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1 Introduction

[Significance of (S)reg: aperiodicity, etc.]

Notation: By >L, ≤L, ≡L we denote Green’s well known L-relations (and similarly for R). We
also use ≡D (D-equivalence). See e.g. [4].

A less familiar notion is the L-incomparability relation <
>| L defined as follows: s <

>| L t iff neither
s ≤L t nor s ≥L t. We also define L-comparability: s <

>L t iff either s ≤L t or s ≥L t. A similar
notation is used for R.

A semigroup S is called unambiguous (see [1], [2]) iff for all s, t, u ∈ S − {0} : s >L u <L t
implies s <

>| L t and s >R u <R t implies s <
>|R t. (Here, 0 is the zero of S if S has a zero;

otherwise, S − {0} = S.)
In order to avoid confusion between products of elements in a semigroup S and strings of elements

of S, we denote a string of length n as an n-tuple, of the form (s1, s2, . . . , sn). The product of these
elements in S is denoted by s1s2 . . . sn or s1 · s2 · . . . · sn (∈ S).

2 The rewrite system

Presentation of (S)reg by generators and relations:

Let S be a semigroup, and let 0 be the zero of S, if S has a zero; otherwise, let 0 be a new
symbol /∈ S. Let S − {0} = {s : s ∈ S − {0}} be a set that is disjoint from S ∪ {0}, where the map
x ∈ (S − {0}) ∪ S − {0} 7−→ x ∈ (S − {0}) ∪ S − {0} is a bijection, and also an involution: x = x.
(Note that we do not introduce 0.) Then, by definition [2], (S)reg has the following presentation:

Generators:
S ∪ S − {0} ∪ {0}.

Relations:
∗Both authors’ research was supported in part by NSF grant DMS-9203981 and the Center for Communication and

Information Science, University of Nebraska – Lincoln
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grant 1999298/1 and the support from INTAS through the Network project 99-1224.
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(s, t) = (st) for all s, t ∈ S

(s, t) = (ts) for all s, t ∈ S − {0}
(0) = (0, 0) = (0, s) = (s, 0) = (0, s) = (s, 0) for all s ∈ S

(s, t) = (0) if s <
>| L t, s, t ∈ S − {0}

(s, t) = (0) if s <
>|R t, s, t ∈ S − {0}

(s, s, s) = (s) for all s ∈ S − {0}
(s, s, s) = (s) for all s ∈ S − {0}

Rewrite rules for (S)reg:

1. Length-reducing rules:
The last two of the following set of rules make use of a partial function B : S×S×S → S, that

will be defined after the statement of all the rules.

(1.1) (s, t) → (st), (s, t) → (ts) for all s, t ∈ S

(1.2) (0, 0) → (0), (0, s) → (0), (0, s) → (0), (s, 0) → (0) for all s ∈ S

(1.3) (s, t) → (0) if s <
>| L t, s, t ∈ S − {0}

(1.4) (s, t) → (0) if s <
>|Rt, s, t ∈ S − {0}

(1.5) (u, v, w) → (B(u, v, w)) if u ≤L v ≥R w, u, v, w ∈ S − {0}
(1.6) (u, v, w) → (B(w, v, u)) if u ≤R v ≥L w, u, v, w ∈ S − {0}
2. Length-preserving rules:

For these rules we choose one representative element in every R-class and in every L-class;
moreover, we make this choice so that D-related representatives of R-classes (or L-classes) are L-
related (respectively R-related). Such a choice can always be made. (Note that this condition on
the choice of representatives was not used, and not required, in [2] and [5].)

Notation: For any s ∈ S, rs (or `s) is the representative of the R-class (resp. L-class) of s.
The length-preserving rules make use of two partial functions, BL and BR : S×S → S, that will

be defined after the rules.

(2.1) (s, t) → (rs, BR(s, t)) if s >L t and s 6= rs

(2.2) (s, t) → (`s, BL(t, s)) if s >R t and s 6= `s

(2.3) (t, s) → (BL(t, s), `s) if t ≤R s and s 6= `s

(2.4) (t, s) → (BR(s, t), rs) if t ≤L s and s 6= rs

Definition of B. If u ≤L v ≥R w, where u, v, w ∈ S − {0}, then B(u, v, w) = uz, where z ∈ S is
such that w = vz.

This operation was used in [2], but was first explicitly defined in [5]. It is easy to see that if
u ≤L v ≥R w then B(u, v, w) exists and is unique (i.e., it depends only on u, v, w and not on x; see
Lemma 3.3 below).

Definition of BR and BL. If u ≥L v, where u, v ∈ S − {0}, then BR(u, v) = xru, where x ∈ S
is such that v = xu. If v ≤R u, where u, v ∈ S − {0}, then BL(v, u) = `uy, where y ∈ S is such
that v = uy.

This operation was implicit in [2]. Again, it is easy to see that if u ≥L v (or v ≤R u) then
BR(u, v) (resp. BL(v, u)) exists and is unique (i.e., it depends only on u and v).
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Proposition 2.1 The rewrite system defines (S)reg.

Proof. The rewrite rules (when made symmetric) imply the relations of the presentation; to
obtain the last two relations of the presentation, let u = v = w in rules (1.5) and (1.6).

Converserly it is straightforward to show that in (S)reg, the relations corresponding to the rules
(1.5), (1.6), (2.1) – (2.4) hold (see also [2]). 2

One of the main results of [2] is the following:
If S is unambiguous then S is a subsemigroup of (S)reg, and (for any fixed choice of representatives

of the L- and R-classes) every element of (S)reg can be written in a unique way in the normal form
(0) or

(r1) `2 . . . rn−1 `n s r′m `′m−1 . . . r′2 (`′1)
where (r1 >L) `2 >R . . . >R rn−1 >L `n >R s ≤L r′m <R `′m−1 <L . . . <L r′2 <R (`′1),
or in the form

(r1) `2 . . . rn−2 `n−1 rn s `′m r′m−1 `′m−2 . . . r′2 (`′1)
where (r1 >L) `2 >R . . . >R rn−2 >L `n−1 >R rn >L s ≤R `′m <L r′m−1 <R `′m−2 <L . . . <L
r′2 <R (`′1).
Here, every ri, r

′
j , `i, `

′
j is a representative of an R- or L-class, and s is any element of S − {0}.

Elements in parentheses may be absent.
The normal form representation is the key to many structure properties of (S)reg, e.g., the fact

that S and (S)reg have the same J -class structure. The main result of this paper is:

Theorem 2.1 The above rewrite system for (S)reg is complete (i.e., confluent and terminating).

The remainder of this paper consists of the proof of this theorem. We first give some basic
properties of B, BL , and BR , then we prove termination of the rewrite system, and finally we prove
local confluence.

3 Properties of the functions B, BL, and BR

In this section we collect all the basic properties of B, BL , and BR that we will need in order to
prove that the rewrite system for (S)reg is terminating and locally confluent. The reader may skip
this section, and come back to it while reading the proofs of termination and local confluence.

Below, when we write an expression like BR(x, y), BL(x, y), or B(x, y, z), we always implicitly
assume that these expressions are defined (i.e., we assume that x ≥L y when we use BR(x, y), etc.).

Lemma 3.1 (a) If u = ruα then BR(u, v)·α = v. Similarly, if v = β`u then β ·BL(v, u) = u.
(b) If ru = uα′ then BR(u, v) = vα′. Similarly, if `u = β′u then β ·BL(v, u) = β′u.

The proof is trivial.

Lemma 3.2 BR(ru, v) = v, and BL(v, `u) = v.

The proof is trivial.

Lemma 3.3 BR(u, v) ≡R v, and BL(v, u) ≡L v.

Proof. If we multiply ru ≡R u on the left by x we obtain BR(u, v) = xru ≡R xu = v. For L the
proof is similar. 2
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Lemma 3.4 If s <L t then BR(t, s) <L rt (and the same holds with <L replaced by ≡L or ≤L).
If t >R s then `t >R BL(s, t) (and the same holds with <R replaced by ≡R or ≤R).

Proof. We prove the first statement, the other ones having very similar proofs. Let a be such that
ta = rt.

Since BR(t, s) = xrt for some x such that xt = s, we have BR(t, s) = xrt ≤L rt. Actually
we have BR(t, s) <L rt. Indeed, if we had xrt ≡L rt, then multiplying on the right by a yields
s = xrta ≡L rta = t, i.e., s ≡L t, which contradicts the assumption. 2

Lemma 3.5 If u ≤L v ≥R w then B(u, v, w) = yw = ux = yvx, where x is such that w = vx,
and y is such that u = yv. The value of B(u, v, w) does not depend on the x or y chosen.

Proof. By definition, B(u, v, w) = ux where x is such that w = vx. Hence B(u, v, w) = ux = yvx =
yw.

To see that B(u, v, w) does not depend on the choice of x (provided that w = vx), let w =
vx1 = vx2. Then B(u, v, w) = yvx1 = yvx2. Similarly, one sees that the choice of y does not matter
(provided that u = yv). 2

Lemma 3.6 If u ≤L v ≥R w and t ∈ S−{0} then B(tu, v, w) = t·B(u, v, w) and B(u, v, wt) =
B(u, v, w) · t.

Proof. Since B(u, v, w) = ux where x is such that w = vx, we obtain t · B(u, v, w) = tux with
w = vx. Hence by the definition of B(tu, v, w) we have B(tu, v, w) = t ·B(u, v, w).

The proof for B(u, v, wt) is similar, by using Lemma 3.5. 2

Lemma 3.7
(1) If u ≥L su ≥L v then sru ≥L BR(u, v) and BR(su, v) = BR(sru, BR(u, v)).
(2) If su ≤L v ≤L u then sru ≤L BR(u, v) and BR(v, su) = BR(BR(u, v), sru).
If su <L v ≤L u then sru <L BR(u, v).
(3) If su <

>| L v then sru
<
>| L BR(u, v).

(4) If u ≥L v then BR(u, sv) = s ·BR(u, v).
(5) Analogous properties hold for BL.

Proof. (1) By definition of BR we have BR(u, v) = xru where x is such that v = xu. But v = aus
for some a since v ≤L su, hence we can pick x = as. Now, BR(u, v) = asru ≤L sru.

By definition of BR we have BR(sru, BR(u, v)) = xrsru , where x is any element of S such that
BR(u, v) = xsru.

Also, by definition of BR we have BR(su, v) = yrsu, where y is such that v = ysu. By Lemma 3.1,
multiplying v = ysu by α′ we obtain BR(u, v) = vα′ = ysuα′ = ysru. Thus, BR(u, v) = ysru, and
since x was any element such that BR(u, v) = xsru, we can assume x = y. Now BR(su, v) = xrsu.
Moreover, rsru = rsu since u ≡R ru. The result now follows.

(2) By definition of BR we have BR(u, v) = xru where x is such that v = xu. Hence BR(u, v) =
xru = vα′ where α′ is such that uα′ = ru. Moreover, v ≥>L su (or v >L su), thus BR(u, v) =
vα′ ≥>L suα′ = sru (or >L suα′ = sru).

By definition of BR we have BR(BR(u, v), sru) = xrBR(u,v), where x is such that sru = x ·
BR(u, v). By Lemma 3.1, if we multiply the last equality by α we obtain su = xv.

By definition we also have BR(v, su) = yrv, where y is any element of S such that su = yv.
But we proved that x also satisfies su = xv. Thus we can assume x = y.
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So we have BR(BR(u, v), sru) = yrBR(u,v). Moreover, since BR(u, v) ≡R v (by Lemma 3.3), we
obtain the result.

(3) This follows directly from Lemma 3.1.

(4) By definition, BR(u, v) = yru, where yu = v. Also BR(u, sv) = xru, where x is any element
of S such that xu = sv. Since yu = v, we have syu = sv, hence we can pick x to be sy. The result
then follows. 2

Lemma 3.8 If w <
>| L s then B(u, v, w) <

>| L s. Similarly, if s <
>|R u then s <

>|R B(u, v, w).

Proof. By contraposition, assume B(u, v, w) <
>L s. By definition, B(u, v, w) = ux, where x is such

that w = vx. Since B(u, v, w) exists, u ≤L v ≥R w; so u = yv for some y.
Now we have s <

>L B(u, v, w) = ux = yvx = yw ≤L w.
In case s ≤L ux, the above implies s ≤L w.
In case s ≥L ux, the above implies s ≥L ux ≤L w, hence (by unambiguity of the L-order): s <

>L w.
In either case, s <

>L w. 2

Lemma 3.9 (Lemma 1.1.(5) in [5].) If u ≤L v ≥R w ≤L s ≥R t, then B(u, v, w) ≤L s ≥R t,
u ≤L v ≥R B(w, s, t), and B(B(u, v, w), s, t) = B(u, v, B(w, s, t)).

Proof. We have B(u, v, w) ≤L w by the definition of B, and w ≤L s ≥R t, by assumption. Also,
u ≤L v ≥R w by assumption, and w ≥R B(w, s, t) by Lemma 3.5. So the claimed order relations
hold.

By Lemma 3.5, B(u, v, w) = yw, where u = yv, and by definition, B(w, s, t) = wx, where
t = sx. Then by definition B(u, v, B(w, s, t)) = B(u, v, wx) = B(u, v, w) · x (the latter equality
holds by Lemma 3.6). This is equal to yw · x. A similar reasoning shows that B(B(u, v, w), s, t) is
also equal to ywx. 2

Lemma 3.10 Assume that u ≤L v ≡R w ≥L s and c ∈ S − {0}. Then:
(a) cs = B(u, v, w) iff u = c ·B(s, w, v),
(b) cu = B(s, w, v) iff s = c ·B(u, v, w).

Proof of (a). By Lemma 3.5, there exist x, y, x′, y′ ∈ S such that
B(u, v, w) = ux = yv, w = vx, u = yv and
B(s, w, v) = sx′ = y′v, v = wx′, s = y′w.

If the left side of the equivalence holds then yw = B(u, v, w) = cs = cy′w, so if we multiply by
x′ we obtain (u =) ywx′ = cyx′ (= c ·B(s, w, v)).

If the right side of the equivalence holds then u = c · B(s, w, v) = cy′v, so if we multiply by
x we obtain (B(u, v, w) =) ux = cy′vx; since w = vx, this is equal to cy′w,i and this equals cs
(since s = y′w).

The proof of (b) is similar. 2

Lemma 3.11 Assume that u ≤L v ≡R w ≥L s. Then:
(1) B(u, v, w) ≤L s iff u ≤L B(s, w, v). The same holds with ≤L replaced by >L or <

>| L.
(2. ≤) If B(u, v, w) ≤L s then rs = rB(s,w,v) and BR(s,B(u, v, w)) = BR(B(s, w, v), u).
(2. >) If B(u, v, w) >L s then ru = rB(u,v,w) and BR(B(u, v, w), s) = BR(u,B(s, w, v)).

Analogous properties hold for BL.
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Proof. (1): For ≤L this is an immediate consequence of Lemma 3.10 (a). The result (1) for ≥L
follows from Lemma 3.10 (b). Since >L holds iff we have ≥L and not ≤L , we also obtain (1) for >L .
Also, since <

>| L holds iff we have neither ≤L nor ≥L , we obtain (1) for <
>| L .

(2. ≤): If B(u, v, w) ≤L s then B(s, w, v) = sx′ ≤R s, and B(s, w, v) ≥L B(s, w, v) · x = y′vx =
y′w = s, where x′, x, y′ are as at the beginning of the proof of Lemma 3.10. Thus s ≡L B(s, w, v).

By definition, BR(s,B(u, v, w)) = x′′rs, where x′′s = B(u, v, w).
And BR(B(s, w, v), u) = y′′rB(s,w,v) = y′′rs, where y′′ ·B(s, w, v) = u.
But by Lemma 3.10, x′′s = B(u, v, w) iff u = x′′ ·B(s, w, v). So we can choose y′′ to be x′′. Then
the equality follows.
(2. >): The proof is very similar to the one of (2. ≤). 2

Lemma 3.12 Assume that u ≤L v ≥R w ≥L s, and let c ∈ S. Then:
(1) B(u, v, w) = cs iff B(u, v, rw) = c ·BR(w, s).
(2) c ·B(u, v, w) = s iff c ·B(u, v, rw) = BR(w, s).

Analogous properties hold for BL.

Proof. (1): Assume B(u, v, w) = cs, where (by Lemma 3.5) B(u, v, w) = yw with u = yv.
Multiplying yw = cs on the right by α′ (where α′ is such that wα′ = rw) we obtain:

yrw = csα′.
The left side yrw is equal to B(u, v, rw) by Lemma 3.5 (since here u = yv). On the other hand, by
the definition of BR we have, BR(w, s) = xrw with s = xw. Since wα′ = rw, we have BR(w, s) =
xwα′ = sα′, which (when multiplied by c) yields the right side.

Conversely, if B(u, v, rw) = c ·BR(w, s) we will have by Lemma 3.5 and by the definition of BR ,
in the above notation:

yrw = csα′.
Multiplying on the right by α (where α is such that rwα = w), we obtain: yw = csα′α = cs (we

have sα′α = s because we assumed w >L s). Thus B(u, v, w)(= yw = csα′α) = cs.
The proof of (2) is quite similar to the proof of (1). 2

Lemma 3.13 Assume that u ≤L v ≥R w ≥L s. Then:
(1) B(u, v, w) ≤L s iff B(u, v, rw) ≤L BR(w, s). The same is true with ≤L replaced by >L or
<
>| L .
(2. ≤) If B(u, v, w) ≤L s then s ≡R BR(w, s) and BR(s, B(u, v, w)) = BR(BR(w, s), B(u, v, rw)).
(2. >) If B(u, v, w) >L s then B(u, v, w) ≡R B(u, v, rw) and BR(B(u, v, w), s) = BR(B(u, v, rw), BR(w, s)).

Analogous properties hold for BL :
If s ≤R u ≤L v ≥R w then :

(1) s ≤R B(u, v, w) iff BL(s, u) ≤R B(`u, v, w). The same is true with ≤R replaced by >R or
<
>|R .
(2. ≤) If s ≤R B(u, v, w) then B(u, v, w) ≡L B(`u, v, w) and BL(s,B(u, v, w)) = BL(BL(s, u), B(`u, v, w)).
(2. >) If s >R B(u, v, w) then s ≡L BL(s, u) and BL(B(u, v, w), s) = BL(B`u, v, w), BL(s, u)).

Proof. (1): The result for ≤L follows immediately fom Lemma 3.12 (1). From Lemma 3.12 (2), we
have the corresponding result for ≥L . Combining the two we obtain the result for >L and for <

>| L .

(2. ≤): By Lemma 3.3 we have rs = rBR (w,s).
We will apply Lemma 3.7 (2), which we quote here with different parameters:
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If souo ≤L vo ≤L uo then BR(vo, souo) = BR(BR(uo, vo), soruo).
Let vo = s, uo = y, and so = w, where (by Lemma 3.5), B(u, v, w) = yw and B(u, v, rw) = yrw

with yv = u. Then souo = B(u, v, w) and soruo = B(u, v, rw). By assumption, B(u, v, w) ≤L
s <L w, so souo ≤L uo ≤L vo, hence Lemma 3.7 (2) is indeed applicable here. By substituting, the
claimed result then follows immediately.

(2. >): By Lemma 3.5 we have B(u, v, w) = yw and B(u, v, rw) = yrw, with u = yv. Since
w ≡R rw we obtain B(u, v, w) ≡R B(u, v, rw).

We will apply Lemma 3.7 (1), which we quote here with different parameters:
If uo ≥L souo ≥L vo then BR(souo, vo) = BR(soruo , BR(uo, vo)).

Let so = y, and uo = w, where B(u, v, w) = yw and B(u, v, rw) = yrw, with yv = u (by Lemma
3.5). And let vo = s. Since by our assumptions w >L B(u, v, w) >L s, Lemma 3.7 (1) can be
applied. The claimed result then follows immediately by substitution. 2

Lemma 3.14 Assume that u ≤L v ≥R w. Then BR(v, u) ≤L rv ≥R w and B(BR(v, u), rv, w) =
B(u, v, w).

Analogous properties hold for BL:
If u ≤L v ≥R w then u ≤L `v ≥R BL(w, v) and B(u, v, w) = B(u, `v, BL(w, v)).

Proof. The fact that BR(v, u) ≤L rv ≥R w is obvious from the definition of B.
By Lemma 3.5, B(u, v, w) = x1w for any x1 such that u = x1v. Also, by definition, BR(v, u) =

x2rv for any x2 such that u = x2v; therefore we can choose x2 = x1.
Now B(BR(v, u), rv, w) = BR(v, u) z with w = rvz, hence B(BR(v, u), rv, w) = x1rvz = x1w.

This proves the result. 2

Lemma 3.15 Assume that u ≤L v ≥R w ≤L s. Then BR(s,B(u, v, w)) = B(u, v, BR(s, w)).
Analogous properties hold for BL:
If s ≥R u ≤L v ≥R w then BL(B(u, v, w), s) = B(BL(u, s), v, w).

Proof. By definition, BR(s, B(u, v, w)) = x1rs where x1s = B(u, v, w) = uz, with (by definition
of B) w = vz. We also have:
B(u, v, BR(s, w))
= y BR(s, w) where u = yv
= yx2rs where x2 is such that x2s = w
= yx2sα

′ where α′ is such that rs = sα′

= ywα′ since x2s = w
= yvzα′ since w = vz
= uzα′ since u = yv
= B(u, v, w)α′

= x1sα
′

= x1rs

= BR(s,B(u, v, w)) as we saw in the beginning of this proof. 2

Lemma 3.16 Assume that u ≥L v ≥R w. Then
(1) BR(u, v) ≡L BR(u, `v)),
(2) BL(w, BR(u, v)) = BL(BL(w, u), BR(u, `v)).
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Proof. Property (1) follows easily from Lemma 3.7 (4).
(2): Let β and β′ be such that v = β`v and `v = β′v. By definition, BR(u, v) = xru, where
xu = v. Hence, by the definition of BR , we have BR(u, `v) = β′xru since β′x satisfies β′xu = `v.

Thus, BL(w,BR(u, v)) = BL(w, xru) = `xruy1, where y1 is such that w = xruy1.
On the other hand, BL(BL(w, u), BR(u, `v)) = `BR (u,`v)y2 = `xruy2, since BR(u, v) ≡L BR(u, `v))

(as we just proved in (1)). Here, by the definition of BL , y2 is any element of S such that
BL(w, u) = BR(u, `v) y2. We saw that the latter is equal to β′xruy2. By the definition of BL we
also have BL(w, u) = `vy3 where y3 is such that w = vy3.

Therefore `vy3 = β′xruy2. Multiplying on the left by β yields (w =) vy3 = xruy2, i.e., y2

satisfies w = xruy2, which is the defining property of y1.
Hence, y2 can be chosen above so that y2 = y1. 2

Lemma 3.17 Assume that u′geqLv ≤R w. Then BL(BR(u, v), w) = BR(u,BL(v, w)).

Proof. By the definition of BR and BL , BR(u, v) = xru, where v = xu, and BL(v, w) = `wy,
where v = wy. Let α, α′, β and β′ be such that ruα = u, uα′ = ru, β`w = w, and β′w = `w.

Then BL(BR(u, v), w) = `wy1, where y1 is such that (xru =) BR(u, v) = wy1.
Also, BR(u,BL(v, w)) = x1ru, where x1 is such that (`wy =) BL(v, w) = x1u. By multiplying

the latter equalities by β we obtain:
(*) wy = βx1u.
We need to show that `wy1 = x1ru.

We saw that v = xu = xruα = BR(u, v)α (by the choice of x and of α, and by the definition of
BR). Thus

BR(u, v) α = v.
In this equation we replace v by wy (see the definition of BL(v, w)), and we replace BR(u, v) by wy1

(see the expression for BL(BR(u, v), w)). Thus,
wy1α = wy.

By (*), we can replace wy by βx1u. So,
wy1α = βx1u.

Multiplying this by α′ (on the left) and by β′ (on the right) yields `wy1 = x1ru, which is what we
wanted. 2

Lemma 3.18 Assume that u ≤L v ≥R w. Then B(BR(v, u), rv, w) = B(u, `v, BL(w, v).

Proof. By the definition of BR and BL , we have:
B(BR(v, u), rv, w) = B(xrv, vw) where u = xv,
B(u, `v, BL(w, v) = B(u, `v, `vy), where w = vy.

By the definition of B, B(xrv, vw) = xrvz1, where w = rvz1. Hence, B(xrv, vw) = xw.
Similarly, B(u, `v, `vy) = uz2, where z2 is any element of S satisfying `vy = `vz2; hence we can

pick z2 to be y. Then we have B(u, `v, `vy) = uy = xvy (since u = xv), and xvy = xw (since
vy = w). Thus B(u, `v, `vy) = xw, which is equal to B(xrv, vw), as we saw. 2

4 Termination

In this section we prove that the rewrite system for (S)reg is terminating.

Lemma 4.1 If the sub-system consisting of the rules (2.1) – (2.4) terminates then the whole
rewrite system terminates.
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Proof. Imagine, by contraposition, that the whole rewrite system allows an infinite rewrite chain.
Since the first group of rules is strictly length-reducing, the chain contains only rules of the form
(2.1) – (2.4), from some point on. Hence the rules (2.1) – (2.4) do not form a terminating system.
2

The rest of this section deals with the proof that the sub-system consisting of the rules (2.1) –
(2.4) terminates.

Since the rules (2.1) – (2.4) are length-preserving, the notion of position in a string is invariant
under rewriting. More precisely, a string of length n (over the generators of (S)reg) has positions
1, 2, . . . , n, and when a rule of type (2.1) – (2.4) is applied, the new string still has positions 1, 2, . . . , n.

Our first step is to find factorizations of strings that are preserved under rewriting. (See [3] for
details about preserved factorization schemes; here we do not need exact definitions since the context
will make everything clear).

Lemma 4.2 In a string, a position occupied by 0 or by a non-0 element is invariant under rewrit-
ing. Also, a pair of positions occupied by S × S or S × S is invariant under rewriting.

Proof. Since the rules (2.1) – (2.4) do not use the symbol 0, a position occupied by 0 will never
change; and a non-0 symbol never turns into 0. Similarly, a pair of positions occupied by elements
(s, t) ∈ S × S will always remain occupied by a pair ∈ S × S (although the value of s and t can
change). Similarly for S × S. 2

Lemma 4.3 (Preservation of <L, ≡L, >L, and <
>| L , and similarly for R)

In a string, a pair of positions occupied by elements (s, t) ∈ S × S with s <L t (or ≡L or >L or
<
>| L) will always remain occupied by some pair of ∈ S × S related by <L (respectively ≡L or >L or
<
>| L). Similarly, for a pair ∈ S × S related by <R (or ≡R or >R or <

>|R), this relation is preserved
between these two positions.

Let us look now at the four ways s or t could be changed when a rule is applied just to the left
or right of (s, t).

If the symbol to the left of (s, t) is u, with u >R s, then (2.2) can change (u, s, t) into (`u, BL(s, u), t).
Since BL(s, u) ≡L s (by Lemma 3.3), we still have BL(s, u) <L t at this pair of positions.

If the symbol to the left of (s, t) is u, with u ≤R s, then (2.3) can change (u, s, t) into (BL(u, s), `s, t).
Since `s ≡L s we still have `s <L t at this pair of positions.

If the symbol to the left of (s, t) is v with t >R v (or t ≤R v) then the reasoning is similar. 2

As a consequence of these preservation Lemmas, we can factor any string into maximal subseg-
ments which have the following properties:
• 0 does not occur in a subsegment (unless the subsegment consists of only 0);
• neighboring positions in a subsegment are occupied by pairs in S × S or S × S;
• the incomparability relation <

>| (for L or R) does not occur inside a subsegment.
We call such subsegments continuous strings (i.e., we view the break between two maximal such
subsegments as a discontinuity).

Definition. Let x be a continuous string of length n, and let i (1 ≤ i ≤ n) be a position in x.
We call this position maximal iff
• i = 1 and the relation between the elements at positions 1 and 2 is >;
• or i = n and the relation between the elements at positions n− 1 and n is ≤;
• or 1 < i < n and the relations between the elements at positions i− 1, i, and i + 1 are ≤, > .
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Lemma 4.4 (Maximal positions)
During the rewriting of a continuous string using rules (2.1) – (2.4), an element of S ∪ S at a
maximal position is rewritten at most twice. From then on, the symbol at the maximal position never
changes.

Proof. Suppose that a maximal position is occupied by an element s ∈ S (the case of an element
of S is similar. Let u, v be the neighboring elements in the continuous string, with u ≤R s >L v.
If (2.3) is applied, (u, s) will be rewritten to (. . . , `s). If (2.1) is applied, (s, v) will be rewritten
to (rs, . . .). If (2.3) is now applied (or (2.1) is applied to the previous alternative), the element at
the maximal position is rewritten to `rs (respectively r`s). Further rewriting with rules (2.1), (2.3)
cannot change the element at the maximal position because r`rs

= `rs and `r`s
= r`s , (which follows

from the special choice of the representatives of the L- and R-classes). 2

Note that the above Lemma (and the termination property itself) is not true if the representatives
of the L- and R-classes are chosen differently than we did (except in trivial cases, e.g., when S−{0}
has no strict >R and >L chains).

Lemma 4.5 (Chains >> ... and ... ≤≤ stabilize)
If . . . s . . . occurs in a continuous string, with . . . >L s >R . . ., then after a finite number of appli-
cations of the rules (2.1) – (2.4) to the string, the symbol at the position of s will not change any
more. The same is true for on occurrence of . . . s . . . with . . . >R s >L . . ., and for . . . s . . . with
. . . ≤R s ≤L . . ., and for . . . s . . . with . . . ≤L s ≤R . . ..

Proof. Let us consider the case of . . . u . . . with . . . >L u >R . . .. By the previous lemma, we
know that the element at the maximal position towards the right of u will eventually stabilize. By
induction, suppose that all elements in the descending alternatining >L - >R chain to the left of u
have stabilized. No rule among (2.1) – (2.4) can be applied to the left of u in this chain anymore
(otherwise the element just left of u would change again, since s 6= rs, resp. s 6= `s in the rules). On
the other hand, if a rule is applied to u and the element just right of u (in that case it would be rule
(2.2)), then u is replaced by ru and after this, no rule can be applied anymore at this position.

Let us also consider the case of . . . u . . . with . . . ≤R u ≤L . . .. As before, let us assume by
induction that all elements in the ascending alternatining >L - >R chain to the right of u have
stabilized. Again, no rule will be applied to the right of u anymore. On the other hand, if a rule is
applied to u and the element just left of u (in that case it will be rule (2.3), then u is replaced by `s,
and after this, no rule can be applied anymore at this position.

The reasoning is similar in the other cases. 2

Definition. Let x be a continuous string of length n, and let i (1 ≤ i ≤ n) be a position in x.
We call this position minimal iff
• i = 1 and the relation between the elements at positions 1 and 2 is ≤;
• or i = n and the relation between the elements at positions n− 1 and n is >;
• or 1 < i < n and the relations between the elements at positions i− 1, i, and i + 1 are > . ≤.

Lemma 4.6 (Minimal positions stabilize)
After a finite number of applications of the rules (2.1) – (2.4) to a continuous string the symbols at
the minimal positions do not change anymore.

Proof. Consider the case of a minimal position occupied by an element v ∈ S − {0}, occurring in a
context (. . . , u, v, w, . . .), with u >R v ≤L w. By induction we assume that u and w will not change
anymore. Then no rule can be applied to v (otherwise u or w would change again, since s 6= rs, resp.
s 6= `s in the rules). 2
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5 Local confluence

This section contains the proof that the rewrite system for (S)reg is locally confluent. We have to
look at all the overlap cases (see [6]), which is tedious but straightforward in each case. Each case is
either trivial or it is resolved by using the properties of B, BL and BR proved in Section 3.

Overlap 1.1 – 1.1: (st, u) 1.1←− (s, t, u) 1.1−→ (s, tu).
Then (st, u) 1.1−→ (stu) 1.1←− (s, tu), where we also use associativity of the multiplication in S.

The overlap for the S-form of rule 1.1 has the form
(ts, u) 1.1←− (s, t, u) 1.1−→ s, ut).
Confluence follows easily as above.

Overlaps with 1.2: In all overlaps with rule 1.2 one easily shows confluence to (0).

Overlap 1.1 – 1.3:
Case 1. S-form of rule 1.1.

(tu, v) 1.1←− (t, u, v) 1.3−→ (t, 0) where u <
>| L v.

Then (t, 0) 1.2−→ (0) 1.3←− (tu, v). The last application of rule 1.3 is justified by the following.

Claim: If u <
>| L v then tu <

>| L v.
Proof of the Claim: By contraposition, if t ≥L tu ≥L v then obviously t ≥L v. And if

t ≥L tu ≤L v then t <
>L v, by unambiguity of S. 2

Case 2 S-form of rule 1.1.
(0, v) 1.3←− (t, u, v) 1.1−→ (t, vu), where t <

>| L u.
Confluence is proved in the same way as above.

Overlap 1.1 – 1.4: Similar to the previous case.

Overlap 1.1 – 1.5:
Case 1. (tu, v, w) 1.1←− (t, u, v, w) 1.5−→ (t, B(u, v, w)), where u ≤L v ≥R w.

Then (tu, v, w) 1.5−→ (B(tu, v, w)) ?= (t ·B(u, v, w)) 1.1←− (t, B(u, v, w)).
By Lemma 3.6, B(tu, v, w) = t ·B(u, v, w), so we have confluence.

Case 2. (u, v, wt) 1.1←− (u, v, w, t) 1.5−→ (B(u, v, w) · t) where u ≤L v ≥R w.
As in the previous case, we have confluence by Lemma 3.6.
Here we only considered the S-form of rule 1.1; the S-form does not overlap with 1.5.

Overlap 1.1 – 1.6: Only the S-form of 1.1 overlaps with 1.6. Confluence is proved in a similar
way as in 1.1 – 1.5.

Overlap 1.1 (S-form) – 2.1: (su, v) 1.1←− (s, u, v) 2.1−→ (s, ru, BR(u, v)), where u >L v.
Case 1: su >L v.
Then (su, v) 2.1−→ (rsu, BR(su, v)), since su >L v.

Moreover, (s, ru, BR(u, v)) 1.1−→ (sru, BR(u, v)) 2.1−→ (rsru , BR(sru, BR(u, v))), where the latter
application of rule 2.1 is justified since sru >L BR(u, v) (indeed we assumed su >L v, so by Lemma
3.1, sru = suα′ >L vα′ = BR(u, v)).

11



To have confluence we need rsu = rsru (which easily follows from u ≡R ru), and BR(su, v) =
BR(sru, BR(u, v)) (which is proved in Lemma 3.7 (1)).

Case 2: su ≤L v.
Then (su, v) 2.4−→ (BR(v, su), rv).
Moreover, (s, ru, BR(u, v)) 1.1−→ (sru, BR(u, v)) 2.4−→ (BR(BR(u, v), sru), rBR(u,v)). The latter

application of rule 2.4 is justified since sru ≤L BR(u, v), which follows from the assumption su ≤L v
and from Lemma 3.1.

In order to have confluence we need BR(BR(u, v), sru) = BR(v, su) (which was proved in
Lemma 3.7 (2)), and rBR(u,v) = rv (which follows from Lemma 3.3).

Case 3: su <
>| L v.

Then (su, v) 1.3−→ (0).
Moreover, (s, ru, BR(u, v)) 1.1−→ (sru, BR(u, v)). By Lemma 3.7 (3), sru

<
>| L BR(u, v), so can

now apply rule 1.3, thus obtaining confluence to (0).

Overlap 1.1 (S-form) – 2.1: (ru, BR(u, v), s) 2.1←− (u, v, s) 1.1−→ (u, sv), where u >L v.

Then (ru, BR(u, v), s) 1.1−→ (ru, sBR(u, v)), and (u, sv) 2.1−→ (ru, BR(u, sv)); 2.1 was applicable
since u >L v ≥L sv. Confluence than follws directly from Lemma 3.7 (4).

Overlap 1.1 – 2.2: This is similar to the overlap 1.1 – 2.1.

Overlap 1.1 – 2.3: This is similar to the overlap 1.1 – 2.4, which we consider next.

Overlap S-from of 1.1 – 2.4: (sv, u) 1.1←− (s, v, u) 2.4−→ (s,BR(u, v), ru), where v ≤L u.
Then (sv, u) 2.4−→ (BR(u, sv).
Moreover, (s, BR(u, v), ru) 1.1−→ (s ·BR(u, v), ru).
Confluence then follows from Lemma 3.7 (4).

Overlap S–from of 1 – 2.4: (BR(u, s), ru, v) 2.4←− (s, u, v) 1.1−→ (s, vu), where s ≤L u.

Case 1. s ≤L vu ≤L u.
Then (s, vu) 2.4−→ (BR(vu, s), rvu).
On the other hand, (BR(u, s), ru, v) 1.1−→ (BR(u, s), vru) 2.4−→ (BR(vru, BR(u, s)), rvru). The

last application of rule 2.4 is justified by Lemma 3.7 (1).
To check confluence we observe that vu ≡R vru (obvious), and that BR(vu, s) = BR(vru, BR(u, s))

by Lemma 3.7 (1).

Case 2. vu <L s ≤L u.
Then (s, vu) 2.1−→ (rs, BR(s, vu)).
On the other hand, (BR(u, s), ru, v) 1.1−→ (BR(u, s), vru) 2.1−→ (rBR(u,s), BR(BR(u, s), vru)).

The last application of rule 2.4 is justified by Lemma 3.7 (2).
Confluence now follows from Lemma 3.7 (2), and from the fact that s ≡R BR(u, s) (Lemma 3.2).

Case 3. vu <
>| L s.

Then (s, vu) 1.3−→ (0). On the other hand, (BR(u, s), ru, v) 1.1−→ (BR(u, s), vru) 1.3−→ (0).
We used Lemma 3.7 (3) to justify the last application of rule 1.3.
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So far we have considered all overlaps involving the rule 1.1. We mentioned already that the rule
1.2 always leads to confluence to (0). Let us now look at all the overlaps that involve rule 1.3 (other
than with rule 1.1, seen already).

There is no overlap of 1.3 with itself.

Overlap 1.3 – 1.4: (0, s) 1.3←− (u, v, s) 1.4−→ (u, 0), where u <
>| L v and v <

>|R s.
Then we obviously have confluence to (0).

The case of (u, v, s), where u <
>|R v and v <

>| L v, is handled in a similar way.

Overlap 1.3 – 1.5: (B(u, v, w), s) 1.5←− (u, v, w, s) 1.3−→ (u, v, 0),
where u ≤L v ≥R w and w <

>| L s.
Then (u, v, 0) −→ (0) by two applications of rule 1.2. Moreover, since B(u, v, w) <

>| L s if w <
>| L s

(by Lemma 3.8), we also have (B(u, v, w), s) 1.3−→ (0).

Overlap 1.3 – 1.6: This is similar to 1.3 – 1.5.

There are no overlaps 1.3 – 2.1, 1.3 – 2.4, nor 1.4 – 1.4, 1.4 – 2.2, 1.4 – 2.3. The overlaps 1.4 – 1.5
and 1.4 – 1.6 are similar to the case 1.3 – 1.5.

Overlaps 1.3 – 2.2, 1.3 – 2.3, or 1.4 – 2.1: This is very similar to the case considered next.

Overlap 1.4 – 2.4: (BR(u, v), u, w) 2.4←− (v, u, w) 1.4−→ (v, 0), where v ≤L u <
>|R w.

Then (v, 0) → (0) by rule 1.2. Moreover, since ru ≡R u <
>|R w we have (BR(u, v), u, w) −→

(BR(u, v), 0) by rule 1.4; this then leads to (0) by 1.2.

Overlap 1.5 – 1.5: (B(u, v, w), s, t) 1.5←− (u, v, w, s, t) 1.5−→ (u, v, B(w, s, t)),
where u ≤L v ≥R w ≤L s ≥R t.

Then (B(u, v, w), s, t) 1.5−→ (B(B(u, v, w), s, t)); rule 1.5 was applicable here by Lemma 3.9.
Also, (u, v, B(w, s, t)) 1.5−→ (B(u, v,B(w, s, t)); rule 1.5 was applicable here by Lemma 3.9. Con-
fluence then follows from Lemma 3.9.

Overlap 1.5 – 1.6: (B(u, v, w), s) 1.5←− (u, v, w, s) 1.6−→ (u,B(s, w, v)), where u ≤L v ≡R w ≥L s.

Case 1: B(u, v, w) ≤L s.
In this case rule 2.4 applies and (B(u, v, w), s) 2.4−→ (BR(s,B(u, v, w)), rs). By Lemma 3.11 (1),

rule 2.4 then also applies to (u,B(s, w, v)), thus producing (BR(B(s, w, v), u), rB(s,w,v)). Lemma
3.11 (2.≤) then shows confluence.

Case 2: B(u, v, w) >L s.
In this case (B(u, v, w), s) 2.1−→ (rB(u,v,w), BR(B(u, v, w), s)). By Lemma 3.11 (1), rule 2.1 then

also applies to (u,B(s, w, v)), and this yields (ru, BR(u,B(s, w, v))). Lemma 3.11 (2.>) then shows
confluence.

Case 3: B(u, v, w) <
>| L s.

Then (B(u, v, w), s) 1.3−→ (0). Moreover, by Lemma 3.11 (1), in this case we also have
u <

>| L B(s, w, v), hence rule 1.3 also applies to (u, B(s, w, v)) and produces (0).

The overlap case 1.6←− (u, v, w, s) 1.5−→ is similar to the case above.
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Overlap 1.5 – 2.1: (B(u, v, w), s) 1.5←− (u, v, w, s) 2.1−→ (u, v, rw, BR(w, s)),
where u ≤L v ≥R w >L s.

Case 1: B(u, v, w) ≤L s.
Then (B(u, v, w), s) 2.4−→ (BR(s,B(u, v, w)), rs). Moreover, (u, v, rw, BR(w, s)) 1.5−→ (B(u, v, rw), BR(w, s)) 2.4−→

(BR(BR(w, s), B(u, v, rw)), rBR (w,s)). The last application of rule 2.4 is justified by Lemma 3.13 (1).
Confluence then follows immediately form Lemma 3.13 (2. ≤).

Case 2: B(u, v, w) >L s.
Then (B(u, v, w), s) 2.1−→ (rB(u,v,w), BR(B(u, v, w), s)). Moreover, (u, v, rw, BR(w, s)) 1.5−→

(B(u, v, rw), BR(w, s)) 2.1−→ (rB(u,v,rw), BR(B(u, v, rw), BR(w, s))). The last application of rule 2.1
is justified by Lemma 3.13 (1). Confluence then follows immediately form Lemma 3.13 (2. <).

Case 3: B(u, v, w) <
>| L s.

Then (B(u, v, w), s) 1.3−→ (0). Moreover, (u, v, rw, BR(w, s)) 1.5−→ (B(u, v, rw), BR(w, s)) 1.3−→
(0). The last application of rule 1.3 is justified by Lemma 3.13 (1).

Overlap 1.5 – 2.2:
Case 1. u ≤L v >R w and

(B(u, v, w)) 1.5←− (u, v, w) 2.2−→ (u, `v, BL(w, v)) 1.5−→ (B(u, `v, BL(w, v))).
Confluence then follows from the BL-version of Lemma 3.14.

Case 2. s >R u ≤L v ≥R w and
(`s, BL(u, s), v, w) 2.2←− (s, u, v, w) 1.5−→ (s,B(u, v, w)).

Then (`s, BL(u, s), v, w) 1.5−→ (`s, B(BL(u, s), v, w)). Rule 1.5 was applicable here since by
Lemma 3.3, BL(u, s) ≡L u ≤L v ≥R w.

On the other hand, (s,B(u, v, w)) 2.2−→ (`s, BL(B(u, v, w), s)). Rule 2.2 was applicable here
since s >R u ≥R ux = B(u, v, w) (where the last equality holds by Lemma 3.5).

Confluence then follows from the BL-version of Lemma 3.15.

Overlap 1.5 – 2.3:
Case A. 1.5←− (u, v, w) 2.3−→ , where u ≤L v ≥R w.
This is similar to Case A of the overlap 1.5 - 2.4, treated below.

Case B. (BL(s, u), `u, v, w) 2.3←− (s, u, v, w) 1.5−→ (s,B(u, v, w)), where s ≤R u ≤L v ≥R w.
Then (BL(s, u), `u, v, w) 1.5−→ (BL(s, u), B(`u, v, w)).
Case B.1 s ≤R B(u, v, w).
Then (s,B(u, v, w)) 2.3−→ (BL(s,B(u, v, w)), `B(u,v,w)).

On the other hand, (BL(s, u), B(`u, v, w)) 2.3−→ (BL(BL(s, u), B(`u, v, w)), `B(`u,v,w)). Rule 2.3
was applicable here by the R-version of Lemma 3.13 (1).

Confluence then follows from the R-version of Lemma 3.13 (2, ≤).
Case B.2 s >R B(u, v, w).
Then (s,B(u, v, w)) 2.2−→ (`s, BL(B(u, v, w), s)), and

(BL(s, u), B(`u, v, w)) 2.2−→ (`BL (s,u), BL(B(`u, v, w), BL(s, u))). Rule 2.2 was applicable here by
the R-version of Lemma 3.13 (1).

Confluence then follows from the R-version of Lemma 3.13 (2, <).
Case B.3 s <

>|R B(u, v, w).

14



Then (s,B(u, v, w)) 1.4−→ (0) and
((BL(s, u), B(`u, v, w)) 1.4−→ (0), where the application of rule 1.4 is justified by the R-version of
Lemma 3.13 (1).

Overlap 1.5 – 2.4:

Case A: (BR(v, u), rv, w) 2.4←− (u, v, w) 1.5−→ (B(u, v, w)),
where u ≤L v ≥R w.

Then rule 1.5 is applicable to (BR(v, u), rv, w) because u ≤L v ≥R w implies by Lemma 3.4
BR(v, u) ≤L rv ≡R v ≥R w. Applying 1.5 then yields (B(BR(v, u), rv, w)). Thus by Lemma 3.14
we have confluence.

Case B: (B(u, v, w), s) 1.5←− (u, v, w, s) 2.4−→ (u, v, BR(s, w), rs), where u ≤L v ≥R w ≤L s.
Then rule 2.4 is applicable to (B(u, v, w), s) because by Lemma 3.5 B(u, v, w) = yw ≤L w ≤L v.

Then 2.4 yields (BR(s,B(u, v, w)), rs).
On the other hand, rule 1.5 is applicable to (u, v,BR(s, w), rs) because v ≥R w ≡R BR(s, w)

(the latter by Lemma 3.3). Then 1.5 yields (B(u, v,BR(s, w)), rs).
By Lemma 3.15 we have confluence.

We now come to the overlaps of the rules 2.i (i = 1, ..., 4).
Obviously, 2.1 cannot overlap with itself nor with 2.4.

Overlap 2.1 – 2.2: (ru, BR(u, v), w) 2.1←− (u, v, w) 2.2−→ (u, `v, BL(w, v)), where u >L v >R w.
Then (ru, BR(u, v), w) 2.2−→ (ru, `BR(u,v), BL(w, BR(u, v))). Rule 2.2 was applicable here since

by Lemma 3.3, BR(u, v) ≡R v >R w.
On the other hand, (u, `v, BL(w, v)) 2.1−→ (ru, BR(u, `v), BL(w, v)). Rule 2.1 was applicable

here since u >L v ≡L `v.
Next, applying rule 2.2 to this yields (ru, `BR(u,`v), BL(BL(w, v), BR(u, `v))). Rule 2.2 was

indeed applicable here since by Lemma 3.3, BR(u, `v) ≡R `v ≥R `vy = BL(w, v) where uy = v;
moreover, the ≥R is actually >R (if we had `v ≡R `vy, then we would also have v ≡R vy = u, which
contradicts an assumption).

Lemma 3.16 immediately shows confluence now.

The other overlap case for rules 2.1 and 2.2 is of the form
(`v, BL(v, w), w) 2.2←− (u, v, w) 2.1−→ (u, rv, BR(v, w)),

where u >R v >L w.
This case is similar to the case above.

Overlap 2.1 – 2.3: (ru, BR(u, v), w) 2.1←− (u, v, w) 2.3−→ (u,BL(v, w), `w),
where u >L v ≤R w.

Then (ru, BR(u, v), w) 2.3−→ (ru, BL(BR(u, v), w), `w). Rule 2.3 was applicable here since
BR(u, v) ≡R v.

On the other hand, (u,BL(v, w), `w) 2.1−→ (ru, BR(u,BL(v, w)), `w). Rule 2.1 was applicable
here since BL(v, w) ≡L v.

Confluence now follows from Lemma 3.17.

The other overlap case for the rules 2.1 and 2.3 is of the form
(BL(u, v), `v, w) 2.3←− (u, v, w) 2.1−→ (u, rv, BR(v, w)),

where u ≤R v >L w.
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This is similar to the overlap case of 2.2 – 2.4 that we will study next.

Rule 2.2 has no overlap with itself nor with 2.3.

Overlap 2.2 – 2.4: (BR(v, u), rv, w) 2.4←− (u, v, w) 2.2−→ (u, `v, BL(w, v)),
where u ≤L v >R w.

Rule 1.5 is applicable to (BR(v, u), rv, w) since BR(v, u) = xrv ≤L rv ≡R v >R w. This yields
(B(BR(v, u), rv, w)).

Rule 1.5 is also applicable to (u, `v, BL(w, v)) since u ≤L v ≡L `v ≥R `vy = BL(w, v). This
yields (B(u, `v, BL(w, v)).

Lemma 3.18 immediately implies confluence.

The other overlap case for the rules 2.2 and 2.4 is of the form
(`u, BL(v, u), w) 2.2←− (u, v, w) 2.4−→ (u,BR(w, v), rw), where u >R v ≤L w.
This is very similar to the overlap case of 2.1 – 2.3 that we studied explicitly.

Overlap 2.3 – 2.4: (BR(v, u), rv, w) 2.4←− (u, v, w) 2.3−→ (u,BL(v, w), `w),
where u ≤L v ≥R w.

Then (BR(v, u), rv, w) 2.3−→ (BR(v, u), BL(rv, w), `w) 2.4−→ (BR(BL(rv, w), BR(v, u)), rBL (rv ,w), `w);
the last application of rule 2.4 was justified since BR(v, u) = xrv ≤L rv ≡L BL(rv, w) (the last
L-equivalence follows from Lemma 3.3).

On the other hand, (u,BL(v, w), `w) 2.4−→ (BR(BL(v, w), u), rBL (v,w), `w); the application of
rule 2.4 was justified since u ≤L v ≡L BL(v, w) (where the last L-equivalence follows from Lemma
3.3).

Confluence now follos immediately form the L −−R dual of Lemma 3.16.

The other overlap case for the rules 2.3 and 2.4 is of the form
(BL(u, v), `v, w) 2.3←− (u, v, w) 2.4−→ (u,BR(w, v), rv),

where u ≤R v ≥L w.
This is similar to the above case.

This completes the exhaustive analysis of overlap cases, and shows that the rewrite system for
(S)reg is locally confluent.

References

[1] J. C. Birget, “Iteration of expansions – unambiguous semigroups”, J. of Pure and Applied
Algebra 34 (1984) 1 - 55.

[2] J. C. Birget, “Arbitrary vs. regular semigroups”, J. of Pure and Applied Algebra 34 (1984)
57-115.

[3] J. C. Birget, “Time complexity of the word problem for semigroups and the Higman embedding
theorem”, Report Series UNL - CSE - 95-009 (May 1995, Dept. of Computer Science, Univ. of
Nebraska, Lincoln), International J. of Algebra and Computation (to appear).

[4] P. A. Grillet, Semigroups: An Introduction to the Structure Theory, Marcel Dekker (1995).

[5] P. A. Grillet, “On Birget’s regular embedding” (preprint).

[6] M. Jantzen, Confluent String Rewriting, Springer-Verlag (1988).

16


