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I. INTRODUCTION

In this paper all semigroups considered will be finite. Let M
be a monoid. Then P(M), the power set of M, forms a monoid under the
usual multiplication of subsets. Power monoids have recently been
studied from the algebraic point of view [7],[8] and for their
connectionwith the theory of languages [4],[6],[10],[12].

Here we study M-varieties which are generated by power monoids.
Recall that an M-variety is a collection of monoids closed under
division and finite direct product. If V is an M-variety let PV be
the M-variety generated by {P(M)|M ¢ V}. The operation V » PV has
been studied in [6],[10],[12].

An M-variety V is proper if V is not equal to M the M-variety
of all finite monoids. The main theorem of this paper shows that
PV is proper if and only if V i3 contained in DS the M-variety of
monoids whose regular D-classes are subsemigroups. Equivalently we
will see that PV = M if and only if BA2, the 2x2 aperiodic Brandt
monoid, is in V. This answers a question raised by Pin in [6].

Let M and N be monoids. Our main technique is to study various
properties of morphisms 6:M + N which are inherited by the natural
extension g:P(M) -~ P(N). We will especially be interested in the
case when N is a semilattice.

As an application of these methods we will show that if M is a
union of groups, then the complexity of M is equal to the complexity
of P(M). On the other hand we will give an example of an aperiodic
monoid M _~such that P(M ) has complexity n, for each n > 0. We will
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MARGOLIS

also show that if M is in DS, then the maximal subgroups of P(M) are
in the M-variety generated by the maximal subgroups of M. See [15]
for an expostion of complexity theory.

IT. PRELIMINARIES
Our terminology and notation will follow [1],[3], and [15]. We
refer the reader to these texts for any details not included in this
paper.
If M and N are monoids and ¢:M > N is a (functional) morphism
then ¢:P(M) > P(N) will denote the natural extension. The proof of
the following useful lemma is elementary and is left to the reader.

LEMMA 1. Let M and N be monoids and let 4:M - N be a functional
morphism. If X and Y are contained in Msthen X¢ = Y¢ if and only if

X and Y intersect the same classes of (mod ¢) nontrivially.

Forn > 1 let n=1{0, ..., n-1} and let BAn be the monoid con-
sisting of the identity transformation together will all partial
functions f:p -p with the property that card (af']) <1. BA is
called the aperiodic Brandt monoid of size n. The following was
proved in [6] using language theoretic methods. We present a direct
algebraic proof. See [2, Ch. 7].

LEMMA 2. Let V be an M-variety. If BA2 e V then PV = M, the M-
variety of all finite monoids.

Proof. The following two facts are easy to establish:
1) If m,n > 1 then BAmn < BAm X BAn'
2) If m <n then BAm <BAn.

In particular, if follows by 1) that BA2 e V implies BAzk eV
for all k > 1. Therefore, by 2) BAn eV foralln>1.
Let Rn denote the monoid of relations on n. The function

¢:P(BAn) > Rn given by
Xo = (_/f

feX
for X ¢ P(BAn) is a surjective functional morphism. Therefore
R, e PV for all n > T,and thus PV = M.}
This proves one part of the main theorem. In order to prove
the converse we will need to study M-varieties defined by certain
classes of relational morphisms. We introduce the necessary
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terminology.

Let S and T be semigroups. Recall that a relation ¢: S~ T is
a relational morphism if

1) so # 0 for all s e S.

2) (s]¢)(52¢) 5;(s]sz)¢ for all S1s Sp € S.

If S and T are monoids we also require
3) 1 ¢ 9.
Let V and W be S-varieties. That is V and W are collections of

semigroups closed under division and finite direct product. A rela-
tional morphism ¢:S > T is a V-W morphism if for every subsemigroup
T of T

1

T' ¢ W implies T'¢ = € V.

We shall be particularly interested in the cases W = V and
W = {1}, the variety consisting of the trivial semigroup 1. In the
first case we call ¢:S > T a V-morphism [15]. Notice that ¢:S > T
is a V-{1} morphism if and only if {e¢'] | e = el e TicV.

Clearly every V-morphism is a V-{1} morphism but the converse
is not true. Furthermore the collection of V-morphisms is easily
seen to be closed under composition whereas this need not be true
of the collection of V-{1} morphisms.

EXAMPLE 1. Let Un denote the monoid consisting of n right zeroes
and an identity. It is well known that the exclusion <U2> of U2
defined by <Uy> = {S|U, S} is an S-variety.

The unique surjective functional morphism ¢:U2 > U1 is a
<U,> - {1} morphism which is not a <U2>-morphism. Furthermore the
morphism y:U] > {1} is a U, -{1} morphism but ¢v: U, »{1} is not.

If ¢ is the collection of all V-W morphisms and V' is an M-
variety let

»"v' = (M| there exists N e V' and ¢:M > N ¢ o).

It is easy to check that @']yj is an M-variety. Varieties of
the form ¢']y} arise naturally in language theory. For example, let
¢ be the collection of all aperiodic morphisms. In [13] Straubing
shows that a *-variety of languages (see [13]) is closed under
concatenation for each alphabet A if and only if the corresponding
M-variety V is closed under the operation V - ¢‘]y,
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ITI. THE MAIN RESULT
In this section we state the main theorem and prove it modulo a
technical Temma. Recall that DS is the M-variety of monoids whose
regular D classes are subsemigroups.

THEOREM 3. Let V be an M-variety. The following are equivalent:
1) V is not contained in DS»
2) BA2 e Vo
3) PV = M the variety of all finite monoids.

The hardest part of theorem 3 is 3) implies 1). That is we must
show that if V is contained in DS then there exists a monoid M ¢ PV.
The'fo11owing lemma, whose proof is postponed until the next sect;on,
will allow us to construct such an M. Recall that <U,> is the S-

2
variety of Uz-free semigroups. See example 1 above.

LEMMA 4. Let ¢ be the collection of <U2>—{1} relational morphisms
and let W be the M-variety of commutative aperiodic monoids. Then
1

P(DS) c o M.

In other words if M e p(DS)sthen there exists a commutative
aperiodic monoid N and a relational morphism ¢:M > N such that
feq”! le = el ¢ N} €<U,>.

We now construct a monoid which is not in P(DS).

EXAMPLE 2. Let U2 be the monoid consisting of an identity and two
right zeroes a and b. Form the Rees matrix semigroup

S = M(Uys(ays 3,1 ibys byLLY 31)
over U2 and let M = S].
M is regular and has 3 D classes:
D, = (I}
p = (a:1,b5) 1,3 e {1,2}}
= {(ai,x,bj))x e {a,b}, i, J € {1,2}}.
D3 <D, <D in the usual D class ordering.

o o
] 1]

LEMMA 5. M is not in P(DS).

Proof. Let N be a commutative aperiodic monoid and let ¢:M-N be a
relational morphism. It suffices by lemma 4 to show that ¢ is not
a <U2>-(l} morphism. .

The set R = {(m,n)|nem¢} is a submonoid of MxN. Let
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™ t:R->M
’ITZIR + N
be the restriction of the projections MxN - M and MxN -+ N, respec-
tively. Note that ¢ = n;]ﬂz.
Let D cR be a regular D class such that Dﬂ] = 02 S M. Then
Dnz is contained in a regular D class of N and thus D“z = e for some
idempotent e ¢ N (since N is commutative and aperiodic).

Therefore e¢'] = enélw] contains the subsemigroup S of M gener-

ated by D2.
But
(a,,1,b:)% = (a,,a,b1) € S
2 1 2 2 1
and (a] ’] :bz) = (a],b,bz) € S
Therefore

(az9a,b2) = (529a9b])(a1a],b2) € S
and (ay,b,b,) = (az,a,b1)(a],b,b2) e S

Thus Uy= ((a,,1,b,), (a,,2,b,), (a,,b,b,)3 S5 Ces™ and o is
not a <U2>-{l} morphism.§

We can now prove theorem 3. By lemma 2 and lemma 5 it suffices
to prove 1) implies 2).

Let V be a variety which is not contained in DS. Then there is
a monoid M €V and a regular D class D of M which is not a subsemi-
group. It is easy to see that a monoid of the form

N=W(y, 2,2, ) ) ) xe(0,1}

divides M. If x = 0, then N ::BA2 and we are done since N e V. If
x =1, then a simple calculation shows that

BA2 < NxN

and therefore BA, e V as desired.

We remark that theorem 3 remains true for semigroups and S-
varieties.

The following result of Putcha [7] will allow us to state a
theorem for M-varieties of aperiodic monoids analogous to theorem 3.

THEOREM 6. Let M be a aperiodic monoid. Then P(M) is aperiodic if
and only if BA, does not divide M.

Let DA be the M-variety of monoids whose regular D-classes are
aperiodic semigroups.
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COROLLARY. Let V be an M-variety of aperiodic monoids. The
following are equivalent:

1) V is contained in DA.

2) BA2 ¢ V.

3) PV is an aperiodic M-variety.

Proof. The equivalence of 1) and 2) is proved as in theorem 3. The
equivalence of 2) and 3) follows from theorem 6.8
More generally, we have:

THEOREM 7. Let S be a semigroup in DS and let G be a subgroup ip
P(S). Then G is in the M-variety generated by the maximal subgroups
of S.

Proof. Let D be a regular p-class of S. Define a map fD:G > P(D)
by XfD = XN D. Then fD is a morphism. For clearly,

(XN D)(YND)C(XYn D)
for all X,Y € G. On the other hand, let z = xy ¢ (XYNn D). Let
e=e2Hz. Thene@;TwhereT=T2 e G. But ex ¢ TX = X and
ye € YT = Y. Therefore, z = e(xy)e = (ex)(ye) ¢ (Xxp D)(YN D).
Let D], cees Dn be the regular D classes of S which intersect
the maximal D classes of T nontrivially. Then the morphism
f:G *P(D])x xP(Dn) is injective where

gf = (gf, > ..., gf, )
D] Dn

Indeed, suppose Xf = Tf for some X ¢ G. Let t ¢ T. Thent = us,v
for some u,v e Tand s; ¢ D, N T and some 1 < i <n. But
Di nNT Di 0 Xzand thus t € TXT = X. l‘herefore T X. It follows
that X = TX € X° and by induction X & XX for all k > 1. But X" =T
for some n > 1 and thus X € T also.

To prove theorem 7, it suffices then to prove the following
1emma.

i

LEMMA 8. Let S be a completely simple semigroup and let G be a sub-
group of P(S). Then G divides a maximal subgroup of S.
2

Proof. Let GEP(S) and let T = T° ¢ G. Let H be a maximal subgroup
of S such that TNH # §. A proof that the map f:G > P(H) sending

X > XNH is an injective morphism is similar to the proof above and
is omitted. Therefore G is isomorphic to a subgroup of P(H). It is
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well known that every subgroup of P(H) divides H. See [6] for
example. f§

We close by using theorem 7 to prove a theorem which generalizes
theorem 6. Let G be any M-variety of groups not containing all
finite groups. Define G to be the M-variety consisting of monoids
all of whose subgroups are in G. Let DG = DSN G.

THEOREM 9. Let V be an M-variety contained in G. The following
conditions are equivalent.

1) V is contained in DG.
2) PV is contained in G.
3) PV is proper.

4) BA, £ V.

Proof. 1) =>2) Follows from theorem 7.
2) =>3) Trivial since G is not the M-variety of all finite
groups.
3) =>4) Follows from theorem 3.
4) =>1) Since V is contained in G, this follows as in
theorem 3.1

Compare theorem 7 with the following result of Putcha [7].
Recall that an M-variety V is closed if the wreath product of two
members of V is also in V.

THEOREM. Let S be a finite semigroup and let G be a subgroup in
P(S). Then G is in the closed M-variety generated by the maximal
subgroups of P(Si) where Si i=1, ..., nare the principal factors
of S.

If BAn is the aperiodic Brandt monoid of size n, then we have seen
in lemma 2 that the monoid of relations on n divides P(BAn). Thus

the subgroups in P(S) are in general much more complicated than
the subgroups in S.

We close this section with an application to language theory.
It is well known that every theorem on M-varieties leads, via the
Eilenberg variety theorem ([1],[3]), to a theorem on *-varieties
of recognizable languages. We assume the reader is familiar with
the basic definitions and ideas in the theory of varieties of
languages.

The operation V > PV on M-varieties corresponds to the
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following operation on *-varieties.

Let V be a *-variety and let A be a finite alphabet. Define
A*(nV) to be the Boolean algebra generated by sets of the form L¢,
where L ¢ B*V for some finite alphabet B and ¢:B* -~ A* is a morphism
such that By € A.

THEOREM 10. If V corresponds to the M-variety V»then mV corresponds
to PV.

Proof. See [6],{10], or [12].1

THEOREM 11. Let V be a *-variety and let A = {a,b}. The following

are equivalent:
1) (ab)* e A*V,

2) =V = RAT the variety of all rational languages.

Proof. Follows from theorem 3, theorem 10, the Eilenberg variety
theorem and the fact that the syntactic monoid of (ab)* is BA2.I

IV. THE M-VARIETIES DS AND P(DS)

In this section we complete the proof of theorem 3 by proving
lemma 4. Recall that U]is the 2 element semilattice and that <U]>
is the S-variety of U1—free semigroups. Thus S ¢ <U]> if and only
if S is a nilpotent ideal extension of its minimal ideal.

The proof of lemma 4 will proceed in 2 steps:

1) If M e DSsthen there exists a functional <U1>—morphism
¢:M > N onto a semilattice N.

2) The extension ¢:P(M) » P(N) is a <U2>-{l} morphism. Since
P(N) is commutative and aperiodic the result follows.

The morphism ¢:M = N in 1) will be nothing more than the
Clifford map in case M is union of groups. The existence of N
and the morphism ¢:M -~ N follows from the theory of semilattice
decompositions developed by Tamura, Putcha, Petrich, etc. ([5],[9],
[14]). However, we prefer, for the sake of completeness, to give
a direct proof suited to our present purposes.

LEMMA 12. Let M be any monoid and let D be a regular D class of M
which is a subsemigroup of M. Then T97= {xeM|MXxM N D # P} is a
subsemigroup of M and D is the minimal ideal of ID‘
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Proof. Let x,y ¢ TD. Then

uxv ¢ D and

syt e D
for some u,v,s,t ¢ M.
Since D is a subsemigroup of M, D is regular. Choose idempotents
e,f € D such that

eRuxv and

flsyt.
Then uxv = euxv and syt = sytf and it follows that eux ¢ D and
ytf ¢ D. Therefore,

(eux) (ytf) = eu(xy)tf e D
since D is a subsemigroup of M. Thus xy e TD and TD is a sub-
semigroup. Clearly D is the minimal ideal of TD.I

COROLLARY. M-TD is an ideal of M.

Therefore the characteristic function XD:M > U] of TD is a

functional morphism. Here
V)
(1 ifme T
e = 3 D

P oifmenT,
Let D], cees Dn be the regular D-classes of M which are
subsemigroups. Then the morphism
n
(*) X:M->1 U]
i=1
where
mk = (mXy , mK 5 ..., MK, )
D, 7D, Dy

separates Dy, ..., D,. That is ,if s e D, and t e Dj,then sX = tX
implies that i = j. In particular if every regular D-class of M
is a subsemigroups then ex-] contains exactly one regular D class for

each e ¢ MX. Thus eX'] is U] freeand X is a <U]> morphism.

LEMMA 13. Let M e DS. Then there exists a semilattice N and a
ggq>-free morphism X:M > N. Furthermore, if D is a regular D-class
of M, then DX = e for some e ¢ N and eX'1 = {m|m" ¢ D for some ne IN}.

Proof. Let N = MX where X is as in (*). The discussion preceding
the lemma shows that X:M - N satisfies the requirements.
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Let D be a regular D-class of M. Then DX is contained in a
regular p-class of N and thus DX = e for some e ¢ N. Since mX = m"'X
for all n> 1 it follows that ex_] = {mlmn e D}. Conversely,suppose
mX = e. Choose n > 1 such that m" s regular. Since X separates
regular D-classes and (mn)X = e it follows that m" ¢ D.1

See also [9] theorem 2.13.

We now study the induced morphism X:P(M) -~ P(N). Recall that

<U,> is the S-variety of U2-free semigroups.

2

LEMMA 14. Let M e DS. Let N and X:M > N be as in lemma 13. Then
X:P(M) > P(N) is a <U,>-{1}_morphism.

Proof. Let E = E2 e P(N). We must show that Ei-] is in <Uy>.
Assume that U, < 5. By a ¥e1] known result U, & Ta
Let {S],SZ,T} = Uzg EX * with
SiSj = Sj i,j=1,2
and
SiT =TS, =5, T2=T i=1,
It suffices to prove that T 2;51 n 52 for then
S, = 8,TESS, =5,
and dually Szg S
Since T,S],Szare idempotents of P(M) they are subsemigroups of
M. Furthermore the maximal D classes of T,S},Szare all reqular.
Let D], cees Dk be the D classes of M containing the maximal
classes of T.

If t ¢ T there exists u,v € T and an idempotent e, e Di for

1

some i, 1 < i < k such that

(1)t = uev.
Since Tx = Six.J = 1,2,it follows by Temma 1 and Temma 12 that

there exists yij eJDi NS.. But Di is a completely simple semigroup
so there exists an n > 1 such that

(2) e; = (eiyijei)n e (TSJ.T)n = Sj'
By (1) we then have

te TSjT = Sj

and thus T€ ;N S,.1

We can now prove lemma 4. We wish to prove that P(DS)€ ¢~
where W is the M-variety of commutative aperiodic semigroups and

% is the collection of <U2>- 1 morphisms.

Ty
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Recall that a relational morphism ¢:S > T is injective (or

elementary [15]) if
S19Nsy0 £ 0 =>5, =5,

for all 1255 € S. It is easy to see that S €T iff there is an
injective relational morphism ¢:S - T. Furthermore ¢:5 > T is
injective iff ¢']:T + S is a surjective partial function.

Now let M € P(DS). Then

(3) M(PMﬂx“.PMQ

for some Mi e DS 1 <1 <k. Let Xi:Mi > Ni be as in lemma 9 and
consider Ri:P(Mi) -> P(Ni). Let

0 = ¢(X]xX2x s an):M > P(N1)x e xP(Nk)
where ¢:M - P(Mi)x - xP(Mk) is an injective relational morphism.
It follows from lemma 14 that 6 is a <U2>—{l} morphism. Furthermore
P(Ni) is certainly commutative and is also aperiodic by theorem 6.
Therefore M ¢ ¢"y,l

COROLLARY 1. Let <U]> be the S-variety of U, free semigroups. Then
P (<U]>) < <U

>,

2
Proof. If S ¢ <U]> then the morphism

YS:S - {1}
is a <U1>morphism. Therefore by lemma 14 applied to semigroups
?S:P(S) > P({1})
is a <U2> - {1} morphism. Since (ﬁ)?;] = P it follows that in fact
is a <U2> morphism. Therefore P(S) is Uz—free and f(<U]>)§§ <U,>.8
We recall that a basic fact about <U2> is that every member has
complexity < 1. (See [15]). We therefore have:

s

COROLLARY 2. If S is U, free then P(S)c « 1. Moreover,
P(S)c =Sc =(0 if S is aperiodic
1 if S is not aperiodic

Proof. If S is aperiodic>then so is P(S) by theorem 4. If S is not
aperiodicsthen Sc = 1 since S ¢ <U]>. But Sc < P(S)c < 1.0

COROLLARY 3. If S is a simple semigroup,then Sc = P(S)c s 1.

Proof. S is U] free. 8
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On the other hand ifS = M°({1}, n, n, In), a completely 0-sim-
ple semigroup, then we have seen that Rn,the monoid of relations on
nsdivides P(S). This can be used to show that P(S)c = n - 1. Thus
if S is completely O-simple, the complexity of P(S) depends on the
scarcity of idempotents in the egg box picture of S-{0}.

V. UNION OF GROUPS, POWER MONOIDS, AND COMPLEXITY

In this section we generalize corollary 3 above, by showing
that if M is a union of groups, then the complexity of M is equal
to the complexity of P(M).

We assume the reader has some familiarity with the basic
definitions and theorems of complexity theory. See [15]. In
particular let S be a semigroup and let YSZS + {1} be the collapsing
morphism. Then the complexity of S is equal to the least number n
such that:

(*) v = agBqaq ... Boa

S nn

where each oy is an aperiodic relational morphism and each Bj is a
Uz-free relational morphism.

An important fact about unions of groups is that the oy and Bj
in (*) above can all be chosen to be functional morphisms. In fact
even more is true.

Let K be any of Green's relation. A functional morphism
f:S > T is a K-morphism if s]f = 52f implies s]Ksz. Notice that an L
morphism is a Uz-free morphism (but not conversely).

The following theorem appears in [2] chapter 9:

THEOREM 15. Let S be a union of groups. Then the complexity of S
is equal to the least n such that

Y = fog]f1 vee gnfn
where each fi is an aperiodic and D functional morphism and each
9 is a functional L morphism.

COROLLARY. Let S be a union of groups with Sc = n > 0. Then there
exist unions of group T,,T such that:
1) there is an apériodic and D functional morphism f:S T],
2) there is an L-morphism g:T] - T,
3) Tc=n-1.
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LEMMA 16. Let S be a union of groups. If f:S - T is a functional
aperiodic and D morphism, then T:P(S) = P(T) is an aperiodic
functional morphism.

Proof. Let S be a union of groups and let f:S + T be an aperiodic
and D functional morphism. We show that f is one to one on subgroups
of P(S).

Let G be a subgroup of P(S) and let T =T" ¢ G. Let X ¢ G.
Then TXT = X and there is an n > 0 such that X" = T. Assume Xf = T¥.
Since S is a union of groups, it easily follows that

2

card(X) j,card(Xk) for all k > 0. In particular
card(X) < card(X") = card(T). Therefore it suffices to show that
TcX.

Let t € T. Then there exists x € X such that xf = tf. Since
f is a D morphism it follows that XDtZ‘ Let e be an idempotent
H related to t. Since T = T2, T is a subsemigroup of S and thus
e € T. Furthermore (exe)Ht and

(exe)f = (ete)f = tf.
Since f is aperiodic it follows that t = exe e TXT = X.1

LEMMA 17. Let S be a union of groups. If f:S > T is a functional
L morphism then T:P(S) -~ P(T) is a Uz—free morphism.

Proof. We must show that f is 1-1 on every copy of Uzg; P(S). Let
U2 = {T,S] ,Sz}g P(S). Then
TSi = SiT

i j Sj 1, = ]’2

(**) S
T=T

NI

If TF = S{? i =1 or 2, then (**) clearly implies Sf? = Sé?.
Therefore it suffices to show that S, = S,F implies S; = S,.
Suppose S]?'= S, f. If s, e S, there is s, € S, such that

2 1 1

s]f = szf. Let e be an idempotent H related to Sy Since 52 is

a subsemigroup of S, e ¢ 52. Furthermore, s]Ls2 and thus:
S =5.ee S]S2 = S2
Therefore S; S S, and by symmetry S, < 51.I

THEOREM 18. Let S be a union of groups. Then Sc = P(S)c.
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Proof. Since S divides P(S) if suffices to show that P(S)c < Sc.
We prove this by induction on Sc.
If Sc = 0, then S is a band. Therefore P(S) is aperiodic by
theorem 6.
Assume Sc = n > 0. Let T],T and f:S — T], g:T] - T be as
in the corollary to theorem 15. By lemma 16 and lemma 17
F:P(S) P(T;) is aperiodic
and E:P(T]) — P(T) is U,-free.
Therefore,
P(S)c §_P(T])c <1+ P(Mc<1+ (n-1)=n
by induction and the fact that if ¢:S >~ T is an aperiodic (Uz-free)
morphism, then Sc < Tc (Sc < 1 + Tc). See [15].1

VI. SOME OPEN PROBLEMS
1) Let DG be as in theorem 9. Give necessary and sufficient
conditions for a monoid to be a member of E(QQ)
2) If M e DS, does Mc = (PM)c?
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