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Abstract

Paterson showed how to construct an étale groupoid fromneerse semigroup using ideas from
functional analysis. This construction was later simplifi Lenz. We show that Lenz’s construction can
itself be further simplified by using filters: the topolodigeoupoid associated with an inverse semigroup
is precisely a groupoid of filters. In addition, idempoteltéfis are closed inverse subsemigroups and so
determine transitive representations by means of paifedtipns. This connection between filters and
representations by partial bijections is exploited to show linear representations of inverse semigroups
can be constructed from the groups occuring in the assddiapelogical groupoid.
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1. Introduction and motivation

In his influential book, Renaulp] showed how to constru€*-algebras from locally
compact topological groupoids. This can be seen as a fahimg generalization
of both commutativeC*-algebras and finite dimension@l‘-algebras. From this
perspective, topological groupoids can be viewed as ‘nomeotative topological
spaces’. Renault also showed that in addition to groupaidsCid-algebras, a third
class of structures naturally intervenes: inverse semjggo Local bisections of
topological groupoids form inverse semigroups and, caelgrinverse semigroups
can be used to construct topological groupoids.

The relationship between inverse semigroups and topabgioupoids can be
seen as a generalization of that between (pre)sheavesgigand their corresponding
display spaces, since an inverse semigroup with centredpdéents is a presheaf of
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groups over its semilattice of idempotents. This relatigméias been investigated by
a number of authors: notably Paters@s][ Kellendonk B, 6, 7, 8] and Resende?f).
Our paper is related to Paterson’s work but mediated threuglore recent redaction
due to Daniel Lenz17].

We prove two main results. First, we show that Lenz’s comsivn of the
topological groupoid can be interpreted entirely in terrhs@vn-directed cosets on
inverse semigroups — these are precisely the filters in agrsevsemigroup. Such
filters arise naturally from those transitive actions whighterm ‘universal’. Second,
we show how representations of an inverse semigroup can ristraoted from the
groups occuring in the associated topological groupoids Ehrelated to Steinberg’s
results on constructing finite-dimensional representiataf inverse semigroups using
groupoid techniques described BY]. The first result proved in this paper has already
been developed further iiy, 14].

Lenz [L7] was the main spur that led us to write this paper but in thesmaf doing
so, we realized that the first four chapters of Ruyle’s unighleld thesis7] could be
viewed as a major contribution to the aims of this paper indage of free inverse
monoids. Ruyle’s work has proved indispensible for our 8ec?. In addition, Leech
[16], with its emphasis on the order-theoretic structure oémse semigroups, can be
seen with mathematical hindsight to be a precursor of ourcgmh. Last, but not least,
Boris Schein in a number of seminars talked about ways oftoactginfinitesimal
element®f an inverse semigroup: the maximal filters of an inverseigeup can be
regarded as just tha2, 30].

For general inverse semigroup theory we refer the readéd}jotHowever, we note
the following. The product in a semigroup will usually be déed by concatenation
but sometimes we shall uséor emphasis; we shall also use it to denote actions. In an
inverse semigrouf we define

dis)=s's and r(s)=sst

Green'’s relation{ can be defined in terms of this notation as folloveg{t if and
only if d(s) = d(t) andr(s) = r(t). If eis an idempotent in a semigro@thenG, will
denote thefH-class inS containinge; this is a maximal subgroup. The natural partial
order will be the only partial order considered when we dea#i imverse semigroups.
If X< S thenE(X) denotes the set of idempotentsXin An inverse subsemigroup of
S is said to bewideif it contains all the idempotents &. A primitive idempotent e
in an inverse semigroup with zero is one with the property that ff< e then either
f =eor f =0. LetS be an inverse semigroup. Th@nimum group congruence on
S is defined bya o b if and only if c < a, b for somece S. This congruence has the
property thaS/o is a group, and ip is any congruence d@ for whichS/p is a group,
we have that- C p. We denote by the associated natural homomorphiSm» S/o-.
See [L1] for more information on this important congruence.

After an early version of this paper was written, we discedghat Jonathon Funk
and Pieter Hofstra independently arrived at what we callensial actions, and which
they call torsors J]. They show that these correspond exactly to the points ®f th
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classifying topos of the inverse semigroup. Further cotioes between our work
and their work will be explored in an upcoming paper by Fun&fdtra and the third
author. In particular, we connect the filter constructioPaferson’s groupoid with the
soberification of the inductive groupoid of the inverse sgmilp and the soberification
of the inverse semigroup. We also show that actions of theré®/semigroup on sober
spaces correspond to actions of the soberification of thecinek groupoid on sober
spaces.

2. The structure of transitive actions

In this section, we shall begin by reviewing the general thexd representations
of inverse semigroups by partial permutations. ChapteSétion 4 of P4] contains
an exposition of this elementary theory and we refer thegethetre for any proofs we
omit. We also incorporate some results by Ruyle fr@¥ which can be viewed as
anticipating some of the ideas in this paper. We then inttedine concept of universal
transitive actions which provides the connection with tleekiof Lenz to be explained
in Section 3.

2.1. The classical theory A representatiorof an inverse semigroup by means of
partial bijections (or partial permutations) is a homontasm 0: S — 1(X) to the
symmetric inverse monoid on a 9€t A representation of an inverse semigroup in this
sense leads to a corresponding notion of an action of thesexsemigroui® on the
setX: the associated action is defineddyx = 6(s)(X), if x belongs to the set-theoretic
domain off(s). The action is therefore a partial function frddx X to X mapping

(s, X) to s- xwhens- x exists satisfying the two axioms:

(A1) If e- x exists where is an idempotent the@- x = X.
(A2) (st) - xexists if and only ifs- (t - X) exists in which case they are equal.

It is easy to check that representations and actions dieret ways of describing
the same thing. For convenience, we shall use the wordetdetnd ‘representation’
interchangeably: if we say the inverse semigr&ugcts on a seX then this will imply
the existence of an appropriate homomorphism fi®rno I(X). If S acts onX we
shall often refer toX as aspaceor as arS -spaceand its elements gwints A subset
Y c X closed under the action is called@abspaceDisjoint unions of actions are again
actions. An action is said to kgfectiveif for eachx e X there isse S such thats- x
exists. We shall assume that all our actions dfective. An dfective action of an
inverse semigrouf on the seX induces an equivalence relatisron the seiX when
we definex ~ yif and only ifs- x = y for somes € S. The action is said to hteansitive
if ~is Xx X. Just as in the theory of permutation representations afpgoevery
representation of an inverse semigroup is a disjoint unfdraasitive representations.
Thus the transitive representations of inverse semigratgsf especial significance.
Let X andY be S-spaces. Anmorphismfrom X to Y is a functiona: X — Y such
thats- x exists implies thas- a(X) exists andy(s- X) = s- a(X). A strong morphism
from X to Y is a functiona: X — Y such thats- x exists if and only ifs- a(X)
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exists, and ifs- x exists theny(s- X) = s- a(X). Bijective strong morphisms are called
equivalencesThe proofs of the following two lemmas are straightforward

Lemma 2.1. (1) Identity functions are (strong) morphisms.
(2) The composition of (strong) morphisms is again a (strong)imigm.

Lemma 2.2. Let S be an inverse semigroup acting on X, Y and Z

(1) The image of a strong morphisin X — Y is a subspace of Y.
(2) If X andY are transitive S-spaces and X — Y is a strong morphism then
is surjective.

If we fix an inverse semigrou® there are a number of categories of actions
associated with it: actions and morphisms, actions anegtnoorphisms, transitive
actions and morphisms, and transitive actions and stromghisms. As we indicated
above, these two categories of transitive actions will beewitral importance.

A congruenceon X is an equivalence relation on the setX such that ifx ~y
and if s- x exists ands- y exists thens- x~ s-y. A strong congruencen X is an
equivalence relatior on the seX such that ifx ~ y ands e S we have that - x exists
if and only if s- y exists, and if the actions are defined tleerx~ s- y.

Strong morphisms and strong congruences are united by a&iadasfirst
isomorphism theorem. Recall that tkernelof a function is the equivalence relation
induced on its domain. The proofs of the following are roetin

ProposiTion 2.3. (1) Leta: X — Y be a strong morphism. Then the kernekas a
strong congruence.

(2) Let~ be astrong congruence on X. Denote thelass containing the element x
by[x]. Define s [X] =[s- X] if s- X exists. Then this defines an action S on the
set of~-congruence classes/X and the natural map: X — X/ ~ is a strong
morphism.

(3) Leta: X—Y be astrong morphism, let its kernel band lety: X — X/ ~ be
the associated natural map. Then there is a unique injestiang morphisng
from X/ ~ to Y such thaBv = a.

The above result tells us that the category of transitiveesgntations of a fixed
inverse semigroup with strong morphisms between them haart@cyarly nice
structure.

We may analyze transitive actions of inverse semigroupswag generalizing
the relationship between transitive group actions and . To describe this
relationship we need some definitionsAIL S is a subset then define

Al ={seS: a< sfor someac A}.

If A= AT thenAis said to beclosed (upwards)
Let X be anS-space. Fix a poink € X, and consider the s&, consisting of all
se S such thats- x = x. We callSy thestabilizerof the pointx.
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We do not assume in this paper that homomorphisms of inversgsoups with
zero preserve the zero.df S — 1(X) is a representation that does preserve zero then
the zero ofS is mapped to the empty function 6fX). Clearly, the empty function
cannot belong to any stabilizer. We say that a closed inv&rssemigroup igroper
if it does not contain a zero. In the theory we summarize bgboaper closed inverse
subsemigroups arise from actions where the zero acts aspty eartial function.

Now lety e X be any point. By transitivity, there is an elemes# S such that
s- x =Y. Observe that because x is defined so too is™*s- x and thats*se S,. The
set of all elements dB which mapx toy is (sSy)'.

Let H be a closed inverse subsemigrougsoDefine deft cosef H to be a set of
the form @H)" wheres tse H. We give the proof of the following for completeness.

Lemma 2.4. (1) Two cosetgsH)" and(tH)' are equal if and only if 't € H.
2) If (sH)T N (tH)" # 0 then(sH)" = (tH)'.

Proor. (1) Suppose thatsH)! = (tH)". Thent € (sH)" and sosh< t for someh € H.
Thus stsh< s!t. But s''sheH andH is closed and s teH. Conversely,
suppose thas ™'t e H. Thens't = h for someh e H and sosh= ss't <t. It follows
thattH ¢ sH and so {H)" ¢ (sH)'. The reverse inclusion follows from the fact that
t~'se H sinceH is closed under inverses.

(2) Suppose that € (sH)" n (tH)'. Thensh, < a andth, < a for somehy, h, € H.
Thusstsh < s'laandt lth, <t la. Hences1a, t~lae H. It follows thats taalt e
H, butstaa !t < st. This gives the result by (i) above. O

We denote bys/H the set of all left cosets dfl in S. The inverse semigroup
acts on the se8/H when we define

a- (sH)" = (asH)" wheneved(as) € H.

This defines a transitive action. The following is Lemma 19.40f [24] and
Proposition 5.8.5 of{].

Tueorem 2.5. Let S act transitively on the set X. Then the action is eqaiab the
action of S on the set/Sy where x is any point of X.

The following is Proposition 1V.4.13 of/4].

ProrosiTion 2.6. If H and K are any closed inverse subsemigroups of S then they
determine equivalent actions if and only if there existsSssuch that

sHs'cK and STKsCH.

The above relationship between closed inverse subsenpgiewcalledconjugacy
and defines an equivalence relation on the set of closedsiesrbsemigroups. The
proof of the following is given for completeness.

Lemma 2.7. H and K are conjugate if and only if

(sHsHT'=K and (siK9T=H.
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Proor. Let H andK be conjugate. Let < H be any idempotent. Theses® € K. But
ses'<ss?! and sosste K. Similarly s'se H. We have thasHs* c K and so
(sHsHT c K. Letke K. Thenskse H ands(s*k9s? e sHs! ands(s*k9s <
k. Thus 6Hs )" = K, as required. The converse is immediate. O

Thus to study the transitive actions of an inverse semigg8uipis enough to study
the closed inverse subsemigroupssafip to conjugacy.

The following result is motivated by Lemma 2.16 of Ruyle’s$is P7] and brings
morphisms and strong morphisms back into the picture.

Tueorem 2.8. Let S be an inverse semigroup acting transitively on the Xedsd Y,

and let xe X and ye Y. Let S and S, be the stabilizers in S of x and y respectively.

(1) Thereisa (unique) morphisat X — Y suchthat(x) = yifand only if §.C S,.

(2) There is a (unique) strong morphism X — Y such that(x) =y if and only if
Sx € Sy and E(Sy) = E(Sy).

Proor. (1) We begin by proving uniqueness. LetB: X — Y be morphisms such
thata(x) = B(X) =y. Let X' € X be arbitrary. By transitivity there existse S such
thatx’ = a- x. By the definition of morphisms we have tteta(x) exists anda- 8(X)
exists and that

aX)=a(@a-x)=a- a(x)

and
B(X)=p@-x)=a-pB(x).

But by assumptio(X) = B(X) = y and sax(X’) = B(X). It follows thata = .

Let @: X — Y be a morphism such that(x) =y. Let se Sy. Thens- x exists
ands- x=x. By the definition of morphism, it follows theg- a(X) exists and that
a(s-X)=s-a(x). Buts-x=x and soa(X)=s-a(X). Hences-y=y. We have
therefore proved thate Sy, and saSy € S,.

Suppose now thaby, € Sy. We have to define a morphisat X — Y such that
a(X) =y. We start by defining/(x) = y. Letx’ € X be any pointinX. Thenx’ = a- xfor
someac S. We need to show that- y exists. Since - x exists we know thaa*a - x
exists and this is equal to It follows thata-ta € Sy and sca~ta € Sy, by assumption.
Thusata-y exists and is equal tp But from the existence af'a - y we can deduce
the existence o&-y. We would therefore like to define(x’) =a-y. We have to
check that this is well-defined. Suppose that a-x=b-x. Thenb'a- x= x and
sob tae Sy. By assumptionbtae Sy and sob*a-y=y. Thusbb!a-y=b-yand
bbla-y=bb?l-(a-y)=a-y. Thusa-y=b-y. It follows thata is a well-defined
function mappingx to y. It remains to show that is a morphism. Suppose that
s- X' is defined. By assumption, there exiats S such thatx’ = a- x. By definition
a(X)=a-y. We have thas- X' =s-(a-x) =sa- x. By definitiona(s- x’)=sa-y.
Butsa-y=s-(a-y)=s-a(X). Hencea(s- X) = s- a(X), as required.

(2) We begin by proving uniqueness. L&t3: X — Y be strong morphisms such
thata(X) =B(X) =y. Let X' € X be arbitrary. By transitivity there existse S such
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thatx = a- x. By the definition of strong morphisms we have thai(X) exists and
a- B(x) exists and that
a(X)=a(@a-x)=a- a(x)
and
B(X) =p(a-x) =a-B(x).
But by assumptio(X) = B(X) =y and sax(X) = B(X). It follows thata = .

Next we prove existence. Suppose tBatc Sy andE(Sy) = E(Sy). We have to
define a strong morphism: X — Y such thaty(x) = y. We start by defining:(x) =y.
Let X' € X be any point inX. Thenx =a- x for someae S. We need to show that
a-y exists. Sincea- x exists we know thasa- x exists and this is equal te. It
follows thata—*ae Sy and soaae Sy, by assumption. Thua™a-y exists and is
equal toy. But from the existence ad‘a-y we can deduce the existenceafy.
We therefore define(x’) = a-y. We have to check that this is well-defined. Suppose
thatx =a-x=b-x. Thenb™a-x=xand sob tae S,. By assumptionbtae S,
and sob™ta-y=y. Thusbbla-y=b-yandbb'a-y=bb*-(a-y)=a-y. Thus
a-y=Db-y. It follows thatea is a well-defined function mappingtoy.

It remains to show that is a strong morphism. Suppose tlsatx’ is defined. By
assumption, there exists= S such that’ = a- x. By definitiona(x’) = a-y. We have
thats- X' =s-(a- x) = sa- Xx. By definitiona(s-x)=sa-y. Butsa-y=s-(a-y) =
s- a(X). Hencea(s- X) =s- a(X).

Now suppose that(x') =y ands-y exists. We shall prove that- X’ exists.
Observe thas™!s-y exists and that it is enough to prove theats- x' exists. Let
X' =u- X, which exists since we are assuming that our action is tigesi Then
by what we proved above we have that=u-y. Observe thau (s tgu-y=y
and sou}(sts)u € E(S). It follows by our assumption that™(s*s)u € E(Sy) and
sou(stsu- x=x. It readily follows thats*s- x exists, and s&- X' exists, as
required.

We now prove the converse. Let X — Y be a strong morphism such that
a(X)=y. Let seSy. Thens- x exists ands- x=Xx. By the definition of strong
morphism, it follows thas - @(x) exists and thak(s- X) = s- a(X). Buts- x = xand so
a(X) = s- «(X). Hences-y =y. We have therefore proved theit Sy, and saSy C S,.
Letee E(Sy). Thene- a(x) exists. Bute is a strong morphism and o X exists.
Clearlyee E(Sy). It follows thatE(Sy) = E(Sy). ]

The following result is adapted from Lemma 1.9 of Ruy2&][and will be useful
to us later.

Lemma 2.9. Let F be a closed inverse subsemigroup of the semilatticdenfipotents
of the inverse subsemigroup S. Define

F={seS: s'FscF sFstcF).

ThenF is a closed inverse subsemigroup of S whose semilattickenfpotents is F.
Furthermore, if T is any closed subsemigroup of S with setiziéaof idempotents F
then TC F.
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Proor. Clearly the seF is closed under inverses. Lett € F. We calculate
(sh)F(st) =t {(sIFtctIFtcF

and
(sHF(st L = (tFtY)stc sFsicF.

Thusste F. It follows thatF is an inverse subsemigroup 8f
Letee F and f € F. Then by assumptioefe F. Butef<eandF is a closed
inverse subsemigroup of the semilattice of idempotentssard F. ThusE(F) = F.
Lets<twherese F. Thens=ss't= ft. Letee F. Then

sles=t1feft=tleft<tlet

Now s'es t~tet are idempotents ansf'ese F thust lete F, becausé is a closed
inverse subsemigroup of the semilattice of idempotentsil&ily tet € F. It follows
thatt € F and soF is a closed inverse subsemigroupSof

Finally, letT be a closed inverse subsemigrougsauch thaE(T) = F. Lette T.
Then for eacle e F we have that et  tet* € F. ThusT CF. O

A closed inverse subsemigroudp of S will be said to befully closedif T =
E(T). Closed inverse subsemigroups of the semilattice of ideenis of an inverse
semigroup are called filtetim E(S). Observe the emphasis on the word ‘in’. A filter
in E(S) is said to beprincipal if it is of the form e'. We denote byFgs) the set of
all closed inverse subsemigroupsk(S) and call it thefilter space of the semilattice
of idempotents of SThis filter space is a poset when we defing F’ if and only if
F’ C F so that, in particulag’ < fT ifand only ife< f.

Let F be a filter inE(S). ThenFT is a closed inverse subsemigroup contairfing
and clearly the smallest such inverse subsemigroup. Ortlilee loand, by Lemma 2.9,
F is the largest closed inverse subsemigroup with semiatifddempotent§. We
have therefore proved the following.

Lemma 2.10. The semilattice of idempotents of any closed inverse sugsem H of
an inverse semigroup S is a filter F if® and FF CH CF. Thus_Fr is the smallest
closed inverse subsemigroup with semilattice of idempetemndF is the largest.

Prorosition 2.11. Let S be an inverse semigroup and leEG/o. Then there is an
inclusion-preserving bijection between the wide closegtise subsemigroups of S
and the subgroups of G.

Proor. Let E(S)C T C S be a wide inverse subsemigrotipthen the image oT in
G is a subgroup since inverse subsemigroups map to inversemsigroups under
homomorphisms. Suppose thaandT’, where alsoE(S) C T’ € S, have the same
image inG. LetteT. Thencdi(t) = o(t’) for somet’ € T’. Thusa<t,t’ from the
definition of o. But bothT and T’ are order ideals 0§ and soae T N T’. Thus

1 Are you lettingE(S) or T or S be a wide inverse semigroup?
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a<tandae T’ andT’ is closed thus € T’. We have shown that C T’. The reverse
inclusion follows by symmetry. IH is a subgroup ofs then the full inverse image
of H underc? is a wide inverse subsemigroup 8f This defines an order-preserving
map going in the opposite direction. It is now clear that #suft holds. ]

The following is a special case of Lemma 2.17 ®]f We include it for interest
since we shall not use it explicitly.

Lemma 2.12. Let F be a filter in ES) in the inverse semigroup S.

(1) The intersection of any family of closed inverse subsemgavith common
semilattice of idempotents F is again a closed inverse suligeup with
semilattice of idempotents F.

(2) Given any family of closed inverse subsemigroups with camsemilattice of
idempotents F there is a smallest closed inverse subsenpigrith semilattice
F which contains them all.

2.2. Universal and fundamental transitive actions We shall now define two
special classes of transitive actions that play a decisikein this paper. Le§ be an
inverse semigroup and lét be a closed inverse subsemigrouBoBy Lemma 2.10,
we have that

E(H)' cH C E(H)

where E(H) is a filter in E(S). We shall use this observation as the basis of two
definitions, the first of which is by far the most important. 8¥&ll say that a transitive
S-spaceX is universalif the stabilizer of a point oKX is the closure=" for some filter

F of E(S), andfundamentalf the stabilizer of a point o is F for some filterF in
E(S). Both definitions are independent of the point chosen.

Lemma 2.13. (1) A strong morphism between universal transitive actionsns a
equivalence.

(2) Any strong morphism with domain a fundamental transitii@aand codomain
a transitive action is an equivalence.

Proor. (1) Let X andY be universal transitive spaces. Let X — Y be a strong
morphism. Choos& e X. ThenSy C S,(xy andE(Sx) = E(S,(x). But the actions are
universal and so all stabilizers are the full closures af themilattices of idempotents.
ThusSy = S,y and sax is an equivalence by Theorem 2.8(2).

(2) Let X andY be transitive spaces whexeis fundamental and let: X — Y be
a strong morphism. Chooses X and lety = a(X). ThenSy c Sy andE(Sy) = E(Sy)
by Theorem 2.8(2). BuB, is fundamental and s8,=S,. We may deduce from
Theorem 2.9(2) that there is a unique strong morphism framX mappingy to x. It
follows thata is an equivalence. ]

If @: X — Y is a strong morphism between two transitbespaces, we shall say
thatY is strongly coveredy X. The importance of universal actions arises from the
following result.
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ProrosiTion 2.14. Let S be an inverse semigroup.

(1) Each transitive action of S is strongly covered by a univieose.
(2) Each transitive action of S strongly covers a fundamental on

Proor. (1) Let Y be an arbitrary transitivé&s-space. Choose a poigte Y. Let
F = E(Sy) and putH = FT. ThenE(H) = E(S,) andH ¢ S,. PutX = S/H and choose
the pointxin X to be the coset. Then there is a unique strong morphism X —» Y
such that(x) =y by Theorem 2.8(2) which is surjective by Lemma 2.2(2) &nid a
universal transitive space by construction.

(2) LetY be an arbitrary transitiv€-space. Choose a poipt Y. Let F = E(S,)
and putH = F. Thus by Lemma 2.10 we have th@§ C H and E(Sy) = E(H). Put
X =S/H and choose the pointin X to be the cosetl. Then there is a unique strong
morphisma: Y — X such thata(y) = x by Theorem 2.8(2) which is surjective by
Lemma 2.2(2) anK is a fundamental transitive space by construction. O

Tueorem 2.15. Let X be a universal, transitive S -space and let x be a poixt.d?ut
Sy = F', where F is afilter in ES) and G- = F/o. Then there is an order-preserving
bijection between the set of strong congruences on X andetraf subgroups of &

Proor. Put G=Gg. By Proposition 2.11, there is an order-preserving bigcti
between the closed inverse subsemigradpsich thaF' ¢ H  F and the subgroups
of G. Thus we need to show that there is a bijection between th®fsstrong
congruences oX and the set of closed wide inverse subsemigroups.oDbserve
that we use the fact that strong morphisms between tra@sifieices are surjective by
Lemma 2.2(2).

Let ~ be a strong congruence definedXnThen by Proposition 2.3 it determines a
strong morphisny: X — X/ ~. Forx given in the statement of the theorem, we have
that the stabilizer of], the ~-class containing, is a closed inverse subsemigroup
H, such that=" ¢ H, C F by Theorem 2.8(2). We have thus defined a function from
strong congruences ofito the set of closed wide inverse subsemigroups.of

Suppose that,; and ~, are two strong congruences ohthat map to the same
closed wide inverse subsemigroup. Denotethequivalence class containingby
[X]i and letv;: X — X/ ~i be the natural map. Lete X. Then the stabilizer of{]; and
the stabilizer of ], are the same: namely. Suppose that~;y. Thus K]1 = [y];.
SinceX is an universal transitive-space there ib € B such that - x =y. It follows
thatb-[X]1 =[yl1 =[X]1 and sobe H. By assumptiorb-[X], =[X].. But ~; is a
strong congruence and g& b - X ~, X and sox ~, y. A symmetrical argument shows
that~; and~; are equal. Thus the correspondence we have defined is waietie
now show that it is surjective.

Let FT ¢ H C F be such a closed wide inverse subsemigroup. TherH/S is a
transitiveS-space. Choose the poine H € Y. Then by Theorem 2.8(2) there is a
unique strong morphismay : X — Y such that(x) = y. The kernel ofry, which we
denote by~y, is a strong congruence defined Xrby Proposition 2.3, and the kernel
of ay maps toH. O
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Observe that the above theorem requires a chosen pofat in

2.3. Atopological interpretation LetS be an inverse semigroup aXdanS-space.
Define anS-labeled graplG(X) whose vertices are X and whose edges go frotm
sx wherex € X, se S andsxis defined, with labes on this edge in this case. There is
an obvious involution on the graph by inversion, so this isapbin the sense of Serre
Observe that the directed gra@i(iX) is connected if and only X is transitive. From
now on we shall deal only with transtive actions and so ouplgsawill be connected.

Thestar of a vertexx in G(X) is the set of all edges that startxatNow letG and
H be arbitrary graphs. A morphisinfrom G to H is called animmersionif it induces
an injection from the star set afto that of f () for each vertex of G. The morphism
f is called acoverif it induces a bijection between such star sets. The folhgws the
key link between the algebraic and the topological intagiiens of inverse semigroup
actions.

Lemma 2.16. Let S be an inverse semigroup and let X and Y be transitiveaSesp
There is a morphism from X to Y if and only if there is a labekprging immersion
from G(X) to G(Y), and there is a strong morphism from X to Y if and only if there i
a label preserving cover from (@) to G(Y).

Proor. Let @: X — Y be a morphism of transitiv8-spaces. Consider the directed
edgex—s> y in the graphG(X). Thens-x=y. Sincea is a morphism, we have that
a(s- X) =s- a(X) = ay). We may therefore definé: G(X) — G(Y) by mapping the
edgex 5 y to the edgex(X) 5 a(y). It is immediate that this is an immersion. The
fact that immersions arise from morphisms is now straightéod to prove. Finally,

. . S .
suppose that is a strong morphism. Let(x) — a(y) be an edge. This means that
s- a(X) = a(y). Buta is a strong morphism and so x exists andr(s- X) = s- a(X). It
follows that the graph map is a cover. O

For a more complete account of the connection between inmoms;sinverse
monoids and inverse categories s2@ 3.

3. Theétale groupoid associated with an inverse semigroup

In Section 2, we investigated the relationship betweensiti@e actions of an
inverse semigroup and closed inverse subsemigroups. Wl fthat the universal
transitive actions played a special role. We shall show ia #ection how these
universal transitive actions, via their stabilizers, ledthe inverse semigroup
introduced by Lenz and thence to Paterson'’s étale groupoid

3.1. The inverse semigroup of coset&(S) We begin by reviewing a construction
studied by a number of author81, 16, 10, 11]. A subsetACS of an inverse
semigroup is called aatlasif A= AA™'A. A closed atlas is precisely a coset of a
closed inverse subsemigroup®f10]. We shall therefore refer to a closed atlas as a
coset Observe that the intersection of cosets, if nonempty, @satc The set of cosets
of S is denoted byK(S). There is a product oK' (S), denoted by, and defined as
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follows: if A, Be K(S) thenA® B is the intersection of all cosets & that contain
the setAB. More explicitly if X = (aH)", wherealac H, andY = (bK)', where
b~be K, thenX® Y = (albxb *Hb, K))T where(C, D) is the inverse subsemigroup
of S generated byC U D. In fact, K(S) is an inverse semigroup called tigeill)
coset semigroup of .SNote that its natural partial order is reverse inclusiomug
S is the zero element oK(S). The idempotents ok'(S) are just the closed inverse
subsemigroups db.

There is an embedding S — K(S) that mapss to s'. Observe now that if
A€ K (S) then for eacls € Awe have thas' ¢ Aand soA < s'. It follows readily from
this thatA is in fact the meet of the s¢$': se A}. More generally, every nonempty
subset ofK(S) has a meet and so the inverse semigrdi(f$) is meet completeThe
mapc: S — K(S) is universal for maps to meet complete inverse semigrotipas
the inverse semigrouf(S) is themeet completionf the inverse semigroup [16].

It is worth noting that the category of meet complete invessmigroups and their
morphisms is not a full subcategory of the category of in#emmigroups and their
homomorphisms and so the meet completioK¢8) is K(K(S)) and not justk(S).

At this point, we want to highlight a class of transitive acis that will play an
important role both here and in Section 4. Oebe an inverse semigroup and &be
any idempotent im. We denote by, the £-class containing. The setL.. therefore
consists of all elements= T such thad(t) = e. Define a partial function frort x Le
to Le by a- x exists if and only ifd(ax) = e. This defines a transitive action @fon
L. called the(left) Schiitzenberger action determined by the idempetehhis is the
transitive action determined by the closed inverse sulgempe’.

The structure ofK(S) is inextricably linked to the structure of transitive acts of
S. The following was first stated iriL[)].

ProrosiTion 3.1. Let S be an inverse semigroup. Every transitive represiemtat S
is the restriction of a Schiitzenberger representatio($).

Proor. Let H be a closed inverse subsemigrousofin the inverse semigrouff(S),
the £-classLy of the idempotent consists of allA € K(S) such thatA™* @ A= H.
Letae A. ThenA=(aH)'. It follows thatLy consists of precisely the left cosets of
Hin S. Let Ac Ly and consider the produst ® A. Then this again belongs 1o,
precisely wheng$a)~'sac H and is equal togaH)'. It follows that via the map the
inverse semigroup acts drny precisely as it acts 08/H. O

If H andK are two idempotents oK (S) then they areD-related if and only if there
existsA € K(S) such thatA '@ A=H andA® A1 =K iff H andK are conjugate.
Thus theD-classes of<(S) are in bijective correspondence with the conjugacy cksse
of closed inverse subsemigroups.

We may, in some sense, ‘globalize’ the connection betvE€®) and transitive
actions ofS. Denote byO(S) the category whose objects are tight S-spacedd/S
and whose arrows are the (right) morphisms. We now recafbilmving construction
[12). Let S be an inverse semigroup. We can construct fi®ra right cancellative
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category, denoteR(S), whose elements are pais €) € S x E(S) such thad(s) < e.
We regard §, €) as an arrow froneto r(s) and define a product bg,(e)(t, f) = (st, €).
The following generalizes Example 2.2.3 Gf].

Prorosition 3.2. The categornyD(S) is isomorphic to the categoR(K(S)).

Proor. We observe first that a morphism with a transitive space addtsain is
determined by its value on any element of that domain. &etU/S — V/S be
a morphism. Theny is determined by the value taken kyU) = (Va)'. Now
the stabilizerSy of U is U itself and the stabilize6,; is (@atva)'. Thus by
Theorem 2.8, we have thal c (a~'Va)'. Conversely, if we are given that C
(atva)! then we can define a morphism frodyS to V/S by U ~ (Va)'. There
is therefore a bijection between morphisms fr&yS to V/S and inclusionsJ C
(a~tva)’. We shall encode the morphisprby the triple ¥, (Va)', U). Lety: V/S —
W/S be a morphism encoded by the tripl&/(WDb)', V). The triple encoding/¢ is
of the form W, (WQ', U) wherey¢(U) = (WQ'. Thus W, (WD, V)(V, (Va)', U) =
(W, (Wb3T", U). The productWWh'® (Va)' in K(S) is precisely Wba'. We now
recall that the natural partial order #(S) is reverse inclusion. It follows that the
triple (V, (Va)', U) can be identified with the pair{@', U) whered((Va)") < U. We
regard (¢ a)', U) as an arrow with domaid and codomai. The result now follows.
O

3.2. The inverse semigroup of filters£(S) We shall now describe an inverse
subsemigroup ok(S). A subsetA C S of an inverse semigroup is said to bgdown)
directedif it is nonempty and, for each, b € A, there existx € A such thatt < a, b.
Closed directed sets in a poset are cafiidrs. When this definition is applied to
semilattices then we recover the definition given earlier.

Lemma 3.3. The closed directed subsets are precisely the directedsose

Proor. A directed cosetis certainly a closed directed subsetAlbet a closed directed
subset. We prove that it is an atlas. Cleaklg AALA. Thus we need only check that
AATAC A Leta, b, ce A Then sincéis directed there id € Asuch thatl < a, b, c.
Thusd = dd™'d < ab'c and scab'c € A sinceAs also closed. O

Lemma 3.4. A closed inverse subsemigroup T of an inverse semigroup Bectet! if
and only if there is a filter F£ E(S) such that T= F'.

Proor. Suppose thal =F'. Leta,beT. Thene<aandf <b for somee, f € F.
But F is a filter in the semilattice of idempotents and so closeceunalltiplication.
Thusefe F. Butthenef <a, band soT is directed.

LetT be a closed directed inverse subsemigroup FPatE(S). Lete, f € F. Now
T is directed and so there i T such thati <e, f. Thusi is an idempotent. But
i<ef<e fandso, sinc& is closed, we have thatf € F. It follows thatF is a filter
in E(S). ClearlyFT C T. Lette T. Thent™'t € T sinceT is an inverse subsemigroup.
But T is directed so there exisfs< t, t™'t. But thenj is an idempotent and sp< t
gives that € F'. HenceT c F'. ThusT = F', as required. O
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Lemma 3.5. If A and B are both directed cosets théaB)! is the smallest directed
coset containing AB; it is also the smallest coset contgiriis.

Proor. The set AB)T is closed so we need only show it is directed. abta’b’ € AB.
Then there existe <a,a wherece A andd<b, b’ wherede B. It follows that
cde ABandcd < ab, a’b’. Thus the set is directed.

Now let X be any coset containingB. ThenX is closed and soXB)' c X. |

The subset 0 (S) consisting of directed cosets is denoted£({p).

ProrosiTion 3.6. Let S be an inverse semigroup.

(1) L(S) is an inverse subsemigroup&f(S).

(2) The directed cosets of S are precisely the cosets of thedcttieected inverse
subsemigroups of S.

(3) Each element oK (S) is the meet of a subset gf{S) contained in arH-class
of L(S).

Proor. (1) If A, B € K(S) then their product is the intersection of all cosets caomitaj
AB. But if A, Be £(S) then by Lemma 3.5 this intersection will also belong/(s).
Closure under inverses is immediate. THi(S) is an inverse subsemigroup &i(S).

(2) If Ac K(S) thenA = (aH)" = (a)' ® H whereH = A" ® Aandac A. ThusA
is directed if and only iH is directed.

(3) Let Ae K(S) be a coset. Define a relationon the setA by a ~ b if and only
if there existsc € A such thatc<a, b. We show that~ is an equivalence relation
on A. Clearly ~ is reflexive and symmetric. It only remains to prove that it is
transitive. Leta~ b andb~ c. Then there existg < a, b andy < b, c wherex, y € A.

In particular,x, y < b. Thusz = xy 'y = yx"!x is the meet ok andy. SinceA is a coset

xy ly, yx1x e A. It follows thatz< a, c. Denote the blocks of the partition induced
by ~ on A by A; wherei € I. Each block is directed by construction and easily seen
to be closed. It follows that each block is a directed cosdts; € £(S). We have
therefore proved thaa = A\ A.

It remains to show tha#; H A;. To do this it is enough to compubq—1®A;
andA ® Al and observe that these idempotents do not depend on five isuwWe
may write A= (aH)" for some closed inverse subsemigradpof S and elemenga
such thatd(a) e H. PutF = E(H) the semilattice of idempotents &f. PutK =F'
andL = (aKa™)T, both closed directed inverse subsemigroup$ aind so elements
of £(S). We prove thaK = Ai’1 QA andL=A® A;l. From A < A we have that
H=Al9 A<A'®A and @Ha')' <A @ A™t. By constructionH <K andK is
in fact the smallest idempotent af(S) aboveH. It follows thatk < A™*® A and
similarly L < A ®A;1. It remains to show that equality holds in each case which
means checking th&t c At @ AjandL c A @ AL

Letke K anda; € Ai. Nowke K C H anda; € A C A. Thusajke A. Butak < g;.
Now if aike A; then by closures; € Aj and so we must have thatke Ai.. Thus
kata € A ® A and so by closurke A" ® A, as required.
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LetleL. LetaeA. ThenA=(aH)". ThusL=(aKa™)". It follows that
allaj € K and sogal € aKayt givingl € A @ A2

An alternative way of proving this result is to observe tKais a closed inverse
subsemigroup oH and soH can be written as a disjoint union of some of the left
cosets oK. We can then use this decomposition to wAtgself as a disjoint union of
left cosets oK. |

We say that an inverse semigro8ps meet completd every nonempty subset of
S has a meet. Meet completions of inverse semigroups aressiedwat the end of
Section 1.4 of 11], [10] and most importantly in]6]. The meet completion of an
inverse semigrouf is in factk(S) [16].

The inverse semigrou$ is said to have altirected meets# it has meets of all
nonempty directed subsets. The result below shows (8} is the directed meet
completion ofS in the same way thak(S) is the meet completion.

ProrosiTion 3.7. Let S be an inverse semigroup. Thé&KS) is the directed meet
completion of S.

Proor. We have the embedding S — £(S) and once again eachie £(S) is the join

of all the s" wherese A. This time the set over which we are calculating the meet is
directed. LetA = {A: i€ |} be a directed subset Bf(S). Thus for each pair of cosets
A andA; there is a cose¥ such thaty, < A;, Aj. PutA= i A. Itis clearly a closed
subset. Ifa, be Athenae A andb € A; for somei andj. By assumptior®;, Aj C A,

for somek. Thusa, b € A¢. But A, is a directed subset and so there existsA, such
thatc < a, b. It follows thatA is a closed and directed subset and so is a directed coset
by Lemma 3.3. It is now immediate thAtis the meet of the sefl. Letd: S — T be

a homomorphism to an inverse semigroupvhich has all meets of directed subsets.
Definey: K(S) = T by y(A) = A 6(A). Theny is a homomorphism and the unique
one such thag: = 6. O

In [17], Lenz constructs an inverse semigrad(s) from an inverse semigroup,
which is the basis for his étale groupoid associated @itfhe key result for our paper
is the following.

Tueorem 3.8. The inverse semigroufi(S) is isomorphic to Lenz’s semigrod}(S).

Proor. Let ¥ = F(S) denote the set of directezlibsetof S. For A, Be ¥ define
A < Bifand only if for eachb € B there exista € Asuch thaa < b. This is a preorder.
The associated equivalence relation is giverAby B if and only if A< BandB < A.
We now make two key observations. @) A'. Itis easy to check tha' is directed.
By definitionA < AT, wherea®A! < Ais immediate. (2AT ~ BT if and only if AT = BT.
There is only one direction needs proving. Suppose Ahat B'. Letac AT. Then
BT < AT and so there i® € B such thato < a. But thenae B'. ThusAl ¢ B'. The
reverse inclusion is proved similarly. By (1) and (2), itléats thatA ~ B if and only
if AT=B". As a setO(S)=F(S)/ ~. We have therefore set up a bijection between
O(S) and L(S). Lemma 3.5 tells us that the multiplication defined Ir7][in O(S)
ensures that this bijection is an isomorphism. O
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Denote byJ(S) the category whose objects are tight S-spacedd/S whereH is
directed and whose arrows are the (right) morphisms. We thav&llowing analogue
of Proposition 3.2.

ProrosiTion 3.9. The categoryJ(S) is isomorphic to the categofiR(L(S)).

3.3. Paterson’setale groupoid Theorem 3.8 brings us to the beginning of Section 4
of Lenz’s paper17] where he describes Paterson’s étale groupoid. i an inverse
semigroup, then it becomes a groupoid when we define a phitiaty operation,
called therestricted productby s-t exists if and only ifd(s) = r(t) in which case
s-t = st Paterson’s groupoid is preciself(S), -) equipped with a suitable topology.
The isomorphism functor defined by Lenz frafi{S) to Paterson’s groupoid can be
very easily described in terms of the ideas introduced inpaper. LetAe £(S).
Define P= (AAY)". Then for anyaec A we have thatA=(Pa)'. Thus we may
regardA as aright cosetof the closed, directed inverse subsemigrdup By the
dual of Lemma 2.4(1), we have thaPd)' = (Pb)!", whereaa™,bbtecP, if and
only if ab™ € P if and only if pa= pb for somep e P, where we use the fact that
every element oP is above an idempotent. The ordered p&ira) wherer(a) € P
determines the right cosé?§)" and another such paiP(b) determines the same right
coset if and only ifpa= pb for somepe P. This leads to an equivalence relation
and we denote the equivalence class contain®@)(by [P, a. The isomorphism
functor between the Lenz groupaf{S) and Paterson’s groupoid is therefore defined
by A [(AA™Y)T, al whereae A. We see that Paterson has to work with equivalence
classes because of the nonuniqueness of coset-resptessntnd Lenz has to work
with equivalence classes because he works with generaisgsfilters rather than
with the filters themselves. In our approach, the use of edgice classes in both
cases is avoided.

Recall from Section 2.2, that a transiti8espaceX is universal if the stabilizer of
a point ofX is FT whereF is a filter inE(S). In other words, by Lemma 3.4 the closed
inverse subsemigroud is directed. It follows that the universal transitive aogo
of S are determined by the directed filters that are also invarbsesnigroups. We
shall now describe how the structure of the groupdi€S), -) reflects the properties
of transitive actions of. In what follows, we can just as easily work in the inverse
semigroup as in the groupoid.

ProrosiTion 3.10. Let S be an inverse semigroup.

(1) The connected components of the groupfi8) are in bijective correspondence
with the equivalence classes of universal transitive actiof S .

(2) LetH be an identity in£(S). Then the local group s at H is isomorphic to the
groupE(H)/o.

Proor. (1) The identities of£(S) are the closed directed inverse subsemigrou of
Two such identities belong to the same connected compohantionly if they are
conjugate. The result now follows by Proposition 2.7.
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(2) PutF = E(H) so thatH =F. Let A be in the local group determined ty.
ThenH = (A 1A)" = (AAY)!. Defined: Gy — E(H)/o by 6(A) = o(a) wherea e A.

We show first that this map is well-defined. Léte F and letae A. Then
alfac A'E(A)ACHA=Aandsoa‘facF andafa'e AE(A)A* c AH=Aand
soafaleF. ThusAcC F. Next suppose that, b e A. Then there is an elemeot A
such that < a, b. Thuso(a) = o(b). It follows thaté is well-defined.

We now show that) defines a bijection. Suppose th®) = 6(B). Thenaohb
whereae A andbe B. Thus there exists € F such thatc <a, b. It follows that
c=aclc=bclcand soatacic<alb. ButataclceF and soA=B. Thuséis
injective. Letae F. Thena 'a, € F and s;a'ae F. ThusA = (aH)" is a well-defined
coset and ThenX*A)" = H = (AA D). It follows thatA € Gy andé(A) = o(a). Thus
0 is surjective.

Finally we show that) defines a homomorphism. Lét Be Gy andac A and
be B. By Lemma 3.5A® B=(AB)" and containgb. Thusé(A)d(B) = o(a)o(b) =
o(ab) = (A ® B). |

We now have the following theorem.

Tueorem 3.11. Let S be an inverse semigroup. Thefs) explicitly encodes universal
transitive actions of S via its Schitzenberger actiongj anplicitly encodes all
transitive actions via its local groups.

Proor. An idempotent of£(S) is just an inverse subsemigrotipof S that is also a
filter. Denote by/y the £-class ofH in the inverse semigroug(S). The elements of
Ly are just the left cosets ¢f in S. The inverse semigrouf(S) acts on the sefy, a
Schitzenberger action, and so too dSesa the map of Proposition 3.7. This latter
action is equivalent to the action & on S/H. We have therefore shown th#(S)
encodes universal transitive actionsSvia its Schiitzenberger actions.

By Proposition 2.14(1) each transitive action®bn a setY is strongly covered
by a universal on&X. Let H be a stabilizer of this universal action $fon X. Then
the strong covering is determined by a strong congruencehwty Theorem 2.15 is
determined by a subgroup of tié-class in£(S) containing the idempoteri; in
other words, by a subgroup of the local group determined éydempotenH. ]

Finally, the topology on the groupoid(S) is defined in terms of the embedding
S — £L(S) as follows. Letse S. Define

Us={Ae L(S): se A}
and forsy, ..., s, < sdefine

Uss...s, =UsNUg N...NUS.

.....



18 M. V. Lawson, S. W. Margolis, and B. Steinberg [18]

4. Matrix representations of inverse semigroups

We deduce here results of the third author on the finite diineasirreducible
representations of inverse semigroupg][ There an approach based on groupoid
algebras was used, whereas here we use results of J. A. Geengpter 6] and the
universal property of’(S).

4.1. Green’'s theorem and primitive idempotents The following theorem
summarizes the contents @& [Chapter 6]. LefA be aring. A module is assumed to be
aleftA-module unless otherwise stated. We also considenanitary Amodules, that

is, A-modulesM such thatAM = M (whereAM means the submodule generated by
elementamwith a€ Aandme M). If Ahas a unit, then this is the same as saying that
the unit acts as the identity dvi. In particular, asimple Amodule is amA-moduleM
suchAM # 0 and there are no nonzero proper submoduléd off eis an idempotent
of AandM is anA-module, thereM is aneAemodule. The functoM +— eMis called
restrictionand we sometimes denote it R@d). It is well known and easy to check
thateM = Homa(Ag M), where the latter has a ledfAeaction induced by the right
action ofeAeon Ae. For aneAemoduleN, define

Inde(N) = Ae®eAe N

The usual hom-tensor adjunction implies thatlisthe left adjoint of Res Moreover,
Resg Inde is isomorphic to the identity functor on the categeryemodules. Indeed,
eae® n— eaenis an isomorphism with inverse— e® n. These isomorphisms are
natural inN.

Tueorem 4.1 (Green).Let A be aring and & A an idempotent.
(1) If N is asimple eAe-module, then the induced module

Inde(N) = Ae®eAeN

has a unique maximal submoduléN3, which can be described as the largest
submodule ofinde(N) annihilated by e. Moreover, the simple modNe=
Inde(N)/R(N) satisfies N= eN.

(2) If M is a simple A-module with eM O, then eM is a simple eAe-module and
M = eM.

Let S be an inverse semigroup and suppose ¢hata minimum idempotent d.
TheneS e= G¢, the maximal subgroup & ate, and is also the maximal group image
of S. Moreover,S e= G = eSand the action 0§ on the left ofS efactors through the
maximal group image homomorphism. llebe a commutative ring with unit. Then
ekS ex kG, and so Green’s theorem shows that sinkS$emodulesM with eM # 0 are
in bijection with simplekGe-modules via induction and restriction. Moreover, since
kS e= kG, we have that IngiN) = N with the action ofS induced by the maximal
group image homomorphism. Thus kiN) already is a simpl&S-module. Let us
consider the analogous situation for primitive idempaent
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Let e be a primitive idempotent of an inverse semigroup with 0. ébs that in
this caseeS e= G¢ U {0} sincee, 0 are the only idempotents @fS eand so ifs# 0,
thenss! =e=s's. Thus ifk,S is the contracted semigroup algebraSofmeaning
the quotient okS by the ideal of scalar multiples of the zero®Y, thenelgS e= kG
and so again by Green’s theorem, we have a bijection betvegtek,S-modulesvi
with eM # 0 andkGe-modules via induction. We aim to show now thalifs a simple
kGe-module, then Ing(N) is already a simpl&S-module. LetlL be theL-class ofe.
Then sincee is primitive, it follows thatlLe = S e\ {0} and sdkyS e= kL, whereS acts
on the left ofkLe via linearly extending the left Schiitzenberger represtéori. The
groupGe acts freely on the right dfe with orbits theH-classes contained .. Thus
koS e= kL is free as a rightlgS e= kGe-module. LetT be a transversal to thgf-
classes of¢ and letN be akGg-module. Then as kmodule, Ind(N) = EBteT t @k N.
A fact we shall use is that any elementlaf is primitive and so ift; #t, € T, then
ity # tot; ! and hencést;t, = 0.

Lemma 4.2. If N is a nonzero kgmodule, then no nontrivial submodulelnfle(N) is
annihilated by e.

Proor. Let M be a nonzero submodule of kftl). Notice thatM is annihilated by
eif and only if it is annihilated by the ideal generated &y So letm= Y.t t®n;
(with only finitely many terms nonzero) be a nonzero elemémoThen there exists
te T with n; # 0. By the observation just before the praof'm=t®n,# 0 and so
tt~ does not annihilaten. Bute = t~'t generates the same idealttis and soM is not
annihilated bye. |

As a corollary, we obtain from Green’s Theoreirl that if N is a simplekGe-
module, then Ing(N) is a simplek,S-module.

CoroLLARY 4.3. Let S be an inverse semigroups &(S) a primitive idempotent and
k a commutative ring with unit. If N is a simple k@&odule, thennds(N) is a simple
kS -module.

If k is a field, then from IngN) = P, ; tex N, we see that IngN) is finite
dimensional if and only il is finite andN is finite dimensional.

4.2. The main result Suppose now th&b is any inverse semigroup areck E(S).
Let le = SeS\ Je be the ideal of elements strictly-belowe. If N is akG,-module,
then let

INde(N) = ko[S/le]e®ka, N = (kS/kle)e g, N.

Equivalently, ifLe is the £-class ofe, thenkLe is a free rightkGe-module with basis
the set ofH-classes ol and also it is a lefkS-module by means of the action of
S on the left ofLe by partial bijections via the Schitzenberger represematlThen
Inde(N) = KLe ®ke, N. Suppose now that th®-class ofe contains only finitely many
idempotents; in this case we say tkdtasfinite indexin S. Under the hypothesis that
e has finite index it is well known that if € E(S) with f < e, thenS fS# SeSand so
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f € le. Thuseis primitive in S/l and so Corollaryt.3 shows that Ing{N) is simple
for any simplekGe-module in this setting.

We are now ready to construct the finite dimensional irrdalegiepresentations of
an inverse semigroup over a field. This was first carried outloyn [21], whereas
the construction presented here first appeare8dhvjhere it was deduced as a special
case of a result on étale groupoids. Our approach here hiséaverse semigroup
L(S). Fix a fieldk. First we construct a collection of simg&-modules.

Prorosition 4.4. Let ee E(L(S)) have finite index and let N be a simple&k@odule.
ThenIndg(N) is a simple kS -module. Moreovémde(N) is finite dimensional if and
only if N is.

Proor. The above discussion shows thatd) is simple as &£(S)-module so we
just need to show that arfy-invariant subspace i£(S)-invariant. In fact, we show
that each element of(S) acts the same on Ip(B) as some element &. It will
then follow that anys-invariant subspace i§(S)-invariant and so IngN) is a simple
kS-module.

Let T be a transversal for the orbits 6t on Le. ThenT is finite since these orbits
are in bijection withR-classes oDe, which in turn are in bijection with idempotents
of De. Let Ae L(S) and writeA = Ay4ep S With se S andD a directed set. We claim
that if t®@ n is an elementary tensor withe T, then there existsl € D depending
only ont (and notn) such thatA(t ® n) = s4(t ® n) for all d > d;. By [11, Section 1.4,
Proposition 19], we havét = Ag4p(sgt). Since theD-class ofe has only finitely
many idempotents, it follows byl[l, Theorem 3.2.16] that distinct elements Of
are not comparable in the natural partial order. Since théssgie d € D} is directed,
either syt <, e for all suficiently large elements dD or sqt is an element of Lg
independent ofl. In the first caseAt <, e and in the second cage =¢. Thus in
the first caseA(t ® n) = 0 = g(t ® n) for d large enough, whereas in the second case
Alt®n)=¢®n=g(ten)forallde D. We concludal; exists.

SinceT is finite, we can findly € D with dy > d; for all t € R. ThenA andsy, agree
on all elements of the formg nwith t € T andn € N. But such elements span kft\l)
and so we conclude thatandsy, agree on Ing(N).

The final statement follows from the previous discussion. O

Note that application of the restriction functor and thetft#tat RegInde is
isomorphic to the identity shows that k{tll) = Inde(M) impliesN = M. Also, if e, f
are two finite index idempotents df(S) ande £+ f, thenf annihilates Ing(N) for
any kGe-module and hence all elements ff viewed as a filter, annihilate IgN).
On the other hand, no element of the filesainnihilates Ing(N). It follows that ife, f
are finite index idempotents that are otequivalent, then the modules of the form
Inde(N) and Ind (M) are never isomorphic. Clearly)-equivalent idempotents give
isomorphic collections of simple modules. Thus, for e@llass with finitely many
idempotents, we get a distinct set of simg&modules (up to isomorphism).

The following fact is well known and easy to prove.
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Prorosition 4.5. Let k be a field and V an n-dimensional k-vector space. Then any
semilattice inEnd(V) has size at mos".

Proor. Any idempotent matrix is diagonalizable and so any sentkatbf matrices
is simultaneously diagonalizable. But the multiplicatimeonoid of k" has 2
idempotents. O

We can now complete the description of the finite dimensian@ducible
representations of an inverse semigroup. In the statenfeheaheorem below, it
is worth recalling thae= H is a finite index, closed directed subsemigroufsaind
Ge is the groupE(H) /o described in Theorem 2.16.

Tueorem 4.6. Let k be afield and S an inverse semigroup. Then the finite dioweal
simple kS -modules are precisely those of the forda(N) where e is a finite index
idempotent of(S) and N is a finite dimensional simple k@&odule.

Proor. It remains to show that every simpleS-module M is of this form. Let
0: S — End(V) be the corresponding irreducible representation. Thend(S) is
an inverse semigroup with finitely many idempotents and is@ally directed meet
complete. Thu® extends to a homomorphisén £(S) — End,(V) by the universal
property. Trivially & must be irreducible as well. Let be a minimal nonzero
idempotent ofT = 6(S) = 8(L(S)). Then@fl(f) is directed and so has a minimum
element.

Suppose tha¢’ D e. Suppose that’ < €. We claimé(e’) = 0. Indeed, choose
Ac £(S) such thatAlA=e and AAl=¢. ThenAle’A<Alg¢A=e and so
(A 1e”A) =0. Thusé(e’) =6(AAe’AA ) =0. We conclude is injective on
the idempotents oD.. Otherwise, we can findy, & € De with 6(e1) = 6(e;). Then
ee < ey, & andé(e)) = 6(e1e) = 6(ey). Thuse; = e1e, = &, by the above claim. We
conclude thae has finite index sinc& has finitely many idempotents.

By choice ofe, it now follows thats factors througts/l. and hence is &[S/l
module. Moreoverg is primitive in S/le. (If 1¢ =0, then we interpreky[S/le] askS
ande is the minimum idempotent.) SineM = f M # 0 by choice off, it follows by
Green’s theorem thal = eM is a simpleelg[S/I¢]e = kGe-module, necessarily finite
dimensional. The identity mag — eM corresponds under the adjunction to a nonzero
homomorphismy: Indg(N) - M. But we already know that IR¢N) is simple by
Propositiord.4. Schur’s lemma then yields thatis an isomorphism. This completes
the proof. ]
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