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Abstract 

Birget, J.-C., SW. Margolis and J.C. Meakin, The word problem for inverse monoids presented by 

one idempotent relator, Theoretical Computer Science 123 (1994) 2733289. 

We study inverse monoids presented by a finite set of generators and one relation e= I, where e is 

a word representing an idempotent in the free inverse monoid, and 1 is the empty word. We show 

that (1) the word problem is solvable by a polynomial-time algorithm; (2) every congruence class (in 

the free monoid) with respect to such a presentation is a deterministic context-free language. Such 

congruence classes can be viewed as generalizations of parenthesis languages; and (3) the word 

problem is solvable by a linear-time algorithm in the more special case where e is a “positively 

labeled” idempotent. 

1. Introduction 

The word problem for inverse monoids is undecidable in general (since it is even 

undecidable for groups). In this paper we continue the study of [S] of a class of word 

problems of inverse monoids which are decidable: we give polynomial-time algo- 

rithms for a more restrictive subclass of word problems. 
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We refer the reader to Lallement [6] for basic information about monoids and their 

relation to automata and formal languages. A more detailed reference on inverse 

monoids is [lo]. 

An inuerse monoid is a monoid M such that for every XEM there exists one and only 

one x - ‘EM satisfying xx -lx=x and x-~xx-~=x-~. Thus x-+x-’ is a well-defined 

function in M; one can check (see [lo]) that it satisfies (x- “)- ’ =x, (xy)- ’ = y- lx- ‘, 

xx-‘yy-‘=yy-‘xx- ’ for all x, REM (the last equality expresses the fact that in an 

inverse monoid idempotents commute). Every inverse monoid is isomorphic to 

a monoid of partial one-to-one functions on a set (together with their inverses) under 

composition (VagnerPreston theorem, see [lo]); this is analogous to the representa- 

tion of a semigroup by functions, or of a group by permutations. 

When M is an inverse monoid and X is a subset of M we say that M is generated by 
X as an inverse monoid iff every element of M - { 1) can be written as a product of 

e1ementsofXuX~‘;here1istheidentityofMandX~’={x~‘:x~X}.1fw=x1...x, 

is a word in (X u X- ’ )*, then w- ’ will denote the word x; ’ . . . x; ‘; here, as usual, we 

identify (x-l)-’ with x, for XEX. From now on we will always mean “as an inverse 

monoid”, when we say “generated” (unless the contrary is explicitly stated). 

For any given set X there exists a free inverse monoid generated by X (see [lo]), 

which we will denote by FIM(X). As a monoid, FIM(X) can be presented by the 

generators XuX-’ and the set of relations (ww-‘w=w: w@XuX-‘)*}u 

{(Uu)-l=u-lU-l: u,VE(XUX-‘)*}u{UU-‘Vu~‘=uu-~UU-‘: u,u~(xux~‘)*)u 

{(a-‘))‘=u: UE(XUX-‘)*} (Vagner relations); here (XuX-‘)* is the free monoid 

generated by XuX-‘. 

Let X be a set and R= {(pi, Ui>: isl} be a set of pairs of words of (XuX-‘)*; 

usually a relation {ui, Ui} will be written as Ui= Ui. We define the inverse monoid 
presented by the generators X and relations R to be the monoid presented by the 

generators X u X- ’ and the relations R together with the Vagner relations (above). 

We denote this monoid by INV(X: R) or by INV(X:{ui=vi: iEI}). Equivalently, 

this monoid is the quotient of FIM(X) under the congruence induced by the 

relation R. 
The word problem for a presentation (X, R) of an inverse monoid is the following 

problem: given two words U, ue(X u X- ’ )* as an input, do u and u represent the same 

element of INV (X : R)? 
In [S], Margolis and Meakin study inverse monoid presentations (X, R = {ei =fi: 

iEI}), where each word ei and fi represents an idempotent when viewed as an 

element of FIM(X). They show that in that case the word problem for (X, R) 
is decidable (assuming that X and R are finite sets). In fact, they give an algorithm 

for the following more general problem: Given (as an input) 2n words 

e,,f1,. . . , e,,f”g(X u X- ‘)* representing idempotents of FIM(X), and two words 

u,u+xux-‘)*, do the words u and u represent the same element of 

INV(X:{el =fi, . . . , e,=fn})? This problem is somewhat more general (and often 

harder) than the word problem because in the word problem only u and u are inputs, 

with the presentation kept fixed. 
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The algorithm of [S] uses Rabin’s tree theorem (see e.g. [l, p. 6211); the time 

complexity of this algorithm is enormous (a linear stack of exponentials in n, where 

n is the input length 1 u / + IO\). Although in [S] the full generality of Rabin’s theorem is 

not needed, no faster algorithm is known; in any case, it seems unlikely that the 

general problem of [S] has an algorithm with less than exponential time complexity. 

In this paper we consider inverse monoid presentations of the form (X, e = l), where 

ee(XuX- ‘)* is a word representing an idempotent of FIM(X) and 1 is the empty 

word. Actually, any finite presentation of the form (X, {e, = 1, . . . , e, = l}) where each 

e, represents an idempotent of FIM(X), is equivalent (i.e., induces the same congru- 

ence on (XuX-‘)*) to the presentation (X, e= l), where e=ei . e,. 

We will show that the word problem for the inverse presentation (X, e= 1) has 

polynomial time complexity; in fact, the more general problem (namely: Given 

e,u, UE(XUX- ‘)* with e representing an idempotent of FIM(X), is u equal to u in 

INV(X:e= l)?) has polynomial time complexity. This is proved in Section 2. Needless 

to say, the algorithm for “e= 1” avoids Rabin’s theorem; instead, finite automata on 

finite words (rather than on infinite trees) are used. 

In [IS], and in this paper, the Cuyley graph T(X) of the free group FG(X) generated 

by X plays an important role. This is a directed graph whose vertices are all the 

elements of FG(X); the edges are all pairs of the form (g,gz), where ggFG(X) and 

ZEXUX-‘; such an edge carries the label z; also for every edge (g,yz) there is an 

opposite edge (gz, g), with label z- ‘. The underlying undirected graph of T(X) 

(obtained by ignoring directions and labels, and identifying edges that have the same 

endpoints) is a tree. 

The easiest word problem for inverse monoid presentations is the word problem for 

the free inverse monoid FIM(X). This was solved by Munn [9], using a tree 

representation of the elements of FIM(X). We briefly review some of his results. Let 

u be any word in (X u X _ ‘)*. Denote by MT(u) the labeled subtree of T(X), traversed 

by reading the walk in T(X) labeled by the word u, starting at the vertex 1 (the identity 

of FG(X)) and ending at the vertex r(u) (the reduced form of the word u with respect 

to FG(X)). The tree MT(u) is referred to as the Munn tree of u; we may view MT(u) as 

a birooted tree, the roots being 1 (the initial root) and r(u) (the terminal or final root); if 

we need to emphasize the birooted nature of MT(u) we shall use the notation 

(1, MT(u), r(u)). One sees easily that u is an idempotent of FIM(X) iff 1 =r(u) (i.e. the 

two roots of the birooted tree are the same). Munn’s solution to the word problem for 

FIM(X) is contained in the following result: Two words u, u are equal in FIM(X) fand 

only if MT(u)=MT(u) and r(u)=r(u). Equivalently, (1, MT(u),r(u))=(l, MT(u), r(u)). 
The main technique used in [S], and in this paper, to attack word problems of an 

inverse monoid presentation (X, R) was developed by Stephen [ 1 I]. In that technique, 

an automaton (usually infinite) is associated to every element of INV(X:R). In the 

following definition, 9 denotes the Green relation related to right ideals (see [6]). 

Definition 1.1. Let M be an inverse monoid, let X be a set of generators of M (in the 

inverse monoid sense), and let m be an element of M. The B-class automaton of m is 
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defined by the set of states B,,, (the B?-class of m in M), the input alphabet X u X- ‘, the 

start state mm-‘, the single accept state m, and the next-state function 

(q, z)EL%!~ x (XuX- l)+q. z (product in M) if q .zE%!~; the next state is undefined if 

q. ~$2~. We denote the B-class automaton of m by A(m) (or, if ambiguities are 

possible, A,,,(m)). 

If M is given by an inverse presentation (X, R) and mEM is represented by a word 

u@XuX-‘)* we will also write A(u) (or AX,M (u)) instead of A(m) (or A,,,(m)). 

The language in (Xu X- ‘)* recognized by A(u) is denoted L(A(u)). 

It is straightforward to verify (see [l 11) that .4(u) is a minimum automaton (i.e., 

there are no useless states, and no two states are equivalent); however, the number 

of states of .4(u) is not necessarily finite. Stephen also proved that 

L(A(u))={wE(XuX-‘)* 1 WT 3 UT} (the latter set is also denoted u 7); here wr or ur is 

the element of M represented by w or u, respectively; 3 is the natural partial order on 

M (defined by m, 3 m2 iff m2 = dmI for some idempotent d of M). 

This automaton is related to the Schiitzenberger representation of M relative to 9,,,; 

therefore it is also called “the Schdtzenberger automaton”. 

To attack word problems (and, hopefully, solve them when they are solvable) we use 

the following theorem. 

Theorem 1.2. (1) Stephen’s criterion: Two words u, VE(XUX- ‘)* are equal in 

INV(X:R) ifl L(A(u))=L(A(u)). 

(2) Stephen’s construction process - us used in this paper: The ~-&US automaton 

A(u) is obtained “in the limit” (see [l l] f or a definition and existence proof) by the 

following process: Start with (1, MT(u), r(u)), the Munn tree of u, viewed as an 

automaton. Inductively, when we have a finite automaton A,(u), we get a next finite 

automaton A,,+ 1 (u) by applying the following two operations to A,(u). 

Sewing: If (Ui =v~)ER and ui occurs us a label of a walk in the automaton A,(u) 

(beginning at a state p and ending at a state q), then a new path going from p to q and 

labeled by vi is attached to the automaton (1 vi1 - 1 new states are introduced along this 

path, where lvil is the length of the word Vi). Similarly, if vi occurs in A,(U) then Ut is 

“sewed on”. This is continued until no further sewing can be applied to the original finite 

automaton A,(u). 

Folding: If from a state p two states q1 and q2 can be reached using the same input 

letter zEXuX_ ’ then q1 and q2 are made the same state. This is continued until no 

further folding can be applied. 

Remarks. (1) A process is an “algorithm” (in which every step is constructive) whose 

execution does not necessarily terminate. A nonterminating process cannot usually be 

used to compute a result, but can be very useful to give an inductive description of an 

infinite object. 

(2) In [l l] A(u) is described in a much more general form. Depending on how 

sewings and foldings are alternated, many different processes can be devised (and 
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many nonconstructive descriptions of A(u) are obtained as well). Not all of them 

will converge, and not all of the convergent ones limit to A(u). In [S] a slightly 

different construction process than the one of Theorem 1.2 is used (which also limits to 

A(4). 
For the special case of a presentation (X, {ei =f;: ill}) where each ei and fi is a word 

which represents an idempotent of FIM(X), Stephen’s construction of A(u) (for any 

word u@XuX-‘)*) can actually be carried out (slightly modified as said in the 

remark), because of the following theorem. 

Theorem 1.3 (Margolis and Meakin [S]). Let M = INV (X: {ei =fi: i~Zj>, where each 

ei,A, represents an idempotent of FIM(X). Then for any word u, A(u) cun be embedded 

into T(X) (the Cayley graph of the ,free group FG(X); one identijes 1 of T(X) with the 

start state (uu- ‘)z of A(u), and one identijies r(u) (the free-group reduction of u) in T(X) 

with the accept state (u)z of A(u). Here T is the morphism (X u X- ’ )* + M determined by 

the presentation. 

As a consequence (see [S]) the Stephen construction process can be performed inside 

T(X) in this case. The word problem for (X, e= l), studied in this paper, is a special 

case of this, so we can use Theorem 1.3. 

In [S], it is shown that A(u) and L(A(u)) can be described by sentences in the second 

order monadic theory of the free group FG(X) with the “successor operations”.~ (as 

z ranges over XuX-I). Rabin’s theorem (see Rabin’s chapter in [l]) applies to this 

situation (see [8] and references therein); thus the word problem is decidable. 

In Section 2 of this paper we give a simpler and much more efficient (in fact, 

polynomial-time) algorithm for the word problem of an inverse monoid presentation 

(X, e= l), when e represents an idempotent of FIM(X). 

2. The word problem for the presentation (X, e = l), where e represents 

an idempotent of FIM(X) 

Let (X, e= 1) be an inverse monoid presentation, where X is a finite set and 

es(XuX- ‘)* represents an idempotent of FIM(X). The following theorem uses 

Stephen’s Theorem 1.2 to reduce the word problem to a question about finite-state 

languages in (X u X l )*. 

Theorem 2.1. Two words u, u@XuX-‘)* are equal in lNV(X:e= 1) ifs 

(1) r(u)=r(v) and 

(2) r(pref(u).(pref(e))*)=r(pref(v).(pref(e))*). 

Condition (2) is equivalent to the following condition: 

(2’) For every prejix u’ ofu: r(u’)Er(pref(v).(pref(e))*) and for every prejix u’ of v: 

r(v')Er(pref(u) . (pref(e))*). 
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Notation. r( .) is the reduction operation of the free group; pref(w) is the set of prefixes 

(initial segments) of the word w (including the empty word 1 and w itself); (.)* is the 

Kleene star operation (see e.g. [S, 61); “. ” denotes concatenation. 

Proof. By Stephen’s criterion (Theorem 1.2(l)) we only need to show that 

L(A(u))=L(A(u)) iff the above two conditions hold. Since A(u), A(u) are minimum 

automata, this is equivalent to saying that the two automata A(u) and A(u) are 

isomorphic (as automata). By Theorem 1.3, A(u) and A(v) can both be considered as 

embedded in T(X); so, replacing the automata by their embeddings in T(X), ,4(u) and 

.4(u) are isomorphic iff they are equal. Moreover, since the underlying undirected 

graph of T(X) is a tree, the underlying undirected graphs of A(u) and A(u) are also 

trees; for a subtree of T(X), the set of vertices (which is a subset of FG(X)) determines 

the tree. Therefore, A(u) and A(u) are equal iff A(u) and A(u) (viewed as embedded into 

T(X)) have the same set of vertices (cFG(X)), and the same accept state (EFG(X)). 

(In their embedding into T(X), A(u) and A(u) necessarily have the same start state, 

namely 1.) Theorem 2.1 now follows from the next claim. We will represent elements of 

FG(X) by reduced words of the form r(w). Recall also that r(ua)=r(r(u). r(u)). 

Claim. The set of states of A(u), embedded into T(X), is r(pref(u).(pref(e))*), and the 
accept state is r(u). 

Proof. We apply the Stephen construction process (Theorem 1.2(2)). We start with 

the Munn tree A,(u)=(l, MT(u), Y(U)) of u, embedded into T(X); the set of vertices of 

MT(u) is r(pref(u)). Inductively, suppose we have constructed an automaton A,(u), to 

which no folding operation can be applied anymore, which is embedded in T(X), 

whose vertices are a subset of r( pref(u) . (pref(e))*) and whose accept state is r(u). Now 

we obtain a new automaton A,,+ 1(u) by sewing on the word e as a loop, on every 

vertex of A,(u); after folding inside MT(e), this is equivalent to attaching the Munn 

tree of e (whose two roots are equal) at every vertex, and folding MT(e) into A,(u) as 

much as possible. Then A,+ 1 (u) is also a subtree of T(X); A,,+ 1(u) has A,(u) as 

a subtree; the vertices of A,+ 1(u) are still a subset of r(pref(u). (pref(e))*); the accept 

state is still r(u). 
The process goes on forever but the three properties mentioned are preserved. 

Moreover, every element of r(pref(u) * (pref(e))*) will become a vertex of A,(u) for 

n large enough. 0 

Clearly, pref(u).(pref(e))* is a finite-state language. By Theorem 2.2 (Benois 1969 

(see [3]) we conclude that r(pref(u). (pref(e))*) is also a finite-state language. We 

give a proof of Benois’ theorem, which yields an efficient algorithm. The algorithm 

below is essentially the same as a slightly more general algorithm of Book and Otto 

[4, pp. 7-93. We have simplified the presentation by using finite automata with 

s-transitions. 



Word problemfor inverse monoids 219 

Theorem 2.2 (Benois). If LE(XUX-‘)* is a rational language then r(L) is also 

a rational language. 

Moreover, there is an algorithm which takes as input a non-deterministic jinite 

automaton N with n states recognizing L, and which outputs a nondeterministic finite 

automaton N’, with n. (I+ 21x1) states, recognizing r(L). The time complexity of the 

algorithm is bounded above by a polynomial in n. 

Proof (algorithm). We present the algorithm in two parts. Let N be a nondeterminis- 

tic finite automaton with n states, recognizing a language LG(XUX- ‘)*. 

Part 1: We construct a nondeterministic finite automaton N1 which recognizes 

the closure of L under the “free-group reductions”; we denote this language Lf. 

Formally L t is the smallest language K G (X u X - ’ )* such that (1) L c K, and (2) for 

all u,v~(XuX-I)*, ZEXUX-‘: if uzz-‘VEK then UVEK. 

The automaton Nl is obtained from N by the following procedure: 

begin start with the state-transition table of N; 

repeat scan the current state-transition table, and for all pairs of states p, q such that 

pz-f q (with ZEXUX-‘), add the s-transition p>q; “eliminate” all 

c-transitions (as, e.g., in [S], p. 24]), but also keep the s-transitions in place; 

until no new transitions are introduced into the table, during the last pass; 

now drop all c-transitions end. 

Let N1 be defined by the state-transition table obtained this way. No new states are 

introduced (N and N 1 have the same states). 

This is a polynomial-time algorithm: scanning the transition table once takes time 

0(n2 . IX u X- ’ I); “elimination” of s-transitions takes polynomial time (see e.g. [S], 

p. 241); there are at most n2. IX u X - ’ 1 iterations of the repeat loop, since an 

automaton with n states has at most n2 IX u X - ’ I state transitions. 

Part 2: To obtain r(L), we intersect Lt with the language r((XuX-‘)*); observe 

that r((XuX-‘)* is simply the complement of (xux-‘)*.{zz-‘: 

ZEXUX-’ } .(XuX-‘)*. Thus, r((XuX-‘)* is recognized by a (deterministic) finite 

automaton with 1 + IX u X- ’ I states (a start state, and states to remember the last 

letter read). 

One obtains a nondeterministic automaton N’ for r(L)= Lt nr((XuX-‘)*) by 

using the Cartesian product of Nl and the above automaton (see [S, pp. 599601 and 

observe that the construction there also works in the nondeterministic case). This is 

done in polynomial time; the new nondeterministic finite automaton has 

n. (IX u X- ’ / + 1) states, and recognizes r(L). 

The algorithm is quite intuitive, and we omit its correctness proof (see [4]). 0 

Remark. The proof of Benois’ theorem as it appears in [3] (see also [8]) also leads to 

a polynomial-time algorithm. The algorithm given here seems to be simpler and faster; 
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a more detailed analysis (carried out in [4]) shows that the running time is O(n”). 

Benois and Sakarovitch [2] improved the algorithm to obtain a time complexity of 

O(n3). 

The decision criterion of Theorem 1.1 (in combination with an algorithmic version 

of Benois’ theorem) can be turned into a polynomial-time algorithm to solve the word 

problem (and, in fact, the more general problem, where e is also an input). 

Theorem 2.3. The algorithm below, on input u, II, e@X v X ’ )* (where e represents an 

idempotent qf FIM(X)), decides whether u is equal to z’ in INV(X:e = 1). The time 

complexity is bounded aboae by a polynomial (of degree 3) in the input length 

l4+l4+lel. 

Algorithm. (1) We first check, given U, CE(X u X - ‘)*, whether r(u) = r(u). For this we 

compute r(u) (and similarly r(v)) as follows: A deterministic push-down automaton 

reads u from left to right; initially the stack is empty. The machine works as follows: (1) 

whenever the stack is empty, the next letter of u is pushed on the stack; (2) if the top 

letter of the stack is y~Xu X- ’ and the next letter of u is J’~ ‘, then y is popped off the 

stack (when y _’ is read); (3) if the top letter of the stack is y~Xu X-l and the next 

letter of u is z, with z #y- ‘, then (when z is read) z is pushed on the stack. One can see 

that after u has been entirely read, the stack content is the string r(u). This machine 

makes Iu/ steps to compute r(u). Once we have r(u) and r(u), one can check in linear 

time whether they are equal. 

(2) The second (and main) part of the algorithm checks condition (2’) of 

Theorem 1.1. 

Step 1: Build a finite automaton recognizing r( pref(e)). This is done by constructing 

the Munn tree of e viewed as a finite automaton (with alphabet X u X - ‘) but leaving 

out those edges that point in the direction of the root (the two roots are equal since in 

FIM(X), e is an idempotent). The root is the start state; all vertices are made accept 

states. This automaton has < I e I + 1 states; it can be constructed from e in time 0( 1 el). 

From this automaton one easily obtains a nondeterministic finite automaton (also 

with < lel + 1 states) recognizing (r(pref(e)))*. This is done by connecting every accept 

state (i.e. every state, in this case) to the start state via an a-transition (see e.g. [S, 

p. 241); the e-transitions can be eliminated without increasing the number of states (see 

[S, pp. 266271). All this will take time O(lel). 

In a similar way, one constructs a finite automaton recognizing r(pref(u)), with 

< IuI + 1 states: one first constructs the Munn tree of u, viewed as a finite automaton, 

but one leaves out the edges that point in the direction of the initial root. The initial 

root is the start state, and all vertices are accept states (the final root of the Munn tree 

plays no special role here). This takes time O(lul). 

Finally, from the automata constructed for (r( pref(e))*, resp. r(pref(u)), one obtains 

a nondeterministic finite automaton for the concatenation r(pref(u)).(r(pref(e)))*, 

with < 1 u I + I e( + 2 states; the classical constructions will work (see [S, pp. 26627, 3 1). 

This takes time O(lul +lej). 



Word problem for inuerse monoids 281 

At the end of step 1 we have a nondeterministic finite automaton with < 1 e I+ 1 u I+ 2 

states, which recognizes r( pref(u)) . (r( pref(e)))*. It took time 0( I u I + I e I) to construct 

this automaton. 

In the same way one deals with r(pref(u)).(r(pref(e)))*. 

Step 2: We apply our algorithmic proof of Benois’ theorem, which yields a non- 

deterministic finite automaton with (/ u ( + I e I + 2) (I X u X - ’ I + 1) states, recognizing 

r(r(pref(u)). (r(pref(e)))*)=r(pref(u). (pref(e))*); the time complexity is a polynomial 

in lu/+lel (more precisely, the time is O((lel+/~l)~), by [2]). For c one proceeds 

similarly (and the time is 0(( lel + 1~1)~)). 

Step 3: Since we have a nondeterministic finite automaton N, (with 0( I UI + I e 1) 

states) for r(pref(u). (pref(e))*), we can check in polynomial time (as a function of 

/ u I + / e I + I v I) whether N, accepts r(a’), for any prefix c” of I! (where r(d) is computed as 

in part 1). This is done as follows: start with the start state of N,, read the first letter of 

r(d), and remember the set of states reached; in general, remember a set of states of N,, 

read the next letter of r(v)), compute the set of states reached, and replace the old set 

by the new one. (Note that this is not the classical subset construction, which would 

take exponential time in general, but a “lazy” form of it: only one set of states is 

computed and remembered at every step, and one uses only those sets that appear as 

r(d) is processed.) 

All this takes polynomial time (each set has size < ( UI + 1 el + 2, and r(zj’) has length 

< 1 u’ I; so, step 3 takes time 0( 12;’ I (I u I + I e I))). Since v has Iv I + 1 prefixes, checking this 

for every prefix of v the time is bounded by 0(lc12(lul+lel)). 

One proceeds similarly when U,U are switched; the time complexity then is 

W42(l~l+14)). 
Finally, adding up all the running times gives 0(( I UI + I el + 1111)~). 0 

3. Relation with context-free languages 

For a presentation (X, e = l), where e represents an idempotent of FIM (X), we can 

characterize the congruence class UT c(X uX- ‘)* for every word U, and we shall 

prove that UT is a deterministic context-free language. Here and in the sequel we 

identify FG(X) and r(XuX-‘)* (the set of reduced words); we also identify the 

element uz of INV(X:e= 1) and the congruence class of u (which is a subset of 

(XuX-‘)*). By V(MT(u)) and V(A(u)) we denote the set of vertices of MT(u) and 

A(U) respectively. 

Definition 3.1. Let P= r(pref(e)) be the set of vertices of MT(e), and let (P) be 

the submonoid of FG(X) generated by P. Let u be a word E(X u X - ‘)*. For 

two vertices g, h of A(u), we write g +h iff hey. (P); here denotes the multiplication 

in FG(X). We write g ++ h iffy--+/t and h-+g; it is clear that ++ is an equivalence 

relation on the set of vertices of A(u). The equivalence class of g is denoted 

CSI”. 
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An equivalence class [g]” is essential for u iff 

(1) CslUn WW4)#@ and 
(2) Vgi E V(MT(u)): if g1 +g then g+gi . 

Lemma 3.2. For each vertex g of MT(u) there exists at least one vertex h of MT(u) 

such that [h],, is essential for u and h-g. In particular, A(u) contains at least one 
essential equivalence class. 

Proof. Let g be any vertex in MT(u). If [glu is essential, there is nothing to prove. If 

not, there exists glE V(MT(u)) such that gi+g and gi-+g. If [gi]. is essential, we are 

done. If not, there exists g2E V(MT(u)) such that g2+g1 and g2+gl. Then [g2],, # [glU 

or else g2+g1 +g+g2, whence [g21U = [gllU. Continuing in this manner, we obtain 

a sequence gn-+gn_ I + ... -+g2+g1 +go =g such that no [gi]u is essential and 

[gi]“# [gj]u if i#j. In particular, the elements go,gl, . ,gn are all distinct and all in 

P’(MT(u)), which is finite, so the length of any such sequence is bounded. Hence, we 

must eventually reach some element gmEV(MT(U)) such that [g,], is essential and 

gm+gm- 1 + ... -+go=g, and so gm-+g. 0 

Theorem 3.3. Let M=INV(X:e= 1) and let u~(Xux-‘)*. For WE(XUX-I)*, we 
have WEUT if and only if MT(w) embeds into A(u) (both viewed within T(X)), r(w)=r(u) 

and MT(w)n Cgl,,#@ h w enever [g],, is essentialfor u. (Equivalently, WEUZ if and only tf 
w labels a walk 71 from 1 to r(u) in A(u) such that z contains at least one vertex from each 
essential equivalence class [g]” contained in A(u).) 

Proof. Suppose that MT(w)G A(u), r(w)=r(u) and MT(w) intersects each essential 

equivalence class of A(u). Clearly, A(w) c A(u), by the Stephen construction process, 

since MT(w) E A(u). We need to show conversely that A(u) s A(w), in order to obtain 

WEUS. Again (by Theorem 1.2(2)) it suffices to show that MT(u)cA(w). Let 

gE P’(MT(u)). If [g], is essential for u then there exists gi E[g]” n MT(w) and since 

g1 +g, this forces gE V(A(w)). If [g],, is not essential for u then, by Lemma 3.2, there 

exists hE V(MT(u)) such that [h]” is essential for u and h+g. By the above argument 

this forces heV(A(w)) and so geI’(A(w)) since h-+g. Hence, MT(u)sA(w) and so 

WEUZ. 

Conversely, suppose that WEUZ. Then A(u) = A(w) by Theorem 1.2 (l), so r(u)= r(w) 
and MT(w)c A(u). Let gE V(MT(u)) such that [g]. is essential for u. Now 

gE V(A(u))= V(A(w)) so there exists glE V(MT(w)) such that gl+g. By Lemma 3.2, 

there exists hE V(MT(w)) such that [hlw is essential for w and h+g,, from which it 

follows that h+g. By the same argument, since [hlw is essential for w and 

he V(MT(w)) and A(w)= A(u), we see that there exists hlE V(MT(u)) such that [hII, 
is essential for u and h,+h. Then hI+h+g and both [hl], and [g],, are essential 

for u; so, this forces [h,],=[glU. But [h,],=[h ] 1 ,+ since A(u) = A(w) so we must 

have [h,],=[h],=[g],,. Then it follows that [g].nP’(MT(w))#@ since hE[g]“n 
V(MT(w)). This completes the proof of the theorem. 0 
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Theorem 3.3 may be viewed as an extension of the result of Munn [9] characteriz- 

ing the equivalence class of a word UE(X u X-l)* with respect to FIM(X) as the set of 

words in (XuX-‘)* labeling walks from 1 to r(u) that traverse all vertices of MT(u). 

We will now prove that every congruence class relative to a presentation of the form 

M = INV (X : e = 1) is a deterministic context-free language. We first need a prelimi- 

nary result about context-free languages. 

Theorem 3.4. Let M be a push-down automaton with input alphabet Z and stack 

alphabet r, let {L1, . . . , Lk} be a finite set of rational languages over the alphabet r; let 
L, also be a rational language over I-, and let f be a word in L,. We assume that L, is 

closed under prefix (i.e., when a word is in L,, all its pre$xes are also in L,). Then the 

set L’ defined below is context-free: 

L’= (wEC*: there exists an accepting computation of M on input w such that 
(1) for each i (1 <i < k) the stack content of M is a word in Li at least 

once during the computation; 
(2) the stack content of M always belongs to L, during the computation; 

(3) the stack content at the end of the computation is f }. 

Moreover, if M is a deterministic push-down automaton then L’ is a deterministic 
context-free language. 

Proof. See [S] for terminology not defined here. Let M be described by Q (states), 

r (stack alphabet), C (input alphabet), 6 (transition relation), q0 (start state), F (accept 

states), z0 (initial stack symbol); M “accepts by final state”. Let Li be accepted by the 

deterministic complete finite automaton Ai (for 1 <id k or i= CO), described by 

Qi (states), r (input alphabet, which is also the stack alphabet of M), hi (transition 

function), qoi (start state), Fi (accept states). Since L, is closed under prefix we can also 

assume that Qaj = F, u {s}, where s is a sink state. 

We shall construct a pda M’ accepting L’. If M is deterministic, then M’ will also be 

deterministic. At first we will ignore the condition that the final stack content must be 

the word f; we will handle this at the end of the proof. 

M’ is described as follows: M’ =(Q’, C’, T’, 8, qb, Zb, F’), where the set of states is 

Q’=(QuQ x {c}) x (0, l}k(here (0, l}” is th e set of all strings of O’s and l’s of length k); 
thestackalphabetisT’=TxQ,x ..’ xQkxF,; C’ = C (the same as for the original 

pda M) is the input alphabet; Zb = (z,, qi, . . . , qk, qm) is the initial stack symbol, where 

qi = 6i(qoi, zo) for every i; the start state is qb = (qO, vl, . . . , vk), where Vi = 1 if ZgE Li, and 

Vi=0 if Zo$Li: the set of accept states is F’=F x {lk} (where lk is the all-l string of 

length k). Note that Zb does not exist if z,$L, (and L’ is the empty language in that 

case). 

Before describing rigorously the transition relation of M’ let us briefly say how M’ 
is intended to work: M’ imitates M (in the first coordinate of both the state and the 

stack symbols). But at the same time, if M pushes stack symbols on its stack, M 
applies these symbols to Ai (for 1 <i< k) and pushes the resulting states on the stack 
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(side by side with what M does). When M pops symbols off the stack, M’ also pops 

those symbols off its stack, including the accompanying state symbols of A,; that way 

M’ uncovers the earlier states of Ai (that had previously been pushed on the stack). M’ 

accepts iff M accepts and if in addition for every i (with 1~ i < k), the top of the stack 

was ever of the form (z, ql, . . . , qk,qa,), where qi~Fi (the ith position of the string in 

{0, l}” that is part of the state of M’ serves to remember this). Moreover, for M’ to 

accept, the top symbol of the stack must always be defined (i.e., qmEF,); this enforces 

the condition that the stack content of M must always be in L, during the accepting 

computation. 

We will use the short-hand notation di(q, zlzz . . . z,) to denote Si( . . (6,(6i(q, z,), 

z,), . ..).&I). 
Let us now define 6’. Suppose (q, z, u)+(q’, y) is a transition of M (where UECU {a}, 

q and q’ belong to Q, ZET is the symbol on top of the stack; in the transition z is 

replaced by y=zi . . . z,,ET*, where z, is now the top of the stack). 

Case 1: If ~#a (here c denotes the empty word) then into 6’ we put the set of 

transitions 

{((q, Ul, ... ,4L(z,q1, ... ,qk,qs),44(4’,u;, ... ,u;),Y’): 

(U 1, ... > kk{O, l}k,(ql, . . ,%,qrn)EQ1 X ... X Qk X Fm, 

~‘=(~l,~lk,~zl), ... ,fik(qk,Z1),~m(qm,Z1))(Z2,~l(qlZ1,z2), 

. ..) bk(qk,Z1ZZ),~z(qm,Z1Z2)) 

. ..(Z.,61(ql,z1z2...Z,),...,fik(qk,Z1Z2...Z,), 

and u;= 1 if ui= 1 or &(ql, zlzz . . z,,)EF~: z&=0 otherwise}. 

Note: We use the right-most symbol to denote the top of the stack. Observe that, 

by the definition of the stack alphabet r’ of M’, y’ is not defined if not all of the 

bu(qcc,z1z2 ... zj) belong to F,. 

Case 2: If y = E (i.e., M pops the top symbol off its stack) then into 6’ we put the set of 

transitions 

1((q,u,,...,Uk),(Z,ql,...,qk,qm),a)~(((q’,c),ul,...,Uk),E): 

(U 1, ... 9 Ukb{O, l}k,(q,, . . ..qk.CLcu)EQ1 X .” X QkXFm) 

u{(((q’,C),0l,...,yk),(y,P1,...,Pk,P30),E)~((q’,U’~, . . ..U.),(y,P1,...,Pk,Poc)): 

(u 1, .‘. > Uk)@,l)k> (Y,P,,...,pk,p,)ErxQ, X .” XQkXFco, 

and ui = 1 if vi = 1 or pin Fi, ui = 0 otherwise}. 

Comment. The first transition pops off the top of the stack, goes to the next state q’, 

but marks that state with a “3’ to indicate that the new top of the stack has to be 

examined. The second set of transitions only applies when the state is marked by a “c”; 
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it removes the “c”, and modifies the {O, l}-string (in the state) if the new top of the 

stack indicates acceptance by the Ai automata (i.e., pigFi). 

It is straightforward, although tedious, to verify that M’ recognizes L’ (except that 

the condition that the final stack content should be f has been ignored). To enforce 

this condition, we consider the pda M’ (constructed so far) to be a pda that can read 

the top l,fl symbols of the stack (rather than just the top-most symbol); when the stack 

contains less than lfl symbols the pda can see the entire stack content. Such a pda can 

be simulated by an ordinary pda, which only sees the top-most stack symbol, but 

which remembers the top IfI symbols of the stack in its finite control. Determinism is 

preserved. The details of this construction are a classical exercise. When M’ is 

modified according to this construction we obtain a pda (let us still call it M’) which 

recognizes the language L’. 0 

As a consequence of Theorem 3.4, we obtain the following extension of Theorem 4.4 

of [S] in the case of a presentation (X, e= 1). Theorem 4.4 of [S] considers the more 

general case of a presentation (X, Cei =,fi: ill}) where each e; and fi represents an 

idempotent of FIM(X); it states that UT is a deterministic context-free language, for 

every UE(X uX - ‘)* (see Section 1 for a definition of UT). It is still an open problem 

whether ut itself is context-free in this general case. 

Theorem 3.5. Let M=INV(X:e= l)=(XuX-‘)*/z, where e represents an idem- 
potent in FIM(X). Then for each UE(XVX~ ‘)*, uz is a deterministic context-free 

language. 

Proof. Let u be a fixed word (as in the theorem). Let M be the dpda which computes 

the reduction function r (i.e., after M has read an input c@X UX I)* the stack 

contains r(u)). Let us apply Theorem 3.4 to the dpda M, with k = I u I + 1, f= r(u), and 

with the following rational languages: L, = r( pref(u) . (pref(e))*), and 

Li = r(ui _ L . ( pref(e))*), where ui + 1 is the prefix of u of length i (1 d i < k). We claim that 

the language L’ recognized by the dpda M’ is precisely ur. Indeed, by Theorem 2.1, 

uEr(u) iff (1) r(u) = r(u), and (2’) every prefix u’ of L‘ belongs to L, , and every prefix U’ of 

u belongs to r(pref(v).(pref(e))*). The first condition is equivalent to the condition that 

the final stack content of M’ on input c must be ,f= r(u); the first part of condition (2’) 

means that the stack content of M’ must always be in L,; finally, it is not difficult to 

see that the second condition of (2’) means exactly that for every i (0 d id I u I), the stack 

content belongs to Li+ 1 at least once during the computation of M’ on input U. 0 

4. The presentation (X: e= 1) when e represents a positively labeled 

idempotent of the free inverse monoid 

In Section 2 we gave a fast algorithm for solving the word problem of the presenta- 

tion (X, e= 1) when e represents any idempotent of FIM(X). This was much simpler 
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than the more general case considered in [8]. Further simplifications in the solution to 

the word problem occur for M = INV(X: e = 1) when e is “positively labeled”. 

Definition 4.1. An idempotent of FIM(X) represented by a word e is positively labeled 

iff every vertex of the Munn tree MT(e) is in X*. 

In this case it is clear that the set of vertices of A(1) is just P*, the submonoid of 

(X u X - ’ )* generated by the set P = r( pref(e)) = V(MT(e)); this follows immediately in 

the positively labeled case since all words in P*( GX*) are already reduced. The 

frower automaton 

can be used to recognize P* and the complications inherent in constructing the Benois 

automaton of r( P*) = P* do not arise in this case; so, the solution to the word problem 

is particularly simple here. The flower automaton is not deterministic in general but 

standard automata-theoretic methods can be used to easily construct the minimal 

automaton of P* from the flower automaton. 

An alternative solution, involving the technique of “pruning” Munn trees may also 

be employed here. This section gives a brief description of this technique since it yields 

a particularly pleasant canonical form for words in this case. For the remainder of the 

section, e is a positively labeled idempotent of FIM(X), M =INV(X:e= l), and 

P = r( pref(e)) = V(MT(e)) E X * is the set of vertices of MT(e). 

Definition 4.2. (1) Let (1, T, o) be a finite birooted labeled subtree of T(X) (with initial 

label 1 and terminal label 0). An extremal vertex y of T is called prunable if y # 1, y #CO 

and there is some vertex 6 # y in T such that the word w labeling the geodesic from 6 to 

y is in P. 

(2) If y is a prunable vertex of T then we can form a new birooted labeled subtree 

(1, T’, co) of T(X) by removing from T the vertex y and the edge that connects y to the 

remainder of T: we say that (1, T’, w) is obtained from (1, T,o) by pruning the vertex 

y and write (1, T, o)*( 1, T’, co). We write (1, T, c0):(1, T’, CO) if there is a finite sequence 

of prunings (1, T,o)*(l, TI,o)* ... =z-(1, T,,w)=(l, T’,w). 

Lemma 4.3 (Pruning is confluent). Zf (1, TI,o) and (1, T2,w) are each obtained by 

pruning one vertex from (1, T, co), then there is another birooted labeled tree (1, T’, co) 

such that (1, TI, o)*(l, T’, co) and (1, T,, w)*(l, T’, co). As a consequence, for each 

finite birooted labeled subtree (1, T,o) of T(X), there is a unique birooted labeled 

subtree (1, T’, co) ofT(X) such that T’ has no prunable vertices and (1, T, w)z(l, T’,w). 

We call T’ the pruned tree obtained from T. 

Proof. Suppose that yi # y2 are prunable vertices of T, and that (1, T, CO) a( 1, Ti , co) 

and (1, T,w)*(l, T2,w) by pruning yi and y2, respectively. Then there exist vertices 
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d1,d2 of T such that the geodesic from 6i (6,) to y1 (y2) is labeled by a word in P. Let 

pi (~1~) be the vertex of T adjacent to yi (y2). Then the edge form pL1 to y1 (p2 to yz) is 

labeled by a letter in X and, so, it follows that y1 #6, (or else the geodesic from S2 to 

y2 would not be labeled by a positive word); similarly yz # 6i. Thus 6, is a vertex in 

T, and 6i is a vertex in T,; so, y2 is a prunable vertex in Tl and y1 is a prunable vertex 

in T2. Pruning yz from Tl yields the same tree T’ as pruning y1 from T,; hence pruning 

is confluent. 0 

With these notations and results in hand we are able to provide an alternate 

solution to the word problem for M =INV(X:e= 1) in the positively labeled case. 

Theorem 4.4. Let M=INV(X:e=l)=(XuX-‘)*/ r, where e represents a positively 
labeled idempotent of FIM(X). 1f u,v~(XuX-‘)* then u=v in M if and only if 
MT’(u)= MT’(v), where MT’(u), and MT’(v) are the pruned trees obtained from MT(u), 

and MT(v), respectively. 

Proof. Suppose first that ul, v,E(XUX-‘)* with (1, MT(u,),r(u,))=>(l, MT(v,), 

r(vl)); so, r(u,)=r(vl) and MT(v,) is obtained from MT(u,) by pruning one extremal 

vertex y from MT(u,). There is a vertex 6 in MT(u,) such that the geodesic from 6 to 

y is labeled by an element of P. Hence MT(v,)uG.MT(e) contains the vertex y and so 

MT(v1)u6.MT(e)=MT(ul)uG.MT(e). It follows that A(u,)=A(v,) and hence 

a1 = v1 in M. By induction, if u2 is as word in (XuX - ‘)* whose Munn tree is MT’(u), 

then u = u2 in M, and it follows that u = v in M if MT’(u) = MT’(v). 

To prove the converse, suppose first that u~,v~E(XUX-~)* with u1 = w1w2 and 

v1=w1ew2 in (XuX- ) . 1 * Then there is some vertex 6 of MT(u,) such that 

MT(v,)=MT(u1)u6.MT(e). If y is an extremal vertex of MT(vi ) that is not in 

MT(ul), then y is prunable (since the geodesic from 6 to y is labeled by an element of 

P). By induction, all extremal vertices of MT(v,) that are not in MT(u,) may be 

pruned away and so MT(v,)~MT(u,). It follows by induction that if u= v in M, then 

there is a sequence of words u = uO, ul, u2, . , u, = v such that, for each i = 0, 1, . . . , n, 

either MT(ui)~MT(ui+,) or MT(ui+l)SMT(ui). The confluence Lemma 4.3 then 

implies that MT’(u) = MT’(v). 0 

Corollary 4.5. Let M = INV (X: e = l), where e represents a positively labeled idem- 
potent of FIM(X). Then each congruence class in FIM(X) with respect to this 
presentation contains a maximum element with respect to the natural partial order on 
FIM(X). 

Proof. Let u@XuX-‘)* and let v be any word in (XuX-‘)* such that 

MT(u)= MT’(u). Since MT(u)& MT(u) and r(u)=r(v) it follows from the results of 

Munn [9] that U<V in FIM(X). Also U=V in M from the proof of Theorem 3.3, so 

u and v are congruent as elements of FIM(X). It follows that v is a maximum element 

in its congruence class in FIM(X). •i 
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We can also obtain a simpler characterization of the r-class of a word 

UE(XUX-‘)* in this case. 

Theorem 4.6. Let M=INV(X:e=l)=(XuX-I)*/ r where e represents a positively 
labeled idempotent of FIM(X). Then for each WE(XUX-‘)* we have WEUT if and only 
if r(u)=r(w) and MT’(u)sMT(w)sA(u). 

Proof. Note that the concept of an “essential” equivalence class [g],, of A(u) as 

introduced in Definition 3.1 simplifies considerably in this case. Since 

P= 1/(MT(e))EX*, we now have g ++ h if and only if g = h. Hence, [g]” = {g} for all 

gE I/(A(u)). In analogy with Definition 3.1, we call a vertex gE V(MT(u)) essential iff 

there is no vertex gi fg in MT(u) such that gi +g. Theorem 3.3 then tells us that WEUZ 

if and only if r(u) = r(w), MT(w) c A (u), and MT(w) contains every essential vertex of 

MT(u). It is clear that a prunable vertex of MT(u) is not essential and that all extremal 

vertices of MT’(u) are essential; so the result follows since MT(w) contains all vertices 

of MT’(u) (and hence all essential vertices of MT(u)) if and only if MT(w) contains all 

extremal vertices of MT’(u)). q 

Note that Theorem 4.6 implies the well-known result of Munn [9] that for any 

u, WE(X u X - ’ )* : u and w are equal in FIM (X) if and only if w labels a walk from 1 to 

r(u) in MT(u) that includes all vertices of MT(U). 

Let us now put these results into algorithmic form, in order to decide the word 

problem. We use Theorem 4.6: Given two words U, ve(XuX- ‘)* and a positively 

labeled idempotent e of FIM(X), we first prune the trees MT(u),MT(u). Then we 

check if r(u)=r(v) and if MT’(u)= MT’(v). The more detailed algorithms follow. 

Part 1: The pruning algorithm. On input e and u, it outputs the pruned tree MT’(u). 

The algorithm does the following: 

(1) Construct the Munn trees of e and u. This takes time 0( I e I+ 1 u I). 

(2) Compute r(pref(e)) = pref(e) = P. To do this one traverses the Munn tree of e in 

breath-first order and outputs any word read so far; this continues until all search 

paths have ended at a leaf. This takes time 0( (e I). Note that P has < I e) elements. 

(3) For every leaf 1 of the Munn tree MT(u), compare every element of P with the 

positively labeled paths in MT(u) ending at that leaf 1. If no such path is equal to an 

element of P=r(pref(e)), mark this leaf “in red”; otherwise, remove 1 and the edge 

incident with 1 from the tree. This is then continued until all leaves of the tree are 

marked “red”, or until the tree has been entirely removed. The time complexity of part 

(3) is 0(je12.(u(): Every edge of u is removed at most once; to compare an element of 

r(pref(e)) with a path in the tree of u takes < I e( steps, and there are < (el elements in 

r( pref(e)) = pref(e) = P. 
This shows that the pruning algorithm has time complexity 0( (e(‘.l ul); this is linear 

as a function of ) uJ. 

Part 2: Solving the problem whether u=v in INV(X:e= 1). One first computes 

r(u) and r(v) and checks whether r(u)=r(v); this takes time O(lul+lvl). Next one 
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applies the above pruning algorithm to u and v (in time O() el”.( 1 u I+ ) v I)), and checks 

whether the resulting trees are equal (time O(lul+ 1~1)). Overall, it takes time 

0(Je(2~(~~/+Jv~))tosolve the problem; thisislinearinIuJ+/vJ(=lengthoftheinput 

for the word problem). 

We summarize the algorithmic result as follows. 

Theorem 4.7. When e is a positively labeled idempotent of FIM(X) then the problem 

“u=v in INV(X:e= l)?’ can be solved by an algorithm which has time complexity 

0( I el’.( / uI + [vi)). In particular, the word problem (when u, v are inputs, and e is jxed) 

has linear time complexity. 

Concluding remarks 

The result of Theorem 4.4 was announced at a conference at Louisiana State 

University in honor of R.J. Koch [7] (where the hypothesis that e is positively labeled 

was omitted). In fact, the pruning technique works in some other cases as well but not 

in general; it is not too difficult to give an example of an idempotent eEFIM(X) for 

which the pruning technique is not confluent. 
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