation automaton over an
alphabet X is an automaton over X � X�� such that each x � X � X�� induces
a permutation on the state set and such that the inverse letter induces the inverse
permutation� For this and the next section our automata do not have any initial
state or terminal states speci�ed� There is an evident notion of morphism of cover�
morphism of automata and morphism of representation of FG�X��

Theorem ��� The following categories are naturally equivalent�
a� The category of �connected� covers over the bouquet of X circles�
b� The category of �transitive� representations of FG�X� by permutations�
c� The category of �connected� permutation automata over X�

It is well known that a transitive representation of FG�X� is equivalent �in the
category of representations of FG�X�� to the coset representation of FG�X� modulo
the stabilizer of any vertex� In this way� �nite connected covers correspond exactly to
conjugacy classes of subgroups of FG�X� of �nite index� However� �nitely generated
subgroups need not correspond to �nite covers� We shall see later that they do
correspond to �nite immersions and can be classi�ed by �nite inverse monoids�

���� Immersions are Inverse Automata

In this section we show that immersions and inverse automata play the same role as
covers and permutation automata in the previous section� Let �� and � be graphs�
A morphism  � �� � � is a immersion if for all vertices v� � Vert�����  induces an
injection�
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v� � Starv� � Starv���

There is an evident notion of morphism of immersion� morphism of inverse automata
and morphism of representation of FIM�X��

Theorem ��� ��	 The following categories are naturally equivalent�
�a� The category of �connected� immersions over the bouquet of X circles�
�b� The category of �transitive� representations of FIM�X� by injective functions�
�c� The category of �connected� inverse automata over X�

Just as transitive representations of FG�X� are determined up to equivalence
by subgroups of FG�X� a theorem of Schein ����� shows that transitive represen�
tations of FIM�X� are determined up to equivalence by closed inverse submonoids
of FIM�X�� That is� the stabilizer of any vertex in a transitive representation of
FIM�X� is a closed inverse submonoid of FIM�X�� Conversely� any closed inverse
submonoid N of FIM�X� determines a transitive representation of FIM�X� on
the so called 	�cosets of N � Two closed inverse submonoids of FIM�X� determine
equivalent representations �in the category of representations� if and only if they
are conjugate in an appropriate sense� See ���� for more details� Thus up to con�
jugacy� closed inverse submonoids and immersions are equivalent notions� We shall
see that unlike the case of groups� �nite immersions correspond to both �nite index
and �nitely generated closed inverse submonoids�

���� Some Classical Applications of Immersions

In this section we review a number of classical applications of immersions� Many
of these have appeared in various places in the literature and in many guises� We
claim no originality here� but just gather these together for purposes of illustration�

������ The Free Group is Residually Finite
Let w �� � be an element of FG�X�� We wish to construct a �nite group H and
a morphism � � FG�X� � H such that w� �� �� There are many well known
constructions of such anH� Here is a simple construction based on inverse automata�

Step � Let w �� � � FG�X�� Construct the linear inverse automaton LinA�w� that
reads the word w �see Section ����� LinA�w� has a state set Qw with length�w�
" � states�

Step � Since LinA�w� has a �nite number of states� we can complete the automaton
to a permutation automaton Pw on the same set Qw� Since the word w does
not �x the initial state� the transition induced by w in the transition group H
of Pw is not equal to � in H�

EXAMPLE

Let X � fa� bg and w � aba��b��a� Then the automaton LinA�w� is shown in
Figure � below where � is the initial state� � is the terminal state�
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b � b � b� b� b � b
� � � � 
 �a b a b a

Fig� �� LinA	w


Now we can de�ne Pw to be any permutation automaton that extends the action
of LinA�w� on the state set f�� � � � � �g� Then since the image of w in the transition
monoid H of Pw maps � to �� w does not induce the identity transformation and
thus the image of w in H is not the identity�

������ The Generalized Word Problem for FG�X�
The generalized word problem for a �nitely presented group G is to decide given an
element g � G and a �nite subset Y 
 G whether or not g �� Y � where � Y � is
the subgroup generated by Y � It is well known that this problem is solvable for the
free group FG�X� on a �nite set X� One method is to use linear methods related
to Neilsen reduction to try to represent g as a product of free generators for � Y ��
Here we show how to associate a �nite inverse automaton A�� Y �� with � Y �
that accepts the unique reduced word representing g if and only if g �� Y �� In
�
�� it is shown that this automaton just depends on the group � Y � and not
the particular generating set Y assuming each element of Y is given by its reduced
representative�

ALGORITHM

Input� A �nite set Y � FG�X� and an element w � FG�X��

Output� �Yes� if and only if w �� Y ��

Method

Step � Construct the �ower automaton F�Y � of Y � F�Y � has a state i that is the
unique initial and terminal state and one �petal� for each y � Y that spells out
y in a loop from i to i�

Step � F�Y � may not be an inverse automaton� so we fold edges �in the sense of
Section ���� until an inverse automaton is obtained� It can be shown that this
process leads to a unique inverse automaton A�� Y �� that depends only on
the subgroup generated by Y and not the set Y itself�

Step � Answer �Yes� if and only if the reduced word representing w labels a path
from the initial state to itself� It can be shown that a reduced word labels such
a path if and only if it is in � Y �� so that this algorithm is correct�

It is not di�cult to see that A�� Y �� can be constructed in polynomial time
from the input� Furthermore� it is easy to see that testing whether the reduced word
representing w is accepted in A�� Y �� is also done in polynomial time� Thus this
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algorithm is polynomial� Avenhaus and Madlener �
� studied the complexity of the
generalized word problem and proved that this problem is P�complete with respect
to logspace reductions�

������ Marshall Hall�s Theorem
In ����� Hall proved that every �nitely generated subgroup of a free group is closed in
the pro�nite topology of the free group� Since this conference proceedings contains
a number of articles on the pro�nite topology and its relationship to automata
theory and semigroup theory� we will not repeat de�nitions here� We will just call
a subgroup H of a group G closed if H is the intersection of some collection of
subgroups of G each of which has �nite index�
We can use the automaton A�� Y �� constructed in the last section to prove

Hall�s Theorem� Let Y be a �nite set contained in FG�X� and let w � FG�X� be
an element that is not in � Y �� Consider A�� Y ��� Since w is not in � Y ��
either w does not label a loop in A�� Y �� at the start state or w does not label
any path in A�� Y ��� In the �rst case� let Aw�� Y �� � A�� Y ��� In the second
case� let Aw�� Y �� be the inverse automaton obtained from A�� Y �� by sewing
on a path reading w from the initial state �adding new states when the path �falls
o�� A�� Y �� ��
In either case� Aw�� Y �� is a �nite inverse automaton with the property that

w labels a path starting at the initial state and ending elsewhere� Once again� we
complete Aw�� Y �� to a permutation automaton on its state set in any possible
way� We obtain a �nite permutation automatonPw�� Y �� with the same property�
Now let Hw be the stabilizer of the initial state in Pw�� Y ��� Then Hw has the
following properties�
� Hw has �nite index in FG�X��
� w is not in Hw�
� � Y � 
 Hw�
It follows that � Y � is the intersection of the collection fHw j w is not in

� Y �g� Since each of these has �nite index we have proved that � Y � is closed�

������ The Finite Index Problem
The �nite index problem asks whether a �nitely generated subgroup of a group has
�nite index� Again the inverse automaton can be used to solve this problem� The
equivalence of the �rst two conditions of the next theorem appears in ������ but has
been known for some time� Let I�� Y �� be the transition monoid of A�� Y ���
I�� Y �� is a �nite inverse monoid that once again is independent of Y �

Theorem ��� Let Y be a �nite subset of FG�X� and H �� Y �� Then the
following conditions are equivalent�

a� H has �nite index�

b� A�H� is a permutation automaton�

c� I�H� is a �nite group�
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It is easy to see that one can test if a �nite inverse automatonA is a permutation
automaton in polynomial time in terms of the number of edges of A� It follows that
the �nite index problem can be solved in polynomial time�
Theorem ��� forms a basis for our ideas expounded below� We wish to translate

properties of �nitely generated subgroups into properties of the corresponding �nite
inverse automaton and �nite inverse monoid� If the corresponding property can be
e�ectively checked in the �nite automaton or �nite inverse monoid� then we have
essentially described an algorithmic solution to the original problem� If the problem
just depends on the inverse automaton� then since we can construct the automaton in
polynomial time from a generating set for the subgroup� we have e�ciently reduced
the problem in group theory to the corresponding problem in automaton theory�
This is the case in Theorem ��� above� If on the other hand� the corresponding
problem depends on the structure of the inverse monoid� then the complexity of the
problem may increase signi�cantly� This is because the size of the inverse monoid
may be exponential in the size of the input� We will see this phenomenon in the
next section�

���� Purity of Subgroups� A PSPACE�complete problem

In this section we use the ideas outlined above to show that the problem of detecting
whether a �nitely generated subgroup of FG�X� is pure or p�pure is PSPACE�
complete� This is the �rst �natural� problem on free groups that we know of that
is PSPACE�complete�
Recall that a subgroup H of a group G is pure �p�pure for a given prime p� if for

all g � G� gn � H for some n � 	 �n relatively prime to p�� implies that g � H�

Theorem ��� ��
	 Let H be a �nitely generated subgroup of FG�X�� Then the
following conditions are equivalent�

a� H is pure �p�pure� for given prime p��

b� Every subgroup of I�H� is trivial �a p�group��

It is straightforward to see that given a �nite inverse automatonA� then checking
whether every subgroup in the transition monoid of A is trivial or a p�group can
be done in polynomial space� Thus Theorem ��� gives a PSPACE algorithm for
detecting whether a �nitely generated subgroup of FG�X� speci�ed by a �nite set
of generators is pure or p�pure� We note that the conditions in Theorem ��� depend
on the structure of the transition monoid of A�H�� Thus this condition is not
necessarily detectable in polynomial time from the input� Note that in the �nite
index problem of the preceding section� the condition that the transition monoid
of A�H� be a group is equivalent to the easily checkable property that A�H� itself
be a permutation automaton� We can ask whether the property of testing whether
every subgroup of the transition monoid of a �nite inverse automatonA is trivial or
a p�group is reducible to some easily checkable property of the automaton itself�
The main theorem of ���� shows that these problems are in fact PSPACE�complete

so it is unlikely that any of these problems has a polynomial time solution� This is
done by showing that these problems are polynomial equivalent to certain problems
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about inverse automata� A number of interesting problems about inverse automata
are needed and are also shown to be PSPACE�complete�
In particular� the following problems are considered in ���� �

The intersection emptiness problem Given a collection of �nite injective or in�
verse automata� Ai� � � i � n� is there a word accepted by all of the Ai�
� � i � n�

The aperiodicity problem Given an injective or inverse automaton A� is every
subgroup of the transition monoid of A trivial�

The generation problem Given an inverse automaton with state set Q and a test
injective function f � Q � Q� is f a member of the transition monoid of the
automaton�

The p�periodicity problem Given an injective or inverse automaton A and a
prime number p� is every subgroup of the transition monoid of A a p�group�

Theorem ��	 ��
	 The problems�

a� the intersection emptiness problem�

b� the aperiodicity problem�

c� the generation problem�

d� the p�periodicity problem�

e� the purity of subgroup problem�

f� the p�purity of subgroup problem�

are all polynomial time reducible to each other� All of these problems are PSPACE�
complete�

To do this we make use of injective Turing machines and a theorem of Bennett ����
These problems were known to be PSPACE�complete for �nite automata in general
����� ��	�� On the other hand� for group automata� these problems have very fast
parallel algorithms and are in the class NC ���� Thus� with respect to complexity
theory� inverse semigroups behave more like arbitrary semigroups than groups�

���� Pseudo�varieties of Finite Inverse Monoids and Closed Inverse

Submonoids of Free Inverse Monoids

We have seen that we have the following equivalences for a �nitely generated sub�
group H of a free group FG�X��
� H is �nitely generated if and only if I�H� is a �nite inverse monoid�
� H has �nite index if and only if I�H� is a �nite group�
� H is pure if and only if I�H� is a �nite inverse monoid with trivial subgroups�
� H is p�pure if and only if I�H� is a �nite inverse monoids and all subgroups in

I�H� are p�groups�
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These correspondences suggest that the properties of subgroups of free groups
that can be detected by these methods are related to varietal properties of the
corresponding inverse monoid� This is in total analogy with the relationship between
pseudo�varieties of �nite semigroups and monoids and varieties of languages in the
sense of Eilenberg� See ���� ����� ��	� for an extensive introduction to these ideas�
Ruyle ���� has developed a similar correspondence between pseudo�varieties of

�nite inverse monoids and pseudo�varieties of �nitely generated closed inverse sub�
monoids of free inverse monoids� He also has developed a number of correspondences
between classes of �nitely generated subgroups of free groups and pseudo�varieties
of �nite inverse monoids� but the connection is somewhat more subtle� due to the
fact that there are many immersions that represent a subgroup of the free group�
That is� the inverse automatonA�H� that we have associated with a subgroup H of
FG�X� has the minimal number of states among all immersions representing H as
a stabilizer of a vertex� We can obtain all other such immersions by sewing on trees
at points on A�H� that have no edge reading some letter in X �X��� The resulting
transition monoid of such an inverse automaton can have varietal properties that
can be surprisingly di�erent form the transition monoid of A�H� itself� Depending
on the application� it is sometimes useful to consider not only A�H� but one or all
of these larger immersions corresponding to H�
In the cases listed above the corresponding properties are independent of which

inverse automaton we consider� For example� one inverse automaton representing
H has transition monoid with trivial subgroups if and only if all inverse automata
representing H have this property� Details and more examples can be found in �����

��	� Structure of Closed Inverse Submonoids of Free Inverse Monoids

The ideas and applications of the preceding sections were geared towards applications
to the classi�cation of subgroups of free groups� In this section we return internally
to the free inverse monoid itself and show how immersions can be used to give
a structure theorem for closed inverse submonoids of FIM�X�� We will see that
every such object is constructed from the free action of a �free� group on a tree�
Let T be a tree and let G be a group acting freely on the left of T � This means

that the stabilizer of each vertex of T is trivial� It is well known that G is a free
group and that every free group has such an action on a tree������
Fix a vertex v � V �T �� Let M�T�G� v� � f�t� g�jt is a �nite subtree of T� g � G

and v� gv � V �t�g and de�ne a multiplication by

�t�� g���t�� g�� � �t� � g�t�� g�g���

Here g�t� denotes the translate of the tree t� and t� � g�t� is the subtree whose set
of vertices �edges� is the union of those of the trees t� and g�t��

Example Let G � FG�X� and let T � ��X� be the Cayley graph of G relative
to the usual presentation� Then T is a tree and G acts freely on T by left
multiplication� By Munn�s theorem� �
��M�T�G� �� is isomorphic to FIM�X��
the free inverse monoid on X� Clearly in this case we obtain the construction
of FIM�X� given in Section ����
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One of the main theorems of �
�� states that monoids of the formM�T�G� v� are
precisely the class of closed inverse monoids of free inverse monoids� We review the
main constructions here�
Let N be a closed inverse submonoid of FIM�X�� Let �N be the immersion

corresponding to N � That is �N is the automaton of right 	�cosets of N and N is
represented as the stabilizer of �the right 	�coset� N �
Let TN be the universal covering graph of �N � It is well known that TN is a tree

and that the fundamental group G � ����N � acts freely on the left of TN �by deck
transformations�� Furthermore� TN embeds into the Cayley graph of the free group�
We can arrange that � is a vertex in this embedded image and that � covers N in
the covering map from TN to �N � Finally it is known that �N is the quotient of TN
under the action of G which can be represented as a subgroup of FG�X��

Lemma ��� ��	 Let N be a closed inverse submonoid of FIM�X�� Then the
maximal group image of N is isomorphic to G � ����N�� Furthermore� N is iso�
morphic to M�TN � G� ���

Thus� every closed inverse submonoidN of FIM�X� can be naturally constructed
form the topological invariants TN and G � ���N�� Conversely� every monoid
constructed this way is isomorphic to a closed inverse submonoid of an appropriate
free inverse monoid�

Lemma ��� ��	 Let G be a group acting freely on a tree T with root v� Let
� � GnT and let X be an orientation of �� Then M�T�G� v� is isomorphic to a
closed inverse submonoid of FIM�X��

It is not true that every closed inverse submonoid of FIM�X� is a free inverse
monoid� For example� the semilattice of idempotents of FIM�X� is closed� but not
a free inverse monoid� In �
�� it is proved that every closed inverse submonoid has a
retraction onto a free inverse monoid� This is proved by translating the topological
notion of contracting a spanning tree into the algebraic setting of inverse semigroups�
This and many other facts concerning these monoids can be found in �
��� It is also
shown in �
�� how to use the free inverse category on a graph � to classify immersions
over ��

��
� Finiteness Conditions

In this section� we show that the closed inverse submonoids of free inverse monoids
satisfy �niteness properties not shared by subgroups of free groups� This allows one
to lift properties of �nitely generated subgroups of free groups to the closed inverse
submonoid generated by the same set� Results such as Howson�s Theorem follow
easily�
Recall that the set of rational subsets of a monoid M is the smallest collection

of subsets of M containing the singletons and closed under �nite union� product of
subsets and submonoid generation �i�e� Kleene star�� A subset S ofM is recognizable
if there is a �nite monoid N and a morphism f �M � N and a subset P of N such
that S � Pf��� See ��	� for details� Let Rat�M� be the set of rational subsets of
M and let Rec�M� be the set of recognizable subsets of M � We have the following
important theorems�
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Theorem ��
 �Kleene� If M is a �nitely generated free monoid� then Rec�M� �
Rat�M��

Theorem ��� �Anissimov and Seifert�� Let G be a �nitely generated group and
let H be a subgroup of G� Then H � Rec�G� if and only if H has �nite index in G�
H � Rat�G� if and only if H is �nitely generated�

It follows from Theorem �� that if G is any in�nite group� then the trivial
subgroup is rational� but not recognizable� We also list the following consequence of
Kleene�s theorem due to McKnight�

Theorem ��� Let M be a �nitely generated monoid� Then Rec�M� is contained
in Rat�M��

We say that a closed inverse submonoid N of FIM�X� is �nitely generated if
N is the smallest closed inverse submonoid containing a �nite set Y � That is N �
fn � FIM�X�jn � y��� � � � � � y

�m
m yi � Y� �i � f����gg� N has �nite index if N has a

�nite number of 	�cosets� That is� the immersion �N corresponding to N is �nite or
equivalently by Theorem ���� N is recognized by a �nite inverse automaton� Putting
this altogether we have the following theorem proved in �
���

Theorem �� ��	 Let M � FIM�X� and let N be a closed inverse submonoid of
M� Then the following conditions are equivalent�

a� N is recognized by a �nite inverse automaton�

b� N has �nite index in M�

c� N corresponds to a �nite immersion over the bouquet of circles�

d� N is a recognizable subset of M�

e� N is a rational subset of M�

f� N is �nitely generated�

As an application� we can obtain a quick proof of Howson�s Theorem� the inter�
section of two �nitely generated subgroups of a free group is also �nitely generated�
Indeed� if Ni � FG�X� is generated by a �nite set Yi� i � �� �� let #Ni be the closed
inverse submonoid of FIM�X� generated by Yi� Then #Ni is recognized by a �nite
inverse automaton Ai by Theorem ���� A standard construction of the theory of
automata allows us to construct a �nite automaton recognizing #N� � #N�� Thus�
#N� � #N� is a �nitely generated closed inverse submonoid of FIM�X� and so is its
image N� �N� in FG�X��
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�� Burnside�type Properties� Symbolic Dynamics� Identities and Quasi�
Identities of Finite Semigroups

We now turn to algorithmic problems in varieties�
First of all we need some basic de�nitions�

� A semigroup S is periodic if all its one�generated subsemigroups are �nite� equiv�
alently if for every element x � S there exist two di�erent numbers mx and nx
such that xmx � xnx �

� A nil�semigroup is a semigroup in which a power of every element is equal to
zero�

� A nilpotent semigroup of degree n is a semigroup where any product of n ele�
ments is zero� Every �nite nil�semigroup is nilpotent �����

� A variety is called periodic if it consists of periodic semigroups� A variety is
called non�periodic if it contains a non�periodic semigroup� or� equivalently� if
it contains the additive semigroup of natural numbers�

���� Burnside Problems in Varieties of Semigroups

As we mentioned in the introduction� the description of varieties where periodic
semigroups are locally �nite �see Theorems ��� and ��
 below� plays an exceptional
role in the study of algorithmic problems in semigroup varieties� Most of the results
about algorithmic problems in varieties would be impossible to obtain without it�
The �rst result about Burnside�type problems in semigroup varieties was pub�

lished by Morse and Hedlund ���� The result was the following�

Theorem ��� There exist an in�nite semigroup with three generators that satis�
�es the identity� x� � 	 and an in�nite semigroup with two generators that satis�es
the identity x� � 	�

Morse and Hedlund used certain in�nite words W� and W� over a ��letter al�
phabet and a ��letter alphabet� which avoid the words x� and x� respectively� In
general if u is a word and � is an endomorphism of a free semigroup then ��u� is
called a value of u� A word u is called avoidable by a word W if W does not contain
any values of u� A word u is called avoidable if it is avoided by an in�nite word over
a �nite alphabet�
We present the Thue construction of the word W� in Section ��
 below�
There is a natural correspondence between in�nite words over a �nite alphabet

and �nitely generated semigroups �see Section ����� This correspondence implies the
following connection between the avoidability of words and Burnside�type properties
�see �����

Theorem ��� A word u is avoidable if and only if the variety given by the iden�
tity u � 	 is not locally �nite�

The next step was made by D�B�Bean� A�Ehrenfeucht� and G�McNulty ���� and
independently by Zimin ���
�� They found algorithms for checking if a word is
avoidable�

� We use the short expression u � � for the pair of identities ux � u� xu � u where x does not
occur in u�
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We will need the de�nition of the words Zn� which we will call Zimin words�

Z� � x�� � � � � Zn�� � Znxn��Zn�

The following theorem is a translation of results from ��� and ���
� into the
language of varieties�

Theorem ��� Let V be a variety of semigroups given by a�possibly in�nite� set
of identities fu � 	 j u � $g� Assume that the number of variables occurring in
words of $ is n� Then the following conditions are equivalent�
�� V is locally �nite�

� Zn contains a value of some word u in $�

This theorem gives an algorithmic description of locally �nite varieties de�ned by
identities of the form u � 	� Notice that all these varieties consist of nil�semigroups�
The next result by Sapir ��	�� gives an algorithmic description of arbitrary vari�

eties where nil�semigroups are locally �nite�

Theorem ��� ���
	 Let V be a variety of semigroups given by a �possibly in�nite�
set of identities $� Assume that the number of variables occurring in words of $ is
n� Then the following conditions are equivalent�
�� All nil�semigroups from V are locally �nite�

� All semigroups from V satsfying the identity x� � 	 are locally �nite�
�� There exists an identity u � v � $ such that Zn�� contains a value ��u� for

some endomorphism � but ��u� �� ��v��

The next theorem� also from ��	��� describes varieties where all periodic semi�
groups are locally �nite in the class of varieties with �good� groups and in the class
of non�periodic varieties�

Theorem ��	 ���
	 Let V be a variety of semigroups given by a �possibly in�nite�
set of identities $� Assume that the number of variables occurring in words of $ is
n� Assume also that the variety V either is non�periodic or contains no non�locally
�nite groups of �nite exponent� Then the following conditions are equivalent�
�� All periodic semigroups from V are locally �nite�

� All nil�semigroups from V are locally �nite�
�� There exists an identity u � v � $ such that Zn�� contains a value ��u� for

some endomorphism � but ��u� �� ��v��

These two theorems have many interesting corollaries and applications �see ��	���
��	���� Let us present just one of them immediately� Others will be discussed later�

Theorem ��
 ���
	 A �nitely based periodic semigroup variety is locally �nite if
and only if all its groups and all its nil�semigroups are locally �nite�
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���� Burnside Properties and Identities of Semigroups

One of the central problems in unversal algebra is the following problem connecting
the syntactic and semantic ways of describing varieties�

Tarski�s Finite Basis Problem Is the set of �nite algebras that generate �nitely
based varieties recursive�

For groups the answer is given by the celebrated theorem of Oates and Powell�

Theorem ��� �Oates�Powell� Every �nite group G generates a �nitely based
variety�

The same result is not true for semigroups� Let B�
� denote the semigroup con�

sisting of the � � matrix units together with the 	 matrix and the identity matrix�

Theorem ��� �Perkins ���	� The variety of semigroups generated by B�
� is not

�nitely based�

Theorem ��� allows one to get a much stronger result� Indeed� one can reformulate
Theorem ��� in the following way�

Theorem �� �Sapir� ���
	� Let V be a variety where every nil�semigroup is
locally �nite� Suppose V does not satisfy any non�trivial identity of the form Zn �
W � Then V cannot be de�ned by a �nite number of identities�

This theorem turned out to be a very powerful tool in studying the �nite basis
property in semigroup varieties�
For example one can easily establish that the Brandt monoid B�

� does not satisfy
any non�trivial identity of the form Zn �W � This immediately implies the following
theorem�

Theorem ���� ����
	� A locally �nite variety of semigroups is not �nitely based
provided it contains the Brandt monoid B�

� �

A �nite algebra which cannot belong to a locally �nite �nitely based variety is
called inherently non��nitely based ���� Theorem ���	 actually states that B�

� is
an inherently non��nitely based semigroup� Theorem ���	 answered a question by
G�McNulty and C�Shallon ��
��
It is clear that if an inherently non��nitely based algebra A divides a �nite

algebra B �that is A is a homomorphic image of a subalgebra of B� then B itself
is inherently non��nitely based � Thus if B�

� divides a �nite semigroup S� then S is
not �nitely based� Using a result of Volkov ���
�� it turns out that the converse is
also true for inverse semigroups�

Theorem ���� ����
	� Let S be a �nite inverse semigroup� Then considered as
a semigroup the following conditions are equivalent�
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a� S is �nitely based�

b� S is weakly �nitely based�

c� B�
� does not divide S�

Since it is decidable whether B�
� divides a �nite inverse semigroup S� given the

multiplication table of S� it is decidable whether a given inverse semigroup is �nitely
based as a semigroup� The Tarski problem for arbitrary �nite semigroups remains
open�
In ��	�� Sapir gave the following algorithmic description of all �nite inherently

non��nitely based semigroups�

Theorem ���� �����	� A �nite semigroup S of order n is inherently non��nitely
based if and only if it does not satisfy any non�trivial identity of the form Zn� � W �

We say that a �nite algebra A is weakly �nitely based if A belongs to some locally
�nite �nitely based variety �that is if A is not inherently non��nitely based�� Of
course� every �nitely based �nite algebra is weakly �nitely based� but we will see
that the opposite implication does not hold�

���� Identities of Inverse Semigroups

B�
� is also an inverse semigroup� It is easy to see that if s � B�

� � then s
�� is the

transpose matrix of s� As we mentioned in Section �� the class of inverse semigroups
is a variety of algebras of type � �� � � consisting of multiplication and inversion�
We can thus study the variety of inverse semigroups generated by B�

� � Notice
that B�

� plays a very important role in the theory of varieties of inverse semigroups�
In particular by a result of E�Kleiman ��� every inverse semigroup variety that does
not contain B�

� and that is generated by a �nite semigroup� is �nitely based� He also
proved the following result�

Theorem ���� �E�Kleiman ���	� The variety of inverse semigroups generated
by B�

� is not �nitely based�

Given Theorem ���� and Kleiman�s Theorem ����� one is lead to expect that B�
�

is inherently non��nitely based even when considered as an inverse semigroup� Thus
the following result is very surprising�

Theorem ���� �����	� Let S be a �nite inverse semigroup� Then� considered as
an inverse semigroup� S is weakly �nitely based�

That is� every �nite inverse semigroup belongs to a locally �nite �nitely based
variety of inverse semigroups� It is a major open problem to decide which inverse
semigroups are �nitely based when considered as inverse semigroups� It is still
possible that every inverse semigroup having B�

� as a divisor is not �nitely based as
an inverse semigroup�
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Theorem ���� is a consequence of the following two theorems� Let Z �n be the
pre�x of Zn consisting of all but the last letter� We will say that a semigroup S has
height � h if and only if every descending chain of principal right ideals has length
� h�

Theorem ���	 Every inverse semigroup of height n � � satis�es the identity
Z �n � Z �nx�x

��
� �

Theorem ���
 Let S be a �nitely generated inverse semigroup satisfying the
identity Z �n � Z �nx�x

��
� � Let all subgroups of S be locally �nite� Then S is �nite�

For example� by Theorem ���
� B�
� belongs to the variety de�ned by the identities

x� � x� and xyxzxyxtxyxzxy � xyxzxyxtxyxzxyxx��� From Theorem ����� it
follows that the variety de�ned by these two identities is locally �nite�

���� Quasi�varieties of Semigroups

Quasi�varieties of algebras are classes de�ned by quasi�identities� that is formulas of
the following form�

��x�� � � � � xn� u� � v�% � � �%um � vm � u � v ���

where ui� vi� u� v are terms in variables x�� � � � � xn�
After varieties� quasi�varieties are the most widely studied classes of algebras�

Again� they are studied from both a syntactic and a semantic point of view�

Syntactic A quasi�variety is a class of algebras satisfying a given set of implications�

Semantic A quasi�variety is a class of algebras closed under taking subalgebras�
products and �ultraproducts�� �See ���� for a de�nition of ultraproducts��

For example let Q � fSj�xz � yz� � �x � y�g� Q is the quasi�variety of right
cancellative semigroups�
There are the evident notions of �nitely generated� �nitely based� weakly �nitely

based and inherently non��nitely based quasi�varieties� Ol�shanskii ���� described
the collection of �nitely generated quasi�varieties of groups that are �nitely based�

Theorem ���� �Ol�shanskii ���	� Let G be a �nite group� Then the quasi�variety
generated by G has a �nite basis of implications if and only if every Sylow subgroup
of G is Abelian�

Sapir ��		� has studied the question of which �nite semigroups have a �nite basis
of quasi�identities� In particular� he described �nite semigroups without two�sided
ideals that have this property� But the general problem remains open� The following
theorem is the appropriate analogue to Theorem �����

Theorem ���� �Margolis and Sapir ���	� Let S be a �nite semigroup� Then S
belongs to a locally �nite quasi�variety� de�ned by a �nite set of implications� That
is� every �nite semigroup is weakly �nitely based with respect to quasi�identities�
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Theorem ���� is a consequence of the following two theorems�

Theorem ��� Every �nite semigroup of height n�� satis�es the quasi�identity
�tZn � wZn� � �tZ �n � wZ �n��

Theorem ���� Let S be a �nitely generated periodic semigroup satisfying the
quasi�identity �tZn � wZn� � �tZ �n � wZ �n�� Let all subgroups of S be locally �nite�
Then S is �nite�

For example� by Theorem ����� B�
� �as a semigroup� belongs to the quasi�variety

de�ned by the identity x� � x� and the implication

txyxzxyxuxyxzxyx � wxyxzxyxuxyxzxyx�
txyxzxyxuxyxzxy � wxyxzxyxuxyxzxy�

From Theorem ���	� it follows that this quasi�variety is locally �nite�

���� Semigroups and Inverse Semigroups

It is hard not to notice a similarity between Theorems ���
 and ����� The reason
for this similarity is that these theorems express the same structural property of
semigroups in two di�erent cases� the case of inverse semigroups and the case of
semigroups� In the �rst case this property may be expressed by an identity in the
second case it can be expressed by a quasi�identity�
Let u� v � X�� We say that S satis�es the condition uR�v if for every homo�

morphism � � X� � S� ��u� and ��v� generate the same principal right ideal in
some semigroup T containing S� It is known that in the case of inverse semigroups
T may be always taken equal to S� The relation R� has been studied extensively
by J�Fountain ��	��
The following lemmas show us how to express the condition �S satis�es uR�v�

in terms of identities for inverse semigroups and quasi�identities for semigroups�
Lemma ��� appeared in �����

Lemma ��� Let S be an inverse semigroup� Then S satis�es the condition uR�v
if and only if S satis�es the identity uu�� � vv���

Lemma ��� Let S be a semigroup� S satis�es the condition uR�v if and only if
S satis�es the bi�implicaton tu � wu 	 tv � wv� where t and w are variables not
appearing in u and v�

From these lemmas� it is easy to derive the following corollaries�

Corollary ��� Let S be an inverse semigroup� Then S satis�es ZnR�Z �n if and
only if S satis�es the identity Z �nx�x

��
� � Z �n�

Corollary ��� Let S be a semigroup� Then S satis�es ZnR�Z �n if and only if S
satis�es the quasi�identity �tZn � wZn� � �tZ �n � wZ �n��

Now the following theorem implies both Theorems ���
 and �����

Theorem ���� Let S be a semigroup of height n� �� Then it satis�es

ZnR
�Z �n
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���� Semigroups and Symbolic Dynamics

The proofs of Theorems ���� ���� and ���	 have one important detail in common�
All these proofs employ the following connection between semigroups and symbolic
dynamical systems� This connection appeared �rst in the paper of Sapir ��	���

A symbolic dynamical system is a closed subset of the Tikhonov product XZ�
where X is a �nite set with the discrete topology� which is stable under the shift

homeomorphismT �this homeomorphismshifts every sequence fromXZ one position
to the right��
The correspondence between semigroups and symbolic dynamics is the following�

Let S �� X � be an in�nite �nitely generated semigroup �the same argument may
be applied for any universal algebra�� Then there is an in�nite set T of words over
X such that every element of S represented by a word of T cannot be represented
by words over X of shorter length� Such words will be called geodesic words� These
words label geodesics in the Cayley graph of the semigroup� It is clear that every
subword of a geodesic word is also a geodesic word� Now� in every word of T � mark
a letter which is closest to the center of this word� There must be an in�nite subset
T� of T of words which have the same marked letters� an in�nite subset T� of T�
of words which have the same subwords of length � containing the marked letters�
� � � � an in�nite subset Tn of Tn�� of words which have the same subwords of length
n containing the marked letters� and so on� Therefore there is an in�nite word W
such that every subword of W is a subword of a word from T � Thus every subword
of W is geodesic� In�nite words with this property will also be called geodesic� The
set D�S� of all in�nite geodesic words is a symbolic dynamical system because it
is stable under the shift �obviously� and is closed in the Tikhonov topology �this
can be easily proved�� Conversely� with every symbolic dynamical system D one
can associate a semigroup S�D� as follows� S�D� consists of all �nite subwords of
in�nite words from D� and 	� If u and v belong to S�D� then u �v is equal to uv if uv
belongs to S�D�� or 	 otherwise� It is easy to show that S�D� is a semigroup� The
following theorem shows that every symbolic dynamical system is equal to D�S� for
some semigroup S�

Theorem ���� �Sapir� ��	� For every symbolic dynamical system D we have

D�S�D�� � D�

The correspondence between semigroups and symbolic dynamical systems allows
one to show that some important properties of the theory of semigroups and impor�
tant properties of the theory of symbolic dynamical systems are in fact equivalent�
For example� if a �nitely presented semigroup S is periodic then the symbolic dy�
namical system D�S� does not have cyclic trajectories� The semigroup S is in�nite
if and only if D�S� is not empty� etc�
One of the important concepts of the theory of symbolic dynamical systems is

the concept of a uniformly recurrent word� An in�nite word U is called uniformly
recurrent if for every �nite subword u of U there exists a number NU �u� such that
every subword of U of length NU �u� contains u as a subword� It is an easy corollary
from ���� �see ��	�� for details� that for every in�nite word U there exists a uniformly
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recurrent word U � such that every subword of U � is a subword of U � It is easy to see
that if U belongs to D�S� then U � also belongs to D�S��
Therefore for every in�nite �nitely generated semigroup S �� X � there exists

a uniformly recurrent geodesic word over X �see ��	���� Uniformly recurrent words
are much more convenient than arbitrary in�nite words�

��	� Uniformly Recurrent Words and Burnside Properties

The following theorem was �rst proved in ��	���

Theorem ���� Let � � AZ be uniformly recurrent � Suppose that a � A and
that � � ��a�� is an occurrence of a in � where �� is in�nite to the left and ��
is in�nite to the right� Then there is a substitution � � fx�� x�� � � �g � A� and a
sequence of natural numbers A�n� �� such that�

a� ��x�� � a

b� ��a � ����Zn� for some �� in�nite to the left�

c� j��Zn�j � A�n� ���

This theorem shows that uniformly recurrent words have strong regularity prop�
erties� In order to prove that a �nitely generated semigroup S is �nite� we must be
able to translate these regularities into properties about the structure of S�
For example� let us sketch the proof of Theorems ���� and ����� Let us take a

periodic semigroup S with all subgroups locally �nite which have the property

Z �nR
�Zn� ���

Suppose that S is in�nite� Then there exists a geodesic uniformly recurrent word
�� Let A � A�n� �� be the number from Theorem �����

Lemma ��� Let u� v� and w be consecutive subwords of � such that u and v
have length � A� w may be empty� Then Z �nR

�Zn implies uvwuR�uvwuv�

Proof� Suppose that p is the longest pre�x of v such that the relation

uvwuR�uvwup

follows from ���� If v � p then we are done so suppose v �� p� Let v � paq for some
letter a and word q� We have uvwup � upaqwup� Since upa is a subword of � and
jupaj � A by Theorem ���� there exists an endomorphism � of the free semigroup
such that upa � u���Zn� and ��x�� � a� Therefore up � u���Z �n�� Thus Z

�
nR

�Zn
implies upR�upa� Therefore we have uvwuR�uvwupR�uvwupa which contradicts
the choice of the pre�x p� The lemma is proved�
Let us consider the ��nite� set of all subwords of � of length �A� Since � is

uniformly recurrent there exists a number B such that every subword of length B
of � contains every subword of this set� Let u and v be any two subwords of � of
length � �B� let a and b be the corresponding elements in S� An induction similar
to that used in Lemma ��� gives us the following lemma�



�� S� MARGOLIS� J�MEAKIN� M�SAPIR

Lemma ��� a and b are J �related� i�e a � c�bd�� b � c�ad� for some elements
c�� c�� d�� d� from S�

Notice that so far we did not use the fact that all subgroups of S are locally �nite
and that U is geodesic� Thus we actually proved the following fact�

Lemma ��	 Let S �� X � be a semigroup satisfying Z �nR
�Zn� Let U be any

uniformly recurrent word over X� Then there exist only �nitely many J�classes of
S which contain elements represented by subwords of U �

Now if we take a uniformly recurrent geodesic �� we can �nd a natural number
N such that all subwords of � of length � N will represent elements from the same
J �class of S� Readers familiar with the basic structure theory of semigroups ����
will see that the condition Z �nR

�Zn makes S semisimple� They will then know that
if all subgroups of S are locally �nite then these subwords will represent only a �nite
number of distinct elements of S� It follows that � is not irreducible and thus S is
�nite�
Thus we see that if a semigroup satis�es the condition ��� then it satis�es the

descending chain condition for ideals generated by factors of a uniformly recurrent
sequence� The ordinary descending condition for ideals may not hold in such a
semigroup �see ��	�� for a counterexample��
Applications of uniformly recurrent words are very e�ective� but are not con�

structive� Indeed� there is no algorithm to �nd the number NU �u�� The proofs of
Theorems ��� and ��
 have been made constructive in ��	� where the analogue of
the restricted Burnside problem for semigroup varieties is discussed�

	� Varieties with Decidable Word Problem

���� Commutative Semigroups

We say that the word problem is decidable �solvable� in a variety V of semigroups
if it is decidable �solvable� in every semigroup which is �nitely presented in V �
The �rst non�trivial �that is non�locally �nite� variety of semigroups with solv�

able word problem was found independently by A�I�Mal�cev �
�� and by Ceitin and
Emelichev ����� It was the variety of all commutative semigroups�

Theorem 	�� The variety of all commutative semigroups has a solvable word
problem�

Mal�cev showed that every �nitely generated commutative semigroup is faithfully
representable by matrices over a suitable �eld� and every �nitely generated ring of
matrices is residually �nite� Therefore every �nitely generated commutative semi�
group is residually �nite and the McKinsey algorithm �see Theorem 
�� below� gives
the solution to the word problem�
As was pointed out by Emelichev in ���� the proof may be easily deduced from

an old paper by Hermann ���� devoted to the membership problem for ideals in the
ring of polynomials� Indeed� let S �� Xju� � v�� � � � � ur � vr � be any �nitely
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presented commutative semigroup� Emelichev ���� proved that a relation u � v
holds in S if and only if the polynomial p � u� v belongs to the ideal of the ring of
polynomialsQ�X� generated by polynomials pi � ui�vi� This� in turn� is equivalent
to the solvability of the following equation over Q�X��

p�f� " p�f� " � � � " prfr � p ���

with unknowns f�� � � � � fr� Now we can use the following result from �����

Theorem 	�� Let d � maxfdeg�p��� deg�p��� � � � � deg�pr�g� If the equation ���

has a solution then there is a solution with deg�fi� � deg�p� " �rd��
jXj

�

It is clear that if there is a bound for the degrees of the unknown polynomials in
��� then the number of coe�cients of these polynomials is also bounded� Then ���
is equivalent to a �nite system of linear equations over the �eld of rational numbers�
which can be solved by� say� the Gauss elimination algorithm�
Ballantyne and Lankford used this connection between commutative semigroups

and ideals in the ring of polynomials to apply the Gr&obner basis method to the word
problem in commutative semigroups ���
A proof of Theorem 
�� based on other ideas is presented below in Section 
�����
Taiclin ����� proved the following result which is much stronger than Theorem


���

Theorem 	�� The elementary theory of every �nitely presented commutative
semigroup is decidable�

���� The Description of Varieties of Semigroups with Solvable Word

Problem

The �rst example of a �nitely based proper variety of semigroups with an unsolvable
word problem is the variety of Murskii ���� This was the only known example until
���� when a deep study of varieties with decidable word problem was initiated by
I�Mel�nichuk� In particular� she proved �	� that the word problem is undecidable
in any variety which contains a non�locally �nite variety of semigroups given by
identities of the form u � 	� Such varieties were described by Bean� Ehrenfeucht�
McNulty and Zimin �see Theorem ��� above�� She also proved that the word problem
is decidable in any �nitely based variety which satis�es the permutation identity
x�x� � � � xn � x���	x���	 � � � x��n	 where � is a permutation of the symbols �� �� � � � n�
Then Mel�nichuk� Sapir� and Kharlampovich ��� found a minimal variety with

an undecidable word problem� a boundary between decidability and undecidability�
This was the variety generated by the semigroup S� from Section ��� below� The

semigroup S� and its dual semigroup
�

S� from Section ��� also appeared in ����

Finally� Sapir ��	��� ��	
� proved that S� and
�

S� also generate boundaries be�
tween decidability and undecidability� proved that there are no more boundaries
among non�periodic varieties of semigroups� that every periodic semigroup in a non�
periodic variety with decidable word problem must be locally �nite� and that every
non�periodic variety with an undecidable word problem contains one of these three
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varieties� He also showed that a periodic variety with a solvable word problem and
locally �nite groups must be locally �nite itself� This is everything that one can
hope to get� because the problem of describing non�locally �nite periodic varieties
of groups with solvable word problem is hopeless� It also turned out that many
other conditions for �nitely presented semigroups in varieties are equivalent to the
solvability of the word problem in this variety�
Some of the results from ��	�� and ��	
� of Sapir are summarized in the following

two theorems�
We will need the following two �nite subsemigroups of B��

P �

��
� 	
	 	

�
�

�
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�
�

�
	 	
	 	

��
�

T �

��
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�
�

�
	 �
	 	

�
�

�
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�
�

�
	 	
	 	

��
�

For every semigroup S the dual �anti�isomorphic� semigroup is denoted by
�

S � the
semigroup S with an identity element adjoined is denoted by S�� For every variety
V let FP �V� be the class of all semigroups which are �nitely presented in V �

Theorem 	�� ���	 Let V be a �nitely based non�periodic variety� Then the
following conditions are equivalent�
�� The word problem is decidable in any semigroup from FP �V��

� The elementary theory is decidable for any semigroup from FP �V��
�� Every semigroup from FP �V� is residually �nite�
�� Every semigroup from FP �V� is representable by matrices over a �eld�
� Every semigroup from FP �V� is Hop�an�
A� Every nil�semigroup from V is locally �nite and V does not contain any of the

semigroups
�

P P � or
�

P
�

P or T �
B� Every nil�semigroup of V is locally �nite and for some natural numbers k�m� n� p

the variety V satis�es one of the following identities�

xny�zktk�pzm � xm�tkxk�pyzn� n � m" kp� ���

xynz � ykxymzyp� n � m� �
�

Theorem 	�	 ���	 Let V be a �nitely based periodic variety of semigroups in
which all groups are locally �nite� Then each of the conditions �� 
� �� �� from
Theorem �� is equivalent to the condition that V is locally �nite�

Let us analyze these theorems� From Theorems 
��� 
�
 it follows that in the
class of non�periodic semigroup varieties where all nil�semigroups are locally �nite
every variety which has an undecidable word problem must contain one of the three
�nite semigroups�

�

P P ��
�

P
�

P� T� ���

On the other hand� every non�periodic variety� containing one of these three semi�
groups� has an undecidable word problem� Therefore the following three varieties
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are the only minimal varieties with undecidable word problem among non�periodic
varieties with locally �nite nil�semigroups�

var�
�

P P � N�� var�
�

P
�

P N�� var�T N�

whereN is the semigroup of natural numbers with respect to addition� In fact� these

three varieties coincide with the varieties generated by the semigroups S��
�

S �� and
S� respectively� presented in Section ��� below�
It is easy to see that each of these varieties is a join of a locally �nite variety

�generated by a �nite semigroup� and the variety of all commutative semigroups�
Both have solvable word problem� Therefore we have examples of varieties with un�
solvable word problem that are joins of varieties with solvable �and even polynomially
solvable� word problem�
If a �nitely based variety does not contain any of the three semigroups ��� but

still has an unsolvable word problem then either it contains a non�locally �nite nil�
semigroup or it is periodic and contains a �bad� group� a non�locally �nite group
of �nite exponent �see Theorem 
���� Theorems ��� and ��
 show that there are
no minimal �nitely based non�locally �nite varieties of nil�semigroups� that is every
non�locally �nite �nitely based variety of nil�semigroups contains a proper subvariety
with the same properties� Thus in the �rst case the variety does not contain any
minimal variety with unsolvable word problem� In the second case the situation
is more complex� We do not know any minimal periodic variety of groups with
unsolvable word problem� Moreover an analogy between nil�semigroups and periodic
groups make the following two conjectures of Sapir seem reasonable�

Conjecture 	�� Every �nitely based periodic group variety with undecidable word
problem contains a proper subvariety with an undecidable word problem�

Conjecture 	�� Every non�locally �nite �nitely based variety of periodic groups
has an undecidable word problem�

Of course� we do not have any hope to prove these conjectures� So far we have
only a few examples of periodic group varieties with undecidable word problem �see
Section �����
Thus� modulo groups� there are exactly three minimal varieties of semigroups

with an undecidable word problem�

���� Methods of Proving Decidability of The Word Problem in a Vari�

ety

The �rst and most universal method of proving the decidability of the word prob�
lem uses the connection between residual �niteness and the solvability of the word
problem discovered by Mal�cev �
���

Theorem 	�
 Let V be a �nitely based variety of algebras� Let A be an algebra
�nitely presented in V� If A is residually �nite then the word problem in A is
decidable�
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In order to solve the word problem in a residually �nite algebra Mal�cev used an
algorithm which was essentially due to McKinsey �����
As we have mentioned above� in many cases �see� for example� the previous

section� a variety has decidable word problem only if all algebras �nitely presented
in this variety are residually �nite� But this is not always so� For example the group
variety N�A� which is the Mal�cev product of the variety of nilpotent groups of class
two and the variety of Abelian groups� has a decidable word problem ���� but the
following theorem holds�

Theorem 	�� ���	 There exists a non�residually �nite group �nitely presented
in the variety N�A�

Thus one needs other methods of proving the decidability of the word problem�
There are� of course� methods that apply when we are solving the word problem in
an algebra given by a speci�c system of de�ning relations� For example the word
problem is decidable in the case when one can �nd a terminating Church�Rosser
presentation of a �nitely presented semigroup or group S� Then there exists a
�canonical� form for every word over the alphabet of generators and an e�ective
procedure which transforms every word to its canonical form�
It is very unusual� however� that a terminating Church�Rosser presentation is

known for an arbitrary algebra �nitely presented in a variety� In connection with
the role that is played by the Church�Rosser method in computer algebra ���� it
would be very interesting to describe varieties where every �nitely presented algebra
has a Church�Rosser presentation�
An example is the variety of commutative semigroups where terminating Church�

Rosser presentations were found by Ballantyne and Lankford ���
Experience shows that in general� in order to solve the word problem in an

arbitrary �nitely presented algebra �semigroup� group� etc�� A in a variety� one
has to use methods which are in a sense opposite to the �canonical form� methods
described above� Instead of �nding a �canonical� word in the set of words which
are equal to a given word u one has to consider this set as a whole and �nd some
�hidden� structure on this set� To illustrate this idea we will consider two examples�
a variety of semigroups and a variety of groups�


����� Semigroups
Here we would like to present some ideas for proving the decidability of the word
problem in varieties of semigroups� employed initially in ����� and later in ���� �����
and ��	
�� To illustrate these ideas we will show how they work in the variety of
commutative semigroups� Other methods of proving the decidability of the word
problem in this variety have been discussed in Section 
���
First of all recall that the free n�generated commutative semigroup An with an

identity element is simply a direct product of n semigroups of natural numbers�
Therefore every element of this semigroup may be represented by a vector of natural
numbers�� We can considerAn as a partially ordered set with the natural coordinate�
wise order� It is clear that u � v in An if and only if u divides v� It is easy to prove

� Zero also is a natural number�
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that every subsetM of An has minimal elements� and every element ofM is greater
than or equal to a minimal element� The �rst part of the following simple statement
is attributed to Dickson ����� The second part is a constructive version of Dickson�s
result and is also well known�

Lemma 	�� Every in�nite set T of elements in An contains two comparable
elements� If no two elements in a set T � An are comparable and T contains an
element with all coordinates � s then jT j � n'sn�

Let R be a �nite set of de�ning relations� i�e� a �nite subset of AnAn� We want
to show that the word problem is decidable in the factor semigroup of An modulo
the congruence generated by R� In other words� we want an algorithm� which� given
a pair of elements �u� v� in An  An� says if u equals v modulo the relations of R�
Take an element u in An� We will describe the set M�u� of all elements of An

which are equal to u modulo R�
Let Mmin be the set of minimal elements in M�u�� Every element v in M�u�

is greater than or equal to an element w from Mmin� Hence v � we for some e�
Since both v and w are equal to u modulo R we have that u � ue �Mod R�� Such
an element e is called a unit for u� Let E�u� be the set of all units� Then E�u� is
a subsemigroup of An and is closed under taking quotients� that is if e�f � e� and
e�� e� are units then f is also a unit� This implies easily that the semigroup E�u� is
generated by the subset Eminof its minimal elements� Notice also that if e is a unit
for u and w �M�u� then� of course� we �M�u��
By Lemma 
�� both sets Mminand Eminare �nite� Therefore we have the fol�

lowing description of M�u��

M�u� � f�
Y

e�Emin

eke�w j w �Mmin� ke � Ng�

This description would give us a solution of the word problem� if we had a process
of �nding the sets Mminand Emin� This process is almost straightforward� We
simply apply the relations from R to u until we �nd all elements from Mminand
Emin� Of course� the most tricky thing in such processes is a stop sign� the sign
which shows that we have found all elements that we need� and we can stop and
relax� This is organized as follows�
Denote the maximal length of words from R by ��R�� If M is a subset of An

then let T �M� be the set of all elements of An which can be obtained from elements
of M by applying relations of R �at most one application for each relation and for
each element of M��
Let us construct a sequence of sets Mn� Let M� � fug� Suppose we have

constructed the set Mn� Let En be the set of all quotients of elements from Mn�
Let us apply T to Mn many times until we obtain all elements of the form

�
Y

e � min�En	

eke�w

where w � min�Mn� and the sum of the ke does not exceed ��R�� This set is �nite
and each element in it is equal to u modulo R� so we will �nd all of these elements
eventually� Then let Mn�� stand for the union of these sets�
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By Lemma 
�� there is a number n such that

min�Mn� � min�Mn����min�En� � min�En����

We claim that thenMminis equal to min�Mn�� Emin�min�En�� Indeed� it is enough
to show that if we apply a relation from R to a word

v � �
Y

e�min�En	

eke�w ��

where w � min�Mn� then we obtain a word w of the same form� If the sum of the
ke does not exceed ��R� then this follows from the de�nition of Mn and from the
equalities min�Mn��min�Mn���� min�En��min�En����
Let this sum be greater than ��R�� Any application of a relation fromR touches at

most ��R� units e from the right hand part of ��� Therefore v � �
Q

e�min�En	 e
me�v��

and w � �
Q

e�min�En	 e
me�w� where v� belongs to Mn and w� is obtained from v�

by applying a relation from R� But then w� is of the form ��� and so is w� This
completes the proof�


����� Nilpotent�by�Abelian Groups
Let us consider the group variety N�A and prove that the word problem is decidable
there� The proof we give essentially belongs to Kharlampovich ����� See also the
survey ��
�
Let us take any group G �� X �� �nitely presented in N�A� The group G may

be represented as a factor of the relatively free group (F �� X � of N�A�
Therefore G � (F�R for some normal subgroup R which is �nitely generated as

a normal subgroup� Given a word w over X� we want to decide if w � � in G� We
can consider w as an element of (F � Then w � � in G if and only if w belongs to
R as an element of (F � Thus the word problem in G is decidable if and only if the
membership problem for R in (F is decidable�
We can �nd a somewhat bigger normal subgroup for which the membership

problem is decidable� Consider the subgroup (F ��R �here (F �� is the second derived
subgroup of (F �� The factor group (F� (F ��R is �nitely presented in the variety of
metabelian groups� It is known that the word problem in the variety of metabelian
groups is decidable ���� Therefore the membership problem for the subgroup (F ��R
is decidable�
So we can check if our word w belongs to (F ��R� If w �� (F ��R then w �� R� So

suppose that w � (F ��R� Since w � (F ��R� we can represent w as a product pr with
p � (F ��� r � R� This may be done e�ectively� Since r � R it is enough to decide if
p � R� The word p belongs to (F ��� Thus we may suppose that w � (F ��� Now we
have to consider the membership problem for the subgroup R � (F ���
Consider (F �� �rst� This is an Abelian subgroup� If (F �� were �nitely generated

then R � (F �� would be a �nitely generated Abelian subgroup and the membership
problem for R � (F �� would be trivially decidable� Unfortunately (F �� is not �nitely
generated as an Abelian subgroup �if (F is not a cyclic group��
The idea is to de�ne a module structure on (F �� to make (F �� a �nitely generated

module over a Noetherian commutative ring� because such modules have almost as
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nice algorithmic properties as �nitely generated Abelian groups� There is a standard
way to make (F �� a module�
Any Abelian normal subgroup A in a group H may be viewed as a right module

over the group algebra ZH where the action of ZH on A is de�ned by the following
formula�

a � �
X

�gi� � !a
g
��

i �

It is clear that this module has a big annihilator� For example ZA and even ZCH�A�
�here CH�A� is the centralizer of A in H� is in this annihilator� Therefore A may be
considered as a module over ZH�N for every normal subgroup N � CH�A��
In our case (F � N�A� Therefore (F �� is Abelian and C 
F � (F

��� � (F �� Hence (F ��

may be considered as a right module over the ring K � Z (F� (F �� This ring is just
the ring of polynomials over Z with X � X�� as the set of unknowns factored by
the ideal generated by elements xx���� for all x � X� Thus this is a commutative�
�nitely generated Noetherian domain�
Unfortunately (F �� is not �nitely generated as a module over K� But we can make

it a �nitely generated module by increasing K' Indeed� by de�nition� the second
derived subgroup (F �� consists of all elements which are products of double commu�
tators ��a� b�� �c� d�� where a� b� c� d � (F � Let us de�ne a new action of generators from
X on (F ���

��a� b�� �c� d�� � x � ��a� b�x � �c� d����a� b�� �c� d�x ��

This action is well de�ned and can be extended to another action of K � Z (F� (F �

on F ��� Moreover this action commutes with the �rst action of K� Thus we can
consider (F �� as a module over the tensor productK �K� The last ring is� of course�
also a �nitely generated domain� It can be veri�ed that (F �� is a �nitely generated
module over K �K� Thus we have found a hidden module structure on (F ���
But we are mainly interested in R� or more precisely� in R� (F ��� This is a normal

subgroup and thus a K�submodule under the �rst action of K �normal subgroups
are closed under conjugations�� But this is not necessarily a K � K�submodule�
Forunately we can split �R� (F ��� into a a sum of three Abelian groups A�"A�"A�

whereA� is �nitely generated as a subgroup �Z�module��A� is �nitely generated as a
normal subgroup �K�module under the �rst action ofK� and A� is �nitely generated
as a K � K�module� Moreover generators of A�� A�� A� may be found e�ectively
�see ���� for details�� Therefore the membership problem for R has been reduced to
the membership problem for the sum of �nitely generated modules A�� A�� A� over
di�erent rings�
Now we can apply the following powerful result by Romanovskii�

Lemma 	�� ���	 Let M be a D�module where D is a �nitely generated commu�
tative domain� Let D� � D� � � � � � Dm � D be a sequence of �nitely generated
subrings of D� Let Ni �i � �� � � � �m� be a �nitely generated Di�submodule of M �
Then the membership problem for N � N� "N� " � � � "Nm is decidable�

This lemma gives us the decidability of the membership problem for R � (F ���
which� in turn� implies the decidability of the word problem in N�A�
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����� Other Hidden Structures
It is interesting that a hidden module structure appears in the case of semigroups
also� We will call a semigroup S a semi�module over a semigroup A if there exists
an action � of A on S �i�e� a function � � A S � S with �a�a�� � s � a� � �a� � s� �
which �agrees� with the operation in S� a � �s�s�� � �a � s��s� � s��a � s�� for every
a � A� s�� s� � S� The following result was proved in ��	���

Theorem 	�� ����	 Let T be a semigroup �nitely presented in a variety V sat�
isfying one of the following identities�

xnky�zktk�pz�n�p	k � x�n�p	k�tkxk�pyznk�

xynz � ykxymzyp� n � m�

and let every periodic group in V be locally �nite� Then there exists a semi�module S
over a commutative semigroup A such that T is �almost� a subsemigroup of S� More
precisely there is a semigroup S� such that S is an ideal of S� with S��S �nite and
nilpotent and T is a factor�semigroup of S� over a congruence with all congruence
classes �nite�

This theorem is one of the main steps in describing semigroup varieties with
decidable word problem�
The module structure is not the only possible hidden structure on the set of

words equal to a given word� For example if we are dealing with inverse semigroups�
it is useful to consider the Sch&utzenberger automata discussed in Section ���� Recall
that these automata accept all words which are greater than or equal to the given
word� Then these automata may have nice geometric properties as in ����� which
helps to solve the word problem �or to prove its undecidability�� Another possiblity
was discovered by Margolis and Meakin in �

�� They considered inverse semigroups
S given by �nitely many de�ning relations of the form e � f where e and f are
words which are idempotents in the free inverse semigroup �equivalently which are
equal to � in the free group�� In this case the Sch&utzeberger graphs embed into the
Cayley graph of the free group which is� of course� a labeled tree� Then the set of
vertices of the Sch&utzenberger graph may be de�ned by a formula from a decidable
fragment of the second order theory of this tree� This implies the decidability of the
word problem in S�


� Minsky Machines and the Undecidability of the Word Problem in Va�
rieties

���� Minsky Machines

One of the most powerful tools in proving the undecidability of the word problem
is the so�called Minsky Machine� It was invented by Marvin Minsky in ���� �see
���� ���� �
���� Yu� Gurevich was the �rst to use Minsky machines to prove the
undecidability of an algorithmic problem in algebra ��
��

� As it was mentioned earlier in this section� this condition is necessary for the decidability of
the word problem�
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Let us give a de�nition of a Minsky machine� The hardware of a �two�tape�
Minsky machine consists of two tapes and a head� The tapes are in�nite to the
right and are divided into in�nitely many cells numbered from the left to the right�
starting with 	� The �rst cells on both tapes always contain �� all other cells have
	� The head may acquire one of several internal states� q�� � � � � qN � q� is called the
terminal state� At every moment the head looks at one cell of the �rst tape and
at one cell of the second tape� So the con�guration of the Minsky machine may
be described by the triple �m� qk� n� where m �resp� n� is the number of the cell
observed by the head on the �rst �resp� second� tape� qi is the state of the head�
Every command has the following form�

qi� �� � �� qj � T
�� T � �

where �� � � f	� �g� �� � � f��� 	� �g� This means that if the head is in the state qi
and it observes a cell containing � on the �rst tape and a cell containing � on the
second tape then it acquires the state qj and the �rst �the second� tape is shifted �
�resp� �� cells to the left relative to the head� If� say� � � �� then the �rst tape
is shifted one cell to the right� The machine always starts working at state q� and
ends at the stop state q�� The program �software� for a Minsky machine is a set of
commands of the above form�
One says that a Minsky machine calculates a function f�m� if for everym starting

at the con�guration �m� q�� 	� it ends at the con�guration �f�m�� q�� 	�� If m does
not belong to the domain of f then the machine works forever and never gets to the
terminal state�

The main property of Minsky machines is contained in the following theorem�

Theorem 
�� ��
	 For every partially recursive function f�m� there exists a
Minsky machine which calculates the partial function gf � �m � �f�m	�

Remark� It is interesting that� in this theorem� the function gf cannot be re�
placed by the function f � In particular� there is no Minsky machine which calculates
the function m� �see �
����
The �canonical� de�nition of a Minsky machine seems to be very long and com�

plex while in fact it is very simple and can be understood by a high school or even
elementary school student� Let us give a �high school� de�nition of a Minsky ma�
chine�
Consider two glasses� We assume that these glasses are of in�nite height� Another

�more restrictive'� assumption is that we have in�nitely many coins� There are four
operations� �Put a coin in a glass�� �Take a coin from a glass if it is not empty��
We are able to check if a glass is)is not empty� A program is a numbered sequence
of instructions�
An instruction has one of the following forms�

� Put a coin in the glass * n and go to instruction * j�
� If the glass * n is not empty then take a coin from this glass and go to instruction

* j otherwise go to instruction * k�
� Stop�
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A program starts working with the command number � and ends when it comes
to the Stop instruction which will always have number 	�
We say that a program calculates a function f�m� if� starting with m coins in

the �rst glass and empty second glass� we end up with f�m� coins in the �rst glass
and empty second glass�
This �high school� version of a Minsky machine is known also as a Minsky algo�

rithm� One can prove that Minsky machines are equivalent to Minsky algorithms�
that is� given a program for Minsky machine �resp� given a Minsky algorithm�� it is
easy to construct a Minsky algorithm �resp� a program for Minsky machine� which
calculates the same function�
A con�guration of a Minsky algorithm is a triple �m�k� n�� wherem is the number

of coins in the �rst glass� n is the number of coins in the second glass� and k is the
number of the instruction we are executing� So the number of an instruction in the
algorithm plays the role of an inner state�
Notice that although Minsky machines and Minsky algorithms are equivalent�

Minsky algorithms are sometimes better tools in proving the undecidability of algo�
rithmic problems� The main reason� there are four possible commands of a Minsky
machine which correspond to the same inner state qk� while there is only one in�
struction of a Minsky algorithm with a given number k�

���� Minsky Machines and the Word Problem for General Algebras

Here we will show how to apply Minsky machines �algorithms� to prove the undecid�
ability of the word problem� All applications of Minsky machines �algorithms� are
based on the following idea� We will show this idea for Minsky machines� exactly
the same idea works for Minsky algorithms� Take a Minsky machine M calculating
a function gf with a non�recursive domain X�
One can de�ne an �equality� on the set of all possible con�gurations of the Minsky

machine M � two con�gurations �m� qk� n� and �m�� qk� � n�� are �equal� or �equiva�
lent� �we will write �m� qk� n� � �m�� qk� � n��� if there exists another con�guration
�m��� qk�� � n��� such thatM transforms both con�gurations �m� qk� n� and �m�� qk� � n��
into �m��� qk�� � n���� It is easy to see that this �equality� is symmetric� transitive and
re�exive� By the choice of M� �m� q�� 	� � ��� q�� 	� if and only if m � X� Therefore
we have a sequence of con�gurations 
m and a special con�guration 
� such that

m � 
� i� m � X�
Suppose now that we want to construct a �nitely presented universal algebra

A�M� with an undecidable word problem� The idea of doing this has its origin
in the works of Markov and Post ����� ����� First� with every con�guration � one
associates a word w���� This word is usually called a canonical word� Then with
every command � of the Minsky machine M one associates a �nite set of de�ning
relations R�� The algebra A�M� will be de�ned by the relations from the union R of
all R� �which is �nite since we have only a �nite number of commands� and usually
some other relations Q which are in a sense �independent� of R� We need Q� for
example� to make A�M� satisfy a particular identity�
The algebra A�M� will have an undecidable word problem if the following prop�

erty holds�
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�� � �� if and only if w���� � w���� in A� ���

Indeed� in this case one cannot algorithmically decide if w�m� q�� 	� � w��� q�� 	� for
the given number m�
We will say that we have an interpretation of the Minsky machine M in the

algebra A�M� if we have an assignment � � w��� with the property ����
Usually� in order to prove the property ��� one has to prove two lemmas�

Lemma 
�� If we can proceed from con�guration �� to con�guration �� using
command �� then we can proceed from the word w���� to the word w���� using
relations from R��

Lemma 
�� If we can proceed from the word w���� to the word w���� by using
relations from the union of all R�� then �� � ���

It is easy to see that Lemmas ��� and ��� imply property ���� Lemma ��� in most
cases is more di�cult to prove than Lemma ���� It is worth mentioning also that in
order to prove Lemmas ��� and ��� we usually do not need any information about
the function that is calculated by M �
Let us also make a remark about the case where we are constructing an algebra

with undecidable word problem which is �nitely presented in a variety V � In this case
we are allowed to use identities of V when we deduce relations of A�M�� Notice that
unlike the relations of R� corresponding to commands of M � the relations obtained
from identities of V have no connections with the Minsky machine� and can spoil the
canonical words� So we have to make the canonical words resistant to applications
of identities of V � In the best case� the identities of V are not applicable to canonical
words�
The procedure for constructing an algebra �nitely presented in a variety V with

undecidable word problem is roughly the following� First we temporarily forget
about V and construct an interpretation of a Minsky machineM in an �absolutely�
�nitely presented algebra A�M�� We prove Lemma ��� for A�M�� Then we consider
the factor algebra #A�M� of A�M� by the verbal congruence corresponding to V �
that is we identify all pairs of terms in A�M� which are identically equal in V � The
algebra #A�M� is �nitely presented in V � Then we have to prove Lemmas ��� and ���
for #A�M�� Fortunately we have Lemma ��� for free because the statement of this
lemma is stable under homomorphic images� To prove Lemma ��� we usually need
the above mentioned independence of canonical words from the identities of V �

���� Why Minsky Machines�

The concept of an interpretation of a machine in an algebra can be applied to any
kind of Turing machine� Why did we choose the Minsky machines� The �rst answer
is� because Minsky machines are in some important sense the simplest universal
Turing machines possible�
Indeed� the �rst and themain step in any interpretation of a machine in an algebra

is the choice of canonical words� The canonical words must encode con�gurations
of the machine� Therefore the smaller the number of parameters which determine
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the con�gurations� the more freedom we have in simulating the parameters� A
con�guration of a Minsky machine is determined just by three numbers� m� i� n�
Here i runs over a �nite set� Therefore one can encode each i by a separate letter
qi� It is also important that the commands of Minsky machines change those three
numbers in a natural way� They add 	� � or �� to m and n� and change i according
to some simple rule� Therefore we can simulate m and n by� say� powers of di�erent
letters� say� a and b� and the relations corresponding to the relations of the Minsky
machine will increase �decrease� the powers of these letters� Therefore we can encode
the con�guration �m� i� n� by a canonical word amqibn �we suppose for simplicity that
we have a binary associative operation��
True� after a little pondering one can conclude that something is missing in this

encoding� Indeed� recall that the relations will simulate the commands� The action
of a command depends on whether m or n is equal to 	 or not� so there are four
di�erent situations �m �� 	� n �� 	� m � 	� n �� 	� m �� 	� n �� 	� m � 	� n � 	��
Therefore for each one of these four situations� the corresponding canonical word
must have a special small subword which tells us that this situation occurs �then the
corresponding relation will replace this subword by some other word��
Notice that the canonical words corresponding to these four situations have the

following form� anqibm� qibm� anqi� qi wherem�n � 	� All these words are subwords
of the �rst one� So every subword of the second �the third or the fourth� word is a
subword of the �rst word� Thus we cannot distinguish between these situations�
The solution to this problem is simple� we have to add two more letters A and

B� which we will call �locks�� and encode the con�guration �m� i� n� by the word
AamqibnB� Then each of the four situations is characterized by a small subword of
the canonical word� The canonical word has a subword�

aqib i� m �� 	� n �� 	�

Aqib i� m � 	� n �� 	�

aqiB i� m �� 	� n � 	�

AqiB i� m � 	� n � 	�

Thus it is very easy to �nd an interpretation of the Minsky machine� But this is
not the only reason why one has to use it�
Recall that we want to simulate a machine in an algebra which satis�es as many

identities as possible� And as everybody knows� those identities tend to change
words� For example suppose that we have an identity xy � yx� and we simulate
the con�guration �m� i� n� by the word Aamqib

nB� Then the words AamqibnB�
amAqib

nB� AamqiBbn� and amAqiBbn are equal and� again� we cannot �nd small
subwords which distinguish one of the four situations from another�
The important feature of Minsky machines and their interpretations is that the

canonical words� which we obtain� are very stable with respect to identities�
For example� in the case of semigroups� Theorem 
�� means the following� There

exist a few basic encodings of con�gurations of Minsky machines� and if a non�
periodic semigroup variety with locally �nite nil�semigroups satis�es identities which
can change all these encodings� then the word problem is solvable in this variety� so
the interpretation of a Minsky machine �and any other universal Turing machine�
in this variety is impossible�
It is much more di�cult to �nd stable interpretations of other kinds of machines�
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For example� the con�guration of the general �one�tape� Turing machine is a triple
u� qi� v where qi is an inner state of the head� u is the word written on the tape to
the left of the head� and v is the word written to the right of the head� So if we want
to interpet the general Turing machine� we need to encode somehow arbitrary words
u and v� Since any identity can change some words� we cannot encode the word by
itself� thus the encoding must be unnatural� This will lead to great di�culties with
simulating commands of the Turing machine� and so on�

���� The Word Problem for Semigroup Varieties� The Nonperiodic Case

There are two important semigroup interpretations of Minsky machines� the semi�
groups S� and S� below� LetM be a Minsky machine with internal states q�� � � � � qN �
Then both S� and S� are generated by the elements q�� � � � � qN and a� b�A�B� The
correspondences between commands of M and relations of S� and S� are given by
the following tables� Every command corresponds to one relation in S� and one
relation in S��

Command S�

qi� 	� 	� qj � T�� T � aqib � a���qjb���

qi� �� 	� qj � T�� T � Aqib � Aa�qjb���

qi� 	� �� qj � T�� T � aqiB � a���qjb�B

qi� �� �� qj � T�� T � AqiB � Aa�qjb�B

���

Command S�

qi� 	� 	� qj � T�� T � qiab � qja���b���

qi� �� 	� qj � T
�� T � qiAb � qja

�Ab���

qi� 	� �� qj � T�� T � qiaB � qja���b�B

qi� �� �� qj � T�� T � qiAB � qja�Ab�B

��	�

The canonical words in Si are the following�

Con�guration S� S�
�m� qk� n� AamqkbnB qkamAbnB

����

To make these interpretations work and to make these semigroups satisfy as




	 S� MARGOLIS� J�MEAKIN� M�SAPIR

many identities as possible we need also some additional relations independent of
the commands of M �
In the semigroup S� we need the following commutativity relations�

ab � ba� aB � Ba� bA � Ab� AB � BA� ����

Also we need all relations of the type

xy � 	

where xy is a two letter word which is not a subword of w�m� qk� n� for some m�n
or of any word obtained from w�m� qk� n� by the commutativity relations above�
These relations �kill� all �wrong� words� Basically only canonical words and

their subwords are distinct from zero in S� and S��
Thus we have the following additional relations in S�� all two letter words are

equal to 	 except Aa� Aqi� a�� aqi� qib� qiB� b�� bB� And we have the following
additional relations in S�� all two letter words are equal to 	 except qia� qib� qiA�
qiB� a�� aA� ab� aB� ba� b�� bB� bA� Ab� AB� Ba� BA�
These semigroups are very convenient for demonstrating the standard proofs of

Lemmas ��� and ����
To prove Lemma ��� one needs to show that if we pass from a con�guration

�m� qk� n� to another con�guration �m�� qk� � n�� by a command � then we pass from
the word w�m� qk� n� to the word w�m�� qk� � n�� by the relation corresponding to ��
Let us prove this only for the case of the semigroup S� and the command � �

qk� �� 	� qk�� T�� T � � All other cases are similar�
Since the command � is applicable to the con�guration �m� qk� n�� in this con�

�guration� the head observes the �rst cell on the �rst tape and not the �rst cell
on the second tape� Thus m � 	� n �� 	� Then m� � �� n� � n " � �in this
case � can not be negative�� Now w�m� qk� n� � qkb

nAB and the relation corre�
sponding to � is qkbA � qk�a

�b���A� Since AB � BA and aB � Ba we have
w�m� qk� n� � qkbnAB � qkbAbn��B� Thus we can apply our relation and replace
qibA by qk�a�b���A� As a result we obtain the word qk�a�b���Bbn��A which is
equal to qk�a�Abn��B since bA � Ab� The last word is equal to w�m�� qk� � n�� as
desired�
The proof of Lemma ��� is based on the following two standard observations�

First� for every canonical word w�m� qk� n� there exists at most one relation corre�
sponding to a command of M which is applicable to this word from the left to the
right �this means that one replaces the left hand side of this relation by the right
hand side of it��
Second� any application of a relation from tables ��� or ��	� to any canonical

word � from the left to the right or from the right to the left � gives us another
canonical word �we do not distinguish words in S� which are obtained from each
other by the commutativity relations���

� Actually � important � we assign to each con�guration not a single word w	m� qk� n
 but
a set of words which may be obtained from each other by the commutativity relations� It is worth
mentioning that it is almost always better to consider w	m� qk� n
 as a set of words� relations
corresponding to commands of M connect these sets of words� auxiliary relations connect words in
the same set�
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Now consider two words w�m� qk� n� and w�m�� qk� � n�� in S� or S�� Suppose these
words are equal in this semigroup� Therefore there exists a sequence of words

w�m� qk� n�� w�� � � � � wn� w�m
�� qk� � n

��

where each word is obtained from the previous one by applying a de�ning relation
corresponding to a command of the machineM � By the second observation each wi

corresponds to a con�guration of M �
These relations may be applied from the left to the right and from the right to

the left� Now suppose that in the passage wr�� � wr� a relation was applied from
the right to the left and in the passage wr � wr��� a relation was applied from the
left to the right� Then wr�� and wr�� are obtained from wr by applying relations
from the left to the right� By the �rst observation these two relations must coincide
and the words wr�� and wr�� must coincide also� Therefore in this case we can
shorten our sequence of wi� Thus we can suppose that in our sequence� there is
a word wr � w�m��� qk�� � n��� such that all relations before wr are applied from the
left to the right and all relations after wr are applied from the right to the left�
But this means that the machine M passes from both con�gurations �m� qk� n� and
�m�� qk� � n�� to the con�guration �m��� qk�� � n���� Therefore �m� qk� n� � �m�� qk� � n���
as desired�
Thus we have proved that if the Minsky machine computes a non�recursive func�

tion then S� and S� have undecidable word problems� These semigroups are impor�
tant because every ��nitely based� semigroup variety with undecidable word prob�
lem� whose periodic semigroups are locally �nite� contains either S� or S� or the
semigroup anti�isomorphic to S� �see ��	���� Therefore we do not need any other
semigroup with undecidable word problem to treat non�periodic varieties with good
periodic semigroups� But if the periodic semigroups are not locally �nite we need
something else� and we will discuss it in the next subsection�

���� The Word Problem for Semigroup Varieties� The Periodic Case

Theorem ��
 above implies that a �nitely based variety of semigroups in which not
every periodic semigroup is locally �nite contains either a periodic group or a nil�
semigroup which is not locally �nite� The periodic group case will be considered
further �see Section ����� Now let us consider the nil�case� So suppose that we have
a �nitely based variety V containing a non�locally �nite nil�semigroup� Then by
virtue of Theorem 
�
� V has an undecidable word problem and now we are going
to explain how to prove this using Minsky machines�
To show only the principal details of the proof let us prove that the word problem

is undecidable in the variety of semigroups given by the identity x� � 	� This variety
consists of nil�semigroups and it was proved by Morse and Hedlund ��� that it
contains an in�nite �nitely generated semigroup� We will need a slight modi�cation
of the Morse and Hedlund construction�
Let us start with the following Thue endomorphism � ����� of the free semigroup

with generators a� b�
��a� � ab� ��b� � ba�

Now let us iterate � and consider the words a� ��a�� ���a�� ���a�� � � �� For every n�
�n�a� is an initial segment of the word �n���a�� so all these words are initial segments
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of an in�nite sequence� Let us denote this sequence by T ���� Thue ����� proved that
these words do not have subwords of the form uuu where u is any non�empty word�
Given T ���� Morse and Hedlund construct a semigroup S��� as follows� Let S���
be the set consisting of all subwords of the words from this sequence� and a special
symbol 	� De�ne an operation on this set by the following rule�

u � v �

�
uv if uv is a subword of �n�a� for some n�
	 if uv is not a subword of any �n�a��

Here uv is the result of concatenation of u and v� �

It is easy to prove that S��� is an in�nite semigroup generated by a and b� This
semigroup satis�es the identity x� � 	� Indeed� as we have mentioned above� for
every word u the word u� is not a subword of any �n�a� and so it is equal to 	 in
S����
One can easily see that it is not possible to use the interpretations from the

previous subsection to simulate a Minsky machine in a semigroup satisfying x� � 	�
Indeed� we can no longer encode the number of the cell observed by the head of the
machine by a power of a letter� there is a shortage of powers �only ��� The idea is
to use powers of the Thue endomorphism � instead of powers of letters�
Thus we want to encode the con�guration �m� qk� n� by a word like �m�a�qk�n�a��

Notice that such a word will be cube�free �will not contain subwords of the form uuu�
for any m and n� so we won�t be able to apply our identity x� � 	 to this word�
Now we have to assign a relation to every command of M � This relation must

increase �decrease� m and n in w�m� qk� n� if the command shifts the tapes to the
left �to the right�� Unfortunately it is impossible to pass from �m�a�qk�n�a� to
�m���a�qk��n�a� by using one relation independent of m and n� Indeed� for �large�
m it is impossible to proceed from �m�a� to �m���a� by replacing a �small� subword
by another �small� subword�
But we notice that �m���a� � ���m�a��� so we need to �nd some auxiliary

relations which will simulate the application of �� This can be done by adding one
letter say� c� and relations ac� � c���a�� bc� � c���b�� Indeed� for every m we will
then have �m�a�c� � c��m���a��
A practical realization of this idea is the following �see Section ��� for another

realization��
Our semigroup� � let us denote it by S�M����� will be generated by the set

fq�� � � � � qN � a� b� c�� c�� c��� d�� d�� d��� A�Bg�
For every con�guration �m� qk� n� let

w�m� qk� n� � A�m�a�c�qkd��
n�a�B�

where (u is the word u written from the right to the left�
The correspondence between commands of the Minsky machineM and relations

in S�M��� is given by the following table�

� As we mentioned in Section � there is a general construction which associates a semigroup
S	D
 with every symbolic dynamical system D� The semigroup S	�
 is equal to S	D
 where D is
the symbolic dynamical system generated by the limit of words �n	a
�
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Command S�M���

qi� 	� 	� qj � T
�� T � bac�qid�ab � bac�qjd�ab

qi� �� 	� qj � T�� T � Aac�qid�ab � Aac�qjd�ab

qi� 	� �� qj � T
�� T � bac�qid�aB � bac�qjc�aB

qi� �� �� qj � T
�� T � Aac�qkd�aB � Aac�qjd�aB

����

The auxiliary relations are the following�

�i� ac� � c�a� bc� � c�b�

�ii� ac� � c���a�� bc� � c���b�� Ac� � Ac��

�iii� ��a�c�� � c��a� ��b�c�� � c��b� Ac�� � Ac��

�iv� d�a � ad�� d�b � bd��

�v� d�a � ��a�d�� d�b � ��b�d�� d�B � d�B�

�vi� d����a� � ad��� d����b� � bd��� d��B � d�B�

The role of the new generators ci and di is clear from these relations� d� and c�
increase the power of �� c�� and d�� decrease the power of ��
It is not very di�cult to prove Lemmas ��� and ���� Therefore we have obtained

an interpretation of the machineM � Now� since all words w�m� qk� n� and all words
which can be obtained from these words by the de�ning relations of S�M��� are
cube�free� the identities of our variety won�t change these words� Therefore the
statements of Lemmas ��� and ��� hold for the factor�semigroup #S�M��� of the
semigroup S�M��� over the verbal congruence corresponding to the identity x� � 	�
Indeed� the statement of Lemma ��� is stable under homomorphic images� The
statement of Lemma ��� holds because canonical words which are distinct in S�M���
are also distinct in #S�M���� It remains to notice that the semigroup #S�M��� is
�nitely presented in the variety given by the identity x� � 	� Therefore this variety
has an undecidable word problem�
In the general case� when the identities of the variety V are more �sometimes

much more� complicated� one has to use the endomorphisms constructed in ��	��
instead of �� and the interpretation is slightly di�erent also �see ��	
���

���� The Word Problem for Varieties of Groups� The Periodic Case

Here we present the method of Sapir from ��	�� of constructing a group with unde�
cidable word problem which is �nitely presented in the variety ArBp for every odd
p � ��
 and every prime r �� p�
The free group in the variety ArBp is a semidirect product of an Abelian group

A of exponent r and the free Burnside group F of exponent p� This Abelian group
may be considered as a module over the group ring ZrF � Standard group theoretic
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observations show that in order to construct a group which is �nitely presented in
this variety and has an undecidable word problem� it is enough to construct a �nitely
generated right ideal in the group ring ZrB with undecidable membership problem�
where B is a �nitely presented group from Bp�
In order to �nd this ideal we do the following� First of all we �nd a semigroup

interpretation of a Minsky algorithm� similar to the interpretation given in the pre�
vious section� which satis�es the following properties�

�� Every canonical word is cube�free�

�� Every relation corresponding to a command of the Minsky algorithm applies to
a pre�x of the canonical word�

�� The auxiliary relations are some commutativity relations like ab � ba�Ab � bA�
etc� and do not contain letters qi which correspond to the numbers of commands
of the algorithm�

The interpretation used in ��	�� is the following�
The alphabet consists of letters

fqi� qi�� a�� a�� b�� b�� c�� c�� d�� d�� A�B�C�D j i � 	� �� � � � � Ng�

Recall that a Minsky algorithm deals with coins in two glasses and can add �take
o�� a coin to �from� one of these glasses �see Section ��� for the de�nition of Minsky
algorithms�� A con�guration of the algorithm is a triple �m� i� n� where i is the
number of the command which is being executed� m is the number of coins in the
�rst glass� n is the number of coins in the second glass�
Let � be the Thue�like substitution �see Section ��
��

��x�� � x�x�� ��x�� � x�x�� x � fa� b� c� dg�

Then the canonical word w�m� i� n� is equal to qi�m�a���n�b��ABCD�
Auxiliary relations are the following�

xiyj � yixj � xiY � Y xi ����

where x� y � fa� b� c� dg� x �� y� Y is the capital y for y � fa� b� c� dg�
These relations make letters a� b� c� d �independent�� they can move inside the

canonical words without disturbing each other�
The relations corresponding to the commands of the Minsky algorithm are the

following�
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Command Semigroup relations

� add a coin to the �rst glass j j� qiat � qi��ct�� t � �� �
qiA � qi�A
qi�ct � qi�at� t � �� �
qi�C � qjC

� add a coin to the second glass j j� qibt � qi��dt�� t � �� �
qiB � qi�B
qi�dt � qi�bt� t � �� �
qi�D � qjD

� take a coin from the �rst glass j jjk� qia�A � qka�A
qi��at� � qict� i � �� �
qiA � qi�A
qi�ct � qi�at
qi�C � qjC

�take a coin from the second glass jjjk� qib�B � qkb�B
qi��bt� � qidt� i � �� �
qiB � qi�B
qi�dt � qi�bt
qi�D � qjD

��
�

Then we take the alphabet A of this interpretation and produce a new alphabet
A� which consists of of four copies of letters from A� If x is a letter of A then A�

contains letters xij where i� j � f�� �g� We assume that new letters xij satisfy the
same auxiliary commutativity relations as x� For example� since we had a relation
ab � ba� we now have relations aijbk� � bk�aij for all i� j� k� ��
We replace every letter x in our interpretation of the Minsky algorithm �that is

in the canonical words and in the relations� by the sum x��" x�� " x�� " x�� which
we consider as an element of the group algebra ZB where B is the Burnside group
generated by A� subject to the new auxiliary relations�
The polynomials� obtained from a word u over A by this substitution will be

denoted by (u�
Now let R�M� � fui � vi j i � �� �� � � �g be the set of relations which simu�

lates our Minsky algorithm� Consider the right ideal I�M� in ZB generated by the
polynomials (ui � (vi � i � �� �� � � ��
It is not di�cult to prove that if two con�gurations �m� i� n� and �m�� i�� n�� of

the Minsky algorithm are equivalent then the polynomial (w�m� i� n� � (w�m�� i�� n��
belongs to I�M�� One has to use the properties � and � of our interpretation �this
is why the interpretation presented in the previous section does not work in the
present case��
Thus in order to prove that I�M� has an undecidable membership problem�

it is enough to show that if (w�m� i� n� � (w�m�� i�� n�� belongs to I�M� then the
con�gurations �m� i� n� and �m�� i�� n�� of the Minsky algorithm are equivalent�
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Suppose that (w�m� i� n�� (w�m�� i�� n�� belongs to I�M�� This means that

(w�m� i� n�� (w�m�� i�� n�� �
X
�(ui � (vi�fi ����

where ui � vi � R� fi � B�
Both sides become sums of monomials� Now take a monomial U in the sum

(w�m� i� n�� From the theory of Burnside groups �see Adian ���� we know that cube�
free words are not equal to each other� and are not equal to smaller subwords in the
free Burnside group� Therefore this monomial cannot coincide with other monomials
from (w�m� i� n� and with monomials from (w�m�� i�� n��� Therefore this monomial
must coincide with a monomial from the right side of ���� �we are in a group ring'��
Hence we have U � u�ifi or U � v�ifi� Here w

� �for w equal to ui or vi� is
obtained from w by replacing some letters by their �brothers� � the same letters
with di�erent indices�� Suppose that the �rst equality holds� Suppose that u�i is
an initial part of the word U � i�e� the equality U � u�ifi is an equality in the
free semigroup� Then we can take a monomial v�i in the sum (vi and replace U by
U� � v�ifi� The monomial U� must cancel with some other monomial in a sum
�(us� (vs�fs� Again suppose that U� � u�sfs in the free semigroup� and replace U� by
U� � v�jfs� Finally we will hit all sums �(us � (vs�fs in the right side of the equality
���� and so one of Ug will coincide with a monomial from the sum (w�m�� i�� n��� Now
look at the sequence of monomials U�U�� U�� � � � � Uk� If we identify letters and their
�brothers� then U will coincide with w�m� i� n�� Uk will coincide with w�m�� i�� n���
and every step in this sequence of words is obtained by replacing one side of relations
from R by another side of this relation� Therefore we have a semigroup deduction of
the relation w�m� i� n� � w�m�� i�� n��� But we already know that if such a relation
holds then corresponding con�gurations of the Minsky machine are equivalent�
This was only an idea of the proof� In order to make this proof work we have

to understand what to do if U � the monomial we are dealing with� is equal to u�ifi
but u�i is not an initial part of U � Of course� we still can take a monomial v

�
i and

replace U by U� � v�ifi but �rst it may eventually lead to big powers of letters which
is bad since we are working with a periodic group B� Second� the transformations
U � U� � U� � � � will not simulate semigroup transformations�
In order to avoid these di�culties Sapir de�nes a set of words E over the alphabet

of generators A� with the following properties�

E�� Every word in E is cube�free�

E�� If w is a canonical word then one and only one monomial in (w belongs to
E�

E�� If the word fi is contained in E and the word u�ifi is also contained in E�
then there exists a unique v�i such that v

�
ifi belongs to E�

�

E�� If the word fi does not belong to E but u
�
ifi belongs to E then there exists

a unique monomial u��i in #ui which is distinct from u�i and is such that u
��
i fi

belongs to E�

� Here ui � vi is a relation from 	��
�
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E	� If w is a positive word from E� f � E� and w � u�if� then u
�
i is an initial

part of w�

Given this set E� we can describe our transformations U � U� � U� � � � �
precisely� Indeed� suppose again that we have the equality ����� We know that there
exists �unique� monomial U in (w�m� i� n� which belongs to E� Since all monomials
in the left part of ���� are cube�free� U is not equal to any monomial in the left side�
and so it must be equal to some u�ifi from the right side�
Now if fi belongs to E� we choose a �unique by E�� word v�i in (v� and replace U

by U� � v�ifi� Since U is a positive word� u
�
i is an initial part of U � and so U� is also

a positive word� In this case we use all monomials from the sum �(ui � (vi�fi which
belong to E� Let us call this transformation U � U� an R��transformation�
If fi does not belong to E we choose a �unique by E�� monomial u��i in (ui which

is distinct from u�i and such that U� � u��i fi belongs to E� In this case we will call
our transformation U � U� an R��transformation�
If U� belongs to the sum (w�m�� i�� n��� our process ends� If not� we can �nd

another sum on the right side of ���� where it belongs� Then we can proceed from
U� to U� by an R�� or R��transformation�
Why does this process simulate the process of semigroup deductions� Notice that

if all transformations in the sequence U � U� � U� � � � � are R��transformations
then all these words are positive and the sequence indeed simulates a deduction of
the relation w�m� i� n� � w�m�� i�� n���
In the case when some of these transformations are R��transformations Sapir

proves that there exists another �perhaps even shorter� sequence ofR��transformations
only� which connects the same words�

��	� The Word Problem for Varieties of Inverse Semigroups

����� Inverse Semigroups with Abelian Covers
Recall that inverse semigroups form a variety of algebras of type � �� � �� While
inverse semigroups appear at �rst sight to form a class of algebras intermediate
between groups and semigroups� there are many aspects of the theory that are
drastically di�erent from their counterparts in group theory or semigroup theory�
Even the theory of the free inverse semigroup �
�� ������ �

�� ���� o�ers many
surprises and interesting unsolved problems� In particular� the free inverse semigroup
is not �nitely presented as a semigroup ������ The structure of the free inverse
semigroup FIS�X� on X was described in Section � above�
Our concern in this section is with the variety of those inverse semigroups which

possess an E�unitary cover over some Abelian group� The concept of E�unitary cover
is one of the fundamental concepts in the theory of inverse semigroups� It has many
equivalent de�nitions �see ������ One of the de�nitions is the following� Let S be an
inverse semigroup of partial injective transformations of a set X� We say that S has
an E�unitary cover over a group G if G has a faithful representation by permutations
of a set Y containing X such that every transformation of S is a restriction of some
permutation of G�
For every variety of groups V the class of inverse semigroups

#V � fSjS has an E�unitary cover over some group in Vg
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is a variety of inverse semigroups� The following result summarizes some of the work
of Petrich and Reilly ���� and Pastijn ��
��

Theorem 
�� Let V be a variety of groups� Then #V is de�ned by the identities
fu� � u j u � � is an identity in Vg�

The variety #V may also be characterized in a di�erent way� Recall that if U
and V are varieties of universal algebras then the Mal�cev product UV is the variety
generated by all algebras A for which there exists a congruence � on A such that all
��classes which are subalgebras are in U and A�� � V �
For varieties of inverse semigroups U and V we also denote by U � V the variety

generated by all semidirect products S � T where S � U � T � V � It follows from the
work of Tilson ����� and O�Carroll ��	� and the fact that the variety of semilattices
S is �local�� that for every group variety V we have SV � S � V � From Petrich ����
�Theorem �������� we also have�

Theorem 
�� Let V be any variety of groups� Then

#V � S � V � SV �

The free semigroups in the variety #V have been described by Margolis and Meakin
�
��� Let V be a variety of groups� X a nonempty set and FX�V� the relatively free
X�generated group in V � Let �X�V� denote the Cayley graph of FX�V� relative to
the set of generators X� De�ne

MX�V� � f��� g�j� is a �nite connected subgraph of �X�V�
containing � and g as vertices�� �� f�gg

with multiplication

���� g������ g�� � ��� � g� � ��� g�g���

�Here g� � �� denotes the natural action �left translation� of g� on ����
The inverse monoidMX�V�� �MX�V��f�g is just the inverse monoidM�X � R�

constructed in Section �� corresponding to the natural presentation gp � X � R �
of FX�V��
FromMargolis andMeakin ��
��� Corollary ���	� we have the following description

of the relatively free semigroups in #V

Theorem 
�� If V is any variety of groups and X is any non�empty set then
MX�V� is the relatively free X�generated inverse semigroup in the variety #V�

In particular� if V � G� the variety of all groups� then #G is the variety of all
inverse semigroups� and MX�G� is the free inverse semigroup on X�
Notice that from Theorem ��� it follows that the word problem in MX�V� is

decidable if and only if the group FX�V� has decidable word problem�
If A is the variety of Abelian groups and jXj � n� then the Cayley graph �X�A�

is the lattice Zn� The multiplication in MX�A� may be easily visualized� The
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word problem in MX�A� may be solved in the following manner� Let w be a word
in �X � X���� and let �w be the �nite subgraph of the lattice �X�A� traversed
when the word w is read as the label of a path in �X�A�� starting at the vertex
�� Then w� � w� in MX�A� if and only if �w�

� �w�
and the paths labelled by

w� and w� in �X�A� have the same end �that is these words are equal in the free
Abelian group�� For example� if X � fa� bg� w� � abaa��bb��a��b��b�aa��b��a��
w� � ba��ba�a��b��abb��a��ba�a�� then w� � w� in FX�A� and �w�

� �w�
is the

graph shown in the Figure � below�

b b b

b b b b

b b

�a �a

�a �a �a

�a

�

�
b

�
b

�
b

�
b

�
b

Fig� ��

Hence w� � w� in MX�A�� But it is easy to see that w� �� ab in FX�A�� because
�ab �� �w�

�
Thus the word problem is easily decidable in the free semigroups of the variety

#A� In this section� however� we outline a proof of the fact that the word problem
is undecidable in the variety #A� that is we can add �nitely many relations to the
de�ning relations ofMX�A� and obtain a semigroup with undecidable word problem�
Full details of the proof of this result may be found in the paper �����
More precisely we have the following

Theorem 
�	 If B is any variety of inverse semigroups containing the variety
#A of inverse semigroups possessing an E�unitary cover over an Abelian group� then
B has undecidable word problem�

The proof of this theorem uses the Sch&utzenberger automata introduced in Sec�
tion � associated with an inverse semigroup presentation and also an interpretation
of a Minsky algorithm�
It is well�known that the variety #A contains all Brandt semigroups Bn and the

bicyclic semigroup B � Inv � a � aa�� � � �� The inverse semigroup Inv �
a� b � ab � ba � is in this variety but the inverse semigroup Inv � a� b� c � ab �
ba� ac � ca� bc � cb � is not because the Sch&utzenberger automaton of the word
ab��ca��bc�� is linear� so this word is not an idempotent in this semigroup� but
it is a commutator and so it must be an idempotent in every semigroup of #A �see
theorem �����
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����� Minsky Algorithms and the Word Problem in Inverse Semigroups
Let us take a Minsky algorithmM which calculates the characteristic function f�n�
of a recursively enumerable but non�recursive set X �i�e� f�x� � 	 if x � X and is
not de�ned if x �� X�� We assume thatM has N " � commands� 	� �� � � � � N �where
	 is the Stop command and � is the start command��
Recall that by the de�nition of an interpretation of a Minsky algorithm� to in�

terpret a Minsky algorithm in a semigroup means that one must do the following�

� Associate with each con�guration �m� i� n� of a Minsky algorithm� a canonical
word w�m� i� n��

� Associate with each command � of the Minsky algorithm a set of de�ning rela�
tions R��

These canonical words and sets of relations must have the following property�

�m� i� n� � �m�� i�� n�� i� w�m� i� n� � w�m�� i�� n� modulo the union of all R��

Notice that the choice of the relations R� is in some sense determined by the choice
of canonical words because these relations must simulate the execution of the com�
mands of the Minsky algorithm�
The canonical word must encode the information contained in the con�guration�

The simplest words which encode the triple �m� i� n� are AamqbnB and qamAbnB
�see Section ����
In the case of inverse semigroups� these choices of canonical words do not su�ce�

Consider� for example the �rst choice� The Minsky algorithmM may certainly have
equivalent con�gurations �m� i� n� and �m�� i�� n�� with i � i�� n � n� but m �� m�� In
such a case the Sch&utzenberger automaton of w�m� i� n� must accept w�m�� i� n� and
visa versa� For simplicity let m � ��m� � �� n � � �the general case is similar��
Thus this automaton must have paths as shown in Figure ��

b� ��
��
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b �a b �a b �a b �a b �qi b �b b
�
��RB b 	

�
��R
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b �
a
b �

a
b �
qi
b �
b
b��
��B

Fig� ��

The requirement that the Sch&utzenberger automaton of w�m� i� n� be an inverse
automaton �i�e� it must be both deterministic and injective�� and the fact that
m �� m� would then give rise to a subgraph of the Sch&utzenberger automaton of the
form shown in Figure ��

b� �A

��
��
�a
b� a

b �qi b �b b �B b 	

Fig� ��
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It follows that the Sch&utzenberger automaton of w�m� i� n� would accept words
of the form Aa�rqibnB for all r� This would force ��r� i� n� � ��� i� n� for every r�
In general it is easy to see that if �m� i� n� � �m " t� i� n� for some m�n� t � 	

then �m " tr� i� n� � �m� i� n� for every r� From this� it is easy to deduce that our
Minsky algorithm cannot compute the characteristic function of a non�recursive set
X� Indeed� let Y be the set of all numbers m such that �m� �� 	� � ��� 	� 	�� We
proved that with every two numbers m�m " t the set Y contains all numbers of
the form m " rt� r � 	� �� � � �� Let us take m � Y and t � 	 such that m " t � Y
and t is the smallest di�erence between elements of Y � Then it is clear that all
elements from Y which are greater than m belong to the arithmetic progression
m�m " t�m " �t � � � � Hence Y contains only �nitely many numbers outside this
progression� so it is recursive� This contradicts the fact that by Minsky�s theorem�
�k belongs to Y if and only if k belongs to X� It is only slightly more di�cult to
prove that our algorithm cannot compute any non�recursive function� we leave this
to the reader as an exercise� Di�culties of this kind lead to the consideration of
longer and more symmetric canonical words� and hence to a longer list of de�ning
relations than has been used for similar problems in varieties of semigroups and
groups�
In ���� the following canonical word corresponding to the con�guration �m� i� n�

was chosen�

w�m� i� n� � A�i�a�i�mB�i�b�i�nQ�i�(b�i�n (B�i�(a�i�m (A�i��

The task then is to construct de�ning relations corresponding to each type of
command of the Minsky algorithmM so that the relations simulate the execution of
the algorithm� For example� in ���� the following set of de�ning relations corresponds
to a command number i of the type

�take a coin from the �rst glass j j j k�� ���

�This means that if the �rst glass is not empty� then take a coin from it and pass to
the command number j� and if the �rst glass is empty then pass to the command
number k��

�� Q�i� � f�i�P �i� (f�i��

�� b�i�f�i� � f�i�b��i�� (f�i�(b�i� � (b��i� (f�i��

�� a�i�B�i�f�i� � a�i�e�i�B��i�� (f�i� (B�i�(a�i� � (B��i�(e�i�(a�i��

�� a�i�e�i� � e�i�a��i�� (e�i�(a�i� � (a��i�(e�i��

	� A�i�e�i� � A�j�e����i�� (e�i� (A�i� � (e����i� (A�j��


� e����i�a��i� � a�j�e����i�� (a��i�(e����i� � (e����i�(a�j��

�� e����i�a��i�B��i� � B�j�f����i�� (B��i�(a��i�(e����i� � (f����i� (B�j��

�� f����i�b��i� � b�j�f����i�� (b��i� (f����i� � (f����i�(b�j��
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� f����i�P �i� (f����i� � f����i�f
��
��� �i�Q�j�

��� A�i�B�i�f�i� � A�k�B�k�f����i�� (f�i� (B�i� (A�i� � (f����i� (B�k� (A�k��

��� f����i�b��i� � b�k�f����i�� (b��i� (f����i� � (f����i�(b�k��

��� f����i�P �i� (f����i� � f����i�f
��
��� �i�Q�k�

Similar relations were introduced to simulate the execution of the other types of
commands of the Minsky algorithm� The Stop command is simulated by the single
de�ning relation w��� 	� 	� � 	� This leads to a long list of de�ning relations and to
an inverse semigroup S�M� generated by the set G�M� of all symbols involving in
the de�ning relations and subject to the union of all of these relations�
Now let B be any variety of inverse semigroups containing #A and let SB�M� be

the inverse semigroup in B obtained by adding to the de�ning relations of S�M� the
identities of B �i�e� SB�M� is de�ned in B by the same relations which de�ne S�M�
in the class of all inverse semigroups��
We want to show that w��m� �� 	� is equal to 	 ��w��� 	� 	�� in SB�M� if and only

if m � X� This is accomplished by proving the following two lemmas�

Lemma 
�� If we can pass from con�guration �m� i� n� to con�guration �m�� j� n��
using command i of M then w�m� i� n� � w�m�� j� n�� in S�M� where � is the natural
order on the inverse semigroup S�M��

Lemma 
�� If m �� X then w��m� �� 	� is not equal to � in SB�M��

Indeed� suppose that we have proved these two lemmas� If m � X then our
algorithmM takes con�guration ��m� �� 	� to con�guration ��� 	� 	� in a �nite number
of steps� By Lemma ��� we can deduce that w��m� �� 	� � w��� 	� 	� � 	� But zero
is the smallest element in the natural order of any inverse semigroup� Therefore
w��m� �� 	� � 	 in S�M�� Since SB�M� is a homomorphic image of S�M� we have
that w��m� �� 	� � 	 in SB�M�� On the other hand if m �� X then by Lemma ���
the element w��m� �� 	� is not equal to 	 in SB�M�� This will complete the proof of
Theorem ��
�
In order to prove lemma ��� it su�ces to show that if we can proceed from con�g�

uration �m� i� n� to con�guration �m�� j� n�� using command i of M then w�m�� j� n��
must be accepted by the Sch&utzenberger automaton A�w�m� i� n�� corresponding to
this presentation� For example� suppose that command i is of the type �� Start
with the linear automaton of the word

w�m� i� n� � A�i�a�i�mB�i�b�i�nQ�i�(b�i�n (B�i�(a�i�m (A�i��

If m �� 	 then application of command i to w�m� i� n� must produce w�m � �� j� n�
while if m � 	� it must produce w�m�k� n��
Notice that the relation � may be used to apply an expansion to the automaton

�add a new path labelled by f�i�P �i� (f�i� to the automaton starting at the initial
vertex of the edge labelled by Q�i� and ending at the terminal vertex of this edge��
This then introduces a path labelled by b�i�f�i� and a path labelled by (f�i�(b�i�� to
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which we can apply expansions by use of the relations � and so on� Continue in this
manner� one easily checks that if one applies only the relations ���� corresponding
to command i� then the automaton obtained from the linear automaton of w�m� i� n�
and closed with respect to application of expansions corresponding to these relations
is in fact �nite�
Sketches of these automata in the cases m � �� n � � and m � 	� n � � are

provided in �gures 
 and ��
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Notice that in the �rst case there is a path in this automaton from the initial
state to the terminal state labelled by w��� j� �� and in the second case there is such
a path labelled by w�	� k� �� �the lower boundaries of the graphs�� Hence in each
case A�w�m� i� n�� accepts the required word� Similar analysis applies in the other
cases with corresponding sets of de�ning relations�
The basic idea involved in proving lemma ��� is to construct an inverse automaton

I�M� associated with the Minsky algorithmM and a con�guration ��m� � �� 	� where
m� �� X� This inverse automaton is such that the transition semigroup T �M� of
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I�M� is a homomorphic image of the semigroup S�M� constructed above and is in
the variety #A� In addition one shows that the word w��m� � �� 	� labels a path which
is not a loop in I�M�� and so it is not equal to 	 in T �M�� It follows immediately of
course that w��m� � �� 	� �� 	 in SB�M� for every variety B containing #A and hence
that Lemma ��� holds�
The idea is that the underlying graph of I�M� should contain the Sch&utzenberger

automaton of the canonical word w��m� � �� 	� and have the following properties�
a� The automaton I�M� is closed under application of all of the de�ning relations

of the semigroup S�M�� That is� if in I�M� there are two vertices p and q and
a path starting at p and ending at q labelled by one side of one of the relations
then there is also a path in I�M� from p to q labelled by the other side of that
relation� From this it follows that the transition semigroup T �M� of I�M� is a
homomorphic image of S�M��

b� The transition semigroup T �M� of I�M� is in the variety #A�
We refer to the paper ���� for full details�
We note that the semigroup S�M� itself is not in the variety #A� For example� the

word A�i�a�i�A�i���a�i��� is not an idempotent in S�M� since its Sch&utzenberger
automaton is linear �no relations apply�� but the word is � in the free Abelian group�
Hence by Theorem ���� S�M� �� #A� We can add the relations like

A�i�a�i�A�i���a�i��� � �A�i�a�i�A�i���a�i�����

to S�M�� but still there will be in�nitely many �more sophisticated� commutators
which will not be idempotents in the resulting semigroup� Thus we are unable to
push S�M� into #A by adding only �nitely many relations� This raises the following
question�

Problem 
�� Is there a �nitely presented inverse semigroup with undecidable
word problem� which belongs to #A�

Finally we raise the question as to whether or not the variety #A is a �bound�
between decidability and undecidability of the word problem in the class of varieties
of inverse semigroups�

Problem 
�� Is it true that every variety of inverse semigroups that is strictly
contained in #A has decidable word problem� In particular� does the variety of inverse
semigroups generated by the bicyclic semigroup have decidable word problem�

In ���� we conjectured that the variety generated by the bicyclic semigroup has
undecidable word problem� At this stage we are unable to either prove or disprove
this conjecture� It is clear that this variety is properly contained in #A�
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