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Abstract We construct group codes over two letters (i.e., bases of subgroups of a
two-generated free group) with special properties. Such group codes can be used for
reducing algorithmic problems over large alphabets to algorithmic problems over a
two-letter alphabet. Our group codes preserve aperiodicity of inverse finite automata.
As an application we show that the following problems are PSPACE-complete for
two-letter alphabets (this was previously known for large enough finite alphabets):
The intersection-emptiness problem for inverse finite automata, the aperiodicity prob-
lem for inverse finite automata, and the closure-under-radical problem for finitely
generated subgroups of a free group. The membership problem for 3-generated in-
verse monoids is PSPACE-complete.

Keywords Free groups · Inverse semigroups · Inverse automata

1 Introduction

Codes and coding theory are a well-known and important subject. In its most gen-
eral form, a code over an alphabet A is defined to be a subset C of A∗ such that
any concatenation of elements of C can be uniquely factored, or “decoded”, into a
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sequence of elements of C. Equivalently, the submonoid 〈C〉 of A∗ generated by C

is free with base C, i.e., 〈C〉 is isomorphic to the free monoid C∗. As a reference
see [5]. Some notation: A∗ denotes the free monoid over A, i.e., the set of all finite
sequences (“words”) of elements of A, including the empty word. A+ denotes the
free semigroup over A, i.e., the set of all non-empty finite sequences over A.

For groups one can use the same definition of a code, replacing “free monoid”
by “free group”. In the literature such a code is called a base of a free group. We’ll
call it group code because we will use it in the spirit of information coding. A precise
definition of a group code appears below. First we need some notation: The free group
over a generating set A is denoted by FG(A). We use a copy A−1 = {a−1 : a ∈ A}
of A, disjoint from A, to denote the inverses of the generators. We denote A ∪ A−1

by A±1. For w = a1 . . . an with a1, . . . , an ∈ A±1, the inverse of w is defined to be
w−1 = a−1

n . . . a−1
1 , where (a−1)−1 is always replaced by a for all a ∈ A. The identity

element of FG(A) is the empty word, and is denoted by 1. The elements of FG(A) are
all the words over the alphabet A±1 that are reduced, i.e., that contain no subsegment
of the form a a−1 or a−1a (for any a ∈ A). In general, for any word w ∈ (A±1)∗ we
define the reduction of w to be the word obtained by cancelling all subsegments of
the form w w−1 (with w ∈ (A±1)∗) iteratively as much as possible, and we denote
the resulting reduced word by red(w). For any word w we denote its length by |w|.
See [8, 11, 12] for background on free groups.

Any function f : A → (B±1)∗ can be extended (uniquely) to a group morphism
f (G) : FG(A) → FG(B) defined by f (G)(a

ε1
1 . . . a

εn
n ) = red(f (a1)

ε1 . . . f (an)
εn),

where ε1, . . . , εn ∈ {−1,1}.
Important convention: Throughout this paper we will view the free group FG(A)

as a subset of the free monoid (A±1)∗; namely, FG(A) consists of all the reduced
words over A±1. Of course, FG(A) is only a subset of (A±1)∗, not a submonoid.

Definition 1.1 Let ϕ : A → (B±1)∗ be a map whose extension to a free-group mor-
phism ϕ(G) : FG(A) → FG(B) is injective. Then the image set ϕ(G)(A) (⊂ FG(B) ⊂
(B±1)∗) is called a group code over B , and the elements of ϕ(G)(A) are called code
words. By our convention, FG(B) is a subset of (B±1)∗, and hence a group code is a
set of words.

The injective map ϕ(G)|A : A → FG(B) defined by a 	→ red(ϕ(a)), i.e., the re-
striction of ϕ(G) to A, is called a group encoding of A over B .

The study of free groups and of bases of free groups (i.e., group codes) has a
long history [8, 11, 12]. In particular, Nielsen showed in the 1920s that every finitely
generated subgroup of a free group is itself free and hence has a group code. A little
later in the 1920s Schreier extended Nielsen’s result to all subgroups of a free group.
So, group codes can be finite or infinite. We note the following however:

Proposition 1.2 An infinite group code cannot be a regular language, but can be
deterministic context-free.

Proof If an infinite regular group code existed we could apply the Pumping Lemma,
so the group code would contain all words of the form wn = uxnv (n ∈ N), for some
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fixed words u,x, v, with x non-empty. But then the following non-trivial relation
would hold among code words: w2w

−1
1 w2 = w3.

The example {anba−n : n ≥ 0} over the alphabet {a, b}±1, shows that there are
infinite group codes that are deterministic context-free languages. The set {anba−n :
n ≥ 0} is a well-known Nielsen basis. �

We are interested in group codes over an alphabet of size 2. Just as for the usual
codes (over monoids), the main purpose of group codes is to translate large alphabets
into smaller alphabets. This in turn can be used to show that some problems that are
hard over large alphabets are also hard over a 2-letter alphabet. We will consider the
fixed two-letter alphabet {a, b} and the inverses a−1, b−1 of these letters.

Subgroups of a free group are closely related to inverse monoids and inverse fi-
nite automata [13]. By definition, an inverse finite automaton is a structure A =
(Q,X, δ, q0, qf ) where, according to the standard notation in [9], Q is the set of
states, q0 is the start state, and qf is the accept state. For inverse automata, the input
alphabet is X ∪ X−1 = X±1, although we only mention X explicitly; the designation
“inverse” automatically provides the inverse letters. The state-transition relation δ is
a partial function δ : Q × X±1 → Q, and is required to have the following property:
For each letter x ∈ X, the partial function δ(·, x) : q ∈ Q 	→ δ(q, x) ∈ Q is injective.
Moreover, we require that the partial function δ(·, x−1) be the inverse of δ(·, x). We
represent an inverse finite automaton by its state-graph, in the same way as for ordi-
nary finite automata (see [9]), except that we omit the edges labeled by inverse letters.
More precisely, when δ(p, x) = q (with p,q ∈ Q, x ∈ X) we draw an edge p

x−→q;

we implicitly also have an edge q
x−1−→p, but we don’t draw that edge. See e.g. [6] for

more information on inverse automata.
Let κ : X±1 → ({a, b}±1)∗ be any group encoding and let A be any inverse finite

automaton A with input alphabet X. We define the encoded inverse finite automaton
κ(A), with input alphabet {a, b}, by the following two-step construction:

(1) We replace every edge p
x−→q of A (with x ∈ X) by a path labeled by κ(x);

to do this we introduce |κ(x)| − 1 new states and |κ(x)| new edges. Implicitly, we
now also have the inverses of the new edges, thus obtaining a path from q to p labeled
by κ(x−1). Let κ(A)0 be the nondeterministic finite automaton obtained so far.

(2) Starting from κ(A)0 we apply the fold operation as much as possible. This
means that any two edges (explicitly drawn or implicit) with a common beginning
or end vertex, and with identical label in {a, b}±1 are made equal. For example, if

p
xe−→q1 and p

xe−→q2 are present (with e ∈ {−1,1}) then one folding step makes q1
equal to q2, and the above two edges become equal. See e.g., [6, 13, 14] for more
information on the very classical fold operation. In particular, it is well known that
maximal folding produces a unique resulting automaton, which does not depend on
the folding sequence chosen. We denote this resulting automaton by κ(A); it is an
inverse automaton if A is an inverse automaton. We denote the transition function of
κ(A) by δκ .

In general, for any automaton M we let LM denote the language accepted by M.
For an inverse automaton A = (Q,A, δ, q0, qf ) we consider the language accepted
LA ⊆ (A±1)∗, as well as the group language of A, defined as follows:
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Definition 1.3 The group language of a finite inverse automaton A with input alpha-
bet A consists of the reduced words (∈ (A±1)∗) accepted by A; in other words, the
group language of A is LA ∩ FG(A).

Lemma 1.4 For a finite inverse automaton A with input alphabet A the group lan-
guage LA ∩ FG(A) = red(LA).

Proof This is Lemma 1.1 in [6]. �

Note that by Benois’ theorem [3, 4], red(LA) is also accepted by a finite automa-
ton with alphabet A±1. But this automaton cannot be an inverse automaton, except
in trivial cases. Indeed, an inverse automaton will always accept some non-reduced
words (except when LA is empty or consists of just the empty word).

An automaton with involution over the alphabet (A±1)∗ is an automaton A such

that for every edge p
x−→q with x ∈ (A±1)∗, of A, q

x−1−→p is also an edge of A.
We will always assume that all automata over the alphabet A±1 are automata with
involution. Notice that an automaton with involution is deterministic if and only if it
is an inverse automaton.

Let A be any automaton with involution over the alphabet A±1. The folded au-
tomaton ρ(A) is defined as above by applying some maximal folding sequence to A.
This determines an equivalence relation ∼ on the states of A by defining two states
to be equivalent if they define the same state of ρ(A), that is, if the two states are
folded onto one another. Recall that a Dyck word over (A±1)∗ is a word that re-
duces to the identity word in FG(A). The language of Dyck words is known to be the
smallest language containing the empty word and closed under concatenation and the
conjugation operation w 	→ awa−1, for all a ∈ A±1.

Lemma 1.5 Let A be an automaton with involution over the alphabet (A±1). Then
states p,q of A satisfy p ∼ q if and only if there is a Dyck word w such that w labels
a path from p to q in A.

Proof Assume that the reduced automaton ρ(A) is obtained by a sequence of m

foldings. Let Ai be the automaton obtained after i foldings, 0 ≤ i ≤ m. There is a
corresponding equivalence relation ∼i on the states of A, and ∼0 ⊂ ∼1 ⊂ · · · ⊂ ∼m

= ∼.
We will prove by induction that if i is the least integer such that p ∼i q , then there

is a Dyck word w that labels a path from p to q in A. This is true if i = 0 since then
the empty word labels a path from p to itself.

Assume that if r ∼i s then there is a Dyck word labeling a path from r to s in A;
and assume that p ∼i+1 q , but p �∼i q . Since a folding identifies exactly two states,
the (i + 1)st folding identifies the ∼i class of p with that of q . Let [r]∼i

denote the
∼i equivalence class of a state r of A.

Thus there is a ∼i equivalence class, X, such that there are edges of Ai ,
[p]∼i

x−→X and X
x←−[q]∼i

for some x ∈ A±1. It is clear that every path in Ai lifts,
by “unfolding”, to a path of A. Thus in A there are states p′, q ′ and states r, s ∈ X

such that p′ ∈ [p]∼i
, q ′ ∈ [q]∼i

and p′ x−→ r and s
x←−q ′ in A. Since p ∼i p′ x−→
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r ∼i s
x←− q ∼i q ′ we have, by induction, Dyck words u,v,w that label paths from

p to p′, q ′ to q and r to s respectively in A. Therefore the Dyck word uxwx−1v

labels a path from p to q in A.
Conversely, a straightforward induction on the length of a Dyck word w shows

that if w labels a path from a state p to a state q of A then p ∼ q . �

Corollary 1.6 Let A be an automaton with involution over the alphabet A±1 and let
ρ(A) be the reduced automaton of A. Let p,q be states of A. If w = a1 . . . an, with
ai ∈ A±1,1 ≤ i ≤ n, labels a path from [p]∼ to [q]∼ in ρ(A), then there are Dyck
words u0, . . . , un such that u0a1 . . . anun labels a path from p to q in A. In particular,
red(L(A)) = red(L(ρ(A))).

Proof There are states p = p0,p1, . . . , pn = q of A such that [pi]∼ ai+1−→[pi+1]∼ are
edges of ρ(A). Since paths in ρ(A) lift to paths of A, there are states p′

0,p
′
1, . . . , p

′
n

of A such that pi ∼ p′
i for 0 ≤ i ≤ n, and such that there are edges p′

i

ai+1−→p′
i+1 of A.

By Lemma 1.5, there are Dyck words u0, . . . , un such that pi
ui−→p′

i and the first
assertion of the corollary follows.

It is clear that red(L(A)) ⊆ red(L(ρ(A))) since paths in A fold to paths in ρ(A).
The converse inclusion follows from the first assertion of the corollary if we take w

to be a reduced word. �

We record a special case of the above corollary that is of special interest in this
paper in the proposition below.

Proposition 1.7 Let κ : X → (A±1)∗ be any group encoding, and let κ(M) :
(X±1)∗ → (A±1)∗ be the corresponding monoid morphism. Let A be an inverse fi-
nite automaton with alphabet X and let LA ⊆ (X±1)∗ be the language it accepts.
Then the group language of κ(A) is red(κ(M)(LA)). In other words, red(Lκ(A)) =
red(κ(M)(LA)).

2 Aperiodicity preserving group codes

Some standard definitions: A monoid M is called aperiodic iff xn+1 = xn for all
x ∈ M , for some constant n depending only on M . A finite automaton A is called
aperiodic iff the syntactic monoid of A is aperiodic.

Let Y be a finite subset of FG(A), and let H = 〈Y 〉 be the subgroup of FG(A) gen-
erated by Y . Then we can construct a finite inverse automaton AH with the following
property: A reduced word w ∈ FG(A) belongs to H = 〈Y 〉 iff AH accepts w. In other
words: The group language L(AH )∩FG(A) of AH is H . A construction of AH goes
as follows (see [6], p. 251, for more details): Consider cyclic graphs labeled by the
elements of Y , and glue these cycles together at their origins; if we now pick this
common origin as the start and accept state we obtain a nondeterministic automaton.
Next, we apply maximal folding. The resulting finite inverse automaton is AH . One
can show that it only depends on H (not on the originally given generating set Y ).



164 J.-C. Birget, S.W. Margolis

Definition 2.1 A subgroup H of a group G is closed under radical (also called
“radical-closed”, or “pure”) iff for all g ∈ G and all N > 0 we have: gN ∈ H im-
plies g ∈ H .

The radical of H in G is the set
√

H = {g ∈ G : there exists N > 0 with gN ∈ H }.

Closure under radical for subgroups of a free group is intimately connected to
aperiodicity of inverse automata:

Lemma 2.2 Let Y be a finite subset of FG(A). The subgroup H = 〈Y 〉 of FG(A) gen-
erated by Y is closed under radical iff the finite inverse automaton AH is aperiodic.

Proof This is Theorem 3.1 in [6]. �

Proposition 2.3 (Transitivity of radical closure) Consider subgroups K ≤ H ≤ G

such that K is radical-closed in H and H is radical-closed in G. Then K is radical-
closed in G.

Proof Suppose x ∈ G is such that xn ∈ K , for some integer n ≥ 2. Then xn ∈ H ,
hence x ∈ H , by radical closure of H in G. So we have now x ∈ H and xn ∈ K . This
implies that x ∈ K , by radical closure of K in H . �

Definition 2.4 A group homomorphism h : FG(X) → FG(A) preserves closure un-
der radical iff for every subgroup H of FG(X) we have: H is closed under radical in
FG(X) iff h(H) is closed under radical in FG(A).

A group encoding ϕ : X → (A±1)∗ is said to preserve closure under radical iff the
group homomorphism ϕ(G) : FG(X) → FG(A) determined by ϕ preserves closure
under radical.

Proposition 2.5 Let f : FG(X) → FG(A) be an injective morphism such that the
image group Im(f ) of f is radical-closed in FG(A). Then for all subgroups H of
FG(X) we have: H is radical-closed in FG(X) iff f (H) is radical-closed in FG(A).
In other words:

A group encoding ϕ preserves radical-closure iff Im(ϕ) (reduced in the free group)
is radical-closed.

Proof Suppose f (H) is radical-closed in FG(A). Then f (H) is also radical-closed
in Im(f ). Hence, since f is an isomorphism between the groups FG(X) and Im(f ),
H is radical-closed in FG(X).

Suppose H is radical-closed in FG(X). Then f (H) is radical-closed in Im(f ),
since f is an isomorphism between FG(X) and Im(f ). Hence, since Im(f ) is radical-
closed in FG(A), transitivity of radical closure implies that f (H) is also radical-
closed in FG(A). �

Example (A family of finite aperiodic two-letter group codes of all sizes) Consider
the finite set Cn = {aiba−i : 0 ≤ i ≤ n − 1}, over the alphabet {a, b}±1. It is well
known that this set has the Nielsen property, hence it is a group code (compare with
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Ex. 3, Sect. 3.2, p. 138 in [12]). Moreover, consider the inverse automaton A given
by the following transition table (with state set {1,2, . . . , n}, with 1 as both start and
accept state):

1 2 . . . n − 1 n

a 2 3 . . . n −
b 1 2 . . . n − 1 n

An easy calculation then shows that

red(LA) = red(〈Cn〉),
where “red” refers to reduction in FG({a, b}). In other words, the free group red(〈Cn〉)
is the group language of A.

The syntactic inverse monoid of A is generated by the identity map, corresponding
to the letter b, and the partial map i ∈ {1,2, . . . , n − 1} 	−→ i + 1 (undefined on n),
corresponding to the letter a. One verifies immediately that every element in this
inverse monoid is either the empty map or a (partial) map of the form ϕh,k,j : x ∈
{h, . . . , k} 	−→ x + j (undefined for x �∈ {h, . . . , k}), for some 1 ≤ h ≤ k ≤ n and
−n + 1 ≤ j ≤ n − 1. When j = 0, ϕh,k,j is a (partial) identity, hence an idempotent.
When j �= 0, (ϕh,k,j )

n is the empty map. In any case, (ϕh,k,j )
n+1 = (ϕh,k,j )

n, hence
the monoid is aperiodic.

In summary we have:

Proposition 2.6 For any alphabet X = {x1, x2, . . . , xn} of size n, the map f : xi 	→
ai−1ba−i+1 (1 ≤ i ≤ n) is a group encoding into a two-generated free group that
preserves closure under radical.

By combining the above lemmas and propositions we obtain:

Corollary 2.7 Let f be the group encoding defined in Proposition 2.6. Let
{w1, . . . ,wk} be any finite set of words ⊂ (X±1)∗. Then the subgroup 〈w1, . . . ,wk〉
of FG(X) is closed under radical iff the subgroup 〈f (w1), . . . , f (wk)〉 of FG({a, b})
is closed under radical.

Application: complexity of radical-closure and aperiodicity

Group encodings are log-space computable reductions from large alphabets to small
alphabets. This enables us to show that the problems below about inverse finite au-
tomata or about free groups are PSPACE-complete over two-letter alphabets. Pre-
viously it was known that they are PSPACE-complete over all large enough finite
alphabets ([6], Theorem 6.13).

The aperiodicity problem takes as input a finite automaton and asks whether the
language accepted by this automaton is aperiodic. S. Cho and D. Huynh [7] showed
that the aperiodicity problem for general finite automata is PSPACE-complete, and
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it was shown in [6] (Theorem 6.13) that the problem remains PSPACE-complete for
inverse finite automata (over some fixed finite alphabet).

The radical-closure problem for a free group FG(X) takes as input a list of words
w1, . . . ,wn ∈ FG(X), and asks whether the subgroup 〈w1, . . . ,wn〉 of FG(X) gen-
erated by these words is closed under radical. It was proved in [6] (Theorem 7.1)
that this problem is PSPACE-complete for some fixed finite alphabet X. We can now
strengthen these results:

Theorem 2.8 The radical-closure problem for a free group with two generators, and
the aperiodicity problem for inverse finite automata over a two-letter alphabet, are
PSPACE-complete.

Proof By Corollary 2.7, the group encoding f is a reduction of the radical-closure
problem over any fixed finite alphabet to the radical-closure problem over a two-letter
alphabet. It was shown in [6] (Theorem 3.6) that the radical-closure problem and the
aperiodicity of inverse finite automata are polynomial-time reducible to each other;
in this reduction, the alphabets are preserved.

Finally, as we saw above, the radical-closure problem is PSPACE-complete over
some finite alphabet, and is in PSPACE for all finite alphabets. �

3 Other applications of group codes

As we saw, a group encoding is a log-space computable function from a possibly
large alphabet problems to a possibly small alphabet. This will enables us to show that
the problems below about inverse finite automata or about free groups are PSPACE-
complete over a two- or three-letter alphabet.

The intersection-emptiness problem for finite automata takes as input a list of finite
automata Ai (i = 1, . . . , k) where k is part of the input, and asks whether the intersec-
tion of the languages accepted by these automata is empty. For general deterministic
finite automata this problem was shown to be PSPACE-complete by D. Kozen [10],
and for inverse finite automata PSPACE-completeness was shown in [6] (Proposi-
tion 5.3).

Theorem 3.1 The intersection-emptiness problem for inverse finite automata over a
fixed two-letter alphabet is PSPACE-complete.

Proof Let A1, . . . ,An be inverse finite automata with alphabet A and let L1, . . . ,

Ln ⊆ (A±1)∗ be the respective languages that they accept. Let f : A → (B±1)∗ be
any group encoding with |B| = 2, and let L′

1, . . . ,L
′
n ⊆ (B±1)∗ be the languages

accepted by the inverse finite automata f (A1), . . . , f (An) respectively.
We claim that L1 ∩ · · · ∩ Ln = ∅ iff L′

1 ∩ · · · ∩ L′
n = ∅, which shows that f

reduces the intersection emptiness problem of inverse automata over the alphabet A

to the intersection emptiness problem of inverse automata over the alphabet B .
If L1 ∩ · · · ∩ Ln �= ∅ consider w ∈ L1 ∩ · · · ∩ Ln. By Lemma 1.4 we can assume

that w is reduced. Then, by Proposition 1.7, red(f (w)) ∈ L′
1 ∩ · · · ∩ L′

n; hence L′
1 ∩

· · · ∩ L′
n �= ∅.
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Conversely, if y ∈ L′
1 ∩ · · · ∩ L′

n (�= ∅) we can again assume by Lemma 1.4 that
y is reduced. Then by Proposition 1.7, y ∈ red(f (L1)) ∩ · · · ∩ red(f (Ln)). Since
the function F = red(f (·)) : FG(A) → FG(B) is injective (by definition of a group
code), it has an inverse function F−1 and we have F−1(y) ∈ L1 ∩ · · · ∩ Ln. So,
L1 ∩ · · · ∩ Ln �= ∅.

Finally, as we saw above, the intersection-emptiness problem is PSPACE-complete
over some finite alphabet. So the reduction makes the encoded problems PSPACE-
complete over a two-letter alphabet. �

The membership problem for finite inverse monoids is defined as follows: The
input is a finite list of injective partial maps f0, f1, . . . , fm on a finite set {1, . . . , n}.
Each fi is described by a function table that bijectively maps a subset of {1, . . . , n}
to a subset of {1, . . . , n}; entries in the table where fi is not defined are blank. The
question is whether f0 can be written as a composition of some of the fi and f −1

i (for
1 ≤ i ≤ m); more rigorously, the question is whether f0 belongs to the inverse monoid
generated by {f1, . . . , fm}. Below we will also consider the membership problem for
3-generator finite inverse monoids; here the input consists of four injective partial
maps f0, f1, f2, f3, and the question is the same as before (now with m = 3).

PSPACE-completeness of the membership problem for general functions was
shown by D. Kozen [10]. For permutations the problem is in the complexity class
NC (hence in P), as proved by L. Babai, E. Luks, A. Seress [1]. In [2] M. Beaudry,
P. McKenzie, D. Thérien proved that the membership problem for general functions
(not assumed to be injective) remains PSPACE-complete if the monoid generated by
{f1, . . . , fm} is assumed to be in certain pseudo-varieties, and is NP-complete or in
NP or in P for certain other pseudo-varieties.

Although inverse monoids are similar to groups in many ways, problems about
inverse monoids can be much harder than the corresponding problems about groups:

Theorem 3.2 The membership problem for the class of finite inverse monoids
is PSPACE-complete. The problem remains PSPACE-complete if the finite inverse
monoids are required to have just three generators.

Proof Since we showed that the intersection-emptiness problem is PSPACE-complete
for inverse finite automata with a two-letter input alphabet, we can apply Kozen’s
reduction (see p. 263 of [10]). Kozen’s proof needs a few changes in order to make
his functions injective.

Let Ai = (Qi,�, δi, q
(start)
i , q

(fin)
i ) (for i = 1, . . . , k) be a sequence of inverse

finite automata, with the same two-letter alphabet � = {α,β}. We can assume
that q

(start)
i �= q

(fin)
i (see [6]). As the set acted on by our partial functions we take

S = {o1, o2} ∪ ⋃k
i=1 Qi . The (partial) functions are defined as follows:

For each a ∈ �, define fa : S → S by fa(qi) = δi(qi, a) (for qi ∈ Qi ), and
fa(o2) = o2; however, fa(o1) is undefined. Also, consider the function finit : S → S

defined by finit(q
(start)
i ) = q

(start)
i for i = 1, . . . , k, and finit(o1) = o2, and finit is un-

defined elsewhere. Finally, the “test function” f0 : S → S is defined by f0(q
(start)
i ) =

q
(fin)
i for i = 1, . . . , k, and f0(o1) = o2, and f0 is undefined elsewhere.
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Now it is straightforward to check (exactly as in [10], p. 263) that f0 is generated
by {finit, fα, fβ}±1 iff

⋂k
i=1 LAi

�= ∅. �
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