
Theoretical Computer Science 123 (1994) 273-289

Elsevier

273

The word problem for inverse
monoids presented by one
idempotent relator*

Jean-Camille Birget and Stuart W. Margolis
Depurtment of Computer Science and Engineering, University q/ Nebraska. Lincoln, NE 68588, USA

John C. Meakin
Department qf Mathemcrtics and Statistics, Unioersity of Nehrrrska, Lincoln, 68588, USA

Communicated by D. Perrin

Received September 1991

Revised June 1992

Abstract

Birget, J.-C., SW. Margolis and J.C. Meakin, The word problem for inverse monoids presented by

one idempotent relator, Theoretical Computer Science 123 (1994) 2733289.

We study inverse monoids presented by a finite set of generators and one relation e= I, where e is

a word representing an idempotent in the free inverse monoid, and 1 is the empty word. We show

that (1) the word problem is solvable by a polynomial-time algorithm; (2) every congruence class (in

the free monoid) with respect to such a presentation is a deterministic context-free language. Such

congruence classes can be viewed as generalizations of parenthesis languages; and (3) the word

problem is solvable by a linear-time algorithm in the more special case where e is a “positively

labeled” idempotent.

1. Introduction

The word problem for inverse monoids is undecidable in general (since it is even

undecidable for groups). In this paper we continue the study of [S] of a class of word

problems of inverse monoids which are decidable: we give polynomial-time algo-

rithms for a more restrictive subclass of word problems.

Correspondence to: J.-C. Birget, Department of Computer Science and Engineering, University of

Nebraska, Lincoln, NE 68588, USA

* Research supported by N.S.F. Grant No. DMS 8702019 and by the Center for Communication and
Information Sciences, University of Nebraska, Lincoln.

0304-3975/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(92)00063-G

214 J.-C. Birget, S.W. Maryolis, J.C. Meakin

We refer the reader to Lallement [6] for basic information about monoids and their

relation to automata and formal languages. A more detailed reference on inverse

monoids is [lo].

An inuerse monoid is a monoid M such that for every XEM there exists one and only

one x - ‘EM satisfying xx -lx=x and x-~xx-~=x-~. Thus x-+x-’ is a well-defined

function in M; one can check (see [lo]) that it satisfies (x- “)- ’ =x, (xy)- ’ = y- lx- ‘,

xx-‘yy-‘=yy-‘xx- ’ for all x, REM (the last equality expresses the fact that in an

inverse monoid idempotents commute). Every inverse monoid is isomorphic to

a monoid of partial one-to-one functions on a set (together with their inverses) under

composition (VagnerPreston theorem, see [lo]); this is analogous to the representa-

tion of a semigroup by functions, or of a group by permutations.

When M is an inverse monoid and X is a subset of M we say that M is generated by
X as an inverse monoid iff every element of M - { 1) can be written as a product of

e1ementsofXuX~‘;here1istheidentityofMandX~’={x~‘:x~X}.1fw=x1...x,

is a word in (X u X- ’)*, then w- ’ will denote the word x; ’ . . . x; ‘; here, as usual, we

identify (x-l)-’ with x, for XEX. From now on we will always mean “as an inverse

monoid”, when we say “generated” (unless the contrary is explicitly stated).

For any given set X there exists a free inverse monoid generated by X (see [lo]),

which we will denote by FIM(X). As a monoid, FIM(X) can be presented by the

generators XuX-’ and the set of relations (ww-‘w=w: w@XuX-‘)*}u

{(Uu)-l=u-lU-l: u,VE(XUX-‘)*}u{UU-‘Vu~‘=uu-~UU-‘: u,u~(xux~‘)*)u

{(a-‘))‘=u: UE(XUX-‘)*} (Vagner relations); here (XuX-‘)* is the free monoid

generated by XuX-‘.

Let X be a set and R= {(pi, Ui>: isl} be a set of pairs of words of (XuX-‘)*;

usually a relation {ui, Ui} will be written as Ui= Ui. We define the inverse monoid
presented by the generators X and relations R to be the monoid presented by the

generators X u X- ’ and the relations R together with the Vagner relations (above).

We denote this monoid by INV(X: R) or by INV(X:{ui=vi: iEI}). Equivalently,

this monoid is the quotient of FIM(X) under the congruence induced by the

relation R.
The word problem for a presentation (X, R) of an inverse monoid is the following

problem: given two words U, ue(X u X- ’)* as an input, do u and u represent the same

element of INV (X : R)?
In [S], Margolis and Meakin study inverse monoid presentations (X, R = {ei =fi:

iEI}), where each word ei and fi represents an idempotent when viewed as an

element of FIM(X). They show that in that case the word problem for (X, R)
is decidable (assuming that X and R are finite sets). In fact, they give an algorithm

for the following more general problem: Given (as an input) 2n words

e,,f1,. . . , e,,f”g(X u X- ‘)* representing idempotents of FIM(X), and two words

u,u+xux-‘)*, do the words u and u represent the same element of

INV(X:{el =fi, . . . , e,=fn})? This problem is somewhat more general (and often

harder) than the word problem because in the word problem only u and u are inputs,

with the presentation kept fixed.

Word problem ,for inaerse monoids 275

The algorithm of [S] uses Rabin’s tree theorem (see e.g. [l, p. 6211); the time

complexity of this algorithm is enormous (a linear stack of exponentials in n, where

n is the input length 1 u / + IO\). Although in [S] the full generality of Rabin’s theorem is

not needed, no faster algorithm is known; in any case, it seems unlikely that the

general problem of [S] has an algorithm with less than exponential time complexity.

In this paper we consider inverse monoid presentations of the form (X, e = l), where

ee(XuX- ‘)* is a word representing an idempotent of FIM(X) and 1 is the empty

word. Actually, any finite presentation of the form (X, {e, = 1, . . . , e, = l}) where each

e, represents an idempotent of FIM(X), is equivalent (i.e., induces the same congru-

ence on (XuX-‘)*) to the presentation (X, e= l), where e=ei . e,.

We will show that the word problem for the inverse presentation (X, e= 1) has

polynomial time complexity; in fact, the more general problem (namely: Given

e,u, UE(XUX- ‘)* with e representing an idempotent of FIM(X), is u equal to u in

INV(X:e= l)?) has polynomial time complexity. This is proved in Section 2. Needless

to say, the algorithm for “e= 1” avoids Rabin’s theorem; instead, finite automata on

finite words (rather than on infinite trees) are used.

In [IS], and in this paper, the Cuyley graph T(X) of the free group FG(X) generated

by X plays an important role. This is a directed graph whose vertices are all the

elements of FG(X); the edges are all pairs of the form (g,gz), where ggFG(X) and

ZEXUX-‘; such an edge carries the label z; also for every edge (g,yz) there is an

opposite edge (gz, g), with label z- ‘. The underlying undirected graph of T(X)

(obtained by ignoring directions and labels, and identifying edges that have the same

endpoints) is a tree.

The easiest word problem for inverse monoid presentations is the word problem for

the free inverse monoid FIM(X). This was solved by Munn [9], using a tree

representation of the elements of FIM(X). We briefly review some of his results. Let

u be any word in (X u X _ ‘)*. Denote by MT(u) the labeled subtree of T(X), traversed

by reading the walk in T(X) labeled by the word u, starting at the vertex 1 (the identity

of FG(X)) and ending at the vertex r(u) (the reduced form of the word u with respect

to FG(X)). The tree MT(u) is referred to as the Munn tree of u; we may view MT(u) as

a birooted tree, the roots being 1 (the initial root) and r(u) (the terminal or final root); if

we need to emphasize the birooted nature of MT(u) we shall use the notation

(1, MT(u), r(u)). One sees easily that u is an idempotent of FIM(X) iff 1 =r(u) (i.e. the

two roots of the birooted tree are the same). Munn’s solution to the word problem for

FIM(X) is contained in the following result: Two words u, u are equal in FIM(X) fand

only if MT(u)=MT(u) and r(u)=r(u). Equivalently, (1, MT(u),r(u))=(l, MT(u), r(u)).
The main technique used in [S], and in this paper, to attack word problems of an

inverse monoid presentation (X, R) was developed by Stephen [1 I]. In that technique,

an automaton (usually infinite) is associated to every element of INV(X:R). In the

following definition, 9 denotes the Green relation related to right ideals (see [6]).

Definition 1.1. Let M be an inverse monoid, let X be a set of generators of M (in the

inverse monoid sense), and let m be an element of M. The B-class automaton of m is

216 J.-C. Biryet, S.W. Mary&, J.C. Meukin

defined by the set of states B,,, (the B?-class of m in M), the input alphabet X u X- ‘, the

start state mm-‘, the single accept state m, and the next-state function

(q, z)EL%!~ x (XuX- l)+q. z (product in M) if q .zE%!~; the next state is undefined if

q. ~$2~. We denote the B-class automaton of m by A(m) (or, if ambiguities are

possible, A,,,(m)).

If M is given by an inverse presentation (X, R) and mEM is represented by a word

u@XuX-‘)* we will also write A(u) (or AX,M (u)) instead of A(m) (or A,,,(m)).

The language in (Xu X- ‘)* recognized by A(u) is denoted L(A(u)).

It is straightforward to verify (see [l 11) that .4(u) is a minimum automaton (i.e.,

there are no useless states, and no two states are equivalent); however, the number

of states of .4(u) is not necessarily finite. Stephen also proved that

L(A(u))={wE(XuX-‘)* 1 WT 3 UT} (the latter set is also denoted u 7); here wr or ur is

the element of M represented by w or u, respectively; 3 is the natural partial order on

M (defined by m, 3 m2 iff m2 = dmI for some idempotent d of M).

This automaton is related to the Schiitzenberger representation of M relative to 9,,,;

therefore it is also called “the Schdtzenberger automaton”.

To attack word problems (and, hopefully, solve them when they are solvable) we use

the following theorem.

Theorem 1.2. (1) Stephen’s criterion: Two words u, VE(XUX- ‘)* are equal in

INV(X:R) ifl L(A(u))=L(A(u)).

(2) Stephen’s construction process - us used in this paper: The ~-&US automaton

A(u) is obtained “in the limit” (see [l l] f or a definition and existence proof) by the

following process: Start with (1, MT(u), r(u)), the Munn tree of u, viewed as an

automaton. Inductively, when we have a finite automaton A,(u), we get a next finite

automaton A,,+ 1 (u) by applying the following two operations to A,(u).

Sewing: If (Ui =v~)ER and ui occurs us a label of a walk in the automaton A,(u)

(beginning at a state p and ending at a state q), then a new path going from p to q and

labeled by vi is attached to the automaton (1 vi1 - 1 new states are introduced along this

path, where lvil is the length of the word Vi). Similarly, if vi occurs in A,(U) then Ut is

“sewed on”. This is continued until no further sewing can be applied to the original finite

automaton A,(u).

Folding: If from a state p two states q1 and q2 can be reached using the same input

letter zEXuX_ ’ then q1 and q2 are made the same state. This is continued until no

further folding can be applied.

Remarks. (1) A process is an “algorithm” (in which every step is constructive) whose

execution does not necessarily terminate. A nonterminating process cannot usually be

used to compute a result, but can be very useful to give an inductive description of an

infinite object.

(2) In [l l] A(u) is described in a much more general form. Depending on how

sewings and foldings are alternated, many different processes can be devised (and

Word problem for inverse monoids 277

many nonconstructive descriptions of A(u) are obtained as well). Not all of them

will converge, and not all of the convergent ones limit to A(u). In [S] a slightly

different construction process than the one of Theorem 1.2 is used (which also limits to

A(4).
For the special case of a presentation (X, {ei =f;: ill}) where each ei and fi is a word

which represents an idempotent of FIM(X), Stephen’s construction of A(u) (for any

word u@XuX-‘)*) can actually be carried out (slightly modified as said in the

remark), because of the following theorem.

Theorem 1.3 (Margolis and Meakin [S]). Let M = INV (X: {ei =fi: i~Zj>, where each

ei,A, represents an idempotent of FIM(X). Then for any word u, A(u) cun be embedded

into T(X) (the Cayley graph of the ,free group FG(X); one identijes 1 of T(X) with the

start state (uu- ‘)z of A(u), and one identijies r(u) (the free-group reduction of u) in T(X)

with the accept state (u)z of A(u). Here T is the morphism (X u X- ’)* + M determined by

the presentation.

As a consequence (see [S]) the Stephen construction process can be performed inside

T(X) in this case. The word problem for (X, e= l), studied in this paper, is a special

case of this, so we can use Theorem 1.3.

In [S], it is shown that A(u) and L(A(u)) can be described by sentences in the second

order monadic theory of the free group FG(X) with the “successor operations”.~ (as

z ranges over XuX-I). Rabin’s theorem (see Rabin’s chapter in [l]) applies to this

situation (see [8] and references therein); thus the word problem is decidable.

In Section 2 of this paper we give a simpler and much more efficient (in fact,

polynomial-time) algorithm for the word problem of an inverse monoid presentation

(X, e= l), when e represents an idempotent of FIM(X).

2. The word problem for the presentation (X, e = l), where e represents

an idempotent of FIM(X)

Let (X, e= 1) be an inverse monoid presentation, where X is a finite set and

es(XuX- ‘)* represents an idempotent of FIM(X). The following theorem uses

Stephen’s Theorem 1.2 to reduce the word problem to a question about finite-state

languages in (X u X l)*.

Theorem 2.1. Two words u, u@XuX-‘)* are equal in lNV(X:e= 1) ifs

(1) r(u)=r(v) and

(2) r(pref(u).(pref(e))*)=r(pref(v).(pref(e))*).

Condition (2) is equivalent to the following condition:

(2’) For every prejix u’ ofu: r(u’)Er(pref(v).(pref(e))*) and for every prejix u’ of v:

r(v')Er(pref(u) . (pref(e))*).

278 J.-C. Birget, S. W. Margolis, J.C. Meakin

Notation. r(.) is the reduction operation of the free group; pref(w) is the set of prefixes

(initial segments) of the word w (including the empty word 1 and w itself); (.)* is the

Kleene star operation (see e.g. [S, 61); “. ” denotes concatenation.

Proof. By Stephen’s criterion (Theorem 1.2(l)) we only need to show that

L(A(u))=L(A(u)) iff the above two conditions hold. Since A(u), A(u) are minimum

automata, this is equivalent to saying that the two automata A(u) and A(u) are

isomorphic (as automata). By Theorem 1.3, A(u) and A(v) can both be considered as

embedded in T(X); so, replacing the automata by their embeddings in T(X), ,4(u) and

.4(u) are isomorphic iff they are equal. Moreover, since the underlying undirected

graph of T(X) is a tree, the underlying undirected graphs of A(u) and A(u) are also

trees; for a subtree of T(X), the set of vertices (which is a subset of FG(X)) determines

the tree. Therefore, A(u) and A(u) are equal iff A(u) and A(u) (viewed as embedded into

T(X)) have the same set of vertices (cFG(X)), and the same accept state (EFG(X)).

(In their embedding into T(X), A(u) and A(u) necessarily have the same start state,

namely 1.) Theorem 2.1 now follows from the next claim. We will represent elements of

FG(X) by reduced words of the form r(w). Recall also that r(ua)=r(r(u). r(u)).

Claim. The set of states of A(u), embedded into T(X), is r(pref(u).(pref(e))*), and the
accept state is r(u).

Proof. We apply the Stephen construction process (Theorem 1.2(2)). We start with

the Munn tree A,(u)=(l, MT(u), Y(U)) of u, embedded into T(X); the set of vertices of

MT(u) is r(pref(u)). Inductively, suppose we have constructed an automaton A,(u), to

which no folding operation can be applied anymore, which is embedded in T(X),

whose vertices are a subset of r(pref(u) . (pref(e))*) and whose accept state is r(u). Now

we obtain a new automaton A,,+ 1(u) by sewing on the word e as a loop, on every

vertex of A,(u); after folding inside MT(e), this is equivalent to attaching the Munn

tree of e (whose two roots are equal) at every vertex, and folding MT(e) into A,(u) as

much as possible. Then A,+ 1 (u) is also a subtree of T(X); A,,+ 1(u) has A,(u) as

a subtree; the vertices of A,+ 1(u) are still a subset of r(pref(u). (pref(e))*); the accept

state is still r(u).
The process goes on forever but the three properties mentioned are preserved.

Moreover, every element of r(pref(u) * (pref(e))*) will become a vertex of A,(u) for

n large enough. 0

Clearly, pref(u).(pref(e))* is a finite-state language. By Theorem 2.2 (Benois 1969

(see [3]) we conclude that r(pref(u). (pref(e))*) is also a finite-state language. We

give a proof of Benois’ theorem, which yields an efficient algorithm. The algorithm

below is essentially the same as a slightly more general algorithm of Book and Otto

[4, pp. 7-93. We have simplified the presentation by using finite automata with

s-transitions.

Word problemfor inverse monoids 219

Theorem 2.2 (Benois). If LE(XUX-‘)* is a rational language then r(L) is also

a rational language.

Moreover, there is an algorithm which takes as input a non-deterministic jinite

automaton N with n states recognizing L, and which outputs a nondeterministic finite

automaton N’, with n. (I+ 21x1) states, recognizing r(L). The time complexity of the

algorithm is bounded above by a polynomial in n.

Proof (algorithm). We present the algorithm in two parts. Let N be a nondeterminis-

tic finite automaton with n states, recognizing a language LG(XUX- ‘)*.

Part 1: We construct a nondeterministic finite automaton N1 which recognizes

the closure of L under the “free-group reductions”; we denote this language Lf.

Formally L t is the smallest language K G (X u X - ’)* such that (1) L c K, and (2) for

all u,v~(XuX-I)*, ZEXUX-‘: if uzz-‘VEK then UVEK.

The automaton Nl is obtained from N by the following procedure:

begin start with the state-transition table of N;

repeat scan the current state-transition table, and for all pairs of states p, q such that

pz-f q (with ZEXUX-‘), add the s-transition p>q; “eliminate” all

c-transitions (as, e.g., in [S], p. 24]), but also keep the s-transitions in place;

until no new transitions are introduced into the table, during the last pass;

now drop all c-transitions end.

Let N1 be defined by the state-transition table obtained this way. No new states are

introduced (N and N 1 have the same states).

This is a polynomial-time algorithm: scanning the transition table once takes time

0(n2 . IX u X- ’ I); “elimination” of s-transitions takes polynomial time (see e.g. [S],

p. 241); there are at most n2. IX u X - ’ 1 iterations of the repeat loop, since an

automaton with n states has at most n2 IX u X - ’ I state transitions.

Part 2: To obtain r(L), we intersect Lt with the language r((XuX-‘)*); observe

that r((XuX-‘)* is simply the complement of (xux-‘)*.{zz-‘:

ZEXUX-’ } .(XuX-‘)*. Thus, r((XuX-‘)* is recognized by a (deterministic) finite

automaton with 1 + IX u X- ’ I states (a start state, and states to remember the last

letter read).

One obtains a nondeterministic automaton N’ for r(L)= Lt nr((XuX-‘)*) by

using the Cartesian product of Nl and the above automaton (see [S, pp. 599601 and

observe that the construction there also works in the nondeterministic case). This is

done in polynomial time; the new nondeterministic finite automaton has

n. (IX u X- ’ / + 1) states, and recognizes r(L).

The algorithm is quite intuitive, and we omit its correctness proof (see [4]). 0

Remark. The proof of Benois’ theorem as it appears in [3] (see also [8]) also leads to

a polynomial-time algorithm. The algorithm given here seems to be simpler and faster;

280 J.-C. Biryet, S.W. Mary&, J.C. Meakin

a more detailed analysis (carried out in [4]) shows that the running time is O(n”).

Benois and Sakarovitch [2] improved the algorithm to obtain a time complexity of

O(n3).

The decision criterion of Theorem 1.1 (in combination with an algorithmic version

of Benois’ theorem) can be turned into a polynomial-time algorithm to solve the word

problem (and, in fact, the more general problem, where e is also an input).

Theorem 2.3. The algorithm below, on input u, II, e@X v X ’)* (where e represents an

idempotent qf FIM(X)), decides whether u is equal to z’ in INV(X:e = 1). The time

complexity is bounded aboae by a polynomial (of degree 3) in the input length

l4+l4+lel.

Algorithm. (1) We first check, given U, CE(X u X - ‘)*, whether r(u) = r(u). For this we

compute r(u) (and similarly r(v)) as follows: A deterministic push-down automaton

reads u from left to right; initially the stack is empty. The machine works as follows: (1)

whenever the stack is empty, the next letter of u is pushed on the stack; (2) if the top

letter of the stack is y~Xu X- ’ and the next letter of u is J’~ ‘, then y is popped off the

stack (when y _’ is read); (3) if the top letter of the stack is y~Xu X-l and the next

letter of u is z, with z #y- ‘, then (when z is read) z is pushed on the stack. One can see

that after u has been entirely read, the stack content is the string r(u). This machine

makes Iu/ steps to compute r(u). Once we have r(u) and r(u), one can check in linear

time whether they are equal.

(2) The second (and main) part of the algorithm checks condition (2’) of

Theorem 1.1.

Step 1: Build a finite automaton recognizing r(pref(e)). This is done by constructing

the Munn tree of e viewed as a finite automaton (with alphabet X u X - ‘) but leaving

out those edges that point in the direction of the root (the two roots are equal since in

FIM(X), e is an idempotent). The root is the start state; all vertices are made accept

states. This automaton has < I e I + 1 states; it can be constructed from e in time 0(1 el).

From this automaton one easily obtains a nondeterministic finite automaton (also

with < lel + 1 states) recognizing (r(pref(e)))*. This is done by connecting every accept

state (i.e. every state, in this case) to the start state via an a-transition (see e.g. [S,

p. 241); the e-transitions can be eliminated without increasing the number of states (see

[S, pp. 266271). All this will take time O(lel).

In a similar way, one constructs a finite automaton recognizing r(pref(u)), with

< IuI + 1 states: one first constructs the Munn tree of u, viewed as a finite automaton,

but one leaves out the edges that point in the direction of the initial root. The initial

root is the start state, and all vertices are accept states (the final root of the Munn tree

plays no special role here). This takes time O(lul).

Finally, from the automata constructed for (r(pref(e))*, resp. r(pref(u)), one obtains

a nondeterministic finite automaton for the concatenation r(pref(u)).(r(pref(e)))*,

with < 1 u I + I e(+ 2 states; the classical constructions will work (see [S, pp. 26627, 3 1).

This takes time O(lul +lej).

Word problem for inuerse monoids 281

At the end of step 1 we have a nondeterministic finite automaton with < 1 e I+ 1 u I+ 2

states, which recognizes r(pref(u)) . (r(pref(e)))*. It took time 0(I u I + I e I) to construct

this automaton.

In the same way one deals with r(pref(u)).(r(pref(e)))*.

Step 2: We apply our algorithmic proof of Benois’ theorem, which yields a non-

deterministic finite automaton with (/ u (+ I e I + 2) (I X u X - ’ I + 1) states, recognizing

r(r(pref(u)). (r(pref(e)))*)=r(pref(u). (pref(e))*); the time complexity is a polynomial

in lu/+lel (more precisely, the time is O((lel+/~l)~), by [2]). For c one proceeds

similarly (and the time is 0((lel + 1~1)~)).

Step 3: Since we have a nondeterministic finite automaton N, (with 0(I UI + I e 1)

states) for r(pref(u). (pref(e))*), we can check in polynomial time (as a function of

/ u I + / e I + I v I) whether N, accepts r(a’), for any prefix c” of I! (where r(d) is computed as

in part 1). This is done as follows: start with the start state of N,, read the first letter of

r(d), and remember the set of states reached; in general, remember a set of states of N,,

read the next letter of r(v)), compute the set of states reached, and replace the old set

by the new one. (Note that this is not the classical subset construction, which would

take exponential time in general, but a “lazy” form of it: only one set of states is

computed and remembered at every step, and one uses only those sets that appear as

r(d) is processed.)

All this takes polynomial time (each set has size < (UI + 1 el + 2, and r(zj’) has length

< 1 u’ I; so, step 3 takes time 0(12;’ I (I u I + I e I))). Since v has Iv I + 1 prefixes, checking this

for every prefix of v the time is bounded by 0(lc12(lul+lel)).

One proceeds similarly when U,U are switched; the time complexity then is

W42(l~l+14)).
Finally, adding up all the running times gives 0((I UI + I el + 1111)~). 0

3. Relation with context-free languages

For a presentation (X, e = l), where e represents an idempotent of FIM (X), we can

characterize the congruence class UT c(X uX- ‘)* for every word U, and we shall

prove that UT is a deterministic context-free language. Here and in the sequel we

identify FG(X) and r(XuX-‘)* (the set of reduced words); we also identify the

element uz of INV(X:e= 1) and the congruence class of u (which is a subset of

(XuX-‘)*). By V(MT(u)) and V(A(u)) we denote the set of vertices of MT(u) and

A(U) respectively.

Definition 3.1. Let P= r(pref(e)) be the set of vertices of MT(e), and let (P) be

the submonoid of FG(X) generated by P. Let u be a word E(X u X - ‘)*. For

two vertices g, h of A(u), we write g +h iff hey. (P); here denotes the multiplication

in FG(X). We write g ++ h iffy--+/t and h-+g; it is clear that ++ is an equivalence

relation on the set of vertices of A(u). The equivalence class of g is denoted

CSI”.

282 J.-C. Birget, S. W. Margolis, J.C. Meakin

An equivalence class [g]” is essential for u iff

(1) CslUn WW4)#@ and
(2) Vgi E V(MT(u)): if g1 +g then g+gi .

Lemma 3.2. For each vertex g of MT(u) there exists at least one vertex h of MT(u)

such that [h],, is essential for u and h-g. In particular, A(u) contains at least one
essential equivalence class.

Proof. Let g be any vertex in MT(u). If [glu is essential, there is nothing to prove. If

not, there exists glE V(MT(u)) such that gi+g and gi-+g. If [gi]. is essential, we are

done. If not, there exists g2E V(MT(u)) such that g2+g1 and g2+gl. Then [g2],, # [glU

or else g2+g1 +g+g2, whence [g21U = [gllU. Continuing in this manner, we obtain

a sequence gn-+gn_ I + ... -+g2+g1 +go =g such that no [gi]u is essential and

[gi]“# [gj]u if i#j. In particular, the elements go,gl, . ,gn are all distinct and all in

P’(MT(u)), which is finite, so the length of any such sequence is bounded. Hence, we

must eventually reach some element gmEV(MT(U)) such that [g,], is essential and

gm+gm- 1 + ... -+go=g, and so gm-+g. 0

Theorem 3.3. Let M=INV(X:e= 1) and let u~(Xux-‘)*. For WE(XUX-I)*, we
have WEUT if and only if MT(w) embeds into A(u) (both viewed within T(X)), r(w)=r(u)

and MT(w)n Cgl,,#@ h w enever [g],, is essentialfor u. (Equivalently, WEUZ if and only tf
w labels a walk 71 from 1 to r(u) in A(u) such that z contains at least one vertex from each
essential equivalence class [g]” contained in A(u).)

Proof. Suppose that MT(w)G A(u), r(w)=r(u) and MT(w) intersects each essential

equivalence class of A(u). Clearly, A(w) c A(u), by the Stephen construction process,

since MT(w) E A(u). We need to show conversely that A(u) s A(w), in order to obtain

WEUS. Again (by Theorem 1.2(2)) it suffices to show that MT(u)cA(w). Let

gE P’(MT(u)). If [g], is essential for u then there exists gi E[g]” n MT(w) and since

g1 +g, this forces gE V(A(w)). If [g],, is not essential for u then, by Lemma 3.2, there

exists hE V(MT(u)) such that [h]” is essential for u and h+g. By the above argument

this forces heV(A(w)) and so geI’(A(w)) since h-+g. Hence, MT(u)sA(w) and so

WEUZ.

Conversely, suppose that WEUZ. Then A(u) = A(w) by Theorem 1.2 (l), so r(u)= r(w)
and MT(w)c A(u). Let gE V(MT(u)) such that [g]. is essential for u. Now

gE V(A(u))= V(A(w)) so there exists glE V(MT(w)) such that gl+g. By Lemma 3.2,

there exists hE V(MT(w)) such that [hlw is essential for w and h+g,, from which it

follows that h+g. By the same argument, since [hlw is essential for w and

he V(MT(w)) and A(w)= A(u), we see that there exists hlE V(MT(u)) such that [hII,
is essential for u and h,+h. Then hI+h+g and both [hl], and [g],, are essential

for u; so, this forces [h,],=[glU. But [h,],=[h] 1 ,+ since A(u) = A(w) so we must

have [h,],=[h],=[g],,. Then it follows that [g].nP’(MT(w))#@ since hE[g]“n
V(MT(w)). This completes the proof of the theorem. 0

Word problem for inverse monoids 283

Theorem 3.3 may be viewed as an extension of the result of Munn [9] characteriz-

ing the equivalence class of a word UE(X u X-l)* with respect to FIM(X) as the set of

words in (XuX-‘)* labeling walks from 1 to r(u) that traverse all vertices of MT(u).

We will now prove that every congruence class relative to a presentation of the form

M = INV (X : e = 1) is a deterministic context-free language. We first need a prelimi-

nary result about context-free languages.

Theorem 3.4. Let M be a push-down automaton with input alphabet Z and stack

alphabet r, let {L1, . . . , Lk} be a finite set of rational languages over the alphabet r; let
L, also be a rational language over I-, and let f be a word in L,. We assume that L, is

closed under prefix (i.e., when a word is in L,, all its pre$xes are also in L,). Then the

set L’ defined below is context-free:

L’= (wEC*: there exists an accepting computation of M on input w such that
(1) for each i (1 <i < k) the stack content of M is a word in Li at least

once during the computation;
(2) the stack content of M always belongs to L, during the computation;

(3) the stack content at the end of the computation is f }.

Moreover, if M is a deterministic push-down automaton then L’ is a deterministic
context-free language.

Proof. See [S] for terminology not defined here. Let M be described by Q (states),

r (stack alphabet), C (input alphabet), 6 (transition relation), q0 (start state), F (accept

states), z0 (initial stack symbol); M “accepts by final state”. Let Li be accepted by the

deterministic complete finite automaton Ai (for 1 <id k or i= CO), described by

Qi (states), r (input alphabet, which is also the stack alphabet of M), hi (transition

function), qoi (start state), Fi (accept states). Since L, is closed under prefix we can also

assume that Qaj = F, u {s}, where s is a sink state.

We shall construct a pda M’ accepting L’. If M is deterministic, then M’ will also be

deterministic. At first we will ignore the condition that the final stack content must be

the word f; we will handle this at the end of the proof.

M’ is described as follows: M’ =(Q’, C’, T’, 8, qb, Zb, F’), where the set of states is

Q’=(QuQ x {c}) x (0, l}k(here (0, l}” is th e set of all strings of O’s and l’s of length k);
thestackalphabetisT’=TxQ,x ..’ xQkxF,; C’ = C (the same as for the original

pda M) is the input alphabet; Zb = (z,, qi, . . . , qk, qm) is the initial stack symbol, where

qi = 6i(qoi, zo) for every i; the start state is qb = (qO, vl, . . . , vk), where Vi = 1 if ZgE Li, and

Vi=0 if Zo$Li: the set of accept states is F’=F x {lk} (where lk is the all-l string of

length k). Note that Zb does not exist if z,$L, (and L’ is the empty language in that

case).

Before describing rigorously the transition relation of M’ let us briefly say how M’
is intended to work: M’ imitates M (in the first coordinate of both the state and the

stack symbols). But at the same time, if M pushes stack symbols on its stack, M
applies these symbols to Ai (for 1 <i< k) and pushes the resulting states on the stack

284 J.-C. Birget, S. W. Mar&is, J.C. Meakin

(side by side with what M does). When M pops symbols off the stack, M’ also pops

those symbols off its stack, including the accompanying state symbols of A,; that way

M’ uncovers the earlier states of Ai (that had previously been pushed on the stack). M’

accepts iff M accepts and if in addition for every i (with 1~ i < k), the top of the stack

was ever of the form (z, ql, . . . , qk,qa,), where qi~Fi (the ith position of the string in

{0, l}” that is part of the state of M’ serves to remember this). Moreover, for M’ to

accept, the top symbol of the stack must always be defined (i.e., qmEF,); this enforces

the condition that the stack content of M must always be in L, during the accepting

computation.

We will use the short-hand notation di(q, zlzz . . . z,) to denote Si(. . (6,(6i(q, z,),

z,), . ..).&I).
Let us now define 6’. Suppose (q, z, u)+(q’, y) is a transition of M (where UECU {a},

q and q’ belong to Q, ZET is the symbol on top of the stack; in the transition z is

replaced by y=zi . . . z,,ET*, where z, is now the top of the stack).

Case 1: If ~#a (here c denotes the empty word) then into 6’ we put the set of

transitions

{((q, Ul, ... ,4L(z,q1, ... ,qk,qs),44(4’,u;, ... ,u;),Y’):

(U 1, ... > kk{O, l}k,(ql, . . ,%,qrn)EQ1 X ... X Qk X Fm,

~‘=(~l,~lk,~zl), ... ,fik(qk,Z1),~m(qm,Z1))(Z2,~l(qlZ1,z2),

. ..) bk(qk,Z1ZZ),~z(qm,Z1Z2))

. ..(Z.,61(ql,z1z2...Z,),...,fik(qk,Z1Z2...Z,),

and u;= 1 if ui= 1 or &(ql, zlzz . . z,,)EF~: z&=0 otherwise}.

Note: We use the right-most symbol to denote the top of the stack. Observe that,

by the definition of the stack alphabet r’ of M’, y’ is not defined if not all of the

bu(qcc,z1z2 ... zj) belong to F,.

Case 2: If y = E (i.e., M pops the top symbol off its stack) then into 6’ we put the set of

transitions

1((q,u,,...,Uk),(Z,ql,...,qk,qm),a)~(((q’,c),ul,...,Uk),E):

(U 1, ... 9 Ukb{O, l}k,(q,,qk.CLcu)EQ1 X .” X QkXFm)

u{(((q’,C),0l,...,yk),(y,P1,...,Pk,P30),E)~((q’,U’~,U.),(y,P1,...,Pk,Poc)):

(u 1, .‘. > Uk)@,l)k> (Y,P,,...,pk,p,)ErxQ, X .” XQkXFco,

and ui = 1 if vi = 1 or pin Fi, ui = 0 otherwise}.

Comment. The first transition pops off the top of the stack, goes to the next state q’,

but marks that state with a “3’ to indicate that the new top of the stack has to be

examined. The second set of transitions only applies when the state is marked by a “c”;

Word problem fiw inrersr monoids 285

it removes the “c”, and modifies the {O, l}-string (in the state) if the new top of the

stack indicates acceptance by the Ai automata (i.e., pigFi).

It is straightforward, although tedious, to verify that M’ recognizes L’ (except that

the condition that the final stack content should be f has been ignored). To enforce

this condition, we consider the pda M’ (constructed so far) to be a pda that can read

the top l,fl symbols of the stack (rather than just the top-most symbol); when the stack

contains less than lfl symbols the pda can see the entire stack content. Such a pda can

be simulated by an ordinary pda, which only sees the top-most stack symbol, but

which remembers the top IfI symbols of the stack in its finite control. Determinism is

preserved. The details of this construction are a classical exercise. When M’ is

modified according to this construction we obtain a pda (let us still call it M’) which

recognizes the language L’. 0

As a consequence of Theorem 3.4, we obtain the following extension of Theorem 4.4

of [S] in the case of a presentation (X, e= 1). Theorem 4.4 of [S] considers the more

general case of a presentation (X, Cei =,fi: ill}) where each e; and fi represents an

idempotent of FIM(X); it states that UT is a deterministic context-free language, for

every UE(X uX - ‘)* (see Section 1 for a definition of UT). It is still an open problem

whether ut itself is context-free in this general case.

Theorem 3.5. Let M=INV(X:e= l)=(XuX-‘)*/z, where e represents an idem-
potent in FIM(X). Then for each UE(XVX~ ‘)*, uz is a deterministic context-free

language.

Proof. Let u be a fixed word (as in the theorem). Let M be the dpda which computes

the reduction function r (i.e., after M has read an input c@X UX I)* the stack

contains r(u)). Let us apply Theorem 3.4 to the dpda M, with k = I u I + 1, f= r(u), and

with the following rational languages: L, = r(pref(u) . (pref(e))*), and

Li = r(ui _ L . (pref(e))*), where ui + 1 is the prefix of u of length i (1 d i < k). We claim that

the language L’ recognized by the dpda M’ is precisely ur. Indeed, by Theorem 2.1,

uEr(u) iff (1) r(u) = r(u), and (2’) every prefix u’ of L‘ belongs to L, , and every prefix U’ of

u belongs to r(pref(v).(pref(e))*). The first condition is equivalent to the condition that

the final stack content of M’ on input c must be ,f= r(u); the first part of condition (2’)

means that the stack content of M’ must always be in L,; finally, it is not difficult to

see that the second condition of (2’) means exactly that for every i (0 d id I u I), the stack

content belongs to Li+ 1 at least once during the computation of M’ on input U. 0

4. The presentation (X: e= 1) when e represents a positively labeled

idempotent of the free inverse monoid

In Section 2 we gave a fast algorithm for solving the word problem of the presenta-

tion (X, e= 1) when e represents any idempotent of FIM(X). This was much simpler

286 J.-C. Birget, S. W. Margolis, J.C. Meakin

than the more general case considered in [8]. Further simplifications in the solution to

the word problem occur for M = INV(X: e = 1) when e is “positively labeled”.

Definition 4.1. An idempotent of FIM(X) represented by a word e is positively labeled

iff every vertex of the Munn tree MT(e) is in X*.

In this case it is clear that the set of vertices of A(1) is just P*, the submonoid of

(X u X - ’)* generated by the set P = r(pref(e)) = V(MT(e)); this follows immediately in

the positively labeled case since all words in P*(GX*) are already reduced. The

frower automaton

can be used to recognize P* and the complications inherent in constructing the Benois

automaton of r(P*) = P* do not arise in this case; so, the solution to the word problem

is particularly simple here. The flower automaton is not deterministic in general but

standard automata-theoretic methods can be used to easily construct the minimal

automaton of P* from the flower automaton.

An alternative solution, involving the technique of “pruning” Munn trees may also

be employed here. This section gives a brief description of this technique since it yields

a particularly pleasant canonical form for words in this case. For the remainder of the

section, e is a positively labeled idempotent of FIM(X), M =INV(X:e= l), and

P = r(pref(e)) = V(MT(e)) E X * is the set of vertices of MT(e).

Definition 4.2. (1) Let (1, T, o) be a finite birooted labeled subtree of T(X) (with initial

label 1 and terminal label 0). An extremal vertex y of T is called prunable if y # 1, y #CO

and there is some vertex 6 # y in T such that the word w labeling the geodesic from 6 to

y is in P.

(2) If y is a prunable vertex of T then we can form a new birooted labeled subtree

(1, T’, co) of T(X) by removing from T the vertex y and the edge that connects y to the

remainder of T: we say that (1, T’, w) is obtained from (1, T,o) by pruning the vertex

y and write (1, T, o)*(1, T’, co). We write (1, T, c0):(1, T’, CO) if there is a finite sequence

of prunings (1, T,o)*(l, TI,o)* ... =z-(1, T,,w)=(l, T’,w).

Lemma 4.3 (Pruning is confluent). Zf (1, TI,o) and (1, T2,w) are each obtained by

pruning one vertex from (1, T, co), then there is another birooted labeled tree (1, T’, co)

such that (1, TI, o)*(l, T’, co) and (1, T,, w)*(l, T’, co). As a consequence, for each

finite birooted labeled subtree (1, T,o) of T(X), there is a unique birooted labeled

subtree (1, T’, co) ofT(X) such that T’ has no prunable vertices and (1, T, w)z(l, T’,w).

We call T’ the pruned tree obtained from T.

Proof. Suppose that yi # y2 are prunable vertices of T, and that (1, T, CO) a(1, Ti , co)

and (1, T,w)*(l, T2,w) by pruning yi and y2, respectively. Then there exist vertices

Word problem for inversr monoids 287

d1,d2 of T such that the geodesic from 6i (6,) to y1 (y2) is labeled by a word in P. Let

pi (~1~) be the vertex of T adjacent to yi (y2). Then the edge form pL1 to y1 (p2 to yz) is

labeled by a letter in X and, so, it follows that y1 #6, (or else the geodesic from S2 to

y2 would not be labeled by a positive word); similarly yz # 6i. Thus 6, is a vertex in

T, and 6i is a vertex in T,; so, y2 is a prunable vertex in Tl and y1 is a prunable vertex

in T2. Pruning yz from Tl yields the same tree T’ as pruning y1 from T,; hence pruning

is confluent. 0

With these notations and results in hand we are able to provide an alternate

solution to the word problem for M =INV(X:e= 1) in the positively labeled case.

Theorem 4.4. Let M=INV(X:e=l)=(XuX-‘)*/ r, where e represents a positively
labeled idempotent of FIM(X). 1f u,v~(XuX-‘)* then u=v in M if and only if
MT’(u)= MT’(v), where MT’(u), and MT’(v) are the pruned trees obtained from MT(u),

and MT(v), respectively.

Proof. Suppose first that ul, v,E(XUX-‘)* with (1, MT(u,),r(u,))=>(l, MT(v,),

r(vl)); so, r(u,)=r(vl) and MT(v,) is obtained from MT(u,) by pruning one extremal

vertex y from MT(u,). There is a vertex 6 in MT(u,) such that the geodesic from 6 to

y is labeled by an element of P. Hence MT(v,)uG.MT(e) contains the vertex y and so

MT(v1)u6.MT(e)=MT(ul)uG.MT(e). It follows that A(u,)=A(v,) and hence

a1 = v1 in M. By induction, if u2 is as word in (XuX - ‘)* whose Munn tree is MT’(u),

then u = u2 in M, and it follows that u = v in M if MT’(u) = MT’(v).

To prove the converse, suppose first that u~,v~E(XUX-~)* with u1 = w1w2 and

v1=w1ew2 in (XuX-) . 1 * Then there is some vertex 6 of MT(u,) such that

MT(v,)=MT(u1)u6.MT(e). If y is an extremal vertex of MT(vi) that is not in

MT(ul), then y is prunable (since the geodesic from 6 to y is labeled by an element of

P). By induction, all extremal vertices of MT(v,) that are not in MT(u,) may be

pruned away and so MT(v,)~MT(u,). It follows by induction that if u= v in M, then

there is a sequence of words u = uO, ul, u2, . , u, = v such that, for each i = 0, 1, . . . , n,

either MT(ui)~MT(ui+,) or MT(ui+l)SMT(ui). The confluence Lemma 4.3 then

implies that MT’(u) = MT’(v). 0

Corollary 4.5. Let M = INV (X: e = l), where e represents a positively labeled idem-
potent of FIM(X). Then each congruence class in FIM(X) with respect to this
presentation contains a maximum element with respect to the natural partial order on
FIM(X).

Proof. Let u@XuX-‘)* and let v be any word in (XuX-‘)* such that

MT(u)= MT’(u). Since MT(u)& MT(u) and r(u)=r(v) it follows from the results of

Munn [9] that U<V in FIM(X). Also U=V in M from the proof of Theorem 3.3, so

u and v are congruent as elements of FIM(X). It follows that v is a maximum element

in its congruence class in FIM(X). •i

288 J.-C. Birger, SW. Margolis, J.C. Meakin

We can also obtain a simpler characterization of the r-class of a word

UE(XUX-‘)* in this case.

Theorem 4.6. Let M=INV(X:e=l)=(XuX-I)*/ r where e represents a positively
labeled idempotent of FIM(X). Then for each WE(XUX-‘)* we have WEUT if and only
if r(u)=r(w) and MT’(u)sMT(w)sA(u).

Proof. Note that the concept of an “essential” equivalence class [g],, of A(u) as

introduced in Definition 3.1 simplifies considerably in this case. Since

P= 1/(MT(e))EX*, we now have g ++ h if and only if g = h. Hence, [g]” = {g} for all

gE I/(A(u)). In analogy with Definition 3.1, we call a vertex gE V(MT(u)) essential iff

there is no vertex gi fg in MT(u) such that gi +g. Theorem 3.3 then tells us that WEUZ

if and only if r(u) = r(w), MT(w) c A (u), and MT(w) contains every essential vertex of

MT(u). It is clear that a prunable vertex of MT(u) is not essential and that all extremal

vertices of MT’(u) are essential; so the result follows since MT(w) contains all vertices

of MT’(u) (and hence all essential vertices of MT(u)) if and only if MT(w) contains all

extremal vertices of MT’(u)). q

Note that Theorem 4.6 implies the well-known result of Munn [9] that for any

u, WE(X u X - ’)* : u and w are equal in FIM (X) if and only if w labels a walk from 1 to

r(u) in MT(u) that includes all vertices of MT(U).

Let us now put these results into algorithmic form, in order to decide the word

problem. We use Theorem 4.6: Given two words U, ve(XuX- ‘)* and a positively

labeled idempotent e of FIM(X), we first prune the trees MT(u),MT(u). Then we

check if r(u)=r(v) and if MT’(u)= MT’(v). The more detailed algorithms follow.

Part 1: The pruning algorithm. On input e and u, it outputs the pruned tree MT’(u).

The algorithm does the following:

(1) Construct the Munn trees of e and u. This takes time 0(I e I+ 1 u I).

(2) Compute r(pref(e)) = pref(e) = P. To do this one traverses the Munn tree of e in

breath-first order and outputs any word read so far; this continues until all search

paths have ended at a leaf. This takes time 0((e I). Note that P has < I e) elements.

(3) For every leaf 1 of the Munn tree MT(u), compare every element of P with the

positively labeled paths in MT(u) ending at that leaf 1. If no such path is equal to an

element of P=r(pref(e)), mark this leaf “in red”; otherwise, remove 1 and the edge

incident with 1 from the tree. This is then continued until all leaves of the tree are

marked “red”, or until the tree has been entirely removed. The time complexity of part

(3) is 0(je12.(u(): Every edge of u is removed at most once; to compare an element of

r(pref(e)) with a path in the tree of u takes < I e(steps, and there are < (el elements in

r(pref(e)) = pref(e) = P.
This shows that the pruning algorithm has time complexity 0((e(‘.l ul); this is linear

as a function of) uJ.

Part 2: Solving the problem whether u=v in INV(X:e= 1). One first computes

r(u) and r(v) and checks whether r(u)=r(v); this takes time O(lul+lvl). Next one

Word problem fi)r inverse monoids 289

applies the above pruning algorithm to u and v (in time O() el”.(1 u I+) v I)), and checks

whether the resulting trees are equal (time O(lul+ 1~1)). Overall, it takes time

0(Je(2~(~~/+Jv~))tosolve the problem; thisislinearinIuJ+/vJ(=lengthoftheinput

for the word problem).

We summarize the algorithmic result as follows.

Theorem 4.7. When e is a positively labeled idempotent of FIM(X) then the problem

“u=v in INV(X:e= l)?’ can be solved by an algorithm which has time complexity

0(I el’.(/ uI + [vi)). In particular, the word problem (when u, v are inputs, and e is jxed)

has linear time complexity.

Concluding remarks

The result of Theorem 4.4 was announced at a conference at Louisiana State

University in honor of R.J. Koch [7] (where the hypothesis that e is positively labeled

was omitted). In fact, the pruning technique works in some other cases as well but not

in general; it is not too difficult to give an example of an idempotent eEFIM(X) for

which the pruning technique is not confluent.

Acknowledgments

The authors wish to thank J.B. Stephen for many fruitful conversations concerning

parts of the paper. The authors owe special thanks to the referee who suggested a nicer

and simpler proof of Theorem 3.5 and who pointed out references [2,4].

References

111
PI

c31
r41

c51

C61
171

PI

191
llO1
1111

J. Barwise, ed., Handbook of Mathematical Logic (North-Holland, Amsterdam, 1977).

M. Benois and J. Sakarovitch, On the complexity of some extended word problems defined by

cancellation rules, I@rm. Process. Left. 23 (1986) 281-287.

J. Berstel, Transductions and Context-free Languages (Teubner Studienblcher, Stuttgart, 1979).

R. Book and F. Otto, Cancellation rules and extended word problems, Inform. Process. Lett. 20 (1985)

5-11.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation

(Addison-Wesley, Reading, MA, 1979).

G. Lallement, Semigroups and Combinatorial Applications (Wiley, New York, 1979).

S.W. Margolis and J. Meakin, On a class of one-relator inverse monoid presentations, in: Proc. LSU

Semigroup Conf, Louisiana State University (1986) 37-41.

SW. Margolis and J.C. Meakin, Inverse monoids, trees and context-free languages, Trans. AMS, to

appear.

W.D. Munn, Free inverse semigroups, Proc. London Math. Sot. 30 (1974) 385-404.

M. Petrich, Inverse Semigroups (Wiley, New York, 1984).
J.B. Stephen, Presentations of inverse monoids, J. Pure Appl. Agebra 63 (1990) 81-112.

