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1 Introduction

Let us first recall some basic facts and definitions from universal algebra
(see [Malcev], [Cohn]). A variety is a class of universal algebras given by
identities, i.e. formulas of the type

(∀x1, . . . , xn) u = v

where u = u(x1, . . . , xn) and v = v(x1, . . . , xn) are terms. For example,
the class of all abelian groups is a variety of groups given by the identity
(∀x, y) xy = yx.

A quasi-variety is a class of universal algebras given by quasi-identities,
i.e. formulas of the type

(∀x1, . . . , xn) u1 = v1& . . .&um = vm → u = v

where ui, vi, u, v are terms of variables x1, . . . , xn (see [Malcev] for details).
For example, the class of all torsion free groups is a quasi-variety of groups
given by the following infinite set of quasi-identities:

{xp = 1 → x = 1|p is a prime}.
∗Research of both authors were supported in part by NSF and the Center for Commu-
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Here and below we do not write quantifiers in the expressions of identities
and quasi-identities.

By theorems of Birkhoff and Malcev one can also define a variety as a class
closed under taking direct products, homomorphisms, and subalgebras, and
one can define a quasi-variety as a class closed under taking direct products,
subalgebras, and ultraproducts [Malcev]. Given any algebra A one can define
the variety varA (quasi-variety qvarA) generated by A as the minimal variety
(quasi-variety) containing A. If A is finite then qvarA consists just of all
subalgebras of direct products of A [Malcev]. To obtain the variety varA,
one has to take all homomorphic images of algebras from qvarA.

It is almost clear that if A is finite then both varA and qvarA are locally
finite, i.e. all finitely generated algebras from these classes are finite. The
converse statement is not true: Not every locally finite variety (quasi-variety)
is generated by a finite algebra.

One of the main problems in the theory of varieties and quasi-varieties is
the problem of describing all finite algebras A such that varA (resp., qvarA)
may be given by a finite number of identities (resp., quasi-identities). An
algebra A with varA given by a finite number of identities (quasi-identities)
is called finitely based (finitely Q-based).

Every finite group is finitely based. This is the well known and difficult
theorem of Oates and Powell [Neumann]. A finite group is finitely Q-based if
and only if its Sylow subgroups are abelian. This is a theorem of Ol’shanskii
[Olsh]. Thus in the case of groups complete information is known.

In the general case the situation is far more complicated. There is the
McKenzie type reduction theorem which reduces the question of the descrip-
tion of finitely based finite algebras to the case of groupoids (algebras with
one binary operation) [McKenzie]. In order to reduce the class of algebras
which need to be investigated, Mursky [Mursky] and Perkins [Perk2] intro-
duced the concept of an inherently non-finitely based algebras.

A finite universal algebra is called inherently non-finitely based if it cannot
belong to any locally finite variety given by a finite number of identities.

The importance of this concept is straightforward. If an algebra A is in-
herently non-finitely based then every algebra B having A as a subalgebra or
a homomorphic image is inherently non-finitely based also, and, in particular,
is not finitely based. Indeed, as was mentioned above, varB is locally finite,
and contains A. Thus it is enough to find one inherently non-finitely based
algebra to significantly reduce the class of algebras under investigation.
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There is a remarkable theorem of McNulty and Shallon [McNSh] which
shows that the associativity of the operation has much to do with the prop-
erty being finitely based”.

Theorem 1 (McNulty and Shallon). Let A be a groupoid with identity
and zero elements. Suppose that A does not satisfy any identity of the type
x = f(x) where f is a non-trivial term. Then A is either inherently non-
finitely based or a semigroup.

Then it turned out that there are plenty of inherently non-finitely based
finite semigroups, and the second author described them all [Sap3], [Sap4].
To present one of his descriptions, we need the definition of the so called
Zimin words. Zimin words are defined by induction:

Z1 ≡ x1, . . . , Zn+1 = Znxn+1Zn.

Theorem 2 (M.Sapir). A finite semigroup S is inherently non-finitely
based iff S does not satisfy a non-trivial identitity of the type Zn = W where
n = |S|2 and W is any word different from Zn.

Using the fact that varS is locally finite, it is easy to verify that Theo-
rem 2 gives an effective description of all finite inherently non-finitely based
semigroups.

These results (and many others which we can not mention here for obvious
reasons) show that the investigation of finite finitely based algebras, though
not complete is quite successful.

The concept of an inherently non-finitely Q-based finite algebra is similar
to that of an inherently non-finitely based finite algebra, and was explicitly
introduced by Pigozzi in 1988 [Pigozzi]:

A finite universal algebra is called inherently non-finitely Q-based if it
cannot belong to any locally finite quasi-variety given by a finite number of
quasi-identities.

But unlike the case of inherently non-finitely based algebras, there are
no known examples of finite inherently non-finitely Q-based algebra. And it
seems to be difficult to construct such an example. This is strange because
one can present very many examples of finite algebras with a slightly weaker
property:
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A finite algebra A is called basic[Sap1] if every finite algebra B containing
A is not finitely Q-based.

¿From the results of Ol’shanskii [Olsh], and Sapir [Sap1], it follows, that
every finite group and even every finite semigroup without two-sided ideals
is either basic or finitely Q-based. In particular, every finite non-abelian
nilpotent group is basic. From the results of [Sap2], it follows that many
other classes of semigroups also contain basic semigroups.

This makes the following theorem, which is the main result of this paper,
very surprising.

Theorem 3 Every finite semigroup belongs to a locally finite finitely based
quasi-variety, i.e. there is no inherently non-finitely Q-based finite semigroup.

The Pigozzi problem of whether there exists an inherently non-finitely
Q-based finite algebra remains open. As was mentioned in [Pigozzi], this
problem is closely connected with the following one: For every finite alge-
bra A, is there a finitely based quasi-variety between qvarA and varA (see
[Pigozzi], problem 9.11). It is clear that if this problem has a positive solu-
tion then there are no inherently non-finitely Q-based finite algebras. This
problem came from logic, and can be reformulated in the following way: Can
the set of tautologies of any finite matrix be deduced from finitely many
tautologies by using finitely many inference rules (all necessary definitions
and other interesting related problems may be found in [Rautenberg] and
[Pigozzi]).

Now it’s time to mention a connection between identities, quasi-identities
and symbolic dynamics. First of all we can reformulate the definitions of
inherently non-finitely based and inherently non-finitely Q-based algebras in
order to show that the problem of showing that an algebra is inherently non-
finitely (Q-)based is in fact a Burnside type problem about infinite algebras.

Lemma 1 A finite algebra A is inherently non-finitely (Q-)based iff for
every n there exists an infinite finitely generated algebra Bn such that all
n−generated subalgebras of Bn belong to (q)varA.

Proof. Let A be an inherently non-finitely (Q-)based algebra. Then the
(quasi-)variety defined by all (quasi-)identities of A containing no more than
n variables is finitely based (see [Malcev]). Hence this (quasi-)variety cannot
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be locally finite. Therefore it contains a finitely generated infinite algebra Bn

every n−generated subalgebra of this algebra satisfies all (quasi-)identities
of A, and so it belongs to (q)varA.

Conversely, suppose A is not inherently non-finitely (Q-)based, but such
algebras Bn exist. Since A is not inherently non-finitely (Q-)based, there
exists a finitely based locally finite (quasi-)variety V containing A. Let n be
the number of variables in (quasi)-identities which define V. Then all these
(quasi-)identities hold in the algebra Bn. Therefore Bn ∈ V. This contradicts
the facts that V is locally finite and Bn is infinite and finitely generated.

By this lemma, in order to prove that a semigroup is not inherently non-
finitely (Q-) based, we have to prove the finiteness of certain finitely generated
semigroups. As was shown in [Sap3] (see the remark before lemma 9 below)
there is a natural way to assign to each finitely generated semigroup S, a
symbolic dynamics Ω(S), i.e. a closed subset of the (Tikhonov) product space
XZ which is stable under the shift homeomorphism (this homeomorphism
shifts every sequence from XZ one position to the right). This symbolic
dynamics consists of all irreducible infinite (in both directions) words over
the set of generators of S. Many important properties of Ω(S) reflect useful
properties of S. In particular the fact that every symbolic dynamics contains
a uniformly recurrent trajectory, plays an important role in the proof of
finiteness of finitely generated semigroups (see [Sap3], [Sap5]).

Another important connection that we are going to present in this paper
exists between quasi-identities of semigroups and identities of inverse semi-
groups. Recall that an inverse semigroup is a semigroup S such that for
all x in S there is a unique y in S such that x = xyx and y = yxy. It is
known [Petr] that a semigroup is inverse if and only if it is isomorphic to
a semigroup of partial bijections on a set X, that is closed under inversion
of partial functions. Furthermore S is inverse if and only if for each x in S,
there is an element y in S such that x = xyx and ef = fe for all idempo-
tents e, f in S. It follows that (just as for groups), inverse semigroups can
be considered as a semigroup with additional unary involutary operation −1.
Inverse semigroups are a variety defined by the following laws: xx−1x = x,
xx−1yy−1 = yy−1xx−1 (see [CP], [Petr]). In particular the famous Perkins
semigroup [Perk1], the maltiplicative semigroup of the following matrices

{
(

0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
1 0
0 1

)
}, is an in-
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verse semigroup where −1 is the operation of transposition. It was proved
in [Sap3] that Perkins semigroup considered as a semigroup is inherently
non-finitely based . Recently the second author [Sap5] proved that Perkins
semigroup considered as an inverse semigroup is no longer inherently non-
finitely based . Moreover, the main theorem of [Sap5] proves that there are
no inherently non-finitely based finite inverse semigroup! It turned out that
the main structural property of inverse semigroups that is used in the proof of
this theorem is expressible by identities. In the case of arbitrary semigroups
an analogous property is only definable by quasi-identities. This observation
helped us to formulate and prove the main theorem of this paper.

2 Proof of Main Theorem

Let S be a semigroup. Recall that Green’s relation R [CP] is defined by sRt
iff sS1 = tS1. We define sR∗t if and only if sT 1 = tT 1 in some semigroup T
containing S. The following “internal” characterization of the relation R∗ is
known [Pas]. We include the proof here for the sake of completeness.

Lemma 2 Let S be a semigroup. Then sR∗t if and only if for all x, y ∈
S1,

xs = ys ⇐⇒ xt = yt.

Proof. Assume that sR∗t. Then sT 1 = tT 1 in some semigroup T con-
taining S. Thus there are elements u, v ∈ T 1 such that su = t and tv = s.
Let x, y ∈ S1. Then xs = ys implies that xt = xsu = ysu = yt. Similarly,
xt = yt implies that xs = ys.

Conversely, assume that xs = ys ⇐⇒ xt = yt. Consider the right regular
representation ρ : S → FR(S1) from S into the monoid FR(S1) of functions
acting on the right of (the set) S1. It is easy to check [CP] that for any
set X, two functions f, g ∈ FR(X), satisfy fFR(X) = gFR(X) if and only if
Ker(f) = Ker(g) where Ker(f) = {(x, y)|xf = yf}. Clearly the condition
xs = ys ⇐⇒ xt = yt is equivalent to the fact that Ker(ρ(s)) = Ker(ρ(t))
and thus (identifying S with ρ(S)) we have sRt in FR(S1) so that sR∗t.

It is easy to verify that R∗ is a left congruence and that R ⊆ R∗ on any
semigroup S. We will also be interested in the associated quasi-order ≤R∗ on
S defined by s ≤R∗ t iff s ≤R t in some T containing S, that is sT 1 ⊆ tT 1.
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Lemma 3 Let S be a semigroup. Then s ≤R∗ t if and only if

xt = yt ⇒ xs = ys.

Proof. Similar to Lemma 2 using the fact that f ≤R g in FR(X) if and
only if Ker(g) ⊆ Ker(f).

Recall that an element x of a semigroup S is regular if there is a y ∈ S
such that xyx = x. It is known that x is regular iff there is an idempotent
e = e2 ∈ S, such that eRx. In this case ex = x. S is a regular semigroup if
every element of S is regular.

Lemma 4 Let S be a semigroup and let x, y ∈ S. If x and y are regular
and x ≤R∗ y, then x ≤R y. In particular, if S is a regular semigroup, then
≤R∗=≤R and R∗ = R.

Proof. Suppose x ≤R∗ y. Let e = e2Rx and f = f 2Ry where e, f ∈ S.
Let T be such that x ≤R y in T . Then x = yt for some t ∈ T 1. Let s ∈ S
be such that xs = e. Then e = yts so that e ≤R∗ y. Since yRf , and
R ⊆ R∗ ⊆≤R∗ we have e ≤R∗ f . Thus e = ft′ for some t ∈ T 1 and thus
e = fe. Therefore x = ex = fex = yzex, where yz = e, z ∈ S1. Therefore,
x = y(zex) and since zex ∈ S1, we have x ≤R y.

Let A = {a1, a2, . . .} be a countable alphabet. Let u, v ∈ A+, the free
semigroup on A. We say that a semigroup S satisfies u ≤R∗ v (u ≤R v,
uR∗v, uRv) iff for all homomorphisms φ : A+ → S, uφ ≤R∗ vφ (uφ ≤R vφ,
uφR∗vφ, uφRvφ).

Lemma 5 Let S be a semigroup and let u, v ∈ A+. Let x and y be
variables in A, not occurring in either u or v. Then S satisfies u ≤R∗ v
if and only if S satisfies the quasi-identity xv = yv ⇒ xu = yu.

The proof of lemma 5 is clear given lemma 3.

Corollary 1 Let u, v ∈ A+. Then Q(u, v) = {S|S satisfies u ≤R∗ v} is a
quasi-variety of semigroups.

7



Notice that in general, the class {S|S satisfies u ≤R v} is not a quasi-
variety. For example, the group of integers Z satisfies x ≤R y, but the
semigroup of natural numbers N < Z does not satisfy this condition. We
note however that for inverse semigroups in signature < 2, 1 > we have a
stronger result.

Lemma 6 Let u and v be in the free inverse semigroup on A, FIS(A).
Then V (u, v) ={S|S is an inverse semigroup satisfying u ≤R∗ v} =
{S|S is an inverse semigroup satisfying u ≤R v} =
{S|S satisfies the identity uu−1vv−1 = uu−1}.

Proof. The first equality follows from lemma 4. The second equality follows
from the known fact that u ≤R v in an inverse semigroup iff uu−1vv−1 =
uu−1.

Corollary 2 V (u, v) defined above is a variety of inverse semigroups.

Thus the condition “S satisfies u ≤R∗ v” can be defined by an identity
in the variety of inverse semigroups, but only a quasi-identity in the variety
of semigroups. This is the main difference between the main result of this
paper and that of [Sap5].

We say that a semigroup is of finite height h, if the longest chain s1 ≤R
s2 ≤R . . . ≤R sk has length h. Recall the definitions of the Zimin words
Z1 = x1, Zn+1 = Znxn+1Zn where xn+1 is a new variable. We define Z ′

n to
be the prefix of Zn consisting of all but the last letter. (It is easy to see that
the last letter of Zn is x1). Thus if we let Z ′

1 = 1, the empty word, we have
Z ′

n+1 = Znxn+1Z
′
n for all n ≥ 1.

Lemma 7 Every semigroup of finite height h satisfies Z ′
nRZn with n =

h + 1.

Proof. Since Zn = Z ′
nx1, it is clear that every semigroup satisfies Zn ≤R

Z ′
n. Now assume S has height h. Let φ : {x1, . . . , xn}+ → S. We must show

that ZnφRZ ′
nφ in S where n = h+1. First note that it suffices to prove that

ZiφRZ ′
iφ for some i ≤ n. This is because an easy induction shows that if i ≤

n, then Zn = YiZi and Z ′
n = YiZ

′
i where Yi = Zixi+1Zixi+2 . . . Zixn . . . Zixi+1.

Therefore ZiφRZ ′
iφ ⇒ Znφ = (YiZi)φR(YiZ

′
i)φRZ ′

nφ since R is a left con-
gruence.
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Now Z ′
2φ ≥R Z2φ ≥R Z ′

3φ . . . ≥R Z ′
nφ ≥R Znφ is an R-chain in S. Since

n > h, one of the inequalities Z ′
iφ ≥R Ziφ cannot be strict and thus Z ′

iφRZiφ
as desired.

Corollary 3 Let S be a semigroup of height h. Let x, y be variables not
among {x1, . . . , xn} where n = h + 1. Then S satisfies the implication

xZn = yZn ⇒ xZ ′
n = yZ ′

n.

Proof. By Lemma 7 S satisfies ZnRZ ′
n so S satisfies Z ′

n ≤R Zn and thus
Z ′

n ≤R∗ Zn. The result follows from lemma 5.
Remarks. 1) Of course, the condition ZnRZ ′

n is stronger than Z ′
n ≤R∗

Zn, but only this last condition can be defined by quasi-identities.
2) Let Qn = {S|S satisfies xZn = yZn ⇒ xZ ′

n = yZ ′
n}. Then Qn is a

quasi-variety. Notice that Q1 = {S|S is right cancellative} so more generally
Qn consists of semigroups in which every element x1 cancels in the context
of left factors of the form (xZ ′

n, yZ ′
n).

It is known and easy to prove that a right cancellative semigroup S (i.e.
a member of Q1) is locally finite if and only if S is periodic and all subgroups
of S are locally finite. The following non-trivial Lemma is an extension of
this result to Qn and is a key to the proof of the Main Theorem.

Lemma 8 Let n ≥ 1 and let S ∈ Qn. Then S is locally finite if and only
if S is periodic and all subgroups of S are locally finite.

Proof. Clearly if S is locally finite, then S is periodic and all subgroups
of S are locally finite. Assume then that S is a periodic semigroup in Qn

and that all subgroups of S are locally finite.
In the proof of this lemma we will crucially use so called uniformly recur-

rent words. Let us recall some definitions and results.
Let X be a finite alphabet, XZ be the set of all sequences infinite in both

directions. We simply refer to these as infinite words. An infinite word W is
called uniformly recurrent if for every set of (finite) subwords w1, . . . wk of W
there exists a number N such that every subword of W length N contains
all wi, i = 1, . . . , k. It is an easy corollary from [Fur] (see [Sap3] for details)
that for every infinite word W there exists a uniformly recurrent word W ′

such that every subword of W ′ is a subword of W .
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The following argument first appeared in [Sap3] makes uniformly recur-
rent words a very useful tool in dealing with Burnside type problems.

Let S =< X > be an infinite finitely generated semigroup (the same
argument may be applied for any universal algebra). Then there is an infinite
set T of words over X such that every element of S represented by a word
of T cannot be represented by words over X of less length. Such words will
be called irreducible. It is clear that every subword of an irreducible words is
also irreducible. Now, in every word of T , mark a letter which is closest to the
center of these word. There must be an infinite subset T1 of T which have the
same marked letters, an infinite subset T2 of T1 of words which have the same
subwords of length 2 containing the marked letters, . . . , an infinite subset Tn

of Tn−1 of words which have the same subwords of length n containing the
marked letters, and so on. Therefore there is an infinite word W such that
every subword of W is a subword of a word from T . Thus every subword of
W is irreducible. Infinite words with this property will be called irreducible
too. As was mentioned above there exists an uniformly recurrent irreducible
word W ′. Therefore we have proved the following result (see [Sap3]).

Lemma 9 For every infinite finitely generated semigroup S =< X >
there exists a uniformly recurrent irreducible word over X.

The proof of the following lemma is (a small) part of the proof of propo-
sition 2.1 in [Sap3].

Lemma 10 Let U be a uniformly recurrent word, U1aU2 be an occurrence
of letter a in U where U1 is a word infinite to the left, U2 is a word infinite
to the right. Then for every natural number n there exists an endomorphism
φ of the free semigroup such that U3φn(Zn) = U1a for some word U3 infinite
to the left, φn(x1) = a, and |φn(Zn)| ≤ A(n, U) where the number A(n, U)
depends only on U and n.

Proof. For n = 1 the statement is trivial. Suppose that we have
found A(n, U) and φn. Let N be big enough that every subword of U of
length N contains any subword of U length A(n, U). Then we can repre-
sent U3φn(Zn) as U4φn(Zn)vφn(Zn) for some word U4, infinite to the left,
and finite nonempty word v, |v| ≤ N . Let φn+1(xi) = φn(xi) for i ≤ n
and φn+1(xn+1) = v. Then U1a = U4φn+1(Zn+1) = U4φn(Zn)vφn(Zn) and
φn+1(x1) = a. Therefore we can let A(n+1, U) = N +2A(n, U). The lemma
is proved.
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Lemma 11 Let U be a uniformly recurrent word. Let u and v be consec-
utive subwords of U with |u| ≥ A(n, U). Then Qn satisfies uvR∗u that is Qn

satisfies the quasi-identity xuv = yuv ⇒ xu = yu.

Proof. Let p be the longest prefix of v such that the implication xup =
yup ⇒ xu = yu follows from the defining implication of Qn. If p = v we are
done. Otherwise v = paq for some a ∈ A, q ∈ A∗. Since upa is a subword of U
and |upa| ≥ A(n, U), we can write upa = u1φ(Zn) for some homomorphism
φ : {x1, . . . , xn}+ → A+ where φ(x1) = a, by Lemma 10. It follows that
up = u1φ(Z ′

n). Therefore, xupa = yupa ⇒ xu1φ(Zn) = yu1φ(Zn) ⇒ (by
definition of Qn) xu1φ(Z ′

n) = yu1φ(Z ′
n) ⇒ xup = yup ⇒ xu = yu. This

contradicts the choice of p and the Lemma is proved.
We can now complete the proof of Lemma 7. Suppose that there exists

a periodic infinite finitely generated semigroup S =< A > which belongs to
Qn. Then, by lemma 9, there exists a uniformly recurrent irreducible word
U over A.

Let u be a subword of U of length A(n, U). Since U is uniformly recurrent
we can write U in the form U = . . . uv1uv2uv3 . . . where for all i |uvi| ≤ B
for some constant B. By lemma 11, S satisfies uR∗uviu for all i. Therefore,
u = uviuti for some ti ∈ Ti and some semigroup Ti containing S. It follows
that u = (uvi)

nutni for all n > 0. Since uvi ∈ S and S is periodic, ei = (uvi)
n

is an idempotent for some n > 0. It follows that u = eiu. That is u = (uvi)
nu

so that (uvi)
n+1 = uvi. It follows that uvi is in a subgroup of S and that

uviRu in S.
We now have for any i, j ∈ Z the idempotents ei and ej generate the same

principal right ideal. It is easy to check that this is equivalent to the fact
that eiej = ej and ejei = ei. Let Gi be the maximal subgroup of S whose
idempotent is ei. It follows easily that right multiplication by ei induces an
isomorphism from Gj to Gi. Thus for all integers i and all k ≥ 0, all products
(uvi−k) . . . (uvi) are in the same subgroup Gi of S. Each such product can
be rewritten as: [(uvi−k)ei] . . . [(uvi−1)ei](uvi) where e = (uvi)

n = e2 is the
identity element of Gi. All products above are in the subgroup Hi of Gi

generated by Xi = {(uvi), (uvi−j)(uvi)
n|j ≥ 0}. But each element of Xi has

length bounded by (n + 1)B and so Xi is finite. Therefore Hi is finite and
it follows that there are j �= k such that (uvi−j) . . . (uvi) = (uvi−k) . . . (uvi).
This contradicts the fact that U is irreducible and completes the proof.

We have the following interesting corollary of the above proof.
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Lemma 12 Let φ : X+ → S be a surjective homomorphism and let S be
periodic and in Qn. Let U be a uniformly recurrent word over X. Then there
is a natural number B such that if u and v are subwords of U of length ≥ B,
then uφ and vφ generate the same two sided ideal. Furthermore, if u is a
subword of U of length ≥ B, then uφ is regular.

Proof. First note that since U is uniformly recurrent , U contains only
a finite number of letters. Let A(n, U) and B be the constants constructed
in the above proof. We have seen that if u is a subword of U , |u| ≥ B,
then uφ is a regular element of S. Let v be any subword of U . Since U is
uniformly recurrent , uxvyu is a subword of U for some x, y ∈ X+. The
proof above implies that uxvyRu in S, that is (uxvyz)φ = uφ for some word
z ∈ X+. Therefore uφ is in the two sided ideal generated by vφ. We have
shown that an arbitrary subword of U of length ≥ B is in the two sided ideal
generated by any subword of U . Therefore any two subwords of U of length
≥ B generate the same two sided ideal.

In the language of the Green relations [CP], the above corollary shows that
long enough subwords of a uniformly recurrent word are J-equivalent when
mapped into a member of Qn. This corollary can be thought of as a proof
that members of Qn satisfy a ”uniform descending chain condition”. That
is, uniformly recurrent words only represent elements from a finite number of
distinct principal two sided ideals. See [Sap5] for an example of a semigroup
in Q3 that does not satisfy the descending chain condition on principal two
sided ideals.

We now complete the proof of the Main Theorem. Let S be a finite
semigroup of height h, and let qvar(S) be the quasi-variety generated by S.
Then S ∈ Qn for any n > h. It is easy to see that the intersection of qvar(S)
and the class of all groups is the quasi-variety generated by all subgroups
of S, or equivalently, the quasi-variety generated by G the direct product of
all subgroups of S. This quasi-variety is contained in var(G), the variety
generated by G. Now var(G) is defined by one identity v(x1, . . . , xm) = 1
by the theorem of Oates-Powell. We may suppose that m > h. Let F =
Fm(qvar(S)) be the free object in the quasi-variety generated by S on m
generators. It is well known that F is a finite semigroup so has a minimal
idempotent e. Let u be a word that represents e in F . Then S satisfies the
identity:

u = u2. (1)
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For every element x of F , exe belongs to the maximal subgroup of F that
has e as identity element. Therefore, S satisfies the identity

v(ux1u, . . . , uxnu) = u (2)

Also S satisfies xp = xp+q for some p ≥ 0, q > 0.
We have seen that S is in the quasi-variety Q defined by the implication

xZn = yZn ⇒ xZ ′
n = yZ ′

n, identity xp = xp+q, and identities (1), (2). Now
any group H satisfying (1) and (2) satisfies v = 1. Thus H ∈ var(G) and
therefore H is locally finite. Therefore Q is locally finite by Lemma 8 and
we are done.
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