
Theoretical Computer Science 242 (2000) 247–281
www.elsevier.com/locate/tcs

PSPACE-complete problems for subgroups of free groups and
inverse �nite automata1

J.-C. Birgeta, S. Margolisb, J. Meakinc, P. Weild;∗

aDepartment of Computer Science, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
bDepartment of Computer Science, Bar Ilan University, 52900 Ramat Gan, Israel

cDepartment of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
dLaBRI, Universit�e Bordeaux-I, 351 cours de la Lib�eration, 33405 Talance, France

Received January 1995; revised January 1997
Communicated by M. Nivat

Abstract

We investigate the complexity of algorithmic problems on �nitely generated subgroups of
free groups. Margolis and Meakin showed how a �nite monoid Synt(H) can be canonically
and e�ectively associated with such a subgroup H . We show that H is pure (that is, closed
under radical) if and only if Synt(H) is aperiodic. We also show that testing for this property
of H is PSPACE-complete. In the process, we show that certain problems about �nite automata
which are PSPACE-complete in general remain PSPACE-complete when restricted to injective and
inverse automata (with single accept state), whereas they are known to be in NC for permutation
automata (with single accept state). c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: PSPACE-completeness; Subgroups of the free group; Inverse automata;
Pure subgroups

0. Introduction

We are concerned with the solution and the complexity of algorithmic problems about
�nitely generated subgroups of free groups. Our main results are that the problem of
deciding purity for a �nitely generated subgroup of a free group is decidable, and that
it is PSPACE-complete.
Our techniques rely largely on automata theory. We �rst show that there are

polynomial-time reductions, in both directions, between �nitely generated subgroups
of the free group FG(�) over the �nite alphabet �, and inverse automata over the

∗ Corresponding author.
E-mail address: pascal.weil@labri.u-bordeaux.fr (P. Weil).
1 The �rst three authors were supported by NSF Grant 92-03981. The fourth author was supported by

GdR-PRC AMI. All four authors were supported by the Center for Communication and Information Sciences,
University of Nebraska-Lincoln.

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(98)00225 -4

248 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

symmetrized alphabet �∪�−1. Here a �nitely generated subgroup of FG(�) is speci-
�ed by a �nite set of words in (�∪�−1)∗, whose total length is the size of the input.
An inverse automaton over �∪�−1 is a deterministic �nite automaton with single ac-
cept state, in which each letter a∈� labels an injective partial transformation of the
state set, and such that a−1 labels the inverse transformation.
The correspondence between subgroups of free groups and inverse automata was in-

troduced by Reidemeister [19] in order to give a simple proof of the Nielsen–Schreier
theorem that subgroups of free groups are free. This correspondence is well known in
combinatorial group theory where it has been used to compute invariants of �nitely
generated subgroups of free groups, such as rank and index (see Section 2), as well
as to prove general results, such as the Nielsen–Schreier formula on the rank of �nite
index subgroups of FG(�), the residual �niteness of FG(�), or M. Hall’s result on
the embedding of �nitely generated subgroups of FG(�) as free factors of subgroups
of �nite index. One should add however that combinatorial group theorists do not, in
general, view this as a correspondence between subgroups of FG(�) and certain �nite
automata, but rather as a correspondence with certain �-labeled �nite graphs, or more
precisely, with certain immersions over the bouquet of |�| circles. For details on these
questions, see [14, 15, 23, 22].
Margolis and Meakin [15] exploited the automata-theoretic point of view on this cor-

respondence by showing that the �nite �-labeled graph AH associated with a �nitely
generated subgroup H of FG(�), viewed as an inverse automaton, is the minimal au-
tomaton of a certain submonoid of the free inverse monoid over � which is canonically
associated with H .
It is a natural idea to use the algebraic properties of the transition monoid of AH , a

�nite inverse monoid denoted Synt(H), to explore the properties of H . It is important
to note in this respect that �nitely generated subgroups of FG(�) are rational subsets
of FG(�), but are not in general recognizable [5]. So we cannot expect to �nd a �nite
automaton recognizing H itself. In fact, it is known that H is recognizable if and only
if it has �nite index, and that its syntactic congruence is the equality otherwise [21].
So, AH does not recognize H ; it corresponds to H in a more subtle way.
Note that the monoids of the form Synt(H), being transition monoids of inverse

automata, are monoids of partial one-to-one transformations closed under taking in-
verses. Therefore, they belong to the class of inverse monoids, that is, the class of
monoids in which for each element x there exists a unique x−1 such that xx−1x= x
and x−1xx−1 = x−1. This class has been widely studied by algebraists (see [17]), but
also in relation with the theory of formal languages [8, 26]. In this paper however, we
do not make explicit use of the speci�c properties of inverse semigroups.
It is known that H has �nite index if and only if Synt(H) is a group. This state-

ment is reminiscent of the situation prevailing in rational language theory, where
a correspondence was established between certain combinatorially de�ned properties
of rational languages and certain algebraically speci�ed properties of �nite monoids
(Eilenberg’s variety theorem, see [9, 18]). Ruyle [20] proved an analogue of
Eilenberg’s variety theorem in the context of the study of �nitely generated subgroups

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 249

of free groups. That result however only provides a formal framework for this corre-
spondence, and speci�c instances remain to be identi�ed.
The �rst new result reported here gives a non-trivial instance of Ruyle’s corre-

spondence and is the free-group analogue of Sch�utzenberger’s theorem on star-free
languages. By de�nition, H is pure if and only if xn ∈H (with n¿1) implies x∈H .
This is equivalent to saying that the subgroup H is closed under radical, where the
radical of H is the set

√
H = {x | xn ∈H for some n 6=0}. We show

Theorem. A �nitely generated subgroup H of FG(�) is pure if and only if Synt(H)
(or equivalently; AH) is aperiodic.

An immediate consequence of this result and of the e�ectiveness of the computation
of Synt(H) is that the purity of a �nitely generated subgroup of FG(�) is decidable.
A related concept is that of p-purity. A subgroup H is p-pure for a prime number

p if and only if the following holds: xn ∈H , with n relatively prime to p, implies
x∈H . We prove that H is p-pure if and only if every subgroup of Synt(H) is a
p-group. Again, this implies that it is decidable whether a given subgroup is p-pure
for a given prime p.
The second new result concerns the complexity of deciding (p-)purity; we prove:

Theorem. The problem of deciding purity or p-purity of a �nitely generated subgroup
H of FG(�); and the aperiodicity problem for �nite inverse automata are PSPACE-
complete.

The aperiodicity problem for arbitrary �nite automata is known to be PSPACE-complete
([6]). In our proof, we re�ne Cho and Huynh’s approach to the case of inverse au-
tomata. In analogy with Cho and Huynh’s proof, we �rst show that the intersection-
emptiness problem is PSPACE-complete for injective and for inverse automata; this result
is also of independent interest. For arbitrary �nite automata this was �rst proved by
Kozen [12]. We also make use of Bennett’s theorem on injective Turing machines [4].
It is particularly interesting that the intersection-emptiness problem for inverse �nite

automata is PSPACE-complete, just as it is for arbitrary �nite automata. The analogous
problem for permutation automata (with single accept state) is known to have a fast
parallel solution (in NC) [3]. Thus, while they may appear algebraically close to groups,
inverse monoids behave more like arbitrary monoids with respect to certain classical
complexity questions.
The result is no less interesting from the point of view of group theory. Much

attention has been devoted to the algorithmic problems that arise when studying free
groups and their quotients; however, the study of the computational complexity of these
questions is still in its infancy. Regarding �nitely generated subgroups of free groups, it
is known that the generalized word problem and the conjugacy problem can be solved
in polynomial time. These problems are in fact complete for P via logspace reductions
([1, 2]; for re�nements, see [25]). Thus the problem of deciding purity is one of the few
provably hard decidable problems known (as of today) in combinatorial group theory.

250 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

1. Inverse automata

First we �x some notation. Let � be an alphabet, i.e. a �nite set, and let �∗ be the
free monoid on �, that is, the set of all words on �. The empty word is denoted by 1.
A deterministic �nite state automaton over � (or simply an automaton) is a structure
A=(Q;�; �; i; F) where Q is the �nite set of states, i∈Q is the initial state, F ⊆Q
is the set of �nal states and � :Q×�→Q is the (partial) transition function, usually
denoted �(q; a)= q · a. As usual, � is extended to a (partial) function on Q×�∗ by
letting q · 1= q and q · (ua)= (q · u) · a (if this is de�ned) for all q∈Q, u∈�∗ and
a∈�. The language recognized by A is the set L(A)= {u∈�∗ | i · u∈F}.
All the automata considered in this paper are deterministic.
If every letter a∈� induces a partial one-to-one function on Q and if |F |=1, we

say that A is injective. Note that this is equivalent to the condition that the reverse of
A (the automaton obtained by reversing all the arrows of A) is deterministic.
Let �−1 be a disjoint copy of �, together with a bijection a 7→ a−1 from � to �−1.

This bijection is extended to (�∪�−1)∗ by letting 1−1 = 1, (a−1)−1 = a for each a∈�,
and (a1 · · · an)−1 = a−1n · · · a−11 for all n¿2, ai ∈�∪�−1. We say that an injective
automaton A=(Q;�∪�−1; �; i; {f}) over this symmetrized alphabet is inverse if

for all p; q∈Q and a∈�∪�−1, p · a= q if and only if q · a−1 =p.
There is a canonical way to inversify an injective automaton A=(Q;�; �; i; {f}). In-

deed, there is a unique way to extend � to Q× (�∪�−1) to make (Q;�∪�−1; �; i; {f})
an inverse automaton, namely by letting, for each p; q∈Q and each a∈�, �(q; a−1)=p
if and only if �(p; a)= q. The inverse automaton (Q;�∪�−1; �; i; {f}) is denoted invA.
For clarity, when representing an inverse automaton A over �∪�−1, it is convenient

to represent only the �-labeled edges, since the �−1-labeled edges can be deduced
immediately from them. This representation is called the positive state graph of A.
(See examples in the next section.)
We say that a word of (�∪�−1)∗ is group-reduced if it contains no factor of the

form aa−1 or a−1a for a∈�. For each z ∈ (�∪�−1)∗, there exists a unique group-
reduced word red(z) such that z= red(z) in the free group FG(�); red(z) is obtained
by iteratively removing from z all factors of the form aa−1 or a−1a. Now let A be
an inverse automaton. By de�nition, the transitions induced by aa−1 and a−1a �x the
states in their respective domains. So we have:

Lemma 1.1. Let A be an inverse automaton over the alphabet �∪�−1; and let z ∈
(�∪�−1)∗. If p · z= q in A; then also p · red(z)= q in A.

2. Subgroups of the free group and automata

Let H be a �nitely generated subgroup of FG(�), speci�ed by a �nite set Y of
words in (�∪�−1)∗ such that H = 〈Y 〉. We construct an inverse automaton (or more
precisely the positive state graph of an inverse automaton) from Y in three steps.

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 251

Construction of AH and Synt(H)
First, construct a set of |Y | loops around a common distinguished vertex i, each

labeled by an element of Y . By convention, since only �-labeled edges are indicated,
an inverse letter a−1 in a word of Y gives rise to an a-labeled edge in the reverse
direction on the corresponding loop.
Then, iteratively identify identically labeled pairs of edges starting or ending at the

same vertex. We now have the positive state graph of a connected inverse automaton,
for which we let i be the unique initial and terminal state.
The last operation consists in “reducing” the automaton: iteratively remove from

its state graph vertices of degree 1 other than i. In general, we say that an inverse
automaton is reduced if in its positive state graph, no vertex has degree 1, except
possibly its initial-terminal state.
It is known that the reduced inverse automaton AH thus constructed is determined

by H , not just by Y [15, 23]. The transition monoid of AH is denoted by Synt(H).

Example 2.1. Y = {bab−1; b2aa−2}. Some steps of the computation.

Conversely, given a connected reduced inverse automaton A=(Q;�∪�−1; �; i; {i}),
one can e�ectively construct a �nite set of words Y such that A=A〈Y 〉. Moreover,
this can be done in such a way that Y is a basis (of free generators) for 〈Y 〉=H .
Construction of a basis Y
Let T be a spanning tree of the positive state graph � of A. For each state q of

A, the tree T contains a unique shortest path from i to q: we let uq be the label (in

(�∪�−1)∗) of this path. Let pj aj→ qj (16j6k) be the �-labeled edges of � which
are not in T . For each j, let yj = upjaju

−1
qj ∈ (�∪�−1)∗, and let H = 〈y1; : : : ; yk〉. Then

{y1; : : : ; yk} is a basis for H and A=AH [23].

Example 2.2. Let H = 〈a2b−1; ab−2; ba; a−1baba−1〉. Then {a3; ba−2; a2ba−1} forms a
basis of H .

252 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

Before we proceed with the study of the properties of AH let us observe that the
two algorithms given above, to pass from a �nitely generated subgroup of the free
group to a connected reduced inverse automaton and back, are e�cient.

Proposition 2.3. Let Y be a �nite subset of a free group and let n be the sum of the
lengths of the words in Y . Let H be the subgroup generated by Y . Then AH can be
computed in time O(n2).

Proof. It is clear that the collection of loops labeled by the elements of Y has n edges
and n− |Y |+ 1 vertices, and it can be computed in time proportional to n. Detecting
a pair of edges to be identi�ed can be done in time proportional to n. Since such
identi�cations decrease the number of edges, there will be at most n identi�cations,
so the second step of the algorithm can be implemented in time proportional to n2.
Finally, detecting and deleting extremal vertices of degree 1 can be done in time n.

Remark 2.4. Notice that a group-reduced word is in H if and only if it labels a path
from the initial-terminal state of AH to itself. Since such a path can be detected in
an automaton in time equal to the length of the word, Proposition 2.3 gives a linear
algorithm for testing membership in a �nitely generated subgroup of a free group if
the generators are �xed. If the input includes a set Y of generators of H , then we have
constructed an algorithm for the generalized word problem that runs in time m + n2

where m is the length of the word to be tested and n is the sum of the lengths of
words in Y . As mentioned in the introduction, this problem is complete for P.

Similarly, we have

Proposition 2.5. LetA be a connected reduced inverse �nite automaton. Then we can
compute a basis for a subgroup H of the free group such that A=AH in polynomial
time.

The correspondence between �nitely generated subgroups of the free group and �nite
automata has been explored early [14, 23], and it can be used notably to e�ectively
compute invariants of such subgroups, such as rank, basis and index.
It follows from the constructions given above that if H = 〈Y 〉 is a �nitely generated

subgroup of FG(�), then the rank of H can be read directly from the positive state
graph � of AH . Let v be the number of states of AH and let e be the number of edges
in �, that is, the number of �-labeled transitions of AH . Then any spanning tree of �
has v − 1 edges, so that the rank of H is e − v + 1. Moreover, a basis for H can be
computed as described above.
Another important and well-known property of H which can be read directly from

AH is the index of H in FG(�). H has �nite index if and only if AH is a complete
automaton over �∪�−1. In that case, [FG(�) :H] = v. At this point, it is easy to

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 253

recover the Nielsen–Schreier formula relating the rank and index of a �nite-index
subgroup of FG(�):

if H has �nite index in FG(�), then rank(H)− 1= (|�| − 1)[FG(�) :H]:

Since a complete inverse automaton is a permutation automaton (i.e., each letter induces
a permutation of the states), the following properties of a �nitely generated subgroup
H of FG(�) are equivalent [15, Theorem 5.1]:
(a) Synt(H) is a group.
(b) The inverse automaton AH is a permutation automaton.
(c) H has �nite index in FG(�).
It follows immediately from this and Proposition 2.3 that given a �nite subset Y of

a free group, we can test if the subgroup H generated by Y is of �nite index in time
O(n2) where n is the sum of the lengths of words in Y .
This result is a model for the results we look at in this paper: a natural property

of �nitely generated subgroups of free groups can be detected by properties of both
the automaton AH and the monoid Synt(H). This leads to decidability and complexity
results. Note that in the case of subgroups of �nite index, we can detect this property
by examining the graph of the automaton AH and this leads to a polynomial-time
algorithm for this problem. If we are forced to look at the structure of Synt(H), then
there may be no quick algorithm, since the cardinality of Synt(H) may be exponential
in the size of the input data for the subgroup H . We will see below that in the case
of testing for purity, we cannot avoid this problem: we prove that purity is detected
by an algebraic property of Synt(H), and that this problem is PSPACE-complete.

3. Pure subgroups and �nite monoids

A �nite monoid M is said to be aperiodic if it contains no non-trivial groups;
equivalently, there exists n¿1 such that for all x∈M , we have xn= xn+1 (see [9, 18]).
It is not di�cult to see that n can always be chosen to be less than or equal to |M |.
We say that a deterministic automaton is aperiodic if its transition monoid is aperiodic.
This is equivalent to the following property:

for each word w, for each state q and for each integer n¿1;

q · wn= q ⇒ q · w= q:

Finally, we say that a subgroup H of a group G is pure (or closed under radical) if
for each x∈G and n¿1, xn ∈H implies x∈H . Our characterization theorem is the
following.

Theorem 3.1. Let � be a �nite alphabet and let H be a �nitely generated subgroup
of FG(�). Then H is pure if and only if Synt(H) is aperiodic; if and only if AH is
aperiodic.

254 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

Proof. Let i be the initial-terminal state of AH . First, assume that H is pure, and
assume that q · wn= q in AH for some state q of AH and for some w∈ (�∪�−1)∗
and n¿1. Since AH is connected, there exists u∈ (�∪�−1)∗ such that i · u= q, so
that i · (uwu−1)n= i. Therefore (uwu−1)n ∈H . But H is pure, so uwu−1 ∈H . Therefore
i · uwu−1 = i, that is, q · w= q. Thus, AH is aperiodic.
Conversely, let us assume that AH is aperiodic, and let x ∈ FG(�), n¿1 be such

that xn ∈H . Viewing x as a group-reduced word, we can factor it as x= uwu−1 where
w is a cyclically reduced word, that is, the powers of w are all reduced words. Since
xn ∈H and red(xn)= uwnu−1, we have i · uwnu−1 = i and hence (i · u) · wn= i · u. By
aperiodicity, it follows that (i · u) · w= i, that is, i · x= i · uwu−1 = i, and hence x∈H .
Thus H is pure.

Example 3.2. Using the computations of Examples 2.1 and 2.2 above, it follows that
K = 〈bab−1; b2aa−1〉 is pure, while H = 〈a3; ba−2; a2ba−1〉 is not pure (a3 labels a cycle
in AH while a does not).

For each prime number p, there is a corresponding notion of p-purity: we say that
a subgroup H of a group G is p-pure if, for each x∈G and for each integer n¿1
relatively prime to p, xn ∈H implies x∈H . Like pure subgroups, p-pure subgroups of
free groups are characterized by an algebraic property of the associated �nite monoid.
Observe that if M is a �nite monoid, then all subgroups of M are p-groups if and

only if, for each x∈M , we have xi= xi+p j for some i¿1, j¿0. The translation of
this property into a property of automata is as follows.

Proposition 3.3. Let A be a �nite automaton and let M be its transition monoid.
The following conditions are equivalent:
(a) Every subgroup in M is a p-group.
(b) For each word w and for each state q of A; if q · wn= q for some n relatively

prime to p; then q · w= q.

Proof. Let � :�∗→M be the transition morphism of A. Then M acts on the set Q
of states by q · (w�)= q ·w for each word w. That is, we can view M as a monoid of
transformations of the set Q.
First let us assume that every subgroup of M is a p-group. Let q∈Q, w∈�∗ and

n¿1 be such that q ·wn= q and n is relatively prime to p. Let k¿1 be minimal such
that q · wk = q. Then the set of images of q under the iterated action of w is {q; q ·
w; : : : ; q·wk−1} and k divides n. In particular, k and p are relatively prime. Let m=w�.
Since the set of images of q has k elements, there exists a morphism ’ from the
subsemigroup 〈m〉 generated by m onto the k-element cyclic group Zk = {0; 1; : : : ; k−1},
mapping m to 1. By the hypothesis on M , there exist integers i¿1, j¿0 such that
mi=mi+p

j
. Let us assume that j is minimal, and let G= {mi; mi+1; : : : ; mi+p j−1}. Now

G’ is a subgroup of Zk . If j 6= 0, then G’ contains i and i + 1, so it contains
1, and hence G’=Zk . But this implies that k is a power of p, a contradiction.

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 255

So j=0, and we have mi=mi+‘ for each ‘. In particular, mik =mik+1, and hence
q · w=(q · wik) · w= q · wik+1 = q · wik = q.
Conversely, let us assume that (b) holds, and let G be a subgroup of M with

identity e. If G is not a p-group, then there exists an element m∈G and an integer n
such that n and p are relatively prime, m 6= e and mn= e. Since em=m and mn= e,
the transformations e and m have the same domain. Let now q be a state in the
domain of e. Then (q · e) · mn=(q · e) · e= q · e since e is idempotent. So by the
hypothesis, we have (q ·e) ·m= q ·e, which implies q ·m= q ·e since em=m. So e=m,
a contradiction.

A deterministic �nite automaton which satis�es the two equivalent conditions of the
above proposition will be called a p-automaton.
The next theorem is the analogue of Theorem 3.1.

Theorem 3.4. Let H be a �nitely generated subgroup of the free group FG(�). Then
H is p-pure if and only if every subgroup of Synt(H) is a p-group; if and only if
AH is a p-automaton.

Proof. Let H be a �nitely generated subgroup of FG(�) and let i be the initial-terminal
state of AH . Assume that H is p-pure. Let q be a state of AH and assume that q·wn= q
for some w∈ (�∪�−1)∗ and for some n relatively prime to p. As in the proof of
Theorem 3.1, we can �nd a word u∈ (�∪�−1)∗ such that i ·uwnu−1 = i and it follows
that (uwu−1)n ∈H . Therefore, uwu−1 ∈H since H is p-pure. As in Theorem 3.1, we
have q · w= q and thus every subgroup of Synt(H) is a p-group by Proposition 3.3.
Conversely, assume that Synt(H) has the property that all its subgroups are p-groups.

Suppose that xn ∈H for some n relatively prime to p. Then, as in Theorem 3.1, we
can write the reduced word x as x= uwv where w is cyclically reduced, and we have
(i · u) · wn= i · u. By Proposition 3.3, it follows that (i · u) · w= i · u, that is, i · x= i,
x∈H . So H is p-pure.

Corollary 3.5. Let Y be a �nite subset of G=FG(X). It is decidable whether the
subgroup H generated by Y is pure; or p-pure for a given prime p.

Proof. By the algorithm outlined in the previous section, we can compute AH from
the set Y . From this we can compute the multiplication table of Synt(H) from Y .
It is clear that given the multiplication table for a �nite monoid M we can e�ec-
tively decide if every subgroup in M is trivial or a p-group for a given prime p.
Therefore, Theorems 3.1 and 3.4 give us algorithms to check for purity and p-purity
respectively.

Theorem 3.6. Let � be a �nite alphabet. The purity problem for �nitely generated
subgroups of the free group FG(�); and the aperiodicity problem for inverse �nite
automata over � can be reduced to each other in polynomial time. Similarly; the

256 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

p-purity problem for �nitely generated subgroups of the free group FG(�); and the
p-automaton problem for inverse �nite automata over � can be reduced to each other
in polynomial time.

Proof. The reduction from purity to aperiodicity is given in Proposition 2.3 and
Theorem 3.1. The reduction from aperiodicity to purity is given in Proposition 2.5
and Theorem 3.1. The reduction from p-purity to the p-automaton problem is given
in Proposition 2.3 and Theorem 3.4. The reduction from the p-automaton problem to
p-purity is given in Proposition 2.5 and Theorem 3.4.

In the next sections, we prove that the aperiodicity problem and the p-automaton
problem for inverse �nite automata are PSPACE-complete. These sections deal almost
exclusively with automata, with very little reference to groups.

4. PSPACE-complete problems and injectiveness

Many fundamental problems about �nite automata are PSPACE-complete (see e.g.
[10]). In this paper, the intersection-emptiness problem and the aperiodicity problem
for �nite automata are particularly relevant. Recall that L(A) denotes the language
recognized by the automaton A.
The intersection-emptiness problem: Let � be a �xed �nite alphabet of size at

least 2.
Input: A �nite set {A1; : : : ;An} of deterministic �nite automata over the alphabet �;

the �nite automata are described by their transition tables; the number n is not �xed,
but implicitly given as an input.
Question:

⋂
16i6n L(Ai)= ∅?

This problem was considered by Kozen, and proved to be PSPACE-complete [12].
We will see that the problem remains PSPACE-complete when various restrictions are
imposed on the Ai’s: the Ai’s can be made injective and even inverse �nite automata.
The aperiodicity problem: Let � be a �xed �nite alphabet of size at least 2.
Input: A deterministic �nite automaton A over the alphabet �.
Question: Is A aperiodic?
The problem was shown to be PSPACE-complete by Cho and Huynh [6] (Stern [24]

had shown previously that it is in PSPACE and that it is co-NP-hard).
The next problem has not been considered in the literature. We prove in Section 7

that it is PSPACE-complete, even when the automata are restricted to being inverse.
The p-automaton problem: Let � be a �xed �nite alphabet of size at least 2, and

let p¿1 be a �xed prime number.
Input: A deterministic �nite automaton A over the alphabet �.
Question: Is A a p-automaton?
Note that for the above problems the alphabet � is �xed, and not part of the input.

For the aperiodicity and the p-automaton problems we consider also the analogous

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 257

problems where the alphabet � of the automaton is not �xed, but part of the input. We
call these problems the aperiodicity (p-automaton) problem with variable alphabet.
Our main new result in the next sections is that the above problems remain PSPACE-

complete when inverse �nite automata are used as input, instead of arbitrary �nite
automata. Our proofs follow in outline the ones for the non-inverse case [6, 12, 24]:
the intersection-emptiness problem is reduced to the aperiodicity (and the p-automaton)
problem; we have already reduced the latter to the purity (p-purity) problem.
We add two new ingredients:

• Bennett’s remarkable theorem [4] about the space complexity of injective Turing
machines (see also [13]).

• A proof that the introduction of inverses into injective �nite automata does not
destroy PSPACE-completeness of the problems we consider.
In the study of space complexity it is enough to consider one-tape Turing machines

only. We will need detailed notation in our later constructions. A one-tape Turing
machine is a structure (Q;�; �; �; q0; qf), where Q is the set of states, q0 is the start
state, qf is the sole accept state, � is the total alphabet, � (a subset of �) is the input
alphabet, and � is the transition function. For each q∈Q, we let �q= {(aq) | a∈�}, and
for each X ⊆Q, we let �X =

⋃
q∈X �q. Now we let �=�∪�Q. Then � is the alphabet

of the con�gurations of the Turing machine: a con�guration can be viewed as a word
over � with exactly one letter in �Q (with the convention that, at any moment, the
read–write head of the Turing machine is located on a given cell). If c and c′ are
con�gurations and c′ is obtained from c by application of one transition of the Turing
machine, then we write c` c′.
The one-tape Turing machines considered here have further restrictions, that do not

a�ect space complexity. We always assume that their start state and their accept state
are distinct, i.e. qf 6= q0. They have two kinds of transitions: read–write transitions (in
which the read–write head does not move), and shift transitions (in which nothing is
printed on the tape, and nothing is read; depending on the current state only, a new
state is entered and the head moves left or right).
Using the formalism of con�gurations, a read–write transition is of the form

(a
q

)→(b
p

)
with a; b∈� and p; q∈Q. That is, the initial position of the read–write head is on a
cell containing a and the machine is in state q; after the transition, the read–write head
has not moved, the machine is now in state p, letter a has been erased from the tape,
and letter b has been written instead.
A right-moving transition is of the form

(a
q

)
b→ a

(b
p

)
with a; b∈� and p; q∈Q. That

is, the initial position of the read–write head is a cell containing a, to the right of which
there is a cell containing b, and the state is q; after the move, the read–write head has
moved one cell to the right (i.e. it is now on the cell containing b) and the machine
is in state p; nothing has been written or erased on the tape. Similarly, a left-moving
transition is of the form a

(b
q

) → (a
p

)
b. Also, we require that the right (and left) moving

transitions are “oblivious”: if
(a
q

)
b→ a

(b
p

)
is a transition then

(x
q

)
y→ x

(y
p

)
is also a

transition for every x; y ∈ �. In other words, a right (or left) moving transition will be

258 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

triggered solely on the basis of the state of the machine, independently of the symbol
read by the read–write head at that point.
In the one-tape Turing machines we consider, we will always assume that the start

state q0 is a source, i.e., it does not occur on the right side of any transition. We will
also assume that the accept state qf is a sink, i.e., it does not occur on the left side
of any transition. Neither assumption a�ects space complexity.
We say that a state q is right-moving (or left-moving, or read–write) if q occurs on

the left side of some right-moving (resp. left-moving, resp. read–write) transition. We
denote the set of right-moving (resp. left-moving, resp. read–write) states by Qr (or
Ql, or Qw). Since qf is a sink, it is neither in Qr , nor in Ql, nor in Qw.
By de�nition, the above Turing machine is deterministic if the state set Q is parti-

tioned as Q=Qr ∪Ql ∪Qw ∪{qf}, and if, for every read–write state q∈Qw and every
a∈�, (aq) occurs in the left side of at most one transition. In particular, in every
con�guration, at most one transition is applicable.
We say that a state q is reached by a right-moving (or left-moving or read–write)

transition if q occurs on the right side of some right-moving (resp. left-moving, resp.
read–write) transition. By Qr (or Ql or Qw) we denote the set of states reachable by
right-moving (resp. left-moving, resp. read–write) transitions. Since q0 is a source, it
is neither in Qr , nor in Ql, nor in Qw.
By de�nition, the above Turing machine is injective if the state set Q is partitioned

as Q=Qr ∪Ql ∪Qw ∪{q0}, and if for every state q∈Qw and every a∈�,
(a
q

)
occurs

in the right side of at most one transition. In particular, every con�guration can be
reached by at most one transition.
The following is part of Bennett’s results:

Theorem 4.1 (C. Bennett [4]). Let L⊆�∗ be a language which is recognized by a
deterministic Turing machine with space-complexity S(·). Then L is also recognized by
a (multi-tape) deterministic injective Turing machine with space-complexity O(S(·)2);
and with the property that when the machine halts all tapes are blank (except for
the read-only input tape).

Then we have:

Corollary 4.2. Let L⊆�∗ be a language which is recognized by a deterministic Tur-
ing machine with space-complexity S(:); suppose also that S(n)¿

√
n for all n. Then

L is also recognized by a deterministic injective one-tape Turing machine with space-
complexity O(S(:)2); and with the following property:
For every input a1a2 : : : an−1an ∈ �∗; the start con�guration is a1a2 : : : an−1

(an
q0

)
; and

the accept con�guration (if a1 : : : an is accepted) is
(a1
qf

)
a2 : : : an−1an.

Proof. We apply Bennett’s theorem, and then the usual conversion of a multi-tape
Turing machine into a one-tape machine (using the “tracks” idea); (see e.g. [11, pp.
161–163]). This conversion preserves injectiveness, as is easy to check; it also preserves

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 259

the space-complexity O(S(·)2), provided S(n)2¿n. The slightly unusual conventions
about start and accept con�gurations will be useful later; note the symmetric appearance
of the start and accept con�gurations.

Corollary 4.3. There exists a PSPACE-complete language which is accepted by a deter-
ministic injective one-tape Turing machine with space-complexity S(n)= n for all n.
For every input the time-complexity is an odd number. This Turing machine follows
the same conventions as in Corollary 4.2, regarding the input con�gurations and the
accept con�gurations; also q0 is a source and qf is a sink. Finally, the machine never
visits the endmarkers of the tape.

Proof. One starts with any PSPACE-complete language and applies Corollary 4.2. Next,
one changes the language by padding the inputs, in order to obtain linear space. We
can make sure that the endmarkers are never visited by using special letters at the ends
of the input. This changes the language but does not a�ect PSPACE-completeness.

5. The intersection-emptiness problem

We are interested in the intersection-emptiness problem, the aperiodicity problem
and the p-automaton problem when the automata are restricted to be inverse. In this
section, we show that the intersection-emptiness problem remains PSPACE-complete when
the �nite automata are injective or inverse. This result is also of independent interest.
In the rest of the paper, we �x an injective Turing machine T=(Q;�; �; �; q0; qf)

with the properties described in Corollary 4.3. In particular, it is a deterministic injective
one-tape Turing machine, which recognizes a PSPACE-complete language. The space
complexity function is S(n)= n for all n. Moreover, the computation of T on any
input takes an odd number of steps. Also by hypothesis, q0 is a source and qf is a
sink. �=�∪�Q is the alphabet of the con�gurations of T. The initial con�guration on
any input, and the �nal con�guration on any accepted input are as in Corollary 4.2.
Finally, we let # be a new symbol not in �.

5.1. Injective automata

Proposition 5.1. The intersection-emptiness problem for injective �nite automata is
PSPACE-complete.

The intersection-emptiness problem for deterministic �nite automata in general is
PSPACE-complete (see Section 4), so its restriction to injective automata is in PSPACE.
Thus, it su�ces to reduce the Turing machine T (given above) to the intersection-

emptiness problem for injective �nite automata. The reduction is almost the same as
in [12] (see also [6]), except that we must be careful, so that the injectiveness of the
Turing machine leads to injective �nite automata. The rest of Section 5.1 is devoted
to this reduction.

260 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

Let w= a1a2 · · · an ∈�∗ be an input for T of length n. With w we assign 2n �nite
automata A0

i =A0
i (w) and A1

i =A1
i (w), where 16i6n. These automata play the

same role as “Aeven
i ” and “Aodd

i ” in [6], but they are constructed somewhat di�erently
in order to be injective.
Let c0; c1; : : : ; ck be the sequence of con�gurations of the computation of T on input

w; recall that k is assumed to be odd. The automata A0
i and A1

i (16i6n) will be
constructed so that

⋂
i
L(A0

i)∩L(A1
i)

=
{ {#c0#c1# · · · #ct# · · · #ck##} if w is accepted by T,
∅ if w is not accepted by T.

(∗)

For each i (16i6n), the �nite automaton A0
i checks whether for every even

time index t, the positions i − 1, i and i + 1 in ct and ct+1 are consistent with
the requirement that ct ` ct+1 (where 06t¡k). The �nite automaton A1

i checks the
same thing for every odd t; moreover, A1

i checks that c0 = a1a2 · · · an−1
(an
q0

)
and that

ck =
(a1
qf

)
a2 · · · an−1an. (As a result of the latter, we do not need the automaton Aends

of [6]. Also, the automaton AID of [6] is obviously redundant.)
When i=1, the position i−1=0 refers to the left endmarker of the Turing machine

tape. Similarly, when i= n then i+1 refers to the right endmarker of the tape. By the
construction of the Turing machine, these positions are actually never visited, hence
A0
1 , A

1
1 ,A

0
n and A1

n are a little simpler than the other A
0
i and A1

i (when 1¡i¡n).
The detailed descriptions of A1

i and A1
i appear in Figs. 1–3. Each automaton has

O(n) states (more precisely, at most |�|3 · n states).
The state-graphs of A1

i and A0
i are self-explanatory except for the two regions

called diverging tree and converging tree. Knowing what the automata are supposed
to do, we can describe these trees and make sure that the �nite automata are injective.
Both trees are three edges deep when 1¡i¡n, and two edges deep when i=1 or n.
Fig. 3 describes the diverging tree and the converging tree, and how the two trees

are connected together; the �gure is for the case when 1¡i¡n. The �gures for the
cases when i=1 or i= n could easily be obtained from Fig. 3 by leaving out level
i − 1, resp. n+ 1 (and discarding vertices that become disconnected this way).
The trees have O(|�×Q|) vertices, but most of these vertices play analogous roles;

therefore, in the �gures only a small number of vertices are given a vertex label.
In Fig. 3, the edge 1 X→ 2 labeled by a subset X of the alphabet stands for the

collection of all the transitions 1 x→ 2 labeled by the letters x∈X . Similarly, the edge
a

�ql−→ (a; ql;+) stands for the collection of all transitions

a
(xql)−→ (a; ql;+) for a; x∈� and ql ∈Ql

(in particular these edges have di�erent labels, di�erent start vertices and di�erent end
vertices). This type of convention is used systematically in Figs. 1–3.

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 261

Fig. 1. A1
i .

The vertex sets in the diverging and the converging trees are disjoint. Nevertheless,
for typographical reasons, some di�erent vertices are drawn with the same label in the
�gures (e.g., there are two vertices labeled “2” in the di�erent trees; they are intended
to be distinct). So, a rigorous de�nition of the vertex set of the diverging tree will be

Vdiv = {div}×V ′;

262 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

Fig. 2. A0
i .

where

V ′ = {1; 2}∪Qr ∪ (Qr ×�)∪ (Qr ×�×{+})∪�Ql ∪ (�Ql ×{+})
∪�Qw ∪ (�Qw ×{+})∪�∪ (�×{+})∪ (Ql×�×{+})
∪�Qr ∪ (�Qr ×{+}):

Note that we distinguish between
(a
qr

)∈�Qr and (qr ; a)∈Qr ×�.
The de�nition of the vertex set of the converging tree is similar:

Vconv = {conv}×V ′′;

where

V ′′ = {1; 2}∪Qr ∪ (�×Qr)∪ ({−}×�×Qr)∪�Ql ∪ ({−}×�Ql)
∪�Qw ∪ ({−}×�Qw)∪�∪ ({−}×�)∪ ({−}×Ql×�)
∪�Qr ∪ ({−}×�Qr):

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 263

Fi
g.
3.
D
iv
er
gi
ng
tr
ee
an
d
co
nv
er
gi
ng
tr
ee
,
an
d
th
ei
r
in
te
rc
on
ne
ct
io
n
(i
n
A
0 i
an
d
A
1 i
;1
¡
i¡
n)
.

264 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

We omit the formal de�nition of the edge sets, since they are clear from Fig. 3. D
denotes the set of left-hand sides of read–write transitions of the Turing machine, and
D−1 denotes the set of right-hand sides of these transitions.
Finally, the diverging tree and the converging tree of A1

i are interconnected by paths
of length n−2, labeled by �n−i−1#�i−2 (see Fig. 3). The details of the interconnection
are as follows:
Vertex (qr ; a;+) in the diverging tree is connected to vertex

(−; (apr)) in the con-
verging tree if and only if the transition

(x
qr

)
a→ x

(a
pr
)
exists in the Turing machine

(and the existence of such a transition does not depend on x; a∈�, since right- and
left-moves are oblivious). Also, (qr ; a1;+) is never connected to

(−; (a2pr)) if a1 6= a2.
Similarly, vertex

((a
ql

)
;+

)
is connected to vertex (−; pl; a) if and only if in the Turing

machine x
(a
ql

)→ (x
pl
)
a; vertex

((a
qw

)
;+

)
is connected to vertex

(−; (bpw)) if and only if(a
qw

)→(b
pw
)
in the Turing machine; vertex (a;+) is connected to vertex (−; a); vertex

(a; ql;+) is connected to vertex
(−; (apl)) if and only if a(xql

)→ (a
pl
)
x in the Turing

machine; and
((a
qr

)
;+

)
is connected to vertex (−; a; pr) if and only if (aqr

)
x→ a

(x
pr
)
in

the Turing machine.
One can see from Figs. 1–3 that the automata A0

i and A1
i are all deterministic and

injective, using the fact that Qr ; Ql; Qw are disjoint, and Qr ; Ql; Qw are disjoint (due
to the determinism and injectiveness of the Turing machine). It is also clear that each
A0
i and A1

i has O(n) states, and has just one accept state.
Although most of the time we will write A0

i or A
1
i (instead of A

0
i (w); A

1
i (w)) we

must keep in mind that these �nite automata depend on w= a1a2 · · · an.
So far we have completed the de�nition of the injective �nite automata A0

i ;A
1
i (16i

6n). We still have to prove that these automata work as intended, i.e., that the PSPACE-
complete language accepted by the Turing machine T reduces to the intersection-
emptiness problem of the A0

i and A1
i . This is done in the next Lemma.

Lemma 5.2. The word w is accepted by the Turing machine T if and only if

⋂
16i6n

(L(A0
i)∩L(A1

i)) 6= ∅:

Proof. In fact, we prove that Condition (∗) above holds. One direction is easy. Recall
that w= a1a2 · · · an. If w is accepted by the T, then there is an accepting computation
c0 ` c1 ` · · · ` ck where c0 = a1 · · · an−1

(an
q0

)
and ck =

(a1
qf

)
a2 · · · an. Then the string

#c0#c1# : : : #ct#ct+1# : : : #ck##

is accepted by each A1
i and A0

i (16i6n). The argument is straightforward and is
similar to the reasoning in [6, 12]. Thus, the above intersection is non-empty.
We now prove the converse. If a word x is accepted by all the A0

i and A1
i then x

is of the form

#c0#c1# : : : #ck##:

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 265

It is clearly visible in Figs. 1, 2 and 3 that c0 = a1 · · · an−1
(an
q0

)
, ck =

(a1
qf

)
a2 · · · an,

the ct are in �∗. Moreover, each ct has length n and is a valid con�guration (i.e.
ct ∈�∗�Q�∗). We now show that ct ` ct+1 for each t.
Assume, by induction, that c0; : : : ; ct are well-formed con�gurations and that they fol-

low from each other in that order. Let ct = b1 : : : bi−1
(bi
q

)
bi+1 : : : bn where b1; : : : ; bn ∈�;

q∈Q, and 16i6n. Let ct+1 =d1 : : : dn. We want to show that ct+1 is of the form
ct+1 = b1 · · · bi−2 di−1 di di+1 bi−2 · · · bn, where the three letters di−1 di di+1 are deter-
mined by the three letters bi−1

(bi
q

)
bi+1 according to a transition of the Turing machine

T; in particular, one of the letters di−1; di; di+1 should belong to �Q and the other
two should belong to �.
(1) Since the word #c0 : : : ck## is accepted by each A0

j and A1
j for 16j6i − 2 or

i+ 26j6n, we have bj =dj for all these values of j. Indeed, bj−1 bj bj+1 consists of
three letters in � in this case, so when we read bj−1 bj bj+1 in the diverging tree, and
follow its connection with the converging tree in A1

j or A
0
j (Fig. 3), we conclude that

bj =dj (otherwise the automata would not accept).
(2) Since #c0 : : : ck## is accepted by A1

i−1 and A0
i−1 with bi−2 bi−1

(bi
q

)
being read in

the diverging tree (Fig. 3), we conclude
if q∈Ql and a

(bi
q

)→ (a
pl
)
bi is a transition of T, then di−1 =

(bi−1

pl
)
;

if q∈Qr ∪Qw, then di−1 = bi−1.
(3) Acceptance by A0

i and A1
i with bi−1

(bi
q

)
bi+1 being read in the diverging tree

implies
if q∈Ql and a

(bi
q

)→ (a
pl
)
bi is a transition of T, then di= bi and di−1 ∈�pl ;

if q∈Qw and
(bi
q

)→ (ei
pw
)
is a transition of T, then di=

(ei
pw
)
;

if q∈Qr and
(bi
q

)
a→ bi

(a
pr
)
is a transition of T, then di= bi and di+1 ∈�pr .

(4) Acceptance by A1
i+1 and A0

i+1 with
(bi
q

)
bi+1 bi+2 being read in the diverging tree

implies:
if q∈Qr and

(bi
q

)
a→ bi

(a
pr
)
is a transition of T, then di+1 =

(bi+1
pr
)
;

if q∈Ql ∪Qw then di+1 = bi+1.
In the above reasoning we have tacitly assumed that 1¡i¡n. The cases i=1 or i= n

are not signi�cantly di�erent from the above. So, in every case (whether q belongs to
Ql or Qr or Qw), ct+1 follows from ct by applying the appropriate transition of the
Turing machine T.
Since c0 is the initial con�guration when reading w, since T is deterministic and

since ck is the accepting con�guration corresponding to input w, it follows that c0; c1;
: : : ; ck is an accepting computation of T on input w.

This concludes the proof of Proposition 5.1.

5.2. Inverse automata

Now we show that the introduction of inverses preserves the PSPACE-completeness of
the problem.

266 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

Proposition 5.3. The intersection-emptiness problem for inverse �nite automata is
PSPACE-complete.

Recall that according to our de�nition, inverse automata have only one accept state.
For permutation automata with one accept state it is known [3] that the intersection-
emptiness problem is in NC.

Proof. We adapt the reduction of the previous subsection to inverse automata, by taking
the inversi�cation of the above injective partial �nite automata. That is, we assign to
each input w of the Turing machine T the inverse automata invA0

i and
invA1

i , for
i=1; : : : ; n= |w|. By the next lemma this is indeed a reduction.

Lemma 5.4.
⋂n
i=1 (L(A

0
i)∩L(A1

i)) 6=∅ if and only if ⋂n
i=1 (L(

invA0
i)∩L(invA1

i)) 6=∅.

Remark. This property does not hold for the intersection of inverse automata languages
in general; it strongly relies on the interdependence of the particular automata A0

i and
A1
i used here.

Proof. Since the non-inversi�ed languages are included in the inversi�ed ones, the
left-to-right implication is immediate.
Conversely, let z be a word in

⋂n
i=1 L(

invA0
i)∩L(invA1

i). By Lemma 1.1, we may
assume z to be group-reduced. We now show that z lies in (�∪{#})∗ (i.e., no inverse
letters appear). This will imply that z is in fact accepted by all the injective (non-
inversi�ed) automata A0

i and A1
i (i=1; : : : ; n).

Let c0 = a1 · · · an−1
(an
q0

)
and ck =

(a1
qf

)
a2 · · · an.

The word z is accepted by invA1
i , for every i, and the state graph of

invA1
i between

the start state and the state s1 is linear (a path). Therefore, since z is group-reduced,
the pre�x of z that invA1

i has read when it reaches s1 is #a1 · · · an−1
(an
q0

)
=#c0.

The next letter in z, following #c0, must be #. Indeed, looking now at the diverging
tree of invA0

n, the only other possible next letter is
(an
q0

)−1
(see Fig. 2 with i= n, and

Fig. 3). This however would contradict the assumption that z is group-reduced. This
shows that z has the pre�x #c0#.
In a similar way one sees that z has the su�x #ck##. So z is of the form

z=#c0#u1v−11 u2 : : : ujv
−1
j uj+1 : : : v

−1
N−1uN#ck##

with the uj and vj in (�∪{#})∗.
We now show that vj is the empty string, for all j=1; : : : ; N−1, so that z∈(�∪{#})∗.

We assume (by contradiction) that all vj’s that are written down here are non-empty;
in particular, v1 is non-empty.
Let b be the right-most letter of u1 (or let b=# if u1 is empty), and let d be the

right-most letter of v1. Since z=#c0#u1v−11 · · · uN#ck## is group-reduced, we must have
b 6=d. However then, letting i= |#c0 #u1|mod (2n+ 2), we �nd that invA0

i and
invA1

i

will reject #c0#u1v−11 · · · uN#ck##; indeed, at a state corresponding to tape position i

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 267

in the diverging tree, a letter b∈� cannot be followed directly by a letter d−1 ∈�−1

unless b=d (see Fig. 3). Thus, z would be rejected, contrary to our assumptions.
So vj must be empty, for all j=1; : : : ; N − 1.

6. The aperiodicity problem

We now turn to the aperiodicity problem, for injective and inverse automata.

6.1. Injective automata

Proposition 6.1. The variable-alphabet aperiodicity problem for injective �nite au-
tomata is PSPACE-complete.

Cho and Huynh’s proof [6] that this problem is PSPACE-complete for �nite automata
in general, serves as the basic framework here too. But now we use our injective �nite
automata A1

i =A1
i (w) and A0

i =A0
i (w) (16i6n= |w|) and we prove (in the next

subsection) that the method still works in the presence of inverses. To make the paper
more self-contained we repeat now the essential ideas of [6]. We will �rst modify the
alphabet of our injective �nite automata and obtain new automata B0

i =B0
i (w) and

B1
i =B1

i (w) (16i6n). We will show that these automata are still injective, and the
intersection of their languages is empty if and only if the Turing machine T (the same
machine we used throughout Section 5 and with reference to which the automata A1

i

and A0
i are built) accepts w. Moreover, each B1

i and B0
i (16i6n) is aperiodic. Next,

we connect all these �nite automata in a cycle to obtain a �nite automaton B=B(w)
which is injective and which has the property that B=B(w) is aperiodic if and only if
the Turing machine T does not accept w. This will show that the aperiodicity problem
for injective �nite automata is PSPACE-complete.
The automata A0

i and A1
i (i=1; : : : ; n) are not aperiodic, as observed for the anal-

ogous automata in [6]. E.g., for any word u∈ #�n we have: in A0
i ; �(s; u

2)= s and
�(s; u) 6= s; and in A1

i ; �(s1; u
2)= s1 and �(s1; u) 6= s1. We will make them aperiodic

by “marking” the letters of the alphabet by the “distance” as in [6]; this preserves
injectiveness.
Let s be the start state of A1

i (or A
0
i) (i=1; : : : ; n), and let q be any state. The

distance of q (denoted dist(q)) is the length of the shortest directed path from s to q,
taken modulo 2n+ 2. It is taken to be an integer between 0 and 2n+ 1.
The �nite automata B1

i and B0
i (i=1; : : : ; n) are de�ned as follows. We start with

A1
i and A0

i , and in every transition q
a→ �(q; a), we replace the label a by (a; dist(q)).

In other words, we “mark” the letters by the distance of the previous state.
Thus the alphabet of each B1

i and B0
i is �B=(�∪{#})×{0; 1; : : : ; 2n+ 1}. Obvi-

ously, these new automata are injective, since A1
i and A0

i are injective.
The following result of Cho and Huynh, and its proof still hold (and we refer to [6]

for the proof).

Lemma 6.2. Each �nite automaton B1
i and B0

i (i=1; : : : ; n) is aperiodic.

268 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

Recall also that, just like A0
i and A1

i ; B0
i and B1

i depend on the input w of the
Turing machine T; so we should actually write B0

i (w) and B1
i (w).

Let P be the smallest prime number satisfying 2n6P. By a classical fact of number
theory (“Bertrand’s Postulate”) we have P¡4n.
We will now construct an automaton B by putting P components B0

i ; B
1
i in a cycle,

as in [6]. Since we only have 2n such components, we �rst need to take more identical
copies of them: We extend our de�nition of B0

i and B1
i by letting

B0
i =B0

imod n when n¡i6(P − 1)=2,
B1
i =B1

imod n when n¡i6(P + 1)=2.
Here imod n is chosen in the range {1; : : : ; n}. This gives us P automata. We choose

the states of these automata so that di�erent automata have disjoint state sets. We use
the notation B0

i =(Q
0
i ; �B; �0i ; s

(0; i); {f(0; i)}), for 16i6(P−1)=2, and similarly for B1
i

(with 0 replaced by 1).
We now construct the automaton B=B(w)= (Q;�B ∪{[}; �; s(0); {s(0)}) by taking

a disjoint union of the P automata B0
i and B1

i and connecting them by means of
a new letter [in such a way that for each i; �(f(0; i); [)= s(1; i) and �(f(1; i); [)=
s(0; (i+1)mod (P−1)=2) (we pick (i+1) mod (P−1)=2 in the range {1; : : : ; (P−1)=2}). (see
Fig. 4).
The automata B0

i and B1
i are thus connected in a cycle in the following order:

�rst B0
1, then B1

1; B
0
2; B

1
2; B

0
3, etc. The cycle consists of P component automata, so

after B1
n , we have again B0

n+1 =B0
1; B

1
n+1 =B1

1, etc.
Observe that the size of B is polynomial in n= |w|. The following result of Cho

and Huynh [6], and its proof, still apply. (The proof of this lemma uses the primality
of P. This primality is used again in the sequel, in Lemma 6.9.)

Lemma 6.3. The �nite automaton B(w) is aperiodic if and only if the Turing machine
T does not accept the word w.

Note that B is injective if each B0
i and B1

i is injective. All these automata use
the alphabet �B, whose size depends on n. This proves that the variable-alphabet
aperiodicity problem for injective �nite automata is PSPACE-hard. Now this problem
is an instance of the aperiodicity problem for deterministic automata in general, and
the latter problem is known to be PSPACE-complete. This concludes the proof of
Proposition 6.1.

6.2. Inverse automata

Let us now extend this result for inverse automata.

Proposition 6.4. The variable-alphabet aperiodicity problem for inverse automata is
PSPACE-complete.

We replace the previous injective �nite automata B0
i ; B

1
i and B by their inversi�-

cations. Then we show that the statements of Lemmas 6.2 and 6.3 still hold for these

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 269

Fig. 4. The automaton B=B(w).

inversi�ed �nite automata. This is not straightforward; the inversi�cation adds edges
to the automata and this creates cycles which could conceivably destroy aperiodicity.

Lemma 6.5. Each inverse �nite automaton invB0
i ;

invB1
i is aperiodic.

Proof. In this proof we will simply write � instead of inv�0i or
inv�1i (the transition

functions of invB0
i and

invB1
i , respectively). Let p be any state of

invB0
i or

invB1
i , let

u∈ (�B ∪�−1
B)

∗, and let m¿1 be such that �(p; um)=p. Let q= �(p; u). We want to
show that p= q. By Lemma 1.1 we may assume that u is group-reduced.
We have dist(p)= dist(q), because �(p; u) and �(q; u) are both de�ned and therefore

the left-most letter of u must have the same distance marking as p and q.
If p and q are on di�erent branches of the thick part of invB0

i or
invB1

i (see Figs. 1
and 2) then many cases are possible. The case where p and q are inside the diverging
tree or the converging tree will also be handled by these cases.

270 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

Let us �rst consider the case of automata of the form invB0
i .

Case 1: Suppose that along the path from p to q labeled by u, the thin part of
invB0

i is visited. Then we can write u= u1u2 where u1 is the shortest pre�x of u such
that �(p; u1)=p1 belongs to the thin part of invB0

i ; also, �(p1; u2)= q. Now �(q; u1u2)
and �(p1; u2) are both de�ned, so dist(�(q; u1))= dist(p1) (the distance marking of
the left-most letter of u2). But the distance markings on the states in the thin part of
invB0

i are di�erent from the distance markings of the states in the thick part, and in
the thin part each distance mark occurs on only one state (except for the �nal state,
at distance 2, but that state is never visited before the end of the reading of a reduced
word). So �(q; u1)=p1 = �(p; u1), and hence q=p by injectivity.
Case 2: Suppose that neither p nor q belongs to the thin part of invB0

i , and that the
thin part is not visited along the path from p to q labeled by u. Then the path goes
through the converging tree or the diverging (see Fig. 2) – unless p and q are on the
same branch of the thick part of invB0

i , in which case p= q (since on any branch there
is only one state with a given distance). Let us now consider all the cases depending
on the di�erent branches that p and q can be in.
Since we are now assuming that the path from p to q, labeled by u, stays within the

thick part of invB0
i , the path does not visit the root of the diverging or the converging

tree (otherwise we already proved that p= q).
Within the diverging or the converging tree, we say that the root has depth 0, the

vertices directly connected to the root have depth 1, etc.
Case 2.1: p is in a branch (q1r ; a1; ∗) — (∗; (a1pr1

)
) and q is in a branch (q2r ; a2; ∗)

— (∗; (a2pr2
)
) (see Fig. 3).

If the path from p to q (labeled by u) goes through vertex 2conv (the vertex la-
beled “2” in the converging tree), then p= q. Indeed, we can follow the path labeled
by u, starting at p, and the path labeled by u, starting at q. These two paths are
“synchronous”, in the sense that the distance markings of u force the distances of the
vertices reached in one path or the other to be the same at any moment. Thus, when the
path from p reaches 2conv for the �rst time, the path from q must also be at a vertex at
depth 1 in the converging tree; the only vertices at depth 1 in the converging tree are
2conv and the vertices labeled pr ∈Qr; but the latter are not reachable from the branches
that p and q are in (unless one visits the root of the converging tree or of the diverging
tree). We conclude that there is a pre�x v of u such that �(q; v)= 2conv = �(p; v). By
injectiveness of invBi we then obtain p= q.
If the path from p to q does not visit 2conv, then we must have q1r = q2r (= qr) and

the path visits the vertex qr in the diverging tree (unless a1 = a2 as well, but then
p and q are in the same branch, and that case was handled already at the beginning
of case (2)). Again, we follow the two paths (one starting from p, the other starting
from q), labeled by u; they are synchronous. After some pre�x v of u was read, the
path from p reaches qr in the diverging tree, and the path from q also reaches a vertex
at depth 1 in the diverging tree; but the only vertex the path from q could then be at
is qr (since all other vertices at depth 1 are unreachable from q, if 2conv and the roots
of the trees are not visited). Thus �(q; v)= qr = �(p; v), so p= q by injectiveness.

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 271

Case 2.2: p is in a branch (qr ; a; ∗) —
(∗; (apr)), and q is not in a branch of that

form.
In this case, the path from p to q must go through vertex 2conv, since the roots

cannot be visited (see Fig. 3). By the same reasoning as in the �rst part of Case 2.1,
we obtain a pre�x v of u such that �(p; v)= 2conv and �(q; v) is at depth 1 in the
converging tree, hence �(q′; v) is either 2conv or a vertex in the converging tree labeled
pr1 (for some p

r
1 ∈Qr). We can assume that v is the shortest pre�x of u with the above

property. Then the last (rightmost) letter of v must be
(a
pr
)
. Since no edge with label(a

pr
)
points to a vertex pr1 in the converging tree, we can rule out that �(q; v)=p

r
1.

Thus �(q; v)= 2conv = �(p; v). By injectiveness of the automaton we conclude that
p= q.
Case 2.3: p is in a branch

((a1
q1l

)
; ∗) — (∗; pl1; a1) and q is in one of the branches((a2

q2l

)
; ∗) — (∗; pl2; a2), or (a2; ∗) — (∗; a2), or (a2; q2l ; ∗) —

(∗; (a2pl2
))
.

The path from p to q visits either 2div or 2conv or (a1)conv (the vertex in the con-
verging tree labeled by a1 ∈�).
(1) If 2div is visited, let v be the shortest pre�x of u such that �(p; v)= 2div; the last

(i.e., rightmost) two letters of v must belong to �−1(a
ql

)−1 ∪�−1(a
qw

)−1 ∪ (�∪�Qr
∪�Qw)−1a−1 for some a∈�; ql ∈Ql; qw ∈Qw. By the synchronousness argument
(see Case 2.1), �(q; v) must be either 2div, or a vertex of the diverging tree labeled
qr for some qr ∈Qr . But since the last two letters of v belong to the set above,
the latter is ruled out. Thus �(q; v)= 2div = �(p; v), hence p= q by injectiveness.

(2) If 2div is not visited but 2conv is visited, then let v be the shortest pre�x of u such
that �(p; v)= 2conv. By the synchronousness argument, �(q; v) is either 2conv or
(pr)conv for some pr ∈Qr; but since 2div and the roots are not visited, (pr)conv is
not reachable from the branch p is in. Thus �(q; v)= 2conv = �(p; v), hence p= q
by injectiveness.

(3) Finally, there is the possibility that neither 2div nor 2conv are visited. Then we
must have a1 = a2 (say, = a) and the vertex aconv is visited. Let v be the shortest
pre�x of u such that �(p; v)= aconv. By synchronousness, �(q; v) is also a vertex
of depth 2 in the converging tree. Since 2div and 2conv are not visited, the only
vertex at depth 2 that can be visited on the path from p to q is aconv. Thus
�(p; v)= aconv = �(q; v), so p= q.

There are many more cases regarding the branches that contain p and q. All these
cases are very similar to the ones we treated in detail above.
We have considered the cases where the path from p to q is entirely in the “thick”

part of invB0
i . To �nish o�

invB0
i we still have to consider the case where p=f or

q=f.
If p=f then (since �(p; u) is de�ned) the left-most (marked) letter of u must be

(#; 1)−1 (see Fig. 2). But the only state of invB0
i on which this letter is de�ned is f;

thus (since �(q; u) is de�ned), we must have q=f. Therefore q=p.
If q=f we prove in exactly the same way that then p=f. Thus again q=p.
Let us �nally consider invB1

i .

272 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

It only di�ers from the case of invB0
i by the presence of the s − s1 branch and the

t1−f branch (see Fig. 1), so we only have to handle the cases where p or q belongs
to one of these branches (all other cases were handled when we studied invB0

i).
If p and q both belong to the s − s1 branch (or both belong to the t1 − f branch)

then p= q since dist(p)= dist(q). So, for the rest of the proof we assume that p and q
do not belong to the same such branch.

Claim. Suppose p belongs to the s− s1 branch of invB1
i and �(p; u

m)=p and �(p; u)
= q. Then �(s1; z−1uz) 6= s1 and �(s1; (z−1uz)m)= s1; where z is the label of the shortest
path from p to s1 (see Fig. 1).

Proof. Since q does not belong to the s−s1 branch, the path from p to q labeled by u
must visit s1. Since we assume that u is group-reduced, we conclude from �(p; um)=p
that z is a pre�x of u and that z−1 is a su�x of u. Thus �(s1; z−1 uz) and �(s1; (z−1uz)m)
are de�ned in B. Clearly �(s1; (z−1uz)m)= s1; moreover, �(s1; z−1uz) 6= s1, otherwise
�(p; u) would be equal to p.

The above claim reduces the problem to the states s1 and �(s1; z−1uz), which corre-
spond to cases that were considered when we studied invB0

i . That is, we already know
that s1 = �(s1; z−1uz), and hence p= q. This contradicts the hypothesis that p and q
do not belong to the same branch.
On the other hand, if q belongs to the s− s1 branch of invB1

i , then u
−1 is a reduced

word such that �(q; u−1)=p and �(q; u−m)= �(p; u−m+1) = �(p; u2m+1)= �(p; u)= q.
So the above reasoning shows that, here again, the hypothesis that p and q do not
belong to the same branch, leads to a contradiction.
The cases where p or q is in the t1 − f branch of invB1

i are handled in the same
way. This completes the proof that every invB0

i ;
invB1

i is aperiodic.

Lemma 6.6. If the Turing machine T accepts w; then the automaton invB= invB(w)
is not aperiodic.

Proof. Let C be the word #c0#c1 · · · #ck## corresponding to the accepting computation,
rewritten over the new alphabet �B ∪�−1

B with distance marks. Then C is accepted
by each B0

i and B1
i , and hence it is also accepted by each

invB0
i and

invB1
i . As

a consequence �(s(0); (C[)P)= s(0) in invB; but we also have �(s(0); C[)= s(1) 6= s(0).
Thus invB is not aperiodic.

The proof of the converse of Lemma 6.6 is more di�cult and is given in the next
lemmas. For this proof it will be convenient to rename the component automata of
invB. We let

B0
h =B(2h) for 16h6(P − 1)=2;

and

B1
h =B(2h+ 1) for 16h6(P + 1)=2:

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 273

So in this notation the component automata are B(k); k =1; : : : ; P (in cyclic order).
As a structure we denote B(k)= (Qk; �B; �k ; s(k); {f(k)}).
Suppose that invB is not aperiodic. Then there exist a state p of invB, a word

u∈(�B∪�−1
B ∪{[; [−1})∗ and an integer m¿1 such that �(p; um)=p and �(p; u) 6=p.

Let m be the minimum integer such that there exist such a state p and such a word u.
Observe that m is necessarily prime. Otherwise, m can be factored as m=m1m2
with m1; m2¡m. Then letting v= um1 , we have �(p; vm2) =p. Since m is minimum,
�(p; uh) 6=p for all h¡m, so �(p; v)= �(p; um1) 6=p. But this contradicts the minimal-
ity of m since m2¡m.
For this m, we choose p and u so that u has minimum length. In particular, u is

group-reduced (by Lemma 1.1).
Let q= �(p; u). We want to show that then

P⋂
h=1

invB(h)=
(P−1)=2⋂
i=1

L(invB0
i)∩

(P+1)=2⋂
i=1

L(invB1
i) 6= ∅:

This (by Section 5.2) means that w is accepted by T.
Our proof will again start out like the proof in [6], but then it has to handle the

cycles created by the inverse edges in invB.
Suppose p is a state of the component automaton invB(i), and q is a state of the

component automaton invB(j) (16i; j6P). Recall that p 6= q.

Lemma 6.7. The distance of p in its component automaton invB(i) is equal to the
distance of q in its component automaton invB(j).

Proof. Since �(p; u) and �(q; u) are both de�ned, the marking on the left-most letter
of u must be equal to both dist(p) and dist(q).

Lemma 6.8. The states p and q belong to di�erent component automata. That is,
i 6= j.

Proof. Suppose, by contradiction, that i= j; so both p and q are states of invB(i).
The path in invB from p to q, labeled by u, must exit invB(i). Otherwise u does

not contain the letter [or its inverse [−1. But then the path starting and ending at p,
labeled by um, does not exit invB(i) either, which implies that invB(i) is not aperiodic,
in contradiction with Lemma 6.5.
The path from p to q, labeled by u, can reenter into invB(i) either at the start state

s(i) or at the accept state f(i) (here we do not care where along the path we exit from
invB(i)). In fact, it is the occurrences of [and [−1 in u that determine the sequence
of component automata invB(k) visited along the path from p to q labeled by u. Since
we start and end in invB(i), the number of occurrences of [in u is equal, modulo P,
to the number of occurrences of [−1 in u. It follows that on the path from p to p
labeled by um, the same pattern of visits of automata invB(k) happens as for u, but
repeated m times.

274 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

(1) Let us �rst consider the case where i is even, that is invB(i) is of the form invB0
h ,

and where the path reenters through state s(i). Then u can be written as u= u1u2
where u2 is the shortest su�x of u such that �(p; u1)= s(i) and �(s(i); u2)= q.
By the above remarks, the path from p to p labeled by um also reenters invB(i)
through s. So, we can also write um as um= v1v2 where v2 is the shortest su�x of
um such that �(p; v1)= s(i) and �(s(i); v2)=p. Since both u2 and v2 are su�xes of
um, either u2 is a su�x of v2 or v2 is a su�x of u2. So there exists a string y such
that either v2 =yu2 or u2 =yv2. In either case, we have �(s(i); y)= s(i). Indeed,
the distance markings on u2 and v2 are such that u2 and v2 are only de�ned on
s(i), and on no other state (s(i) is the only state of invB0

h with dist=0, see Fig. 2).
Since u2 and v2 were chosen to be of minimum length, y must be the empty string.
Thus u2 = v2. But then q= �(s(i); u2)= �(s(i); v2)=p. So, p= q, contradicting our
hypothesis that p 6= q.

(2) Let us consider next the case where the path from p to q labeled by u reenters
invB(i)= invB0

h through state f
(i). Now we do the same reasoning as in case (1),

but we use the state t1 of invB0
h (see Fig. 2) instead of s

(i) (noting that t1 is
the only state of invB0

h with dist=1). After the path from p to q labeled by u
reenters through f(i), it must also pass through t1 unless q=f; but we cannot
have q=f by the following argument:

If we had q=f then the leftmost letter of u would have to be either [or (#; 1)−1,
since �(q; u) is de�ned. Moreover, the only state on which any one of these two
letters is de�ned is f. Thus p=f, since �(p; u) is de�ned. But now p=f= q, which
contradicts the fact that p 6= q.
(3) Let us now consider the case where i is odd, that is invB(i) is of the form

invB1
h , and suppose that the path from p to q labeled by u reenters into invB(i)

through s(i).
If this path visits state s1 (which is the only state of invB(i)= invB1

h with dist= n+
1, see Fig. 1) then the reasoning of case (1) can be repeated, with s(i) replaced
by s1.
If this path never visits s1, but visits state t1 (which is the only state of invB(i)=
invB1

h with dist= n+ 2) then again, the reasoning of case (1) can be used, with
s(i) replaced by t1.
If neither s1 nor t1 are visited on the path from p to q labeled by u (while still
assuming that the path exits from invB(i), and reenters through s(i)) then either
p and q are both on the s − s1 branch or they are both on the t1 − f branch
of invB(i)= invB1

h . But then, the fact that dist(p)= dist(q) implies p= q, which
contradicts the fact that p 6= q.

(4) Finally, we consider the case where i is odd and the path from p to q reenters
into invB(i) through f(i). This is entirely like case (3).

Now, let i and j be the indices of the component automata of invB containing p
and q, respectively. That is, p is a state of invB(i) and q is a state of invB(j). By the
previous lemma, i 6= j. Let D be the integer satisfying 0¡D¡P and D≡ (j− i)mod P.

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 275

Let also p0 =p and for any k¿0, let pk = �(p; uk). Then in particular, p1 = q and
pm=p. For every k¿0, let i(k) be the index of the component automaton of invB
that pk is a state of. Then i(0)= i (since p=p0 is in invB(i)), i(1)= j (since q=p1
is in invB(j)), and i(m)= i(0).
Just as in [6] we have the following lemma.

Lemma 6.9. With the above notation; we have
(a) i(k + 1)− i(k)≡Dmod P; for all k¿0.
(b) m=P; and {i(k) | 16k6P}= {i | 16i6P}.

Proof. (a) As remarked in the proof of the previous lemma (see also Fig. 4), it is
the pattern of occurrences of the letter [and its inverse [−1 in u that determines the
di�erence i(k + 1)− i(k). Exactly, we have

i(k + 1)− i(k)≡ |u|[− |u|[−1 mod P;

where |u|a denotes the number of occurrences of letter a in u. This number does not
depend on k.
(b) Since i(m)= i(0), part (a) implies that mD≡ 0mod P, that is, P divides mD.

Now 0¡D¡P and both P and m are prime (recall that m is prime by minimality). It
follows that m=P. This in turn implies

{i(k) | 16k6m}= {kD | 16k6m}= {i | 16i6P}

again using the primality of m=P.

Lemma 6.10. The word u can be factored as u= u1u2u3 in such a way that
• for each 06k¡m; the path labeled u1 from pk to �(pk; u1) is entirely contained
in invB(i(k));

• for each 06k¡m; the path labeled u2 from �(pk; u1) to �(pk; u1u2) does not visit
invB(i(k)) nor invB(i(k + 1)) (except at the beginning and the end);

• for each 06k¡m; the path labeled u3 from �(pk; u1u2) to pk+1 is entirely contained
in invB(i(k + 1)).

Moreover; either �(pk; u1)=f(i(k)) and �(pk; u1u2)= s(i(k+1)) for all 06k¡m; or �(pk;
u1)= s(i(k)) and �(pk; u1u2)=f(i(k+1)) for all 06k¡m.

Proof. The path from pk to pk+1 labeled u must contain some occurrence of [or [−1

since D 6=0mod P. Let u1 be the longest pre�x of u without the occurrence of [or
[−1 and let u3 be the longest su�x of u without the occurrence of [or [−1. Finally,
let u2 be such that u= u1u2u3. Then �(pk; u1) is the last state of invB(i(k)) visited
before the �rst exit out of that component automaton along the path labeled u from
pk to pk+1. Similarly, �(pk; u1u2) is the last entry into invB(i(k + 1)) along that path.
Since i(k + 1) − i(k)≡Dmod P, we have |u2|[− |u2|[−1 ≡Dmod P. Let v1 be the

shortest pre�x of u2 such that |v1|[−|v1|[−1 ≡Dmod P, and let v2 be such that u2 = v1v2.

276 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

Then �(pk; u1v1) is the �rst entry into invB(i(k+1)) along the path labeled u from pk
to pk+1.
Now the only entry points into a component automaton invB(h) are s(h) (after reading

a [) and f(h) (after reading a [−1). Similarly, the exit out of invB(h) is through s(h)

(before reading a [−1) or f(h) (before reading a [). In other words, we have either
�(pk; u1)= s(i(k)) for all k, or �(pk; u1)=f(i(k)) for all k. Similar statements hold for
�(pk; u1v1) and �(pk; u1u2).
First, we show that v2 = 1. If �(pk; u1v1)= �(pk; u1u2) (as we just saw, if it happens

for some k, then it happens for all k), then we have �(pk; u1v1u3)=pk+1 for each k,
and this contradicts the minimality of |u|.
Let us now assume that �(pk; u1v1) 6= �(pk; u1u2), say �(pk; u1v1)= s(i(k+1)) and

�(pk; u1u2)=f(i(k+1)). By de�nition of v2, the path from s(i(k+1)) to f(i(k+1)) labeled
by v2 exits invB(i(k + 1)), that is, v2 contains occurrences of [or [−1. Let v3 be
the longest pre�x of v2 containing no occurrence of [or [∈ v. Since u is reduced
and �(pk; u1v1) and �(pk; u1v1v2)= �(pk; u1u2) are entry points into invB(i(k+1)), we
have v2 = v3v4 with v3; v4 6=1. Moreover �(pk; u1v1v3)∈{s(i(k+1)); f(i(k+1))}. So either
v3 labels a loop around s(i(k+1) for all k, or v4 labels a loop around f(i(k+1) for all k.
In either case, we contradict the minimality of |u| since either �(pk; u1v1v4u3)=pk+1
for all k, or �(pk; u1v1v3u3)=pk+1 for all k. The situation is entirely symmetrical if
�(pk; u1v1)=f(i(k+1)) and �(pk; u1u2)= s(i(k+1)).
So we have shown that v2 = 1, that is, the path labeled u from pk to pk+1 enters

invB(i(k + 1)) exactly once, namely after having read the pre�x u1u2 = u1v1 of u.
A similar reasoning involving the longest pre�x w1 of u2 such that |w1|[−|w1|[−1 ≡ 0

mod P (that is, the last exit out of invB(i(k))) shows that the path labeled u from pk
to pk+1 exits invB(i(k)) exactly once, namely after having read the pre�x u1 of u.
Finally, let us observe that

if �(pk; u1)= s(i(k)) then �(pk; u1u2)=f(i(k+1))

and

if �(pk; u1)=f(i(k)) then �(pk; u1u2)= s(i(k+1)):

Indeed, a path from s(i(k)) to s(i(k+1)) (resp. f(i(k)) to f(i(k+1))) must travel throughout
invB(i(k)) or invB(i(k + 1)) (see Fig. 4). This completes the proof of the lemma.

Corollary 6.11. Either u3u1 labels a path from s(i(k)) to f(i(k)) in each automaton
invB(i(k)); or u−11 u

−1
3 labels a path from s(i(k)) to f(i(k)) in each automaton invB(i(k)).

Proof. This follows immediately from Lemma 6.10.

We can now complete the proof of the converse of Lemma 6.6.

Lemma 6.12. If invB is not aperiodic; then w is accepted by T.

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 277

Proof. Indeed, under the hypothesis that there exists a word u, an integer m and
distinct states p and q such that �(p; u)= q and �(p; um)=p, we have constructed
in Corollary 6.11 a word which is accepted by each invB(i(k)) (16k6P). We also
know that {i(k) | 16k6P}= {i | 16i6P} (Lemma 6.9). Hence

⋂
16i6P

L(invB(i))=
⋂

16i6n
(L(invB0

i)∩L(invB1
i)) 6= ∅:

This implies (by dropping the distance markings on the letters) that

⋂
16i6n

(L(invA0
i)∩L(invA1

i)) 6= ∅:

In Section 5 we proved that the latter is equivalent to the fact that w is accepted by
the Turing machine T.

This completes the proof of Proposition 6.4.

6.3. The �xed-alphabet aperiodicity problem for inverse �nite automata

The alphabet �B ∪�−1
B of the inverse �nite automaton invB(w) (whose aperiodicity

is equivalent to the non-acceptance of w by the Turing machine T) has variable
size (depending on the length of w). Thus our work does not immediately imply the
PSPACE-completeness of the aperiodicity problem for inverse automata. We now prove
the following theorem.

Theorem 6.13. For each large enough alphabet; the �xed-alphabet aperiodicity prob-
lem for inverse �nite automata is PSPACE-complete.

In order to establish this result, we need to “encode” our construction in a �xed
alphabet. This alphabet will be �′= {0; 1; #; [}∪� (where � was de�ned in the de-
scription of the Turing machine T); we also use inverses for all these letters.
The only reason why �B depends on w is because we marked letters by distances.

So, to obtain a �xed alphabet, independent of w, we just have to encode the distance
markings.
For every distance d (06d62n+1), let �(d)∈{0; 1}+ be the binary representation

of d. Then the elements of �B are encoded by words of �′∗ as follows:

�(a; d) = a�(d)a;

�([) = [:

For each element x of �B, we de�ne �(x−1) to be �(x)−1, i.e., the formal inverse of
the string �(x). The words of the form �(x) with x∈�B ∪�B

−1 are called code words.
Observe that the set of code words forms a bipre�x code: no code word is a pre�x or
a su�x of another code word. The maximal length of a code word is 2+dlog2(2n+1)e.
We extend � to a homomorphism from (�B ∪�B

−1)∗ to (�′ ∪�′−1)∗

278 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

By using this code we also encode the automaton invB, in order to obtain a �nite au-
tomaton �(invB), which accepts �(L(invB)). This is done by replacing every edge p x→ q
of invB (where x∈�′\{[}) by a branch (of |�(x)| edges) labeled by �(x); |�(x)| − 1
new states are introduced. We also introduce the inverses of the new edges, thus ob-
taining a path from q to p labeled by �(x−1). No replacement is performed on the
[-edges and their inverses. We denote the transition function of �(invB) by �′.
Observe that �(invB) is again an inverse automaton. Indeed each automaton A0

i and
A1
i (the unmarked versions of the B(i)) is inverse, and the encoding of the letters of

the form (a; d) (a∈�∪{#}) starts and ends with a.
Clearly, if invB has a cycle (i.e., there exist p; u; m such that p= �(p; um) 6= �(p; u))

then �(invB) also has a cycle (more precisely, p= �′(p; �(u)m) 6= �′(p; �(u))). In order
to prove the converse (namely, if invB is aperiodic then �(invB) is also aperiodic) we
will �rst prove the following.
Recall that a reduced word w is cyclically reduced if all its powers are reduced.

Lemma 6.14. Let p be a state of �(invB); let m¿1; and let u be a cyclically reduced
word in (�′ ∪�′−1)∗ such that in �(invB); �′(p; u) 6=p and �′(p; um)=p.
Then u can be factored as u= xyz such that y and zx are (possibly empty) products

of code words; and the states �′(p; uhx) (h¿0) are states that were already in invB.

Proof. The path from p to �′(p; u) labeled u cannot be entirely contained within one
of the branches added in the construction of �(invB). Indeed we would then have
u∈{0; 1}+ ∪{0−1; 1−1}+, by de�nition of � and because u is reduced. But for such a
word u; �′(p; uk) is unde�ned for k¿2 + dlog2(2n+ 1)e, a contradiction.
Let x be the shortest pre�x of u (possibly the empty word) such that �′(p; x) is

a state of invB. Let also z be the shortest su�x of u (possibly the empty word) such
that �′(p; uz−1) is a state of invB. Then u= xyz, and y is a (possibly empty) reduced
word which labels a path in �(invB) between two states that were already in invB, so
y is a product of code words. Note that x (resp. z) is a proper su�x (resp. pre�x) of
a code word.
Similarly, u2 can be factored as u2 = xyzxyz= x′y′z′ where y′ is a product of code

words and x′ (resp. z′) is the shortest pre�x (resp. su�x) of u2 such that �′(p; x′)
(resp. �′(p; u2z′−1)) is a state of invB. Then evidently x= x′.
If z has length at least 2, then z ends with one of 0; 1; 0−1 and 1−1, and hence so

does z′. Therefore, both z and z′ are the shortest su�x of u2 starting with a letter in
�∪�−1 ∪{#; #−1}: so z= z′.
If z has length 1, then z is a letter in �∪�−1 ∪{#; #−1}, so z′ ends with that letter.

But z′ is a proper pre�x of a code word, so |z′|=1, and hence z= z′.
If z′ has length at least 1, the same reasoning holds, and we have z= z′. The last

case is that where both z and z′ have length zero, but this too implies z= z′.
From the equality xyzxyz= x′y′z′, it now follows that yzxy=y′. This implies that

zx is a (possibly empty) product of code words since the code words form a bipre�x
code.

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 279

For each h¿0; �′(p; uhx) is de�ned, since �′(p; um)=p. Moreover uhx= x(yzx)h,
and �′(p; x) is a state of invB. It follows from the construction of �(invB) that the
action of a product of code words on a state of invB leads again to a state of invB.
This concludes the proof.

Lemma 6.15. �(invB) is aperiodic if and only if invB is aperiodic.

Proof. We mentioned already (before the previous lemma) that if invB is not aperiodic
then �(invB) is not aperiodic.
Let us prove the converse. If �(invB) is not aperiodic, there exists a state p, a reduced

word u and an integer m¿0 such that �′(p; u) 6=p and �′(p; um)=p. The reduced
word u can be factored uniquely as u= vwv−1, where w is cyclically reduced. But if
q= �′(p; v), then �′(q; w) 6= q and �′(q; wm)= q. So we can assume that u is cyclically
reduced.
We use the notation of Lemma 6.14. Let p′= �′(p; x). Then it is immediately veri�ed

that �′(p′; yzx) 6=p′ and �′(p′; (yzx)m)=p′. Moreover, the �(p′; (yzx)h) are states of
invB, and yzx= �(v), for some word v∈ (�B ∪�−1

B)
∗. Therefore we have �(p′; v) 6=p′

and �(p′; vm)=p′ in invB. This proves that if �(invB) is not aperiodic then invB is
not aperiodic.

We already know that the aperiodicity problem belongs to PSPACE (Section 4). Now
we have completed the proof that the aperiodicity problem for inverse �nite automata,
with a �xed, large enough alphabet, is PSPACE-complete (since the size of �(invB) is
polynomial in the size of invB).

7. The purity problem, the p-purity problem, and the p-automaton problem

We can now conclude this paper by proving the announced results.

Theorem 7.1. For any free group G of large enough rank; the purity problem of G
is PSPACE-complete.

Proof. This follows immediately by combining Theorems 3.6 and 6.13.

Theorem 7.2. For any free group G of large enough rank and any prime number p;
the p-purity problem of G for that prime p is PSPACE-complete.

Proof. This follows immediately by combining Theorem 3.6 and the following
theorem.

Theorem 7.3. For any large enough alphabet and any prime number p; the p-auto-
maton problem for that alphabet and that prime p is PSPACE-complete.

280 J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281

Proof. In the previous sections, we �xed a Turing machine T recognizing a PSPACE-
complete language, with properties summarized in Corollary 4.3, and we constructed
an inverse �nite automaton invB= invB(w) which is aperiodic if and only if T does
not accept w. We also showed that when invB(w) is not aperiodic then it contains a P-
cycle, where P=P(w) is the smallest prime ¿2|w|. Indeed we showed in Lemma 6.9
that for some choice of u; p, if �(p; u)= q 6=p and �(p; um)=p, then m is a multiple
of P.
Let p be any �xed prime. Let us modify the Turing machine T in such a way

that it does not accept any input w of length 6p (this can be done easily, without
modifying any of the other properties of this Turing machine, stated in Corollaries 4.2
and 4.3). So now, if the Turing machine accepts w we must have p¡|w|¡P(w).
In summary we have proved the following:
If the Turing machine T accepts w then invB(w) contains a P(w)-cycle; with

P(w)¿p; so invB(w) is not a p-automaton.
Conversely; if T does not accept w then invB(w) is aperiodic; so it is a

p-automaton.
This shows that the p-automaton problem is PSPACE-hard.
We still must show that the p-automaton problem is in PSPACE for any �xed prime

number. We use a standard argument (used also in [12, 24]). Note that, by Sav-
itch’s Theorem [11], PSPACE is the same class, whether we use determinism or non-
determinism. Let A be any �nite automaton. We do not need to assume that A is
inverse or injective. The automaton A is not a p-automaton if and only if there exists
a word u∈�∗ (where � is the alphabet of A) and a state q∈Q (where Q is the
state set of A) such that �(q; u) 6= q, and �(q; um)= q, where m¿1 is a number not
divisible by p. Let k = |Q|. Then m6k k (since the transition monoid of A has at most
k k elements), so m can be represented (in binary) using space O(k · log k).
To check the above we use a non-deterministic Turing machine which guesses q

and m and writes them down (in space O(k2)). It is straightforward to check (in space
O(k · log k)) that m¿1 is not divisible by p. Next it guesses u, one letter after another
as follows:
1. Guess the �rst letter a1 of u; compute (and write down) the function table of the
function s∈Q 7→ �(s; a1)∈Q; this can be done in linear space.

2. After guessing the �rst i letters a1; : : : ; ai of u, suppose the function table of the
function s∈Q 7→ �(s; a1 : : : ai) was written down (we do not assume that the string
a1 : : : ai was written down). Now guess the next letter ai+1 of u, and compute the
function table of the function s 7→ �(s; a1 : : : aiai+1)= �(�(s; a1 : : : ai); ai+1). Replace
the old function table by the new one. This takes linear space.

3. Guess that u is �nished.
Now the function table of the function �(·; u) : s 7→ �(s; u) is on a tape of the Turing

machine. If �(q; u)= q, the Turing machine rejects (for this guessed word u and this
guessed state q).
Finally, using the function �(·; u) and m, compute �(q; um) by applying the function m

times. This does not use any new space (in addition to the space O(k2) allocated to

J.-C. Birget et al. / Theoretical Computer Science 242 (2000) 247–281 281

m and to the function table). If �(q; um)= q, the Turing machine accepts; otherwise, it
rejects (for this guess of u; q and m).

References

[1] J. Avenhaus, K. Madlener, The Nielsen reduction and P-complete problems in free groups, Theoret.
Comput. Sci. 32 (1984) 61–76.

[2] J. Avenhaus, K. Madlener, On the complexity of intersection and conjugacy problems in free groups,
Theoret. Comput. Sci. 32 (1984) 279–295.

[3] L. Babai, E. Luks, A. Seress, Permutation groups in NC, Proc. 19th ACM Annual Symp. on Theory
of Computing, 1987, pp. 409–420.

[4] C. Bennett, Time=Space tradeo�s for reversible computation, SIAM J. Comput. 18 (1989) 766–776.
[5] J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart, 1979.
[6] S. Cho, D. Huynh, Finite-automaton aperiodicity is PSPACE-complete, Theoret. Comput. Sci. 88 (1991)

99–116.
[7] D.E. Cohen, Combinatorial Group Theory: A Topological Approach, London Math. Soc. Student Texts

14, Cambridge University Press, Cambridge, 1989.
[8] D. Cowan, Inverse monoids of dot-depth two, Internat. J. Algebra Comput. 3 (1993) 411–424.
[9] S. Eilenberg, Automata, Languages and Machines, vol. B, Academic Press, New York, 1976.
[10] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

Freeman, New York, 1979.
[11] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Formal Languages and Computation, Addison-

Wesley, Reading, MA, 1979.
[12] D. Kozen, Lower bounds for natural proof systems, Proc. 18th IEEE Annual Symp. on Foundations of

Computer Science, 1977, pp. 254–266.
[13] R. Levine, A. Sherman, A note on Bennett’s time-space tradeo� for reversible computations, SIAM

J. Comput. 19 (1990) 673–677.
[14] R. Lyndon, P. Schupp, Combinatorial Group Theory, Springer, New York, 1977.
[15] S. Margolis, J. Meakin, Free inverse monoids and graph immersions, Internat. J. Algebra Comput. 3

(1993) 79–100.
[16] R. McNaughton, S. Papert, Counter-free Automata, MIT Press, New York, 1971.
[17] M. Petrich, Inverse Monoids, Wiley, New York, 1984.
[18] J.-E. Pin, Vari�et�es de langages formels, Masson, Paris, 1984. English translation: Varieties of formal

languages, North Oxford, London, 1986.
[19] K. Reidemeister, Fundamentalgruppen und �Uberlagerungsr�aume, Nachrichten der Ges. Wiss., Math.

Phys. Klasse G�ottingen, 1928, pp. 69–76.
[20] R. Ruyle, Pseudovarieties of inverse monoids Ph.D. Dissertation, University of Nebraska-Lincoln, 1997.
[21] J. Sakarovitch, A problem on rational subsets of the free group, Amer. Math. Monthly 91 (1984)

499–501.
[22] C. Sims, Computation with Finitely Presented Groups, Cambridge, London, 1995.
[23] J. Stallings, The topology of graphs, Invent. Math. 71 (1983) 551–565.
[24] J. Stern, Complexity of some problems from the theory of automata, Inform. and Control 66 (1985)

163–176.
[25] I.A. Stewart, Re�ning known results on the generalized word problem for free groups, Internat.

J. Algebra Comput. 2 (1992) 221–236.
[26] P. Weil, Inverse monoids and the dot-depth hierarchy, Ph.D. Dissertation, University of Nebraska-

Lincoln, 1988.

