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1 Introduction

Among the most important and intensively studied classes of semigroups are finite semigroups,
regular semigroups and inverse semigroups. Finite semigroups arise as syntactic semigroups of
regular languages and as transition semigroups of finite automata. This connection has lead
to a large and deep literature on classifying regular languages by means of algebraic properties
of their corresponding syntactic semigroups. The Eilenberg Variety Theorem [E] establishes a
one-one correspondence between so called varieties of formal languages and pseudovarieties of
finite semigroups. Recall that a pseudovariety is a collection of finite semigroups closed under
homomorphic image, subsemigroups and (finite) direct product. The books by Eilenberg [E],
Lallement [L], Pin [P] and Almeida [Al] give many details about this field.

Regular semigroups, that is semigroups S such that for all s € S there is t € S such that
sts = s have also been intensively studied. Natural examples of regular semigroups include the
full transformation semigroup on a set and the semigroup of all matrices over a field. Recently
Putcha and Renner have developed a theory of algebraic monoids. In this theory, regular
semigroups are naturally associated with reductive algebraic groups. Furthermore, they have
developed a notion of “finite monoid of Lie type”, a class of finite regular semigroups associated
with groups of Lie type. See [Pu] or the survey article [S].

Regular semigroups have also been intensively studied within semigroup theory itself. Among
the classes that have received the most treatment is the class of inverse semigroups. These are
precisely the regular semigroups whose idempotents commute- that is form a semilattice under
multiplication. This property turns out to be equivalent to the fact that every element s in
an inverse semigroup S has a unique inverse s~! satisfying ss~!
important example of an inverse semigroup is the semigroup of all partial bijections on a set.
This is called the symmetric inverse semigroup and plays the role in inverse semigroup theory
that the symmetric group plays in group theory. The Preston-Vagner Theorem is the analogue of
the Cayley Theorem and states that every inverse semigroup is faithfully represented by partial
bijections. Thus inverse semigroups arise naturally when studying partial automorphisms of a
set. They from an important area of study in geometry where they are called pseudogroups
of local transformations. See the book [Pe] for background as well as the forthcoming book by
Lawson [La).
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Historically, these three area of semigroup theory have developed independently of one another
(although for some time results from inverse semigroup theory have been used as models of how
to look for generalizations to regular semigroup theory). In the early 1990’s Ash [A] gave a deep
connection between inverse semigroups and finite semigroups by proving his now famous result
that states that any finite semigroup .5, the idempotents of which commute with each other, is



a homomorphic image of a subsemigroup 7T of some finite inverse semigroup I, in which case we
say that S divides I. (The converse is of course clearly also true.) This can be also be stated
within the context of pseudovariety theory: the pseudovariety of finite semigroups generated by
finite inverse semigroups is precisely the pseudovariety of finite semigroups whose idempotents
commute.

Previous to this, Birget [B] (or for a recent proof, see [G]) proved that any (finite) semigroup
S whose principal left and right ideals from forests under inclusion (such semigroups are called
unambiguous) embeds into a (finite) regular semigroup Syeq such that S and S have the same
maximal subgroups. In particular, since it is known that every (finite) semigroup is a homo-
morphic image of a (finite) unambiguous semigroup (via the Rhodes expansion [T]), it follows
that every finite semigroup with trivial subgroups (called aperiodic semigroups) divides a reg-
ular aperiodic semigroup. Again from the point of view of pseudovarieties, this says that the
pseudovariety of aperiodic semigroups is generated by its regular members.

The purpose of this paper is to study the intersection of the previous two results: does every finite
aperiodic semigroup with commuting idempotents divide a finite aperiodic inverse semigroup?
That is, is the pseudovariety generated by finite aperiodic inverse semigroups equal to the
pseudovariety of aperiodic semigroups with commuting idempotents? Surprisingly we show that
the answer is no and in a very strong sense.

In section 2 we show that the pseudovariety generated by the finite aperiodic inverse semigroups
is strictly contained in A N IC, the pseudovariety of all aperiodic semigroups with commuting
idempotents. In section 3 we generalize the method introduced here to prove that the smallest
pseudovariety containing A N IC that is generated by inverse semigroups is IC itself.

2 The Aperiodic Case

In this section we construct a finite semigroup S with commuting idempotents and prove that
it does not divide any finite aperiodic inverse semigroup. Our semigroup .S is to be a certain
19-element subsemigroup of I, the symmetric inverse semigroup on the set X = {1,2,3,4}. Let
B be the ideal of Iy:

B={a€ly: |doma| <1}.

We see that |B| = 42 + 1 = 17; indeed it is readily checked that B is a combinatorial Brandt
semigroup with 4 non-zero idempotents. We then form S by adjoining to B the two elements a’

and b as follows:
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We see at once that a’? = b2 = a/b/ = b¥'a’ =0, so that S = BU{d’,V'} is a 19-clement aperiodic
subsemigroup of Iy, and so in particular S has commuting idempotents. We shall make use of
the following fact taken from [RW].

Lemma 2.1 Let ¢ : T — S be a surjective homomorphism of finite semigroups and let J' be a
J-class of S. Then J'¢p~' = JyUJyU---U.J is a union of J-classes of T, and if .J; (1 < i < k)
is <z-minimal among Jy, - - -, Ji, then J;¢ = J'. Furthermore, if J’ is regular, then the index 4
is uniquely determined, that is J; is <gz7-minimum among Ji,- - -, Ji, and J; is itself regular.



Proposition 2.2 The finite semigroup S is aperiodic with commuting idempotents but does
not divide any finite aperiodic inverse semigroup 1.

Proof: Suppose that there existed a surjective homomorphism ¢ : T — S, where T was a
subsemigroup of a finite aperiodic inverse semigroup 1.

Let J be the unique minimum (regular) J-class of T such that J¢ = J', the 4 x 4 J—class of S.
Let Z be the ideal of T, 0¢~!. Then from the minimality property of J it follows that C = JUZ
is a subsemigroup of 7" such that C¢ = B. Consider the Rees quotient C'/Z. Since Z is a kernel
class of the mapping ¢, it follows that ¢ induces a surjective homomorphism ¢ : C/Z — B.
Hence B is a homomorphic image of the finite aperiodic Brandt semigroup C'/Z; however, since
such semigroups are congruence-free, it follows that ¢ : C'//Z — B is an isomorphism. Therefore
we can conclude that J is also a 4 x 4 regular combinatorial J-class of T'.

We shall denote by (4, )" the member of B which maps ¢ onto j, (i,j € {1,2,3,4}), and denote
the unique inverse image in J of (i,7)" under ¢ by (i, 7). Choose and fix members a and b of T
such that a¢ = a’ and b¢ = . We complete the demonstration by verifying that the monogenic
subsemigroup A = (ba~!) contains a non-trivial subgroup. In order to do this it is sufficient to
show that the right multiplicative action of ba~! on the point (1,1) of T is that of a non-trivial
cycle.

We continue the proof of the proposition by analyzing the actions of ¢ and b on the members of

J. Suppose that in S, (4,7)'a’ = (k,1)’. This gives:

((Z,j)d)(ﬁ - (Zaj)¢a¢ = (Z.7j)/a/ - (k7l)/ = (k7l)¢ (1)

Now (i,7)a <7 (4,7) and since ((i,j)a)¢ € J', the minimality condition on J ensures that this
inequality of [J-classes cannot be strict. Hence (i,j)a € J, and since ¢ is one-to-one on J we
conclude from (1) that (i,j)a = (k,l). Conversely, if (i,j)a = (k,1) it follow from the fact that
¢ is a homomorphism that (i, j)'a’ = (k,1)’. The same argument applies equally well to b, or to
the reverse products. In conclusion, if we let ¢ stand for either of a or b we have:

(i,7)c = (k,0) iff (4,5)'d = (k,1), and ¢(i,5) = (k1) iff ¢ (4,75) = (k,1).

That is to say, a and b act on J as a’ and b/ act on J'. Moreover, since (4,4)’ is inverse to (i,7)’
in .J', it follows that in the inverse semigroup I, (i,7)~" = (j,1).

To complete the proof it is sufficient to verify that in the inverse semigroup I:
(1,1)ba=t = (1,2), and (1,2)ba™! = (1,1).

Now, since (1,1)'d = (1,4)" it follows that (1,1)b = (1,4); similarly a(4,1) = (2,1). Hence we
obtain:

(L1ba" = (L4)a™" = (L 4)a™) )" = (a4, 1)) = 2,1)7" = (1,2).
The following similar calculation completes the proof:

(L2)ba™! = (1,3)a™! = (((1,3)a™)) 7)™ = (a(3,1)) 7" = (1, 1) = (1,1).



3 The General Case

Let by, by, - -+, b, be injective mappings on the set X, = {1,2,---,n}, and let U be the semi-
group generated by the injections b;, (1 < i < k). We build the following subsemigroup S(U)
of the symmetric inverse semigroup Is,, the base set of which we shall take to be Xy, =
{1,2,---,n,1",2' .-~ 'n'}. For a subset D = {iy,i2,--,4:} of X, denote by D’ the set
{i},i4,---,i}}. Foreachi (1 <i < k) let b} be the map with domd, = domb;, and ranb, = (ranb;)’
which acts as follows:

b= b)"

Similarly, let @’ be the map with domain X,, and range X/, for which j-a' = j'.

Finally let S(U) be the semigroup generated by the mappings b}, (1 < i < k), together with
a’ and B, the combinatorial Brandt semigroup consisting of all the mappings of I, of rank no
more than 1.

For example, the semigroup S of the previous section is a special case of this construction: there
n = 2 and the elements 3 and 4 correspond to 1’ and 2’ respectively; moreover k = 1, and the
unique injection by = b of {1, 2} is the transposition (1 2), and so our U is a two-element group.

As before, S(U) is the disjoint union of B, the combinatorial Brandt semigroup of all mappings
in Iy, of rank at most 1, (which has (2n)? + 1 elements and 2n non-zero idempotents), and the
set {b],05, -, b}, a’}, as this latter set generates only a zero semigroup, as ranges and domains
are disjoint. Thus |S(U)| = 4n? 4+ k+2, (in the previous section we saw n = 2 and k = 1 to yield
our 19-element semigroup S). It follows that S(U) is aperiodic with commuting idempotents.
We shall follow the argument of Proposition 2.2 to prove the main result, Theorem 2.2. We shall
however require one basic fact concerning Brandt semigroups.

Lemma 3.1 The only congruence p on a Brandt semigroup S that is not contained in H is the
universal congruence w.

Proof: Suppose that p Z H. Certainly if (a,0) € p with a # 0 then the fact that S is 0-simple
gives immediately that p = w. On the other hand, suppose that a and b are not 0, and that
(a,b) € p but that (a,b) € H. Suppose that (a,b) ¢ L. Taking the unique idempotent e € E(Lp)
we obtain b = be p ae = 0, whence p = w by the previous argument. The dual argument yields
the same conclusion in the alternative case where (a,b) ¢ R. O

Theorem 3.2 If S(U) is a divisor of some finite inverse semigroup I, then U divides I also.

Proof: Suppose that ¢ : T — S(U) is a surjective homomorphism from a semigroup 7" which
is a subsemigroup of some finite inverse semigroup I. Let J' denote the major J-class of B
and, again invoking Lemma 2.1, let J be the unique minimum (regular) J-class of T" such that
J¢ = J'. We proceed as in the proof of Proposition 2.2 to conclude that B is a homomorphic
image of C'/Z, a completely 0-simple inverse semigroup, that is a Brandt semigroup over some
group H. That the major J-class J' of C/Z is also a 2n X 2n array (and not some strictly larger
one) is a consequence of Lemma 3.1.

We denote by (i,7)" the member of B which maps i onto j, (i,5 € {1,2,---,n,1,2",--- n'}).

From Lemma 3.1 it follows that (4, )¢~ N.J is a single H-class H, (i) contained in J, and not a
union of several such H-classes. (We shall often write H; j.) Hence ¢ induces a bijection between
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the H-classes within J and those of J’, which are of course singletons (i,7)’. Since ¢ preserves
L and R-classes it follows that J consists of 2n R-classes and 2n L-classes respectively indexed
as follows:

L; = Hl,i U Hg,i U---u Hgn’i, (1 <1< 27’L)

Choose and fix members a and B; (1 < i < k) of T such that a¢ = o’ and B;¢p = b,. Let
¢ € {a, By, Ba,---, By}, and take B! to stand for b;. After the fashion of the proof of Proposition
2.2, suppose that in S(U) we have (i,j) ¢ = (k,1)’. Then since (k,1) <g (i,7)" and J’ is regular
it follows that (7, 7)R(k,[), so that k = 4. This gives:

(H;jc)¢ = H;joch = (i,5)'c = (i,1)) = Hy . (2)

Again, the fact that (H;;c)¢ € J' together with the minimality condition on J ensures that
H; jc € J. Now for any member x € H; ;, xc <g z, and xJzc, whence it follows that xRxc as
no two distinct R-classes within the regular J-class J are comparable. It follows from Green’s
Lemma that right multiplication by c defines a bijection of H;; onto the H-class H; jc, and
since the action induced by ¢ on the H-classes of J’ is one-to-one, it follows that H; jc = H; .
Conversely, if H; jc = H,, it follows from the fact that ¢ is a homomorphism that (¢,7)'¢ =
(i,1)’. Combining this analysis with its dual we see that ¢ acts on the H-classes of J as ¢ acts
on the members of J’ in that the actions are both defined or not defined together, and if defined
they take the form:

H;jc= H;; iff (4,7)'d = (i,1) and cH; j = Hy; iff (i, 5) = (1, 7).

Furthermore, since (j,7)’ is inverse to (4,7)" in J', it follows that in the inverse semigroup I, the
set of inverses of H; j, which we write as Hijjl, is equal to Hj ;.

Now let b € {by,bs,---,bx}, and write B for the chosen member of ¥'¢~!. If j € domb, then
HZ"jB = H(i,j)b’ = Hi,(j~b)" Thus we obtain:

Hi;jBa™'=H, jppa ' = ((Higaoya )™ = (aHjay )" = (Hjpi) ™" = Hijo.

It follows that:

LiBa™'=1L;; if j€ domb and LjBa~'NJ =10 otherwise. (3)

We finish the proof by showing that the semigroup U is a homomorphic image of the subsemi-
group A of I generated by {Bia™', Boa™!, -, Bra~'}. We claim that the mapping whereby
Ba~! — b induces a homomorphism of A onto U. To justify this we are required to check that
if two products = B;,a"'B;,a”! - -Bipa_l, and y = lea_lBan_l x ~qua_1, represent equal
members of A, then their respective images Z and g in U are also equal.



To this end, take any j € {1,2,---,n}, and suppose that j - Z is defined. Then we obtain from
p-fold and ¢-fold use of (3):

whence j- T = j -y for all j € domz; by the same argument, j -y = j - Z for all j € domy, which
yields the required conclusion z =y. O

Corollary 3.3 Let V be a pseudovariety of semigroups generated by a collection of inverse
semigroups. Then

ANICCV=V=IC

Proof: Let U be any semigroup of one-to-one mappings on some finite set. Construct the finite
semigroup S(U) as above. Since S(U) is aperiodic with commuting idempotents, S(U) € V.
Since V is generated by inverse semigroups it also follows that S(U) divides some finite inverse
semigroup I such that I € V. Then by Theorem 3.1 U divides I as well, whence U € V.
Therefore V contains all such semigroups U, whence, by Ash’s Theorem IC C V; the reverse
inclusion is certainly true, so that the corollary is proved.

Corollary 3.4 Let G be a proper pseudovariety of groups, let V(G) be the pseudovariety of
all semigroups the subgroups of which lie in G. Then there exists a finite aperiodic semigroup
with commuting idempotents that does not divide any inverse semigroup in V(QG).

Proof: Take G to be a finite group not in G. Then S(G) € A NIC. However, if S(G) divides a
finite inverse semigroup I, then so does G, and so any such [ is not a member of V(G).

Remark Theorem 3.2 in fact allows us to replace the pseudovariety A by a smaller pseudovariety
and thereby gain a stronger statement than Corollary 3.3. The pseudovariety V in question is
contained in that generated by all ideal extensions of aperiodic Brandt semigroups by zero
semigroups. Now the pseudovariety generated by the class of aperiodic Brandt semigroups is
known to be given by:

(2% = 2°, wyx = ayayz, 2%y” = Y2, (4)

The generators of V are our semigroups S(U) which have the additional property that the
complement of the major J-class forms a zero subsemigroup. It follows from this observa-
tion together with the fact that S(U)? satisfies the equations (4), that V is contained in the
pseudovariety given by:

W = [2? = 23, zyzwry = zyzwryzwey, 22y® = y?2?).

Therefore we may replace A by the pseudovariety W in the statement of Corollary 3.3.
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