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1 Introduction

[Significance of (5),¢q: aperiodicity, etc.]

Notation: By >,, </, =, we denote Green’s well known L-relations (and similarly for R). We
also use =p (D-equivalence). See e.g. [4].

A less familiar notion is the £-incomparability relation i ¢ defined as follows: s $, t iff neither
s <g t nor s >, t. We also define L-comparability: s <. t iff either s <p ¢t or s >, t. A similar
notation is used for R.

A semigroup S is called unambiguous (see [1], [2]) iff for all s,t,u € S—{0}: s> u<gt
implies s $, ¢t and s >gr u <g t implies s $, t. (Here, 0 is the zero of S if S has a zero;
otherwise, S — {0} = S.)

In order to avoid confusion between products of elements in a semigroup S and strings of elements
of S, we denote a string of length n as an n-tuple, of the form (s, s2,..., s,). The product of these
elements in S is denoted by s1s9...8, or s1:82-...-8, (€9).

2 The rewrite system

Presentation of (S5),., by generators and relations:

Let S be a semigroup, and let 0 be the zero of S, if S has a zero; otherwise, let 0 be a new
symbol ¢ S. Let S — {0} ={5:5€ 5 —{0}} be a set that is disjoint from S U {0}, where the map
re(S—{0H)uUS—{0}— 7€ (S—{0}))uUS—{0} is a bijection, and also an involution: T = .
(Note that we do not introduce 0.) Then, by definition [2], (S)yey has the following presentation:

Generators:
S U S—{0} u{o}.

Relations:
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st) forall s,t €S
ts) forall s,t €S —{0}
0)=(0,s) =(s,0) =(0,3) = (5,0) forallsesS
)=1(0) if s$,t, steS—{0}
)=(0) if s 3.t steS—{0}
$,8,8) =(s) forall seS—{0}
5,5,5)=(5) forallseS—{0}
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Rewrite rules for (5);4:

1. Length-reducing rules:

The last two of the following set of rules make use of a partial function B : S xS xS — S, that
will be defined after the statement of all the rules.

(1.1) (s,t) — (st), (5,t) — (ts) forall s,t € S

(1.2) (0,0) — (0), (0,s) — (0), (0,5) — (0), (5,0) — (0) forallseS
(1.3) (s,t) > (0) if s $,t, steS—{0}

(1.4) (5,t) = (0) if s $xt, s,t€S—{0}

(1.5) (u,7,w) = (B(u,v,w)) if u<,v>,w, wv,wes—{0}
(1.6) (@,v,w) — (B(w,v,u)) if u<,v>,w, uv,weSs—{0}

2. Length-preserving rules:

For these rules we choose one representative element in every R-class and in every L-class;
moreover, we make this choice so that D-related representatives of R-classes (or L-classes) are £-
related (respectively R-related). Such a choice can always be made. (Note that this condition on
the choice of representatives was not used, and not required, in [2] and [5].)

Notation: For any s € S, 7, (or ¢5) is the representative of the R-class (resp. L-class) of s.

The length-preserving rules make use of two partial functions, B, and B, : § xS — S, that will
be defined after the rules.

(2.1) (s,t) = (rs, Bo(s,t)) if s>, t and s#rs
(2.2) (5,t) — (ls,B,(t,s)) if s>, t and s#{,
(2.3) (t,s) = (B,(t,s),4s) if t<,s and s#{,
(2.4) (t,5) = (Bg(s,t),75) if t<,s and s#r;s

Definition of B. If u <, v >, w, where u,v,w € S — {0}, then B(u,v,w) = uz, where z € S is
such that w = vz.

This operation was used in [2], but was first explicitly defined in [5]. It is easy to see that if
u <, v >, w then B(u,v,w) exists and is unique (i.e., it depends only on w, v, w and not on z; see
Lemma 3.3 below).

Definition of B, and B,.. If uw>,v, whereu,v € S—{0}, then B, (u,v) = xr,, where x € S
is such that v = zu. If v <, u, where u,v € S — {0}, then B,(v,u) = {,y, wherey € S is such
that v = uy.

This operation was implicit in [2]. Again, it is easy to see that if u >, v (or v <, wu) then
B, (u,v) (resp. B,(v,u)) exists and is unique (i.e., it depends only on w and v).



Proposition 2.1 The rewrite system defines (S)reg-

Proof. The rewrite rules (when made symmetric) imply the relations of the presentation; to
obtain the last two relations of the presentation, let w = v = w in rules (1.5) and (1.6).

Converserly it is straightforward to show that in (S),¢4, the relations corresponding to the rules
(1.5), (1.6), (2.1) — (2.4) hold (see also [2]). O

One of the main results of [2] is the following:

If S is unambiguous then S is a subsemigroup of (S),¢4, and (for any fixed choice of representatives
of the £- and R-classes) every element of (S),¢, can be written in a unique way in the normal form
(0) or

(r)ly oo Tp1 by syl O ... rz(ﬁ'l)
where (r1 >g) lo >R ... >R T n-1 > by >r s < ’I”;n <R E;nfl <r ... <¢ r’2 <R (f’l),
or in the form
(ri)ly oo ool 1rp S0 1 0 o b (£)
where (Tl >E) by > ... SRrp_2 > ln1 >R Th >r 8 <p f;n <r T;nfl <R 5%72 <r ... <g¢

Té <R (5’1)
Here, every ri,rg-,&,ég is a representative of an R- or L-class, and s is any element of S — {0}.
Elements in parentheses may be absent.

The normal form representation is the key to many structure properties of (5),¢4, €.g., the fact

that S and (5),ey have the same J-class structure. The main result of this paper is:
Theorem 2.1 The above rewrite system for (S)yeq is complete (i.e., confluent and terminating).

The remainder of this paper consists of the proof of this theorem. We first give some basic
properties of B, B,, and B, then we prove termination of the rewrite system, and finally we prove
local confluence.

3 Properties of the functions B, B,, and B,

£

In this section we collect all the basic properties of B, B, and B,, that we will need in order to
prove that the rewrite system for (S),¢4 is terminating and locally confluent. The reader may skip
this section, and come back to it while reading the proofs of termination and local confluence.
Below, when we write an expression like B, (z,y), B,.(x,y), or B(z,y, z), we always implicitly
assume that these expressions are defined (i.e., we assume that x >, y when we use B, (z,y), etc.).

Lemma 3.1 (a) If u=rya then B, (u,v)-a =wv. Similarly, if v= [, then (-B.(v,u)=u.
(b) If r, =ud then By (u,v) =va!. Similarly, if £, = B'u then (- B,(v,u) = ('u.

The proof is trivial.

Lemma 3.2 B, (ry,v) =v, and B,(v,{,) =v.
The proof is trivial.

Lemma 3.3 B, (u,v) =, v, and B,(v,u) =, v.

Proof. If we multiply r, =, w on the left by = we obtain B, (u,v) = zr, =, zu = v. For L the
proof is similar. O



Lemma 3.4 Ifs <, t then B,(t,s) <, r: (and the same holds with <, replaced by =, or <,.).
Ift >, s then £, >, B.(s,t) (and the same holds with <, replaced by =, or <. ).

Proof. We prove the first statement, the other ones having very similar proofs. Let a be such that
ta = ry¢.

Since By (t,s) = zr; for some = such that xt = s, we have B, (t,s) = ary <, r;. Actually
we have B (t,s) <, ry. Indeed, if we had zry =, r, then multiplying on the right by a yields
s =aria =, ra =t, i.e., s =, t, which contradicts the assumption. O

Lemma 3.5 If u<pv>gw then B(u,v,w)=yw = ux = yvzr, where x is such that w = vz,
and y 1is such that w = yv. The value of B(u,v,w) does not depend on the x ory chosen.

Proof. By definition, B(u,v,w) = ux where x is such that w = va. Hence B(u,v,w) = ur = yvx =
yw.

To see that B(u,v,w) does not depend on the choice of x (provided that w = vx), let w =
vxy = vxe. Then B(u,v,w) = yvry = yvxs. Similarly, one sees that the choice of y does not matter
(provided that u = yv). O

Lemma 3.6 If u<;v>g w andt € S—{0} then B(tu,v,w) =t-B(u,v,w) and B(u,v,wt) =
B(u,v,w) - t.

Proof. Since B(u,v,w) = ux where x is such that w = vz, we obtain ¢ - B(u,v,w) = tuxr with
w = vz. Hence by the definition of B(tu,v,w) we have B(tu,v,w) =t - B(u,v,w).
The proof for B(u,v,wt) is similar, by using Lemma 3.5. O

Lemma 3.7
(1) If w>psu>gv then sry >p Br(u,v) and Bgr(su,v) = Bgr(sry, Br(u,v)).
(2) If su<pv<gu then sr, <g Bgr(u,v) and Bgr(v,su) = Br(Br(u,v),sry).
If su<gv<gu then sr, <g Br(u,v).
(8) If su ¥, v thensr, 3, Br(u,v).
(4) If u>,v then Br(u,sv) =s- Bgr(u,v).
(5) Analogous properties hold for B.

Proof. (1) By definition of Bg we have Bg(u,v) = xr, where z is such that v = zu. But v = aus
for some a since v <, su, hence we can pick x = as. Now, Bgr(u,v) = asr, <p sry.

By definition of Bg we have Bg(sry, Br(u,v)) = xrs,, where z is any element of S such that
Br(u,v) = zsry,.

Also, by definition of Br we have B (su,v) = yrs,, where y is such that v = ysu. By Lemma 3.1,
multiplying v = ysu by o’ we obtain Bg(u,v) = va’ = ysua’ = ysry. Thus, Br(u,v) = ysry, and
since x was any element such that Bg(u,v) = xsr,, we can assume z = y. Now Bp(su,v) = xrg,.
Moreover, rg,, = rs, since u =g 1. The result now follows.

(2) By definition of Bg we have Bg(u,v) = xr, where z is such that v = zu. Hence Bg(u,v) =
ar, = va’ where o/ is such that ua/ = r,. Moreover, v >>, su (or v >, su), thus Bg(u,v) =
v >>p sudd = sry, (or >p sudd = sry).

By definition of Bgr we have Br(Br(u,v),s7u) = 7By (uv), Where x is such that sr, = x -
Bgr(u,v). By Lemma 3.1, if we multiply the last equality by a we obtain su = zwv.

By definition we also have Bg(v,su) = yr,, where y is any element of S such that su = ywv.
But we proved that x also satisfies su = xv. Thus we can assume z = y.



So we have Br(Br(u,v),sTu) = YTy (up)- Moreover, since Br(u,v) =g v (by Lemma 3.3), we
obtain the result.

(3) This follows directly from Lemma 3.1.

(4) By definition, Bg(u,v) = yry, where yu = v. Also Bg(u, sv) = xr,, where x is any element
of S such that zu = sv. Since yu = v, we have syu = sv, hence we can pick = to be sy. The result
then follows. O

Lemma 3.8 If w $, s then B(u,v,w) $, 5. Similarly, if s $, u then s 3, B(u,v,w).
Proof. By contraposition, assume B(u, v, w) gﬁ s. By definition, B(u,v,w) = ux, where z is such
that w = vz. Since B(u,v,w) exists, u <, v >, w; sou=yv for some y.

Now we have s <, B(u,v,w) = uz = yvz = yw <, w.
In case s <, ux, the above implies s <, w.
In case s >, ux, the above implies s >, ux <, w, hence (by unambiguity of the L-order): s

. <
In either case, s <, w. O

<
>c W-

Lemma 3.9 (Lemma 1.1.(5) in [5].) If u<,v>, w<,.s>,1t, then B(u,v,w) <, s> t,
u<,v >, B(w,s,t), and B(B(u,v,w),s,t) = B(u,v, B(w,s,t)).

Proof. We have B(u,v,w) <, w by the definition of B, and w <, s >, ¢, by assumption. Also,
u <, v >, w by assumption, and w >, B(w,s,t) by Lemma 3.5. So the claimed order relations
hold.

By Lemma 3.5, B(u,v,w) = yw, where u = yv, and by definition, B(w,s,t) = wz, where
t = sz. Then by definition B(u,v, B(w,s,t)) = B(u,v,wx) = B(u,v,w) - x (the latter equality
holds by Lemma 3.6). This is equal to yw - z. A similar reasoning shows that B(B(u,v,w),s,t) is
also equal to ywz. O

Lemma 3.10 Assume that u<,v=, w>,s and c€ S —{0}. Then:
(a) ¢s = B(u,v,w) iff uw=c-B(s,w,v),
(b) cu = B(s,w,v) iff s=c-B(u,v,w).

Proof of (a). By Lemma 3.5, there exist z,y,z’,y’ € S such that
B(u,v,w) =uxr =yv, w=ovx, u=yv and
B(s,w,v) = sz’ =y'v, v=wr', s=1yw.

If the left side of the equivalence holds then yw = B(u,v,w) = ¢s = cy’w, so if we multiply by
x’ we obtain (u =) ywa' = cyx’ (= ¢- B(s,w,v)).

If the right side of the equivalence holds then w = ¢- B(s,w,v) = ¢y'v, so if we multiply by
x we obtain (B(u,v,w) =) ux = cy'vr; since w = vz, this is equal to cy’w,i and this equals c¢s
(since s = y'w).

The proof of () is similar. O

Lemma 3.11 Assume that w <, v =, w >, s. Then:
(1) B(u,v,w) <, s iff u<, B(s,w,v). The same holds with <, replaced by >, or .
(2. <) If B(u,v,w) <, s then rs=7pwy and By(s, B(u,v,w)) = By (B(s,w,v),u).
(2. >) If B(u,v,w) >, s then 1y ="rpuyyw) and Byp(B(u,v,w),s)= By (u, B(s,w,v)).
Analogous properties hold for B,..



Proof. (1): For <, this is an immediate consequence of Lemma 3.10 (a). The result (1) for >,

follows from Lemma 3.10 (b). Since >, holds iff we have >, and not <., we also obtain (1) for > ...

Also, since $, holds iff we have neither <, nor >, we obtain (1) for $, .

(2. <) If B(u,v,w) <, s then B(s,w,v) = sz’ <, s, and B(s,w,v) >, B(s,w,v) -z = y'vz =

y'w = s, where 2/, z,y' are as at the beginning of the proof of Lemma 3.10. Thus s =, B(s,w,v).
By definition, B (s, B(u,v,w)) = 2"rs, where z"s = B(u,v,w).

And B (B(s,w,v),u) = y"7p(sww) = Y'Ts, where y"- B(s,w,v) = u.

But by Lemma 3.10, z”s = B(u,v,w) iff u= 2" B(s,w,v). So we can choose y” to be z”. Then

the equality follows.

(2. >): The proof is very similar to the one of (2. <). O

Lemma 3.12 Assume that v <,v >, w>,s, andlet c€S. Then:
(1)  B(u,v,w)=-cs iff B(u,v,ry)=c-B,(w,s).
(2) c-Bu,v,w)=s iff c¢-B(u,v,1ry) = B (w,s).

Analogous properties hold for B,..

Proof. (1): Assume B(u,v,w) = c¢s, where (by Lemma 3.5) B(u,v,w) = yw with u = yv.
Multiplying yw = ¢s on the right by o/ (where ' is such that wa’ = r,,) we obtain:

Yry = csa'.
The left side yry, is equal to B(u,v,r,) by Lemma 3.5 (since here u = yv). On the other hand, by
the definition of B,, we have, B, (w,s) = xr, with s = zw. Since wa/ = ry,, we have B (w,s) =
zwa’ = sa/, which (when multiplied by ¢) yields the right side.

Conversely, if B(u,v,7y) = ¢- B, (w,s) we will have by Lemma 3.5 and by the definition of B,
in the above notation:

Yry = csa'.

Multiplying on the right by a (where « is such that r,a = w), we obtain: yw = csa’a = cs (we
have so/a = s because we assumed w >, s). Thus B(u,v,w)(= yw = csd’a) = cs.

The proof of (2) is quite similar to the proof of (1). O

Lemma 3.13 Assume that uw<,v >, w>,s. Then:
(1) B(u,v,w) <, s iff B(u,v,ry) <, By(w,s). The same is true with <, replaced by >, or
e
(2. <) If B(u,v,w) <, s then s =, B,(w,s) and B, (s, B(u,v,w)) = B ( (W, 8), B(u,v,1y)).
(2. >) If B(u,v,w) >, s then B(u,v,w) =, B(u,v,ry) and B, (B(u,v,w),s) = B, (B(u,v,ry), B (w,s))
Analogous properties hold for B,
If s<,u<,v>,w then:
(1) s <, B(u,v,w) iff B.(s,u) <, B(ly,v,w). The same is true with <, replaced by >, or
3n -
(2. <) If s <, B(u,v,w) then B(u,v,w) =, B(ly,v,w) and B, (s, B(u,v,w)) = B,(B,.(s,u), B({y,v,w)).
(2. >) If s>, B(u,v,w) then s=, B,.(s,u) and B,(B(u,v,w),s) = B,(Bl,,v,w),B.(s,u)).

Proof. (1): The result for <, follows immediately fom Lemma 3.12 (1). From Lemma 3.12 (2), we
have the corresponding result for > .. Combining the two we obtain the result for >, and for i o

(2. <): By Lemma 3.3 we have r; = T'By (w,s)-
We will apply Lemma 3.7 (2), which we quote here with different parameters:



If Solo <r Vo Sg Uy then B’R(an Souo) = BR(BR(um ’Uo), Soruo)-
Let v, =8, uo =y, and s, = w, where (by Lemma 3.5), B(u,v,w)=yw and B(u,v,ry) = yry
with yv = u. Then s,u, = B(u,v,w) and $ory, = B(u,v,ry). By assumption, B(u,v,w) <,
5 <, W, 80 SolUy <r Uy <p Uy, hence Lemma 3.7 (2) is indeed applicable here. By substituting, the
claimed result then follows immediately.

(2. >): By Lemma 3.5 we have B(u,v,w) = yw and B(u,v,Ty) = yry, with v = yv. Since
w =, ry wWe obtain B(u, v, w) B(u,v,Ty).

We will apply Lemma 3.7 (1), which we quote here with different parameters:

If uo >r Soto =1 Vo then Br(Sole, Vo) = Br(SoTu,s BR (o, Vo))
Let s, =y, and wu, = w, where B(u,v,w) = yw and B(u,v,7y) = yry, with yv = v (by Lemma
3.5). And let v, = s. Since by our assumptions w >y B(u,v,w) >, s, Lemma 3.7 (1) can be
applied. The claimed result then follows immediately by substitution. O

=R

Lemma 3.14 Assume that v <, v >, w. Then Br(v,u) <, r, >, w and B(Br(v,u),ry,w) =
B(u,v,w).

Analogous properties hold for B, :

If w<,v>,w then u<, l, >, B.(w,v) and B(u,v,w)= B(u,¥l,, B, (w,v)).

Proof. The fact that Br(v,u) <, r, >, w is obvious from the definition of B.

By Lemma 3.5, B(u,v,w) = zjw for any z; such that u = z1v. Also, by definition, Bg(v,u) =
xor, for any xo such that u = x9v; therefore we can choose o = 7.

Now B(Bgr(v,u),ry,w) = Br(v,u)z with w = ryz, hence B(Bgr(v,u),ry,w) = x1ry2 = x1W0.
This proves the result. O

Lemma 3.15 Assume that vw<,v>_, w<,s. Then Bgr(s,B(u,v,w)) = B(u,v, Br(s,w)).
Analogous properties hold for B, :
If s>, u<,v>,w then B,(B(u,v,w),s)= B(B,(u,s),v,w).

Proof. By definition, Bg(s, B(u,v,w)) = z17s where z1s = B(u,v,w) = uz, with (by definition
of B) w = vz. We also have:
B(u,v, Br(s,w))

=y Br(s,w) where u = yv

= YTl where x5 is such that x9s = w

= yxosa/ where o is such that r, = sa/

= ywa! since x9s = w

= yvza/ since w = vz

= uza/ since u = yv

= B(u,v,w)d

= x50/

= X1Ts

= Br(s, B(u,v,w)) as we saw in the beginning of this proof. O

Lemma 3.16 Assume that w >, v >, w. Then

(1) Br(u,v) =, Bg(u, L)),
(2) Bﬁ(w’BR(u’ v)) = BL(Bll(w7u)7BR(u7€”U))‘



Proof. Property (1) follows easily from Lemma 3.7 (4).
(2): Let 8 and 3’ be such that v = ¢, and ¢, = f'v. By definition, B (u,v) = xr,, where
zu = v. Hence, by the definition of B, we have B, (u,¢,) = 'zr, since §'z satisfies f'zu = £,,.

Thus, B,(w, B, (u,v)) = B, (w,zry) = lyr,y1, where y; is such that w = zr,y;.

On the other hand, B, (B, (w,u), B (u,€v)) = {p_ (u,0,)Y2 = lor,y2, since By (u,v) =, By (u,{y))
(as we just proved in (1)). Here, by the definition of B,, s is any element of S such that
B,.(w,u) = B, (u,l,)y2. We saw that the latter is equal to ['zr,y2. By the definition of B, we
also have B, (w,u) = £,y3 where y3 is such that w = vys.

Therefore f,ys = 'aryy2. Multiplying on the left by § yields (w =) vys = aryy2, ie., o
satisfies w = xryyo, which is the defining property of ;.

Hence, ys can be chosen above so that yo = y;. O

Lemma 3.17 Assume that u'geq,v <, w. Then B.(B,(u,v),w)= B, (u,B,(v,w)).

Proof. By the definition of B, and B,, Bj(u,v) = zr,, where v = zu, and B,(v,w) = {yY,
where v = wy. Let «, o, § and ' be such that r,a = u, ua/ = ry, B, = w, and 'w = £y,
Then B, (B, (u,v),w) = €yy1, where y; is such that (zr, =) B, (u,v) = wy.
Also, B, (u,B,(v,w)) = x11y, where x; is such that (f,y =) B,(v,w) = zju. By multiplying
the latter equalities by 3 we obtain:
(*) wy = Briu.
We need to show that £,y = x17ry.
We saw that v = zu = 2ry,a = B, (u,v) a (by the choice of x and of «, and by the definition of
B,). Thus
B, (u,v) a = v.
In this equation we replace v by wy (see the definition of B, (v,w)), and we replace By, (u,v) by wy;
(see the expression for B, (B, (u,v),w)). Thus,
wyL = wy.
By (*), we can replace wy by fSziu. So,
wyra = Briu.
Multiplying this by o’ (on the left) and by 3’ (on the right) yields £¢,y; = x1r,, which is what we
wanted. O

Lemma 3.18 Assume that u <, v >, w. Then B(Bg(v,u),ry,w)= B(u,l,, B,(w,v).

Proof. By the definition of B, and B, we have:
B(B (v,u),ry, w) = B(xr,,vw) where u = zv,
B(u,ly, B, (w,v) = B(u, £y, lyy), where w = vy.
By the definition of B, B(zr,,vw) = xr,z1, where w = ry,z;. Hence, B(zry,,vw) = zw.
Similarly, B(u,,,£l,y) = uza, where 2z is any element of S satisfying £,y = £, 22; hence we can
pick zg to be y. Then we have B(u,4y,l,y) = uy = xvy (since u = zv), and xvy = zw (since
vy = w). Thus B(u,ly,l,y) = zw, which is equal to B(xr,,vw), as we saw. O

4 Termination
In this section we prove that the rewrite system for ()4 is terminating.

Lemma 4.1 If the sub-system consisting of the rules (2.1) — (2.4) terminates then the whole
rewrite system terminates.



Proof. Imagine, by contraposition, that the whole rewrite system allows an infinite rewrite chain.
Since the first group of rules is strictly length-reducing, the chain contains only rules of the form
(2.1) — (2.4), from some point on. Hence the rules (2.1) — (2.4) do not form a terminating system.
O

The rest of this section deals with the proof that the sub-system consisting of the rules (2.1) —
(2.4) terminates.

Since the rules (2.1) — (2.4) are length-preserving, the notion of position in a string is invariant
under rewriting. More precisely, a string of length n (over the generators of (S)yey) has positions
1,2,...,n, and when a rule of type (2.1) — (2.4) is applied, the new string still has positions 1,2, ..., n.

Our first step is to find factorizations of strings that are preserved under rewriting. (See [3] for
details about preserved factorization schemes; here we do not need exact definitions since the context
will make everything clear).

Lemma 4.2 In a string, a position occupied by 0 or by a non-0 element is invariant under rewrit-
ing. Also, a pair of positions occupied by S x S or S x S is invariant under rewriting.

Proof. Since the rules (2.1) — (2.4) do not use the symbol 0, a position occupied by 0 will never
change; and a non-0 symbol never turns into 0. Similarly, a pair of positions occupied by elements
(s,t) € S x S will always remain occupied by a pair € S x S (although the value of s and ¢ can
change). Similarly for S x §. O
Lemma 4.3 (Preservation of <., =., >, and iﬁ , and similarly for R)

In a string, a pair of positions occupied by elements (s,t) € S x S with s <, t (or =, or >, or
iﬂ) will always remain occupied by some pair of € S x S related by <, (respectively =, or >, or
iﬁ). Similarly, for a pair € S x S related by <, (or =, or > or iR), this relation is preserved
between these two positions.

Let us look now at the four ways s or ¢ could be changed when a rule is applied just to the left
or right of (s,1).

If the symbol to the left of (s, ?) is w, with u >, s, then (2.2) can change (%, s, ) into (£y, B, (s, u), 7).
Since B, (s,u) =, s (by Lemma 3.3), we still have B, (s,u) <, t at this pair of positions.

If the symbol to the left of (s, ) is w, with u <, s, then (2.3) can change (@, s, ) into (B, (u, $), £s, ).
Since {5 =, s we still have {5 <, t at this pair of positions.

If the symbol to the left of (s,%) is v with ¢t >, v (or ¢t <, v) then the reasoning is similar. O

As a consequence of these preservation Lemmas, we can factor any string into maximal subseg-
ments which have the following properties:
e 0 does not occur in a subsegment (unless the subsegment consists of only 0);
e neighboring positions in a subsegment are occupied by pairs in S x S or S x S;
e the incomparability relation i (for £ or R) does not occur inside a subsegment.
We call such subsegments continuous strings (i.e., we view the break between two maximal such
subsegments as a discontinuity).

Definition. Let = be a continuous string of length n, and let i (1 < i < n) be a position in x.
We call this position mazimal iff
e i = 1 and the relation between the elements at positions 1 and 2 is >;
e or i = n and the relation between the elements at positions n — 1 and n is <;
e or 1 < ¢ < n and the relations between the elements at positions i — 1, ¢, and i + 1 are <, > .



Lemma 4.4 (Maximal positions)
During the rewriting of a continuous string using rules (2.1) — (2.4), an element of S U S at a
maximal position is rewritten at most twice. From then on, the symbol at the mazximal position never
changes.

Proof. Suppose that a maximal position is occupied by an element s € S (the case of an element
of S is similar. Let u, 7 be the neighboring elements in the continuous string, with v <, s >, v.
If (2.3) is applied, (@,s) will be rewritten to (...,¥¢s). If (2.1) is applied, (s,7) will be rewritten
to (rs,...). If (2.3) is now applied (or (2.1) is applied to the previous alternative), the element at
the maximal position is rewritten to ¢,  (respectively 7, ). Further rewriting with rules (2.1), (2.3)
cannot change the element at the maximal position because r¢, = £, and ¢, = ry,, (which follows
from the special choice of the representatives of the £- and R-classes). O

Note that the above Lemma (and the termination property itself) is not true if the representatives
of the £- and R-classes are chosen differently than we did (except in trivial cases, e.g., when S — {0}
has no strict >, and >, chains).

Lemma 4.5 (Chains >> ... and ... << stabilize)
If ...s... occurs in a continuous string, with ... >, s > ..., then after a finite number of appli-
cations of the rules (2.1) — (2.4) to the string, the symbol at the position of s will not change any
more. The same is true for on occurrence of ...5... with ... >, s >, ..., and for ...s... with
o Zgs8<,...,and for...5... with... <. s<, ...

Proof. Let us consider the case of ...u... with ... >, u >, .... By the previous lemma, we
know that the element at the maximal position towards the right of u will eventually stabilize. By
induction, suppose that all elements in the descending alternatining >, - >, chain to the left of u
have stabilized. No rule among (2.1) — (2.4) can be applied to the left of w in this chain anymore
(otherwise the element just left of u would change again, since s # 7, resp. s # {5 in the rules). On
the other hand, if a rule is applied to u and the element just right of u (in that case it would be rule
(2.2)), then w is replaced by 7, and after this, no rule can be applied anymore at this position.

Let us also consider the case of ...u... with ... <, uw <, .... As before, let us assume by
induction that all elements in the ascending alternatining >, - >, chain to the right of u have
stabilized. Again, no rule will be applied to the right of u anymore. On the other hand, if a rule is
applied to u and the element just left of v (in that case it will be rule (2.3), then w is replaced by /s,
and after this, no rule can be applied anymore at this position.

The reasoning is similar in the other cases. O

Definition. Let z be a continuous string of length n, and let ¢ (1 <14 < n) be a position in x.
We call this position minimal iff
e ; = 1 and the relation between the elements at positions 1 and 2 is <;
e or 1 = n and the relation between the elements at positions n — 1 and n is >;
e or 1 < ¢ < n and the relations between the elements at positions ¢ — 1, ¢, and 7 + 1 are > . <.

Lemma 4.6 (Minimal positions stabilize)
After a finite number of applications of the rules (2.1) — (2.4) to a continuous string the symbols at
the minimal positions do not change anymore.

Proof. Consider the case of a minimal position occupied by an element v € S — {0}, occurring in a
context (...,u,v,w,...), with u >, v <, w. By induction we assume that v and w will not change
anymore. Then no rule can be applied to v (otherwise u or w would change again, since s # r, resp.
s # Ls in the rules). O
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5 Local confluence

This section contains the proof that the rewrite system for (S),¢q is locally confluent. We have to
look at all the overlap cases (see [6]), which is tedious but straightforward in each case. Each case is
either trivial or it is resolved by using the properties of B, B, and By proved in Section 3.

Overlap 1.1 — 1.1:  (st,u) &L (s,t,u) L (s,tu).

Then (st,u) RIN (stu) &L (s,tu), where we also use associativity of the multiplication in S.

The overlap for the S-form of rule 1.1 has the form
(#s,0) <& (5,40 5 5.
Confluence follows easily as above.

Overlaps with 1.2: In all overlaps with rule 1.2 one easily shows confluence to (0).

Overlap 1.1 — 1.3:
Case 1. S-form of rule 1.1.
(tu,v) AL (t,u,v) L3, (¢,0) where u . v.

Then (¢,0) 12 (0) &2 (tu,v). The last application of rule 1.3 is justified by the following.
Claim: If u $p v then tu $rv.

Proof of the Claim: By contraposition, if ¢ >, tu >,y v then obviously ¢ >, v. And if
t>rtu<,v then t %L v, by unambiguity of S. O

Case 2 S-form of rule 1.1.

0,7) <> (t,w,0) = (t,ow), where ¢ I u.
Confluence is proved in the same way as above.

Overlap 1.1 — 1.4:  Similar to the previous case.

Overlap 1.1 — 1.5:
Case 1. (tu,7,w) AL (t, u, 7, w) 15, (t, B(u,v,w)), where u<pv>g w.
Then (tu,v,w) % (B(tu,v,w)) = (t-Bu,v,w)) <X (¢ B(u,v, w)).
By Lemma 3.6, B(tu,v,w)=t- B(u,v,w), so we have confluence.
Case 2. (u,7,wt) A (u, 7, w,t) 15, (B(u,v,w)-t) where u<pv>g w.
As in the previous case, we have confluence by Lemma 3.6.
Here we only considered the S-form of rule 1.1; the S-form does not overlap with 1.5.

Overlap 1.1 — 1.6:  Only the S-form of 1.1 overlaps with 1.6. Confluence is proved in a similar
way as in 1.1 — 1.5.

Overlap 1.1 (S-form) — 2.1:  (su,?) AL (s,u,v) 21 (8,74, Br(u,v)), where u >p v.
Case 1: SU >p 0.
Then (su,?) i(rsmBR(su,v))? since su >, v.

Moreover, (s,7y, Br(u,v)) RON (sry, Br(u,v)) 21 (rsp,, Br(smy, Br(u,v))), where the latter
application of rule 2.1 is justified since sr, > Bgr(u,v) (indeed we assumed su >, v, so by Lemma
3.1, sry = sud >, va' = Br(u,v)).

11



To have confluence we need rg, = rg., (which easily follows from u =g ry,), and Bgr(su,v) =
Br(sry, Br(u,v)) (which is proved in Lemma 3.7 (1)).

Case 2: su <, 0.

Then (su,?) 24 (Br (v, su),Ty).

Moreover, (s,7y, Br(u,v)) RO (sry, Br(u,v)) 24, (Br(Br(u,v),5Tu), TBr(uw)). The latter
application of rule 2.4 is justified since sr, <g Bg(u,v), which follows from the assumption su </ v
and from Lemma 3.1.

In order to have confluence we need Bgr(Bgr(u,v),sr,) = Bgr(v,su) (which was proved in
Lemma 3.7 (2)), and 7p(4w) = v (Which follows from Lemma 3.3).

Case 3:  su . v.

Then (su,7) —> (0).

Moreover, (s, 7y, Br(u,v)) REN (87w, Br(u,v)). By Lemma 3.7 (3), sry 3, Br(u,v), so can
now apply rule 1.3, thus obtaining confluence to (0).

Overlap 1.1 (S-form) — 2.1:  (r,, Br(u,v),3) 2L (u,,5) R2N (u,5v), where u >gv.

Then (ry, Br(u,v),3) L, (ru, s Br(u,v)), and (u,s0) 21, (ru, Br(u, sv)); 2.1 was applicable
since u >, v >, sv. Confluence than follws directly from Lemma 3.7 (4).

Overlap 1.1 — 2.2:  This is similar to the overlap 1.1 — 2.1.

Overlap 1.1 — 2.3: This is similar to the overlap 1.1 — 2.4, which we consider next.
Overlap S-from of 1.1 — 2.4:  (sv, 1) AL (s,v,7) 24, (s, Br(u,v),7), where v < u.
Then (sv,7) 24, (Br(u, sv).
Moreover, (s, Bgr(u,v),7y) R2N (s Br(u,v),7s).
Confluence then follows from Lemma 3.7 (4).
Overlap S—from of 1 — 2.4:  (Bgr(u,s),74,0) 2L (s,uw,v) L (s,ou), where s < u.
Case 1. s <, vu <, u.
Then (s, 7) =% (Br(vu, 8), Tou).
On the other hand, (Br(u,s),74,7) ~> (Br(u,s),07) —> (Br(vru, Br(u,s)),7or,). The
last application of rule 2.4 is justified by Lemma 3.7 (1).
To check confluence we observe that vu =g vry, (obvious), and that Bg(vu,s) = Bgr(vry, Br(u, s))
by Lemma 3.7 (1).

Case 2. vu <z s <p u.
Then (s,vu) 21 (rs, Br(s,vu)).

On the other hand, (Bgr(u,s),7a,7) —& (Br(u,8),77%) ~5 (Fap(u.s) Br(Br(U, 5), ).
The last application of rule 2.4 is justified by Lemma 3.7 (2).
Confluence now follows from Lemma 3.7 (2), and from the fact that s =g Bg(u,s) (Lemma 3.2).
Case 3. vu I, s.
1.3

Then (s,7u) 13, (0).  On the other hand, (Bgr(u,s),7%,0) REN (Br(u,s),v) — (0).
We used Lemma 3.7 (3) to justify the last application of rule 1.3.
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So far we have considered all overlaps involving the rule 1.1. We mentioned already that the rule
1.2 always leads to confluence to (0). Let us now look at all the overlaps that involve rule 1.3 (other
than with rule 1.1, seen already).

There is no overlap of 1.3 with itself.

Overlap 1.3 — 1.4:  (0,s) <2 (u,7,s) —> (u,0), where u $,v and v $; s
Then we obviously have confluence to (0).
The case of (W, v,5), where u $, v and v 3, v, is handled in a similar way.

Overlap 1.3 — 1.5:  (B(u,v,w),3) &5 (u,7,w,3) L3, (u,7,0),

where v <, v>, w and w $, s.
Then (u,7,0) — (0) by two applications of rule 1.2. Moreover, since B(u,v,w) $, sif w 3, s

(by Lemma 3.8), we also have (B(u,v,w),3) 13, (0).

Overlap 1.3 — 1.6:  This is similar to 1.3 — 1.5.

There are no overlaps 1.3 — 2.1, 1.3 — 2.4, nor 1.4 — 1.4, 1.4 — 2.2, 1.4 — 2.3. The overlaps 1.4 — 1.5
and 1.4 — 1.6 are similar to the case 1.3 — 1.5.

Overlaps 1.3 — 2.2, 1.3 — 2.3, or 1.4 — 2.1: This is very similar to the case considered next.

Overlap 1.4 — 2.4: (B, (u,v),q,w) 2L (v, T, w) 14 (v,0), where v<,u 3, w.
Then (v,0) — (0) by rule 1.2. Moreover, since r, =, u $, w we have (Bg(u,v),u,w) —
(Bg(u,v),0) by rule 1.4; this then leads to (0) by 1.2.
Overlap 1.5 — 1.5:  (B(u,v,w),s,t) &5 (u,7,w,3,t) 15 (u,7, B(w, s,t)),
where u <, v>, w<, s>, 1.

Then (B(u,v,w),3,t) L5 (B(B(u,v,w),s,t)); rule 1.5 was applicable here by Lemma 3.9.

Also, (u,v, B(w,s,t)) L3, (B(u,v, B(w, s,t)); rule 1.5 was applicable here by Lemma 3.9. Con-
fluence then follows from Lemma 3.9.

Overlap 1.5 -1.6: (B(u,v,w),3) &0 (u, 7, w,3) L6, (u, B(s,w,v)), where u <, v=, w >, s.

Case 1:  B(u,v,w) <

In this case rule 2.4 applies and (B(u,v,w),3) 24, (Bx (s, B(u,v,w)),7s). By Lemma 3.11 (1),
rule 2.4 then also applies to (u, B(s,w,v)), thus producing (B (B(s,w,v),u),TB(swe)). Lemma
3.11 (2.<) then shows confluence.

r S

Case 2: B(u,v,w) >, s.

In this case (B(u,v,w),3) 21, (7 B(uyo,w)s Br (B(u,v,w),s)). By Lemma 3.11 (1), rule 2.1 then
also applies to (u, B(s,w,v)), and this yields (ry, B, (u, B(s,w,v))). Lemma 3.11 (2.>) then shows
confluence.

Case 3:  B(u,v,w) 3, s.

Then (B(u,v,w),3) 13, (0). Moreover, by Lemma 3.11 (1), in this case we also have

u 3, B(s,w,v), hence rule 1.3 also applies to (u, B(s,w,v)) and produces (0).

1.6 ,_ 15 . . .
The overlap case «— (u,v,w,s) — 1is similar to the case above.

13



Overlap 1.5 — 2.1:  (B(u,v,w),3) &5 (u, 7, w,3) 21 (u, T, Ty, By (w, 5)),

where v <, v>, w>, s.
Case 1: B(u,v,w) <,
Then (B(u,v,w),3s) 24, (Bx (s, B(u,v,w)),7s). Moreover, (u,T, 7y, B, (w,s)) 15, (B(u,v,7y), B (w, s

(Bg (Bg (w, s), B(u,v,70)),TB_(w,s))- The last application of rule 2.4 is justified by Lemma 3.13 (1).

Confluence then follows immediately form Lemma 3.13 (2. <).

S.

Case 2: B(u,v,w) >, s.

Then (B(u,v,w),3) 24, (7 B(uyo,w)s Br (B(u,v,w),s)).  Moreover, (u,V, 7, By (w,s)) 15,

(B(u,v,7y), By (w, s)) 21 (T B(u,,r0)s Br (B(u,v,74), B (w, s))). The last application of rule 2.1
is justified by Lemma 3.13 (1). Confluence then follows immediately form Lemma 3.13 (2. <).

Case 3:  B(u,v,w) 3, s.

Then (B(u,v,w),3) 13, (0). Moreover, (u,T, 1y, By (w,s)) 15 (B(u,v,7y), By (w, s)) 13,

(0). The last application of rule 1.3 is justified by Lemma 3.13 (1).

Overlap 1.5 — 2.2:
Casel. u<,v>,w and

(Bu,v,w)) < (u0,w) =5 (u,0, B, (w,v)) ~> (B(u, by, B, (w,v)).
Confluence then follows from the B,.-version of Lemma 3.14.

Case 2. s>, u<,v>,w and

(ls, B, (u,8),7,w) <2 (5,u,7,w) ~> (3, B(u,v,w)).

Then (ls, B, (u,s),v,w) 15, (¢s, B(B,(u,s),v,w)). Rule 1.5 was applicable here since by
Lemma 3.3, B.(u,s) =, u <, v >, w.

On the other hand, (5, B(u,v,w)) 22, (s, B, (B(u,v,w),s)). Rule 2.2 was applicable here
since s >, u >, ur = B(u,v,w) (where the last equality holds by Lemma 3.5).

Confluence then follows from the B,.-version of Lemma 3.15.

Overlap 1.5 — 2.3:
Case A. &2 (u, 7, w) 23, ,  where u<,v>, w.
This is similar to Case A of the overlap 1.5 - 2.4, treated below.

Case B. (B.(s,u),ly,v,w) 23 (3, u, v, w) L5, (5, B(u,v,w)), where s <, u<,v>_ w.

Then (B, (s,u), u,,w) > (B, (5,u), B(ly,v,w)).

Case B.1 s <, B(u,v,w).

Then (3, B(u,v,w)) 2> (B, (s, B(u,v,0)), B(uuw))-

On the other hand, (B, (s,u), B(fy,v,w)) 23, (B, (B.(s,u), B(lu,v,w)), B¢, vw)) Rule 2.3
was applicable here by the R-version of Lemma 3.13 (1).

Confluence then follows from the R-version of Lemma 3.13 (2, <).

Case B.2 s> B(u,v,w).

Then (35, B(u,v,w)) 22, (s, B, (B(u,v,w),s)), and
(B,(s,u), B({y,v,w)) 22, (m, B,(B(ly,v,w),B.(s,u))). Rule 2.2 was applicable here by
the R-version of Lemma 3.13 (1).

Confluence then follows from the R-version of Lemma 3.13 (2, <).

Case B.3 s 3, B(u,v,w).
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Then (3, B(u,v,w)) 14, (0) and
(B, (s,u), B(ly,v,w)) 14 (0), where the application of rule 1.4 is justified by the R-version of

Lemma 3.13 (1).

Overlap 1.5 — 2.4:

Case A: (B, (v,u), 75, w) <X (u,7,w) > (B(u,v,w)),

where v <, v >, w.

Then rule 1.5 is applicable to (Bj(v,u),7y, w) because u <, v >, w implies by Lemma 3.4
B, (v,u) <, ry =, v >, w. Applying 1.5 then yields (B(Bj (v, u),y,w)). Thus by Lemma 3.14
we have confluence.

Case B: (B(u,v,w),3) &5 (u,7,w,3) 24, (u,7, B, (s,w),T5), where u<,v>, w<,s.

Then rule 2.4 is applicable to (B(u,v,w),s) because by Lemma 3.5 B(u,v,w) =yw <, w <, v.
Then 2.4 yields (B (s, B(u,v,w)),Ts).

On the other hand, rule 1.5 is applicable to (u,v, B, (s,w),Ts) because v >, w =, B, (s,w)
(the latter by Lemma 3.3). Then 1.5 yields (B(u,v, By (s,w)),Ts).

By Lemma 3.15 we have confluence.

We now come to the overlaps of the rules 2.i (i = 1, ..., 4).
Obviously, 2.1 cannot overlap with itself nor with 2.4.

Overlap 2.1 — 2.2:  (ry, B, (u,v),w) &L (u, 7, w) 22, (u, by, B, (w,v)), where u>, v >, w.

Then (ry, B, (u,v),w) 22, (Tus LB (uw)» B (W, B (u,v))). Rule 2.2 was applicable here since
by Lemma 3.3, B, (u,v) =, v >, w.

On the other hand, (u, £y, B,(w,v)) 21 (ru, Br (u,4y), B, (w,v)). Rule 2.1 was applicable
here since u >, v =, {,.

Next, applying rule 2.2 to this yields (ru,lpg(u,)s B (B, (w,v), By (u,£y))). Rule 2.2 was
indeed applicable here since by Lemma 3.3, B (u,l,) =5 ¢y >, loy = B,.(w,v) where uy = v;
moreover, the >, is actually > (if we had ¢ lyy, then we would also have v =, vy = u, which
contradicts an assumption).

Lemma 3.16 immediately shows confluence now.

UER

The other overlap case for rules 2.1 and 2.2 is of the form

(Cy, B (v,w),w) &2 (w,0,0) 25 (1,70, By (v,w)),
where u >, v >, w.

This case is similar to the case above.

Overlap 2.1 — 2.3:  (ry, B, (u,v),w) 2L (u, 7, w) 23, (u, B, (v,w), ly),

where u >, v <, w.

Then (ry, B, (u,v),w) 23, (7w, B, (B (u,v),w),4,). Rule 2.3 was applicable here since

B, (u,v) =5

On the other hand, (u,B,(v,w),4y) 21 (7w, B (u, B, (v,w)),4,). Rule 2.1 was applicable
here since B, (v,w) =, v.

Confluence now follows from Lemma 3.17.

V.

The other overlap case for the rules 2.1 and 2.3 is of the form

(B, (u,0), by, W) &2 (@0,w0) 25 (W, 1y, By (v, 0)),

where u <, v >, w.
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This is similar to the overlap case of 2.2 — 2.4 that we will study next.

Rule 2.2 has no overlap with itself nor with 2.3.

Overlap 2.2 — 2.4: (B, (v,u),Ty,w) 2L (u,7,w) 22,

where u <, v >, w.

Rule 1.5 is applicable to (B (v,u),Ty,w) since B (v,u) = xr, <, 1y =, v >, w. This yields
(B(By (0,1), 70, w)). B

Rule 1.5 is also applicable to (u, ¥, B, (w,v)) since u <, v =, £, >, l,y = B.(w,v). This
yields (B(u, 4y, B, (w,v)).

Lemma 3.18 immediately implies confluence.

(u, £y, B, (w,v)),

The other overlap case for the rules 2.2 and 2.4 is of the form
(Cu, B, (v,u),w) 22 (u,v,w) 24 (W, By (w,v),Ty), where u>_ v <, w.
This is very similar to the overlap case of 2.1 — 2.3 that we studied explicitly.

Overlap 2.3 — 2.4: (B, (v,u),Ty,w) 24 (u, 7, w) 23, (u, B, (v,w), ly),

where u <, v >, w.
_ 2.3 R 2.4 .

Then (B, (v,u),7y, w) — (Bg(v,u), B, (ry,w),ly) — (B (B, (ry,w), By (v, u)),rBE(TU,w),Ew);
the last application of rule 2.4 was justified since B, (v,u) = ar, <, 1y =, B,.(ry,w) (the last
L-equivalence follows from Lemma 3.3).

On the other hand, (u,B,(v,w), %) 24, (B, (B, (v,w),u),rBﬁ (v,w)> Lw); the application of
rule 2.4 was justified since u <, v=, B,(v,w) (where the last £-equivalence follows from Lemma
3.3).

Confluence now follos immediately form the £ — —R dual of Lemma 3.16.

The other overlap case for the rules 2.3 and 2.4 is of the form

(B (w0), b, ) &% (@,0,W) 25 (@ By (w,v), 7).
where u <, v >, w.

This is similar to the above case.

This completes the exhaustive analysis of overlap cases, and shows that the rewrite system for
(S)reg is locally confluent.
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