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This paper is the third part of a series of three papers devoted to the 
study of inverse monoids. It is more specifically dedicated to finite inverse 
monoids and their connections with formal languages. Therefore, except for 
free monoids, all monoids considered in this paper will be finite. 

Throughout the paper we have adopted the point of view of varieties of 
monoids, which has proved to be an important concept for the study 
of monoids. Following Eilenberg [2], a variety of monoids is a class of 
monoids closed under taking submonoids, quotients, and finite direct 
products. Thus, at first sight, varieties seem to be inadequate for studying 
inverse monoids since a submonoid of an inverse monoid is not inverse in 
general. To overcome this difficulty, we consider the variety Inv generated 
by inverse monoids and closed under taking submonoids, quotients, and 
finite direct products. Now inverse monoids are simply the regular monoids 
of this variety and we may use the powerful machinery of variety theory to 
investigate the algebraic structure of these monoids. 

Our first result states that Inv is the variety generated by one of the 
following classes of monoids. 

(a) Semidirect products of a semilattice by a group. 
(b) Extensions of a group by a semilattice. 
(c) Schiitzenberger products of two groups. 
(d) Schutzenberger products of a group by the trivial monoid 1. 

Moreover, equality of the varieties generated by the classes (a), (b), (c), 
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and (d) still holds if one replaces “group” by “commutative group,” 
“solvable group, ” “p-group,” or more generally by “group of H,” where H 
denotes a variety of (finite) groups. A natural guess would be that one 
obtains in this way all monoids of Inv whose groups are in H. However, 
this is not the case and we exhibit an inverse monoid all of whose sub- 
groups are commutative-and even trivial-that is not in the variety 
generated by extensions of a commutative group by a semilattice. 

Now a natural question arises: given a monoid hl, is there an algorithm 
to decide whether or not M belongs to Inv? Such decidability problems 
have proved to be extremely difficult and are related to important problems 
of language theory. In our case we propose the following conjecture. (See 
note added in proof.) 

Colzjecrure. A monoid h4 is in Inv iff idempotents of M commute. 

It is easy to see that the class of monoids whose idempotents commute is 
a variety containing Inv, but the opposite inclusion probably requires a 
non-trivial proof. Just to avoid some work for future researchers of this 
problem, we show how two natural attempts to solve the conjecture fail. 
First, as we have seen above, it doesn’t help much to assume a condition 
on groups. Second, we prove that it is decidable whether a monoid is 
(isomorphic to) a submonoid of an inverse monoid. However, we also 
exhibit a monoid of Inv that is not a submonoid of an inverse monoid. Let 
us conclude our discussion of the conjecture with some more positive 
results. We show that if the idempotents of a monoid M commute with 
every element of M, then M belongs to Inv. We also show that the conjec- 
ture is true iff every monoid whose idempotents commute is quotient of an 
E-unitary monoid. Therefore our conjecture appears as the finite version of 
the conjecture discussed in our first paper [S]. 

It was shown by Eilenberg that varieties of monoids are in one-to-one 
correspondence with certain classes of recognizable (or regular) languages, 
called varieties of languages. Although a number of varieties of languages 
corresponding to classical varieties of monoids have been described (see 12, 
5, 13]), no such description was known for Inv. In this paper we prove that 
the variety of languages &V corresponding to Inv can be described in three 
different ways. More precisely, for each alphabet ‘4, ,4* .YZV is the boolean 
algebra generated by one of the following classes of languages: 

(a) Languages of the form L or LaA*, where L is a group language 
and a is a letter of A. 

(b) Languages of the form L or A*nL, where L is a group language 
and a is a letter of A. 

(c) Languages of the form L or KuL, where K and L are group- 
languages and a is a letter of A. 

48 I, I IO!?-3 



308 MARGOLIS AND PIN 

Our last result makes more precise a result of [3, 63 on the connection 
between inverse monoids and biprefix codes. It was shown that the variety 
Inv can be described by its finite biprefix codes. Here we use a different con- 
struction to take into account the group structure of the monoids. More 
precisely, we show that if H is a variety of groups, then the variety of all 
monoids of Inv whose groups are in H can also be described by its finite 
biprelix codes. As we have observed before, such relativization results are 
not guaranteed for each property of Inv. 

Some of these results were announced in [lo]. This paper is divided into 
four main sections. Section 1 contains the preliminaries. The algebraic 
properties of Inv are established in Section 2 and the connection with 
language theory is presented in Section 3. Finally, our main conjecture is 
discussed in Section 4. 

1. PRELIMINARIES 

In this paper all semigroups are finite, except in the case of a free 
semigroup or a free monoid. We assume familiarity with the notations of 
PI. 

A semigroup S divides a semigroup T iff S is a quotient of a sub- 
semigroup of T. Notice that division induces a partial order on semigroups. 

A variety of semigroups is a class of semigroups closed under division 
and finite direct products. Varieties of monoids and varieties of groups are 
defined similarly. Notice that a variety of groups is a variety of monoids 
whose elements are groups. 

EXAMPLES. G denotes the variety of all groups and Gcom denotes the 
variety of all commutative groups. 

J1 denotes the variety of all idempotent and commutative monoids. 
(J,), denotes the variety of all idempotent and commutative semigroups 

(or semilattices). 
A denotes the variety of all aperiodic (or group-free) semigroups. 
I denotes the trivial variety of monoids consisting only of the monoid 1. 

Given a class %? of semigroups, the variety of semigroups generated by G?? 
is the smallest variety containing W. Equivalently, it is the class of all 
semigroups S such that S divides a direct product S, x . . . x S,, of members 
of %?‘. 

In this paper, we are mainly concerned with the variety Inv generated by 
the inverse monoids. Since the class of inverse monoids is closed under 
direct product, a monoid A4 belongs to Inv iff A4 divides an inverse monoid. 

Let A4 and N be two monoids. To simplify notation we shall write M 
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additively, without assuming that M is commutative. The identity of M 
(resp. N) is denoted by 0 (resp. 1). 

A left action of N on M is a function N x M --f M, 

(n, m) + nm, 

satisfying for all m, nz i, nz,~Mand ~r,n,,n,~N 

(1) n(m,+mz)=nm,+nm,, 

(2) 321(n2n~)= (n1n2) m, 
(3j ~WZ=IW, 
(4) nO=O. 

This action is used to form a monoid M * N on the set M x N with 
multiplication (m, n)(m’, n’) = (nz + nm’, nn’). M * N is called a semidirect 
product of M and N. 

To illustrate this notion let us consider the following example. Let Q be a 
finite set. We denote by S(Q) the symmetric group on Q, that is, the group 
of all permutations on Q under composition. Similarly 1(Q) denotes the 
monoid of all injective partial functions from Q to Q under composition of 
partial functions. Finally, 2Q denotes the idempotent and commutative 
monoid of subsets of Q under intersection. Define a left action of S(Q) on 
2” by setting for ail CJ E S(Q) and P c Q, OP = Pa-‘. This action defines a 
semidirect product 2” * S(Q) and the following result is classical. 

PROPOSITION 1.1. There exists a surjectiue monoid morph&m 
@:2Q*S(Q)+l(Q) ,I’h \t IIC IS one-to-one the idempotents. 

Proof. For P c Q and (T E S(Q), let CT, be the partial function of Q 
defined by 

WP = 
i 

P ifqEP 

Izr otherwise. 

Then we define a surjective function 0: 2” * S(Q) -+ I(Q) by setting 
(P,s)O=a,. Let (P, C) and (P’, o’) be two elements of 2Q * S(Q). Then 
the domain of ~~~~~~ is Pn P’K’ and thus (P,o)(P’, o’)O= 
(P, cr) @(P’, a’) 0. It follows that 0 is a morphism. Finally, (P, u) is 
idempotent in 2p * S(Q) if and only if fl= 1 and thus 0 is one-to-one on 
idempotents. 1 

Given two varieties of monoids V and W, we denote by V * W the 
variety of monoids generated by all semidirect products of the form M * N, 
where ME V and NEW. Similarly we denote by W *r V the variety of 
monoids generated by all reverse semidirect products of the form N *r M, 
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where NE W and ME V, and by 0 (V, W) the variety of monoids 
generated by all Schiitzenberger products of the form O(M, N), where 
MEV and NEW. 

Let S and T be two semigroups. A relational morphism z: S + T is a 
relation from S to T such that 

(1) for all s E S, sr # 0, 
(2) for all s, t E S (n)(E) c (st) r. 

Equivalently, r is a relational morphism if the set {(s, t)lt EST) is a sub- 
semigroup of Sx T. Notice that if r is a function, T is a morphism in the 
usual sense. If r: S -+ T is a relational morphism and if S’ is a subsemigroup 
of S, then S’r is a subsemigroup of T. Similarly if T is a subsemigroup of 
T, T’rP1 = {s E S(sr n T’ # 0} is a subsemigroup of S. 

Let V be a variety of semigroups. Then a (relational) morphism r: S -+ T 
is a (relational) V-morphism if for all subsemigroups T’ of T, T’ E V implies 
Tr - * E V. A (relational) A-morphism is also called a (relational) aperiodic 
morphism. 

If M and N are monoids, a relational monoid morphism 5: M-t N is a 
relational morphism satisfying the further condition 

(3) 1ElZ 

Relational V-morphisms have proved to be an important tool in the 
study of varieties of semigroups and languages [2, 131. In particular, they 
can be used to define a new operation on varieties. Let V be a variety of 
semigroups and let W be a variety of monoids. Then V’W is the variety 
of all monoids M such that there exists a relational monoid V-morphism 
r:M-tNwith NEW. 

Notice also that the composition of two relational V-morphisms is again 
a V-morphism. 

A relational morphism z: S -+ T is injective if for all sr, s2 E S, 
s1 r n SIT # 0 implies sr = s2. Let us recall some useful results about injec- 
tive relational morphisms. 

PROPOSITION 1.2. Let S and T be semigroups. Then S divides T iff there 
exists an injective relational morphism z: S --f T. 

PROPOSITION 1.3. Let 5: S+ T be an kjective relational morphism. Then 
for any variety, of semigroups V, 5 is a V-morphism. Moreover 
(E(T)) T-‘=E(S). 

ProoJ: We prove the second part of this statement, which is non- 
standard. Let eEE(S). Then ez is a non-empty semigroup of T and thus 
contains an idempotent. It follows that Ed (E(T)) 7-l and hence 
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E(S) c (E(T)) z - ‘. Conversely let f E E( Tj. Then fr ~ ’ is a subsemigroup of 
S. If fs ’ is empty then clearly fs ~ ' c E(S). Otherwise let e be an idem- 
potent of fT - ‘. Then if s E fs - ‘, we have f E et n ST and thus e = s since z is 
injective. Consequently fs?’ = {e> and (E(T)) z PI c E(S). 1 

Finally, we recall an important theorem of Simon [2]. Let f be a graph 
and let C be the free category over this graph. A loop around a vertex II is a 
morphism from u to U. Thus a loop around u is either the empty path 0, 
or a path with origin II and end u. Let 0 be the function that sends every 
path p = e, . . e, to its set of edges {e, ,..., e,,) and every empty path 0, to 
0. Then we have: 

THEOREM 1.4 [2]. Let - be the smallest congruence on C sati@$ng 
p + p - p and p + q - q + p for an), loops p, q around the same vertex. Then 
for any coterminal paths p, q, MY have p - q iff p(~ = qo. 

2. THE VARIETY GENERATED BY INVERSE SEMIGROUPS 

The aim of this section is to give different characterizations of the variety 
Inv. Our first characterizations simply translate in terms of varieties some 
well-known facts about inverse semigroups. 

THEOREM 2.1. The equalit?, Inv = J, * G holds. 

Proof. As is well known [ 11, any semidirect product of a semilattice by 
a group is an inverse semigroup. Thus J t * G c Inv. Conversely let ME Inv. 
Then by the Preston-Vagner theorem [ 11, A4 divides a monoid 1(Q) for 
some finite set Q. Now Proposition 1.1 shows that 1(Q) divides 2” * S(Q). 
Since 2Q E J, and S(Q)EG it follows that 2Q * S(Q) E J, * G and hence 
MEJ, *G. Therefore InvcJ, * G. 1 

Next we have the following connection with the Schiitzenberger product. 

THEOREM 2.2. For any variety of groups H, the following equalities hold: 
J,*H=H*,J1=O(H,I)=O(I,H)=O(H,H). 

ProoJ It was shown in [8] that any semidirect product of the form 
S * G, where G is a group, is isomorphic to G *r S. It follows immediately 
that J, * H =H er J, for any variety of groups H. Next it is shown in [9] 
that if G, H are groups, then 0 (G, H) is isomorphic to a semidirect 
product S * (G x H), where S is a semilattice. It follows at once that 
0 (H, H) is contained in J, * H. Since O(H, I) and G(1, H) are clearly 
contained in O(H, H), it remains to show that J, * H (resp. Her .JI) is 
contained in 0 (H, I) (resp. 0 (I, H)). Although a direct (but messy) 
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algebraic proof is possible, we will give a short proof using language 
theory, which is postponed until the next section (Corollary 3.2). 1 

It is known [S] that an inverse semigroup T is a subsemigroup of a 
semidirect product S * G, where S is a semilattice and G is a group, iff there 
exists a surjective morphism 4: T --f G such that 14-l = E(T). In fact this 
result even holds for infinite semigroups. We present here an extension of 
this theorem to arbitrary finite semigroups. 

THEOREM 2.3. Let T be a semigroup Mjhose idempotents commute and let 
G be a group. Then the follokng conditions are equivalent: 

(1) there is a relational morphism t: T-, G such that It-’ = E(T), 

(2) T divides a semidirect product S * G, ItThere S is a semilattice. 

Proof We first prove the easy part. namely, (2) implies (1). 
If T divides S * G there exists by Proposition 1.2 an injective relational 

morphism 5: T+ S * G. Let 7~: S * G --f G be the morphism defined by 
(s, g) 7~ =g. Then zn: S + G is a relational morphism. Moreover in -’ = 
((s, l)ls~S) =E(S* G) and, by Proposition 1.3, (E(S* G)) r--‘=E(T). 
Thus 1 (rn) ~ I = E( T) as required. 

The proof that (1) implies (2) is more involved and requires Simon’s 
theorem. Let z: T-+ G be a relational morphism such that lz-’ = E(T). 
Define a graph r as follows. The set of vertices is G and the set of edges is 
E={(g,t,h)EGxTxGlg-‘hEt5 >. Of course the edge (g, t, h) has g as 
origin and h as end. Let C be the free category over r. Recall that the 
morphisms of C are just the paths of E Then G acts on C as follows. The 
action of G on Oh(C) = G is just the multiplication in G (on the left) and if 
,oeG and ifp=(g,,t,,g,)+(g,,t,,g,)+ ...+(g,,-I,t,,g,,) is a path, 
then gp=(gg,, t,,gg,)+ ... +(gg,,-,. t,i,gg,). Finally, if p=O,, we set 
gP = O,,’ 

Let 7~: E -+ T be the surjective function defined by (g, t, 11) 7c = I. Since C 
is the free category over I-, rc can be extended in a unique way to a 
surjective function 7~: Mor( C) + T satisfying (p + q) rc = (pz)(qn) for all 
consecutive paths p and q. Notice that if p E Mor( g, h), that is, if p is a path 
from g to h, then g-‘/z ~pzt. Then we have: 

LEMMA 2.4. Let p and q be twlo coterminal paths. If po = qo, then 
pi7 = 4”. 

Define a relation - on C by setting p - q iff p and q are coterminal and 
pz = qz. Then - is a congruence. Moreover if p, q are loops over the same 
vertex g, then 1 = g- lg ~p7-c~ and 1 E qnr. It follows that p7c, q7c E lr-’ = 
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E(T). Since E(T) is a semilattice we then have p + p h’p and p + q - q + p. 
The lemma now follows from Simon’s Theorem 1.4. 1 

Let 2E be the semilattice of subsets of E under union. If g E G and XE 2”, 
set gX = (( gh, r, gk) ( (h, t, k) E X}. This defines a left action of G on 2E and 
we thus have the semidirect product 2” * G. Let R be the subset of 2E x G 
consisting of all pairs (PO, g), where p is a path from 1 to g. Then R is a 
subsemigroup of 2E * G. Indeed if (PO, g) and (qo, h) are in R, we have 
(pa, g)(qo, 11) = (po u g(qo), gh) = ((p + gq) 0, gh) since P and gq are 
consecutive paths. 

Next define a function y: R -+ T by setting (PO, g) 7 = pi. Lemma 2.4 
shows that 7 is well defined, since if p, q E Mor(1, g) satisfy po = qa, then 
pz = 4~. y is surjective because if gE rr, then (1, t, g) g= ((1, t, g)} 
and ( (( 1, t, g) }, g) y = t. Finally, we claim that ?; is a morphism. 
Indeed if p E Mor( 1, g) and q E Mor( 1, h) then (p + gq) 7~ = (px)( gq) 7~ = 
@)(q$. Therefore ((PO, g)(qa, h)h = (PO u&ah ghhj = ((p+gqh dzh = 
(p + gq) rr = (px)(qx) = (PO, g) y(qcr, h) I’, proving the claim. Thus T is a 
quotient of R and hence T divides 2E * G. 1 

COROLLARY 2.5. For any oariety of groups H, (J,); l H = J, * H. 

Proof: Let Ts J r ;k H. Then T divides a semidirect product where S is a 
semilattice and G EH. Now the morphism rr: S * G -+ G defined by 
(s, g) 7c = g is a (J,),-morphism since In ~ i is isomorphic to S. Thus 
S*G~(J~)g’and TE(J,);‘H. 

Conversely if TE (Ji jgl H, there exists a relational morphism r: T -+ G 
such that GE H and lr ~’ is a semilattice. Now 1~ PI c E( T) since r is a 
(J, ),-morphism and for all e E E(T), 1 E er since er is a subsemigroup of G. 
Therefore lr-l = E(T) and thus by Theorem 2.3, T divides a semidirect 
product S * G, where SE J,. It follows that TE J, * H. 1 

Let us summarize the various descriptions of Inv we have obtained so 
far. 

THEOREM 2.6. The follo,ving equalities hold: 

Inv=J,*G=G*,J,=O(G,G)=O(G,I)=O(I,G)=(J,)~’G. 

3. LANGUAGES 

Denote by -4” the free monoid over the set A. We shall use in this 
section the terminology of language theory. A is an alphabet, elements of A 
are letters, elements of A* are words, and subsets of A* are languages. The 
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unit of AX is the empty word, denoted by 1. Given a set Y of languages of 
-4*, the boolean closure of Y is the smallest set %? of languages A* such 
that: 

(1) Y is contained in ??. 
(2) QrEW. 

(3) If LE%, then A*\LE~. 
(4) If L,, &E$??, then L,uL,EV. 

A language L of .4* is called recognizable if there exists a monoid 
morphism 4: ,4 * + A4 from A* into a linite monoid M such that L = 
L&J-‘. In this case we say that M recognizes L. We refer the reader to the 
books by Eilenberg [2] and Lallement [S] for further information on the 
theory of recognizable languages. 

If V is a variety of finite monoids and A is a finite alphabet, then we 
denote by ,4 *Y the class of all recognizable languages in A* that are 
recognized by a monoid of V. One can show [2, Chap. 71 that V c W if 
only and only if .4*Y c A*%P for every (finite) alphabet A. This enables us 
to show that two varieties of monoids are equal by showing that, for every 
alphabet A, the corresponding sets of recognizable languages are equal. 

We now describe the operations on languages corresponding to the 
operations V-, J, *V, V *r J, and (V, W)-+ O(V, W) on varieties of 
monoids. The following theorem summarizes the work of [14]. 

THEOREM 3.1. Let V and W be varieties of monoids and let A be an 
alphabet: 

( 1) J, * V corresponds to the boolean closure of all languages of the 
form L or LaA *, where LE,~*Y and aEA; 

(3) V er J, corresponds to the boolean closure of all languages of the 
form L or .4 *aL, where L E A *Y’ and a E A; 

(3) 0 (V, W) corresponds to the boolean closure of all languages of 

the form L, K or LaK, where L E A*Y, KE A*W and a E A. 

We may now prove the following result of [14]. 

COROLLARY 3.2. For any variety of monoids, J, * V = O(V, I) and 
V er J, = 0 (I, V). 

Proof: For any alphabet ,4, the set of recognizable languages associated 
to the variety I is (0, A*}. Therefore it follows from Theorem 3.1 that the 
sets of recognizable languages associated to J, * V and to O(V, I) are 
equal. Thus J, x V = O(V, I). The proof for V *r J, = O(1, V) is similar. 1 
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A recognizable language is called a group-konguuge if it is recognized by a 
group. We can now describe, for each alphabet -4, the set A*~PzL~ of 
languages corresponding to the variety of monoids Inv. 

THEOREM 3.3. Let A be an alphabet and let L be a larzguage of A*. Then 
the following cotlditions are equivalent: 

(1) L E .4*J>ru. 
(2) L is in the boolean closure of lunguages of the font? K or Ka.A*, 

where K is a group-language atzd u E A. 

(3) L is in the boolean closure of lunguages of the form K or A*aK, 
\ihere K is a group-language and u E A. 

(4 1 L is in the boolean closure oj- languages of the -form K or K&C. 
where K atld K’ are group-languages und a E A. 

The results above were obtained by viewing inverse monoids as Schiit- 
zenberger products of groups. There have been alternate descriptions of the 
languages corresponding to Inv and various subvarieties by viewing inverse 
monoids as monoids of partial one-to-one maps [3, 6, 7, 1 I]. These 
descriptions utilize the theory of codes. Here we extend a result of [3]. 

We first review some terminology. =1+ = A*‘;,{1 1 denotes the free 
semigroup over .4. A subset X of .4 + is a code if X*, the submonoid of A” 
generated by X, is free with base X. X is a prejk code if, for all ~1, u E A’, 
U, UC E X implies c = 1. Dually, X is a suffix code if, for all U, c E A*. 
II, uu E X implies L! = 1. A biprejk cocle is a set that is both a prefix and a 
suffix code. Notice that, as suggested by the terminology, a prefix (resp. suf- 
fix, biprefix) code is a code. 

If L is a recognizable language, we denote by M(L) the s~xtactic tnonoid 
of L. M(L) is the quotient of ..I* under the congruence h L defined by 
II + L L’ iff for all x, J’ E A*, SUJ E L o .KVJ E L. M(L) is also the smallest 
monoid recognizing L, where “smallest” refers to the cardinality or to the 
division ordering as well. Algebraic properties of syntactic monoids often 
reflect combinatorial properties of languages. For example, it is known [4] 
that if X is a finite prefix code and if M(X*) is an inverse monoid, then X is 
a biprefix code. The following result shows that any syntactic monoid can 
be, in some sense, approximated by a syntactic monoid of the form M(P* ), 
where P is a finite prefix code. 

PROPOSITION 3.4 [7]. Let M be a tnonoid. Then there is an (effecticel>l 
constructible) .finite prefix code P such that 

( 1) M divides M( P* ), 

(2) there is an aperiodic relational tnorphim r: M( P*) ---f M. 
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In [7] the same construction is used to prove 

PROPOSITION 3.5. Let ME Inv he a monoid. Then there is an (effectively 
constructible) finite biprefix code P such that 

( 1) M divides M( P* ), 

(2) M(P*) E Inv, 

(3) there is an aperiodic relational morphism 5: M(P*) -+ M. 

Now let H be a variety of groups and let B be the variety of monoids all 
of whose subgroups lie in H. We combine the above results to obtain 

THEOREM 3.6. Let ME II n Inv be a monoid. Then there is an (effectively 
constructible) finite biprefix code P such that 

(1) M divides M(P*), 

(2) M(P*)cBnInv, 

(3) there exists an aperiodic relational morphism 5: M( P* ) + M. 

Proof Let P be the finite biprelix code given by Proposition 3.5. Then 
conditions ( 1) and (3) are satisfied and M( P*) E Inv. We thus need only 
show that M(P*)ER. But MER by hypothesis and there is an aperiodic 
relational morphism z: M( P*) + M. Therefore M( P* ) E A ~ ‘R and thus 
M(P* ) E B since A ~ ‘R = R (see [ 21, for example). 1 

We say that a variety of monoids V is described by a class k? of codes if V 
is the variety generated by the class { M(P*) 1 PE %?I. In particular we say 
that V is described by its finite prefix (resp. biprefix) codes if V is described 
by the class of all finite prefix (resp. biprefix) codes P such that M(P*) E V. 
We can now state 

COROLLARY 3.7. For anJ> variety of groups H, the variety R n Inv is 
described by its finite biprefix codes. 

In particular we have 

COROLLARY 3.8 [3]. The variety of monoids Inv is described by itsfinite 
biprefix codes. 

In [3], Hall shows that given a finite set Q, the monoid Z(Q) is 
isomorphic to a submonoid of an inverse monoid of the form M(P*), 
where P is a finite biprefix code. It follows from the Vagner-Preston 
theorem that every inverse monoid is isomorphic to a submonoid of an 
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inverse monoid of the form M(P*) for some finite biprefix code P, 
However, the Hall construction does not preserve the subgroup structure 
of M. 

4. A CONJECTURE ON INVERSE MONOIDS 

In Section 2 we have given a number of descriptions of the variety of 
monoids Inv that are summarized in Theorem 2.6. However, none of these 
descriptions gives a criterion for the membership problem for Inv. That is, 
given the multiplication table of a monoid M, decide whether ME Inv or 
not. We conjecture that such a criterion exists and moreover that there is a 
very simple criterion. (See note added in proof. j 

CONJECTURE. Let M be a monoid. Then ME Inv if and only if the idem- 
potents of M commute. 

It is easy to see that the class of monoids whose idempotents commute is 
a variety, denoted by Ecom. Since idempotents commute in an inverse 
monoid, we have Inv c Ecom and thus the conjecture is equivalent to show 
that Ecom is contained in Inv. 

In this section we emphasize the importance of this conjecture by show- 
ing its connection with E-unitary monoids. Next we give some evidence 
for this conjecture by proving a weaker result-Theorem 4.4-and we 
conclude the section by some examples that show why the conjecture is 
non-trivial, if true. 

Let us first prove a useful result about monoids whose idempotentv 
commute. 

PROPOSITION 4.1. Let M be a monoid whose idempotents commute. Then 
the minimal ideal of M is a group G. Moreover M divides M/G x G. 

ProoJ: Let G be the minimal ideal of M. Then E(M) n G is a sub- 
semilattice of E(M) that is also a simple semigroup. Therefore E(M) n G is 
trivial, that is, G contains exactly one idempotent e. Thus G is a group with 
unit e. Let n: M -+ &f/G be the natural surjective morphism and let 4: M + 
bf/G x G be the function defined by rn$ = (13171, enz). Then CJ~ is a morphism 
since for all 177, n EM, (em)(en) = e(me) n = e(er?l) n = emn. Moreover 9 is 
injective. Indeed let nz, n be two distincts elements of M. If nz E M\G or 
no M\,G then ~UC #m-c. Now if m, n E G then em =m, en=n and thus 
n$ f nq% Therefore M is isomorphic to a submonoid of M/G x G. ! 

We now give a slightly different version of a result that was discussed in 
length in our article on infinite inverse semigroups [S]. 
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PROPOSITION 4.2. A monoid M is E-unitary iff there exists a morphism 
I$: AI-, G into a group such that I&’ is a semilattice. Moreover, in this case 
14-l = E(M). 

ProoJ For the convenience of the reader we give a self-contained proof. 
Suppose there is a morphism 4: M + G into a group such that 14-i is a 
semilattice. Then 14-l is contained in E(M). Now since ~4 = 1 for all 
eEE(M) it follows that lb-‘= E(M) and E(M) is a semilattice. If em =J’ 
for some e, f~ E(M) and 112 EM, then (ed)(nzd) = (fd) and thus rnd = 1. 
Consequently ~1 E 14 -i = E(M). Similarly me = f implies m E E(M) and 
thus M is E-unitary. 

Conversely let A4 be an E-unitary monoid. Then by Proposition 4.1 the 
minimal ideal of M is a group G with unit e. Let 4: M-+ G be the function 
defined by rnd = em. Then clearly d is a morphism and since M is 
E-unitary, 14 ~ ’ = (~7 E MI enz = e> is a semilattice. 1 

We use this last result to give an equivalent statement for the conjecture. 

THEOREM 4.3. The conjecture holds iff every monoid trhose idempotents 
commute is a quotient of an E-unitarJ9 monoid. 

Proof: Assume that the conjecture holds and let ME Ecom. Then by 
assumption ME Inv and thus Me (J,);’ G by Theorem 2.6. It follows that 
there is a relational morphism r: M-+ G into a group G such that lr -’ is a 
semilattice. Let N={(m,g)EMxGlgEnzz} and let a:N-tM and 
/I: N -+ G be the projections defined by (nz, g) CI = nz and (nz, g) /I = g. Since 
z is a relational morphism, N is a submonoid of M x G. Furthermore, a is a 
surjective morphism, /I is a morphism, and l/3-’ = ((m, 1) 1 r~ E lr -i > is 
isomorphic to the semilattice lr-‘. It follows by Proposition 4.1 that N 
is E-unitary. Therefore M is a quotient of an E-unitary monoid. 

Conversely assume that every monoid A4 whose idempotents commute is 
a quotient of an E-unitary monoid N. Then by Proposition 4.1, there is a 
morphism 4: NA G into a group such that 14-l is a semilattice. It follows 
that NE (J,)s ’ G and hence NE Inv by Theorem 2.6. Since M is a quotient 
of N, we also have ME Inv and the conjecture holds. a 

We consider now the variety V consisting of all monoids M whose idem- 
potents are in the center of M, that is, such that e[Tr = ~ze for all 112 E M and 
e E E(M). Clearly V is a subvariety of Ecom. It was proved in [ 15, 171 that 
the variety consisting of all aperiodic monoids whose idempotents are in the 
center of M is generated by all monoids of the form S’, where S is a 
nilpotent semigroup. We prove here a similar result for V. If A4 is a 
monoid, we denote by U(M) the group of units of M. Then we can state: 
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THEOREM 4.4. The aariety V is generated by the monoids M such that 
M! U(M) is a nilpotent semigroup. 

Proof The proof mimics the proof given in [ 151. First of all if 
M!l;i(M) is a nilpotent semigroup, then either M is a group or M contains 
exactly two idempotents 1 and 0. In both cases it is clear that ME V. It 
follows that V contains the variety W generated by all monoids M such 
that hf’,U(M) is nilpotent. 

Conversely let ME V. Then by Proposition 4.1, the minimal ideal of A4 is 
a group G and M divides G x (M/G). Since GE W it suffices to show that 
N = M/G is in W. We prove this last result by induction on the number II 
of idempotents of M. If II = 1, N is trivial and thus NE W. If II = 2, then 
Nil, U( N) is a nilpotent semigroup and thus NE W. Finally, if n > 2, then N 
contains an idempotent e distinct from 1 and 0, the zero of N. Since the 
idempotents are in the center of M, eN = NeN is a proper ideal of N. Let 
7-r: N + N/e-N be the natural surjective morphism. Then the function 4: N -+ 
(NleN) x eN defined by rnd = (mn, em) is clearly a morphism. Furthermore, 
4 is injective. Indeed let m, n be two distinct elements of N. If nz E N\eN or 
17 E N\,eN then inn: # nrt and if m, n E eN then enz = m and err = n. In both 
cases 1114 # I@. Therefore N divides (N/eN) x eN and since N/eN and eN 
contain (n - 1) idempotents and have a zero, we have by induction 
N/e-NE W. Therefore NE W and hence ME W. 1 

Next we prove: 

THEOREM 4.5. The variety V is contained in Inv. 

Proof. By Theorem 4.4 it suffices to show that if M is a monoid such 
that S = M\U( M) is a nilpotent semigroup, then ME Inv. Define a left 
action of U= U(M) on S’ by setting g. s = gsg-‘. A short calculation 
shows that this is really an action and thus we have the semidirect product 
S’ * U. Let 4: S’ * U -+ M be the function defined by (s, g) 4 = sg. Then 4 is 
onto because if s E S, (s, 1) 4 = s and if s E G, (1, s) 4 = s. Moreover 4 is a 
morphism since 

Therefore elf divides S’ * U. Since U E G it suffices to show that S’ E Inv. 
Indeed by Theorem 2.6 we would have S’ E J, * G and thus S’ * UE 
(J,*G)*G=J,*(G*G)=J,*G by [2, Chap.51. 

Set S= {so, s1 ,..., s,j, where s0 is the zero of S, let k = n2 + 1, and let Z, 
be the cyclic group of order k. Define a relation r: S’ + 2, by setting 

sz= {(iI+ ... +ir)I~,,~~~~!r=~} 
i 

if SES 
0 if s= 1. 
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We claim that T is a relational (J,),-morphism. We first prove the 
relation 

(ST)(fT) c (St) IT. (*I 

If s = f = 1 the relation is clear. Next assume s = 1 and f E S. If s,, . . . s,~ = t 
then 0 + (i, + ... + i,) = i, + ... i,~ tr. Thus (*) holds in this case. The 
proof is similar if s E S and t = 1. Finally, assume s, f E S. If s,, . . .s,~s,, . .. 
slP = st then i, + . .. + i, + j, + . . . + j, E (sf) r. Therefore r is a relational 
morphism. 

Now suppose that 0 E sr. Then either s = 1 or SE S and there exists 
11 . ...) i, such that s,, . . . s,~ = s and i, + . . . + i, = 0 mod k. If one of the i,‘s is 
equal to 0, then s = s0 = 0. Otherwise, by the choice of k, we certainly have 
P > n and thus s E s” + ‘. Since S is nilpotent s” + ’ = { 0} and therefore s = 0. 
It follows that Or -’ = (0, 1> and the claim holds. Therefore ME (Jr )s ’ G 
and ME Inv by Theorem 2.6. 1 

The proof of Theorem 4.5 can be easily adapted to show that V n B is 
contained in J, * H for any variety of groups H containing all solvable 
groups. This suggests imposing some conditions on group in our conjecture 
by trying to prove Ecom n R = Inv n R. However, a difficulty arises when 
we try to extend the results of Section 2. Indeed we have shown that 
J, * H = (5, )s i H for any variety of groups H, and J, * H is certainly con- 
tained in Inv n R, but we conjecture that J, * H is not equal to Inv n Fi as 
soon as H is not the variety of all groups. For instance, if H=I, then 
R = A, J, * I = J,, but there exist aperiodic inverse monoids that are not 
idempotent and commutative, so J, * H # Inv n R in this case. Similarly if 
H = (Z,), the variety generated by the cyclic group of order n, it is not 
difficult to see that every monoid M in J, * H satisfies xn = x2” for all 
x E M. However, one can find monoids in Inv n R that do not fulfill this 
condition, for instance, the cyclic aperiodic monoid of order n + 2. 

In fact one really needs non-commutative groups to decompose an 
inverse monoid M, even if the $-classes of A4 are trivial. 

PROPOSITION 4.6. There exists a monoid in Inv whose $-classes are 
trivial, which is not in J, * Gcom. 

The proof is based on the following lemma. 

LEMMA 4.7. Let M be an aperiodic monoid of order n in (J, )g I Gcom. 
Then for all a, b E M, ab”aba”b is idempotent. 

ProoJ: Since ME (Jr)< ’ Gcom, there exists a commutative group G 
(denoted additively) and a relational morphism 7’: M + G such that Or-’ is 
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a semilattice. Let a, b E M. Then since r is a relational morphism and since 
G is commutative, we have 

(UT + a~ + a’?) -t- (bs + bz + b’?) c (ab”aba”b) T. (*I 

Now since M is an aperiodic monoid of order n, a” = an+ ’ and 
b” = b”+ I. Therefore u” is idempotent and a? is a subgroup H of G. 
Furthermore, aT + H = az + a”z c an + I? = a”z = H. It follows that 
g + H c H for any g E az and hence g + H = H since H is a finite group. 
Consequently CIT + ~‘5 = a~ + H= H= a’? and thus we have, by (*), 
(a?) + (b”z) c (ab”aba”b) z. Now 0 E a’? + b”r and therefore ab”aba”b E 
Or ~ ‘. Since Oz ~ ’ is a semilattice, ab”aba”b is idempotent. 1 

We now prove Proposition 4.6. Let M be the syntactic monoid of the 
language L = ab*aba*b over the alphabet {a, b}. If Q = (1,2,3,4,5 >, M is 
the submonoid of I(Q) generated by the partial functions a and b given by 

la=2, 2a=3, 4a=4 

2b=2, 3b=4, 4b=5. 

Thus ME Inv and a calculation (or an argument of language theory, 
because the language L is “piecewise testable”; see [2, 5, 131) shows that 
the y-classes of A4 are trivial. Now since labkabakb = 5 for all k>O, 
abkabakb is not idempotent and thus M$ (J,),’ Gcom by the lemma. It 
follows that M$ J, * Gcom by Corollary 2.5. 1 

Finally, let us evoke a last unsuccessful attempt to solve the conjecture. 
A monoid belongs to Inv if it divides an inverse monoid N. Therefore it is 
natural to first study quotients and submonoids of inverse monoids. As is 
well known, quotients of inverse monoids are inverse monoids and sub- 
monoids of inverse monoids are characterized by a theorem of Schein [ 11 
that can be formulated as follows. Let P be a subset of a monoid M. Just 
like for languages, the syntactic monoid of P in M is the quotient of M by 
the congruence - p defined by 

m--.11 iff for all x, JJEM, xmyEP*.xnyEP. 

If a E M, we set a -‘P={x(ax~P).Pisstrongiffora11a,b~M,a~’Pn 
b ~ ‘P # 0 implies a -‘P = b-‘P. Then we have: 

PROPOSITION 4.8. Let P be a strong subset of M. Then the syntactic 
monoid of P in M is a submonoid of I(Q), lvhere Q = (a-‘PI aE M and 
C’Pf@]. 

Proqf Each element m of M defines a partial function on Q by 
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(a-‘P) m = (arn)~-’ P if (am)-’ P # a. As is well known, S, the syntactic 
monoid of P in M, is generated by those partial functions. Now if P is 
strong, the partial functions are (partially) one-to-one. Indeed assume that 
(a-‘P)m=(b- ‘P) m # @. Then (UFFZ))’ P = (bm)-’ P # 0, that is, there 
exists x EM such that amx E P and bm.xE P. It follows that mx E a-‘P n 
b-‘P and thus a-‘P= b-‘P since P is strong. Therefore S is a submonoid 
of I(Q). I 

Let - be the congruence on M defined by m - iz iff m ~~ iz for all strong 
subsets P of M. Then Schein’s theorem can be stated as follows: 

THEOREM 4.9 [ 171. A monoid M is a submonoid of an inverse monoid ijjf 
the congruence N is the equality. 

Therefore we have 

COROLLARY 4.10. A monoid of order n is a submonoid of an inverse 
monoid iff it is a submonoid of Z(Q), where Card Q = n2”. 

ProoJ: Let M be a submonoid of an inverse monoid and let 
n = Card M. Then by Theorem 4.9, M= Ml-. Since - is the intersection 
of all congruences - p such that P is strong, Ml- is a submonoid of N= 
rI P strong w - P. Now by Proposition 4.8, M/- p is a submonoid of Z(Q), 
where Card Q d n. Moreover if Qi and Q2 are disjoint sets, Z(Qi) x Z(QJ is 
a submonoid of Z(Q, u Q2). It follows that N is a submonoid of Z(Q), 
where 

Card Q < n Card { P 1 P is strong} d n2”. 1 

Corollary 4.10 shows that one can decide whether a monoid is a sub- 
monoid of an inverse monoid. Unfortunately, this result does not suffice to 
solve the decision problem for Inv. 

PROPOSITION 4.11. There exists a monoid in Inv that is not a submonoid 
of an inverse monoid. 

ProoJ: Let M be the syntactic monoid of the language L = {aa, aba} on 
the alphabet {a, 6). Then M is generated by the partial functions of 
{ 1,2, 3,4) given by la = 2, 2a = 3a = 4, and 26 = 3, and a short calculation 
(or, as usual, an argument of language theory [2]) shows that M=S’, 
where S is a nilpotent semigroup. Thus ME V and ME Inv by Theorem 4.5. 
Assume that M is a submonoid of an inverse monoid. Then M is a sub- 
monoid of Z(Q) for some finite set Q. Since we have in M, aa = aba # abab, 
there exists q E Q such that qua = qaba # qabab. Therefore qaa = qaba # @ 
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(otherwise qabab = 0 = qaba) and hence qa= gab # 0. It follows that 
qaba = qabab, a contradiction. [ 

Note added in proof C. J. Ash has proved the main conjecture of this paper a monoid M 
1s in Inv if and only if ldempotents of M commute. (Finite semigroups with commuting idem- 
potents, J. .4ustral. Math. Sot. Ser. A, to appear.) 
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