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Abstract

Paterson showed how to construct an étale groupoid from an inverse semigroup using ideas from
functional analysis. This construction was later simplified by Lenz. We show that Lenz’s construction can
itself be further simplified by using filters: the topological groupoid associated with an inverse semigroup
is precisely a groupoid of filters. In addition, idempotent filters are closed inverse subsemigroups and so
determine transitive representations by means of partial bijections. This connection between filters and
representations by partial bijections is exploited to showhow linear representations of inverse semigroups
can be constructed from the groups occuring in the associated topological groupoid.
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1. Introduction and motivation

In his influential book, Renault [25] showed how to constructC∗-algebras from locally
compact topological groupoids. This can be seen as a far-reaching generalization
of both commutativeC∗-algebras and finite dimensionalC∗-algebras. From this
perspective, topological groupoids can be viewed as ‘noncommutative topological
spaces’. Renault also showed that in addition to groupoids and C∗-algebras, a third
class of structures naturally intervenes: inverse semigroups. Local bisections of
topological groupoids form inverse semigroups and, conversely, inverse semigroups
can be used to construct topological groupoids.

The relationship between inverse semigroups and topological groupoids can be
seen as a generalization of that between (pre)sheaves of groups and their corresponding
display spaces, since an inverse semigroup with central idempotents is a presheaf of
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groups over its semilattice of idempotents. This relationship has been investigated by
a number of authors: notably Paterson [23], Kellendonk [5, 6, 7, 8] and Resende [26].
Our paper is related to Paterson’s work but mediated througha more recent redaction
due to Daniel Lenz [17].

We prove two main results. First, we show that Lenz’s construction of the
topological groupoid can be interpreted entirely in terms of down-directed cosets on
inverse semigroups — these are precisely the filters in an inverse semigroup. Such
filters arise naturally from those transitive actions whichwe term ‘universal’. Second,
we show how representations of an inverse semigroup can be constructed from the
groups occuring in the associated topological groupoid. This is related to Steinberg’s
results on constructing finite-dimensional representations of inverse semigroups using
groupoid techniques described in [34]. The first result proved in this paper has already
been developed further in [13, 14].

Lenz [17] was the main spur that led us to write this paper but in the course of doing
so, we realized that the first four chapters of Ruyle’s unpublished thesis [27] could be
viewed as a major contribution to the aims of this paper in thecase of free inverse
monoids. Ruyle’s work has proved indispensible for our Section 2. In addition, Leech
[16], with its emphasis on the order-theoretic structure of inverse semigroups, can be
seen with mathematical hindsight to be a precursor of our approach. Last, but not least,
Boris Schein in a number of seminars talked about ways of constructing infinitesimal
elementsof an inverse semigroup: the maximal filters of an inverse semigroup can be
regarded as just that [29, 30].

For general inverse semigroup theory we refer the reader to [11]. However, we note
the following. The product in a semigroup will usually be denoted by concatenation
but sometimes we shall use· for emphasis; we shall also use it to denote actions. In an
inverse semigroupS we define

d(s) = s−1s and r (s) = ss−1.

Green’s relationH can be defined in terms of this notation as follows:sH t if and
only if d(s) = d(t) andr (s) = r (t). If e is an idempotent in a semigroupS thenGe will
denote theH-class inS containinge; this is a maximal subgroup. The natural partial
order will be the only partial order considered when we deal with inverse semigroups.
If X ⊆ S thenE(X) denotes the set of idempotents inX. An inverse subsemigroup of
S is said to bewide if it contains all the idempotents ofS. A primitive idempotent e
in an inverse semigroupS with zero is one with the property that iff ≤ e then either
f = e or f = 0. LetS be an inverse semigroup. Theminimum group congruenceσ on
S is defined byaσ b if and only if c≤ a, b for somec ∈ S. This congruence has the
property thatS/σ is a group, and ifρ is any congruence onS for whichS/ρ is a group,
we have thatσ ⊆ ρ. We denote byσ♮ the associated natural homomorphismS→ S/σ.
See [11] for more information on this important congruence.

After an early version of this paper was written, we discovered that Jonathon Funk
and Pieter Hofstra independently arrived at what we call universal actions, and which
they call torsors [1]. They show that these correspond exactly to the points of the
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classifying topos of the inverse semigroup. Further connections between our work
and their work will be explored in an upcoming paper by Funk, Hofstra and the third
author. In particular, we connect the filter construction ofPaterson’s groupoid with the
soberification of the inductive groupoid of the inverse semigroup and the soberification
of the inverse semigroup. We also show that actions of the inverse semigroup on sober
spaces correspond to actions of the soberification of the inductive groupoid on sober
spaces.

2. The structure of transitive actions

In this section, we shall begin by reviewing the general theory of representations
of inverse semigroups by partial permutations. Chapter IV,Section 4 of [24] contains
an exposition of this elementary theory and we refer the reader there for any proofs we
omit. We also incorporate some results by Ruyle from [27] which can be viewed as
anticipating some of the ideas in this paper. We then introduce the concept of universal
transitive actions which provides the connection with the work of Lenz to be explained
in Section 3.

2.1. The classical theory A representationof an inverse semigroup by means of
partial bijections (or partial permutations) is a homomorphism θ : S→ I (X) to the
symmetric inverse monoid on a setX. A representation of an inverse semigroup in this
sense leads to a corresponding notion of an action of the inverse semigroupS on the
setX: the associated action is defined bys · x= θ(s)(x), if x belongs to the set-theoretic
domain ofθ(s). The action is therefore a partial function fromS × X to X mapping
(s, x) to s · x whens · x exists satisfying the two axioms:

(A1) If e · x exists wheree is an idempotent thene · x= x.
(A2) (st) · x exists if and only ifs · (t · x) exists in which case they are equal.

It is easy to check that representations and actions are different ways of describing
the same thing. For convenience, we shall use the words ‘action’ and ‘representation’
interchangeably: if we say the inverse semigroupS acts on a setX then this will imply
the existence of an appropriate homomorphism fromS to I (X). If S acts onX we
shall often refer toX as aspaceor as anS -spaceand its elements aspoints. A subset
Y⊆ X closed under the action is called asubspace. Disjoint unions of actions are again
actions. An action is said to beeffectiveif for eachx ∈ X there iss∈ S such thats · x
exists. We shall assume that all our actions are effective. An effective action of an
inverse semigroupS on the setX induces an equivalence relation∼ on the setX when
we definex∼ y if and only if s · x= y for somes∈ S. The action is said to betransitive
if ∼ is X × X. Just as in the theory of permutation representations of groups, every
representation of an inverse semigroup is a disjoint union of transitive representations.
Thus the transitive representations of inverse semigroupsare of especial significance.

Let X andY beS-spaces. Amorphismfrom X to Y is a functionα : X→ Y such
that s · x exists implies thats · α(x) exists andα(s · x) = s · α(x). A strong morphism
from X to Y is a functionα : X→ Y such thats · x exists if and only if s · α(x)
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exists, and ifs · x exists thenα(s · x) = s · α(x). Bijective strong morphisms are called
equivalences. The proofs of the following two lemmas are straightforward.

Lemma 2.1. (1) Identity functions are (strong) morphisms.
(2) The composition of (strong) morphisms is again a (strong) morphism.

Lemma 2.2. Let S be an inverse semigroup acting on X, Y and Z

(1) The image of a strong morphismα : X→ Y is a subspace of Y.
(2) If X and Y are transitive S -spaces andα : X→ Y is a strong morphism thenα

is surjective.

If we fix an inverse semigroupS there are a number of categories of actions
associated with it: actions and morphisms, actions and strong morphisms, transitive
actions and morphisms, and transitive actions and strong morphisms. As we indicated
above, these two categories of transitive actions will be ofcentral importance.

A congruenceon X is an equivalence relation∼ on the setX such that ifx∼ y
and if s · x exists ands · y exists thens · x∼ s · y. A strong congruenceon X is an
equivalence relation≈ on the setX such that ifx≈ y ands∈ S we have thats · x exists
if and only if s · y exists, and if the actions are defined thens · x≈ s · y.

Strong morphisms and strong congruences are united by a classical first
isomorphism theorem. Recall that thekernelof a function is the equivalence relation
induced on its domain. The proofs of the following are routine.

Proposition 2.3. (1) Letα : X→ Y be a strong morphism. Then the kernel ofα is a
strong congruence.

(2) Let∼ be a strong congruence on X. Denote the∼-class containing the element x
by [x]. Define s· [x] = [s · x] if s · x exists. Then this defines an action S on the
set of∼-congruence classes X/ ∼ and the natural mapν : X→ X/ ∼ is a strong
morphism.

(3) Letα : X→ Y be a strong morphism, let its kernel be∼ and letν : X→ X/ ∼ be
the associated natural map. Then there is a unique injectivestrong morphismβ
from X/ ∼ to Y such thatβν = α.

The above result tells us that the category of transitive representations of a fixed
inverse semigroup with strong morphisms between them has a particularly nice
structure.

We may analyze transitive actions of inverse semigroups in away generalizing
the relationship between transitive group actions and subgroups. To describe this
relationship we need some definitions. IfA⊆ S is a subset then define

A↑ = {s∈ S : a≤ s for somea∈ A}.

If A= A↑ thenA is said to beclosed (upwards).
Let X be anS-space. Fix a pointx ∈ X, and consider the setSx consisting of all

s∈ S such thats · x= x. We callSx thestabilizerof the pointx.
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We do not assume in this paper that homomorphisms of inverse semigroups with
zero preserve the zero. Ifθ : S→ I (X) is a representation that does preserve zero then
the zero ofS is mapped to the empty function ofI (X). Clearly, the empty function
cannot belong to any stabilizer. We say that a closed inversesubsemigroup isproper
if it does not contain a zero. In the theory we summarize below, proper closed inverse
subsemigroups arise from actions where the zero acts as the empty partial function.

Now let y ∈ X be any point. By transitivity, there is an elements∈ S such that
s · x= y. Observe that becauses · x is defined so too iss−1s · x and thats−1s∈ Sx. The
set of all elements ofS which mapx to y is (sSx)↑.

Let H be a closed inverse subsemigroup ofS. Define aleft cosetof H to be a set of
the form (sH)↑ wheres−1s∈ H. We give the proof of the following for completeness.

Lemma 2.4. (1) Two cosets(sH)↑ and(tH)↑ are equal if and only if s−1t ∈ H.
(2) If (sH)↑ ∩ (tH)↑ , ∅ then(sH)↑ = (tH)↑.

Proof. (1) Suppose that (sH)↑ = (tH)↑. Thent ∈ (sH)↑ and sosh≤ t for someh ∈ H.
Thus s−1sh≤ s−1t. But s−1sh∈ H and H is closed and sos−1t ∈ H. Conversely,
suppose thats−1t ∈ H. Thens−1t = h for someh ∈ H and sosh= ss−1t ≤ t. It follows
that tH ⊆ sH and so (tH)↑ ⊆ (sH)↑. The reverse inclusion follows from the fact that
t−1s∈ H sinceH is closed under inverses.

(2) Suppose thata ∈ (sH)↑ ∩ (tH)↑. Thensh1 ≤ a andth2 ≤ a for someh1, h2 ∈ H.
Thuss−1sh1 ≤ s−1a andt−1th2 ≤ t−1a. Hences−1a, t−1a ∈ H. It follows thats−1aa−1t ∈
H, but s−1aa−1t ≤ s−1t. This gives the result by (i) above. �

We denote byS/H the set of all left cosets ofH in S. The inverse semigroupS
acts on the setS/H when we define

a · (sH)↑ = (asH)↑ wheneverd(as) ∈ H.

This defines a transitive action. The following is Lemma IV.4.9 of [24] and
Proposition 5.8.5 of [4].

Theorem 2.5. Let S act transitively on the set X. Then the action is equivalent to the
action of S on the set S/Sx where x is any point of X.

The following is Proposition IV.4.13 of [24].

Proposition 2.6. If H and K are any closed inverse subsemigroups of S then they
determine equivalent actions if and only if there exists s∈ S such that

sHs−1 ⊆ K and s−1Ks⊆ H.

The above relationship between closed inverse subsemigroups is calledconjugacy
and defines an equivalence relation on the set of closed inverse subsemigroups. The
proof of the following is given for completeness.

Lemma 2.7. H and K are conjugate if and only if

(sHs−1)↑ = K and (s−1Ks)↑ = H.
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Proof. Let H andK be conjugate. Lete∈ H be any idempotent. Thenses−1 ∈ K. But
ses−1 ≤ ss−1 and soss−1 ∈ K. Similarly s−1s∈ H. We have thatsHs−1 ⊆ K and so
(sHs−1)↑ ⊆ K. Let k ∈ K. Thens−1ks∈ H ands(s−1ks)s−1 ∈ sHs−1 ands(s−1ks)s−1 ≤

k. Thus (sHs−1)↑ = K, as required. The converse is immediate. �

Thus to study the transitive actions of an inverse semigroupsS it is enough to study
the closed inverse subsemigroups ofS up to conjugacy.

The following result is motivated by Lemma 2.16 of Ruyle’s thesis [27] and brings
morphisms and strong morphisms back into the picture.

Theorem 2.8. Let S be an inverse semigroup acting transitively on the setsX and Y,
and let x∈ X and y∈ Y. Let Sx and Sy be the stabilizers in S of x and y respectively.

(1) There is a (unique) morphismα : X→ Y such thatα(x) = y if and only if Sx ⊆ Sy.
(2) There is a (unique) strong morphismα : X→ Y such thatα(x) = y if and only if

Sx ⊆ Sy and E(Sx) = E(Sy).

Proof. (1) We begin by proving uniqueness. Letα, β : X→ Y be morphisms such
that α(x) = β(x) = y. Let x′ ∈ X be arbitrary. By transitivity there existsa ∈ S such
thatx′ = a · x. By the definition of morphisms we have thata · α(x) exists anda · β(x)
exists and that

α(x′) = α(a · x) = a · α(x)

and
β(x′) = β(a · x) = a · β(x).

But by assumptionα(x) = β(x) = y and soα(x′) = β(x′). It follows thatα = β.
Let α : X→ Y be a morphism such thatα(x) = y. Let s∈ Sx. Then s · x exists

and s · x= x. By the definition of morphism, it follows thats · α(x) exists and that
α(s · x) = s · α(x). But s · x= x and soα(x) = s · α(x). Hences · y= y. We have
therefore proved thats∈ Sy, and soSx ⊆ Sy.

Suppose now thatSx ⊆ Sy. We have to define a morphismα : X→ Y such that
α(x) = y. We start by definingα(x) = y. Let x′ ∈ X be any point inX. Thenx′ = a · x for
somea ∈ S. We need to show thata · y exists. Sincea · x exists we know thata−1a · x
exists and this is equal tox. It follows thata−1a ∈ Sx and soa−1a ∈ Sy, by assumption.
Thusa−1a · y exists and is equal toy. But from the existence ofa−1a · y we can deduce
the existence ofa · y. We would therefore like to defineα(x′) = a · y. We have to
check that this is well-defined. Suppose thatx′ = a · x= b · x. Thenb−1a · x= x and
sob−1a ∈ Sx. By assumption,b−1a ∈ Sy and sob−1a · y= y. Thusbb−1a · y= b · y and
bb−1a · y= bb−1 · (a · y) = a · y. Thusa · y= b · y. It follows thatα is a well-defined
function mappingx to y. It remains to show thatα is a morphism. Suppose that
s · x′ is defined. By assumption, there existsa ∈ S such thatx′ = a · x. By definition
α(x′) = a · y. We have thats · x′ = s · (a · x) = sa· x. By definitionα(s · x′) = sa· y.
But sa· y= s · (a · y) = s · α(x′). Henceα(s · x′) = s · α(x′), as required.

(2) We begin by proving uniqueness. Letα, β : X→ Y be strong morphisms such
that α(x) = β(x) = y. Let x′ ∈ X be arbitrary. By transitivity there existsa ∈ S such



[7] Etale groupoids 7

that x′ = a · x. By the definition of strong morphisms we have thata · α(x) exists and
a · β(x) exists and that

α(x′) = α(a · x) = a · α(x)

and
β(x′) = β(a · x) = a · β(x).

But by assumptionα(x) = β(x) = y and soα(x′) = β(x′). It follows thatα = β.
Next we prove existence. Suppose thatSx ⊆ Sy andE(Sx) = E(Sy). We have to

define a strong morphismα : X→ Y such thatα(x) = y. We start by definingα(x) = y.
Let x′ ∈ X be any point inX. Thenx′ = a · x for somea ∈ S. We need to show that
a · y exists. Sincea · x exists we know thata−1a · x exists and this is equal tox. It
follows thata−1a ∈ Sx and soa−1a ∈ Sy, by assumption. Thusa−1a · y exists and is
equal toy. But from the existence ofa−1a · y we can deduce the existence ofa · y.
We therefore defineα(x′) = a · y. We have to check that this is well-defined. Suppose
that x′ = a · x= b · x. Thenb−1a · x= x and sob−1a ∈ Sx. By assumption,b−1a∈ Sy

and sob−1a · y= y. Thusbb−1a · y= b · y andbb−1a · y= bb−1 · (a · y) = a · y. Thus
a · y= b · y. It follows thatα is a well-defined function mappingx to y.

It remains to show thatα is a strong morphism. Suppose thats · x′ is defined. By
assumption, there existsa ∈ S such thatx′ = a · x. By definitionα(x′) = a · y. We have
that s · x′ = s · (a · x) = sa· x. By definitionα(s · x′) = sa· y. But sa· y= s · (a · y) =
s · α(x′). Henceα(s · x′) = s · α(x′).

Now suppose thatα(x′) = y′ and s · y′ exists. We shall prove thats · x′ exists.
Observe thats−1s · y′ exists and that it is enough to prove thats−1s · x′ exists. Let
x′ = u · x, which exists since we are assuming that our action is transitive. Then
by what we proved above we have thaty′ = u · y. Observe thatu−1(s−1s)u · y= y
and sou−1(s−1s)u ∈ E(Sy). It follows by our assumption thatu−1(s−1s)u ∈ E(Sx) and
so u−1(s−1s)u · x= x. It readily follows thats−1s · x′ exists, and sos · x′ exists, as
required.

We now prove the converse. Letα : X→ Y be a strong morphism such that
α(x) = y. Let s∈ Sx. Then s · x exists ands · x= x. By the definition of strong
morphism, it follows thats · α(x) exists and thatα(s · x) = s · α(x). But s · x= x and so
α(x) = s · α(x). Hences · y= y. We have therefore proved thats∈ Sy, and soSx ⊆ Sy.
Let e∈ E(Sy). Thene · α(x) exists. Butα is a strong morphism and soe · x exists.
Clearlye∈ E(Sx). It follows thatE(Sx) = E(Sy). �

The following result is adapted from Lemma 1.9 of Ruyle [27] and will be useful
to us later.

Lemma 2.9. Let F be a closed inverse subsemigroup of the semilattice of idempotents
of the inverse subsemigroup S . Define

F = {s∈ S : s−1Fs⊆ F, sFs−1 ⊆ F}.

ThenF is a closed inverse subsemigroup of S whose semilattice of idempotents is F.
Furthermore, if T is any closed subsemigroup of S with semilattice of idempotents F
then T⊆ F.
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Proof. Clearly the setF is closed under inverses. Lets, t ∈ F. We calculate

(st)−1F(st) = t−1(s−1Fs)t ⊆ t−1Ft ⊆ F

and
(st)F(st)−1 = s(tFt−1)s−1 ⊆ sFs−1 ⊆ F.

Thusst∈ F. It follows thatF is an inverse subsemigroup ofS.
Let e∈ F and f ∈ F. Then by assumptione f ∈ F. But e f ≤ e andF is a closed

inverse subsemigroup of the semilattice of idempotents andsoe∈ F. ThusE(F) = F.
Let s≤ t wheres∈ F. Thens= ss−1t = f t. Let e∈ F. Then

s−1es= t−1 f e f t= t−1e f t≤ t−1et.

Now s−1es, t−1et are idempotents ands−1es∈ F thust−1et∈ F, becauseF is a closed
inverse subsemigroup of the semilattice of idempotents. Similarly tet−1 ∈ F. It follows
thatt ∈ F and soF is a closed inverse subsemigroup ofS.

Finally, letT be a closed inverse subsemigroup ofS such thatE(T) = F. Let t ∈ T.
Then for eache∈ F we have thatt−1et, tet−1 ∈ F. ThusT ⊆ F. �

A closed inverse subsemigroupT of S will be said to befully closed if T =
E(T). Closed inverse subsemigroups of the semilattice of idempotents of an inverse
semigroup are called filtersin E(S). Observe the emphasis on the word ‘in’. A filter
in E(S) is said to beprincipal if it is of the form e↑. We denote byFE(S) the set of
all closed inverse subsemigroups ofE(S) and call it thefilter space of the semilattice
of idempotents of S. This filter space is a poset when we defineF ≤ F′ if and only if
F′ ⊆ F so that, in particular,e↑ ≤ f ↑ if and only if e≤ f .

Let F be a filter inE(S). ThenF↑ is a closed inverse subsemigroup containingF
and clearly the smallest such inverse subsemigroup. On the other hand, by Lemma 2.9,
F is the largest closed inverse subsemigroup with semilattice of idempotentsF. We
have therefore proved the following.

Lemma 2.10. The semilattice of idempotents of any closed inverse subsemigroup H of
an inverse semigroup S is a filter F in E(S) and F↑ ⊆ H ⊆ F. Thus F↑ is the smallest
closed inverse subsemigroup with semilattice of idempotents F andF is the largest.

Proposition 2.11. Let S be an inverse semigroup and let G= S/σ. Then there is an
inclusion-preserving bijection between the wide closed inverse subsemigroups of S
and the subgroups of G.

Proof. Let E(S) ⊆ T ⊆ S be a wide inverse subsemigroup.1 Then the image ofT in
G is a subgroup since inverse subsemigroups map to inverse subsemigroups under
homomorphisms. Suppose thatT andT′, where alsoE(S) ⊆ T′ ⊆ S, have the same
image inG. Let t ∈ T. Thenσ♮(t) = σ♮(t′) for somet′ ∈ T′. Thusa≤ t, t′ from the
definition ofσ. But bothT andT′ are order ideals ofS and soa ∈ T ∩ T′. Thus
1 Are you lettingE(S) or T or S be a wide inverse semigroup?
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a≤ t anda ∈ T′ andT′ is closed thust ∈ T′. We have shown thatT ⊆ T′. The reverse
inclusion follows by symmetry. IfH is a subgroup ofG then the full inverse image
of H underσ♮ is a wide inverse subsemigroup ofS. This defines an order-preserving
map going in the opposite direction. It is now clear that the result holds. �

The following is a special case of Lemma 2.17 of [27]. We include it for interest
since we shall not use it explicitly.

Lemma 2.12. Let F be a filter in E(S) in the inverse semigroup S .

(1) The intersection of any family of closed inverse subsemigroups with common
semilattice of idempotents F is again a closed inverse subsemigroup with
semilattice of idempotents F.

(2) Given any family of closed inverse subsemigroups with common semilattice of
idempotents F there is a smallest closed inverse subsemigroup with semilattice
F which contains them all.

2.2. Universal and fundamental transitive actions We shall now define two
special classes of transitive actions that play a decisive role in this paper. LetS be an
inverse semigroup and letH be a closed inverse subsemigroup ofS. By Lemma 2.10,
we have that

E(H)↑ ⊆ H ⊆ E(H)

whereE(H) is a filter in E(S). We shall use this observation as the basis of two
definitions, the first of which is by far the most important. Weshall say that a transitive
S-spaceX is universalif the stabilizer of a point ofX is the closureF↑ for some filter
F of E(S), andfundamentalif the stabilizer of a point ofX is F for some filterF in
E(S). Both definitions are independent of the point chosen.

Lemma 2.13. (1) A strong morphism between universal transitive actions is an
equivalence.

(2) Any strong morphism with domain a fundamental transitive action and codomain
a transitive action is an equivalence.

Proof. (1) Let X and Y be universal transitive spaces. Letα : X→ Y be a strong
morphism. Choosex ∈ X. ThenSx ⊆ Sα(x) andE(Sx) = E(Sα(x)). But the actions are
universal and so all stabilizers are the full closures of their semilattices of idempotents.
ThusSx = Sα(x) and soα is an equivalence by Theorem 2.8(2).

(2) Let X andY be transitive spaces whereX is fundamental and letα : X→ Y be
a strong morphism. Choosex ∈ X and lety= α(x). ThenSx ⊆ Sy andE(Sx) = E(Sy)
by Theorem 2.8(2). ButSx is fundamental and soSx = Sy. We may deduce from
Theorem 2.9(2) that there is a unique strong morphism fromY to X mappingy to x. It
follows thatα is an equivalence. �

If α : X→ Y is a strong morphism between two transitiveS-spaces, we shall say
thatY is strongly coveredby X. The importance of universal actions arises from the
following result.
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Proposition 2.14. Let S be an inverse semigroup.

(1) Each transitive action of S is strongly covered by a universal one.
(2) Each transitive action of S strongly covers a fundamental one.

Proof. (1) Let Y be an arbitrary transitiveS-space. Choose a pointy ∈ Y. Let
F = E(Sy) and putH = F↑. ThenE(H) = E(Sy) andH ⊆ Sy. PutX = S/H and choose
the pointx in X to be the cosetH. Then there is a unique strong morphismα : X→ Y
such thatα(x) = y by Theorem 2.8(2) which is surjective by Lemma 2.2(2) andX is a
universal transitive space by construction.

(2) Let Y be an arbitrary transitiveS-space. Choose a pointy ∈ Y. Let F = E(Sy)
and putH = F. Thus by Lemma 2.10 we have thatSy ⊆ H andE(Sy) = E(H). Put
X = S/H and choose the pointx in X to be the cosetH. Then there is a unique strong
morphismα : Y→ X such thatα(y) = x by Theorem 2.8(2) which is surjective by
Lemma 2.2(2) andX is a fundamental transitive space by construction. �

Theorem 2.15. Let X be a universal, transitive S -space and let x be a point ofX. Put
Sx = F↑, where F is a filter in E(S) and GF = F/σ. Then there is an order-preserving
bijection between the set of strong congruences on X and the set of subgroups of GF.

Proof. Put G=GF. By Proposition 2.11, there is an order-preserving bijection
between the closed inverse subsemigroupsH such thatF↑ ⊆ H ⊆ F and the subgroups
of G. Thus we need to show that there is a bijection between the setof strong
congruences onX and the set of closed wide inverse subsemigroups ofF. Observe
that we use the fact that strong morphisms between transitive spaces are surjective by
Lemma 2.2(2).

Let∼ be a strong congruence defined onX. Then by Proposition 2.3 it determines a
strong morphismν : X→ X/ ∼. For x given in the statement of the theorem, we have
that the stabilizer of [x], the ∼-class containingx, is a closed inverse subsemigroup
Hx such thatF↑ ⊆ Hx ⊆ F by Theorem 2.8(2). We have thus defined a function from
strong congruences onX to the set of closed wide inverse subsemigroups ofF.

Suppose that∼1 and∼2 are two strong congruences onX that map to the same
closed wide inverse subsemigroup. Denote the∼i equivalence class containingx by
[x] i and letνi : X→ X/ ∼i be the natural map. Letx ∈ X. Then the stabilizer of [x]1 and
the stabilizer of [x]2 are the same: namelyH. Suppose thatx∼1 y. Thus [x]1 = [y]1.
SinceX is an universal transitiveS-space there isb ∈ B such thatb · x= y. It follows
that b · [x]1 = [y]1 = [x]1 and sob ∈ H. By assumptionb · [x]2 = [x]2. But ∼2 is a
strong congruence and soy= b · x∼2 x and sox∼2 y. A symmetrical argument shows
that∼1 and∼2 are equal. Thus the correspondence we have defined is injective. We
now show that it is surjective.

Let F↑ ⊆ H ⊆ F be such a closed wide inverse subsemigroup. ThenY = H/S is a
transitiveS-space. Choose the pointy= H ∈ Y. Then by Theorem 2.8(2) there is a
unique strong morphismαH : X→ Y such thatα(x) = y. The kernel ofαH, which we
denote by∼H, is a strong congruence defined onX by Proposition 2.3, and the kernel
of αH maps toH. �
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Observe that the above theorem requires a chosen point inX.

2.3. A topological interpretation Let S be an inverse semigroup andX anS-space.
Define anS-labeled graphG(X) whose vertices are X and whose edges go fromx to
sx, wherex ∈ X, s∈ S andsx is defined, with labelson this edge in this case. There is
an obvious involution on the graph by inversion, so this is a graphin the sense of Serre.
Observe that the directed graphG(X) is connected if and only ifX is transitive. From
now on we shall deal only with transtive actions and so our graphs will be connected.

Thestar of a vertexx in G(X) is the set of all edges that start atx. Now letG and
H be arbitrary graphs. A morphismf from G to H is called animmersionif it induces
an injection from the star set ofx to that of f (x) for each vertexx of G. The morphism
f is called acoverif it induces a bijection between such star sets. The following is the
key link between the algebraic and the topological interpretations of inverse semigroup
actions.

Lemma 2.16. Let S be an inverse semigroup and let X and Y be transitive S -spaces.
There is a morphism from X to Y if and only if there is a label preserving immersion
from G(X) to G(Y), and there is a strong morphism from X to Y if and only if there is
a label preserving cover from G(X) to G(Y).

Proof. Let α : X→ Y be a morphism of transitiveS-spaces. Consider the directed
edgex

s
→ y in the graphG(X). Thens · x= y. Sinceα is a morphism, we have that

α(s · x) = s · α(x) = α(y). We may therefore definef : G(X)→G(Y) by mapping the
edgex

s
→ y to the edgeα(x)

s
→ α(y). It is immediate that this is an immersion. The

fact that immersions arise from morphisms is now straightforward to prove. Finally,

suppose thatα is a strong morphism. Letα(x)
s
→ α(y) be an edge. This means that

s · α(x) = α(y). Butα is a strong morphism and sos · x exists andα(s · x) = s · α(x). It
follows that the graph map is a cover. �

For a more complete account of the connection between immersions, inverse
monoids and inverse categories see [20, 33].

3. Theétale groupoid associated with an inverse semigroup

In Section 2, we investigated the relationship between transitive actions of an
inverse semigroup and closed inverse subsemigroups. We found that the universal
transitive actions played a special role. We shall show in this section how these
universal transitive actions, via their stabilizers, leadto the inverse semigroup
introduced by Lenz and thence to Paterson’s étale groupoid.

3.1. The inverse semigroup of cosetsK(S) We begin by reviewing a construction
studied by a number of authors [31, 16, 10, 11]. A subsetA⊆ S of an inverse
semigroup is called anatlas if A= AA−1A. A closed atlas is precisely a coset of a
closed inverse subsemigroup ofS [10]. We shall therefore refer to a closed atlas as a
coset. Observe that the intersection of cosets, if nonempty, is a coset. The set of cosets
of S is denoted byK(S). There is a product onK(S), denoted by⊗, and defined as
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follows: if A, B∈ K(S) thenA⊗ B is the intersection of all cosets ofS that contain
the setAB. More explicitly if X = (aH)↑, wherea−1a ∈ H, and Y= (bK)↑, where
b−1b ∈ K, then X ⊗ Y = (ab〈b−1Hb, K〉)↑ where 〈C, D〉 is the inverse subsemigroup
of S generated byC ∪ D. In fact, K(S) is an inverse semigroup called the(full)
coset semigroup of S. Note that its natural partial order is reverse inclusion. Thus
S is the zero element ofK(S). The idempotents ofK(S) are just the closed inverse
subsemigroups ofS.

There is an embeddingι : S→K(S) that mapss to s↑. Observe now that if
A ∈ K(S) then for eachs∈ A we have thats↑ ⊆ A and soA≤ s↑. It follows readily from
this thatA is in fact the meet of the set{s↑ : s∈ A}. More generally, every nonempty
subset ofK(S) has a meet and so the inverse semigroupK(S) is meet complete. The
mapι : S→K(S) is universal for maps to meet complete inverse semigroups.Thus
the inverse semigroupK(S) is themeet completionof the inverse semigroupS [16].
It is worth noting that the category of meet complete inversesemigroups and their
morphisms is not a full subcategory of the category of inverse semigroups and their
homomorphisms and so the meet completion ofK(S) isK(K(S)) and not justK(S).

At this point, we want to highlight a class of transitive actions that will play an
important role both here and in Section 4. LetT be an inverse semigroup and lete be
any idempotent inT. We denote byLe theL-class containinge. The setLe therefore
consists of all elementst ∈ T such thatd(t) = e. Define a partial function fromT × Le

to Le by a · x exists if and only ifd(ax) = e. This defines a transitive action ofT on
Le called the(left) Schützenberger action determined by the idempotent e. This is the
transitive action determined by the closed inverse subsemigroupe↑.

The structure ofK(S) is inextricably linked to the structure of transitive actions of
S. The following was first stated in [10].

Proposition 3.1. Let S be an inverse semigroup. Every transitive representation of S
is the restriction of a Schützenberger representation ofK(S).

Proof. Let H be a closed inverse subsemigroup ofS. In the inverse semigroupK(S),
theL-classLH of the idempotentH consists of allA∈ K(S) such thatA−1 ⊗ A= H.
Let a ∈ A. ThenA= (aH)↑. It follows thatLH consists of precisely the left cosets of
H in S. Let A ∈ LH and consider the products↑ ⊗ A. Then this again belongs toLH

precisely when (sa)−1sa∈ H and is equal to (saH)↑. It follows that via the mapι the
inverse semigroup acts onLH precisely as it acts onS/H. �

If H andK are two idempotents ofK(S) then they areD-related if and only if there
existsA ∈ K(S) such thatA−1 ⊗ A= H andA⊗ A−1 = K iff H andK are conjugate.
Thus theD-classes ofK(S) are in bijective correspondence with the conjugacy classes
of closed inverse subsemigroups.

We may, in some sense, ‘globalize’ the connection betweenK(S) and transitive
actions ofS. Denote byO(S) the category whose objects are theright S-spacesH/S
and whose arrows are the (right) morphisms. We now recall thefollowing construction
[12]. Let S be an inverse semigroup. We can construct fromS a right cancellative
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category, denotedR(S), whose elements are pairs (s, e) ∈ S × E(S) such thatd(s) ≤ e.
We regard (s, e) as an arrow frome to r (s) and define a product by (s, e)(t, f ) = (st, e).

The following generalizes Example 2.2.3 of [12].

Proposition 3.2. The categoryO(S) is isomorphic to the categoryR(K(S)).

Proof. We observe first that a morphism with a transitive space as itsdomain is
determined by its value on any element of that domain. Letφ : U/S→ V/S be
a morphism. Thenφ is determined by the value taken byφ(U) = (Va)↑. Now
the stabilizerSU of U is U itself and the stabilizerS(Va)↑ is (a−1Va)↑. Thus by
Theorem 2.8, we have thatU ⊆ (a−1Va)↑. Conversely, if we are given thatU ⊆
(a−1Va)↑ then we can define a morphism fromU/S to V/S by U 7→ (Va)↑. There
is therefore a bijection between morphisms fromU/S to V/S and inclusionsU ⊆
(a−1Va)↑. We shall encode the morphismφ by the triple (V, (Va)↑, U). Letψ : V/S→
W/S be a morphism encoded by the triple (W, (Wb)↑, V). The triple encodingψφ is
of the form (W, (Wc)↑, U) whereψφ(U) = (Wc)↑. Thus (W, (Wb)↑, V)(V, (Va)↑, U) =
(W, (Wba)↑, U). The product (Wb)↑ ⊗ (Va)↑ in K(S) is precisely (Wba)↑. We now
recall that the natural partial order inK(S) is reverse inclusion. It follows that the
triple (V, (Va)↑, U) can be identified with the pair ((Va)↑, U) whered((Va)↑) ≤ U. We
regard ((Va)↑, U) as an arrow with domainU and codomainV. The result now follows.
�

3.2. The inverse semigroup of filtersL(S) We shall now describe an inverse
subsemigroup ofK(S). A subsetA⊆ S of an inverse semigroupS is said to be(down)
directedif it is nonempty and, for eacha, b ∈ A, there existsc ∈ A such thatc≤ a, b.
Closed directed sets in a poset are calledfilters. When this definition is applied to
semilattices then we recover the definition given earlier.

Lemma 3.3. The closed directed subsets are precisely the directed cosets.

Proof. A directed coset is certainly a closed directed subset. LetA be a closed directed
subset. We prove that it is an atlas. ClearlyA⊆ AA−1A. Thus we need only check that
AA−1A⊆ A. Leta, b, c ∈ A. Then sinceA is directed there isd ∈ A such thatd ≤ a, b, c.
Thusd= dd−1d ≤ ab−1c and soab−1c ∈ A sinceA is also closed. �

Lemma 3.4. A closed inverse subsemigroup T of an inverse semigroup S is directed if
and only if there is a filter F⊆ E(S) such that T= F↑.

Proof. Suppose thatT = F↑. Let a, b ∈ T. Thene≤ a and f ≤ b for somee, f ∈ F.
But F is a filter in the semilattice of idempotents and so closed under multiplication.
Thuse f ∈ F. But thene f ≤ a, b and soT is directed.

Let T be a closed directed inverse subsemigroup. PutF = E(S). Let e, f ∈ F. Now
T is directed and so there isi ∈ T such thati ≤ e, f . Thus i is an idempotent. But
i ≤ e f ≤ e, f and so, sinceF is closed, we have thate f ∈ F. It follows thatF is a filter
in E(S). ClearlyF↑ ⊆ T. Let t ∈ T. Thent−1t ∈ T sinceT is an inverse subsemigroup.
But T is directed so there existsj ≤ t, t−1t. But then j is an idempotent and soj ≤ t
gives thatt ∈ F↑. HenceT ⊆ F↑. ThusT = F↑, as required. �
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Lemma 3.5. If A and B are both directed cosets then(AB)↑ is the smallest directed
coset containing AB; it is also the smallest coset containing AB.

Proof. The set (AB)↑ is closed so we need only show it is directed. Letab, a′b′ ∈ AB.
Then there existsc≤ a, a′ wherec ∈ A and d≤ b, b′ whered ∈ B. It follows that
cd∈ ABandcd≤ ab, a′b′. Thus the set is directed.

Now let X be any coset containingAB. ThenX is closed and so (AB)↑ ⊆ X. �

The subset ofK(S) consisting of directed cosets is denoted byL(S).

Proposition 3.6. Let S be an inverse semigroup.

(1) L(S) is an inverse subsemigroup ofK(S).
(2) The directed cosets of S are precisely the cosets of the closed directed inverse

subsemigroups of S .
(3) Each element ofK(S) is the meet of a subset ofL(S) contained in anH-class

ofL(S).

Proof. (1) If A, B∈ K(S) then their product is the intersection of all cosets containing
AB. But if A, B∈ L(S) then by Lemma 3.5 this intersection will also belong toL(S).
Closure under inverses is immediate. ThusL(S) is an inverse subsemigroup ofK(S).

(2) If A ∈ K(S) thenA= (aH)↑ = (a)↑ ⊗ H whereH = A−1 ⊗ A anda ∈ A. ThusA
is directed if and only ifH is directed.

(3) Let A ∈ K(S) be a coset. Define a relation∼ on the setA by a∼ b if and only
if there existsc ∈ A such thatc≤ a, b. We show that∼ is an equivalence relation
on A. Clearly ∼ is reflexive and symmetric. It only remains to prove that it is
transitive. Leta∼ b andb∼ c. Then there existsx≤ a, b andy≤ b, c wherex, y ∈ A.
In particular,x, y≤ b. Thusz= xy−1y= yx−1x is the meet ofx andy. SinceA is a coset
xy−1y, yx−1x ∈ A. It follows thatz≤ a, c. Denote the blocks of the partition induced
by ∼ on A by Ai wherei ∈ I . Each block is directed by construction and easily seen
to be closed. It follows that each block is a directed coset and soAi ∈ L(S). We have
therefore proved thatA=

∧
i∈I Ai .

It remains to show thatAi H Aj . To do this it is enough to computeA−1
i ⊗ Ai

andAi ⊗ A−1
i and observe that these idempotents do not depend on the suffix i. We

may write A= (aH)↑ for some closed inverse subsemigroupH of S and elementa
such thatd(a) ∈ H. Put F = E(H) the semilattice of idempotents ofH. Put K = F↑

andL = (aKa−1)↑, both closed directed inverse subsemigroups ofS and so elements
of L(S). We prove thatK = A−1

i ⊗ Ai andL = Ai ⊗ A−1
i . From A≤ Ai we have that

H = A−1 ⊗ A≤ A−1
i ⊗ Ai and (aHa−1)↑ ≤ Ai ⊗ A−1

i . By constructionH ≤ K and K is
in fact the smallest idempotent ofL(S) aboveH. It follows that K ≤ A−1

i ⊗ Ai and
similarly L ≤ Ai ⊗ A−1

i . It remains to show that equality holds in each case which
means checking thatK ⊆ A−1

i ⊗ Ai andL ⊆ Ai ⊗ A−1
i .

Let k ∈ K andai ∈ Ai . Now k ∈ K ⊆ H andai ∈ Ai ⊆ A. Thusaik ∈ A. But aik≤ ai .
Now if aik ∈ Aj then by closureai ∈ Aj and so we must have thataik ∈ Ai . Thus
ka−1

i ai ∈ A−1
i ⊗ Ai and so by closurek ∈ A−1

i ⊗ Ai , as required.
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Let l ∈ L. Let ai ∈ Ai . Then A= (aiH)↑. Thus L = (aiKa−1
i )↑. It follows that

a−1
i lai ∈ K and soaia−1

i l ∈ aiKa−1
i giving l ∈ Ai ⊗ A−1

i .
An alternative way of proving this result is to observe thatK is a closed inverse

subsemigroup ofH and soH can be written as a disjoint union of some of the left
cosets ofK. We can then use this decomposition to writeA itself as a disjoint union of
left cosets ofK. �

We say that an inverse semigroupS is meet completeif every nonempty subset of
S has a meet. Meet completions of inverse semigroups are discussed at the end of
Section 1.4 of [11], [10] and most importantly in [16]. The meet completion of an
inverse semigroupS is in factK(S) [16].

The inverse semigroupS is said to have alldirected meetsif it has meets of all
nonempty directed subsets. The result below shows thatL(S) is thedirectedmeet
completion ofS in the same way thatK(S) is the meet completion.

Proposition 3.7. Let S be an inverse semigroup. ThenL(S) is the directed meet
completion of S .

Proof. We have the embeddingι : S→L(S) and once again eachA ∈ L(S) is the join
of all the s↑ wheres∈ A. This time the set over which we are calculating the meet is
directed. LetA = {Ai : i ∈ I } be a directed subset ofK(S). Thus for each pair of cosets
Ai andAj there is a cosetAk such thatAk ≤ Ai , Aj . PutA=

⋃
i∈I Ai . It is clearly a closed

subset. Ifa, b ∈ A thena ∈ Ai andb ∈ Aj for somei and j. By assumptionAi , Aj ⊆ Ak

for somek. Thusa, b ∈ Ak. But Ak is a directed subset and so there existsc ∈ Ak such
thatc≤ a, b. It follows thatA is a closed and directed subset and so is a directed coset
by Lemma 3.3. It is now immediate thatA is the meet of the setA. Let θ : S→ T be
a homomorphism to an inverse semigroupT which has all meets of directed subsets.
Defineψ : K(S)→ T by ψ(A) =

∧
θ(A). Thenψ is a homomorphism and the unique

one such thatψι = θ. �

In [17], Lenz constructs an inverse semigroupO(S) from an inverse semigroupS,
which is the basis for his étale groupoid associated withS. The key result for our paper
is the following.

Theorem 3.8. The inverse semigroupL(S) is isomorphic to Lenz’s semigroupO(S).

Proof. Let F = F (S) denote the set of directedsubsetsof S. For A, B∈ F define
A≺ B if and only if for eachb ∈ B there existsa ∈ A such thata≤ b. This is a preorder.
The associated equivalence relation is given byA∼ B if and only if A≺ B andB≺ A.
We now make two key observations. (1)A∼ A↑. It is easy to check thatA↑ is directed.
By definitionA≺ A↑, whereasA↑ ≺ A is immediate. (2)A↑ ∼ B↑ if and only if A↑ = B↑.
There is only one direction needs proving. Suppose thatA↑ ∼ B↑. Let a ∈ A↑. Then
B↑ ≺ A↑ and so there isb ∈ B such thatb≤ a. But thena ∈ B↑. ThusA↑ ⊆ B↑. The
reverse inclusion is proved similarly. By (1) and (2), it follows thatA∼ B if and only
if A↑ = B↑. As a set,O(S) = F (S)/ ∼. We have therefore set up a bijection between
O(S) andL(S). Lemma 3.5 tells us that the multiplication defined in [17] in O(S)
ensures that this bijection is an isomorphism. �
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Denote byU(S) the category whose objects are theright S-spacesH/S whereH is
directed and whose arrows are the (right) morphisms. We havethe following analogue
of Proposition 3.2.

Proposition 3.9. The categoryU(S) is isomorphic to the categoryR(L(S)).

3.3. Paterson’śetale groupoid Theorem 3.8 brings us to the beginning of Section 4
of Lenz’s paper [17] where he describes Paterson’s étale groupoid. IfT is an inverse
semigroup, then it becomes a groupoid when we define a partialbinary operation·,
called therestricted product, by s · t exists if and only ifd(s) = r (t) in which case
s · t = st. Paterson’s groupoid is precisely (L(S), ·) equipped with a suitable topology.
The isomorphism functor defined by Lenz fromL(S) to Paterson’s groupoid can be
very easily described in terms of the ideas introduced in ourpaper. LetA ∈ L(S).
Define P= (AA−1)↑. Then for anya ∈ A we have thatA= (Pa)↑. Thus we may
regardA as aright cosetof the closed, directed inverse subsemigroupP. By the
dual of Lemma 2.4(1), we have that (Pa)↑ = (Pb)↑, where aa−1, bb−1 ∈ P, if and
only if ab−1 ∈ P if and only if pa= pb for somep∈ P, where we use the fact that
every element ofP is above an idempotent. The ordered pair (P, a) wherer (a) ∈ P
determines the right coset (Pa)↑ and another such pair (P, b) determines the same right
coset if and only ifpa= pb for somep∈ P. This leads to an equivalence relation
and we denote the equivalence class containing (P, a) by [P, a]. The isomorphism
functor between the Lenz groupoidL(S) and Paterson’s groupoid is therefore defined
by A 7→ [(AA−1)↑, a] wherea ∈ A. We see that Paterson has to work with equivalence
classes because of the nonuniqueness of coset-respresentatives, and Lenz has to work
with equivalence classes because he works with generating sets of filters rather than
with the filters themselves. In our approach, the use of equivalence classes in both
cases is avoided.

Recall from Section 2.2, that a transitiveS-spaceX is universal if the stabilizerH of
a point ofX is F↑ whereF is a filter inE(S). In other words, by Lemma 3.4 the closed
inverse subsemigroupH is directed. It follows that the universal transitive actions
of S are determined by the directed filters that are also inverse subsemigroups. We
shall now describe how the structure of the groupoid (L(S), ·) reflects the properties
of transitive actions ofS. In what follows, we can just as easily work in the inverse
semigroup as in the groupoid.

Proposition 3.10. Let S be an inverse semigroup.

(1) The connected components of the groupoidL(S) are in bijective correspondence
with the equivalence classes of universal transitive actions of S .

(2) Let H be an identity inL(S). Then the local group GH at H is isomorphic to the
groupE(H)/σ.

Proof. (1) The identities ofL(S) are the closed directed inverse subsemigroups ofS.
Two such identities belong to the same connected component if and only if they are
conjugate. The result now follows by Proposition 2.7.
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(2) Put F = E(H) so thatH = F. Let A be in the local group determined byH.
ThenH = (A−1A)↑ = (AA−1)↑. Defineθ : GH→ E(H)/σ by θ(A) = σ(a) wherea ∈ A.

We show first that this map is well-defined. Letf ∈ F and let a ∈ A. Then
a−1 f a ∈ A−1E(A)A⊆ HA= A and soa−1 f a ∈ F anda f a−1 ∈ AE(A)A−1 ⊆ AH = A and
soa f a−1 ∈ F. ThusA⊆ F. Next suppose thata, b ∈ A. Then there is an elementc ∈ A
such thatc≤ a, b. Thusσ(a) = σ(b). It follows thatθ is well-defined.

We now show thatθ defines a bijection. Suppose thatθ(A) = θ(B). Thenaσb
wherea ∈ A and b ∈ B. Thus there existsc ∈ F such thatc≤ a, b. It follows that
c= ac−1c= bc−1c and soa−1ac−1c≤ a−1b. But a−1ac−1c ∈ F and soA= B. Thusθ is
injective. Leta ∈ F. Thena−1a, ∈ F and soa−1a ∈ F. ThusA= (aH)↑ is a well-defined
coset and Then (A−1A)↑ = H = (AA−1)↑. It follows thatA ∈GH andθ(A) = σ(a). Thus
θ is surjective.

Finally we show thatθ defines a homomorphism. LetA, B∈GH anda ∈ A and
b ∈ B. By Lemma 3.5,A⊗ B= (AB)↑ and containsab. Thusθ(A)θ(B) = σ(a)σ(b) =
σ(ab) = θ(A⊗ B). �

We now have the following theorem.

Theorem 3.11. Let S be an inverse semigroup. ThenL(S) explicitly encodes universal
transitive actions of S via its Schützenberger actions, and implicitly encodes all
transitive actions via its local groups.

Proof. An idempotent ofL(S) is just an inverse subsemigroupH of S that is also a
filter. Denote byLH theL-class ofH in the inverse semigroupL(S). The elements of
LH are just the left cosets ofH in S. The inverse semigroupL(S) acts on the setLH, a
Schützenberger action, and so too doesS via the mapι of Proposition 3.7. This latter
action is equivalent to the action ofS on S/H. We have therefore shown thatL(S)
encodes universal transitive actions ofS via its Schützenberger actions.

By Proposition 2.14(1) each transitive action ofS on a setY is strongly covered
by a universal oneX. Let H be a stabilizer of this universal action ofS on X. Then
the strong covering is determined by a strong congruence which by Theorem 2.15 is
determined by a subgroup of theH-class inL(S) containing the idempotentH; in
other words, by a subgroup of the local group determined by the idempotentH. �

Finally, the topology on the groupoidL(S) is defined in terms of the embedding
S→L(S) as follows. Lets∈ S. Define

Us= {A∈ L(S) : s∈ A}

and fors1, . . . , sn ≤ s define

Us;s1,...,sn = Us∩ Uc
s1
∩ . . . ∩ Uc

sn
.

Then the setsUs;s1,...,sn form a basis for a topology.
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4. Matrix representations of inverse semigroups

We deduce here results of the third author on the finite dimensional irreducible
representations of inverse semigroups [34]. There an approach based on groupoid
algebras was used, whereas here we use results of J. A. Green [2, Chapter 6] and the
universal property ofL(S).

4.1. Green’s theorem and primitive idempotents The following theorem
summarizes the contents of [2, Chapter 6]. LetA be a ring. A module is assumed to be
a leftA-module unless otherwise stated. We also consider onlyunitary A-modules, that
is, A-modulesM such thatAM = M (whereAM means the submodule generated by
elementsamwith a ∈ A andm∈ M). If A has a unit, then this is the same as saying that
the unit acts as the identity onM. In particular, asimple A-module is anA-moduleM
suchAM , 0 and there are no nonzero proper submodules ofM. If e is an idempotent
of A andM is anA-module, theneM is aneAe-module. The functorM 7→ eM is called
restrictionand we sometimes denote it Rese(M). It is well known and easy to check
that eM� HomA(Ae, M), where the latter has a lefteAe-action induced by the right
action ofeAeon Ae. For aneAe-moduleN, define

Inde(N) = Ae⊗eAeN.

The usual hom-tensor adjunction implies that Inde is the left adjoint of Rese. Moreover,
Rese Inde is isomorphic to the identity functor on the categoryeAe-modules. Indeed,
eae⊗ n 7→ eaenis an isomorphism with inversen 7→ e⊗ n. These isomorphisms are
natural inN.

Theorem 4.1 (Green).Let A be a ring and e∈ A an idempotent.

(1) If N is a simple eAe-module, then the induced module

Inde(N) = Ae⊗eAeN

has a unique maximal submodule R(N), which can be described as the largest
submodule ofInde(N) annihilated by e. Moreover, the simple modulẽN =
Inde(N)/R(N) satisfies N� eÑ.

(2) If M is a simple A-module with eM, 0, then eM is a simple eAe-module and
M � ẽM.

Let S be an inverse semigroup and suppose thate is a minimum idempotent ofS.
TheneS e=Ge, the maximal subgroup ofS ate, and is also the maximal group image
of S. Moreover,S e=Ge = eSand the action ofS on the left ofS efactors through the
maximal group image homomorphism. Letk be a commutative ring with unit. Then
ekS e� kGe and so Green’s theorem shows that simplekS-modulesM with eM, 0 are
in bijection with simplekGe-modules via induction and restriction. Moreover, since
kS e= kGe, we have that Inde(N) = N with the action ofS induced by the maximal
group image homomorphism. Thus Inde(N) already is a simplekS-module. Let us
consider the analogous situation for primitive idempotents.
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Let e be a primitive idempotent of an inverse semigroup with 0. Observe that in
this caseeS e=Ge∪ {0} sincee, 0 are the only idempotents ofeS eand so ifs, 0,
thenss−1 = e= s−1s. Thus if k0S is the contracted semigroup algebra ofS (meaning
the quotient ofkS by the ideal of scalar multiples of the zero ofS), thenek0S e� kGe

and so again by Green’s theorem, we have a bijection between simplek0S-modulesM
with eM, 0 andkGe-modules via induction. We aim to show now that ifN is a simple
kGe-module, then Inde(N) is already a simplek0S-module. LetLe be theL-class ofe.
Then sincee is primitive, it follows thatLe = S e\ {0} and sok0S e= kLe whereS acts
on the left ofkLe via linearly extending the left Schützenberger representation. The
groupGe acts freely on the right ofLe with orbits theH-classes contained inLe. Thus
k0S e= kLe is free as a rightek0S e= kGe-module. LetT be a transversal to theH-
classes ofLe and letN be akGe-module. Then as ak-module, Inde(N) =

⊕
t∈T t ⊗k N.

A fact we shall use is that any element ofLe is primitive and so ift1 , t2 ∈ T, then
t1t−1

1 , t2t−1
2 and hencet1t−1

1 t2 = 0.

Lemma 4.2. If N is a nonzero kGe-module, then no nontrivial submodule ofInde(N) is
annihilated by e.

Proof. Let M be a nonzero submodule of Inde(N). Notice thatM is annihilated by
e if and only if it is annihilated by the ideal generated bye. So letm=

∑
t∈T t ⊗ nt

(with only finitely many terms nonzero) be a nonzero element of M. Then there exists
t ∈ T with nt , 0. By the observation just before the prooftt−1m= t ⊗ nt , 0 and so
tt−1 does not annihilatem. But e= t−1t generates the same ideal astt−1 and soM is not
annihilated bye. �

As a corollary, we obtain from Green’s Theorem4.1 that if N is a simplekGe-
module, then Inde(N) is a simplek0S-module.

Corollary 4.3. Let S be an inverse semigroup, e∈ E(S) a primitive idempotent and
k a commutative ring with unit. If N is a simple kGe-module, thenInde(N) is a simple
kS -module.

If k is a field, then from Inde(N) =
⊕

t∈T t ⊗k N, we see that Inde(N) is finite
dimensional if and only ifT is finite andN is finite dimensional.

4.2. The main result Suppose now thatS is any inverse semigroup ande∈ E(S).
Let Ie = S eS\ Je be the ideal of elements strictlyJ-belowe. If N is akGe-module,
then let

Inde(N) = k0[S/Ie]e⊗kGe N = (kS/kIe)e⊗kGe N.

Equivalently, ifLe is theL-class ofe, thenkLe is a free rightkGe-module with basis
the set ofH-classes ofLe and also it is a leftkS-module by means of the action of
S on the left ofLe by partial bijections via the Schützenberger representation. Then
Inde(N) = kLe ⊗kGe N. Suppose now that theD-class ofe contains only finitely many
idempotents; in this case we say thate hasfinite indexin S. Under the hypothesis that
ehas finite index it is well known that iff ∈ E(S) with f < e, thenS f S, S eSand so
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f ∈ Ie. Thuse is primitive in S/Ie and so Corollary4.3 shows that Inde(N) is simple
for any simplekGe-module in this setting.

We are now ready to construct the finite dimensional irreducible representations of
an inverse semigroup over a field. This was first carried out byMunn [21], whereas
the construction presented here first appeared in [34] where it was deduced as a special
case of a result on étale groupoids. Our approach here uses the inverse semigroup
L(S). Fix a fieldk. First we construct a collection of simplekS-modules.

Proposition 4.4. Let e∈ E(L(S)) have finite index and let N be a simple kGe-module.
ThenInde(N) is a simple kS -module. Moreover,Inde(N) is finite dimensional if and
only if N is.

Proof. The above discussion shows that Inde(N) is simple as akL(S)-module so we
just need to show that anyS-invariant subspace isL(S)-invariant. In fact, we show
that each element ofL(S) acts the same on Inde(B) as some element ofS. It will
then follow that anyS-invariant subspace isL(S)-invariant and so Inde(N) is a simple
kS-module.

Let T be a transversal for the orbits ofGe on Le. ThenT is finite since these orbits
are in bijection withR-classes ofDe, which in turn are in bijection with idempotents
of De. Let A ∈ L(S) and writeA=

∧
d∈D sd with s∈ S andD a directed set. We claim

that if t ⊗ n is an elementary tensor witht ∈ T, then there existsdt ∈ D depending
only on t (and notn) such thatA(t ⊗ n) = sd(t ⊗ n) for all d≥ dt. By [11, Section 1.4,
Proposition 19], we haveAt =

∧
d∈D(sdt). Since theD-class ofe has only finitely

many idempotents, it follows by [11, Theorem 3.2.16] that distinct elements ofD
are not comparable in the natural partial order. Since the set {sdt | d ∈ D} is directed,
either sdt �L e for all sufficiently large elements ofD or sdt is an elementℓ of Le

independent ofd. In the first caseAt �L e and in the second caseAt = ℓ. Thus in
the first case,A(t ⊗ n) = 0= sd(t ⊗ n) for d large enough, whereas in the second case
A(t ⊗ n) = ℓ ⊗ n= sd(t ⊗ n) for all d ∈ D. We concludedt exists.

SinceT is finite, we can findd0 ∈ D with d0 ≥ dt for all t ∈ R. ThenA andsd0 agree
on all elements of the formt ⊗ n with t ∈ T andn ∈ N. But such elements span Inde(N)
and so we conclude thatA andsd0 agree on Inde(N).

The final statement follows from the previous discussion. �

Note that application of the restriction functor and the fact that Rese Inde is
isomorphic to the identity shows that Inde(N) � Inde(M) impliesN � M. Also, if e, f
are two finite index idempotents ofL(S) ande�J f , then f annihilates Inde(N) for
any kGe-module and hence all elements off , viewed as a filter, annihilate Inde(N).
On the other hand, no element of the filtere annihilates Inde(N). It follows that if e, f
are finite index idempotents that are notD-equivalent, then the modules of the form
Inde(N) and Indf (M) are never isomorphic. Clearly,D-equivalent idempotents give
isomorphic collections of simple modules. Thus, for eachD-class with finitely many
idempotents, we get a distinct set of simplekS-modules (up to isomorphism).

The following fact is well known and easy to prove.
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Proposition 4.5. Let k be a field and V an n-dimensional k-vector space. Then any
semilattice inEndk(V) has size at most2n.

Proof. Any idempotent matrix is diagonalizable and so any semilattice of matrices
is simultaneously diagonalizable. But the multiplicativemonoid of kn has 2n

idempotents. �

We can now complete the description of the finite dimensionalirreducible
representations of an inverse semigroup. In the statement of the theorem below, it
is worth recalling thate= H is a finite index, closed directed subsemigroup ofS and
Ge is the groupE(H)/σ described in Theorem 2.16.

Theorem 4.6. Let k be a field and S an inverse semigroup. Then the finite dimensional
simple kS -modules are precisely those of the formInde(N) where e is a finite index
idempotent ofL(S) and N is a finite dimensional simple kGe-module.

Proof. It remains to show that every simplekS-module M is of this form. Let
θ : S→ Endk(V) be the corresponding irreducible representation. ThenT = θ(S) is
an inverse semigroup with finitely many idempotents and so trivially directed meet
complete. Thusθ extends to a homomorphismθ : L(S)→ Endk(V) by the universal
property. Trivially θ must be irreducible as well. Letf be a minimal nonzero

idempotent ofT = θ(S) = θ(L(S)). Thenθ
−1

( f ) is directed and so has a minimum
elemente.

Suppose thate′ D e. Suppose thate′′ < e′. We claimθ(e′′) = 0. Indeed, choose
A ∈ L(S) such thatA−1A= e and AA−1 = e′. Then A−1e′′A< A−1e′A= e and so
θ(A−1e′′A) = 0. Thusθ(e′′) = θ(AA−1e′′AA−1) = 0. We concludeθ is injective on
the idempotents ofDe. Otherwise, we can finde1, e2 ∈ De with θ(e1) = θ(e2). Then
e1e2 ≤ e1, e2 andθ(e1) = θ(e1e2) = θ(e2). Thuse1 = e1e2 = e2 by the above claim. We
conclude thatehas finite index sinceT has finitely many idempotents.

By choice ofe, it now follows thatθ factors throughS/Ie and hence is ak0[S/Ie]-
module. Moreover,e is primitive in S/Ie. (If Ie = ∅, then we interpretk0[S/Ie] askS
ande is the minimum idempotent.) SinceeM= f M , 0 by choice off , it follows by
Green’s theorem thatN = eM is a simpleek0[S/Ie]e= kGe-module, necessarily finite
dimensional. The identity mapN→ eMcorresponds under the adjunction to a nonzero
homomorphismψ : Inde(N)→ M. But we already know that Inde(N) is simple by
Proposition4.4. Schur’s lemma then yields thatψ is an isomorphism. This completes
the proof. �
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