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Abstract

We prove that the pseudovarieties of all finite semigroups, and of all aperiodic fini'e
semigroups are irreducible for join, for semidirect product and for Mal’cev product.
In particular, these pseudovarieties do not admit maximal proper subpseudovarieties.
More generally, analogous results are proved for the pseudovariety of all finite serri-
groups all of whose subgroups are in a fixed psendovariety of groups H, provided that
H is closed under semidirect product.

Résumé

Nous prouvons que la pseudovariété de tous les semigroupes finis, et celle de tous l=s
semigroupes apériodiques finis sont irréductibles pour le sup, pour le produit sem.ci-
rect et pour le produit de Mal’cev. En particulier, ces pseudovariétés n'admettent
pas de sous-pseudovariété maximale propre. Des résultats analogues sont établis plus
généralement pour la pseudovariété de tous les semigroupes finis dont les sous-groupes
sont dans une pseudovariété de groupes fixée H, pourvu que H soit fermée par procuit
semidirect.

! The two first authors were partially supported by NSF Grant DMS920381. Part of this work was done
while the second author was an invited Professor at the Université Paris-VI. All three authors were partially
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Within the context of the general study of the structure of the lattice of pseudovarieties
of finite semigroups, the question of describing the irreducible pseudovarieties is both a
natural and an old problem. For instance, ouly a handful of the “classical” pseudovarieties
are known to be join-irreducible or join-reducible (see {1, chap. 9}). In particular, the
pseudovariety of nilpotent semigroups is join-irreducible, whereas J, the pseudovariety of
J-trivial semigroups, is join-reducible { Almeida [2]).

In this paper, we show that if H is a pseudovariety of groups closed under semidirect
product, then the pseudovariety of all semigroups all of whose subgroups are in H is
irreducible for join, for semidirect product and for Mal’cev product. The particular cases
where H is the pseudovariety of all groups, and where H is trivial yield the irreducibility
of S, the pseudovariety of all finite semigroups, and of A, the pseudovariety of aperiodic
semigroups. As a consequence, it follows that these pseudovarieties do not contain maximal
proper subpseudovarieties, a fact which generalizes a result of Margolis [11].

If we consider the analogous problem for § and G, respectively the variety of all semi-
groups and the variety of all groups, it is known that § is join irreducible (Evans [6]) but
that § = Com @ Com = Com * Com where Com is the variety of all commutative semi-
groups: the first equality is immediate when one considers the projection from the free
semigroup onto the free commutative semigroup; the second one follows from a result of
Mal’cev stating that the free semigroup on 2 generators is embedded in the free metabelian
group [10]. It is also known that G is irreducible for join, semidirect product and Mal'cev
product [12].

The proof of the join irreducibility of § is based on the manipulation of identities, and
cannot be used directly for pseudovarieties. However, it is known that each subpseudova-
riety of a pseudovariety V is defined by a set of formal equalities between elements of
certain relatively free profinite structures (Reiterman’s theorem, see [1, 17, 20]). We call
these formal equalities pro-V-identities. They are also called pseudoidentities [1]. Formal
definitions are given in Section 1.1.

In order to prove that a pseudovariety V is join (resp. semidirectly, Mal'cev) irre-
ducible, we use an idea inspired by Evans’s proof. It is enough to prove the following:

From every pair of pro-V-identities u; = vy and ug = vy which are non trivial,

i.e. which define proper subpseudovarieties V; and V;, of V, we can construct a

noun trivial pro-V-identity which holds in Vv Vg (resp. V1 +V,, Vi @ V,).

This is done in several steps, each of which consists in constructing non trivial con-
sequences of u; = v; and uy = vy with some special properties. These consequences are
obtained by encoding u; = v; and u, = v;. That is, we substitute given values for the
variables of the given pro-V-identities in such a way that the resulting pro-V-identities
are again non trivial. The main result is proved in Section 3.

1 Preliminaries

Here we review some elementary definitions on pseudovarieties, profinite semigroups and
pro-identities. We also remind the reader of the definition of unambiguous relation semi-
groups and of the unambiguous product of semigroups (Sakarovitch [22]). This product
will appear in the proof of several of our intermediary results.

1.1 Pro-identities and pseudovarieties

A class V of finite semigroups is called a pseudovariety if it is closed under taking sub-
semigroups, homomorphic images and finite direct products. The trivial pseudovariety
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consists only of one-element semigroups. For classical results concerning semig-oups and
pseudovarieties, and in particular for the definitions of the semidirect product § « T and
the wreath product §o7 of semigroups, and of the product V + W of pseudovarieties, the
reader is referred to [5, 14, 1].

If V and W are pseudovarieties, the Mal'cev product V @ W is the pseudovariety
generated by the semigroups 5 such that there exists a morphism 7: 5 — T, wih T € W
and er~! € V for each idempotent e of 7.

If S is a semigroup, we let S! be the monoid equal to §, if S has an identity, and
to § U {1} otherwise. Following Eilenberg, we say that a pseudovariety of semigroups is
monoidal if it is generated by monoids, or equivalently, if $* € V for each § € V [5, Prop.
V.1.2].

If V is a pseudovariety of semigroups, a semigroup is said to be pro-V if it is a projective
limit of semigroups of V. A topological semigroup is pro-V if and only if it is compact,
0-dimensional and all its finite continuous homomorphic images are in V {13]. Let 4 be
a finite set, or alphubet. We denote by A* the free semigroup on 4 and by I;A(V) the
projective limit of the A-generated elements of V. The main properties of these s:migroups
for our purposes are summarized in the next proposition [1, 3]. They will be used freely
in the sequel.

Proposition 1.1 Let A be an alphabet and let 'V be a non trivial pseudovariety.

o There exists a natural injective mapping 14 — FA(V) such that A generates a
dense subsemigroup of Fa(V).

o F4(V) is the free pro-V semigroup over A: if o is a mapping from A in.o a pro-V
semigroup S, then o admits a unique continuous extension &: Fa(V) — £ such that
o =10.

o A finite semigroup is in V if and only if it is a continuous homomorphi- image of
Fa(V) for some alphabet A.

Whenever convenient, the mapping t: A — FA(V) is ignored, and A is cons dered as a
subset of Fu(V).

Observe that, if W is a subpseudovariety of V. then every pro-W semigroup is also
pro-V. In particular, the identity on A induces a continuous onto morphism i Fa(V) —
F4(W), called the natural projection of F4(V) onto F4(W).

Let us fix some notation. For each alphabet A and for each z € FA(V), the sequence
(™). converges in F4(V), and we denote by z* its limit: =* is the only idempctent in the
topological closure of the subsemigroup generated by z {1]. Let A be a n-lette- alphabet,
A = {a;,...,a,}, let B be an alphabet, and let z,,...,2, € f’g(V). Ifue FA(V). we
denote by u(z,. ...z, ) the image of v under the continuous morphism ¢: FA(Vv — Fg(V)
defined by letting a;¢ = z; for 1 <i < n.

A pro-V-identity on the set of variables A (or in |A| variables) is a pair (u,v) of
elements of F4(V). It is usually denoted u = v. It is said to be non trivial if tle elements
u and v are distinct. We say that u = v is an identity, or word identity, if v and v are
words, i.e. finite products of elements of A, or elements of A*:. If the pseudcvariety V is
understood, we also say pro-identity for pro-V-identity.

A semigroup 5 € V satisfies the pro-V-identity v = v if, for any continuous morphism
o: F4(V) = §, one has uo = vo. Let T be a set of pro-V-identities. A subcless W of V
satisfies ¥ if each element of W satisfies each element of £. It is defined by £ il it consists
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of all the elements of V which satisly ¥. Reiterman proved the following fundamental
theorem [20].

Theorem 1.2 Let V be a pseudovariety and let W be a subclass of V. Then W is a
pseudovariety if and only if it is defined by a set of pro-V-identities. In particular, every
proper subpseudovariely of V satisfies some non trivial pro-V -identity.

1.2 Unambiguous and wreath products

A semigroup of relations is a pair {Q, R) where @ is a finite set and R is a semigroup of
@ X @ Boolean matrices. Let .4 be a (possibly non deterministic) automaton over the
alphabet 4 with state set () and let u be a word in A%. The transition labeled by u,
denoted up, is the Q x @ Boolean matrix whose (p, ¢)-entry is 1 if there is a path labeled
uin A, and 0 otherwise (p,q € Q). The set Atpis a subsemigroup of the set of all @ x Q
Boolean matrices, and (@, A% p) is called the transition semigroup of A. In addition, p is
a morphism, called the transition morphism of A.

A semigroup of relations (¢, R) is said to be unambiguous if, for any elements s,t € R
and for any pair (p,q) corresponding to a non-zero entry in st, there exists a unique
element r € @ such that the entries (p,7) of s and (7, ¢) of t are non zero. The notion of
unambiguous relation semigroup is closely associated with that of a code, that is, of a free
set of generators of a free subsemigroup of the free semigroup. More precisely, let A be
a finite automaton with one initial-terminal vertex 1, and such that each state is visited
along some successful path (trim automaton). Let us also assume that each word labeling
a path from 1 to 1 and not visiting 1 as an internal state of that path, labels exactly
one such path. Let C be the set of those words. Then A recognizes C*. Moreover the
transition semigroup of A4 is unambiguous if and only if C is a code [4, Thm IV.2.1].

If (@, R) is an unambiguous relation semigroup, we can define, for each semigroup S,
a semigroup S @) (@, R) by considering the set of all @ x @ matrices with entries in 5U {0}
(with 0 a new zero) obtained from the matrices in R by replacing the non zero entries
by arbitrary elements of 5. The usual matrix multiplication makes § @ (Q,R) into a
semigroup, called the unambiguous product of S and (@Q, R). Note that, in the particular
case where (Q, R) is a semigroup of partial functions, S@(Q, R) coincides with the wreath
product as it is defined by Eilenberg [5] (see [22]), and § @ (Q, R) is a semidirect product
of the form §* + R for some integer & [5, Cor. V.4.3]. Here §* is the direct product of k
copies of 5.

If V and W are pseudovarieties, we let V @ W be the pseudovariety generated by
the semigroups of the form V @ (Q.W) where V € V and (Q,W) is a semigroup of
unambiguous relations with W € W.

Let us also note the following result (24, Prop. 3.4].

Lemma 1.3 Let § be a finite semigroup and let (Q, R) be a semigroup of unambiguous
relations, with Q finite. Then every group G in S @ (Q, R) admits a normal subgroup K
dividing a finite direct product of copies of S, such that G/K divides R.

1.3 Pseudovarieties of the form H

If H is a pseudovariety of groups, we denote by H the pseudovariety of all semigroups, all
of whose subgroups are in H.
It is clear that H is monoidal, and that it contains A, the pseudovariety of aperiodic

semigroups. In fact, A = I, where I is the trivial pseudovariety. Moreover, Lemma 1.3
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shows that H = H® A. In addition, if H is closed under semidirect product, 1hen H is
closed under semidirect product, and H = H @ H.

2 Pro-V codes

Let A and B be alphabets, and for each @ € A, let &, € Fp(V). By Theorem 1.1,
there is a unique continuous morphism x: 17“4(V) — FB(V) such that ax = &, for each
a € A. It is easy to verify that if a semigroup S € V satisfies a pro-V-identity = = v with
u,vE FA(V), then it satisfies the pro-V-identity ux = vk.

In analogy with the terminology concerning the free semigroup (see {4]), w¢ say that
the morphism x is a pro-V coding morphism if it is one-to-one. In this case, we call Ax
a pro-V code. This means exactly that the x-image of a non trivial pro-V-ident ty is also
non trivial.

2.1 Word codes and pro-V codes

Let A and B be alphabets, and let k: AT — B7 be an injective morphism. The imorphism
£ admits a unique continuous extension to a morphism from FA(V) into F@(V), also
denoted by k. Moreover, the set ¢ = Ak is a (word) code, that is C freely generates a
free subsemigroup of B¥ (namely C*). If the syntactic semigroup of C* belongs to a
pseudovariety V, we say that C is a V-code.

In this section, we find a sufficient condition for a word code to be a pro-V code as
well.

Let P be the set of proper prefixes of the words of C, that is,

P={we B*|wz € C for some 2 € BT}.

In particular, 1 € P. The sagittal automaton of C is the automaton with st ute set P,
initial and terminal state 1, and with transitions defined, for each letter b € B, us follows:
there is a b-labeled arrow from p to ¢ (p,¢ € P) if, either ¢ = pb,or ¢ = 1 and pbe C.
(The sagittal automaton is called the literal automaton of C* in [4, p. 98].) The transition
semigroup of this automaton, denoted Sag((C'}, is called the sagittal semigroup o: C'. Since
C' is a code, the sagittal automaton of ' is unambiguous, and { P, Sag(C)) is a semigroup
of unambiguous relations.

In the particular case where C' is a prefix code, that is, no word of C is a preper prefix
of another word of C, it is easily verified that the sagittal automaton of C' is deterministic,
so that the relation semigroup (P, Sag(C'))is a transformation semigroup.

The sagittal semigroup of C is close to the syntactic semigroup of C*. In fact, if the
syntactic semigroup of Ct lies in a psendovariety V, then Sag(C) € LI@ V where LI is
the pseudovariety of all semigroups S such that eSe = e for each idempotent ¢ of 5 [9].

By adapting the proof of [16, Prop. 4.3}, we get the following encoding resilt.

Proposition 2.1 Let A and B be alphabets, let x: AT — BY be an injective morphism
and let (P, Sag(C)) be the sagittal relation semigroup of the code C = Ax. If V is a
monoidal pseudovariety such that S @ (P,Sag(C)) € V for each S € V, then ihe contin-
uous morphism k: Fo(V) — Fg(V) is injective as well, that is, C' is a pro-V code.

Proof. Let u and v be distinct glements of FA(V). Then, there exists a semigroup § € V
and a continuous morphism ¢: F4(V) — § such that uo # vo. Let p: Fp(V) — Sag(C)
be the continuous extension of the transition morphism of the sagittal automaton of C'. By
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hypothesis, ST @ (P, Sag(C)) lies in V. We define a continuous morphism 7 from FB(V)
into S @ (P, Sag(C)) by letting, for each letter b € B, b7 be the matrix obtained from
bp by replacing the non zero entries on pairs of the form (p,pb) (p,pb € Ax) by 1 € §1,
and the non zero entries on pairs of the form (p,1) (p € P and pb = ak, ¢ € A) by ac.
For each word w = ay ---a, € AT, it is easily verified that wxr has its (1,1) entry equal
to wo. By continuity, the same equality holds for all elements w € F4(V), since they are
limits of sequences of words. Therefore usxt # vs7, and hence uk # vk. Thus x is a pro-V
coding morphism. O

The following consequence of this proposition is easily derived.

Corollary 2.2 Let H be a pseudovariety of groups closed under semidirect product. Then
every finite H-code is a pro-H code. In particular, every finite code is a pro-S code and
every finite aperiodic code is a pro-A code.

Note. In [8, Thm. 1}, Koryakov shows that the n-element code C, = {y,zy,...,z" 1y}
is a pro-H code for any pseudovariety of groups H. It is easily verified that C, is an
aperiodic code for all n, so this result follows from the above corollary. In the same paper,
Koryakov uses the resulting continuous one-to-one morphisms from the n-generated free
pro-H semigroups F,(H) into F5(H) to construct a continuous one-to-one morphism from
F,(H) (the inductive Limit of the £,(H)) into F3(H) with open image.

Examples. The sufficient condition in Proposition 2.1 is not necessary. Let indeed N
denote the pseudovariety of nilpotent semigroups, N = [z*y = yz* = z¥]. Then F4(N) =
At U {0} (see [1]) and it is easily verified that every word code is a pro-N code.

Since every one-generated aperiodic semigroup is also nilpotent, for each ome-letter
alphabet {a}, we have ﬁ{u)(A) = at U {0}. It is then also easily verified that each non
empty word a® constitutes a code, whose sagittal semigroup is the k-element cyclic group,
and which is also a pro-A code.

However, not every word code is pro-A. A counterexample is given by the word code
{aa,ab,ba,bb}. Let indeed B = {z,y,2,t} and let x: Fg(A) — F{a!b}(A) be given by
2K = aa, yk = ab, zk = ba and ik = bb. Then

(ry”z¥2")k = a“(ab)”(ba)*a”
= a“(ba)*bb{ab)~a”
= (z¥2"ty"zY)k.

But z¥yz%2% # z¥z*ty“s* in Fg(A) (since they have distinct alphabetical contents),
so x is not one-to-one, and hence {aa, ab,ba,bb} is not a pro-A code.

2.2 A coding for 2-variable pro-identities

In this section, we exhibit another, more specific, coding morphism. The reason for con-
sidering this particular coding will be made clear in Section 3.

Proposition 2.3 Let V be a monoidal pseudovariety such that V.= V @ A. The con-
tinuous morphism K: Fi )\ (V) — Fi; ()(V) defined by an = z¥y* and br = z¥(yz)“y~.
ts a pro-V coding morphism.
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Proof. The proof relies on the same idea as the proof of Proposition 2.1, and mekes use of
an unambiguous automaton recognizing the subsemigroup generated by a certain infinite
(word) code.

Let us consider the 2-letter alphabet {z,y} andlet C = z¥yytua*(yz)*yy?. Then C
is a code and the following automaton, A, recognizes C'* (with initial and terminal state

1).

Let p:{z,y}* — R be the transition morphism of A, and let Q be its set of states,
@ = {1,...,7}. Since C is a code, (Q, R) is a monoid of unambiguous relations. Moreover,
one can verify that R is aperiodic, and hence R € V. Therefore we may consider the
continuous extension p: F{Ivy}(V) — R of the transition morphism of A. Let {a,b} be
another 2-letter alphabet, and let u,v be distinct elements of I:’{ayb}(V): there exists a
semigroup S in V and a continuous morphism o: F{a,b}(v) — S5 such that uc # vo. By
hypothesis, the semigroup T = S* @ (@, R) lies in V. Let 7 be the continuous morphism
from F{r‘y}(V) into T defined by letting z7 and y7 be the @ x Q matrices obtained from
zp and yp respectively in the following fashion:

e for z7, replace all non-zero entries of zp by 1 € S1;

e for yr, replace the (3, 1) entry of yp by ao. the (7.1) entry of yp by bo and all other
non-zero entries by 1.

Then, for each n, the (1,1) entry of (z7y")r is ao. the (1,1) entry of (z"(yz)"y™)7
is bo, and hence, by continuity, the (1,1) entry of (z¥y*)7 is ao and the (1, 1) entry of
(z“(yx)“y~)7 is bo. More generally, if x is the continuous morphism from 1’4(V} into
FB(V) defined by ak = z¥y* and bk = 2¥(yz )y, then for each word w € A", the (1,1)
entry of wxr is wo. By continuity again, the (1, 1) entry of wkr is wo for each w € Fa(V).
Therefore, the (1, 1) entries of ux7 and vkr are distinct. so uk # vk. Thus x is one-to-one,
that is, k is a pro-V coding morphism. 0

Note. In the above proof, one could only require that V.= V @ W, where W is the
pseudovariety generated by R. But R contains the 3-element monaid Uz = {1, g, d} given
by g% = dg = ¢ and d% = gd = d. (Say {y?p, (v*zy?)p. (y*zyzy®)p} is isomorphic to 1))
Therefore V = V @ W implies V = V & (U;) = V + (U;). But the semidirec. closure of
(Uz) is A (see [5]),50 V@ W =V is equivalent to V) A = V.

2.3 A last coding result

Our last coding result shows how one can use the two members of a non trivial pro-H-
identity to construct a 2-element pro-H-code, when H is a pseudovariety of groups closed
under semidirect product.

Proposition 2.4 Let H be a pseudovariety of groups closed under semidirect product. Let
u' = v be a non trivial pro-H-identity on some alphabet B, and let z be a new symbol,
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not in B. Then the continuous morphism &: F(ayb}(ﬁ) — FBU{z}(ﬁ) given by ak = u'z
and bk = v'z, is a pro-H coding morphism.

Proof. Let u,v be distinct elements of F{ayb)(ﬁ). There exists a semigroup Sy (resp. S3)
in H in which the pro-V-identity u = v (resp. u’ = v') does not hold. Then § = §1x $; €
H, and S satisfies neither « = v nor u' = »'. Since H is monoidal, we may assume that §
is a monoid. Let yu: F{ayb)(ﬁ) — S and v: Fg(H) — S be continuous morphisms such that
up # vp and w'v # v'v. Let B = BuU{z}.

Let S be the semigroup S = SU{s|s € S} U {Z} (where z is a new symbol) endowed
with the following product:

s-t = st
-1 = 1
z-2 = Z
3.t = st
Z:t o= i

forall s,t € Sandz € §. The elements 5 (s € 5) and % form an aperiodic ideal of S, so
S ¢ H, and it follows that the wreath product § o S lies in H as well.

We now define a continuous morphism 7: £:/(H) — § o § by letting:

o for each letter b € B, br = (f1,bv), where fi:§ — § is the constant function with
value 1;

o z7 = (f,,1), where f,:§ — § is given, for each s & S, by

by ifs=1vors=rv

ap ifs:u’uors:gf’:u;
(s}fz =
1 otherwise.

Then, fo; each word w € BY, wr = (f1,wv). BX contingityx the same equality holds for
all w € Fg(V). Moreover, (wz)7 = (fi,wv)(f2,1) = (g,1), with (s)g = (s)/i (swv)f. =

(swv)f, for each s € S. In particular, (1)g = (wv)f; and (1)g = (wv)f, = (wv)f, = (i)g.
Let w' € FB(V) and let (w'z)r = (g¢',1). Then
(wzw'z)r = (¢.1)(¢", 1) = (A1) with (s)h = (s)g (s)g’ = (s)g (1)g' = (s)g (1)g".

So (1)h = (1)g (1)¢' = (wv}[. (w'v)f,. More generally, if w € {a,b}*, then w7 = (h,1)
with (1)h = wu. By continuity, it follows that uskr = (g,1) and vsr = (h,1) satisfy

g(ly=uu and A(l)=ovu."

So ukT # vkt, and hence ux # vk. Thus & is one-to-one, and hence it is a pro-H coding
morphism. a

3 Irreducibility of certain pseudovarieties

In the rest of this article, H will be a pseudovariety of groups closed under semidirect
product. We will prove that H is Mal’cev irreducible. We first prove a weaker result.

Proposition 3.1 Let V be a monoidal pseudovariety closed under unambiguous product
with A and let W be a proper subpseudovariety of V. Then (W @ Com) NV is proper.
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Proof. Let u = v be a non trivial pro-V-identity satisfied by W. Let X be the alphabet
of variables of v = v, say, X = {zy,...,2,}. Let A = {a,b} and let x: Xt — A% be
defined by z;x = a'b for each 1 < ¢ < n. Then X« is a prefix code, and it is easily verified
that Sag(X«) is aperiodic. By Proposition 2.1, it follows that us = wk is a ron trivial
pro-V-identity. In addition, this pro-identity is satisfied by W, since it is a continuous
homomorphic image of a pro-identity which is. So we may assume that « = v vas chosen
to be a 2-variable pro-V-identity, on the alphabet A.

Let S be the pseudovariety of all semigroups and let 7: F4(S) — Fa(V) be t1e natural
projection. Since 7 is onto, we may consider elements u’ and v’ of F4(S) such that w'r =
and v'mr = v. In particular, W satisfies the non trivial pro-identity u' = v’

We now consider the pro-S-identity

w(z¥y”, 2% (yz)“y”) = o' (2¥y”, 24 (ye) ). (1

Observe that Com satisfies (zy)* = z¥y* = 2z“(yz)*y”. Now (18, Lemma 1.2] states
that W @ Com is defined by the pro-S-identities of the form £(21,...,2.) = {(21,..., 2n)
where { = r is an n-variable pro-S-identity satisfied by W and where Coin satisfies
z1 =+ =z, = 2t. Thus W @ Com satisfies the pro-identity (1), and hen-e so does
(W @ Com) N V. Since the latter pseudovariety is contained in V, it also satisfies the
pro-V-identity obtained by taking the image under 7 of the pro-identity (1), namely

u(z¥y”, 2% (yz ) y”) = v(z¥y”, 2 (yz ) y*). (2)

There remains to verify that the pro-V-identity (2) is non trivial, which follows imme-
diately from Proposition 2.3, thus concluding the proof. D

Theorem 3.2 Let H be a pseudovariety of groups closed under semidirect product. Then
H is Mal’cev irreducible.

Proof. Let us first consider a proper subpseudovariety V; of H. By Proposition 3.1,
(Vi ® Com) n H is proper as well. As above, we may consider a 2-variable non trivial
pro-H-identity u = v satisfied by (V; @ Com)n H.

Let us now assume that H = V@V, with V, a proper subpseudovariety o” H as well,
and let ' = v’ be a non trivial pro-H-identity satisfied by V,. Let 2 be a new variable,
not in the alphabet of variables of 4’ = v/. Then by Proposition 2.4, the pro-H-identity
u(u'z,v'z) = v(u'z,v'z) is non trivial. To get a contradiction, it suffices to verify that it
is satisfied by a set of generators of Vi @ V2, and hence by the pseudovarierr V, @ V,
itself.

Let C be the alphabet of variables of this pro-identity and let A = {a, 6} be the alphabet
of variables of © = v. Let S be a semigroup in H admitting an onto morphism #:§ — T
such that T € V; and er™! € V; for each idempotent e of T, and let ¢: f-(H) — §
be a continuous morphism. Let also x: F4(H) — Fo(H) be the continuous morphism
determined by ax = u'z and bx = v'z.

X

Eq(H) Fo() ——> 5 — 1T

Since T € V3, T satisfies u'2 = v'z, and so akpr = brpr = to for some tg € T. Let Tp
be the subsemigroup of T' generated by to. Then Ty € Com. Moreover, if Sq = Tor L,
then S € V; @ Com and the range of ki is in Sp. But Sy lies also in H, so S satisfies
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1 = v, and hence uxky = vy, Therefore, u{v'z, v'z)p = v(u'z,v'2)p. This concludes the
proof. 0

If V is a pseudovariety, we let L'V be the pseudovariety of semigroups . such that
eSe € V for each idempotent € of 5. Since H is monoidal, it is clear that the only
pseudovariety V such that H = LV is V = H itsell.

Corollary 3.3 Let H be a pseudovariety of groups closed under semidirect product. Then

H is semidirectly irreducible.

Proof. Let us assume that H = V, * V3 where V; and V are proper subpseudovarieties
of H. Since H@H = H and V, + Vo, € LV @ V, (see for instance {25, Lemma 2.2)),
it follows that H = L'V, @ V3, and by Theorem 3.2, H = LV,. Therefore H = V;, a
contradiction. 8]

Corollary 3.4 Let H be a pseudovariety of groups closed under semidirect product. Then

H is join irreducible.

Proof. Let us assume that H = V;V V, where V; and V, are proper subpseudovarieties
of H. Since H@ H = H, we have H = V, @ V4, in contradiction with Theorem 3.2. So
H is v-irreducible. O

4 Applications

The above results have noteworthy consequences. For instance, we get immediate proofs
of the infinity of several well-known hierarchies of pseudovarieties.

First let us observe that, if V is a pseudovariety of monoids and Vg is the pseu-
dovariety of semigroups generated by the elements of V, then the join- (resp. semidirect,
Mal’cev) irreducibility of Vg implies that of V (see [1, Section 7.1]). It follows that, for
each pseudovariety of groups H closed under semidirect product, the pseudovariety of all
monoids in which the subgroups are in H, is Mal’cev irreducible, semidirectly irreducible
and join irreducible. For convenience, this pseudovariety is also denoted by H, and in
the case of the trivial pseudovariety of groups, we also denote by A the pseudovariety of
aperiodic monoids.

The Straubing dot-depth hierarchy is a hierarchy of pseudovarieties of monoids within
A, with connections with language theory and the theory of complexity for boolean cir-
cuits. It is defined by letting Vo = I, the trivial pseudovariety, and V.1 = OV, for
all n > 0. Here ¢ denotes the Schiitzenberger operator. For complete definitions and
references, see 23, 19]. It is well-known that A is the union of the increasing sequence of
the V. In [15], it is proved that for any pseudovariety V, OV C B, @ V, where By is
the pseudovariety of aperiodic semigroups

By = [(e“sy™tz”) sy v(e¥uy“ve®)” = (2¥sy“te” ) (x¥uy vz )],
Proposition 4.1 The Straubing dot-depth hierarchy is infinite.
Proof. Let us assume that A = V., with » minimal. Then A = {V,, and hence

A = B, @ V,. But A is Mal’cev irreducible and By is proper, and so is V,, by definition
of n, so we get a contradiction. a
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The original proof of this statement is due to Straubing [23].
The Krohn-Rhodes theorem [5] states that each finite monoid M divides a wreath

product of the form
M < MgoMi_1o0---0M,

where the M; are either groups dividing M or copies of the three element monoid Us (see
Section 2.2). It follows that each finite monoid M divides a wreath product of the form

M < AnoGnoAn_l O"'OG‘} OA(J

where the A; are aperiodic and the G; are groups (more precisely, the G; ire wreath
products of copies of groups dividing M). Let us consider the following sequence of
pseudovarieties of monoids: Cg = A and Cpiy = A * G ¥ C,, for each n > 0. By the
Krohn-Rhodes theorem, the pseudovariety M of all finite monoids is the union of the
increasing sequence (Cp)n,. The least integer n such that a given finite monoid M lies
in C, is called the group complezity of M. It is an old-standing conjecture whether the
group complexity of a finite monoid M is effectively computable [5, 7). Our resnlts give an
immediate proof that the hierarchy given by the C,, is infinite. This was originally proved
by Rhodes [21].

Proposition 4.2 The group complezity hierarchy is infinite.

Proof. If M = C,;; with n minimal, then M = A * G + C,,. Since M is semidirectly
irreducible and M # C,, by definition of n, it follows that M = A+ G, and hence M = A
or M = G, a contradiction. 0

The Krohn-Rhodes theorem also implies that, if H is a pseudovariety of groups such
that H = H « H, then the pseudovariety of monoids H is the union of the increasing
sequence of pseudovarieties given by Co(H) = A and Cpy1(H) = A* G+ C,(H) for each
n > 0. With the same proof, it can be shown that the resulting hierarchy in E{ is infinite.

Another consequence of the Krohn-Rhodes theorem is that each aperiodic monoid di-
vides a wreath product of copies of U,. Let now V be a subpseudovariety of A containing
Up and let V) = V and VD) = V « V(™) This is an increasing sequerce of pseu-
dovarieties of monoids within A, and A = |J, V™. Then we have the following infinity
result?,

Proposition 4.3 Let V be a subpseudovariety of A containing Us and let (V (M), be the
assoctated increasing sequence of subpseudovarieties of A. If V # A, then V) s strictly
contained in V(nt1) for each n > 1. That is, the resulting hierarchy within A is infinile.

Proof. If V™ = V(n+1) with n minimal, then A = V « V(¥ Since A is semidirectly
irreducible, it follows that A = V by definition of n, a contradiction. 0

We can also extend a result of Margolis on maximal subpseudovarieties {11} {for pseu-
dovarieties of semigroups or of monoids).

Corollary 4.4 Let H be a pseudovariety of groups closed under semidirect product. Then
H admits no mazimal proper subpseudovariety.

?The authors thank P. Higgins for bringing this corollary to their attention.
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Proof. Let W be a maximal proper subpseudovariety of H, and let S € H\W. Let W'
be the pseudovariety generated by S. Then W C Wv W' C H and W # W VW' so
H = WV W/’ Since His V-irreducible, it follows that = W', In particular, H admits a
finite free object over each finite alphabet. This yields immediately a contradiction, since
H admits infinitely many 1-generated elements. a

Finally, let us recall that Eilenberg’s theorem [5] shows that varieties of rational lan-
guages are in bijective correspondence with pseudovarieties of semigroups. In particular,
the varieties of languages associated with S and A in this correspondance are respectively
the variety of all rational languages and the variety of all star-free languages [14]. The
irreducibility results obtained in this paper can be readily translated into analogous results
for varieties of rational languages.

5 Conclusion

We have proved that, whenever H is a pseudovariety of groups closed under extension,
then the pseudovariety H of all finite semigroups in which all the subgroups are in H, is
irreducible for the three main binary operations on pseudovarieties, the join, the semidirect
product and the Mal’cev product.

Our proof relies heavily on coding techniques for identities in relatively free profi-
nite structures (pro-identities). We gave sufficient conditions under which an injective,
or coding, morphism between free semigroups extends to an injective continuous mor-
phism between free pro-V semigroups. We also proved the injectivity of other continuous
morphisms between free pro-V semigroups. This opens up the question of describing as
accurately as possible all finite pro-V codes, that is, all continuous embeddings of a free
pro-V semigroup into another one.

Observe that our method does not apply to other pseudovarieties than those of the
form H, where H is a pseudovariety of groups closed under semidirect product. It would
be interesting to develop general techniques to prove just, say, the join irreducibility, or
the semidirect irreducibility of a pseudovariety.

We can also ask, more specifically, whether all pseudovarieties of the form H (with H
a pseudovariety of groups) are irreducible for join, semidirect product or Mal’cev product.
For instance, Margolis [11] shows that H has no maximal proper subpseudovarieties for
any H containing the pseudovariety Ab of all commutative groups.

Another interesting question is that of the join irreducibility of the complexity classes
C introduced in the previous section. We now know that Co is join and semidirectly
irreducible. The other classes are trivially semidirectly reducible.
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