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Abstract

We show that semigroups representable by triangular matrices over
a fixed finite field form a decidable pseudovariety and provide a finite
pseudoidentity basis for it.

Background and motivation

The main results of this paper were motivated by one of the fundamental
theorems of Imre Simon, namely, by his elegant algebraic characterization of the
class of piecewise testable languages [21, 22]. This celebrated theorem was one of
the main illuminating examples for the creation of the theory of pseudovarieties
of finite semigroups and varieties of recognizable languages. By now there are
a number of proofs [1, 11, 12, 23, 26] based on different approaches whose
sources range from fairly concrete calculations in finite transformation semi-
groups to highly abstract constructions of model theory or profinite topology
and so it has become a crossing where various profound ideas and techniques
meet. Thus Simon’s Theorem has motivated a generation of researchers who
have studied the relationship between finite semigroup theory and theoretical
computer science.

There are highly non-trivial purely algebraic consequences of Simon’s The-
orem. Straubing [24] proved that a finite semigroup is J -trivial if and only if,
for some n, it divides the semigroup Un of all n × n upper triangular Boolean
matrices with all 1’s on the main diagonal. While it is easy to check that the
semigroup Un is J -trivial, it is very difficult to prove that conversely every
finite J -trivial semigroup divides Un for some n. The original proof in [24]
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uses Simon’s theorem in a crucial way, and no straightforward algebraic proof
of this simple to state result is known so far.

A direct linear analogue of the semigroup Un is the group U∗n(K) of all n×n
upper triangular matrices over a field K with all 1’s on the main diagonal. Such
groups have been studied intensely for more than 100 years. If K is a finite field
of characteristic p, then an elementary counting argument shows that in fact
U∗n(K) is a p-group. It is a standard and classical fact that conversely every
finite p-group is isomorphic to a group of upper triangular matrices (of some
size) with all 1’s on the main diagonal over any finite field of characteristic p
(see, e.g., [9, Theorem 3.1.2]).

Thus we see algebraically, that there is a deep connection between finite
J -trivial semigroups and finite p-groups. This analogy also shows up on the
language theoretic side. Whereas Simon’s theorem tells us that the languages
recognized by finite J -trivial monoids are built from looking at the appear-
ance or non-appearance of subwords in a word, that is by doing counting over
the two element Boolean semiring, the languages recognized by finite p-groups
correspond to counting subwords modulo p. See [7, Sections VIII.9 and VIII.10]
and also [28] for a precise formulation of these results.

Pin and Straubing [18] proved that the monoid pseudovariety generated by
the monoid of all upper triangular Boolean matrices also has a natural language
theoretic interpretation. Namely, the corresponding variety of languages is
precisely the languages of level 2 in the Straubing–Thérien hierarchy [25, 27].
(Recall that the Straubing–Thérien hierarchy is the monoid counterpart of the
dot-depth hierarchy by Brzozowski [6]. See [17, Section V.2] for a discussion
of the two hierarchies and their relationship.) The monoids of level 1 in the
Straubing–Thérien hierarchy are precisely the J -trivial monoids, but as of
today, the membership problem for the pseudovariety of Straubing–Thérien
level 2 remains one of the most important open problems in finite semigroup
theory.

This brings us to the subject of the present paper. We ask here what is the
mod-p analogue of the monoid of upper triangular Boolean matrices. Clearly
we need to look at the monoid of upper triangular matrices over a finite field
of characteristic p. Thus we are asking about what finite semigroups can be
represented as semigroups of triangular matrices and we enter the world of the
classical problem of triangulating a set of matrices over a field. Indeed, the
study of simultaneous triangularizability of families of matrices has been con-
sidered as an important issue since the mid-19th century, and one can see that
many classical branches of algebra such as group, associative ring or Lie algebra
theories have offered their specific triangularizability conditions. Rather than
trying to survey this vast area, we refer the reader to the recent comprehensive
monograph [19]. Not long ago Okniński [16, Section 4.4] found a deep triangu-
larizability criterion for semigroups of matrices. We show that being restricted
to the realm of finite semigroups Okniński’s criterion admits a fairly natural
expression in terms of pseudovariety theory. In particular, we prove that finite
semigroups triangularizable over a fixed finite field form a pseudovariety with
decidable membership, and moreover, provide a finite pseudoidentity basis for
this pseudovariety. These results imply several interesting corollaries of both
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an algebraic and a geometric nature. The three authors along with Benjamin
Steinberg are preparing a separate paper devoted to further development of
these results and their applications to language theory and to the representa-
tion theory of finite semigroups.

The paper is structured as follows. In Section 1 we recall some basics of finite
semigroup theory and then formulate and discuss our main results. Section 2
collects a few properties of semigroups of triangular matrices and presents an
adaptation of Okniński’s triangularizability criterion for the case of finite semi-
groups. Section 3 provides the necessary preliminaries on groups. In Section 4
we prove the main results, and Section 5 contains some interesting examples.

1 Main results

We assume the reader’s acquaintance with standard concepts of semigroup
theory (in particular, with the definition of Green’s relations). They all can be
found in the books [5, 14].

Recall that a semigroup pseudovariety is a class of finite semigroups closed
under forming finitary direct products and taking homomorphic images and
subsemigroups. The following well-known pseudovarieties play a distinguished
role in this paper: the pseudovariety DS of all finite semigroups whose regular D-
classes are subsemigroups and the pseudovariety Gp of all finite p-groups where
p is a prime number. We also make use of an operator on pseudovarieties. For
each pseudovariety H of finite groups, H denotes the class of all finite semigroups
whose subgroups belong to H. It is known (cf. [7, Proposition B.V.10.4]) and
easy to see that H is a pseudovariety.

Now we fix an arbitrary finite field F and denote its characteristic by p
and its order by q (so q is a power of p). By Tn(F) we denote the semigroup
of all upper triangular n × n matrices over F. A finite semigroup S is said
to be triangularizable over F if S embeds into Tn(F) for some n. Further, by
UTn(F) we denote the subsemigroup of Tn(F) consisting of all unitriangular
matrices (that is, matrices whose main diagonal entries are equal to either 0
or 1). A finite semigroup that embeds into UTn(F) for some n is said to be
unitriangularizable over F.

Our first result is the following.

Proposition 1.1 The class UTp of all finite semigroups unitriangularizable
over a given finite field of characteristic p is the pseudovariety Gp ∩ DS.

Even though Proposition 1.1 is not the main result of the paper, let us
discuss it in detail because some of our comments also apply to more involved
statements below. First of all, observe that the pseudovariety UTp depends
only on the characteristic of the ground field and does not depend on its order.
Moreover, the fact that pseudovarieties come into play is somewhat unexpected.
While it is trivial that the class UTp is closed under taking subsemigroups and
forming finitary direct products, it is far from being obvious that every homo-
morphic image of a unitriangularizable semigroup is again unitriangularizable.
Finally, observe that given a finite semigroup S (by its Cayley table, say), one
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can efficiently check if the subgroups of S are p-groups and the regular D-classes
of S are subsemigroups. (Here the word ‘efficiently’ means that the tests can be
performed in time bounded by a polynomial of the size of S.) In other words,
we may conclude that the property of being unitriangularizable over a fixed
finite field is decidable in polynomial time.

Now we turn to the general case. In order to formulate a description of
triangularizable semigroups, let GpAbq−1 stand for the collection of all finite
groups G such that G is an extension of a p-group by an Abelian group of
exponent dividing q − 1. It is easy to verify that GpAbq−1 is a pseudovariety.
We denote by EGp the class of all finite semigroups whose idempotent-generated
subsemigroups belong to Gp. Again, EGp is easily seen to be a pseudovariety.

Theorem 1.2 The class Tqp of all finite semigroups triangularizable over the
field of characteristic p and order q is the pseudovariety GpAbq−1 ∩ DS ∩ EGp.

Here, in contrast to Proposition 1.1, the answer depends on the order of
the ground field. However, it is easy to deduce from Theorem 1.2 a similar
description of finite semigroups triangularizable over some finite field of char-
acteristic p. Let GpAb denote the pseudovariety of all extensions of a finite
p-group by a finite Abelian group. Then we have

Corollary 1.3 The class Tp of all finite semigroups triangularizable over
a finite field of characteristic p is the pseudovariety GpAb ∩ DS ∩ EGp.

Given the Cayley table of a finite semigroup S, one can construct the Cay-
ley table of the subsemigroup generated by the idempotents of S in O(|S|3)
time. Therefore Theorem 1.2 and Corollary 1.3 ensure that the properties of
being triangularizable over a fixed finite field or over some finite field of a fixed
characteristic are decidable in polynomial time.

Of course, using Corollary 1.3 one can easily decide if a given finite semi-
group is triangularizable over some finite field of some characteristic. However,
the class of all such finite semigroups is not a pseudovariety (it is not closed
under finitary direct products).

Next we present a syntactic description of pseudovarieties of triangularizable
semigroups. Recall that there are two different ways to characterize semigroup
pseudovarieties syntactically, that is, by means of certain equations. The histor-
ically first approach, suggested by Eilenberg and Schützenberger [8], deals with
sequences of usual identities. Nowadays, however, another way for a syntactic
description of pseudovarieties seems to prevail, namely, the approach which is
due to Reiterman [20] and which is based on an extension of the notion of an
identity to that of a pseudoidentity, that is, an equality between two elements
of the free profinite semigroup rather than of the usual free semigroup. The
reader is referred to the book [2] for a general theory of pseudoidentities. In
the present paper, however, we only deal with very special pseudoidentities,
and the meaning of these pseudoidentities can be explained in fairly elementary
terms as follows.

Our pseudoidentities are formal equalities between two ‘ω-words’ built up
from the variables x and y by means of the concatenation and raising to ‘profi-
nite powers’ containing a special symbol ω in their exponents. For instance,

4



xp
ω
, (xy)ωx or xω−1yω−1xy are typical ω-words that we repeatedly use below.

If we want to calculate the value of an ω-word under a certain evaluation of its
variables in a semigroup S with ` elements we merely convert it into a usual
word by substituting the symbol ω wherever it occurs by the number `! and
then we evaluate the resulting word in S. (Thus, the three typical ω-words
above become xp

`!
, (xy)`!x and x`!−1y`!−1xy if one needs evaluating them in

a semigroup with ` elements.) A finite semigroup S satisfies the pseudoiden-
tity π(x, y) = ρ(x, y) where both π(x, y) and ρ(x, y) are ω-words if the values of
π(x, y) and ρ(x, y) coincide under every evaluation of x and y in S. We say that
a pseudovariety P is defined by a system Σ of pseudoidentities if P is precisely
the class of all finite semigroups satisfying each pseudoidentity in Σ (also Σ is
said to be a pseudoidentity basis for P). For instance, it is well known (cf. [2,
Section 8.1]) that the pseudovariety DS is defined by the pseudoidentity

(
(xy)ω(yx)ω(xy)ω

)ω = (xy)ω. (1.1)

As yet another example, we mention that the pseudovariety Gp can be defined
by the pseudoidentities

xp
ω
y = yxp

ω
= y. (1.2)

Of course, the pseudoidentities (1.2) hold in a semigroup S if and only if S
contains an identity element that is the value of the ω-word xp

ω
under each

of its evaluations in S. It is a common convention to express this fact in the
form of the single pseudoidentity xp

ω
= 1; we will always use such shorthand

notation when defining pseudovarieties of groups.
We want to stress that the above simplified treatment of pseudoidentities

involving ω-words is nevertheless rigorous and completely consistent with the
general theory of pseudoidentities. The reader is referred to [3] and [4, Section 2]
for various formal approaches to the concept of a profinite power.

Now we return to our problem of a syntactic description of pseudovarieties
of triangularizable semigroups. It is known (see [4, Section 2]) and easy to
verify that the pseudovariety Gp is defined by the pseudoidentity

xω = xω+pω . (1.3)

Therefore Proposition 1.1 immediately implies

Corollary 1.4 The pseudovariety UTp of all finite semigroups that are
unitriangularizable over a finite field of characteristic p is defined by the pseu-
doidentities (1.1) and (1.3).

The situation is much more complicated for the pseudovarieties Tqp and Tp.
Recall that by Theorem 1.2 and Corollary 1.3, we have Tqp = GpAbq−1∩DS∩EGp
and Tp = GpAb ∩ DS ∩ EGp. An equational description of the pseudovarieties
GpAbq−1 and GpAb makes no real problem in view of the results of [4, Section 3].
There it is shown how to transform any pseudoidentity system defining a given
group pseudovariety H within the class of all finite groups into a pseudoidentity
systems defining the pseudovariety H within the class of all finite semigroups so
that the two systems contain the same number of pseudoidentities and involve
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the same variables. It is easy to see that the pseudovariety GpAbq−1 is defined
within the class of all finite groups by the pseudoidentities

(
xq−1yq−1

)pω = 1, (1.4)
(
xω−1yω−1xy

)pω = 1 (1.5)

while pseudovariety GpAb is defined by (1.5) and the following pseudoidentity

(
xp

ω−1yp
ω−1
)pω = 1. (1.6)

(For the sake of completeness we provide a proof of these claims in Section 3.)
Thus, each of the pseudovarieties GpAbq−1 and GpAb can be defined by just two
pseudoidentities in two variables.

Since we know a single pseudoidentity in two variables that defines the pseu-
dovariety DS, our task seems to reduce to finding a syntactic description of the
pseudovariety EGp. However here we encounter a serious problem because the
latter pseudovariety cannot be defined by a finite number of pseudoidentities,
and moreover, by any system of pseudoidentities involving only finitely many
variables. This immediately follows from the main result of [29].

We thus see that the structural descriptions of the pseudovarieties Tqp and Tp
provided by Theorem 1.2 and Corollary 1.3 do not translate well into syntactic
descriptions. In spite of this fact, we have found a single pseudoidentity in two
variables that defines the pseudovarieties Tqp and Tp within the pseudovarieties
GpAbq−1 ∩ DS and respectively GpAb ∩ DS. This is the pseudoidentity

((
(xy)ωx

)pω−1(
y(xy)ω

)pω−1
)pω+1

=
(
(xy)ωx

)pω−1(
y(xy)ω

)pω−1
. (1.7)

At first glance, the pseudoidentity looks complicated and perhaps somewhat
mysterious but we show in Section 4 that it reflects the very core of Okniński’s
triangularizability criterion. In order to make it and other pseudoidentities look
more concise we let e denote the expression (xy)ω. With this convention we
may formulate our syntactic descriptions as follows:

Theorem 1.5 The pseudovariety Tqp of all finite semigroups triangulariz-
able over the field of characteristic p and order q is defined by the pseudoiden-
tities

(
(exe)q−1(eye)q−1

)pω = e, (1.8)
(
(exe)ω−1(eye)ω−1exeye

)pω = e, (1.9)(
e(yx)ωe

)ω = e, (1.10)
(
(ex)p

ω−1(ye)p
ω−1
)pω+1 = (ex)p

ω−1(ye)p
ω−1. (1.11)

Corollary 1.6 The pseudovariety Tp of all finite semigroups triangulariz-
able over a finite field of characteristic p is defined by the pseudoidentities (1.9)–
(1.11) and (

(exe)p
ω−1(eye)p

ω−1
)pω = e. (1.12)
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All the pseudoidentities (1.8)–(1.12) depend on two variables. Clearly, if one
evaluates the left hand side and the right hand side of such a pseudoidentity
in a finite semigroup S assigning the variables x and y some elements s, t ∈ S,
then the evaluation takes place in the subsemigroup of S generated by s and t.
Therefore we have the following corollary:

Corollary 1.7 A finite semigroup S is triangularizable over a given finite
field [over some finite field of a given characteristic] whenever each of its 2-
generator subsemigroups is so.

As was pointed out to the authors by one of the referee’s, this corollary
can be also obtained by combining the fact (following from Theorem 1.2 and
Corollary 1.3) that triangularizability of a semigroup over a finite field only
depends on its isomorphism class with a classical result of Guralnick [10].

The proofs in this paper are designed to be self-contained; in particular,
we do not assume the reader’s acquaintance with the representation theory of
finite semigroups or with the theory of linear groups using arguments from ele-
mentary linear algebra instead. In fact, a reader having such a background may
observe that some of the proofs can be shortened by representation-theoretical
arguments.

2 Preliminaries on matrix semigroups

We fix a (not necessarily finite) field K and denote by Mn(K) the semi-
group of all n × n matrices over K. Let Tn(K) denote the semigroup of all
upper triangular matrices from Mn(K), and let UTn(K) stand for its subsemi-
group consisting of unitriangular matrices. The next proposition collects some
properties of the regular D-classes and the maximal subgroups of Tn(K); it
plays a crucial role in the proof of the ‘only if’ part of Proposition 1.1 and
Theorem 1.2. For proofs of all these properties the reader is referred to [16,
Section 3.2, Example 2]. Of course, in this paper we are especially interested
in the case of a finite field; for this special case, direct and elementary proofs
of most of the claims of the proposition may be found in [30].

Proposition 2.1 In the semigroup Tn(K) every regular D-class consists
of all matrices of rank j, 0 ≤ j ≤ n, whose main diagonals have exactly j non-
zero entries and the same pattern of zero entries. Each such regular D-class is
a subsemigroup and hence the union of its maximal subgroups. Each maximal
subgroup H of a regular D-class whose matrices have rank j is isomorphic to
the group T ∗j (K) of all invertible matrices of Tj(K), and the group H∩UTn(K)
is isomorphic to the group UT ∗j (K) of all invertible matrices of UTj(K).

Our proofs of the “if” part of Theorem 1.2 and of Theorem 1.5 depend
heavily on Okniński’s triangularizability criterion [16, Section 4.4] or, more
precisely, on its restriction to the case of finite matrix semigroups (over an
arbitrary field). Its formulation requires a few definitions.

We say that two subsemigroups S and T of Mn(K) are conjugate if there
exists an invertible matrix g ∈Mn(K) such that g−1Sg = T . A matrix is called
unipotent if all its eigenvalues belong to the set {0, 1}.
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Proposition 2.2 A finite subsemigroup S ⊆ Mn(K) is conjugate to a
subsemigroup in Tn(K) if and only if every maximal subgroup of S is conjugate
to a subgroup in Tn(K), every regular D-class D of S is a subsemigroup of S,
and the subsemigroup of D generated by its idempotents consists of unipotent
matrices.

Okniński’s triangularizability criterion [16, Theorem 4.31] for an arbitrary
matrix semigroup is formulated in a similar way; the only difference is that
instead of regular D-classes Okniński uses a more general notion of a uniform
component of a matrix semigroup. However it easily follows from [16, Sec-
tion 3.2, Remark v)] that the uniform components of a finite semigroup S are
just the regular D-classes of S.

We also make use of the following classic result by Kolchin [13, Section 1]:

Proposition 2.3 Every subgroup in Mn(K) consisting of unipotent matri-
ces is conjugate to a subgroup in Tn(K).

Combining Propositions 2.2 and 2.3 one immediately gets the following
corollary which is a restriction of [16, Corollary 4.33] to the finite case:

Corollary 2.4 A finite subsemigroup S ⊆Mn(K) consisting of unipotent
matrices is conjugate to a subsemigroup of Tn(K) if and only if the regular
D-classes of S are subsemigroups.

In order to apply Proposition 2.2 or Corollary 2.4 to an abstract semigroup
S we have to faithfully represent S by matrices over the given finite field. The
reader may think that this makes no real problem because it is well known that
every finite semigroup admits a faithful linear representation over any field
K. (It suffices to span a K-vector space by the set S1 and then extend the
regular representation of S to this space.) A difficulty still remains because in
Proposition 2.2 and Corollary 2.4 the notion of unipotency refers to a property
of a given linear representation of S rather than semigroup properties of S.
However, the results of the present paper show that triangularizability of a
matrix semigroup over a finite field depends only on abstract properties of the
semigroup. The key observation here is the following easy lemma that, for
a matrix a over a finite field, expresses the property of being unipotent as a
property of the period of the cyclic subsemigroup a generates.

Lemma 2.5 A matrix a over a finite field of characteristic p is unipotent if
and only if ak = ak+p` for some positive integers k and `.

Proof. For the ‘only if’ part, consider a triangular conjugate t of the matrix
a (it exists because the eigenvalues of a belong to the ground field). Then t
is a unitriangular matrix, and a straightforward calculation shows that any
unitriangular matrix over a finite field of characteristic p satisfies tk = tk+p` for
some k and `.

For the ‘if’ part, let K be the splitting field of the characteristic polynomial
of a and λ ∈ L an eigenvalue of a. Then λ satisfies the equation λk = λk+p` .
Thus,

0 = λk+p` − λk = λk(λp
` − 1) = λk(λ− 1)p

`
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since p is the characteristic of the field K. We conclude that either λ = 0 or
λ = 1, that is, a is a unipotent matrix.

3 Preliminaries on groups

We need a few facts about finite groups that all are slight variations of well
known results (see, e.g., [9, Chapter 3]). It appears however that no source in
the vast group-theoretic literature contains these facts in a form suitable for use
in the present paper. Therefore, for the sake of being reasonably self-contained
and for the reader’s convenience, we provide their detailed formulations supplied
with elementary proofs.

We start with justifying the pseudoidentity bases for the pseudovarieties
GpAbq−1 and GpAb presented in Section 1.

Lemma 3.1 The pseudovariety GpAbq−1 is defined within the class of all fi-
nite groups by the pseudoidentities (1.4) and (1.5). The pseudovariety GpAb
is defined within the class of all finite groups by the pseudoidentities (1.6)
and (1.5).

Proof. First we prove that every group G ∈ GpAbq−1 satisfies the pseu-
doidentities (1.4) and (1.5). By the definition of GpAbq−1, such G is an extension
of a p-subgroup H by an Abelian group of exponent q − 1. Therefore for any
x, y ∈ G, we have xq−1yq−1 ∈ H and x−1y−1xy ∈ H. If |G| = `, then g`! = 1
for all g ∈ G whence g−1 = g`!−1. Further, hp

`!
= 1 for all h ∈ H. Combining

all these observations, we conclude that G satisfies

(
xq−1yq−1

)p`! = 1 and
(
x`!−1y`!−1xy

)p`! = 1.

By our interpretation of ω-words, this means that G satisfies (1.4) and (1.5).
Now take G ∈ GpAb. Clearly, the above proof applies to show that G

satisfies (1.5). By the definition of GpAb, the commutator subgroup G′ of G is
a p-group. Every p-subgroup of G is contained in a Sylow p-subgroup but since
subgroups containing G′ are all normal in G, we conclude that G has a unique
Sylow p-subgroup H which is normal in G. The quotient G/H is an Abelian
group whose order r is relatively prime with p. Then by Euler’s theorem, r
divides pm−1 for a suitable m < r. If |G| = `, then m divides `! whence pm−1
divides p`!−1 and we have xp

`!−1yp
`!−1 ∈ H for all x, y ∈ G. As in the previous

paragraph, we conclude that G satisfies

(
xp

`!−1yp
`!−1
)p`! = 1

and hence G satisfies the pseudoidentity (1.6).
Now suppose that G is a group of order ` satisfying (1.4) and (1.5). Accord-

ing to our convention, the ω-words
(
xq−1yq−1

)pω and
(
xω−1yω−1xy

)pω interpret

in G as
(
xq−1yq−1

)p`! and respectively
(
x`!−1y`!−1xy

)p`! . In particular, G satis-
fies the identity (

xq−1yq−1
)p`! = 1.
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Recall that q is a power of p, and therefore, the numbers q − 1 and p`! are
relatively prime. It is known (cf. [15, Example 34.25]) and easy to verify that
in every group satisfying the identity (xsys)r = 1 for some relatively prime
numbers s and r the elements of order dividing r form a normal subgroup.
We see that G has a normal p-subgroup H such that the quotient group G/H
satisfies xq−1 = 1 and x`!−1y`!−1xy = 1. Since the exponent of any group
of order ≤ ` divides `!, we have x`! = 1 in G/H whence x`!−1 = x−1 and
the expression x`!−1y`!−1xy is nothing but the usual group commutator of the
elements x and y. Thus, we have G/H ∈ Abq−1 and G ∈ GpAbq−1, as required.

The same proof with p`! in the role of q shows that every finite group satis-
fying (1.6) and (1.5) belongs to the pseudovariety GpAb.

We notice that the proof of Lemma 3.1 also justifies the following formula:

GpAb =
⋃
m

GpAbp
m−1. (3.1)

Now we aim to verify that every subgroup of Mn(F) that belongs to the
pseudovariety GpAbq−1 is conjugate to a subgroup in Tn(F). We start with a
reduction which, though it is not essential, allows us to simplify the notation.
Let G be a subgroup in Mn(F) and let e be the identity element of G. It is well
known (and easy to verify) that the semigroup eMn(F)e is isomorphic to Mk(F)
where k is the rank of the matrix e. The group G ⊆ eMn(F)e is then isomorphic
to a subgroup of the group GLk(F) of all invertible matrices in Mk(F). In other
words, we may (and will) assume that groups under consideration consist of
invertible matrices.

Given a subgroup G ⊆ GLn(F), we denote by C(G) the following subspace
of the vector space Fn:

C(G) = {v ∈ Fn | vg1g2 = vg2g1 for all g1, g2 ∈ G}.
Lemma 3.2 The subspace C(G) is G-invariant.

Proof. Take an arbitrary vector v ∈ C(G) and an arbitrary matrix h ∈ G.
Then for all g1, g2 ∈ G we have

(vh)g1g2 = vh(g1g2) = vg1g2h = vg2g1h = vh(g2g1) = (vh)g2g1

whence vh ∈ C(G).

Lemma 3.3 If a subgroup G ⊆ GLn(F) belongs to the pseudovariety GpAb,
then C(G) 6= 0.

Proof. By Lemma 2.5 the commutator subgroup G′ of G consists of unipo-
tent matrices. Since G ⊆ GLn(F), the only eigenvalue for all matrices in G′ is 1.
By Proposition 2.3 (Kolchin’s theorem) all matrices in G′ possess a common
eigenvector v 6= 0, so vh = v for every h ∈ G′. Now for all g1, g2 ∈ G we have
g1g2g

−1
1 g−1

2 ∈ G′ whence

vg1g2 = v(g1g2g
−1
1 g−1

2 )g2g1 = vg2g1.

We see that v ∈ C(G), and hence, C(G) 6= 0.
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Proposition 3.4 If a subgroup G ⊆ GLn(F) belongs to the pseudovariety
GpAb, then there exists a chain of G-invariant subspaces

0 = C0 ⊂ C1 ⊂ · · · ⊂ Ck−1 ⊂ Ck = Fn (3.2)

such that for each i = 1, . . . , k, the group Gi of invertible linear transformations
induced by G on the quotient space Ci/Ci−1 is Abelian.

Proof. We build the chain (3.2) inductively. Suppose the subspace Ci−1

is already defined and consider the quotient space Fn/Ci−1. Since Ci−1 is
a G-invariant subspace, the group G induces a group Hi of invertible linear
transformations of the space Fn/Ci−1. Clearly, Hi is a homomorphic image
of G, and therefore, Hi belongs to the pseudovariety GpAb. By Lemma 3.3
the subspace C(Hi) of Fn/Ci−1 is not equal to 0 and by Lemma 3.2 it is Hi-
invariant. Now let Ci be the pullback of C(Hi) in Fn. Then Ci−1 ⊂ Ci and Ci
is a G-invariant subspace. By the definition of the subspace C(Hi), the group
Gi formed by the restrictions of the transformations of Hi to this subspace is
Abelian. The second isomorphism theorem implies that Gi is isomorphic to the
group of invertible linear transformations induced by G on the quotient space
Ci/Ci−1.

A matrix form of Proposition 3.4 is provided by the following

Corollary 3.5 If a subgroup of GLn(F) lies in the pseudovariety GpAb,
then it is conjugate to a group G of the form




Gk ∗ . . . ∗ ∗
0 Gk−1 . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . G2 ∗
0 0 . . . 0 G1



.

Here each Gi (i = 1, . . . , k) is an Abelian group of ni × ni matrices where
n1 + · · ·+ nk = n.

Proof. It suffices to choose a basis v1, . . . , vn for the space Fn according
to the chain (3.2), i.e. choose it so that v1, . . . , vn1 is a basis of C1, vn1+1 +
C1, . . . , vn1+n2 + C1 is a basis of C2/C1, etc.

Recall that q stands for the order of the field F.

Proposition 3.6 If a subgroup G ⊂ Mn(F) belongs to the pseudovariety
GpAbq−1, then G is conjugate to a subgroup of Tn(F).

Proof. If we take G in the block-triangular form of Corollary 3.5, it re-
mains to verify that each diagonal groupGi is conjugate to a subgroup of Tni(F).
In other words, we may assume that G is Abelian.

Now take an arbitrary matrix g ∈ G, let K ⊇ F be the splitting field of the
characteristic polynomial of g and let λ ∈ K be an arbitrary eigenvalue of g.

11



Since G satisfies the pseudoidentity (1.4), g(q−1)p`! = 1 where ` = |G|. Hence λ
satisfies the equation λ(q−1)p`! = 1. On the other hand, λq

m−1 = 1 where qm is
the order of the field K. Since q is a power of p, the greatest common divisor
of (q − 1)p`! and qm − 1 = (q − 1)(qm−1 + · · ·+ q + 1) is equal to q − 1. Thus,
λq−1 = 1, and this means that λ (as a solution to the equation xq = x over K)
belongs to the field F.

It remains to recall the following elementary exercise in linear algebra: every
finite family of commuting matrices whose eigenvalues lie in the ground field is
simultaneously triangularizable over that field.

From Proposition 3.6 and the formula (3.1) we immediately obtain

Corollary 3.7 Every group G in the pseudovariety GpAb is triangulariz-
able over a suitable finite field of characteristic p.

4 Proofs of the main results

We start by proving Theorem 1.2. Recall that it claims that the class Tqp
of all finite semigroups triangularizable over the field F of characteristic p and
order q is the pseudovariety GpAbq−1 ∩ DS ∩ EGp.

Necessity. It suffices to verify that for each n the semigroup Tn(F) belongs to
GpAbq−1 ∩ DS ∩ EGp. The fact that Tn(F) ∈ DS is a part of Proposition 2.1.

By the same proposition the maximal subgroups of Tn(F) are of the form
T ∗j (F) for some j ≤ n. The mapping that sends every matrix of the group T ∗j (F)
to the diagonal matrix with the same diagonal elements is a homomorphism
whose kernel is UT ∗j (F) and whose image (that is, the group of all invertible
diagonal j × j matrices) is isomorphic to the direct product of j copies of the
multiplicative group of the field F. The group UT ∗j (F) is easily seen to be a

p-group (indeed, the subgroup contains q
j(j−1)

2 elements, and this number is a
power of p). Thus, T ∗j (F) is an extension of a p-group by an Abelian group of
exponent q− 1. We see that every subgroup of the semigroup Tn(F) belongs to
the pseudovariety GpAbq−1 whence the semigroup itself lies in GpAbq−1.

Clearly, the idempotents of Tn(F) belong to the semigroup UTn(F) which lies
in the pseudovariety Gp since its maximal subgroups are p-groups, see Proposi-
tion 2.1. Therefore Tn(F) ∈ EGp.

Sufficiency. Take a finite semigroup S ∈ GpAbq−1 ∩ DS ∩ EGp. As discussed in
Section 2, we may assume that S ⊆ Mn(F) for some n. Now we aim to show
that S satisfies the conditions of Proposition 2.2.

The fact that every maximal subgroup of S is conjugate to a subgroup in
Tn(F) follows from Proposition 3.6. Since S ∈ DS, each regular D-class D
is a subsemigroup of S and it remains to check that the subsemigroup of D
generated by its idempotents consists of unipotent matrices. But, since S lies
in EGp, the idempotents of S (and, in particular, the idempotents of D) generate
a subsemigroup that belongs to Gp. By Lemma 2.5 this subsemigroup consists
of unipotent matrices.

12



Now it is easy to prove Proposition 1.1. We recall its assertion: the class
UTp of all finite semigroups unitriangularizable over a given finite field of char-
acteristic p coincides with Gp ∩ DS.

Necessity follows from Proposition 2.1.
Sufficiency follows from Corollary 2.4 and from the above proof of the ‘if’
part of Theorem 1.2. In order to see that all elements of the semigroup are
unipotent, one should take into account the pseudoidentity (1.3) defining the
pseudovariety Gp and use Lemma 2.5.

In order to obtain Corollary 1.3, one repeats the proof of Theorem 1.2 using
Corollary 3.7 instead of Proposition 3.6.

Next we prove Theorem 1.5 that claims that the pseudovariety Tqp can be
defined by the pseudoidentities (1.8)–(1.11). First we show that Tqp satisfies
these 4 pseudoidentities. To this aim it suffices to verify that they hold in the
semigroup Tn(F) for each n.

Clearly, Tn(F) satisfies the pseudoidentity (1.10) because this pseudoidentity
defines the pseudovariety DS and Tn(F) belongs to DS by Proposition 2.1.

Now we take two arbitrary matrices x, y ∈ Tn(F) and let ` = |Tn(F)|. The
ω-word (xy)ω interprets in Tn(F) as (xy)`!, and this is an idempotent in Tn(F).
Slightly abusing notation, we denote the idempotent by e. Then the matrices
ex and ye belong to the same regular D-class D of S: indeed, one readily
sees that the element ex is R-related to the idempotent e while the element
ye is L -related to the same idempotent. Since D is a subsemigroup, we have
exe, eye ∈ D. The idempotent e is the identity for both exe and eye whence
the two elements belong to the H -class of e which is a group. Subgroups of
Tn(F) belong to the pseudovariety GpAbq−1 by Theorem 1.2. By Lemma 3.1
this pseudovariety satisfies the pseudoidentities (1.4) and (1.5). Thus we have
that the equalities

(
(exe)q−1(eye)q−1

)p`! = e,

((exe)`!−1(eye)`!−1exeye
)p`! = e

hold in Tn(F) for an arbitrary choice of the elements x and y.
Further, by Proposition 2.1 the matrices ex and ye are of the same rank

j, say, and their main diagonals have exactly j non-zero entries and the same
pattern of zero entries. Since q is a power of p and q ≤ `, the number q − 1
divides p`! − 1 and the non-zero diagonal entries of the matrices (ex)p

`!−1 and
(ye)p

`!−1 are equal to 1. The product z of the two matrices belongs to D (since
D is a subsemigroup), and therefore, z is a group element (since D is a union
of its maximal subgroups). At the same time z is a unitriangular matrix. We
already have observed that subgroups of UTn(F) are p-groups whence z belongs
to a p-group of order ≤ ` and thus satisfies zp

`!+1 = z.
By our interpretation of ω-words, this means that Tn(F) satisfies (1.8), (1.9)

and (1.11).
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For the converse, we have to prove that if a finite semigroup S satisfies
the pseudoidentities (1.8)–(1.11), then S belongs to the pseudovariety Tqp, that
is, S is triangularizable over the field F. As in the proof of the ‘if’ part of
Theorem 1.2, we may assume that S ⊆ Mn(F) for some n. We then have to
show that S satisfies the conditions of Proposition 2.2.

First, let G be a subgroup of S and x, y ∈ G. Then the ω-word e = (xy)ω

interprets in S as the identity element of G whence exe and eye interpret
as respectively x and y. Therefore the fact that S satisfies the pseudoiden-
tities (1.8) and (1.9) implies that G satisfies the pseudoidentities (1.4) and
respectively (1.5). By Lemma 3.1 the latter pseudoidentities define the pseu-
dovariety GpAbq−1 and so G lies in this pseudovariety. By Proposition 3.6 G is
conjugate to a subgroup in Tn(F).

The fact that every regular D-class of S is a subsemigroup is ensured since
S satisfies the pseudoidentity (1.10).

To complete the proof we need to show that, for every regular D-class D of
S, the subsemigroup of D generated by its idempotents consists of unipotent
matrices.

Let ` = |S| and let g ∈ D be a unipotent matrix. Since D is a union of
groups, g belongs to a subgroup whence the cyclic subsemigroup generated by g
is in fact a subgroup. By Lemma 2.5 the cyclic subgroup is in fact a p-subgroup
whose identity element can be then written as gp

`!
. Hence the inverse ḡ of g in

the subgroup is equal to gp
`!−1. Therefore g = ḡp

`!−1. Now let h ∈ D be another
unipotent matrix and h̄ its inverse in the corresponding subgroup of D. It is
well-known that the pseudovariety of all finite simple semigroups is defined by
the pseudoidentity (xy)ωx = x. Hence, as a finite simple semigroup of order at
most `, D satisfies the identity (xy)`!x = x. Thus, (ḡh̄)`!ḡ = ḡ and h̄(ḡh̄)`! = h̄
whence (

(ḡh̄)`!ḡ
)p`!−1(

h̄(ḡh̄)`!
)p`!−1 = gh.

In view of the pseudoidentity (1.7) we get gh = (gh)p
`!+1 and by Lemma 2.5

gh is a unipotent matrix. Thus, we have proved that the product of any two
unipotent matrices from a regular D-class is again a unipotent matrix from the
same D-class.

Since it is clear that every idempotent matrix is unipotent, it follows from
the previous paragraph by a straightforward induction that the idempotent-
generated subsemigroup of D consists of unipotent matrices, and this completes
the proof of Theorem 1.5.

The proof of Corollary 1.6 is completely analogous to the above proof of
Theorem 1.5.

5 An example

In order to illustrate some subtleties, we analyze an easy but rather pe-
culiar example in which three 24-element simple semigroups sharing the same
structure group behave in a completely different manner with respect to trian-
gularizability over a finite field.
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Let Z6 = 〈c | c7 = c〉 stand for the cyclic group of order 6, and let e = c6 be
the identity of this group. Now consider the following three matrices over Z6:

P1 =
(
e e
e c

)
, P2 =

(
e e
e c2

)
, P3 =

(
e e
e c3

)
.

Example 5.1 Let M(Z6, Pi) (i = 1, 2, 3) be the Rees matrix semigroup over
Z6 with the sandwich matrix Pi.

(i) The semigroup M(Z6, P1) is triangularizable over no finite field.

(ii) The semigroup M(Z6, P2) is triangularizable over a finite field if and only
if the field has characteristic 3.

(iii) The semigroup M(Z6, P3) is triangularizable over a finite field if and only
if the field consists of 4m elements.

Proof. It is easy to calculate (and also follows from some general properties
of Rees matrix semigroups) that the maximal subgroups of the subsemigroup
generated by the idempotents of M(Z6, Pi) are isomorphic to the subgroup Hi

of Z6 generated by the element ci, i = 1, 2, 3. For i = 1, the group H1 = Z6

is not a p-group for any prime p. Therefore there is no prime p such that
M(Z6, P1) can belong to EGp and by Theorem 1.2 the semigroup cannot be
faithfully represented by triangular matrices over any finite field.

For i = 2, the group H2 has order 3 whence M(Z6, P2) belongs to EG3.
Since the semigroup obviously lies in DS and its maximal subgroup Z6 can be
treated as an extension of a 3-group by an Abelian group of exponent 2 = 3−1,
Theorem 1.2 applies with p = q = 3. We see that M(Z6, P2) is triangularizable
over the 3-element field and hence over any finite field of characteristic 3 (but
over no finite field of other characteristic).

If i = 3, then the group H3 has order 2. Thus, M(Z6, P3) belongs to
EG2 ∩ DS. This time we should treat Z6 as an extension of a 2-group by an
Abelian group of exponent 3 = 4 − 1. By Theorem 1.2 (with p = 2, q = 4)
the semigroup M(Z6, P3) is triangularizable over the 4-element field and hence
over any field with 4m elements. On the other hand, if a finite field F does
not contain the 4-element field, then either its characteristic is not 2 or its
multiplicative group has no elements of order 3, and therefore, M(Z6, P3) is not
triangularizable over F.

The following ‘egg-box picture’ demonstrates a concrete faithful representa-
tion of the semigroup M(Z6, P2) by 3× 3 triangular matrices of the 3-element
field Z/3Z (this representation is in fact of the minimum possible degree). We
have filled only in the upper triangle of the matrices; all blank positions are
assumed to be filled with zeros.
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A similar minimum representation by 3 × 3 triangular matrices of the 4-
element field can be constructed for the semigroup M(Z6, P3).
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