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This paper is the first part of a series of three papers devoted to the study 
of inverse semigroups. The subject of our second paper [7] is free inverse 
semigroups, the third one [S] is dedicated to finite inverse semigroups and 
applications to language theory, while this one is concerned with general 
inverse semigroups. 

Much of the structure theory of inverse semigroups has revolved about 
constructing an arbitrary inverse semigroup from groups and semilattices, 
and the main results of this theory can be stated as follows. An E- 
semigroup S (that is, a semigroup whose idempotents commute) is said to 
be an extension of a group by a semilattice if there is a surjective morphism 
4 from S onto a group such that 14 ~ ’ is the set of idempotents of S. First, 
every inverse semigroup is covered by a regular extension of a group by a 
semilattice and the covering map is one-to-one on idempotents. Second, 
regular extensions of groups by semilattices are exactly E-unitary inverse 
semigroups [17], or P-semigroups (in the sense of McAlister [9, lo]), or 
regular subsemigroups of semidirect products of a semilattice by a group 
C161. 

The aim of this paper is to develop a similar theory in the non-regular 
case. However, as usual in semigroup theory, many difficulties arise when 
passing from the regular case to the non-regular case. The first obvious 
problem is to find non-regular equivalents to the notions of inverse 
semigroups, E-unitary inverse semigroups, P-semigroups, etc. It turns out 
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that the proper definitions are the following: E-dense semigroups (that is, 
semigroups in which idempotents form a dense subsemilattice) generalize 
inverse semigroups, E-unitary dense semigroups generalize E-unitary 
inverse semigroups, and extensions of groups by semilattices generalize 
regular extensions. 

With this dictionary in hand, we may try to extend the main results 
recalled above. It is fair to say immediately that the generalization of the 
first result we propose is still a conjecture. 

Conjecture. Every E-dense semigroup is covered by an E-unitary dense 
semigroup and the covering is one-to-one on idempotents. 

Notice that in an E-unitary semigroup, the stabilizer of any element is a 
semilattice. Thus our conjecture says that any E-dense semigroup is 
covered by an E-dense semigroup whose stabilizers are nice, or, to 
paraphrase a geometric terminology, without singularities. In this sense our 
conjecture is reminiscent of the following result of Rhodes and Tilson [24]: 
every finite semigroup is covered by a finite semigroup whose stabilizers are 
group-free and the covering is one-to-one on groups. Our conjecture is 
especially interesting for finite semigroups as is shown in our third paper 
PI. 

We are more successful with the second fundamental result and we prove 
the following generalization: extensions of groups by semilattices are 
exactly E-unitary dense semigroups. The next step consists in extending the 
notion of P-semigroups and seems more embarrassing at first sight. In fact, 
P-semigroups have a very nice interpretation in terms of algebraic 
topology. First, it is necessary to adopt a slightly more general point of 
view by replacing semigroups by categories. Notice that categories are not 
considered here as “abstract nonsense” but as algebraic objects similar to 
groups or vector spaces. This point of view has already been investigated 
by different authors [2, 151 in semigroup theory and analogous techniques 
have proved to be very useful in the theory of free groups [S, 231. Follow- 
ing Higgins [S], we next define the fundamental group of a connected 
category. If this category is a monoid M (that is, a one-object category), 
the fundamental group is just the “free group over A4” in the terminology 
of Clifford and Preston [3]. Moreover if A4 is E-dense, it is the quotient of 
M by a classical congruence: two elements u and u are equivalent if eu = ev 
for some idempotent e. 

To any monoid morphism d:M -+ N we associate a category C, the 
derived category of 4, which is a natural extension of the “derived 
semigroup” introduced by Tilson [25]. This derived category covers M in 
the topological sense. In particular, if A4 is E-unitary dense and 4 is the 
surjective morphism from M onto its fundamental group G then C is a con- 
nected category and the endomorphisms of any object of C forms a 
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semilattice. (We say that C is idempotent and commutative in this case.) 
Moreover G acts transitively without fixpoints on C and M is isomorphic 
to C/G. Conversely if a group G acts transitively without lixpoints on a 
connected idempotent and commutative category C, then the monoid C/G 
is E-unitary dense. In fact this theorem is the proper extension of 
McAlister’s theorem on P-semigroups. Indeed in the regular case, C is an 
inverse category and C/G is isomorphic to the P-semigroup P(G, F, E), 
where F is the partially ordered set of $-classes of C and E is a subsemiiat- 
tice of F isomorphic to the semilattice of idempotents of C/G. Furthermore, 
C/G is a submonoid of a semidirect product S * G, where S is the semilat- 
tice of ideals of C under intersection. Thus, even in the regular case, our 
description of E-unitary monoids is more natural then the description using 
P-semigroups. 

The paper breaks up into four main sections. In the Section 1 we give 
some definitions relative to semigroups and in Section 2 we review the 
structure theory of inverse semigroups. In Section 3 we introduce 
categories, coverings, and fundamental groups and we prove our main 
result, Theorem 3.15. We come back to the regular case in the Section 4 
and we show the connection between categories and P-semigroups. 

I. PRELIMINARIES 

Let S be a semigroup. The elements x and y of S are inverses if XJJX = .Y 
and JXJJ = y. S is said to be a regular semigroup if every element of S has an 
inverse. S is an inverse semigroup if every element of S has a unique inverse. 
It is well known that S is an inverse semigroup iff S is a regular semigroup 
whose idempotents commute [3]. A semilattice is a commutative and 
idempotent semigroup. 

Let Q be a set. We denote by I(Q) the semigroup of all partial injective 
(that is, one-to-one) functions from Q to Q under composition of partial 
functions. Then 1(Q) is an inverse semigroup and the following represen- 
tation theorem, due to Vagner and Preston [3], holds. 

THEOREM 1.1. S is an inverse semigroup iff S is isomorphic to a regular 
subsemigroup of I(Q) for some set Q. 

Let S be a semigroup. Then S’ denotes the monoid constructed as 
follows. S* = S if S is a monoid and if S is not a monoid S’ = SW (I}* 
where 1 is an identity. 

Let T be a subsemigroup of a semigroup S. Then T is called unitary if for 
all t, t’ E T and s E S, ts = t’ implies s E T and st = t’ implies s E T. T is called 
dense if every element s E S can be completed on the right and on the left 
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into an element of T, that is, if there exist si, s2 E S1 such that sis E T and 
ss2 E T. 

As usual E(S) denotes the set of idempotents of S. An E-semigroup is 
a semigroup such that E(S) is a semilattice. An E-semigroup S is called 
E-unitary (resp. E-dense, E-unitary dense) if E(S) is a unitary (resp. 
dense, unitary and dense) subsemigroup of S. For example, every finite E- 
semigroup and every inverse semigroup is E-dense. E-unitary semigroups 
have been especially studied in the case of inverse semigroups [ 171. In fact, 
one can give a great number of equivalent conditions defining E-unitary 
inverse semigroups. The next proposition selects four of them. Of course 
conditions (3) and (4) could be dualized. 

PROPOSITION 1.2. Let S be an inverse semigroup. The following con- 
ditions are equivalent: 

(1) S is E-unitary. 
(2) S is E-unitary dense. 
(3) For alleEE(S) andsES, es=e impliessEE( 
(4) For all s, t E S, st = s implies t E E(S). 

ProoJ Condition (1) implies (2). Let s E S and let S be the inverse of s. 
Then sS, Ss E E(S) and thus S is E-dense. 

Condition (2) implies (3) follows from the definition of E-unitary. 
Condition (3) implies (4). If st =s then Sst =SSE E(S). Thus by (3), 

tE E(S). 
Condition (4) implies (1). Since S is inverse, E(S) is a semilattice. 

Moreover if e, es E E(S) then (es) s = e(es) s = (es) es = es so that s E E(S) 
by (4). Finally, assume that e, se E E(S). Then ses = (ses) es and thus 
es E E(S) by (4). Therefore (es) s = e(es) s = eses = es so that s E E(S) by (4) 
again. 1 

Let S be a semigroup and let A4 be a monoid with 1 as an identity. To 
simplify notation, we will write S additively, without assuming that S is 
commutative. A left action of M on S is a mapping 

MxS-+S 
(m, s) + ms 

satisfying for all s, s,, s2 E S and 171, m,, m2 E M 

(1) m(s,+s,)=ms,+ms,, 

(2) nzl(n12 s) = (ml TJ s, 
(3) ls=s. 

Of course, this just amounts to giving a morphism from M to the 
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monoid of endomorphisms acting on the left of S. This action is used to 
form a semigroup S * M on the set S x M with multiplication 

(s, m)(s’, m’) = (s + ms’, mm’). 

S * M is called a semidirect product of S and M. 
Note that if elements of S x M are represented by matrices of the form 

(t i), where s E S and m E 111, then the previous formula can be written 

Given a semigroup S, the reverse semigroup of S is denoted S. Given a 
left action of M’ on S’, the reverse semidirect product of S and M is the 
semigroup M er S defined by 

M *r s = (S * My: 

More directly, one can associate to the left action of M’ on S’ a right 
action of M on S (denoted by (s, m) -+ s. nz) by setting s . m = ms. Then one 
can define the product in M *r S by (m, s)(m’, s’) = (mm’, s .m’ + s’). 

If elements of M x S are represented by matrices of the form (7 y) the 
previous formula can be written 

If M is a group, the following result shows that there is no difference 
between semidirect and reverse semidirect product. 

PROPOSITION 1.3. Let S be a semigroup and let G be a group. Then every 
semidirect product S * G is isomorphic to a reverse semidirect product G er S 
and vice versa. 

Proof. Given a left action of G on S, define a right action of G on S by 
setting s . g = g -Is. A simple calculation now shows that the function 
4: S * G -+ G *r S defined by (a i) 4 = ( g!l, y) is an isomorphism. 1 

2. INVERSE SEMIGROUPS AS EXTENSIONS OF GROUPS BY SEWLATTICES 

The aim of this short section is to give a unified presentation of the struc- 
ture theory of inverse semigroups, as developed, for example, by McAlister 
[9-111, O’Carroll [16], Munn [14], Reilly [18], and others (see [12] for 
an extensive bibliography). 
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A natural construction to obtain inverse semigroups from semilattices 
and groups is the semidirect product. 

PROPOSITION 2.1. [ 111. Let S be a semilattice and let G be a group. 
Then S * G is an inverse semigroup for any left action of G on S. 

Prooj - - Let x = (s, g) and .? = (s, g) be two elements of S * G. Then 
- - - - XXX = (s + gS + ggs, ggg) and XxX = (S + 2s + ggs, ggg). Therefore X is an 

inverse of x iff g=g-‘, s+gS=s, and S=S+g-‘s. It follows that 
gS=g(S+g-‘s)=gS+s=s and thus X=(g~‘s,g~‘) is the unique inverse 
of x and S is inverse. 1 

A description of the Green’s relations and the ideal structure of these 
semidirect products is given in [ 121. Unfortunately, Proposition 2.1 does 
not characterize all inverse semigroups. However, the following result 
shows how to construct an arbitrary inverse semigroup from semilattices 
and groups. It is a consequence of the results of McAlister [9, lo] and 
O’Carroll [ 161. A related result was given by Tilson [24]. 

THEOREM 2.2. Let R be an inverse semigroup. Then there exists an 
inverse semigroup T such that 

(1) there is a surjective morphism 4: T + R which is one-to-one on 
idempotents, 

(2) T is a subsemigroup of a semidirect product S * G, where S is a 
semilattice and G is a group. 

In view of this last result, inverse subsemigroups of semidirect products 
S * G, where S is a semilattice and G is a group, play a central role in the 
study of inverse semigroups. There are now many known characterizations 
of these semigroups. One of them states that these semigroups are exactly 
the E-unitary inverse semigroups. A more precise description was obtained 
by McAlister [9, lo] in terms of P-semigroups. The notion of P-semigroup 
arose from Scheiblich’s construction of free inverse semigroups [20]. Here 
is the definition, from McAlister [9]. 

Let F be a (down) directed partially ordered set and let E be an ideal 
and subsemilattice of F. Let G be a group acting on the left on F by order 
automorphisms in such a way that F= G . E and set P(G, F, E) = {(e, g) E 
ExGIg~‘eEE}.Thenif(e,g)and(f,h)areinP(G,F,E)itcanbeshown 
[9] that e and gf have a greatest lower bound denoted e A gf: Moreover 
r A gf is in E. Thus we can define a multiplication on P( G, F, E) by setting 

(e, g)(f, h) = (e A gtt gh). 

Then one shows [9, lo] that P(G, F, E) is an inverse semigroup, called a 
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P-semigroup. We may now summarize the results of 19, 10, 161 in the 
following theorem. 

THEOREM 2.3. Let T be an inverse semigroup. The following conditions 
are equivalent: 

(1) There exist a group G and a surjective morphism qk T + G such 
that 14-i = E(T). 

(2) T is E-unitary. 
(3) T is isomorphic to a P-semigroup P( G, F, E), where E = E(T). 
(4) T is a subsemigroup of a semidirect product S * G, where S is a 

semilattice and G is a group. 

3. EXTENSIONS OF GROUPS BY SEMILATTICES 

Theorem 2.3 characterizes regular E-semigroups T such that there exists 
a surjective morphism 4 onto a group with 14-l = E(T). It is convenient to 
say in this case that T is an extension of a group by a semilattice. The aim 
of this section is to extend Theorem 2.3 to the non-regular case. In fact we 
shall only extend conditions (l), (2), and (3) of this theorem but the 
restriction of our extended theorem to the regular case will give back 
Theorem 2.3 in full. 

The main problem is that all the proofs of Theorem 2.3 [9, 10, 14, 221 
rely heavily on the regularity of T and do not generalize immediately. In 
particular, a new definition of P-semigroups is needed. It appears that the 
proper framework to generalize Theorem 2.3 is to study groups acting on a 
category. Following [IS], we consider here only “small” categories in the 
sense that the objects of a category always form a set. In fact categories are 
considered here as algebraic structures in their own right, on the same 
footing as rings, vector spaces, or groups. Therefore the “elements” of this 
algebra are the morphisms and their composition is an associative partial 
binary operation. Functors thus appear as algebra homomorphisms. In the 
case of a category with just one object, the resulting algebra is just a 
monoid. Thus we shall define for categories a number of notions borrowed 
either from semigroup theory (Green’s relations, ideals) or from algebraic 
topology (coverings, fundamental groups). Now we give the details. 

3.1. Categories 

Let C be a category. Oh(C) denotes the objects of C and for 
u, v E Ob( C), Mor(u, v) denotes the set of all morphisms from u to v. C is 
connected if, for all u, VE Oh(C), Mor(u, v) is non-empty. Mor(u, C) 
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denotes the set of all morphisms starting from U. Thus Mor(u, C) = 
U DEob(C) Mor(u, v). Similarly Mar(C) = UUEobcC) Mor(u, C) is the set of all 
morphisms of C. 

A category is a groupoki if all morphisms are isomorphisms. 
We shall adopt an additive notation for composition of morphisms, 

although this composition is not assumed to be commutative. Thus if 
PE Mor(u, v) and qE Mor(v, w), p + qE Mor(u, w), and if UE Oh(C), 0, 
denotes the identity on U. Although this notation may seem a little unsettl- 
ing at first, it will allow us to write group actions multiplicatively. 

A category C is reguZur if for all objects U, v E Oh(C) and for all 
p E Mor(u, v) there exists q E Mor(v, U) such that p + q +p =p. q is called 
an inverse of p if, furthermore, q+p +q=q. Notice that if p+q+p=p 
then q +p + q is an inverse of p. 

A category is inverse iff every morphism has a unique inverse. If C is 
inverse ~7 will denote the inverse of p. 

A morphism PE Mor(u, v) is idempotent if p +p=p. This implies in 
particular that u = v. 

A category C is idempotent (resp. commutative, torsion) if for all 
Z~E Oh(C), the monoid Mor(u, U) is idempotent (resp. commutative, 
torsion). 

Let C be a category. We define the Green’s relations 92, 2, 9, X, and 9 
and the preorders < *, d y, d %, d f on Mor( C) as for a semigroup. For 
example, p d 9 q iff there exists Y E Mar(C) such that p = q + I and p 9 q iff 
p G% q and q 6% p. 

All the standard proofs on Green’s relations and regular semigroups 
carry over without much trouble. Therefore we just state without proof the 
basic facts we need on categories. 

PROPOSITION 3.1. (1) The relations 9 and 9 commute. Therefore 
9Y=YB=9. 

(2) If C is a torsion category, then 9 = f on C. 

PROPOSITION 3.2. (1) A category is regular iff every B-class and every 
Y-class contains an idempotent. 

(2) A regular category C is inverse iff, for every u E Ob( C), the set of 
idempotents of Mor(u, u) forms a semilattice. 

PROPOSITION 3.3. Let C be an inverse category and let p, q be two idem- 
potents such that p 9 q. Then there exists a unique r E Mar(C) such that 
p=r+Fandq=F+r. 

We need the following slightly more technical result. 



EXTENSIONS OF GROUPS BY SEMILATTICES 285 

PROPOSITION 3.4. Let C be a regular, idempotent, and commutative 
category and let 14, v E Oh(C). Then for all p, q E Mor(u, v), p fl q implies 
P= 4. 

Proof. First C is inverse by Proposition 3.2. Now p f q and since 
p=p+p+p and q=q+g+q we also have pjpfp, qflp+ji and 
4Yq++. It follows that p+pyq+q, that is, there exist 
a,b,c,dEMor(C) such that a+(p+p)+b=q+g and c+(q+q)+d= 
p +p. But p +p, q + q E Mor(u, u) and thus a, b: c, dE Mor(u, u). Therefore 
p +p and q + q are $-related in the semilattice Mor(u, u) and hence 
p f p = q + q. A similar argument shows that p + p = 4 + q. Now we have 
(p+q)+q+p=p+p+p+p=p+p and (p+p)-tp+q=p+q. It follows 
that p + p $ p + q and hence, by the above argument, p + p = p + 4 = q + 4. 
Finally, we obtainp=p+p+p=p+q+q=q+q+q=q. 1 

Let C be a category. An ideal I of C is a subset of Mar(C) such that 
for all u, v, IV, z E Oh(C) and for all x E Mor(u, v), p E Mor(v, w), and 
yEMor(w,z), pEZimplies .x+p+y~l. 

A congruence on a category C is an equivalence relation-on Mar(C) 
satisfying the following conditions: 

(1) If p - q then p and q are coterminal, that is, there exist 
u, u E Ob( C) such that p, q E Mor(u, v). 

(2) For all u, v, WE Oh(C) and for all pl,p2~ Mor(u, v) and 
~1~q2~~~~~~,~~~,~l-~2~~~gl-q2~~p~yp,+p,-q,+q,. 

Let - be a congruence on a category C. The quotient category Cl- is 
the category whose objects are the objects of C and whose morphisms are 
the --classes of the morphisms of C. Condition (2) above implies that 
composition of morphisms is well defined on C/-. 

An important example of a category is the free category on a graph. 
Intuitively, a graph is a set of arrows between points called vertices. More 
formally a graph consists of a set V of vertices, a set E of edges, and two 
maps c(: E -+ V and o: E + V. If e is an edge, ea is the origin of e and ew is 
the end of e. Two edges e, and e2 are consecutive if the end of e, is equal to 
the origin of ez. A path is a sequence of consecutive edges. Given a path 
p=el...e,, the origin of p is the origin of e, and the end of p is the end of 
e,. Let r be a graph. The free category on r is defined as follows. The 
objects are the vertices of r and the set of morphisms from u to v is the set 
of all paths with origin u and end v. If u = v we also include a trivial path 
O,,. The morphism composition is the natural path composition, completed 
by the rules 0, +p =p-for each path with origin u-and p + O,=p for 
each path with end u. 
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An automorphism of a category C is a functor F: C + C such that: 

(1) For all u E Oh(C), F induces a permutation on Oh(C). 

(2) For all u, u E Oh(C), F induces a bijection Mor(u, u) + 
Mor(l;(u), F(u)). 

We denote by Aut( C) the group of automorphims of C. A group G acts 
on C if there exists a group morphism G -+ Aut(C). In this case we write gu 
(resp. gp), the result of the action of g on the object v (resp. on the 
morphism p). Since an automorphism is a functor, we have the following 
identities, where u, II, )V E Ob( C). 

(1) g(p+q)=gp+gq for all gEG, pEMor(u, V) and qEMor(u, w). 

(2) (gh)p = g(hp) for all g, h E G, p E Mor(u, u). 

(3) go, = O,, for all g E G. 

(4) lp=p for all pEMor(u, 0). 

G acts transititrezy if for all u, v E Ob( C) there exists g E G such that gu = u. 
G acts without fixpoints if the condition “go = a for some D E Oh(C)” implies 
g = 1. Thus if G acts transitively without lixpoints, then for all u, r E Oh(C) 
there exists a unique g E G such that gu = v. 

Let G be a group acting on a category C. We define a category C/G as 
follows. The objects are the orbits of Oh(C) under G. If Gu and Go are two 
orbits, the set Mor(Gu, Gu) is the quotient of the set 

U Mor(u’. u’) 
u’ c Gu 
O’EGD 

under the equivalence defined by p N q iff there exists g E G such that p = gq. 
Composition of morphisms needs care. If 3 E Mor(Gu, Gu) and 
4 E Mor(Gtl, G~v), then @ + 4 = (p + q)’ where p and q are morphisms selec- 
ted as follows. First PE Mor(u’, u’) is an arbitrary element of the 
equivalence class fi (and thus u’ E Gu and a’ E Gu). Now since G is transitive 
on Gu there exists in the equivalence class 4 a morphism q E Mor(v’, MI’), 
where 1~’ E Gw. Now p + q E Mor(u’, \v’) is well defined and one can easily 
verify that the class of p + q modulo w depends only on 9 and 4. The fact 
that C/G is now really a category is left to the reader. 

We conclude this subsection by an obvious, but useful, observation. 

PROPOSITION 3.5. Let G be a group acting on a category C. If p f q then 
gpYtxforallgEG. 
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Proof: If p f 4 there exist a, b, c, dE Mar(C) such that q=a+p+ b 
and p=c+q+d. It follows that gq=ga+gp+gb and gp=gc+gq+gd, 
that is, m f gq. I 

3.2. Fundamental Groups 

Another important concept is the fundamental groupoid of a category C. 
Consider the graph whose vertices are the objects of C and whose edges are 
the triples (u, p, v) or (v, p, u) such that p E Mor(u, v). Let F be the free 
category over this graph and let w be the congruence on F generated by the 
relations (~,p,~)+(u,P,~)“O,~(tl,p,u)+(u,p,u) and (u,P,u)+ 
(u, q, w) - (u, p + q, MT) for all p E Mor(u, u) and q E Mor(v, u.). 

The quotient Fj- is a groupoid, called the fundamental groupoid of C. 
Thus for every v E Ob(F/-), Mor(v, v) is a group, called the fundamental 
group of C at the point u and denoted I7,(C, v). Moreover if C is connected, 
all the groups Z7,(C, u) are isomorphic [S], and thus we will simply refer in 
this case to the fundamental group of C, denoted by n,(C). 

In particular, if M is a monoid (that is, a one-object category), the fun- 
damental group Z7,( M) can be computed as follows. Let F(M) be the free 
group with basis M. To avoid confusion between the elements of M and 
the elements of F(M) we shall denote by r: M+ F(M) the natural embed- 
ding. Notice that z is not a monoid morphism. Now ITT,(Icrl) is the quotient 
of F(M) under the relations (U)(U) = (uv) I for all u, u E M. Thus 17,(M) is 
nothing else than the “free group over A4” in the terminology of [3]. 
Indeed let n: F(M) + n,(M) be the surjective group morphism onto 
17,(M). Then the map V]=UC: M+ 17,(M) has the following universal 
property: 

PROPOSITION 3.6. v is a monoid morphism and for every monoid 
morphism 1’ = M + G into a group such that My generates G as a group, 
there exists a unique group morphism 4: 17,(M) + G such that y = ~4. 
Moreover q5 is surjectiue. 

Proof. First q is a monoid morphism, since for all U, D EM, we have 
(u~)(v~)=(uzn)(uz~)=((uz)(vz))~=(~v)z~~=(uu)~. Next let y:M-+G be a 
monoid morphism into a group such that My generates G as a group. Since 
F(M) is the free group with basis M there exists a unique group morphism 
p: F(M) -+ G such that $ = y. Thus if there exists a group morphism 4 such 
that y = V+!J = ~(Ju$), the uniqueness of fl implies /? = 7r4= Moreover since M4 
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generates G as a group, /? is surjective. Let us summarize the situation with 
the diagram 

Now Ker rc t Ker B. Indeed Ker rc is the normal subgroup of F(M) 
generated by the set {(~u)z(uz)~‘(~z)-‘124, UEM} and for all U, UE M we 
have (24~) @ = (uu) y = (uy)(uy) = (uzfl)(u@) = ((ui)(uz)) p. Therefore there 
exists a unique group morphism 4 such that nd = /I and $ is surjective. 1 

The quotients of a monoid M are naturally (pre) ordered by the relation 
N, 9 N, iff there exists a surjective morphism N, + N,. Notice that if N, is 
a group then N, is also a group. Proposition 3.6 implies that if 
9: A4+ n,(M) is surjective then 17,(M) is the maximal quotient group of 
M (relative to the preorder d ). This is the case for an important class 
of monoids. 

PROPOSITION 3.7. Let M be a monoid such that the semigroup generated 
641 E(M) is dense in M. Therl the fundamental group 17,(M) is the maximal 
quotient group of M. 

Proof By Proposition 3.6 we only have to show that II,(M) is a 
quotient of M. Let u E M. Since the semigroup generated by E(M) is dense 
there exists u E M such that ULI is a product of idempotents. Therefore 
(uu) PI= 1 and thus (uq)-’ = oy E MI!. Consequently the set {(WI) Pi 1 u E M’, 
is contained in Mq and since Mq generates ni(M) as a group, it also 
generates 17,(M) as a monoid. Therefore ye is surjective. I 

The last proposition applies in particular in the case where M is finite. In 
this case the construction of the maximal quotient group is well known 
[ 11. Let K be the minimal ideal of M. Then K is a completely simple 
semigroup with structure group G. Let S be the subsemigroup of K 
generated by E(K). Then S is again a simple semigroup with structure 
group Hc G. Let N be the smallest normal subgroup of G containing H. 
Then II,(M) is isomorphic to G/N. 

Proposition 3.7 also applies to the case of inverse monoids. Indeed it is 
well known that the maximal quotient group of an inverse monoid M is the 
quotient of M under the congruence- defined by U-U iff there exists 
e E E(M) such that etl = ev. In fact this result holds for a more general class 
of semigroups. 
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PROPOSITION 3.8. Let M be an E-dense monoid. Then 17,(M) is the 
quotient of M by the congruence - defined by u - v iff there exists e E E(M) 
such that eu=ev. 

ProoJ: Clearly - is reflexive and symmetric. Assume that u - v and 
v - )v. Then there exists e, f E E(M) such that eu = et1 and fv =fil. Since 
E(M) is a semilattice, it follows that feu =feu = efv = efw =few and hen- 
ce - is transitive. Now if x E A4 then eux = evx and thus ux - OX. Moreover 
since M is E-dense there exists ~7 EM such that yx E E(M). Therefore 
(ys) eu = (,7x) ev = e(yx) u = e(vx) v. Now there exists z such that 
=(ey) E E(M) and thus (=eqJ) xu = (zey) xv and hence xu - xv. Consequently 
- is a congruence. 

We claim that M/ - is a group. Indeed let u E &I. Then there exists v E M 
such that uv E E(M). Therefore (uv) . I= (uv)(uv) and thus M - 1. Similarly, 
for each u~hf there exists \VE M such that wu - 1 and this proves the 
claim. Thus M/- is a quotient group of M. Moreover if 4: M -+ G is a sur- 
jective morphism onto a group, then zf - v implies eu = ev for some 
eE E(M) and hence (ed)(ud) = (ed)(t$), that is, ~4 =I$. Therefore there 
exists a surjective morphism AI/- + G and thus IV/- is the maximal 
quotient group of M. Thus by Proposition 3.7, ilf/- is isomorphic to 
fl,(W. I 

All the results of this subsection were stated for monoids only. Now if S 
is a semigroup one can define a monoid S’ as follows: S’ = S if S is a 
monoid and S’ = S u ( 1 }, where 1 is an identity if S is not a monoid. The 
fundamental group of S can be defined by setting II,(S) = I7,(S’) and then 
Propositions 3.6 to 3.8 can be readily extended to semigroups. 

We now generalize conditions (1) and (2) of Theorem 2.3 to the non- 
regular case. 

THEOREM 3.9. Let T be a semigroup whose idempotents commute. Then 
the following conditions are equivalent: 

(1) There exist a group G and a surjective morphism I$: T + G such 
that 14-l = E(T). 

(2) There exists a surjective morphism ye: T+ II,(T) such that 
11r-’ = E(T). 

(3) T is E-unitary dense. 

ProoJ: We prove (3) implies (2) (2) implies (i), and (1) implies (3) in 
this order. Let T be a E-unitary dense semigroup. Then by Proposition 3.7 
there exists a surjective morphism ,I: T-t 17,(T) and by Proposition 3.8 
Z7,( T) is the quotient of T under the congruence -. Therefore 
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1~~‘={t~Tlt-1). But if U- 1, then eu=e for some GEE and thus 
zc E E( T), since T is E-unitary. Therefore lq ~ ’ = E(T), proving (2). 

Condition (2) implies (1) is obvious. 
Finally, assume that (1) holds. Then if eu = f for some e, f E E(T) and 

LIE T, then (uq5)= 1(~4q5)= (eq5)(uq5)= (eu) qS=fqz5= 1 and thus ueE(T). 
Therefore T is E-unitary. Moreover for every s E T there exists t E T such 
that tq5 = ($-’ and thus SUE 14-l = E(T). It follows that T is E-dense, 
proving (3). 

3.3. Cooerings 

A functor F: C + D is a couering if for all u E Oh(C), F induces a bijec- 
tion from Mor(u, C) to Mor(F(u), D). 

The following result is an analog of a well-known result of topology. 

PROPOSITION 3.10. Let G be a group acting without fixpoints on a 
category C. Then F: C -+ C/G is a cooering. 

If G acts transitively without fixpoints, the category C/G is a monoid and 
a direct description of this monoid is possible. Let u be any object of C 
and let C, = {(p, g) Ip E Mor(u, gu)>. Then C, is a monoid under the 
multiplication 

(P, g)(q> h) = (P + gq, gh). 

This is well defined since if p E Mor(u, gu) and qE Mor(u, hu) then 
gq E Mor( gz4, ghu) and thus p + gq E Mor( u, ghzl). Then we have 

PROPOSITION 3.11. Let G be a group acting transitively without fixpoints 
on a category C. Then for all u E Oh(C), the monoid C, is isomorphic to 
C/G. 

ProoJ Define a function 0: C, + C/G by setting (p, g) 0 =@. Then we 
have ((p, g)(q, h)) 0 = (p +gq, gh) 0 = (p + gq)‘. But since p E Mor(u, gu) 
and gq E Mor( gu, ghu), (p + gq) =b + 4 by definition of C/G. Therefore 0 
is a monoid morphism. Assume that (p,,g,) O= (p2, gz) 0, that is, 
pi =fi2. Then there exists h E G such that hpzp, =p2. It follows that hu = 14 

and hence II= 1 since G acts without tixpoints. Thus p1 =pz and 0 is injec- 
tive. Finally, let p E Mar(C). Since G acts transitively on C there exists 
h E G such that hp E Mor(u, C). Therefore if hpg Mor(u, gu) we have 
(hp, g) 0 = (hp)’ = 0. Thus 0 is an isomorphism. 

The multiplication in C, is somewhat reminiscent of the multiplication in 
a P-semigroup. Indeed, as we shall see later, the monoids C,-or C/G, by 
the previous proposition-are the generalization of P-semigroups we need 
to extend Theorem 2.3. 

We turn now to an important example of coverings, the derived covering 
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of a morphism. Some years ago, the derived semigroup of a morphism was 
introduced by Tilson [ZS] for applications to finite semigroups and it has 
proved to be one of the most important tools in the study of wreath 
product decompositions. Rhodes [19} recently proposed an extension to 
arbitrary semigroups. In fact it is both more natural and more convenient 
to consider the point of view of coverings. 

Let 4: A4 + N be a monoid morphism. Define a category C with 
Ob(C)=Nandforu,~lEN,Mor(u,v)=((u,m,o)ENxil~xNJu(m~)=Li). 

Composition is given by (u, m,v) + (u, n, n,) = (u, mn, )v). Clearly this is 
associative and 0, = (II, 1, u). So C is a category, called the derived 
cntegor)’ of 4. Note that the derived semigroup of q5 is simply the set 
Mar(C) u {0) with multiplication given by 

p+q if p + q is defined 
pq= 0 otherwise. 

Now the derived covering of I$ is the functor F: C + M defined by 

(a) for all u E Oh(C), F(u) is the only object of M, 

(b) for all (u, m, v) E Mor(u, u), F(u, m, v) = m. 

It is easy to verify that F is indeed a covering. 
We consider now the particular case where 4: h1+ G is a morphism into 

a group. 

PROPOSITION 3.12. Let 4: M-t G be a morphism into a group and let 
F: C + M be the derived covering of 4. Then G acts transitirelj’ withoUt 
fixpoints on C and M is isomorphic (as a monoid) to C/G. 

Proqf: Since Oh(C) = G, the multiplication of G defines an action of G 
on Oh(C). Now if (h,m,kj~Mor(h,k), we set g(h,m,k)=(gh,m,gk). 
This defines a transitive action of G on C and obviously this action has no 
tixpoints. Moreover if g E Ob( C) is fixed, the function M -+ Cg defined by 
m --f ((g, m, g(md)), g(nzd) g ~ ’ ) is an isomorphism since 

((g,m,g(m~)),g(m~)g~*)((g,n,g(n~)),g(n~)g-’) 
=((g,n7,g(m~))+g(nz~)g~‘(g,n,g(n~)),g(m~)(n~)g~~‘) 
= ((8, m gbdi) + kb@), n, g(MW#)), gbd)W) ii-‘) 
=((g, mlz,g(mn)~),g(nzn)~g~‘j. 

It follows by Proposition 3.11 that A4 is isomorphic to C/G. 1 

481:110:2-2 
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We consider now the case where M is an E-unitary dense monoid. By 
Proposition 3.7, there exists a surjective morphism q: M + 17,(M). Let C 
be the derived category of rl and let F: C -+ A4 be the derived covering of q. 
Then we have. 

PROPOSITION 3.13. For all g E Oh(C), Mor(g, g) is isomorphic to E(M). 
Moreover C is connected, idempotent, and commutative and 9 = f on C. 
Finally, if M is regular, C is regular. 

ProoJ By definition (g, m, g) E Mor(g, g) iff m E 1~~‘. But 
lrl-’ = E(M) by Theorem 3.9 and thus Mor(g, g) = ((g, m, g) 1 m E E(M)} 
is isomorphic to E(M). Thus C is idempotent and commutative and, by 
Proposition 3.1, Q? = f on C. Finally, let g, !z E Ob( C) and let m E A4 be 
such that my =g-‘h. Then by definition (g, m, 12) E Mor( g, lz). Thus C is 
connected. 

Finally, assume that M is regular. Let (g, IH,/~) E Mor(g, h) and let n be 
an inverse of m. Then mnm = HZ and nnuz = n and thus (mn) g = (nm) n = 1. 
It follows that (11, n, g) E Mor(lz, g) since h(nn) = g(my)(nn) = g(mn) n = g 
and a simple calculation shows that (h, n, g) is an inverse of (g, m, h). Thus 
C is regular. 1 

Propositions 3.12 and 3.13 combined show that if M is E-unitary dense, 
then 17,(M) acts transitively without fixpoints on the connected, idem- 
potent, and commutative category C and that M is isomorphic to 
C/n,(M). Conversely we have the following result. 

PROPOSITION 3.14. Let G be a group acting transitively rldthout fixpoints 
on an idempotent, commutative, and connected category C. Then the monoid 
C/G is E-unitary dense. Furthermore, if C is regular, then C/G is an inverse 
monoid. 

ProoJ: By Proposition 3.11, C/G is isomorphic to C, for each 
u E Oh(C). Now (p, g) is an idempotent in C, iff p = p + gp and g = g’, that 
is, iff g= 1 and p is idempotent. Since C is idempotent and commutative, 
every morphism p E Mor(u, u) is idempotent and thus E(C,) = ((p, 1) Ip E 
Mor(u, u)) is isomorphic to Mor(u, ~4). It follows that E(C,) is a semilattice. 

Assume now that (p, l)(q, II) E E(C,). This means that (p + q, h) is idem- 
potent and, by the previous description of the idempotents, h = 1 and 
qE Mor(u, u). Thus (q, h) E E(C,) and C, is unitary. 

Next we show that C, is E-dense. Indeed let (p, g) E C,. Since C is 
connected there exists a morphism q E Mor(u, g-‘u). Therefore 
(p, g)(q, g-‘) = (p + gq, 1) E E( C,). Thus C, is E-dense and C/G is an 
E-unitary dense monoid. 

Finally, assume that C is regular. Let (p, g) E C, and let q be an inverse 
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of p. Then qE Mor(gu, U) and thus g-‘qE Mor(u, g-‘u). It follows that 
b,g)Wq,g?)(p~ d = (p+q, l)(p,d = b+q+p~d = (PA and 
similarly (g-‘q, gP’)(p, g)(g -‘q, g-r) = (g-‘q, g-r). Thus C, is regular 
and hence an inverse monoid. 1 

The result of this section can now be summarized into the following 
main result, which extends Theorem 2.3 to the non-regular case. 

THEOREM 3.15. Let M be a monoid whose idempotents commute. Then 
the following conditions are equivalent: 

(1) There exists a surjective morphism & M + G onto a group such 
that 11# ~ ’ = E(M). 

(2) M is E-unitary dense. 

(3) M is isomorphic to a monoid C/G, where G is a group acting 
transitively, without fixpoints on a connected, idempotent, and commutative 
categorJ3 C. 

4. BACK TO THE REGULAR CASE 

In this section we apply Theorem 3.15 to the regular case. This leads to a 
new proof of Theorem 2.3 and to a more precise statement of this theorem. 
Indeed Theorem 2.3 states in particular that if there exists a surjective 
morphism d from an inverse semigroup T onto a group G, then T is 
isomorphic to a subsemigroup of a semidirect product S * G, where S is a 
semilattice. However, if one follows the previous proofs of [9, 10, 14, 221, 
the explicit construction of such a semilattice S is rather involved. Here we 
show that one can simply choose for S the semilattice (under intersection) 
of all f-classes of C, the derived category of 4. 

We first state the “regular” version of Theorem 3.15 which follows from 
the regular version of Propositions 3.13 and 3.14. 

THEOREM 4.1. Let M be an inverse monoid. Then the following conditions 
are equivalent: 

( 1) There exists a surjective morphism #: M -+ G onto a group such 
that 14-l = E(M). 

(2) M is E-unitary. 

(3) M is isomorphic to a monoid C/G, where G is a group acting 
transitively without fixpoints on a connected idempotent, commutative inverse 
category C. 

We now establish the connection with P-semigroups. 
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THEOREM 4.2. Let G be a group acting transitivel~~ M’ithout fixpoints on a 
connected idempotent, commutative inverse category C. Then the inverse 
monoid C/G is isomorphic to a P-semigroup P(G, F, E), where F is the par- 
tialll> ordered set of y-classes of C and E is a subsemilattice of F isomorphic 
to E(C/G). 

ProoJ: We simply denote by < the relation </ on C. Then < is a 
partial order on the set F= C/y of $-classes of C. Let u E Oh(C) and set 
E, = { JE FI Jn Mor(u, II) # a}. By Proposition 3.11, C/G is isomorphic 
to C,. We claim that C, is isomorphic to P(G, F, E, j. We first need a 
lemma to verify that G, E,,, and F satisfy the conditions required to form a 
P-semigroup. 

LEMMA 4.3. (1) F=GE,. 

(2) E, is a semilattice isomorphic to Mor(u, u) and to E(C/G). 

(3) E,, is an order ideal of F. 

ProoJ: (1) Let JE F and let p E Mor(u, IV) be an element of J. Since G 
acts transitively on C, u =gu for some g E G. Let J’ be the 2-class of 
gp + gp. Since gp + gp E Mor(u, u), J’ E E,. Moreover since gp = gp + 
gp + gp, gp 9! gp + gp and hence gp E J’. Now by Proposition 3.5, G respects 
the f-classes and thus g ~ ‘J’ = J. Therefore GE,, = F. 

(2) By Proposition 3.4 one can define a bijection 6: E, + Mor(u, u) 
by setting Jb = Jn Mor(u, u). Moreover for every J,, Jz E E,, J, <J, iff 
J, b ,< J,6 in Mor(u, ~4). Thus 6 is a semilattice isomorphism. Finally, it 
follows from Proposition 3.11 that Mor(u, u) is isomorphic to E(C/G). 

(3) Let JE E, and let J’ < J. Since C is regular and 2 = 9 on C by 
Proposition 3.1, J’ contains an idempotent p’. Then p’ E Mor(v, u) for some 
v E Oh(C). Let p E Jn Mor(u, ~4). Since p’ <p there exist X, y E Mor( C) such 
that p’=x+p+y. It follows that XE Mor(a, u) and YE Mor(u, v). Now 
since x+p+(y+p’+x)+p+y=p’, we have p’/y+p’+x. But 
y +p’ +x E Mor(u, u) and thus S E E,. 1 

We now prove the claim. Let y: C, + P= P(G, F, E,) be the function 
defined by (p, g) ‘1’ = (J, g), where J is the y-class of p. First, (J, g) is effec- 
tively in P. Indeed, since p +p and p +p are two idempotents in the same 
%classasp, wehavep+pEMor(gu,gu)nJandthusg-‘@+p)Eg-’Jn 
Mor(u, 14). Therefore g-‘JE E, and (J, g) E P. 

y is surjective. Indeed if (J, g) E P, there exist by definition two 
idempotents p E Jn Mor(u, u) and 4 E Jn Mor( gu, gu). Therefore by 
Proposition 3.3 there is a (unique) r E Mor(u, gu) such that p = r + i: and 
q = r+ r. It follows that (r, g) y = (J, g). 

yisinjective. Indeedif (pI,g,)y=(pz,gz)y=(J,g) theng,=g,=gand 
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thus p, and pz are two $-equivalent elements of Mor(u, gu). Therefore 
pr =pz by Proposition 3.4. 

Finally, we show that 11 is a morphism. Let (pl, g,) y = (J,. g[), 
(P,, g2) Y = (J,, gz) and let (P,, gl)(p2, gz) = (P, g). Then (P, g) Y= (J7 g), 
where J is the $-class of p. Since p =pl + g,p, we have p dp, and p dg,pz 
and hence Jd J, and J< g, J2. Assume that J’ <Jr and J’ <g, J2 for some 
S E F. Then since Jz E E, we have g, Jz E Eg,u and thus J’ E Eglu because 
E,,u is an order ideal of F. Therefore there exists q E J’ n Mor(g,zl, g, U) 
such that q6p1 and q<s1p2- But ply (P,+P~) and g,pz - - 
$ (g,p2+g,P2). Thus qdP,+p, and q6g,p2+gIp2. Since q,PI+pl and 
g,p, +g,p, are elements of the semilattice Mor(g, U, g, U) it follows that 
q6Pl +P, +g,p, +g,P,. On the other hand, Y, +g,p, YA +pl +g,p, + 
glpz~~~~~p~+~l+~l+gIpz+glP2)+glp2=p1+g1p~~~~~~~~qdpI+ 
g,p,. Therefore J’ < J. Consequently J= J, A g, J, and 1’ is a morphism. 

Part (4) of Theorem 2.3 can now be made more precise through the 
following result. 

THEOREM 4.4. Let G be a group acting transitively Mlithotrt fixpoints on a 
connected idetnpotent, commutative inverse category C and let S be the 
semilattice of ideals of C under intersection. Then the inverse monoid C/G is 
isomorphic to a subsemigroup of a semidirect product S * G. 

ProojY We first define an action of G on S by setting, for all ideals I of 
C. gI= {gp Ip E I}. It is not difficult to see that this action defines a 
semidirect product S * G. 

Let p: C,, --f S * G be the function defined by (p, g) /3 = (1, g), where I is 
the ideal generated by p. Then /? is injective. Indeed if (pI , gl ) p = 
(p2,g2)P=(-T,g) then gl=g2=g and p12p2. Therefore p1=p2 by 
Proposition 3.4. 

Now if (pl,gllP=U1,gl) and (p2,g2)P=(12,g2) we have 
((P,, gl)(p2, 8,)) P = (P, +glpz, g,g,) B= (1, g,g?), where 1 is the ideal 
generated by pl+g,p2. We claim that I=I,ng,l,. Clearly pl+g,p,E 
I,ng,I? and thus Icl,ng,l,. Conversely let qEllngl12. Then q6p1, 
q < g,p, and it follows from the proof of Theorem 4.2 that q <pl + g,pz. 
Thus q E I and the claim holds. Therefore /I is an injective morphism and 
since C/G is isomorphic to C, by Proposition 3.11, the theorem is 
proved. 

COROLLARY 4.5. Let M be an inverse monoid and let 4: M -+ G be a sur- 
jective morphism onto a group such that 14-r = E(M). Let C be the derived 
category of 4. Then M is isomorphic to a subsemigroup of a semidirect 
product S * G, where S is the semilattice of ideals of C under intersection. 
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We remark here that it can be shown that an E-unitary monoid A4 is 
isomorphic to a semidirect product of a semilattice by a group iff the 
derived category of the morphism 4: M -+ G is equivalent, in the sense of 
category theory [13] to a semilattice. We omit the proof. 
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