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Abstract. Let P be a finite biprefix code and let 7 =(Q, §) be the syntactic transformation
semigroup /ts) of P”. We show that if ¢ € § is an idemr.potent, then the ts X, = (Qe, ¢Se) consists
of partial one to one maps. We also show that any ts of partial one to one maps divides a s ¢
partial one to one maps which is the syntactic ts of a finite biprefix code.

1. Introduction

Let A be a finite set. A subset P of the free semigroup A™ is a prefix if PNPA™ = p.
A suffix is defined dually and a biprefix is a set which is both a prefix and a suffix.
A prefix P is complete if P"NwA" =0 forall we A™.

It is well known that the subsemigroup P* generated by a prefix P is free. In
fact, P* satisfies the following condition: If we.A™ and P*'w N P* #0 then we P",
An important tool for studying P is the syntactic semigroup S(P"). We recall that
S(P") is the quotient of A™ by the largest congruence such that P" is a union of
classes. This study was initiated by Schutzenberger in [10] and we refer the reader
to Chapter 8 of [3] for basic results. We also reca:l Kleene’s theorem which states
that a subset L of A" is rational (i.e. regular) if and only if S(L) is finite.

Recently there have been a number of results showing how an arbitrary finite
semigroup divides a semigroup of the form S(P") v-here P is a rational prefix code.
Indeed Schutzenberger shows [11] that any finite semigroup is a subsemigroup of
S(P") where P is a complete rational biprefix. Ir [€] Pin proves that any semigroup
divides S(P") for some finite prefix P, a result tt at is refined in [7] and [5].

On the other hand, it is well known that a finite complete prefix is a biprefix if
and only if § = $(P") is nil-simple, [3]. That is, for all s € S, there is an # such that
s" is in the minimal ideal of S. It is easy to show that a finite semigroup § is
nil-siraple if and only if eSe is a group for all idempotents e € S.
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In view of these results, it is rcasonable to ask if every finite semigroup § divides
5(") where P is a finite biprefix. The main result of this paper shows that this is
not true by proving that if P is a finite biprefix, then eS(P")e is a subsemigroup
of ~n inverse szmigroup for any idempotent ¢ € S(P*). More generally, if X =
(Q, S(P") is the syntactic transformation semigroup (ts) of P*, then X, =
(Q¢, eS(P}e) is an injective ts. That is each transformation of X, is partial one-one.
We call such a ts, locally injective.

Let A ={a, b}. We remark that the syntactic ts of P ={a, ba}" is locally injective,
so that the converse of the above result is not true. We will show however, using
the techniques of [7], that any injective ts divides the syntactic ts of a finite biprefix.
For other results on injective biprefixes see [2], [8], and [9].

All undefined notiors and terminology can be found in [1] or [3]. In particular,
an A-automaton o =(Q, A) is a partial function @ X A > Q where Q is a finite
set. The ts of &f is the pair X = (Q S) where S is the semigroup generated by the
partial functions in A.

2. The main result

Let A be a finite set and let P< A™ be a rationa! prefix. Let of = (Q, A) be the
minimal automaton of P*. We recall that there is an i € Q such that P~ = {w]iw =i}.
More generally if ge Q, let o, =iwe A" |qw =q}. Let Pa ={v e A*|vA" NP # 0}
andlet Pu={ve A*|ATv N P#0.

Lemma 1. Let P be a finite prefix and let o = (Q, A) be the minimal automaton of

F*. Ifv e s, forsome q € Q, then v = xdy for some x € Pw, d € P*, y € Px. Furthermore
yxe PU{1}.

Proof. We recall that the siates of & are the sets of the form s 'P* = {wlswe P}
for se Pa and that i == P*. Let ¢ =5 'P". Since P is finite, there exists a prefix x
of v such that sx € PUJ{1}. Therefore, x € Pw. Let d be the longest prefix of x 'v
such that de P*. Then v = xdy for some y € Pa. Furthermore, qx =i and iy =¢q
and it follows that yx < PU{1}. [

l’gop_pvsitien 2. Let P be a finite biprefix and let o = (Q, A) be the minimal automaton
of £ . Suppose there are q, q'€ Q, and v e s, Nsf,. If there is w = A* such that
gw=q'w#0, thenq=q'.

Proof. Since & is transitive. we can assume that gw = g'w = the state stabilized
by P*. By Lemma 1, v factors

v=xdy=x'd'y’ (1)
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where
xx'€Pw, d,d'eP* y yePa, yx yx'ePU{l}.

It fcicws that iy =gq, iy'=q'. By our assumption on w, we have yw € P* and
y'w € P". Without loss of generality, there is z € A* such that y' = zy by (1).
Therefore y'x'd'y'w € P*. But,

y'x'd'y'w=y'x'd zyw.
Since y'x'd' € P*, it follows that zyw € P* since P is a prefix. Using the fact that P

is a suffix and yw € P*, we have z € P*,
Thus ¢'=iy'=izy=iy=q. O

Let X =(Q,S)beats. If ee 3 is »n idempotent, let X, = (Qe, eSe). X i injective,
if each se S is partial one-one. X is locally injective if X, is injective for all
idempotents e € S.

Theorem 3. Let P be a finite biprefix and let X = (Q, S) be the syntactic ts of P*.
Then X is locally injective.

Proof. Let & =(Q, A) be the minimal automaton of P*. Then X is the ts of o
and S =S(P") is the syntactic semigroup of P*. Let n: A" > S be the syntactic
morphism. Let e =¢>€ S and let vcen”'. Assume that there are g, q'€ Qe and
s € eSe such that gs =q's #0. Let we sn~'. Then qv =q and q'v =q' since {q, ¢’} <
Qe. Therefore ve s, N, 2nd since qw =q'w #@ Proposition 2 implies that
q=q'. 0

Corollary. Let P be a finite biprefix. If the syntactic ts X =(Q,S) of P’ is a
transformation monoid, then X is injective.

Proof. By the above X = X is injective. [

We now show that any injective ts X = (Q, §) divides the syntactic ts of a finite
biprefix. We first recall some results from [7].

Let o =(Q,2) be a Z-automaton, with Q={1,...,n}. Let A={a}UZX with
a¢ 3. The prefix P(«) ={a*¢a* " |1<i<n, o €3, ioc # 0} is called the Pin Code
of .

The following appears in [7].

Theor:m 4. Let X be the ts of &, and let Y be the syntactic ts of P(H ). Then X
divides Y. '

Lemma 5. The ts X of & is an injective s if and only if P(A) is a biprefix.
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Proot. First note that X is injective if and only if each o€ 2 induces an injective
function on Q. Furthermore a®oa""?" is a suffix of ¢ “'7a*" %" if and only if & = 7,
i < j and io = jo. Therefore, X is injective if and only if P(sf) is a biprefix. [

I.emma § was also observed by Pin (private commmunication).

Theorem 6. If of is an injective au:omaton, then so is the minimal automaton of
PLH)".

Proof. Let Y = (P, A) oe the minimal automaton of P(s&f)*. In [7] it is shown that

P={g;l-m=<j<2"} where m =max (2" -2°)

oeX
ic#0
and
g =) 'P(A)", 0sj<2"
ard
q-;=a'P(f)*, 1<j=sm.
Furthermore

“ __{q,-ﬂ . ifj4+-1=2",
undefined otherwise
andifocel,

_ {q-—Z" +2" ific #fandj =2,
1 undefined otherwise.

It follows easily from these results, that if each o € X induces an injective function
on Q, then each letter of A induces an injective function on P. [J

Coroliaiy 1. Every injective ts divides an injective ts which is the syntactic ts of a
finite biprefix.

Recall that a varietv of finite semigroups is a collection of finite serigroups
closed under division and direct product. A variety of rational languages is a
rollection of rational languages closed under union, complementation, quotients
and inverse morphism. Eilenberg’s Theorem sets up a one to one corr¢spondence
between varieties of finite semigroups and varieties of rational languages. See [1]
and | 3] for details.

Following Pin [7] we say that & variety " of rational languages is described by
a class € of prefixes if 7" is the smallest variety containing P* for all Pe €. Let
#n be the variety of rational languages corresponding to the variety In of semi-
groups generated by inverse semigroups.

Corollary 2. #n is described by its finite biprefixes.
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Proof. Let S &In. Then S divides an inverse semigroup 7. As is well known, T
has a faithful representation by injective functions on T The results now follow
from Corollary 1 and Eilenberg’s Theorem. []

If X is a finite subset of A*, define the complexity Xc of X to be the complexity
of the semigroup S(X ™). See [12] for an exposition of complexity theory.
The following is proved in [4].

Theorem 7. The complexity of X is less than or equal to card(X).

If X is a biprefix we have
Theorem 8. Let X be a finite biprefix. Then Xc << 1.

Proof. Let Y = (P, T) be the syntactic ts of X *. By Theorem 3, Y islocally injective.
In particular, the transformation monoid 2" does not divide Y. Recall that 2’ has
two states and the identity map and the two constant maps as transformations. It
follows from the results of [1, Chapter 4], that Y€ < 1. Since Yc = T, the theorem
is proved. [

3. Some cpen problems

(1) Find necessary and sufficient conditions for a finite prefix £ to be such that
the syntactic ts of P* is locally injective.

Any finite biprefix and any finite very pure prefix is locally injective. I.LE. Pin
{(private communication) has given the following construction of iocally injective
finite prefixes. Let A and B be alphabets and let f:A™>B" be a non-trivial
morphism such that Af is a complete biprefix.

Let P be a finite very pure prefix. Then Pf is a locally injective prefix which is
neither a biprefix nor very pure. Are all finite locally injective prefixes which are
not very pure nor biprefix obtained this way?

(2) Let LIn be the variety of semigroups S such that eSe divides an inverse
semigroup for all idempotents e € S. Is LIn described by its finite prefixes?

The author has constructed an automaton & =(Q, £) such that the ts of & is
locally injective, but the syntactic ts of P(sf)” is not locally injective. A positive
solution to this problem would be useful in applying the theory of prefixes to the
complexity theory of ts where locally injective ts’s play an important role.
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