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This article is a continuation of  the work of  the second author on the connections between the 

theory of  varieties of  languages and the theory of  codes. We show that every variety of  languages 

closed under concatenation product  is described by its finite prefix codes. We also consider the 

operation which associates to any variety of  monoids V the variety V .  W generated by all semi- 

direct products of  a monoid of V by a monoid of  W, for various varieties W, and we describe 

the corresponding operation on varieties of  languages. 

Cet article poursuit l'6tude des rapports entre la th6orie des vari6t6s de langages et la th6orie 

des codes entreprise par le second auteur. On montre que toute vari6t6 de langages ferm6e par 

produit de concat6nation est d6crite par ses codes pr6fixes finis. On consid~re 6galement l 'op6ra- 

tion qui associe h chaque vari6t6 de monoides V la vari6t6 V.  W engendr6e par les produits 

semidirects d 'un  monoide de V par un monoide de W, pour diverses valeurs de W, et on d6crit 

l 'op6ration correspondante sur les vari6t6s de langages. 

Introduction 

This article is a continuation of the work of the second author [13] on the connec- 

tions between the theory of varieties of languages and the theory of  codes. 

Varieties of languages were introduced by S. Eilenberg [4] to provide a common 
framework to a certain number of isolated results characterizing recognizable 

languages in terms of  their syntactic semigroups. Kleene's theorem on rational 

languages, Sch~itzenberger's theorem on star-free languages and Simon's theorem 

on piecewise testable languages are the basic examples of this theory [4]. 
The theory of  codes originated in  the seminal work of Schiitzenberger in the 

fifties. It is well known that, as opposed to the case of a free group, submonoids 
of a free monoid need not be free. If this is the case, the basis of such a submonoid 
is called a code. The theory of codes has grown considerably in recent years and is 
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one of the leading parts of the combinatorial theory of semigroups. The (future) 
book of Berstel, Perrin and Schutzenberger [2] gives a complete survey of this 

theory. 
The connection between codes and varieties first originated in the fact that certain 

combinatorial properties of  codes are reflected by algebraic properties of  their syn- 
tactic monoids. Thus there is a hope to classify certain codes by means of syntactic 
properties. However, only a few number of results of  this type are known at present 
[18, 19, 6, 7]. Another connection between codes and varieties was discovered by 
Eilenberg and Sch~itzenberger [4, Chapter 10] in their study of decomposition 
algorithms for rational sets [4]. This algorithm produces for every recognizable 
language a rational expression in which, in particular, the star operation is applied 
only to prefix codes. Eilenberg and Schiitzenberger used this fact to give new 
descriptions of certain varieties of languages. Further characterizations of varieties 
making use of codes were given in [13]. 

The purpose of this paper is to extend these results by characterizing a great 
number of varieties of languages. The description of a variety of languages is usually 
achieved as follows. One gives a 'basic'  class of languages and a certain number of 
operations to construct the languages from this basic class. For example the rational 
languages are obtained from the letters by means of finite union, concatenation and 
star. The star-free languages are obtained from the letters and the empty word by 
means of boolean operations and concatenation. The interest of such descriptions 
depends on how 'natural '  are the basic class and the operations. Our paper rests on 
the subjective claim that finite prefix codes are a natural basic class and that the 
operation of coding is a natural operation. Indeed our first main result can be infor- 
mally stated as follows: Every variety of languages ¢ closed under concatenation 
product is described by its finite prefix codes. More precisely the languages of 1 
are obtained from the languages P* where P is a finite prefix code such that P* is 
in / by means of the variety operations: namely boolean operations, inverse mor- 
phisms and left and right quotients. Notice that concatenation is n o t  needed in this 
description of 1. This theorem solves a conjecture of [13] and implies, in particular, 
that, for a given n___ 0, the variety of languages whose syntactic monoids have com- 
plexity _ n [26] is described by its finite prefix codes. 

Eilenberg's variety theorem gives a one-to-one correspondence between varieties 
of languages and varieties of finite monoids. Thus it is not surprising that operations 
on varieties of languages correspond to operations on varieties of monoids. For ex- 
ample, an important theorem of Straubing [22] states that a variety of languages is 
closed under product if and only if the corresponding variety of monoids is closed 
under inverse of aperiodic morphisms. In this paper we consider the operation 
which associates to any variety of monoids V the variety V . A  generated by all 
semidirect products of a monoid of V by an aperiodic monoid on the right, and we 
describe the corresponding operation on varieties of  languages. If y is the variety 
of languages corresponding to V, then the variety of languages corresponding to 
V.  A is the smallest variety containing z and closed under the operations of prefix 
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pure coding and left concatenation with letters. More generally our second main 
result gives analogous descriptions for the operation V .  W where W is a fixed 
variety of monoids that is closed under inverse of aperiodic morphisms. As a 
by-product we obtain a description of the languages whose syntactic monoids have 
complexity (resp. abelian complexity) less than or equal to 1. Part  of  these results 
were announced in [14]. 

The proofs are based on an improvement of the simulation technique introduced 
in [13]. The basic idea is to 'approximate '  a finite monoid by a syntactic monoid 
M(P*) where P is a finite prefix code. The most significant result in this direction 
is Corollary 2.8. Let V be a variety closed under inverse aperiodic morphisms. Then 
for every monoid M of V one can effectively construct a finite prefix code P such 
that M divides M(P*) and such that M(P*) is in V. This result implies for example 
that the (open) problem of computing the complexity of a finite monoid M can be 
reduced to the case where M has the form M(P*) for some finite prefix code P. 

The paper breaks up into four sections. Section 1 is a preliminary section and Sec- 
tion 2 presents the simulation technique. In Section 3 we show that a number of 
varieties are described by their finite codes. We also give some important counter- 
examples: the variety of  languages of dot-depth one, for instance, cannot be des- 
cribed by its finite prefix codes. In Section 4 we discuss the operations V .  W for 
various values of W and we describe the corresponding operations on languages. 

I. Preliminaries 

In this section we recall some basic definitions and results. For all terms not de- 

fined in the text, see [4] or [8] or [17]. 

1.1. Semigroups 

A semigroup is a set equipped with an associative law. A monoid is a semigroup 
with identity. An element e ~ S is idempotent if e = e 2.  The set of all idempotents of 

S is denoted by E(S). 
In this paper all semigroups will be finite, except for free semigroups and free 

monoids. 
A variety of finite semigroups (resp. monoids) is a class of semigroups (resp. 

monoids) closed under taking subsemigroups quotients and finite direct products. 
Given a semigroup S, we denote by S 1 the monoid constructed as follows. If S 

is a monoid, then S 1 = S  and if S is not a monoid S 1--St3{1} where 1 is a new 
identity. U~ denotes the two element idempotent semigroup. Thus UI = { 1, 0} where 
1 is an identity and 0 is a zero. 

A variety of semigroups V is called monoidal if S~ V implies S~c V. For ex- 
ample the variety A of all aperiodic (or group-free) semigroups is a monoidal variety 
of semigroups. Also the variety J~ of all idempotent and commutative semigroups 
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(or semilattices) and the variety R of  :~-trivial semigroups are monoidal varieties of 
semigroups. 

Given a variety of  semigroups tl, L V denotes the variety of all semigroups S which 
are locally in V, that is, such that for all e e E(S) the subsemigroup eSe is in V. In 
particular, LI denotes the variety of  all locally trivial semigroups and LJ~ denotes 
the variety of all locally idempotent and commutative semigroups. 

Similarly UV denotes the variety of  all semigroups S such that the subsemigroup 
SE(S)S is in V. 

Let S and T be two semigroups. A relational morphism r : S ---, T is a relation from 
S to T such that 

(1) For all s~S,  s r ~ 0 .  

(2) For all Sl,S2~S: (slr)(s2r)C(sls2)r. 
Then, if T' is a subsemigroup of  T, the set T'r - l={s~S[srNT' : / :O}  is a sub- 
semigroup of S. 

Let V be a variety of semigroups. A relational morphism (resp. morphism) 
r : S ~ T is a relational V-morphism if for all subsemigroups T'  of  T, T' ~ V implies 
T ' r - l e  V. In particular, (relational) A-morphisms, also called (relational) 
aperiodic morphisms play a central role in the theory of finite semigroups. If  V and 
W are two varieties of  semigroups, V-~W denotes the variety of  all semigroups S 
such that there exists a semigroup T~ W and a relational V-morphism r : S ~  T. 

Given two varieties V and W, V .  W denotes the variety generated by all 
semidirect products of the form S*  T where S~  V and T~ W. 

1.2. Languages 

Let A be a finite alphabet and let A* (resp. A +) be the free monoid (resp. free 
semigroup) over A. The empty word is denoted by 1. Subsets of  A ÷ (resp. A*) are 
called languages. Given two languages K and L of  A*, we set 

K-IL={o~A*IKoNL=/:O} and KL-I={o~A*IoLNK:/ :O} .  

In particular, if u is a word of A*, we set 

u - l L = { o ~ A * l u o e L  } and L u - ' = { o e A * ] o u e L } .  

Observe that if u and o are words, then (uo)-~L = o-Z(u-~L). Let L be a language 
of  A ÷ (resp. A*). The syntactic semigroup (monoid) S(L) (resp. M(L)) of L is the 
quotient of A ÷ (resp. A*) by the congruence - L  defined by u - L  o iff for all 
x, y ~ A*, uxo ~ uyo ~ L. Recall that a language L of  A + (resp. A*) is recognizable 
iff  S(L) (resp. M(L)) is finite. In the sequel every language is assumed to be 
recognizable and thus every syntactic semigroup is finite. 

A +-variety of languages J associates to every alphabet A a set A ÷ J of recog- 
nizable languages of A ÷ such that 

(1) For every alphabet A, if a ~ A  and L e A  + l ,  then a-lL, La -1 ~A ÷ 1. 
(2) For every alphabet A, A ÷ ~ is closed under finite boolean operations. 
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(3) For any semigroup morphism ~v : A +-oB+, L e B  + ~ implies L ~  -1 e A  + ~. 
.-varieties of languages are defined in the same way by replacing every occurrence 
of ' + '  by ' * '  and 'semigroup' by 'monoid '  in the previous definition. 

Eilenberg's variety theorem states that there exists a one-to-one correspondence 
between +-varieties of  languages and varieties of  semigroups (resp. between *- 
varieties of language and varieties of  monoids). In the sequel we will always refer 
implicitly to this correspondence by saying that such a +-variety of  languages f 
corresponds to such a variety of  semigroups V or vice-versa. For example the variety 
of all semigroups corresponds to the variety of rational languages. Also the variety 
A of aperiodic semigroups corresponds to the variety .~¢ of star-free languages 
(Schfitzenberger) [4,8,17]. Recall that for any alphabet A,A+.~/is  the smallest set 
of languages containing the letters and closed under finite boolean operations and 

concatenation. 
A +-variety (resp. ,-variety) ¢ is closed under concatenation product iff for 

every alphabet A and for every n_>0, L1, . . . ,  L,, c A  + ~ (resp. A* ~)  implies 
L i--" L,, e A+J  (resp. A* t ). The following theorem characterizes varieties under 
closed product. 

Theorem 1.1 (Straubing [22]). A variety o f  languages is closed under product i f f  the 
corresponding variety o f  semigroups (monoids) V satisfies A - I V =  V. 

A +-class (.-class) of languages associates to any alphabet A a set A÷Z" of  
languages of A ÷ (resp. a set A*Z j of  languages of A*). We will say that a variety 
/ contains a class ~J of  languages if for every alphabet A , A + ~ C A + ' /  (resp. 

A*~z" c A* ~' if we deal with .-classes and *-varieties). 

1.3. Codes 

A language C of A ÷ is a code iff  the the subsemigroup C ÷ of  A ÷ generated by 
C is free of base C, that is if every element of C ÷ has a unique factorization in 
elements of C. A code C is said to be prefix if for every u, o e A * ,  u o e C  + and 
u ~ C ÷ implies o e C ÷. It is well known that a code C is prefix iff no word of C has 
a proper left factor in C, that is, if for every u, o e A*, uo ~ C and u e C implies o = 1. 

A code C is pure if for every u e A ÷ , u n e C ÷ for some n > 0 implies u e C ÷. The 
following result was first stated and proved in [18] (see also [19] and [23] for various 

extensions). 

Proposition 1.2. Let C be a f inite code. The fol lowing conditions are equivalent 

(1) C is pure. 
(2) C ÷ is star-free. 
(3) S(C +) is aperiodic. 

1.4. Automata 

In this paper we will consider only deterministic automata.  However, an auto 
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maton need not be complete. Thus an automaton ,~/= (Q, A) consists of a set of 
states Q, an alphabet A and a partial function Q × A--, Q. This function defines an 
action of each letter on Q. We simply denote by qa the result of the action of the 
letter a on the state q. Thus qa is either a state of  Q or the empty set. The action 
can be extended to an action of A* on Q by the following induction rules 

q l = q  for a l l q ~ Q ,  

q(ua) = (qu)a for all q ~ Q, u ~ A* and a 6 A. 

Thus each word of  A* defines partial function from Q to Q. The rank of u in .# 
is the cardinality of  the image of  the function defined by u. More formally 

rank(u) = Card{qu l q ~ Q} 

Given a language L CA*, the minimal automaton of L is ,~¢(L)= (Q,A) where 
Q= {u- LlueA * and u-lL=/:O} and the action of  A* on Q is given by 

~(uv)-lL=o-I(u-lL) if (uo)-lL--,eO, 
(u-IL) =/.undefined otherwise. 

Note that this definition is slightly different from the definition given in [13] where 
only complete au tomata  were considered. 

2. Simulation of automata 

The following definition was introduced in [13] for complete automata.  

Definition. Let ,~/l = (QI, Al)  and ,~/2 = (Q2, A2) be two finite automata.  Then ,~¢1 
simulates ,~/2 if there exists a subset Q of Q~, a bijection qJ: Q - , Q 2  and an injection 
n ' A 2 ~ A  ~ such that for all q~Q and for all a6A2, q~,a=q(an)v/. 

Informally this definition says that  every letter a of A 2 has the same action in .~/2 
as a certain word all of A ~ acting on a fixed subse{ Q of QI- The following result 
was proved in [13] for complete automata.  

Proposition 2.1. I f  .~1/l simulates ,~/2; then the transition semigroup of  ,~/2 divides 
the transition semigroup of  ,~/l. 

Proof .  The result follows from an exercise of [4], but we give a complete proof  for 
the convenience of the reader. Let S 1 (resp. $2) be the transition semigroup of ,~/1 
(resp..~/2) and let nl : A ~ S 1  and rg2:A~---*S 2 be the natural projections. The 
injection n ' A 2 ~ A ~  can be extended into a morphism n'A~-- ,A~.  Let T= 
A~nnl. Then T is a subsemigroup of S~. We claim that S 2 is a quotient of T. 
Indeed let u, oeA~ and assume that uT~7~l=OTcT~ 1 . Then by definition q(un)= 
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q(on) for all q ~ Q l .  It follows that,  for all q ~ Q ,  q u n q / = q o n ~  and thus 

qq/u = qv/o. Since ~ is a bijection from Q to Q2, qu = qu for all q ~ Q2, that is 

un2= on2. Thus unn~ = onnl implies un2= unz and therefore there exists a surjec- 
tive morphism T ~ S2. [] 

In view of applications to the theory of varieties we are especially interested in 

the following problem. Given an automaton .# with transition semigroup S find a 
finite prefix code P such that 

(a) The minimal automaton :~ of P+ simulates .#. 

(b) The syntactic semigroup T of P+ does not differ ' too much' from S. 

Of course, the meaning of the expression 'does not differ too much' depends on 
the context. A typical condition will be that if S belongs to a given variety of  

semigroups V, then T also belongs to V. The following theorem summarizes some 
results of [13]. 

T h e o r e m  2.2. There exists an algorithm which, given a finite complete automaton 
.# with transition semigroup S, produces a finite prefix code P such that 

(1) The minimal automaton o f  P+ simulates ,#. In particular, S divides the syn- 
tactic semigroup T o f  P+. 

(2) I f . #  is the minimal automaton o f  the language A*wA *for  some w ~ A*, then 
T is locally idempotent and commutative. 

(3) Let V be a variety o f  semigroups such~hat A -1 V= V and L V = V. Then i f  
S ~ V, then T~  V. 

(4) In particular, i f  S is aperiodic, T is aperiodic. 

We will show now that an almost identical construction works for incomplete 

automata and that Theorem 2.2 can be improved. Let us first describe the modified 
construction. 

Let .# = ({ 1, ..., n}, Z, • ) be a finite (partial) automaton with n states. Assume that 
:,/ contains a non-empty transition, that is there exists a state i e { 1, . . . ,  n} and a let- 

ter a e Z such that ia  :~ 0. Without loss of  generality we may suppose that there exists 

a letter a ~ Z  such that na:/: 0. Let r : N - - , N  be the function defined by kr  = 2 k -  2. 

The key property of this function for our purpose is that i l r+  i2r=j l r+j2r  implies 

that {i1,i2} = {Jl,J2}- 
Let A = { a } t 3 { a G l a ~ Z  } be an alphabet with l + C a r d Z  letters and let P =  

{alpaca n~-ia~ such that 1 <_i<_n, a ~ Z  and ia is defined}. Then P is a prefix code 

and the minimal automaton :~ of P+ simulates ,#. The states and transitions of ,~ 

are given in [13] in the case that ,# is complete. The same technique works in the 

general case and we describe this here. 
Let m = m a x { n r - i a r l i a  is defined, l<_i<_n}. Then / ~ = ( Q , A )  where Q =  

{qj l -m<_j<_nr}  and the transitions are given by the following relations 



240 S.W. Margolis, J.E. Pin 

( q j a :  qj+ 1 if  j +  1 < n r ,  
(1) 

t .qiraa=q_nr+iar for l < i < _ n  (if i a  is defined). 

Let us denote by S (resp. T) the t ransi t ion semigroup of  .~¢ ( resp . .~)  and let W(S)  

(resp. W ( T ) )  be the ideal o f  all elements of  rank < 1 in .~/(resp. :~). Note that  W(S)  

and W ( T )  are both aperiodic ideals. The next theorem gives the relat ionship be- 

tween S and T. Let N be the cyclic subsemigroup o f  T generated by a. It follows 
easily f rom (1) that  a nr+m+l -----0 is the zero of  N and that  anr+m=/:O. Thus N =  
{a, a2, . . . ,  a nr +m, 0} is ni lpotent .  Let 

K = { ( n , u , s ) [ O < r < n r + m ,  u e S \  W ( S ) , - m < s < n r } .  

Now R = N U K  is a semigroup under  the following mult ipl icat ion:  

(r, u, s)(r; u', s ' )  = (r, u u ;  s ' )  

ai(r, u, s) = (i + r, u, s) 

(r, u, s)a i= (r, u, s -  i) 

For x, y ~ R ,  x y  = 0 in all other cases. 

Now we can state: 

if s = r '  and uu" e S \ W(S), 

if  i + r < n r + m ,  

if  - m < s - i .  

Theorem 2.3. S div ides  T a nd  T / W ( T )  is a s u b s e m i g r o u p  o f  R. 

Proof .  Since :~ simulates .~/, s divides T by Propos i t ion  2.1. The second part  of  the 

theorem is a consequence of  the following lemma, where for a = a ~ . . . a p e Z  ÷, uo 
denotes the word - _hr.. _nr .. a anr UO'IU flO'2 U " O'p " 

Lemma 2.4. Le t  u be a w o r d  o f  rank  >_ 2 in :~. Then either u = a r f o r  s o m e  

O < r < n r + m  or u = a r u a a  -s f o r  s o m e  a ~ Z  + o f  rank  >_2 in .~/ a n d  f o r  s o m e  

0 < r<  nr  + m and  - m < s <_ nr  (s m a y  be negative).  Moreover ,  in this case 

(2) I q_r+irU=q_s+iar i f  - m < - r + i r < _ n r , - - m < - - s + i a r < _ n r  and  i f  ia:/:O, 

qi u = 0 otherwise.  

Proof .  Let u be a word of  rank >__2 in ~ .  Propos i t ion  2.6 of  [10] which was proved 

for complete au tomata ,  can be readily extended to our  construct ion for incomplete 
au tomata .  Therefore,  if u contains a factor o f  the form aalaraa2, then r = n r .  

Thus,  either u = a  r or u = a r u a a  -s  for some a e Z  "÷, r > 0  and s ~ Z .  If  u = a  r, then 

by (1), qju  =qj+r and therefore O < r < n r + m  since u has rank ___2 in :~. If 
u - - a r u a a  -s, it follows easily f rom (1) that  (2) holds. Finally the inequali ty 

r < n r + m  and - m < s  follow from the fact that  u does not contain  a nr+m as a fac- 
tor,  since a nr+m has rank 1. [] 

We now show that  T / W ( T )  is a subsemigroup o f  R. If  n = 1, then m = n r = 0 ,  
T / W ( T )  is trivial and the result is obvious. Thus we may assume n >__2. Let us denote 
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by # the image in S of  a word a e Z  '+ and by un the image in T / W ( T )  of a word 

u E A  +. Define a map  q~: T / W ( T ) - , R  by setting 

~-(r,O,s) if z=(aruoa-S)n for some O<_r<nr+m and 

- m < s < _ n r  and for some a ~ Z  '+ of  rank ___2 in ..~/, 
z ~ =  

a p if z=aPn for some O < p < n r + m ,  

, 0  otherwise. 

We first show that  q~ is well defined, tha t  is, if two words u and u '  of  A + define the 

same t rans format ion  of  rank -> 2 in ~ ,  then uq~ = u'O. The previous lemma gives a 

description of these words of rank  ->2. If u=a  p and u '=a p for some 

O<p<_p '<nr+m,  then qnr_paP=qnr and since u and o have the same actions, 

qnr-p ap'=qnr. Therefore  p = p '  and u = u ' .  Assume now that  u = a r u a a  s, 
u'=ar'uaa s' for some O<_r, r '<nr  +m,  - m < s ,  s'<_nz and cr, cr'6X of rank ->2 in 

~/. Let qx and qy be two states of  :~ such that  qxU=q~u'¢O, qyU'4:0 and 

qxU:/:qyU. Then by (2) there exist some indices i~,i2,jl , j  2 such that  

x= - r  + i~T=-r '  + izz, 

y = - r  + j l  T = - - r '  + j z r .  

It follows that  i l r+ j zT=i z r+ j lT  and thus by the proper ty  of r, {il,J2} = {i2,Jl}- 
Since x ~ y ,  il~j~ and hence i i=i2, j l=J2  and r=r' .  Now by (2), q_r+i, rU = 
q-s+i,ar and q_r+i,rU'=q_s,+fia,r and thus --s+ilar=--s '+i~a'T and similarly 

- s  +j lar  = - s '  +jlcr'r. Therefore ilar +jla'r=ilcr'  r +j lar  and thus {ila, j la ' }  = 
{ila' , j la}.  Since qxU~qyU, ilcr~:jla and  consequent ly  ilcr=ila ', jlcr=jlcr ' and 

s = s'. Finally (2) shows that  cr and or' have the same action on .~/, that  is # = # ' .  
Now assume that  u = a  p for some O < p < n r + m  and that  u'=aruaa -s for some 

O < r < n r + m ,  - m < s < _ n r  and c r e Z  '+. Then  q_maP~:O and q_m+laP~O imply 

q_mU'4:0 and q-m+ I u '¢O.  Therefore  by (2) there exist two distinct indices i and j 
such that  - m  = - r +  iT and - m  + 1 = - r + j r .  It follows that  j r -  iT = 1, a contradic- 

tion. Thus q~ is well defined. 
We now show that  ~0 is a morphism.  Let a, a '  be two words of  Z "+ of  rank _>2 

in .~/ and let O<_r, r ' < n r + m  and - r e < s ,  S'<_nr. Then 

()q)'aru"a-Sar'ua'a-S"~= ~o((r'#8"s') if  s=r '  and if o-~' has rank _>2 in ..~J, 

otherwise. 

On the other hand  

( (r ,e~ ' , s ' )  if  s=r '  and if ~ ' e S \  W(S), 
(r, #, s)(r', #, s) = 

otherwise. 

Therefore (aru~a-Sar'uo,a-S')cb = (aruoa-S)4)(d'uo'a-S')O in any case. 

Similarly, if 0_< q < m + nr,  
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and 

(aqaru~ra-S)fb = (aq+ru~ra-S)fb = I ~  + r, 8, s) ifotherwise, q + r  < m + nr, 

(aq(b)(arucra_S)qb=aq(r,d,s)=I~+r, 8, s ) ifotherwise.q+r<m+nr, 

Therefore (aq aruaa-S)qb =aq dp(aruoa-S)~p and dually (aruaa-S aq)~p =(aruaa-S)~paq dp. 
Finally 

( aq aq')q) = a q + q, = ( aq qb )( aq'q) ). 

The last step of the proof consists in showing that q~ is injective. First, if  z~:0, 
then z=urt  for some u of rank _>2 in /~ and thus z q ~ 0  by Lemma 2.4. Assume 
zqb = z'q~ = aPrr. Then z = z '  = aP~z. Similarly, if  zq~ = z'O = (r, 8, s), then 
z=(arua, a-S)Tr and z'=(arua2a-S)Tt for s o m e  O-l,O2~,~ '+ such that 8 1 : 8 2 : 8 .  

Now, by (2), arua,a -s and aruo2a -s have the same action in /~ and thus z=z ' .  [] 

The next proposition relates the structure of the semigroups R and S. 

Proposition 2.5. There exists an aperiodic relational morphism v/ : R-* [S/W(S)] I. 

Proof.  Define a relation ~, : R - - ,  [ S / W ( S ) ]  1 by 

aPq/= {1} 

(r,u,s)q/= {u} 

= 

for O < p < n r + m ,  

for O < r < n r  +m, - m < s < n r ,  u ~ S \  W(S), 

It is easy to check that ~, is a relational morphism. We claim that q/is aperiodic. 
For let e = e E e ( s / w ( s ) )  1. If e = 0 ,  then e~ -1 = {0} is aperiodic. If e=  1, then l~u -I 
is the subsemigroup of R generated by a and thus l~u -l  is aperiodic. Finally if 
e ~ S \ W(S), then 

e~-1= {(r,e,s) l O < r < n r  + m, - m < s < n r }  O{O}. 

Clearly eq/-I satisfies the equation x 2= x  3 and so is aperiodic. [] 

Consequently we obtain: 

Theorem 2.6. For every f inite semigroup S there exists a f inite prefix code P such 
that the syntactic semigroup T o f  P+ satisfies the following properties 

(1) S divides T. 
(2) There exists an aperiodic relational morphism ~ : T ~ S  i. 

Proof.  Let (S l, S) • ) be the automaton induced by the right action of S o n  S l, that 
is, for all q ~ S  ~ and s e S ,  q.  s=qs .  By Theorem 2.3 and Proposition 2.5 there ex- 
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ists a finite prefix code P such that, with the previous notation 
(a) S divides T. 
(b) T / W ( T )  divides R. 
(c) There exists an aperiodic relational morphism R ~ ( S / W ( S ) )  l. 

Since W(T)  is an aperiodic ideal, the projection T - - , T / W ( T )  is aperiodic. Since 
T / W ( T )  divides R, there exists an injective (elementary in the terminology of [26]) 
and hence aperiodic relational morphism T / W ( T ) - , R .  Since S /W(S)  divides S, 
(S/W(S))  1 divides S 1 and thus there exists also an aperiodic relational morphism 
(S/W(S))  1--'S 1. Finally we obtain by compostion an aperiodic relational morphism 

: T ~ S  i. [] 

Corollary 2.7. Let V be a monoidal variety o f  semigroups satisfying A -l V= V. 
Then for  every finite semigroup S e V there exists a finite prefix code P such that 

(1) S divides S(P+). 
(2) S(P +) is in V. 

Corollary 2.8. Let V be a variety o f  monoids satisfying A - l V = V. Then for  every 
finite monoid M e  V there exists a finite prefix code P such that 

(1) M divides M(P*), 
(2) M(P*) e V. 

Proof. By Theorem 2.6 there exists a finite prefix code P such that the syntactic 
semigroup T of P+ satisfies 

(a) M divides T. 
(b) There exists an aperiodic relational morphism q / : T ~ M .  

Now M ( P * ) =  T 1 and thus M divides T 1. Moreover q/ can be extended to an 
aperiodic relational morphism T i --,M by setting l q/= {1}. Now, since M e  V and 
A - I v = v ,  Tl  e v. [] 

Here is another consequence of Theorem 2.3. 

Theorem 2.9. Let V be a variety o f  semigroups satisfying A -1 V= V and UV= V. 
Then for  every finite semigroup S e V there exists a finite prefix code P such that 

(1) S divides S(P÷), 
(2) S(P ÷) is in V. 

Proof.  By Theorem 2.3, there exists a finite prefix code P such that the syntactic 
semigroup T of P+ satisfies 

(a) S divides T. 
(b) T ' =  T / W ( T )  is a subsemigroup of R. 

It follows that T 'E(T ' )T '  is a subsemigroup of RE(R)R. But R = K U N U { O }  and 
since N is nilpotent, E(R) is contained in the ideal K ° = K U  {0} of R. Therefore 
RE(R)R is a subsemigroup of K °. Let q/:K°-- ,S /W(S)  be the relation defined by 
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= s ~  w ( s ) .  

A proof similar to the proof of Proposition 2.5 shows that q/is  an aperiodic re- 
lational morphism. Now S e V  by hypothesis and thus S / W ( S ) 6 V .  Since 
V=A-IV ,  K ° is also in V and since T'E(T')T '  is a subsemigroup of K °, 
T'E(T' )T '~  V. Now since V= UV, T / W ( T ) =  T'~ V and finally T~ V since there 
exists an aperiodic morphism T ~  T/W(T) .  

Note that Theorem 2.5 improves condition (3) of  Theorem 2.2 since every local 
variety of semigroups V satisfies UV= V. Indeed assume that S t  UV, that is 
SE(S)S~ V. Then, for all eeE(S),  eSe= ee(Se) is a subsemigroup of SE(S) and thus 
eSe ~ V. Since V is local, S ~ V. [] 

We remark also that condition (2) of Theorem 2.2 is no longer true with our new 
construction. However we can obtain an analoguous result which is easier to prove 
and sufficient for the applications. Recall that a code P C A  + is verypure [3] or cir- 
cular [1] iff  for all u ,o~A +, u v e P  + and ou~P + imply u ~ P  + and o ~ P  +. A 
language L is strictly locally testable if there exist four finite sets U, V, W, F C A  + 
such that L = ( ( U A * A A * V ) \ A * W A * ) U F .  It is shown in [3] that a language L is 
strictly locally testable iff  there exists an integer n > 0 such that all words of A ÷ of 
length _ n  have rank _< 1 in the minimal automaton of L. 

We can now state: 

Theorem 2.10. Let L be a strictly locally testable language and let ,~/ be the minimal 
automaton of  L. Then there exists a finite prefix code P such that: 

(1) P is very pure. 
(2) S(P +) is locally idempotent and commutative. 
(3) S(L) divides S(P+). 

Proof.  First note that (a) and (b) are two equivalent properties [3]. Let S be the tran- 
sition semigroup of ,~¢. By Theorem 2.3 there exists a finite prefix code P such that 
T= S(P +) satisfies 

(a) S divides T. 
(b) T/W(T)  divides R. 

Since L is strictly locally testable, there exists an integer n > 0 such that every word 
of  length _>n has rank _< 1 in .~. Therefore SnC W(S) and S/W(S)  is nilpotent. It 
follows that R is nilpotent. Indeed let f =  0 be an idempotent of R. Then f =  (r, u, r) 
for some idempotent u e S \  W(S), a contradiction. Thus by (b), T/W(T)  is 
nilpotent. Let e be an idempotent of  T. Then e e W(T) and therefore eTe= 
e(eTe)eCeW(T)e= {e,0}. Thus T is locally idempotent and commutative. 
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3. Varieties described by their finite codes 

Let V be a variety of semigroups (resp. monoids) and let t be the corresponding 
variety of languages. By definition t is described by a class '~ of codes if ~ is the 
smallest variety which contains the language of the form C ÷ (resp. C*) where 
C e z j. Similarly, ~ is described by its finite prefix codes, if l is the smallest variety 
which contains all finite prefix codes P such that S(P ÷) (resp. M(P*)) is in V. 

The main result of  this section solves a conjecture of  [13]. 

Theorem 3.1. Every ,-variety closed under product is described by its finite prefix 
codes. 

Proof .  Let ~ be a .-variety and let V be the corresponding variety of  monoids. Let 
W be the variety of  monoids generated by all monoids of V of the form M(P*) for 
some finite prefix code P. Clearly WC V. Conversely let M e  V. By Theorem 2.6, 
there exists a finite prefix code P such that M divides M(P*) and such that there 
exists an aperiodic relational morphism. ~, : M(P*)-~M i =M. Thus M(P*) e A  -l V 
and since ~ is closed under product, A -1 V= V by Straubing's theorem. Therefore 
M(P*) e V and hence M(P*) e W by definition. Now since M divides M(P*),  M e  W 
and thus V= W. It follows by Eilenberg's theorem that t is described by its finite 
prefix codes. [] 

The corresponding result for ÷-varieties is more involved. 

Theorem 3.2. Let '~ be a + -variety closed under product and let V be the correspon- 
ding variety o f  semigroups. I f  V is monoidal, or i f  UV= V, then '~ is described by 
its finite prefix codes. 

The proof is the same except that we use Theorems 2.8 and 2.9 instead of  
Theorem 2.6. 

It is an open problem to know if Theorem 3.2 still holds without the conditions 
'monoidal '  or 'UV= V'. In particular, we don' t  know if the condition V = A - I V  
implies that V is monoidal. 

Here are some explicit examples of applications of  Theorem 3.2. Let V, be the 
sequence of varieties of semigroups defined inductively as follows: 

V0=A, 

V n + I = V n , G , A .  

The Krohn-Rhodes theorem (see [4]) implies that ~n>_o V.=S,  the variety of all 
semigroups. Given a semigroup S the smallest integer n such that S e Vn is called 
the complexity of S. It is known that V. +i \ V. :# 0 for all n _  0. Furthermore, for 
every n>_O, A -111.= V n and 11. is monoidal [26]. Therefore: 
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Theorem 3.3. The +-varieties corresponding to semigroups o f  complexity <_ n are 
described by their f inite prefix codes. 

More generally we have the following result. 

Theorem 3.4. Let Hi,  Ha, ..., Hn be a sequence o f  varieties o f  groups and let '/ 
be the +-variety corresponding to the variety o f  semigroups V =A  , H  l , A  ... 
• A * H~ , A .  Then 'P is described by its finite prefix codes. 

Proof.  For this proof we will need some results of  [26]. First of all, the proof of 
Proposition 2.1 of [26, p. 321] shows that V is a monoidal variety. Next we show 
that A-~ V= V by induction on n. This is trivial for n = 0. In the general case it is 
sufficient to show that if q/:S--, T is a surjective aperiodic morphism such that 
T e  V, then S e  V. By (10.5) of [26, p. 364] we have S < , ~ < B o  7~ where B e A  and 

denotes the Rhodes expansion of  S [26, p. 361]. Now since T e  V, T < A  . ( H , R )  
where R e  V ' = A  *H2*A * . . . . H ~  , A ,  H e l l 1  and A eA.  Now by (10.6) of [26, p. 
364], T < A ' , ( H . R )  for some A ' e A  and by (13.1) of [26, p. 376], ( H , R ) <  
A" • (H' • /?)  where H '  is a direct product of copies of H and A" e A .  Now by (9.4) 
of  [26, p. 362] there exists an aperiodic morphism v : / ? ~ R .  There fo re /~eA -I V' 
and by the induction hypothesis A - I v ' =  V'. It follows that ( H ,  R ) e A  • Hi • V' 
and thus 7~eA *(,4 *HI * V ' ) = A  * H  1 * V'= V and finally Se V since S < B o  ~. 
Theorem 3.4 now follows from Theorem 3.2. [] 

Other examples, already given in [13] include the v a r i e t y / / o f  all semigroups 
whose groups are in a given variety of groups H and, in particular, the variety S 
of all semigroups and the variety A of aperiodic semigroups. 

Finally let Inv be the variety of semigroups generated by all inverse semigroups. 
The following result was proved in [11] by the same methods. 

Theorem 3.5. The +-variety 5,~ corresponding to Inv is described by its finite 

biprefix codes. 

We conclude this section with two negative results. The first result concerns the 
variety DA of all semigroups whose regular ~-classes are idempotent semigroups. 
Let us recall a useful property of  a semigroup S in DA [8]. If e is an idempotent 
of  S and if  s~ , . . . , s  n are elements of S such that e<zs~,. . . ,e<</sn, then 
es~ ... s~e = e. Then we have: 

Theorem 3.6. Let C C A  + be a f inite code such that S ( C + ) e D A .  Then C C A .  
Therefore the +-variety corresponding to DA is not described by its finite codes. 

Proof.  Let S =  S(C +) and let n : A  + ~ S  be the syntactic morphism. For each u e C 
there exists n > 0 such that (un)n= e ~.s idempotent. Let a be a letter of the word u. 
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Then e<_~/an and since S e D A  it follows that (u"amun)zr=e for all m > 0 .  There- 
fore for all m > 0 ,  unamunE C+zt~Z-I = C +. If  we choose m greater than twice the 
maximum length of  the words in C, the decomposition of the word unamu n over C 
contains a factor of  the form a k for some k > 0 .  Moreover, since S(C ÷ ) e D A ,  
S(C ÷) is aperiodic and thus so is S( C+ N a +)= S((a k )+). Since S((a k )+) contains the 
cyclic group Zk, it follows that k =  1. Therefore for each letter a occurring in a 
word of C we have a e C .  It follows that C C A  since C is a code. [] 

The second negative result concerns the variety LR of all semigroups S such that 
for all idempotent e ~ S, eSe is ~-trivial. 

Theorem 3.7. Let P be a f inite prefix code such that S(P +) ~ LR. Then S(P +) is 
locally idempotent and commutative and P is very pure. In particular, the + -variety 
corresponding to L R  is not described by its f inite prefix codes. 

Proof.  Let ,~ = (Q, A) be the minimal automaton of  P+.  This automaton defines a 
t ransformation semigroup X =  (Q, S) where S =  S(P +) is the syntactic semigroup of  
P+.  Moreover, since P is a prefix code, it is known that X is transitive, that is, for 
all states ql, q2 E Q ,  there exists s e S such that ql S= q2. Let e be an idempotent of  
S and let ql, q2 be two states fixed by e. We claim that ql = q2- Indeed, since X is 
transitive, there exist s, t e s such that ql s ---- q2 and q2 t = ql. It follows that ql (ese) = 
q l se=q2e=q2 and similarly q2(qte)=ql.  Choose n > 0  such that (esete) n is idem- 
potent. Then we have ql (esete) n= ql and ql (esete) nse = q2- But (esete) ~ ~ (esete)~se 
and since eSe is :~-trivial it follows that (esete)"= (esete)nse. Thus q~ = q2, proving 
the claim. Therefore Qe = {qe[ q e Q } is a singleton and every idempotent of S has 
rank _< 1 in ,~/. It follows [3] that P is very pure and that S(P +) is locally idem- 
potent and commutative. [] 

Following Brzozowski [4], a language L C A  + has dot-depth one if it is in the 
boolean algebra generated by languages of the form uA*,A*v or A*ulA*u2. . .  
A*u,,A* when n > 0 and u, u,/~/1, .-., Un E A +. It is known that the languages of dot- 
depth one form a +-variety.  The corresponding variety of semigroups BI has been 
recently characterized by Knast [5]. 

Corollary 3.8. The variety o f  languages o f  dot-depth one & not described by its f inite 
prefix codes. 

Proof.  It is known [5] that if S e B 1, then for every idempotent e e S, eSe is f2  
trivial. In particular B 1 C LR.  Consequently, if P is a finite prefix code such that 
P+ has dot-depth one, then P is very pure. Now the variety described by finite very 
pure prefix codes is the variety of  locally testable languages [3], and this variety is 
strictly contained in in the variety of  languages of dot-depth one. [] 
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4. Languages and product of varieties 

As we pointed out in the introduction the product of two varieties of  semigroups 
or monoids is one of the most important operations on varieties. However, little is 
known in general about this operation. The aim of this section is to describe the 
operation on languages corresponding to the operation V ~ V.  W for some suitable 
choices of W. Analogous results for W= L I  have been obtained recently by Straub- 
ing [24]. We first need a study of the operation L ~ aL where L is a language of A* 
and a is a letter. More  precisely, given a monoid recognizing L we want to describe 
a monoid recognizing aL. 

Proposition 4.1. Let  L c A *  be a language recognized by a monoid  M and let a be 

a letter. Then aL is recognized by (34 × U1) o Ul. 

Proof .  We give a self-contained proof although it follows from the general results 
of  [16]. Since L is recognized by M, there exists a morphism y : A * - ~ M a n d  a subset 
P of  M such that L = p y - l .  Define a morphism ~ :  A * - , ( M ×  U1)o Ul by setting, 
for all letters b c A  

b~, = (f, 0) where l f =  (1, 1) and Of= (ay, l) if b = a, 

b ~ = ( f , 0 )  where l f = ( 1 , 0 )  and 0 f= (by ,  1) if b:/:a. 

Let Q be the subset of (M× U1)o UI defined by 

Q= {(f, 0)[ l f ~ P ×  {1}}. 

Then we have Qg/-I = {ueA*l u ,e Q}. Set u=al  ".. an and aiq/= (f/,0). Then we 
have (al "-" an)q/= ( f  0) where 

l f :  l f l0f2 ..-Ofn : ~ ((a2 "'" an))', O) 
(.((a 2 • • an)Y, 1) 

Therefore Q ~ v - l = { a l . . . a , ~ A * l a l = a  and 
recognized by ( M x  U 1) o UI. [] 

i f  a~ :#a, 

if  al = a. 

(a2 -'- an)y ~ P} = aL. Thus aL is 

Let W be a variety of monoids and let ~ be the corresponding variety of 
languages. A morphism a : A * ~ B *  is called a (prefix) coding if  it is injective and 
i f A a  is a (prefix) code. It is called a (prefix) W-coding if (Aa)*~ B* ~t. In particular, 
an A-coding is called a pure coding because in this case A a  is a pure code. Then 
we have: 

Proposition 4.2. Let  W be a variety o f  monoids such that A -l W =  W and let 
a : A * ~ B *  be a prefix W-coding. Then there exists a monoid  N 6  W such that ij  
L C A *  is recognized by M, L a  is recognized by M o N. 
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P r o o f .  It is proved in [16] that  La  is recognized by M o N where N is the so-called 
'petal  mono id '  of  the code Aa.  Moreover,  it is shown in [9] that  there exists an 

aperiodic morphism from N onto  the syntactic monoid  of  (Aa)*. Since a is a W- 

coding, M((Aa)*)E W and thus N e  W since A - 1 W  = W. 

Corol lary 4.3. Let a : A *-* B* be a pure pref ix  coding. Then there ex&ts an aperiodic 

monoid N such that i f  L C A *  is recognized by M, La  is recognized by M o N .  

We are now ready to state the main result o f  this section. 

T h e o r e m  4.4. Let V and W be varieties o f  monoids and let I and ~ be the cor- 

responding varieties o f  languages. I f  ~ is closed under product, that is i f  

A-1 W= W, then the variety o f  languages corresponding to V ,  W is the smallest 

variety ~¢/ satisfying the fol lowing conditions 

(1) For every alphabet A,A*<¢/ contains the languages o f  the form La  where 

a : B * ~ A *  is a prefix W-coding and L e B *  t. 
(2) For every alphabet A, and f o r  all a e A, L e A * ¢/ impfies a L e  A *'¢/. 

P r o o f .  Let ~¢/ be the smallest variety of  languages satisfying (1) and (2) and let # 

be the variety corresponding to V .  W. To show that  ¢/C # i t  is sufficient to prove 

that  # satisfies (1) and (2). 
Let a : B * ~ A *  be a prefix W-coding and let L eB*¢/.  Then M(L) e Vand  by Pro- 

posi t ion 4.2, M ( L a ) e  V .  W. Thus L eA*:'t~ Let now L eA*#~  Then Proposi t ion 

4.1 shows that M(aL ) < (M(L) × U l) o Ul and therefore M(aL ) e ( V * W) • R) * R = 

V ,  W ,  R since R * R -- R. We claim that  W ,  R = W. Indeed it is sufficient to show 

that  any semidirect product  o f  the form M *  Ul where M e  W is also in W. By a 

result o f  [20, p. 164], there exists an aperiodic morphism ~ : M .  UI ~ M  and thus 
M e A - l  W-- W. Therefore the claim holds and M(aL) e V ,  W. Consequent ly 

aL c A * #  and : I  satisfies (1) and  (2). 
The opposite inclusion : f C  <¢/ is more difficult  to establish. The first step is the 

following lemma. 

L e m m a  4.5. ~¢ is contained in ~¢/. 

Let P c A *  be a finite prefix code such that  P * e A *  ~ and let a : B*--,A* be an in- 
jective morphism such that  Ba = P. Then a is a prefix W-coding and since B* e B* l ,  

B*a=P*eA*<¢/. Thus '¢/contains all languages of  the form P* where P is a finite 

prefix code such that  P * e  A * ~ .  But "~ is closed under  product  and hence described 

by its finite prefix codes by Theorem 3.1. Thus ~t C '¢/. 
Let now K e A*:'/~ Then there exist a semidirect product  M ,  N where M e  V and 

N e  W a n d  a morphism 7: A * ~ M , N w h i c h  recognizes K. Let n : M , N ~ N b e  the 
natural  project ion and let ~ : A * ~ N  be the morphism ~ = yn. Then it is proved in 
[15] that  K is union of  languages of  the form X O  Ya -1 where X c A *  is recognized 
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by N, Y c B *  is recognized by M, B = N × A  and where a is the sequential function 

A * ~ B *  defined by 

lo-= 1, 

(al "" a , ) a  = (1, a~)(al q/, a2) "" ((al "" an_ l )q/, an). 

Now since N ~  W,  X ~ A * / ¢  and thus X e A * ~ ¢ /  by the previous lemma. Moreover,  
M e  V and thus Y ~  B*~¢/. Therefore since a variety is closed under boolean opera- 
tions it is sufficient to show that  if Y ~ B * ' / ,  then Y a - I ~ A * . ¢ / .  

The next step consists in decomposing the t ransduct ion a - I .  Let N =  {zl, . . . ,  zn} 
where zl = 1 is the unit o f  N.  Define an action of  A on { 1 , . . . , n}  by setting for 
l < _ i < n ,  i . a = j  if z j = z i ( a ~ ) .  Thus we have an au toma ton  .# = ({1, ... , n}, A) 
whose transi t ion monoid  is N. Let c be a new letter and let C = A  t3 {c}. Then the 
results of  the previous section show that  the morphism ct:B*---~C* defined by 

(Zk, a)ot = ckr ac  nr -  kar 

where k r  = 2 k -  2 is a prefix W-coding. 

Now define a morphism x : A * - - , C *  by setting a x = c " ~ a .  Then we obtain the 

desired decomposi t ion of  a - l .  

Lemma 4.6. For  every  language Y c B * ,  we have  

Y a - l  = (cn~( (ya) (c , ) -  I ) )x -  I. 

P roof .  Let u = ( z 6 , a l ) ' . .  (Zi,,ar) be a word of  B*. Then 

UOC = cij r a l c n r -  ila~r ci2r a2 "" cirr ar Cnr- ira Fr. 

Thus by setting L -  cn~((ua)(c*) -1),  we have 

L = {cnr+i'ralcnr-i'a~rci2~a2 "'' cir~ar#]O<j<_ n r -  irarr}. 

Therefore  L x  -~ is empty except in the case w h e r e / l r = 0 ,  i la l r= i2r, . . . ,  it_ lar-~r= irr, 
that  is, il = 1, i2=i la l ,  . . . , i r = i r - z a r - 1  and in this last case we have LK -~ =al  "" ar. 

On the other  hand,  ua  -1 is empty except in the case where u=(1 ,a l ) (a l v / , a2 ) . . .  

((al --- ar-  l)q/, ar), that  is if il = 1, i2 = il (al ~), .. .  , ir = ir- l(ar- 1 (ar- IV, -/) or equivalent- 
ly i i = l ,  i 2 = i l a l , . . . , i r = i r _ l a r _  1. In this last case u a - l = a l . . . a r = L X  -1 which 
proves the lemma.  []  

We can now conclude the p roof  of  Theorem 4.4. Since Y e B *  ~' and since a is 
a prefix W-coding, Y e C * ¢ /  by condition (1). Consequent ly  ( Y c t ) ( c * ) - l e C * ¢ /  
because a variety of  languages is closed under quotient .  Now condition (2) implies 
that  L = c n t ( y c t ) ( c * ) - I E c * ¢ / .  Finally, L K - I = Y a - I ~ A * ¢ /  since a variety of  
languages is closed under  inverse morphism.  Therefore  ~ C ¢/ and hence 
~ = ,"/I. [] 
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In the case W = A  we obtain the following corollary. 

Corollary 4.7. Let V be a variety o f  monoids and let / be the corresponding variety 

o f  languages. Then the variety corresponding to V ,  A is the smallest variety con- 
taining t and closed under prefix pure coding and under left concatenation with 
letters. 

Proof. In view of Theorem 4.3, we only have to verify that the variety 4/correspon- 
ding to V , A  is closed under prefix pure coding. Indeed if L e B * ¢ /  and if 
a : A * ~ B *  is an injective morphism such that A a  is a prefix pure code, then 
M(La)  e V , A and by Corollary 4.3, M(La)  e V , A , A = V , A sinceA , A = A.  [] 

We will now give a more precise description of the variety of languages i ~ cor- 

responding to Vi, the variety of monoids of complexity _< 1. Recall that a language 
is a group language iff its syntactic monoid is a group. Then we have 

Theorem 4.8. ¢/~ is the smallest variety o f  languages containing the group 
languages and which is closed under product and under prefix pure coding. 

Proof. Since G C  V l, t I contains the group languages and since A - I v !  = V ! [26], 
/i is closed under product by Straubing's theorem. Moreover, Proposition 4.2 

shows that ~1 is closed under pure prefix coding. Thus ~1 contains the smallest 
.-variety ~ containing the group languages and which is closed under product and 
under prefix pure coding. Conversely, the variety of monoids V corresponding to 
/ contains G and hence A - I G  = A  • G since ~ is closed under product.  Thus 1 

contains the letters, since for each letter a e A ,  M({a}) is aperiodic and therefore i 
is closed under left concatenation with letters. Thus by Corollary 4.7, y contains 
~ and hence i = i~. [] 

One can improve the previous result by replacing the group languages by an ex- 
plicitly given family of languages. As is well known the symmetric group on n 
elements S, is generated, for n>_2, by the two permutations o- and r where 
a = (1 --- n) and r =  (12). Thus let Z'= {t7, r} and let .~/, = ({ 1, . . . ,  n}, Z') be the 
automaton defined by the permutations o- and r. The construction given in Section 
2 shows that if A = {a, b, c}, then the code 

C n = {a2i-Eba2"-2i+l I 1 <_i<_n- 1} I.) {aE"-Eba 2"-2 } 

_ 2 i I,.){caZ"-4,aZcaZ"-z}i,.){aZi-Zca 2" 1 3 _ i _ n }  

satisfies the two conditions 

(1) Sn<M(C* ). 
(2) There exists an aperiodic relational morphism M(C*)~Sn .  

Therefore, M(C*) e A - 1 G  =A • G. 
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Let a : {a, b, c}*~ {a, b}* be the prefix coding defined by 

aa = a, ba = ba, ca = b2a. 

Then letting P,, = Cna we have 

Pn = {a2'-2ba2"-2'÷' + l l l <_i<_n- 1} t.J {a2"-2ba 2"-I } 

U {b2a 2"- 3, a2b2a 2"- l } t.J {a 2~- 2b2a2"- 2~+ l ] 3 ___ i_< n}. 

Since {a, ba, b2a} is a prefix pure code, Proposition 4.2 shows that M(P*) 
(A • V ) , A  = V 1. Furthermore, since P*a -1 =C* we have Sn<M(C*)<M(P*) .  

Therefore 

Corollary 4.9. I1 is the smallest variety o f  languages containing the languages P* 
f o r  n >_ 2 and which is closed under product and under prefix pure coding. 

Proof. Since M(P*)~  V1, tl  contains the languages P* for n_>2. Moreover, by 
Theorem 4.8, t 1 is closed under product and under prefix pure coding. Con- 
versely, if a variety t contains P* for n_> 2, then ¢ contains the group languages 
since for each group G there exists n > 0  such that G<Sn<M(P*) .  Now if / is 
closed under product and under prefix pure coding, it contains ~1 by Theorem 
4.8. [] 

Here is another application of Corollary 4.7. Let Gcom be the variety of all com- 
mutative groups. A description of the variety of languages I corresponding to 
A • Gcom • A was given in [21]. 

For every language L CA*, let (L, r, n) = {u e A*[ Card(Lu-i ) _  r mod n}. Then 
for each alphabet A, A* ~ is the smallest boolean algebra closed under product and 
containing all star-free languages and all the languages of the form (L, r, n) where 
L is star-free and 0_<r< n are integers. Here is a different description of this variety. 

Theorem 4.10. Let  '/ be the variety o f  languages corresponding to A * Gcom • A.  
Then '/ is the smallest variety o f  languages such that, for  all alphabets A and for  
all n > O, (A n)* ~ A * i, and which is closed under product and under prefix coding. 

Proof. Let ~ be the smallest variety such that ( A " ) * ~ A * ~  for all n > 0  and for all 
alphabets A and which is closed under product and under pure prefix coding. We 
first show ~t C I. Indeed, since M(An)*=Zn is a commutative group, we have 
( A " ) * e A * I  for all n > 0 .  Moreover, ~ is closed under prefix pure coding by Cor- 
ollary 4.7 and t is closed under product by Theorem 6.2 of [26]. 

Conversely let W be the variety of monoids corresponding to ~. Since M(An) *= 
Zn, W contains all cyclic groups and hence all commutative groups. Since ~ is 
closed under product A - l G c o m = A  , G c o m  is contained in W by Straubing's 
theorem and finally Corollary 4.7 shows that W contains A ,  G c o m , A .  Thus 
W = A  * Gcom , A  and this concludes the proof. [] 
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