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Abstract. It is known that the word problem for one-relator groups and for one-relator
monoids of the form Mon〈A ‖ w = 1〉 is decidable. However, the question of decidability of
the word problem for general one-relation monoids of the form M = Mon〈A ‖ u = v〉 where
u and v are arbitrary (positive) words in A remains open. The present paper is concerned
with one-relator inverse monoids with a presentation of the form M = Inv〈A ‖ w = 1〉 where
w is some word in A ∪ A−1. We show that a positive solution to the word problem for
such monoids for all reduced words w would imply a positive solution to the word problem
for all one-relation monoids. We prove a conjecture of Margolis, Meakin and Stephen by
showing that every inverse monoid of the form M = Inv〈A ‖ w = 1〉, where w is cyclically
reduced, must be E-unitary. As a consequence the word problem for such an inverse monoid
is reduced to the membership problem for the submonoid of the corresponding one-relator
group G = Gp〈A ‖ w = 1〉 generated by the prefixes of the cyclically reduced word w. This
enables us to solve the word problem for inverse monoids of this type in certain cases.

1. Introduction: Presentations of Groups and Semigroups.

We shall be concerned in this paper with presentations of groups, monoids and inverse
monoids. For an alphabet (i.e. non-empty set) A we denote by A∗ the free monoid on A
and by A the (group) alphabet A = A∪A−1, where A−1 is a set disjoint from A and in one-
one correspondence with A in the usual way. The group presented by a set A of generators
and relations of the form wi = 1, i ∈ I for some words wi ∈ A∗ will be denoted by
Gp〈A ‖ wi = 1, i ∈ I〉. It is the quotient of the free group FG(A) by the normal subgroup
generated by {wi : i ∈ I}. The monoid presented by a set A of generators and relations of
the form ui = vi, i ∈ I for some words ui, vi ∈ A∗ is denoted by Mon〈A ‖ ui = vi, i ∈ I〉 :
it is the quotient of the free monoid A∗ by the congruence generated by the corresponding
relations. We refer the reader to the books by Lyndon and Schupp [LS] and Lallement
[La] for standard ideas and terminology concerning presentations of groups and semigroups
(monoids) respectively.
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The study of one-relator groups is by now a classical part of combinatorial group theory.
We recall here that important early work on one-relator groups was done by Magnus [Ma]
in the 1930’s (see also [LS]). Magnus showed decidability of the word problem for a one-
relator group G = Gp〈A ‖ w = 1〉, where w is a cyclically reduced word in A∗, and also
proved the “Freiheitssatz”, namely that any non-trivial relator of G must involve each
letter in the word w.

The situation for one-relation monoids is considerably more complex. By using Magnus’
results, Adjan [Ad] studied the word problem for one-relation monoids, i.e. monoids with
a presentation of the form M = Mon〈A ‖ u = v〉, where u, v are words in A∗. He showed
that the word problem for such a monoid is decidable if one of the words is empty or if both
words are non-empty with different initial letters and different terminal letters. Alternative
proofs of some of Adjan’s results may be found in the papers of Lallement [La2] and Zhang
[Zh]. There is a substantial literature devoted to the study of the word and divisibility
problems for one-relation monoids. We mention here a result of Adjan and Oganessian
[AO] who reduced the word problem for such a monoid to the case where u and v have
different initial letters (or dually the case where u and v have different terminal letters). In
other words, the problem is reduced to a consideration of one-relator monoids of the form
Mon〈A ‖ asb = atc〉 where a, b, c ∈ A, b 6= c and s, t ∈ A∗. Adjan [Ad] also showed that
if u and v have different initial (resp. terminal) letters then the corresponding monoid is
left cancellative (resp. right cancellative). In general, the word problem for one-relation
monoids remains unsolved, as far as we are aware. For some recent results along these
lines and for some additional references to the literature, we refer to the papers by Guba
[Gu] and Watier [Wa].

We will be concerned in this paper with one-relator inverse monoids, more precisely
with inverse monoids with a presentation of the form M = Inv〈A ‖ w = 1〉, where w is
some (not necessarily reduced) word in A∗. We discuss some preliminary results about
inverse monoids in the next section and show that the word problem for one-relator inverse
monoids of the type mentioned above is at least as complex as the word problem for one-
relation monoids, even in the case where w is a reduced word. We then specialize to
the case where w is a cyclically reduced word and solve a conjecture of Margolis, Meakin
and Stephen [MMS] by showing that such monoids must be E-unitary, thus reducing the
word problem for such monoids to the membership problem for the submonoid of the
corresponding one-relator group generated by the prefixes of the word w. In the final
section of the paper we show how this may be used to solve the word problem for the
one-relator inverse monoid in certain cases.

2. Inverse monoids.

An inverse monoid is a monoid M with the property that for each element x ∈ M there
exists a unique element denoted by x−1 ∈ M such that

x = xx−1x and x−1 = x−1xx−1.

It is an easy consequence of the definition that idempotents commute in any inverse monoid
M and hence that the set of idempotents of M forms a (lower) semilattice with respect to
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the natural partial order

e ≤ f if and only if ef = fe = e.

This may be extended to a natural partial order on M by defining

x ≤ y for x, y ∈ M if and only if there is some idempotent e ∈ M such that x = ey.

We shall denote the semilattice of idempotents of an inverse monoid M by E(M) through-
out this paper.

Inverse monoids arise naturally as monoids of partial one-one maps: in fact the first
theorem in the subject (the Vagner-Preston Theorem) states that every inverse monoid
may be faithfully represented as a monoid of partial one-one maps of a suitable set. We
refer the reader to the book by Petrich [Pe] for this theorem and basic notation and
results about inverse monoids. Such monoids are frequently referred to as “pseudogroups
of transformations (or local diffeomorphisms)” in topology or differential geometry, where
they play a prominent role in the theory.

We recall here that inverse monoids form a variety of algebras (in the sense of universal
algebra) and hence that free inverse monoids exist. We denote the free inverse monoid
on a set A by FIM(A). This monoid may be viewed as a monoid of finite birooted trees
whose positively oriented edges are labeled by elements of the set A, in such a way that
no two edges with the same initial or terminal vertex have the same label. Such trees are
referred to as Munn trees in the literature (see [Pe]). The Munn tree MT (u) associated
with a word u ∈ A∗ may be identified with the finite subtree of the Cayley tree of the free
group FG(A) obtained by traveling along the path in this tree labeled by u, starting at 1
and ending at the reduced form r(u) of u. The initial (resp. terminal) vertex of MT (u) is
1 (resp. r(u)). A basic theorem of Munn [Mu], [Pe] asserts that two words u and v in A∗
are equal in FIM(A) if and only if they have the same Munn tree (with the same initial
and terminal vertices). This provides a solution to the word problem for the free inverse
monoid FIM(A).

The inverse monoid presented by the set A of generators and relations of the form
ui = vi, i ∈ I for some words ui, vi ∈ A∗ is denoted by Inv〈A ‖ ui = vi, i ∈ I〉. This is the
quotient of the free inverse monoid FIM(A) by the corresponding congruence generated
by the set of relations. Graphical and automata-theoretic methods, originally developed
by Stephen [St1] have proved very useful in studying presentations of inverse monoids. We
very briefly review some of these ideas here.

Let M = Inv〈A ‖ ui = vi, i ∈ I〉 and identify M with the quotient FIM(A)/τ of the
free inverse monoid FIM(A) by the corresponding congruence τ . For each word u ∈ A∗
we define the Schützenberger graph SΓ(u) of u (relative to the presentation) as follows.
The vertices of SΓ(u) are the elements vτ of M that are related via Green’s R-relation
to uτ in M (i.e. (uu−1)τ = (vv−1)τ in M). For each a ∈ A, there is an edge labeled by
a from vτ to (va)τ in SΓ(u) if vτ, (va)τ are R-related to u in M . We view SΓ(u) as a
birooted graph with initial root (uu−1)τ and terminal root uτ . ¿From this point of view,
SΓ(u) may be regarded as an automaton with (uu−1)τ as initial state and uτ as terminal
state. The language of this automaton is defined to be

L(u) = {v ∈ A∗ ‖ v labels a path in SΓ(u) from (uu−1)τ to uτ}.
3



Note that if M is just the free inverse monoid M = FIM(A) = Inv〈A ‖ ∅〉, then the
Schützenberger graph of a word u ∈ A∗ is identified with the Munn tree MT (u) of u.
The prominent role which these graphs (automata) play in the theory is illustrated in the
following theorem due to Stephen [St1].

Theorem 2.1. Let M = Inv〈A ‖ ui = vi, i ∈ I〉 = FIM(A)/τ and let u, v ∈ A∗. Then
(a) L(u) = {s ∈ (A)∗ : sτ ≥ uτ in the natural partial order on M}.
(b) uτ = vτ in M if and only if L(u) = L(v).
(c) uτ = vτ in M if and only if SΓ(u) and SΓ(v) are isomorphic as birooted labeled

graphs.

Thus the word problem for an inverse monoid presentation is decidable if and only if the
corresponding Schützenberger automata are effectively constructible. We also make note
of the fact that it follows from Part (a) of Theorem 2.1 that if w is a word accepted by the
Schützenberger automaton of the identity element 1 in an inverse monoid presentation,
then wτ ≥ 1τ and hence wτ = 1τ in the inverse monoid. We will use this remark explicitly
in the proof of Lemma 4.9 below.

In his paper [St1], Stephen described an iterative procedure for constructing these au-
tomata. This procedure is analogous to the classical Todd-Coxeter coset enumeration
procedure for constructing the Cayley graph of a group presentation and reduces to this
if the inverse monoid M happens to be a group. Start with the “linear” automaton of
the word u = a1a2 . . . an - i.e. the automaton whose underlying graph is just a linear
sequence of segments labeled by the ai so that the entire graph is labeled from the initial
vertex to the terminal vertex by the word u. Build a sequence of intermediate automata
each obtained from the preceding one by application of either an “expansion” or an “edge
folding”. An expansion is constructed from an automaton X by adding to this automaton
a path labeled by the word t from a vertex α to a vertex β if there is a path in X from α
to β labeled by a word s, where s = t is one of the defining relations in the monoid M . An
edge folding is obtained by identifying two edges with the same label and the same initial
or terminal vertex.

Stephen shows that these operations are confluent and that the (unique) automaton
obtained from the linear automaton of u by closing with respect to these operations is
the Schützenberger automaton of u. We refer to [St1] for details and examples of this
construction. Each intermediate automaton obtained from the linear automaton of u by
a sequence of expansions and edge foldings is called an approximate automaton of the
Schützenberger automaton of u.

We now show that the word problem for one-relator inverse monoids is at least as
complex as the word problem for one-relator monoids.

Theorem 2.2. If the word problem is decidable for all inverse monoids of the form
Inv〈A ‖ w = 1〉, where w is some reduced word in A∗, then the word problem is also
decidable for every one-relator monoid.

Proof Assume that the word problem is decidable for all one-relator inverse monoids
corresponding to any reduced word w: by the results of Adjan and Oganessian [AO]
mentioned above, it suffices to show that the word problem is decidable for every one-
relation monoid with a presentation of the form M = Mon〈A : aub = avc〉 where a, b, c ∈
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A, b 6= c and u, v ∈ A∗. Consider such a monoid M and the associated inverse monoid
I = Inv〈A ‖ aubc−1v−1a−1 = 1〉. We claim that M is embeddable in I.

To see this, note first that by the results of Adjan [Ad], M is right cancellative, so M
has no idempotent other than 1. It follows that M embeds as the monoid of right units
into its inverse hull, which is the inverse monoid generated by the image of M under its
right regular representation into the inverse semigroup of all partial one-one maps of M
(see Clifford and Preston [CP], Theorem 1.22). Denote the inverse hull of M by IH(M).
Now IH(M) satisfies the relation aubc−1v−1a−1 = 1 since aub and avc are right units in
IH(M). Thus there are natural morphisms ν from A∗ onto I and µ from I onto IH(M).
The canonical map from A∗ onto M ⊆ IH(M) factors as a product θφ where θ maps A∗

onto a submonoid M ′ ⊆ I and φ maps M ′ onto M . Now M ′ also satisfies aub = avc and φ
maps M ′ onto M . It follows from the universal property of M that φ is an isomorphism.

This shows that M embeds into I and since I has solvable word problem by assumption,
so does M , thus completing the proof of the theorem. ¤

Note that the word aubc−1v−1a−1 is reduced (since b 6= c) but not cyclically reduced,
i.e. the last letter is the inverse of the first letter. So the situation for one-relator inverse
monoids with a presentation of the form M = Inv〈A ‖ w = 1〉 where w is a cyclically
reduced word is conceivably more manageable than the general case. For this reason we
restrict attention to presentations of this type in the remainder of the paper. We are able
to solve the word problem for such presentations in certain cases and we are also able to
study an important structural property of such monoids.

3. E-unitary Inverse Monoids.

We recall that an inverse monoid M = Inv〈A ‖ ui = vi, i ∈ I〉 is called E-unitary if the
natural morphism µ from M onto its maximal group image G = Gp〈A ‖ ui = vi, i ∈ I〉
is idempotent-pure, that is the inverse image of the identity of G under the morphism µ
consists precisely of the semilattice E(M) of idempotents of M . Equivalently, M is E-
unitary if x = e for x, e ∈ M implies that x is an idempotent of M if e is an idempotent
of M .

There are many alternative ways of defining this concept, which is of major importance
in inverse semigroup theory. We briefly mention its connection with the classical extension
problem for partial one-one maps. Given a semigroup of partial one-one maps (usually a
pseudogroup of transformations of some topological space or local diffeomorphisms of some
manifold) one is interested in knowing when the partial one-one maps may be extended
to the action of some group on a larger space (manifold). The analogue of this in inverse
semigroup theory is the concept of an E-unitary cover over a group. If M is an inverse
monoid of partial one-one transformations on a set X, we say that M has an E-unitary
cover over a group G if there is some set Y such that X ⊆ Y and each partial one-
one map in M is the restriction to some subset of X of a permutation in a group G of
permutations of Y . This is equivalent to the existence of an inverse semigroup T and
morphisms φ : T → S and ψ : T → G such that T is E-unitary, ψ is idempotent-pure and
φ is idempotent-separating (i.e. no two idempotents of T are identified under φ).
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¿From the point of view of the Schützenberger graphs of M , an early observation of
Meakin (see [St1]) is that M is E-unitary if and only if each Schützenberger graph of M
embeds (in the natural way) into the associated Cayley graph of G. This enables us to
replace the iterative procedure for approximating the Schützenberger graphs of M outlined
above by an iterative procedure for building associated subgraphs of the Cayley graph of
G. In certain situations, if the Cayley graph of the group G is sufficiently well understood,
this may be used to solve the word problem for the inverse monoid M (see for example
[MM1] for a non-trivial application of these ideas).

In general, inverse monoids with presentations of the form M = Inv〈A ‖ wi = 1, i ∈ I〉,
where the wi are cyclically reduced, need not be E-unitary, as the following example shows.

Example Let M = Inv〈a, b, c, d ‖ abc = 1, adc = 1〉. We claim that M is not E-unitary.
To see this note first that bd−1 = a−1c−1ca = 1 in the group G = Gp〈a, b, c, d ‖ abc =
1, adc = 1〉, so if M is E-unitary bd−1 must be an idempotent of M . We easily see
that this is not the case by constructing the Schützenberger graph of bd−1 relative to the
presentation defining M .

In order to construct this graph, we proceed by the iterative method outlined above.
Construct first the linear automaton of the word bd−1 : this automaton has three vertices,
the initial vertex (which is the initial vertex of an edge labeled by b), the “middle” vertex
(which is the terminal vertex of the edge labeled by b and the initial vertex of the edge
labeled by d−1) and the terminal vertex (which is the terminal vertex of the edge labeled
by d−1). We may expand the graph at each of these vertices by adding loops labeled by the
relators abc and adc. On each such loop the edges labeled by a fold together and the edges
labeled by c fold together and the edges labeled by b and d become coterminal, but no
edge folds onto the edges of the original linear automaton. The resulting graph obtained
after these expansions and edge foldings has nine vertices (the three original vertices on
the linear automaton and two more corresponding to each of the three expansions that
were performed at these vertices). One may now repeat the process, expanding the new
graph by adding loops corresponding to the relators at each of the six new vertices that
were added to the original linear automaton and performing all possible edge foldings as
above. The new generation of edges labeled by the letters b and d are not folded onto any
previously constructed edges with these labels. Continuing by induction, one sees that the
original edges of the linear automaton labeled by b and d are never identified with any
new edges with these labels. Hence, in the Schützenberger automaton of the word bd−1,
the initial vertex and the terminal vertex remain distinct. This shows that bd−1 is not
an idempotent in M and hence that M is not E-unitary. A sketch of the Schützenberger
automaton of bd−1 is provided in Figure 1. ¤

Figure 1

The situation for one-relator inverse monoids corresponding to a cyclically reduced
relator w is somewhat nicer however. In [MMS] the authors conjectured that an inverse
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monoid of the form M = Inv〈A ‖ w = 1〉, where w is a reduced word, is E-unitary if and
only if w is cyclically reduced. In one direction, this turns out to be false: Silva [Si] has
given an example of an inverse monoid M presented by one reduced (but not cyclically
reduced) relator w such that M is in fact a group, and hence is E-unitary of course.
However, the main result of the present paper (Theorem 4.1) shows that this conjecture
is true in the opposite direction, that is, a one-relator inverse monoid corresponding to a
cyclically reduced relator is in fact E-unitary.

We shall prove this result in the next section. In order to provide some motivation
for considering this question, we show now as a corollary that the word problem for such
an inverse monoid M is reduced to the membership problem for the submonoid of the
corresponding one-relator group G = Gp〈A ‖ w = 1〉 generated by the prefixes (initial
segments) of the relator w. This will be exploited in Section 5 to show decidability of the
word problem in certain special cases.

Let w be a cyclically reduced word over the alphabet A. Let Pre(w) = {v ∈ A∗ ‖ w ≡ vt
for some t ∈ A+} be the set of proper prefixes of w, including the empty word. (Here
we denote equality in the free monoid A∗ by ≡ in order to distinguish it from equality
in other monoids or groups under consideration). Define Pw to be the submonoid of
G = Gp〈A ‖ w = 1〉 generated by the image of Pre(w) under the natural morphism from
A∗ to G. We call Pw the prefix monoid of G relative to w. We say that the membership
problem for Pw is decidable if there is an algorithm which on input a word v ∈ A∗ outputs
“yes” if the image of v is a member of Pw and “no” otherwise. We can now state the main
theorem of this section.

Theorem 3.1. If w is a cyclically reduced word then the word problem for the inverse
E-unitary monoid M = Inv〈A ‖ w = 1〉 is decidable if the membership problem for Pw is
decidable.

Before proving Theorem 3.1, we need some preliminary remarks and examples. Recall
that a cyclic conjugate of a cyclically reduced word w ∈ A∗ is a word in A∗ of the form
w′ ≡ vu where w factors in A∗ as w ≡ uv. We first note that the submonoid Pw depends
not only on the group G but on the word w as well. That is, it is possible to replace
w by any cyclic conjugate v of w without changing the normal closure of w and thus
G = Gp〈A ‖ w = 1〉 is equal (not just isomorphic to) H = Gp〈A ‖ v = 1〉. However the
monoid M = Inv〈A ‖ w = 1〉 may be very different than N = Inv〈A ‖ v = 1〉 and the
submonoid Pw may be different from Pv.

Example Let A = {a, b} and let w = aba. It is not difficult to see that the assignment
a 7→ 1, b 7→ −2 establishes an isomorphism between G = Gp〈{a, b} ‖ aba = 1〉 and the
integers Z. It follows that Paba is equal to Z, but that Pbaa is equal to the submonoid of
Z consisting of the non-positive integers. In fact, the monoid M = Inv〈{a, b} ‖ aba = 1〉
is also isomorphic to the integers, since a is both a left and right divisor of 1, and thus a
member of the group of units of M and thus so is b = a−2. On the other hand, it is not
difficult to prove that the monoid N = Inv〈{a, b} ‖ baa = 1〉 is isomorphic to the bicyclic
monoid. ¤

The proof of Theorem 3.1 will depend on some results of Stephen [St2]. It is well known
that the collection of E-unitary inverse monoids forms a quasi-variety of inverse monoids,
since it is defined by the implication (e2 = e ∧ em = e) ⇒ m = m2. As for all quasi-
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varieties, it follows that any inverse monoid M has a maximal E-unitary image defined as
the quotient of M by the intersection of all congruences whose quotients are E-unitary. In
particular, given any binary relation T on the free inverse monoid FIM(A) we define the
E-unitary inverse monoid G(M) presented by 〈A ‖ T 〉 to be the maximal E-unitary image
of M = Inv〈A ‖ T 〉. Of course M = G(M) if and only if M is E-unitary.

In [St2], Stephen implicitly considers the structure of the E-unitary monoid G(M) of a
monoid presented by relations all of which have the form w = 1. If T = {wi = 1 ‖ i ∈ I}
is a collection of such relations, (where the relators wi are not necessarily reduced words),
let PT be the submonoid of G = Gp〈A ‖ T 〉 generated by the images of all Pre(wi) for
i ∈ I. That is, PT is the submonoid of G generated by all proper prefixes of all relators in
T . A subset X of G is said to be connected if 1 ∈ X and whenever g, h ∈ X there exists
a word w = x1 . . . xn ∈ (X ∪X−1)∗ such that gw = h and gx1 . . . xi ∈ X for 1 5 i 5 n.
Equivalently, a set X containing 1 is connected if its vertices form a connected subgraph of
the Cayley graph of G relative to the presentation G = Gp〈A ‖ T 〉. Let N = {(FPT , g) ‖ F
is a finite connected subset of G and g ∈ FPT }. Define a product on N by

(X, g)(Y, h) = (X ∪ gY, gh).

Let σ : A∗ → G be the natural map. If v ∈ A∗, let Fv be the finite subset of G consisting
of the image of all prefixes of v (including v itself). Clearly, Fv is a finite connected subset
of G. Let θ : A∗ → N be defined by vθ = (FvPT , vσ). The following summarizes some of
the work of Stephen in [St2].

Theorem 3.2.

(1) N is an E-unitary inverse monoid with maximal group image G.
(2) The map θ induces an isomorphism from the maximal E-unitary image G(M) to

N where M = Inv〈A ‖ T 〉. That is, if u, v ∈ A∗, then u = v in G(M) if and only
if uθ = vθ.

We can use Theorem 3.2 to prove the following reduction theorem for the word problem
for monoids of the form G(M) that will have Theorem 3.1 as an immediate corollary.

Theorem 3.3. Let T be a subset of A∗, let M = Inv〈A ‖ T 〉 and let G = gp〈A ‖ T 〉.
The word problem for G(M) is decidable if the word problem for G is decidable and the
membership problem for the submonoid PT of G is decidable.

Proof Let u, v ∈ A∗. By Theorem 3.2, u = v in G(M) if and only if FuPT = FvPT

and uσ = vσ. If the word problem for G is decidable, then we can decide the condition
uσ = vσ. If we can decide membership in PT , then we can also decide membership in FPT

for any effectively given finite subset F = {g1, . . . , gn} of G. For u ∈ FPT if and only if
g−1

i u ∈ PT for some 1 5 i 5 n. Furthermore, it is clear that for this F , FPT ⊆ XPT for
another finite set X if and only if F ⊆ XPT . So we can decide this last containment by
checking the finitely many conditions gi ∈ XPT , 1 5 i 5 n. It follows easily that we can
algorithmically check whether FPT ⊆ XPT and thus whether FPT = XPT for any finite
sets F and X and the result is proved. ¤

Proof of Theorem 3.1 Let M = Inv〈A ‖ w = 1〉 where w is a cyclically reduced word.
By the main theorem of this paper (Theorem 4.1), M is E-unitary and thus M = G(M).
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By Magnus’ Theorem [LS], the word problem for G = Gp〈A ‖ w = 1〉 is decidable and the
results now follow immediately from Theorem 3.3. ¤

4. The E-unitary Problem.

In this section we solve the conjecture of Margolis, Meakin and Stephen [MMS] by
proving the following theorem, which is the main theorem of the paper.

Theorem 4.1. If w is a cyclically reduced word then the inverse monoid M = Inv〈A ‖ w =
1〉 is E-unitary.

We need some preliminary ideas and results before we are able to provide a proof of this
theorem. Most of the results of this section apply only to one-relator inverse monoids, but
some of the concepts that we introduce are just as easily applicable to inverse monoids of
the form M = Inv〈A ‖ wi = 1, i ∈ I〉, where each word wi is a cyclically reduced word in
A∗, so we begin by considering such presentations. We say that a cyclic conjugate w′i of
wi is a unit cyclic conjugate of wi if w′i = 1 in the inverse monoid M . For example, in the
bicyclic monoid B = Inv〈a, b ‖ ab = 1〉 it is clear that ba is not a unit cyclic conjugate of
ab since ba 6= 1 in B: on the other hand, the monoid H = Inv〈a, b ‖ aba = 1〉 is easily seen
to be a group (the integers), so every cyclic conjugate of the relator aba is a unit cyclic
conjugate.

The unit cyclic conjugates are closely related to the group of units of the monoid M ,
as the following proposition shows.

Proposition 4.2. Let M = Inv〈A ‖ wi = 1, i ∈ I〉, where each word wi is a cyclically
reduced word in A∗ and identify M with the quotient A∗/τ where τ is the natural congru-
ence. Then the group of units of M is the submonoid of M generated by the set of elements
of the form piτ where qipi is a unit cyclic conjugate of the defining relator wi, i ∈ I for
some words pi, qi ∈ A∗.

Proof We will abuse notation slightly and denote the element uτ ∈ M simply by u
throughout the proof: it will be clear from the context when we are referring to words in
A∗ and when we are referring to their images in M . It is clear that every element pi ∈ M
for which qipi is a unit cyclic conjugate of some relator defining M , must be a unit of M .
So we need only prove that every unit of M can be written as a product of such elements.

Note that the monoid of right units of M is the set of vertices of the Schützenberger
graph of 1 in M . Since this graph is built iteratively from the trivial graph (the linear
automaton of 1) by repeated applications of the operations of adding loops labeled by the
relators and edge foldings, it follows easily that every element of the monoid of right units
of M may be written as a product of prefixes (initial segments) of the relators.

Now let s be an element of the group U(M) of units of M with s 6= 1. By the above
observation, we may write s = p1p2 . . . pn in M where each pi is a prefix of one of the
relators wj . Thus for each i there is some j (depending on i) and some word qi such that
piqi ≡ wj . Note that qi = p−1

i in M since piqi = 1 in M . Also, since s ∈ U(M) we have
s−1s = 1 in M , so

(1) qn . . . q2q1p1p2 . . . pn = 1
9



in M . This implies that qn is right invertible and since we also have qn is left invertible in
M , it follows that qn ∈ U(M). Since pn = q−1

n this implies that pn ∈ U(M) and also that
qnpn = 1 in M , so qnpn is a unit cyclic conjugate of the corresponding relator wj . Now
multiply equation (1) on the left by pn and on the right by qn: we obtain

qn−1 . . . q2q1p1p2 . . . pn−1 = 1

in M . Arguing as above, we see that qn−1pn−1 is a unit cyclic conjugate of the correspond-
ing relator wk. Continuing this process by induction yields the desired result. ¤

We deduce two easy corollaries of this proposition.

Corollary 4.3. Let M = Inv〈A ‖ wi = 1, i ∈ I〉, where each word wi is a cyclically
reduced word in A∗. If an element s of the group of units of M is written in any way as a
product of the form s = p1p2 . . . pn where each pi is a prefix of one of the relators wj, then
in fact each pi is a unit of M .

Proof This is an immediate corollary of the proof of the previous proposition. ¤
Corollary 4.4. Let M = Inv〈A ‖ w = 1〉 be a one-relator inverse monoid with w cyclically
reduced. Then M has trivial group of units if and only if w has no unit cyclic conjugates
other than w itself.

Proof Suppose that w has a non-trivial unit cyclic conjugate of the form w′ ≡ vu
where w ≡ uv for some non-trivial words u, v ∈ A∗. Clearly u and v are units of M .
But u is a proper factor of w, so by a well-known result of Weinbaum ([LS], Chapter II,
Proposition 5.29), u 6= 1 in the group G = Gp〈A ‖ w = 1〉. Since G is the maximal group
homomorphic image of M we must also have u 6= 1 in M . Hence the group of units of M is
non-trivial. Conversely, if w has no non-trivial unit cyclic conjugates then by Proposition
4.2, the group of units of M must be trivial. ¤

In order to prove some structural results about one-relator inverse monoids, we shall
make use of the concept of (van Kampen) diagrams over group presentations. Let a group
G be given by a presentation

(2) G = 〈 A ‖ wi = 1, i ∈ I 〉 ,

(where the wi are cyclically reduced words over A).
By a map M we mean as in [LS], [Ol] a finite planar connected (but not necessarily

simply connected) simplicial 2-complex. The 0-, 1-, 2-cells of M are called the vertices,
edges, cells of M , respectively.

A (van Kampen) diagram ∆ over G given by (2) is a map that is equipped with a
labeling function φ from the set of oriented edges of ∆ to the alphabet A such that

(L1) If φ(e) = a, then φ(e−1) = a−1.
(L2) If Π is a cell in ∆ and ∂Π = e1...ek is the boundary cycle of Π, where e1, . . . , ek are

oriented edges, then φ(∂Π) = φ(e1) . . . φ(ek) is a cyclic permutation of wε
i , where

ε = ±1 and i ∈ I.
10



A simply connected diagram over G is called a disk diagram. A diagram with one hole
is called an annular diagram.

It is convenient to fix the positive (counterclockwise) orientation for the boundary ∂Π
of a cell Π in ∆ and the appropriate orientation for a component q of the boundary ∂∆
of the diagram ∆ so that one gets ∆ on the right hand when moving along the oriented
component q. (When oriented this way, q is also termed a contour of ∆, see [Ol], [Iv]).

There are many ways to define the concept of a reduced diagram over a group presen-
tation, see [LS], [Ol], [Iv]. In this paper we choose one of most straightforward defini-
tions. Let e be an oriented edge in a diagram ∆ over (2), let Π1, Π2 be cells in ∆ and
e ∈ ∂Π1, e ∈ ∂Π−1

2 (recall that ∂Π1, ∂Π2 are positively oriented). The cells Π1, Π2 are
said to be a reducible pair provided the label φ(∂Π1|e−) of the (oriented) boundary ∂Π1|e−
starting at the initial vertex e− of the edge e is graphically (i.e. letter-by-letter) equal to
φ(∂Π2|e−)−1. Denote by e+ the terminal vertex of an edge e. A diagram ∆ over (2) is
termed reduced provided ∆ contains no reducible pairs of cells.

The following lemma due to van Kampen is almost obvious (see [LS], [Ol]).

Lemma 4.5. A cyclic word w equals 1 in the group G given by (2) if and only if there is
a reduced disk diagram ∆ over G such that φ(∂∆) ≡ w.

As an immediate corollary we have the following.

Corollary 4.6. Let M = Inv〈A ‖ wi = 1, i ∈ I〉 where the words wi are cyclically reduced
words in A∗, and let G = Gp〈A ‖ wi = 1, i ∈ I〉 be the corresponding maximal group
homomorphic image of M . Then M is E-unitary if and only if for every reduced disk
diagram ∆ over G, the word φ(∂∆) is an idempotent in M .

Proof Recall that M is E-unitary if and only if each word s ∈ A∗ that is 1 in G is in fact
an idempotent in M . The result follows immediately from the van Kampen lemma. ¤

Suppose Π is a cell in a diagram over G = 〈A‖wi, i ∈ I〉. A vertex o ∈ ∂Π is called
a distinguished vertex (D-vertex) of Π if φ(∂Π|o) = 1 in M = I nv〈A‖wi, i ∈ I〉. An
(oriented) edge e ∈ ∂Π is termed a D-edge of Π provided either e− or e+ is a D-vertex of
Π.

The next result provides a sufficient condition for an inverse monoid M of the type
being considered to be E-unitary. We refer to a disk diagram ∆ as being trivial if it has
no cells (i.e. if it is a tree).

Lemma 4.7. Let M = Inv〈A ‖ wi = 1, i ∈ I〉 where the words wi are cyclically reduced
words in A∗, and let G = Gp〈A ‖ wi = 1, i ∈ I〉 be the corresponding maximal group
homomorphic image of M . Then M is E-unitary if for every non-trivial reduced disk
diagram ∆ over G there is some vertex o ∈ ∂∆ such that o is a D-vertex of some cell Π
of ∆.

Proof Let ∆ be a disk diagram over G. If ∆ has no cells then φ(∂∆) is an idempotent
in M since φ(∂∆) = 1 in the free group FG(A) over A and thus φ(∂∆) is an idempotent
in FIM(A). Proceeding by induction on the number of cells in ∆, assume ∆ is a disk
diagram containing cells and o ∈ ∂∆ is a D-vertex of a cell Π ∈ ∆. Removing Π from ∆
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by making a cut at o (and splitting o into o′, o′′, as illustrated in Fig. 2) turns ∆ into a
disk diagram ∆′ with fewer cells. Since φ(∂∆) = φ(∂∆′) in M , the induction step is done
and the proof is complete. ¤

Figure 2

Remark In [MMS], the authors showed that if w = abcdacdadabbcdacd then there is
reduced disk diagram ∆ over the corresponding group G = Gp〈A ‖ w = 1 > such for every
cell Π of ∆, the vertex on ∂Π at which one reads w±1 around ∂Π is an interior vertex of the
diagram ∆. They also proved that the corresponding inverse monoid M = Inv〈A ‖ w = 1〉
is E-unitary by showing that every cyclic conjugate of w that starts with the letter a is in
fact a unit cyclic conjugate of w and thus by the Freiheitssatz, every reduced disk diagram
over G must have a unit cyclic conjugate starting somewhere on its boundary. Thus it is
not in general possible to prove that a one-relator inverse monoid M = Inv〈A ‖ w = 1〉
is E-unitary by showing that every reduced disk diagram over the corresponding group
G has a boundary vertex at which the word w may be read around some cell - one must
in general search for boundary vertices which are start points for unit cyclic conjugates
possibly different from w.

Let w be a fixed cyclically reduced word and consider the group presentation

(3) G = Gp〈A ‖ w = 1〉

and the corresponding inverse monoid presentation

(4) M = Inv〈A ‖ w = 1〉

throughout the remainder of this section.

We also consider the related presentation

(5) Inv〈A ‖ wi = 1, i = 1, . . . , t〉

where {w1, . . . wt} is the set of all unit cyclic conjugates of w. It is clear that (4) and (5)
present the same inverse monoid M . In what follows we will also make use of the obvious
fact that if Γ is an approximate graph of 1 based at a vertex α relative to the presentation
(5), then any loop in Γ based at α labels a word that equals 1 in the inverse monoid M
given by the presentation (4).

By Lemma 4.7, the proof of Theorem 4.1 is immediate once we prove the following
result.

Lemma 4.8. Suppose that ∆ is a non-trivial reduced disk diagram over the presentation
(3). Then there is a cell π in ∆ and a D-edge e ∈ ∂π with e−1 ∈ ∂∆.

12



This lemma will be proved by induction on the number of cells of ∆. The result is
clearly true for diagrams with one cell. We will need some technical lemmas before we
start the proof. In these lemmas we will assume that ∆ is a minimal (with respect to
number of cells) non-trivial reduced diagram that is a counter-example to the statement
of Lemma 4.8. It is clear that such a diagram ∆ must satisfy the following potentially
restrictive property:

(P) For every proper non-trivial reduced disk subdiagram ∆′ of ∆ (with fewer cells than
∆) there is a cell π in ∆′ and a D-edge e ∈ ∂π with e−1 ∈ ∂∆′.

Lemma 4.9. Let ∆ be a non-trivial reduced disk diagram over (3) that satisfies property
(P), let Π1,Π2, . . . , Πn be a sequence of cells in ∆ (not necessarily all distinct) and suppose
that there are vertices α1, α2, . . . , αn in ∆ such that αi belongs to ∂Πi ∩ ∂Π−1

i+1 for i =
1, 2, . . . , n (modulo n). If αi is a D-vertex of Πi for each i = 1, 2, . . . , n, then αi is a
D-vertex of Πi+1 for each i = 1, 2, . . . , n (modulo n).

Proof Note that ∂Πi ∩ ∂Π−1
i+1 6= ∅ for i = 1, 2, . . . , n (modulo n). It follows that the

union of the cells Πi bounds a reduced disk subdiagram ∆′ of ∆ consisting of all the cells
Πi together with any other cells of ∆ that are in the interior of the region of ∆ enclosed
by the union of these cells Πi. The basic idea for proving the lemma is to show that the
1-skeleton of the diagram obtained from ∆′ by pruning off all trees is an approximate graph
for 1 in the presentation (5), based at any of the vertices αi. This will then show that any
loop in this graph based at a vertex αi must be labeled by a word that is equal to 1 in M ,
by the remark following Theorem 2.1. In particular, the cyclic conjugate of w obtained by
reading around ∂Π±1

i+1 starting at αi is a unit cyclic conjugate of w, as required.
Consider Stephen’s iterative procedure outlined in the introduction (Section 1 above)

for constructing an approximate graph for the trivial word 1 relative to the presentation
(5) for M , starting at the vertex αi. If we start with a single vertex (that we denote by
αi), we may perform an expansion to this (trivial) graph by adding a loop labeled by an
appropriate unit cyclic conjugate w′ of w at this vertex, effectively building a copy of the
boundary of the cell Πi. We caution that this process does not necessarily build a copy
of a cell that is homeomorphic to Πi as it embeds in the diagram ∆ - this cell may for
example enclose a non-trivial van Kampen subdiagram of ∆. However, the loop labeled by
w′ based at αi contains a vertex that we shall again denote by αi−1 (modulo n), namely
the vertex that we reach along this loop by reading the segment of w′ labeling the path
along ∂Π±1

i from αi to αi−1 in ∆.
Perform another expansion by adding a loop labeled by an appropriate unit cyclic

conjugate w′′ of w at this vertex, effectively building a copy of the boundary of the cell
Πi−1. After doing as much edge folding as possible, subject to the constraint that we only
fold edges of the two loops that are already identified in ∆′, the resulting graph consists of
two loops whose boundaries intersect in an arc that may be identified with the maximal
(connected) arc of ∂Πi ∩ ∂Π−1

i+1 that contains the vertex αi−1 in ∆. Continue this process,
successively creating the vertices αi, αi−1, . . . αi+1 (modulo n), expanding by adding loops
labeled by appropriate unit cyclic conjugates of w at these vertices and folding as much as
possible in the subdiagram already obtained, again subject to the constraint that we only
fold edges that are already identified in ∆′. We denote the resulting approximate graph
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of 1 based at αi (relative to the presentation (5)) by Λ.
If ∆′ has no cells other than Π1, Π2, . . . , Πn then the folding process attaches the loops

labeled by the appropriate unit cyclic conjugates of w based at αk and αk+1 along a
common boundary that may be identified with ∂Πk ∩∂Π−1

k+1 for each k. Thus in this case,
the 1-skeleton of ∆′ can be identified with Λ and thus may be viewed as an approximate
graph of the empty word 1 relative to the presentation (5) based at αi and it follows as
above that the cyclic conjugate of w obtained by reading ∂Π±1

i+1 based at αi is a unit cyclic
conjugate, as desired.

Some examples of diagrams corresponding to this situation are depicted in Figures 3(a),
3(b), 3(c) and 3(d). In these figures, and in subsequent figures representing portions of
van Kampen diagrams over the presentation (3), an arrow at a vertex on the boundary
of a cell Π and pointing towards the interior of Π indicates that the cyclic conjugate of w
obtained by reading around ∂Π±1 starting at this vertex is a unit cyclic conjugate of w.

Figures 3(a), 3(b), 3(c), 3(d)

In general, ∆′ may contain cells that are not in {Π1, Π2, . . . , Πn}. We refer to such cells
as latent cells. By the construction of ∆′ no latent cell has an edge on ∂∆′±1, but latent
cells may possibly have vertices on ∂∆′. Some examples of diagrams with latent cells are
depicted in Figures 4(a), 4(b), 4(c) and 4(d). In these figures, all cells of the form Li for
some i are latent cells.

Figures 4(a), 4(b), 4(c), 4(d)

The subdiagram of ∆′ consisting of the latent cells of ∆′ is not necessarily connected
(see Figure 4(a) for example), so it is not necessarily a reduced disk diagram. We refer
to the maximal connected and simply connected components of this subdiagram as the
latent components of ∆′. Each latent component of ∆′ is a reduced disk diagram over the
presentation (3) with fewer than N cells, so by Property (P) each such component has a
D-vertex of some cell somewhere on its boundary. Also, the boundary of such a latent
component must consist entirely of edges that are in the union of the cells Πi. Fix a latent
component Γ of ∆′ and a vertex α on ∂Γ that is a D-vertex for some latent cell Π′ of Γ.

Now all of the edges of ∂Γ are in the approximate graph Λ. It follows that we can
construct the vertex α in this approximate graph and hence we can expand Λ by adding
another loop labeled by an appropriate unit cyclic conjugate of w at α and then folding,
again subject to the restriction that we only fold edges that get identified in ∆′. This
creates a copy of the boundary of the latent cell Π′ in an approximate graph of 1 based
at αi. But then the diagram obtained from Γ by removing this cell Π′ either splits into
several components that are reduced disk diagrams with fewer cells than Γ (see Figure
5(a)) or is a single reduced disk diagram with fewer cells than Γ (see Figure 5(b)).

Figures 5(a), 5(b)
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In either case, all boundary edges of the resulting reduced disk diagram or diagrams
are contained in the approximate graph of 1 based at αi constructed so far and so we may
continue the process inductively to eventually construct loops labeling the boundaries of
all of the latent cells in Γ. Once all such loops have been constructed the folding process
produces a graph which contains a copy of the 1-skeleton of Γ. Applying this procedure
to all latent components of ∆′ we eventually build the 1-skeleton of ∆′ as an approximate
graph of 1 based at αi. Then it follows as above that αi is a D-vertex of Πi+1 as desired.

¤

Consider the following construction. Let ∆ be a reduced diagram over the group G given
by (3), let Π be a cell in ∆, and let e be a D-edge of Π. Clearly, e−1 is either an edge of
∂∆ (and then we stop), or, otherwise, e−1 ∈ ∂Π1, where Π1 is another cell in ∆ (perhaps,
Π1 = Π). Denote e0 = e, Π0 = Π and consider an arc u1 of the cell Π1 (i.e. a subpath
of ∂Π1) of the form u1 = e−1

0 v1e1 such that e1 is a D-edge of Π1, e1 6= e−1
0 and the arc

v1 has no D-edges of Π1. Next, if e−1
1 ∈ ∂∆, then we stop. Otherwise, let e−1

1 ∈ ∂Π2 and
consider an arc u2 of Π2 of the form u2 = e−1

1 v2e2 such that e2 is a D-edge of Π2, e2 6= e−1
1

and the arc v2 has no D-edges of Π2 (as above, such an edge e2 does exist). Analogously,
defining the cells Π3, . . . , Πm, . . . , their arcs u3 = e−1

2 v3e3, . . . , um = e−1
m−1vmem, . . . , and

their D-edges e3, . . . , em, . . . , we will eventually obtain that either e−1
m ∈ ∂∆ (see Fig. 6)

or, otherwise, ek = e` and Πk = Π` for some k < ` (see Figs. 7-8).

Figure 6

Picking such k, ` so that k, `− k are minimal, we will get the cycle (ek, ek+1, . . . , e`−1)
of D-edges of cells Πk, Πk+1, . . . Π`−1 which will be called a D-star defined by (e0,Π0) and
denoted by St(e0, Π0) (note this definition is similar to an analogous notion in [IS]). The
path vk+1 . . . v`−1v`) will be called the boundary of the D-star St(e0, Π0) and denoted by
∂ St(e0,Π0). It is easy to see that the path ∂ St(e0,Π0) has no self-intersections (up to
arbitrarily small deformations, see [Iv]) and, therefore, one can consider a disk subdia-
gram E(e0,Π0) bounded by the cyclically reduced (possibly trivial) path obtained from
∂ St(e0,Π0)±1. (A cyclically reduced path is a path with no subpaths of the form ee−1

with an edge e.) In the case when the cells Πk,Πk+1, . . . Π`−1 are not in E(e0,Π0) (see Fig.
7) we will say that St(e0,Π0) is interior. If the cells Πk,Πk+1, . . . Π`−1 are in E(e0, Π0)
(see Fig. 8) we will say that St(e0, Π0) is an exterior D-star.

Figures 7, 8

Now assume that ∆ satisfies Property (P). Then it follows from Lemma 4.9 that every
edge e−1

k+i is a D-edge of the cell Πk+i+1 (subscripts mod(`−k)). Consequently, e`−1 cannot
be an edge on the path vk−1 and thus every cell Πj , j < k, will be in the disk diagram
E(e0,Π0) provided St(e0, Π0) is interior and every cell Πj , j < k, will not be in E(e0, Π0)
provided St(e0, Π0) is exterior. The D-edges e0, e1, . . . , ek−1 (if any) of Π0,Π1, . . . , Πk−1

will be called open edges of St(e0,Π0).
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Let us observe the following restrictive property of the disk subdiagram E(e0,Π0) of
an interior D-star St(e0, Π0): suppose π1 and πt+1 are cells in ∆ so that π1 6∈ E(e0, Π0)
and πt+1 ∈ E(e0, Π0). Then there are no cells π2, . . . , πt in ∆ such that there are D-edges
e1 ∈ ∂π1, . . . , et ∈ ∂πt with e−1

1 ∈ ∂π2, . . . , e
−1
t ∈ ∂πt+1.

We will make use of this property and the terminology introduced above in the next
technical lemma. Again, let ∆ be a minimal counterexample to Lemma 4.8 relative to the
number of cells. Let π∗ be a cell that has an edge f ∈ ∂π∗ with f−1 ∈ ∂∆. Consider
the set S(π∗) of all cells Π in ∆ that have the following property: for every Π ∈ S(π∗)
there exists a sequence of cells π1, . . . , π` such that π1 = π∗, π` = Π, and the cell πi,
i = 1, . . . , `− 1, has a D-edge ei ∈ ∂πi with e−1

i ∈ ∂πi+1.

Lemma 4.10. Suppose Π ∈ S(π∗), e ∈ ∂Π is a D-edge, and Π′ is the cell in ∆ with
e−1 ∈ ∂Π′. Then Π′ ∈ S(π∗) and e−1 is a D-edge of Π′.

Proof. The inclusion Π′ ∈ S(π∗) follows from the definition of S(π∗). Consider the D-
star St(e, Π). If St(e,Π) is exterior then St(e, Π) can not have open D-edges for otherwise
the disk diagram E(e,Π) would not contain Π and provide a counterexample with fewer
cells (note that ∂ E(e,Π) has no D-edges either). Suppose St(e,Π) is interior and St(e, Π)
has open D-edges. Then e ∈ ∂Π is an open D-edge of St(e,Π) and Π is a cell of E(e,Π).
Since no cell of E(e, Π) has an edge e1 with e−1

1 ∈ ∂∆, we have that π∗ 6∈ E(e,Π). This,
however, is a contradiction to the restrictive property of disk subdiagrams of interior D-
stars noted above, in view of the fact that Π ∈ S(π∗) and the definition of S(π∗). Thus,
in any case, St(e, Π) has no open D-edges and a reference to Lemma 4.9 shows that e−1 is
a D-edge of Π′. ¤

Using all of the terminology introduced above we may now proceed to the proof of
Lemma 4.8, and hence of our main theorem (Theorem 4.1).

Proof of Lemma 4.8 We assume that the statement of the lemma is false and that
∆ is a minimal counterexample: we may apply the results of Lemmas 4.9 and 4.10 when
needed. Consider the subdiagram Γ of ∆ that consists of all cells Π ∈ S(π∗). By the
definition of S(π∗) and Lemma 4.10, Γ is a diagram with k ≥ 0 holes such that if e is a
D-edge of a cell Π ∈ Γ then e−1 is a D-edge of a cell Π′ ∈ Γ.

Let us divide each D-edge e ∈ Π, Π ∈ S(π∗), into two new edges e1, e2 so that e = e1e2.
The labels φ(e1), φ(e2) are assigned to e1, e2 as follows: Let B be an alphabet whose
letters are in bijective correspondence β : A → B with letters of A and A ∩ B = ∅. If
φ(e) = a ∈ A then φ(e1) = a and φ(e2) = β(a). If φ(e) = a−1 ∈ A−1 then φ(e2) = a−1

and φ(e1) = β(a)−1 (that is, the same rule applies to e−1 with φ(e−1) = a ∈ A). This
results in a new disk diagram ∆′ over a group H given by

(6) H = 〈 A ∪B ‖ w = 1, w̄ = 1 〉,
where φ(∂π∗) = w̄±1, w̄ is cyclically reduced, has occurrences of letters of B±1, and erasing
all letters of B±1 in w̄ results in the word w. It follows from results of [IM] that if w is
not a proper power that any spherical diagram over (6) (i.e., a diagram whose underlying
map is a 2-sphere) contains a reducible pair.

Note that φ(∂∆′) ≡ φ(∂∆). Hence attaching ∆ (from above) to ∆′ along ∂∆ yields a
spherical diagram ∆0 over (6). It follows from the minimality of ∆ and construction of ∆′
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that ∆0 has no reducible pairs. This contradicts the result cited above on the asphericity
of (6) unless w is a proper power. However, in this case our lemma is true in view of a
theorem due to B. Newman [N] (see also [MKS]) that claims that if ∆ is a reduced diagram
with cells over (3), where w ≡ sn, n > 1, then there are a cell π in ∆ and an arc u of ∂π
so that e−1 ∈ ∂∆ for each edge e ∈ u and |u| > (n − 1)|S|. This completes the proof of
Lemma 4.8 and hence of our main theorem (Theorem 4.1). ¤

5. The Word Problem.

Let G be a one-relator group given by the presentation, G = Gp〈A ‖ w = 1 〉 associated
with a non-empty cyclically reduced relator w and let M be the corresponding inverse
monoid M = Inv〈A ‖ w = 1 〉. In this section we consider some cases where we are able to
solve the membership problem for the prefix submonoid Pw of G and hence, by Theorem
3.1, the word problem for M .

Let G = Gp〈A ‖ ri = 1, 1 ≤ i ≤ m〉 be a presentation of a group G and let w be
a (reduced) word over A. We say that this presentation for the group G is (strictly) w-
positive if there is a morphism f : G → Z from G onto the integers such that if v 6= 1 is a
proper prefix of w, then (vf > 0) vf ≥ 0.

Example The presentation G = Gp〈{a, b} ‖ aba = 1〉 is not aba-positive. If f is any
morphism from G onto Z, then clearly bf = −2(af) and thus one of the prefixes a, ab
must be mapped to a positive integer while the other will be mapped to a negative integer.
On the other hand, this presentation is baa-strictly positive given that the assignment
b 7→ 2, a 7→ −1 is a morphism that sends both prefixes of baa to positive integers. ¤

We note that it is decidable given a finitely presented group G = Gp〈A ‖ ri = 1, 1 ≤
i ≤ m〉 and a word w whether the presentation is (strictly) w-positive. Morphisms from
G onto Z can be calculated by solving the integer system of m equations in |A| variables
arising by taking the commutative image of each relator and setting it equal to 0. The
(strictly) positive condition can then be thought of as an integer programming problem
by imposing the necessary inequalities to ensure that all prefixes of w map to positive or
non-negative numbers.

The interest in these properties for the purpose of the current paper is the following
theorem.

Theorem 5.1. Let w be a cyclically reduced word and suppose that G = Gp〈A ‖ w = 1〉
is a w-strictly positive presentation. Then the membership problem for Pw is decidable.

Proof Let θ : A∗ → G be the natural morphism and let f : G → Z be a morphism onto
the integers such that if v 6= 1 is a proper prefix of w, then (vθ)f > 0. Let u ∈ A∗. It is
clear that if (uθ)f ≤ 0, then uθ ∈ Pw if and only if uθ = 1 in G. Since the word problem
for G is decidable we can decide if uθ ∈ Pw in this case.

So assume that (uθ)f > 0. If uθ ∈ Pw, then uθ = (p1 . . . pn)θ for some prefixes pi of w.
We can assume that all the pi are not the identity by assuming that this is the shortest
representation of uθ as a member of Pw. Now (uθ)f =

∑n
i=1(piθf). Since each (piθ)f > 0

there are only a finite number of possible such representations of u as a member of Pw. We
can effectively enumerate all of these finitely many representations and use the algorithm
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for the word problem for G to test whether u is equal to any of these products. uθ ∈ Pw if
and only if we receive a positive answer to one of these finitely many tests. It follows that
the membership problem for Pw is decidable. ¤
Corollary 5.2. Let w be a cyclically reduced word such that G = Gp〈A ‖ w = 1〉 is
a w-strictly positive presentation. Then the word problem for the inverse monoid M =
Inv〈A ‖ w = 1〉 is decidable. Furthermore the group of units of M is trivial.

Proof From Theorem 3.2 and Theorem 4.1 it follows that the word problem for M =
Inv〈A ‖ w = 1〉 is decidable.

Let θ and f be as in the proof of Theorem 5.1. If U(M) 6= 1 then by Proposition 4.2,
there is a factorization w ≡ pq such that qp = 1 in M and p 6= 1, p 6= w in A∗. Hence
(pθ)f > 0, so (qθ)f < 0, but qp = 1 in M so q is right invertible in M , whence (qθ)f > 0,
a contradiction. ¤

We close the paper by considering some other partial results on the membership problem
for Pw. Note the word [a1, b1] . . . [an, bn] of part (b) of the theorem below is the “standard”
relator of the fundamental group of an orientable surface of genus n. Interestingly, we
impose a restriction in part (c) that a word w−1 is not in the submonoid of the free group
FG(A) generated by all prefixes of the nonempty reduced word w ∈ FG(A). However, we
do not know examples of such words w and conjecture that our restriction is meaningless.

Theorem 5.3. The membership problem for the prefix monoid Pw is decidable in the
following cases:

(a) There is a single occurrence of a letter a±1 ∈ A in w.
(b) w is a cyclic permutation of the word [a1, b1] . . . [an, bn], n ≥ 1.
(c) w ≡ w1w2 . . . wn, where n > 12, each wi is a nonempty reduced word over a

subalphabet Ai so that A =
⋃

1≤i≤n Ai and Ai are disjoint, and the word w−1
1 ,

(resp. wn) is not in the submonoid of the free group FG(A1), (resp. FG(An))
generated by all prefixes of w1, (resp. w−1

n ).

Before proving Theorem 5.3, we provide a solution for the membership problem for
finitely generated submonoids of free groups.

Lemma 5.4. Let u1, u2, . . . , un be some words in a free group FG(A). Then the member-
ship problem for the submonoid 〈 u1, u2, . . . , un 〉S ⊆ FG(A) generated by u1, u2, . . . , un is
decidable

Proof. We may deduce this as a consequence of a theorem of Benois [Be] characterizing
the rational subsets of free groups. We provide an alternative proof here, since this proof
has some independent interest. First we modify the definition of a Nielsen reduced basis
(N -basis) for a subgroup 〈U〉 of a free group F = FG(A) (see [LS]) in order to adjust it for
the submonoid 〈U〉S generated by words in U as follows. An ordered set U = (U1, U2, . . . )
of distinct reduced nonempty words of F will be called NS-reduced provided for all triples
V1, V2, V3 ∈ U the following conditions are satisfied:

(N1) If V1V2 6= 1 then either |V1V2| ≥ |V1|, |V2| or V1V2 ∈ U .
(N2) If V1V2 6= 1 and V2V3 6= 1 then either |V1V2V3| > |V1| − |V2| + |V3| (i.e., there

is at least one letter of V2 that remains uncancelled in the product V1V2V3) or
V1V2V3 ∈ U .
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The analogs of elementary Nielsen transformations on an ordered set U = (U1, U2, . . . )
are defined as follows:

(T1) Add UiUj , i 6= j, provided 0 < |UiUj | < |Ui| or 0 < |UiUj | < |Uj | and UiUj 6∈ U .
(T2) Delete Ui if Ui = Uj , i 6= j.
Clearly, these transformations preserve the monoid 〈U〉S (but are not invertible).
By analogy with the proof of Proposition 2.2 of [LS], one can prove that if U is finite

then U can be carried by a sequence of elementary transformations (T1)–(T2) into a finite
NS-reduced set V.

Now Lemma 5.4 can be proved as for subgroups of free groups on the basis of the
following fact: If V is NS-reduced then for every word W ∈ 〈V〉 there are V1, . . . , Vk ∈ V
such that W = V1 . . . Vk, |ViVi+1| ≥ |Vi|, |Vi+1|, |ViVi+1Vi+2| > |Vi| − |Vi+1|+ |Vi+2| and so
|W | ≥ k. ¤

Proof of Theorem 5.3. (a) This is immediate from Lemma 5.4.
(b) If n = 1 then our claim is obvious since Pw = 〈a1, b1〉S . Assume n > 1. First notice

that, up to renaming a → a−1, a−1 → a, w−1 → w we can assume that

(7) w ≡ xyx−1(Ty)−1,

or

(8) w ≡ xyx−1(yT )−1,

or

(9) w ≡ xyT−1x−1y−1,

where the word T is nonempty and has no occurrences of the letters x±1, y±1,
We carry out the proof in detail in the first case: two other cases are similar and we omit

the details of these cases. So assume that w is of the form (7) throughout the remainder
of the proof. In this case we have

(10) Pw = 〈P〉S , P = {x, Ti, T y, Tyx | 0 ≤ |Ti| ≤ |T |},

where Ti is a prefix of T of length i.
Let R be a word inA. Without loss of generality, we may assume that R has no subwords

of the form xyk, x−1(Ty)`x where k, ` 6= 0 . Assume that R ∈ Pw ⊆ G and consider a
reduced disk diagram ∆ with ∂∆ = vr−1, where v = v1 . . . vk, φ(v1), . . . , φ(vk) ∈ P, P is
defined by (10) and φ(r) = R. Note every cell Π in ∆ has exactly two x-edges e, f ∈ ∂Π,
that is, edges with φ(e) = x±1, φ(f) = x∓1. The edge e−1 must be either an edge of ∂∆
or e−1 ∈ ∂Π′. Consider a chain of cells Π−`1 , . . . , Π0, Π1, . . . , Π`2 in ∆, where Π0 = Π,
so that e0 = e, f0 = f , and ei, fi ∈ ∂Πi are x-edges such that ei = f−1

i−1, f−1
i = ei+1,

e−1
−`1

∈ ∂∆ and f−1
`2

∈ ∂∆ (see Fig. 9; e−1
−`1

may not be f`2 since ∆ is reduced and G is
torsion-free).

Figure 9
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We will refer to the disk subdiagram E consisting of the cells Π−`1 , . . . , Π0, Π1, . . . , Π`2

as an x-strip. The factorization ∂ E = tesf , where {e, f} = {e−1
−`1

, f−1
`2
} and φ(e) = x,

is the standard contour of an x-strip E. By a trivial x-strip we mean a subdiagram E
consisting of two x-edges e, e−1 ∈ ∂∆ where φ(e) = x. The standard contour of such a
diagram E is ∂ E = ee−1.

Let E1, . . . , Em be all of the x-strips (including the trivial ones) in ∆ with standard
contours ∂ E1 = t1e1s1f1, . . . , ∂ Em = tmemsmfm. It follows from the Freiheitssatz and
from the choice of R and the words φ(v1), . . . , φ(vk) that e1, . . . , em ∈ v = v1 . . . vk and
f1, . . . , fm ∈ r−1. Changing indices, if necessary, we may assume that

v = u1e1u2e2 . . . umemum+1,

r = r1f
−1
1 r2f

−1
2 . . . rmf−1

m rm+1.

Making use of the notation introduced above, we define disk subdiagrams Γ1, . . . , Γm+1

by ∂Γ1 = u1t
−1
1 r−1

1 , ∂Γi = uit
−1
i r−1

i s−1
i−1, 1 < i < m + 1, and ∂Γm+1 = um+1r

−1
m+1s

−1
m (see

Fig. 10; informally, Γi sits between the x-strips Ei−1 and Ei).

Figure 10

Consider Γi, 1 ≤ i ≤ m + 1. Since φ(∂Γi) has no x±1, we have φ(∂Γi) = 1 in the free
group FG(A) and so Γi has no cells (recall that ∆ has no closed x-strips). This means
that Γi is over FG(A) and for every edge g ∈ ∂Γi it is true that g−1 ∈ ∂Γi. Since w has
the form (7), each φ(s−1

i ) is a power of y. Let g1, g2 ∈ s−1
i−1 be two consecutive edges. It is

easy to see from the facts that φ(ri) does not begin with y±1, T 6= 1 and φ(ui) contains
no y±2 that g−1

1 , g−1
2 cannot both be edges of one of ui, t−1

i , r−1
i . Consequently, |si| ≤ 2

and so the diagram ∆ contains at most 2m cells. Now our claim is straightforward from
Lemma 5.4.

(c) Consider the set P consisting of all prefixes of w and w−1. Note it follows from
the assumptions that w−1

1 is not in the submonoid of FG(A1) generated by all prefixes
of w1 and wn is not in the submonoid of FG(An) generated by all prefixes of w−1

n that
cancellations between prefixes of w are small. More specifically, it is not difficult to see
that if V is a reduced word, V = V1 . . . Vk in FG(A), where V1, . . . , Vk ∈ P, and this
number k is minimal (over all such representations for V ) then the following is true: If
wε

i , 1 < i < n, ε = ±1, is a subword of Vj , 1 ≤ j ≤ k, then no letter of wε
i cancels in the

product V1 . . . Vj . . . Vk and any subword wε
i , 1 < i < n, ε = ±1, of V is a subword of one of

V1, . . . , Vk. In particular, this observation implies the following property that is important
for this proof: suppose V = V1 . . . Vk in FG(A), where V1, . . . , Vk ∈ P, is a reduced word
and wε

i , 1 < i < n, ε = ±1, is a subword of V so that V ≡ T1w
ε
i T2. Then

T1(wi+1 . . . wnw1 . . . wi−1)−εT2 ∈ 〈P〉S ⊆ FG(A).

Now suppose R is a reduced word that has no subwords of the form (subscripts mod n)

(11) (wj+1wj+2 . . . wj+m)±1,
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where m > n − m. Note the latter property is not restrictive (as far as elements of G
represented by words are concerned) because if R does not have this property we can
reduce the syllable length of R (relative to the partition A =

⋃
1≤i≤n Ai) by applying the

relation w±1 = 1 to R.
Now assume R ∈ Pw ⊆ G and consider a reduced disk diagram ∆ with ∂∆ = ur−1,

where φ(u) ≡ U is a reduced word, U ∈ 〈P〉 ⊆ FG(A), φ(r) ≡ R, such that, given R, ∆
has the minimal number of cells over all such words U ∈ 〈P〉 ⊆ FG(A).

Assuming ∆ has cells, we single out a subdiagram ∆0 in ∆ with ∂∆0 = u0r
−1
0 , where

u0, r0 are subpaths of u, r, respectively, maximal relative to the the property that the
first edges of u0, r0 are different and the last edges of u0, r0 are also different. Clearly,
u = u1u0u2 and r = r1r0r2, where u1 = r1, u2 = r2 (see Fig. 11).

Figure 11

By Schupp’s theorem [S], ∆0 contains a cell Π such that ∂Π = vt, v−1 is a subpath of
∂∆0 and φ(v) contains all the letters that occur in w. This means that φ(v) contains a
subword of the form (subscripts mod n)

V0 ≡ w′jwj+1 . . . wj+n−2w
′
j+n−1,

where w′j , w′j+n−1 are nonempty suffix, prefix of wj , wj+n−1), respectively.
Since n ≥ 5, we have that v is not a subpath of r (otherwise we could find a subword of

the form (11) in R). Note if the subpath of v−1 with label w±1
i , 1 < i < n, were a subpath

of u0 then we would have a contradiction to the minimality of ∆ in view of the property
of the word φ(u) = U ∈ 〈P〉 ⊆ FG(A) pointed out above, because taking the subpath
labeled by w±1

i along with Π out of ∆ would result in a diagram ∆′ with fewer number
of cells and φ(∂∆′) = u′r−1, where φ(u′) ∈ 〈P〉 ⊆ FG(A). Hence, we can assume that u0

has no subpaths of v−1 labeled by w±1
i , 1 < i < n. Consequently, we have that either v−1

is a subpath of r−1
0 u0 (the case of u0r

−1
0 is analogous) and (wj+1wj+2 . . . wj+(n−2)−3)±1 is

a subword of r−1
0 or v−1 contains one of r−1

0 , u0.
Since n − 5 > 5, in the first case we have a contradiction to the choice of R. If

v−1 contains r−1
0 then (wj+1wj+2 . . . wj+(n−2)−4)±1 is a subword of φ(r0)−1 contrary to

n− 6 > 6.
It remains to study the case when u0 is a subpath of v−1. Denote by ∆1 the subdiagram

of ∆0 with ∂∆1 = tr−1
4 , where r0 = r3r4r5 (see Fig. 12).

Figure 12

If ∆1 has no cells, that is, t = r4, then we have that φ(r0) contains a subword of
the form (wj′+1wj′+2 . . . wj′+(n−4))±1 and a contradiction to choice of R follows from
n − 4 > 4. Assuming ∆1 has cells we apply Schupp’s theorem to ∆1 and find a cell Π1

with ∂Π1 = v1t1, where v−1
1 is a subpath of ∂∆1 and φ(v1) contains a subword of the form

w′kwk+1 . . . wk+(n−2)w
′
k+(n−1), where w′k, (w′k+(n−1)) is nonempty prefix (suffix) of wk (
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wk+(n−1)). If t is a subpath of v−1
1 then the cells Π, Π1 form a reducible pair contrary

to the minimality of ∆ (which implies that ∆ is reduced). Hence, a subword of φ(v−1
1 )

of the form (wi′+1wi′+2 . . . wi′+n−3) is a subword of φ(r4)−1. Since n − 3 > 3, we have a
contradiction to the choice of R. Thus all possible cases have been considered and we have
proved that ∆ has no cells. However, in this situation, our claim becomes a corollary of
Lemma 5.4. This completes the proof of the theorem. ¤

Remark The problem of membership in the prefix monoid Pw of a one-relator group
G = Gp〈A ‖ w = 1 > is a special case of the rational set problem: given a rational subset
of G, is membership decidable? This last problem includes the generalized word problem
for G as a special case: is the membership problem for a finitely generated subgroup of G
decidable? It seems that almost nothing is known about this latter problem and it appears
to be very difficult.
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