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A b s t r a c t  

We prove that the pseudovarieties of all finite semigroups, and of all aperiodic fin1 e 
sernigroups are irreducible for join, for semidirect product and for hlal 'ce~. product. 
In particular, these pseudovarieties do not admit maximal proper suhpseudovariet~es. 
More generally, analogous results are proved for the pseudovar~ety of all finite serri- 
groups all of whose subgroups are in a fixed pseudovariety of groups H ,  provided ti1 ~t 
H is closed under semid~rect product. 

R & u m 6  

Nous prouvons que la pseudovaridtl de tous les semigroupes fin~s, et celle de tous 1.s 
semigroupes apdriodiques finis sont irrlductibles pour le sup, pour ie prodult sern ( , I -  

rect et pour le produit de Mal'cev. En particulter, ces pseudovariktls n'adrnettent 
pas de sous-pseudovaridtl maximale propre. Des rlsultats analogues sent ktablis ~ l d s  
gendralement pour la pseudovariltd de tous les semigroupes finis dont les sous-groupes 
sont dans une pseudovariltl de groupes fixee H ,  pourvu que H sott fermCe par procatlit 
semidirect 
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supported by the Center for Communication and Information Science of the Univers~ty of Uebraska. 
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780 MARGOLIS, SAPIR, AND WEIL 

Within the context of the general study of the structure of the lattice of pseudovarieties 
of finite semigroups, the question of describing the irreducible pseudovarieties is both a 
natural and an old problem. For instance, only a handful of the "classical" pseudovarieties 
are known to be join-irreducible or join-reducible (see [ l ,  chap. 91). In particular, the 
~seudovariety of nilpotent semigroups is join-irreducible, whereas J, the pseudovariety of 
2-trivial semigroups, is join-reducible (Almeida 121). 

In this paper, we show that if H is a pseudovariety of groups closed under semidirect 
product, then the pseudovariety of all semigroups all of whose subgroups are in H is 
irreducible for join, for semidirect product and for Mal'cev product. The particular cases 
where H is the pseudovariety of all groups. and where H is trivial yield the irreducibility 
of S,  the pseudovariety of all finite semigroups, and of A ,  the pseudovariety of aperiodic 
semigroups. .4s a consequence, it follows that these pseudovarieties do not contain maximal 
proper subpseudovarieties, a fact which generalizes a result of Margolis [ l l ] .  

If we consider the analogous problem for S and E,  respectively the variety of all semi- 
groups and the variety of all groups, it is known that  S is join irreducible (Evans [6]) but 
that  S = Corn @Corn = Corn i Corn where Corn is the variety of all commutative semi- 
groups: the first equality is immediate when one considers the projection from the free 
semigroup onto the free commutative semigroup; the second one follows from a result of 
Mal'cev stating tha t  the free semigroup on 2 generators is embedded in the free metabelian 
group [lo]. It is also known that  G is irreducible for join, semidirect product and Mal'cev 
product [12]. 

The proof of the join irreducibility of S is based on the  manipulation of identities, and 
cannot be used directly for pseudovarieties. However, it is known that  each subpseudova- 
riety of a pseudovariety V is defined by a set of formal equalities between elements of 
certain relatively free profinite structures (Reiterman's theorem, see [l, 17, 20)). We call 
these formal equalities pro-V-identities, They are also called pseudoidentities [I]. Formal 
definitions are given in Section 1.1. 

In order to prove that  a pseudovariety V is join (resp. semidirectly, Mal'cev) irre- 
ducible, we use an idea inspired by Evans's proof. It is enough to prove the following: 

From every pair of pro-V-identities ul = vl and uz = vz which are non trivial, 
i.e. which define proper subpseudovarieties V 1  and V z  of V .  we can construct a 
non trivial pro-V-identity which holds in V 1  V V 2  (resp. V 1  * V z ,  V 1  @ V z ) .  
This is done in several steps, each of which consists in constructing non trivial con- 

sequences of u; = vl and uz = vz with some special properties. These consequences are 
obtained by encoding ul = vl and u 2  = z.2. That  is, we substitute given values for the 
variables of the given pro-V-identities in such a way tha t  the  resulting pro-V-identities 
are again non trivial. The main result is proved in Section 3. 

1 Preliminaries 

Here we review some elementary definitions on pseudovarieties, profinite semigroups and 
pro-identities. We also remind the reader of the definition of unambiguous relation semi- 
groups and of the unambiguous product of semigroups (Sakarovitch [22]). This product 
will appear in the  proof of several of our intermediary results. 

1.1 Pro-identities and pseudovarieties 

A class V of finite semigroups is called a pseudovariety if it is closed under taking sub- 
semigroups. homomorphic images and finite direct products. The t r ~ r z a l  pseudovariety 
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IRREDUCIBILITY OF CERTAIN PSEUDOVARIETIES 78 1 

consists only of one-element semigroups. For classical results concerning semig-oups and 
pseudovarietics, and ill  particular for the definitions of the sernidirect product $ * T and 
the wreath product S o  2' of semigroups, and of the product V t W of pseudovarieties, the 
reader is referred to 15, 14. 11. 

If V and W are pseudovarieties, the Afal'cev product V @ W is the ps~~udovariety 
generated by the semigroups S such tha t  there exists a nlorphism ?r: S - T', wi h T E W 
and en-'  E V for each idempotent e of T. 

If S is a semigroup, we let S' be the nlonoid equal to  S ,  if S has an identity, and 
to S U { l )  otherwise. Foloilowing Eilenberg, we sap that  a pseudovariety of sernigroups is 
monoidal if it is generated by monoids, o r  equivalently, if S' E V for each .S E 'L. [5, Prop. 
v.1.21. 

If V is a pseudovariety of semigroups, a semigroup is said to be pro-V if it is a projective 
limit of semigroups of V .  A topological semigroup is pro-V if and only if it is compact, 
0-dimensional and all its finite continuous homomorphic images are in V [13]. Let A be 
a finite set, or alphabet. We denote by A+ the free semigroup on A and by i;(V) the 
projective limit of the A-generated elements of V .  The main properties of these smigroups 
for our purposes are summarized in the  next proposition [l ,  31. They will be 1 sed freely 
in the sequel 

Proposition 1.1 Let A be a n  alphabet and let V be a n o n  trivial pseudovarztty 

There exists (1 natural injective mapping L :  A i F*(v) such that AL qcnerates a 
dense subsemigroup of FA(V). 

0 P A ( v )  is the free pro-V semigroup over A: if o i s  a mapping from A irr o a pro-V 
semigroup S ,  then u admits  a unique continuous extension u: F A ( V )  -+ 5 such that 
o = 15. 

0 A fintte scnzfqroup 2s zn V tf a n d  on ly  zf at as a contznuous honzornorphz- lmogc of 
F*(v) for some alphabet A .  

Whenever convenient, the mapping L :  A  - &(v) is ignored. and A is con, dered as a 
subset of F A ( v ) .  

Observe that ,  if W is a subpseudovariety of V. then every pro-W semigrt~up is also 
pro-V. In particular. the identity on A induces a continuous onto morphism :r & ( v )  - 
&(w), called the natural projection of F*(v) onto &(w). 

Let us fix some notation. For each alphabet A and for each z E F*(v), the sequence 
(xn!), converges in &(v), and we denote by xW its limit: xW is the only idempctent in the 
topological closure of the subsemigroup generated by x [I]. Let .4 be a n-lette. alphabet. 
A = {a, ,  . . . , a , ) ,  let B be an alphabet, and let X I . .  . .,x, E FB(v). If u E F ~ ( v ) .  Ive 
denote by u ( r l , .  . .. s,) the image of u under the continuous rnorphism p: F ~ ( V  - F B ( v )  

defined by letting a , q  = r ,  for 1 5 i < n. 
A pro-V-identzty o n  the set of variables A (or i n  jA1 variables) is a pair ( u .  c )  of 

elements of F.A(v). It is usually denoted u = u.  It is said to be non trivial if t.he elements 
u and u are distinct. We say that  u = v is an identity,  or word identity,  if 2, and c are 
words, i.e. finite products of elements of A ,  or elements of A + L .  If the pseudoiariety V is 
understood, we also say pro-identity for pro-V-identity. 

A semigroup S E V satisfies the pro-V-identity u = zl if, for any continuou: morplrisin 
o: F*(v) - S, one has uo = v a .  Let C be a set of pro-V-identities. A subclzss W of V 
satisfies C if each element of W satisfies each element of C. It is defined by  C iT it collsisth 

D
ow

nl
oa

de
d 

by
 [

H
eb

re
w

 U
ni

ve
rs

ity
] 

at
 0

1:
38

 0
8 

M
ay

 2
01

3 



782 MARGOLIS, SAPIR, AND WElL  

of all the elements of V which satisfy C.  Re~tprn la~l  proved the following fundan~ental 
theorem [20]. 

T h e o r e m  1.2 Let V be a pseudozarzety and let W be a subclass of V T h e n  W zs a 
pseudovarzety zf and only  zf zt zs defined by a set of pro-V-zdentztzes I n  pnrtzcular, every 
proper subpseudovarzety of  V satzsfies some n o n  t r ~ z w d  pro-V-tdentzty 

1.2  Unambiguous and wreath products 

A semigroup of relations is a pair (Q.  R )  where Q is a finite set and R is a semigroup of 
Q x Q Boolean matrices. Let A be a (possibly non deterministic) automaton over the 
alphabet A with state set Q and let u be a word in A + .  The transition labeled by u ,  
denoted up,  is the Q x Q Boolean matrix whose (p,q)-entry is 1 if there is a path labeled 
u in A. and 0 otherwise (p,q E Q ) .  The set A + p  is a subsemigroup of the set of all Q x Q 
Boolean matrices, and (Q,  A+p)  is called the transition semigroup of A. In addition, p is 
a morphism. called the transition n o r p h i s m  of A. 

A scmigroup of relations (Q, R )  is said to  be unambiguous if. for any eleni~uts  s, t E R 
and for any pair ( p , q )  corresponding to  a non-zero entry in s t .  there exists a unique 
element T E Q such tha t  the  entries ( p ,  T )  of s and (T, q )  of t are non zero. The notion of 
unambiguous relation semigroup is closely associated with that  of a code, that is, of a free 
set of generators of a free subsemigroup of the free semigroup. More precisely, let A be 
a finite automaton with one initial-terminal vertex 1, and such that  each state is visited 
along some successful path ( t r zm  automaton). Let us also assume that each word labeling 
a path from 1 t o  1 and not visiting 1 as an internal state of that path, labels exactly 
one such path. Let C be the set of those words. Then A recognizes C'. Moreover the 
transition semigroup of A is unambiguous if and only if C is a code [4, Thm IV.2.11. 

If (Q, R )  is an unambiguous relation semigroup, we can define. for each semigroup S. 
a semigroup SO (Q,  R )  by considering the set of all (Z x Q matrices with entries in SU {0) 
(with 0 a new zero) obtained from the matrices in R by replacing the non zero entries 
by arbitrary elements of S .  The usual matrix multiplication makes 5' @ ( Q .  R )  into a 
semigroup, called the unambiguous product of S and (Q,  R ) .  Note that ,  in the particular 
case where ( Q ,  R)  is a semigroup of partial functions. S @ ( Q ,  R )  coincides with the wreath 
product as it is defined by Eilenberg [5] (see [22]), and S @  ( Q .  R )  is a semidirect product 
of the form S k  * R for some integer k [5, Cor. V.4.3) .  Here Sk is the direct product of k 
copies of S .  

If V and W are pseudovarieties, we let V @ W be the pseudovariety generated by 
the semigroups of the  form V @ (Q: W) where I' E V and ( Q ,  W )  is a semigroup of 
unambiguous relations with W E W. 

Let us also note the following result [24, Prop. 3.41. 

Lemma 1.3 Let S be a finite semigroup and let (Q,  R )  be a semigroup of  unambiguous 
relations, with Q finite. T h e n  every group G in  S ( Q ,  R) admlts a normal subgroup li 
dividing a finite direct product of copies of S,  such that G/I< divides R.  

1.3 Pseudovarieties of the form If 
If H is a pseudovariety of groups, we denote by the  pseudovariety of all semigroups, all 
of whose subgroups are in H. 

It is clear that  H i s  monoidal, and that  it contains A ,  the pseudovariety of aperiodic 
semigroups. In fact, A = 1, where I is the trivial pseudovariet?. Moreover. Lemma 1.3 

D
ow

nl
oa

de
d 

by
 [

H
eb

re
w

 U
ni

ve
rs

ity
] 

at
 0

1:
38

 0
8 

M
ay

 2
01

3 



IRREDUCIBILITY OF CERTAIN PSEUDOVARIETIES 783 

shows that  fi = fi @ A .  In addition, if H is closed under semidirect product, I hen fi is 
closed under scrnidirect product, and fi = fi @ fi. 

2 Pro-V codes 

Let A and B be alphabets, and for each n E A ,  let i;, E PB(v).  By Thltorem 1.1, 
there is a unique continuous morphisn~ K:  b:q(V) - F B ( V )  such that a x  = b.; for each 
n E A .  It is easy to verify that  if a semigroup S E V satisfies a pro-V-identity I = v with 
u, 21 E F A ( v ) ,  then it satisfies the pro-V-identity ILK = vii .  

In analogy with the terminology concerning thr  free semigroup (see [ d l ) ,  v.c say that  
the morphism K is a pro-V coding morphism if it is one-to-one. In this case, '.re call AK 
a pro-V code. This means exactly that  the K-image of a non trivial pro-V-ident ty is also 
non trivial. 

2.1 Word codes and pro-V codes 

Let A and B be alphabets, and let K :  A+ - Bt be an injective morphism. The ~norphism 
r; admits a unique continuous extension to a morphism from & ( v )  into F,~(v) ,  also 
denoted by K.  Moreover, the set C = AK is a (word) code, that  is C freely gtnerates a 
free subsemigroup of B f  (namely C + ) .  If the syntactic semigroup of C +  b c l ~ n g s  to  a 
pseudovariety V ,  we say that  C is a V-code. 

In this section, we find a sufficient coudition for a word code to be a pro-'J code as 
well. 

Let P bc the set of proper prefixes of the svords of C'. that is, 

P = {w E B* / u;x E C' for some x E Bt} 

In particular, 1 E P. The sagittal automat or^ of C is the automaton with s. ;ite set P ,  
initial and terminal state 1, and with transitions defined, for each letter b E B, .ts follows: 
there is a 6-labeled arrow from p to  q ( p , q  E P) if, either q = pb, or q = 1 a 11 pb E C .  
(The sagittal automaton is called the literal automaton of C' in [4, p. 981.) The transition 
semigroup of this automaton, denoted Sag(C'), is called the sayittal semigroup ( 1 '  C'. Since 
C' is a code, the sagittal automaton of C' is ur~ambiguous. and (P. S a g ( C ) )  is a ,emigroup 
of unambiguous relations. 

In the particular case where C is a prefix code, that is. no word of C is a prc per prefix 
of another word of C ,  it is easily verified that the sagittal automaton of C is del orministic, 
so that  the relation semigroup (P,  S a g ( C ) )  is a transformation semigroup. 

The sagittal semigroup of C is close to  the syntactic semigroup of C+. In iact, if the  
syntactic semigroup of C t  lies in a pseudovariety V ,  then S a g ( C )  E L I  @ V ,.+here L I  is 
the pseudovariety of all semigroups S such that  eSe = e for each idempotent ti of S [9]. 

By adapting the proof of [16, Prop. 4.31, we get the following encoding res,i It.  

Proposition 2.1 Let A and B be alphabets, let h-: At - B+ be an injeciivt rnorphism 
and let ( P , S a g ( C ) )  be the sagittal relation srnligroup of the code C' = AK. If V zs a 
monoidal pseudovafiety such that  S @ (P, Sag(C))  E V for each S E V ,  then the contin- 
uous morphism K :  F A ( V )  -+ F B ( V )  is injective as u d l :  that is, C is a pro-V c d e .  

Proof. Let u and v be distinct elements of F A ( v ) .  Then, there exists a semig-oup S E V 
and a continuous morphism u: h ( ~ )  -+ S such that uu # eu.  Let p: FB(V) - S a g ( C )  
be the continuous extension of the transition nlorphism of the sagittal automat'zrn of C .  By 
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784 MARGOLIS, SAPIR, A N D  WELL 

hypothesis, S' @ (P, S a g ( C ) )  lies in V .  We define a continuous morphism r from P B ( v )  
into S1 @ (P ,  S a g ( C ) )  by letting, for each letter b E B,  br be the matrix obtained from 
bp by replacing the non zero entries on pairs of the form ( p , p b )  ( p , p b  E AK) by 1 E S1, 
and the non zero entries on pairs of the form ( p ,  1) ( p  E P and pb = arc, a E A)  by a o .  
For each word w = a,. . .a, E A + ,  it is easily verified that  wr;7 has its (1,l)  entry equal 
to W O .  By continuity, the same equality holds for all elements ul E &(v) ,  since they are 
limits of sequences of words. Therefore utir # vtir, and hence I L K  # VK.  Thus K is a pro-V 
coding morphism. 0 

The following consequence of this proposition is easily derived 

Coro l la ry  2.2 Let H be n pseudocnriety of groups closed under  stmidirect product. T h e n  
every finite E-code i s  a pro-IT code. In  part icula~,  every jinzte code is a pro-S code and 
every finite aperiodic code is u pro-A code. 

N o t e .  In [8, T h m .  11. Iioryakov shows that the n-element code C, = { y ,  x y , .  . ., x n - l y }  
is a pro-R code for any pseudovanety of groups H. It is easily verified that  C, is an 
aperiodic code for all n, so this result follows from the above corollary. In the same paper, 
Koryakov uses the resulting continuous one-to-one morphisms from the n-generated free 
pro-R semigroups F,(R) into F*(R) t o  construct a continuous one-to-one morphism from 
F,(R) (the inductive limit of the p n ( H ) )  into &(W) n l th  open image. 

E x a m p l e s .  The sufficient condition in Proposition 2.1 is not necessary. Let indeed N 
denote the pseudovariety of nilpotent semigroups, N = [ x W y  = yxW = z W ] .  Then F ~ ( N )  = 
A+ u ( 0 )  (see [I]) and it is easily verified that every word code is a pro-N code. 

Since every one-generated aperiodic semigroup is also nilpotent, for each one-letter 
alphabet { a } ,  we have F{,)(A) = a+ U {O}.  It is then also easily verified that  each non . . 
empty word ak constitutes a code, whose sagittal semigroup is the k-element cyclic group, 
and which is also a pro-A code. 

However, not every word code is pro-A. A counterexample is given by the word code 
{aa.ab,  ba,  66).  Let indeed B = {x ,  y, z ,  t }  and let K :  FB(A) - F{~,*)(A) be given by 
X K  = aa ,  yrc = ab, Z K  = bn and f~ = bb. Then 

But x w y W ~ W z W  # x W ~ w t y u l x U  in F B ( A )  (since they have distinct alphabetical contents). 
so K is not one-to-one, and hence { a a ,  ab, ba, bb) is not a pro-A code. 

2.2 A coding for 2-variable pro-identities 

In this section, we exhibit another. more specific, coding morphism. The reason for con- 
sidering this particular coding will be made clear in Section 3. 

P r o p o s i t i o n  2.3 Let V be a monoidal pseudovarzety such that V = V @ A. The  con- 
tinuous rnorphism n: F { ~ , ~ ) ( v )  - P{;jr,y)(V) defined by arc = x w y w  and br; = ~ " ( ~ z ) ~ y ~ ,  
is a pro-V coding morphism.  
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IRREDUCIBILITY OF CERTAIN PSEUDOVARIETIES 785 

Proof, The proof relies on the same idea as the proof of Proposition 2.1, and m&es use of 
an unambiguous automaton recognizing the subsemigroup generated by a certain infinite 
(word) code. 

Let us consider the 2-letter alphabet {r ,  y }  and let C = z + y y + ~ x + ( y x ) + y y i  . Then C 
is a code and the following automaton, A,  recognizes C" (with initial and terminal state 

Let p: {z, y } +  - R be the transition morphisin of A. and let Q be its set of states, 
Q = { I , .  . . ,7} .  Since C is a code, (Q.  R )  is a monoid of unambiguous relations. Moreover, 
one can verify that R is-aperiodic, and hence R E V. Therefore we may consider the 
continuous extension p: F{,,,)(V) - R of the transition morphism of A.  Lo1 { u .  b }  be 

another 2-letter alphabet, and let u ,  z, be distinct elements of F{,,~)(V): th,,.e exists a 

semigroup S in V and a continuous mcrphisrn o: F{,,a)(V) - .S such tha t  ucr # c a .  By 
hypothesis, the semigroup T = S' @ (Q ,  R )  lies in V .  Let T be the continuous; rnorphism 
from p{,,,)(V) into T defined by letting x r  and y r  be the Q x Q matrices obt.iined from 
x p  and yp  respectively in the following fashion: 

for x r ,  replace all non-zero entries of x p  by 1 E S ' ;  

for y r ,  replace the ( 3 , l )  entry of y p  by nu. the (7. 1 )  entry of y p  by b u  and all other 
non-zero entries by 1. 

Then, for each 11, the ( 1 , l )  entry of ( ~ - ~ y ~ ) r  is n o .  the ( 1 . 1 )  entry of ( x ' ( y s ) " y " ) ~  
is b o ,  and hence, by continuity, the (1 .1)  entry of ( x 4 y " ) r  is a u  and the ( 1 ,  1) entry of 
( : w ( y x ) L y " ) r  is ba.  More generally, if K is the c o n t i ~ ~ u o u s  morphism from l > ( V )  into 
F B ( V )  defined hy U K  = xUyU and brc = ~ ~ ( y x ) ~ y " ,  then for each word w E A t .  the ( 1 , l )  
entry of w K r  is wo. By continuity again, the (1, 1) entry of wKr is w u  for each 11 E F ~ ( v ) .  
Therefore, the ( 1 ,  1) entries of U K T  and U K T  are distinct. so U K  f V K .  Thus K is one-to-one, 
that  is, K is a pro-V coding morphism. 0 

Note. In the above proof, one could only require tha t  V = V @ W, when W 1s the 
pseudovariety generated by R. But R contains the 3-element monoid Uz = (1,g. d )  given 
by g 2  = dg = y and d 2  = gd = d .  (Say lyQp, ( y 2 x y 2 ) p .  ( y 2 x y x y 2 ) p }  is isomorphic to 1.2.) 
Therefore V = V @ W implies V = V @ (Uz) = V t ( L f z )  But  the semidirec closure of 
( U 2 )  is A (see [5]), so V @ W = V is equivalent to V @ A = V .  

2.3 A last coding result 

Our last coding result shows how one can use the two members of a non t r i ~ i a l  pro-H- 
identity to construct a 2-element pro-H-code, when H is a pseudovariety of gr ,ups closed 
under semidirect product. 

Proposition 2.4 Let  H be a pseudovariety o f  groups closed u n d e r  semidirec t  ~ w d u c t .  Lrl  
u' = v' be a non trivial  p r o - H - i d e n t i t y  on sonlr alphabet B,  und let  2 be a I w u .  symbol ,  
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786 MARGOLIS, SAPIR, AND WEIL 

- 
not i n  B.  Then  the continuous nzorphism K :  F{,,b)(H) + F B u i , ) ( ~ )  given by at; = u'r 
and b ~  = U ' Z ,  is  a p r o - a  codiny morl~hisrn. 

p r o o f .  Let u ,  v  be distinct elements of E;(,,bl(H). There exists a semigroup S1 (resp. S z )  
in Ff in which the pro-V-identity IL = v (resp. u' = v ' )  does not hold. Then S  = S1 x S2 E - 
H: and S  satisfies neither u  = 2, nor u' = v f .  Since H is monoidal, rve may assume that  S  
is a monoid. Let p :  F { ~ , * ) ( H )  - .Y and u: FB(H) - S  be continuous morphisms such that  
up  # v p  and u'u # v'u. Let B' = B U { z ) .  

Let ,$ be the semigroup ,? = S U {S I s E S) U { f )  (where z is a new symbol) endowed 
with the following product: 

s . t  = st 
x . i  = t 
2 . 2  = 5 
S . t  = st - 
f . t  = t 

for all s ,  t E S and x  E 3. The elements Z (s E 5') a_nd 2  form an aperiod~c ideal of $, so 
S E a, and it follows that the nreath product S  o S lies In as rvell. 

We now define a cont~nuous ~norphism r :  pB,(f-i) - S o S by letting: . for each letter b E B, br = ( f l ,  bu) ,  where f l :  3 - S is the constant function with 
value 1; 

ZT = ( f , , ? ) ,  where f,: ,? - S is given, for each s E 5, by 

up if s = u'v or s = u'v; - 
bp if s = d v  01. s = V ' V ;  

1 otherwise. 

Then, for each word w E Bt, u.7 = ( f l ,  wu ) .  B y  continuity, the same equality holds for 
all w  E FB(v).  Moreover, ( W Z ) T  = ( f l ,  wu)(  f , , i )  = ( g , i ) ,  with ( s ) ~  = ( s )  f l  ( s  w v )  f i  = 
( s  w u ) f ,  for each s E 3. In particular, (1)g = ( w v )  f, and (1)g  = (G) f ,  = ( w u )  f, = (1)g.  

Let w' E PB(V) and let ( IL"z )T  = (g',?). Then 

So ( 1 ) h  = (1)g ( l ) g l  = (zuu) f ,  (w1u ) f , .  More generally, if w E {a, b)+ ,  then wnr = ( h . ? )  
w ~ t h  ( 1 ) h  = wp.  By contlnu~tl. ~t follows that  w r  = ( g , i )  and vrtr = ( h , i )  sa t~sfy  

y ( 1 )  = u p  and h ( 1 )  = u p .  

So u ~ r  # vnr ,  and hence U K  # U K .  Thus ti is one-to-one, and hence it is a pro-f-i coding 
morphism. 0 

3 Irreducibility of certain pseudovarieties 

In the rest of this article, H will be a pseudovariety of groups closed under semidirect 
product. We will prove that Ff is Mal'cev irreducible. We first prove a weaker result. 

P r o p o s i t i o n  3.1 Let V be a monoidal pseudovariety closed under tlnambiguous product 
with A and let W be a proper subpseudovariety of V .  T h e n  (W @ C o m )  n V 1s proper. 
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IRREDUCIBILITY OF CERTAIN PSEUDOVARIETIES 787 

Proof .  Let u = v be a non trivial pro-V-identity satisfied by W. Let X be the alphabet 
of variables of u = v, say, X = { x l , .  . . ,x,] .  Let A = {a, b) and let K: X+ -+ A+ be 
defined by x, t i  = a'b for each 1 5 i 5 n.  Then Xr; is a prefix code, and it is easily verified 
that Sag(X&) is aperiodic. By Proposition 2.1, it follows that  U K  = vn is a r o n  trivial 
pro-V-identity. In addition, this pro-identity is satisfied by W, since it is a continuous 
homomorphic image of a pro-identity which is. So we may assume that  u = v was chosen 
to  be a 2-variable pro-V-identity, on  the alphabet A. 

Let S be the pseudovariety of all semigroups and let T :  FA(s) - FA(v) be t ~ e  natural 
projection. Since n is onto, we may consider elements u' and v' of FA(S)  such th t t  u'x = u 
and v'x = v. In particular, W satisfies the non trivial pro-identity u' = v'. 

We now consider the pro-S-identity 

Observe that Corn  sat~sfies ( ~ y ) ~  = rWyw = xw(yz)"y"'. Now [l8,  Lemma 1.21 states 
that  W @ Corn  is defined by the  pro-S-identities of the form e(t1, .  . . , t,,) = ~ ( 2 1 % .  . . ,z,) 
where e = r is an n-variable ~ro-S-identi ty satisfied by W and where Corn satisfies 
t1 = . . .  = Z, = 2:. Thus W @ C o r n  satisfies the pro-identity (1). and hen:e so does 
(W @ Corn) n V. Since the lat ter  pseudovariety is contained in V ,  it also s;~tisfies the 
pro-V-identity obtained by taking the  image under x of the pro-identity ( I ) ,  n~rne ly  

There remains to verify that  the pro-V-identity (2) is non trivial, which follwis irnme- 
diately from Proposition 2.3, thus concluding the proof. 0 

T h e o r e m  3.2 Let H be a pseudovariety of groups closed under semidzrect pnducl .  Then - 
H is Mal'eev irreducible. 

Proof .  Let us  first consider a proper subpseudovariety V1 of B. By Proposition 3.1, 
(V1 @ Corn)  n is proper as well. As above, we may consider a 2-variable non trivial 
pro-E-identity u = v satisfied by (V1 @ Corn)  n a .  

Let us now assume that  a = V 1 @ V 2  with V 2  a proper subpseudovariety o 'G as well, 
and let u' = v' be a non trivial po-a- ident i ty  satisfied by V 2 .  Let z be a variable, 
not in the alphabet of variables of u' = v'. Then by Proposition 2.4, the pro-H-identity 
u(u'z,vlt) = v(ulz, d z )  is non trivial. To get a contradiction, it suffices to verify that  it 
is satisfied by a set of generators of V 1  @ V2,  and hence by the pseudovariel::~ V 1  @ V 2  
itself. 

Let C be the alphabet ofvariables of this pro-identity and let A = {a, b] be t.he alphabet 
of variables of u = v. Let S be a semigroup in a admitting an onto morphisn~ n: S - T 
such that  T E V 2  and ex-' E V1 for each idempotent e of T ,  and let p:  . F ~ ( R )  - S 
be a continuous morphism. Let also n :&(R)  -+ F ~ ( R )  be the continuous rnorphism 
determmed by a n  = u'z and bti = v't. 

Since T E V z ,  T satisfies u'z = V'Z, and so aKpn = b ~ p ? r  = to for some to  E r Let To 
be the subsemigroup of T generated by to.  Then To E Corn. Moreover, ~f So =  to^-'. 
then So E V l  @ C o r n  and the range of nip is In So. But So hes also in a, so Su sat~sfies 

D
ow

nl
oa

de
d 

by
 [

H
eb

re
w

 U
ni

ve
rs

ity
] 

at
 0

1:
38

 0
8 

M
ay

 2
01

3 



788 MARGOLIS, SAPIR. AND WEIL 

1, = u ,  and hence ulcp = V K Y .  Therefore. u ( u l z ,  d i ) ~  = v ( u l z ,  v l z ) y .  This concludes the 
proof. 0 

If V is a pseudovariety, u.e let L V  be the pseudovariety of semigroups S such that  
e S e  E V for each idempotent e of S. Since is monoidal, it is clear that  the only 
pseudovariety V such that  B = L V  is V = H itself. 

Coro l la ry  3.3 Let H be a pseudozarzety of groups closed under s e m d z r w t  product T h e n  
- 
H zs sendzrec t l y  zrreduczble. 

Proof .  Let us assume that  = V 1  t V 2  where V1 and V 2  are proper subpseudovarieties 
of a. Since @ H = H and V1 i V 2  C LV1 @ V 2  (see for instance [25, Lemma 2.2]), 
it follows that  H = L V ,  @ V 2 ,  and by Theorem 3.2, H = L V I .  Therefore H = V 1 .  a 
contradiction. 0 

Corol la ry  3.4 Let H be a pscudovarzety of groups closed under cemldlrect product I l l en  
- 
H 1s loin zrreduczble 

Proof .  Let us assume that  R = V l  v V 2  where V 1  and V 2  arc proper subpseudovarieties 
of g. Since a @ a = RH, we have = V I  @ V 2 ,  in contradiction \vith Theorexu 3.2. So 
- 
H is V-irreducible. 0 

4 Applications 

The above results have noteworthy consequences. For instance, we get immediate proofs 
of the infinity of several well-known hierarchies of pseudovarieties. 

First let us observe that ,  if V is a pseudovariety of monoids and Vs is the pseu- 
dovariety of semigroups generated by the elements of V ,  then the join- (resp. semidirect, 
Ilal'cev) irreducibility of V s  implies that  of V (see [I, Section 7.11). It follows tha t ,  for 
ear11 pseudovariety of groups H closed under semidirect product. the pseudovariety of all 
monoids in which the subgroups are in H, is Mal'cev irreducible. semidirectly irreducible 
and join irreducible. For convenience, this pseudovariety is also de~loted by E, and in 
the case of the trivial pseudovariety of groups, we also denote by A the pseudovariety of 
aperiodic monoids. 

The Straubing dot-depth hierarchy is a hierarchy of pseudovarieties of monoids within 
A ,  with connections with language theory and the theory of complexity for boolean cir- 
cuits. I t  is defined by letting V o  = I, the trivial pseudovariety, and V,,,l = OV, for 
all n 2 0. Here 0 denotes the Schiitzenberger operator. For complete definitions and 
references, see [23, 191. It is well-known that A is the union of the increasing sequence of 
the V,. In [15], it is proved that  for any pseudovariety V ,  O V  C B1 @ V, where B1 is 
the pseudovariety of aperiodic semigroups 

P r o p o s i t i o n  4.1 The Straubing dot-depth hierarchy is infinite 

Proof .  Let us assume that  A = V,+I, with n minimal. Then A = OV,, and hence 
A = B 1  @ V,. But A is Mal'cev irreducible and B1 is proper, and so is V, b\ definition 
of n ,  so we get a contradiction. 0 
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IRREDUCIBILITY OF CERTAIN PSEUDOVARIETIES 789 

The  original proof of this statement is due lo  Straubing [ 2 3 ] .  
The Krohn-Rhodes theorem [5] states that  each finite monoid M divide: a wreath 

product of the form 
M < Afk  0 nfk-l 0 . . . 0 s f ,  

where the hf, are either groups dividing A1 or copies of the three element monoid U2 (see 
Section 2.2). It follows that each finite monoid M divides a wreath product of the form 

where the A, are aperiodic and the G, are groups (more precisely, the G, ire wreath 
~ r o d u c t s  of copies of groups dividing Al).  Let us  cons~der the following sequence of 
pseudovar~et~es of monoids: C o  = A and C,+l = A t G t C ,  for each 11 2 0. B y  the 
Krohn-Rhodes theorem, the pseudovariety M of all finite rnonoids is the union of the 
increasing sequence (C,),. The  least integer n such that a given finite molloid h l  lies 
in C ,  is called the group complexity of hf. It is an old-standing conjecture u hether the 
group con~plexity of a finite monoid Af is effectively computable [ 5 ,  71. Our reslrlts give an 
immediate proof that  the hierarchy given by the C ,  is infinite. This was origindly proved 
by Rhodes [21]. 

P r o p o s i t i o n  4.2 The group complexity hierarchy is injni te .  

P r o o f .  If M = C,+l with n minimal, then M = A t G t C , .  Since M is semidirectly 
irreducible and M # C, by definition of n ,  it follows that M = A t  G ,  and ht'l~ce M = A 
or M = G, a contradiction. 0 

The Krohn-Rhodes theorem also implies that, if H is a pseudovariety of [:roups such 
that  H = H r H, then the pseudovariety of monoids R is the union of tbc increasing 
sequence of pseudovarieties given by C o ( H )  = A and C,,+,(H) = A 1: G i: C , ( H )  for each 
n > 0. With the same proof, it can be shown that the resulting hierarchy in .Fi is infinite. 

Another consequence of the Krohn-Rhodes theorem is that each aperiodic: monoid di- 
vides a wreath product of copies of U z .  Let now V be a subpseudovariety of A containing 
liz and let v(') = V and v("+') = V t v("). This is an increasing sequer ce of pseu- 
dovarieties of rnonojds within A, and A = U, ~ ( " 1 .  Then we have the folloiring infinity 
result2. 

P r o p o s i t i o n  4.3 Let V be a subpseudozarzety of A contazning 1 : ~  and let ('v (,I), be the 
associated increasing sequence of subpseudovarieties o J A .  I J V  # A, then V( ') is strictly 
contained i n  v("+') for each n 2 1 .  That is, the resultzng hierarchy wth in  A is infinzte. 

P r o o f .  If v(") = v(~+')  with n minimal, then A = V t v ( ~ ) .  Since A  is wmidirectly 
irreducible, it f o l l o u ~  that  A = V by definition of n .  a contradiction. 0 

We can also extend a result of hiargolis on nlaxinlal subpseudovarieties [ l  l] (for pseu 
dovarieties of semigroups or of monoids). 

C o r o l l a r y  4.4 Let H be a pseudovariety of groups closed under semidirect prqduct. Then 
H admits no maximal proper subpseudouariety. 

'The a u t h o r s  t h a n k  P Higgins for br inging 111~s corollaly to t h e i r  attention 

D
ow

nl
oa

de
d 

by
 [

H
eb

re
w

 U
ni

ve
rs

ity
] 

at
 0

1:
38

 0
8 

M
ay

 2
01

3 



D
ow

nl
oa

de
d 

by
 [

H
eb

re
w

 U
ni

ve
rs

ity
] 

at
 0

1:
38

 0
8 

M
ay

 2
01

3 



IRREDUCIBILITY OF CERTAIN PSEUDOVARIETIES 79 1 

[4] J. Berstel and D .  Perrin. Theory of Codes, .L\cademic Press, New York, 1935. 

[5] S. Eilenberg. Automata, Languages and .Uachznes, vol. B, Academic Press, New York, 
1976. 

[6] T. Evans. The lattice of semigroup varieties. Stnzzgroup Forum 2 (1971) 1-43. 

[7] K .  IIenckell, S. LV. hlargoljs, J.-E. Pin and J .  Rhodes. Ash's type I1 theoreni, profinite 
topology and hlaicev products, International Journal of Algebra and Con;putat ion 1 
(1991) 411-436. 

[8] I. Koryakov. Embedding of pseudofree semigroups, Izz'estiya V U Z  Matem.  39 (1995), 
58-64. English translation: Russian Mathem. ( 1 2 .  VlIZ) 39 (1995) 53-69. 

(91 E. Le Rest and M. Le Rest. Sur le calcul du monoi'de syntaxique d'un sclus-monoi'de 
finiment engendre, Semigroup I h r u m  21 (1980) 173-185. 

[ lo]  A. Malcev. Nilpotent Semigroups, Cich. Zap I~lc~nousk.  Ped. In-ta 4 (1952) 107-111. 

[ll] S. Margolis. On rnaximai varieties of finite rnonoids and semigroups, I n i  stzyu VUZ 
Matem.  39 (1995), 65-70, English translation: Russaan Alathem. ( I z .  V U Z )  39 (1995) 
60-64. 

[12] H. Neumann. Varieties of groups, Springer (1967) 

[13] K. Numakura. Theorems on compact, totally disconnected semigroups ;t:ld lattices. 
Proc. k m e r .  Moth. Soc. 8 (1957) 623-626. 

[14] J.-E. Pin. VnrzPtCs de langages formels,  Masson. Paris, 1984. English I ranslation: 
Varieties of forr7~al langunges, North Oxford, London and Plenum, New \'ark, 1986. 

[15] J.-E. Pin. A property of the Schiitzenberger product, Semigroup Foruin 35 (1987) 
53-62. 

[16] J.-E. Pin and J .  Sakarowtch. Une application de la reprksentation ma'ricielle des 
transductions, Theoret. Comp .  Scaence 35 (1985) 271-293. 

1171 J.-E. Pin and P. M'eil. A Reiterman theorem for pseudovarieties of finite. first-order 
structures, Algebra Crnitiersalis 35 (1996) 577-595. 

[IS] J.-E. Pin and P. \Veil. Profinite semigroups, hlal'cev products and identtties. J. Al- 
gebra 182 (1996) 601-626. 

[19] J.-E. Pin and P. Weil. Polynomial closure and unambiguous product, Thcwry of Corn- 
puting Systems,  to appear. 

(201 J.  Reiterman. The Birkhoff theorem for finite algebras, Algebra Universa1.s 1 4  (1982) 
1-10, 

[21] J. Rhodes. Some results on finite semigroups, J .  "tlyebra 4 (1966) 471-5C4. 

[22] J .  Sakarovitch Sur la dkfinition du prodult en couronne, in G.  Pirillo t d .  Colloquc 
Codages et Transductzons, Florence, 1981. 285-300. 

[23] H. Straubing. A generalization of the Schitzenberger prodnct of finite mc811oids. The-  
oret.  Comp .  Scienct 13 (1981) 137-1.50. 

D
ow

nl
oa

de
d 

by
 [

H
eb

re
w

 U
ni

ve
rs

ity
] 

at
 0

1:
38

 0
8 

M
ay

 2
01

3 



792 MARGOLIS, SAPIR, AND WEIL 

[24] P. Weil. Groups in the syntactic monoid of a composed code, J. Pure Applied Algebra 
42 (1986) 297-319. 

[25] P. Weil. Closure of varieties of languages under products with counter, Joum. Comp. 
System and Science 45 (1992) 316-339. 

Received: July 1996 

Revised. May 1997 

D
ow

nl
oa

de
d 

by
 [

H
eb

re
w

 U
ni

ve
rs

ity
] 

at
 0

1:
38

 0
8 

M
ay

 2
01

3 


