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This paper is the first part of a series of three papers devoted to the study
of inverse semigroups. The subject of our second paper [7] is free inverse
semigroups, the third one [8] is dedicated to finite inverse semigroups and
applications to language theory, while this one is concerned with general
inverse semigroups.

Much of the structure theory of inverse semigroups has revolved about
constructing an arbitrary inverse semigroup from groups and semilattices,
and the main results of this theory can be stated as follows. An E-
semigroup S (that is, a semigroup whose idempotents commute) is said to
be an extension of a group by a semilattice if there is a surjective morphism
¢ from S onto a group such that 1¢ ' is the set of idempotents of S. First,
every inverse semigroup is covered by a regular extension of a group by a
semilattice and the covering map is one-to-one on idempotents. Second,
regular extensions of groups by semilattices are exactly E-unitary inverse
semigroups [17], or P-semigroups (in the sense of McAlister [9, 10]), or
regular subsemigroups of semidirect products of a semilattice by a group
[16].

The aim of this paper is to develop a similar theory in the non-regular
case. However, as usual in semigroup theory, many difficulties arise when
passing from the regular case to the non-regular case. The first obvious
problem is to find non-regular equivalents to the notions of inverse
semigroups, E-unitary inverse semigroups, P-semigroups, etc. It turns out
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that the proper definitions are the following: E-dense semigroups (that is,
semigroups in which idempotents form a dense subsemilattice) generalize
inverse semigroups, FE-unitary dense semigroups generalize FE-unitary
inverse semigroups, and extensions of groups by semilattices generalize
regular extensions.

With this dictionary in hand, we may try to extend the main results
recalled above. It is fair to say immediately that the generalization of the
first result we propose is still a conjecture.

Conjecture. Every E-dense semigroup is covered by an E-unitary dense
semigroup and the covering is one-to-one on idempotents.

Notice that in an E-unitary semigroup, the stabilizer of any element is a
semilattice. Thus our conjecture says that any E-dense semigroup is
covered by an FE-dense semigroup whose stabilizers are nice, or, to
paraphrase a geometric terminology, without singularities. In this sense our
conjecture is reminiscent of the following result of Rhodes and Tilson [24]:
every finite semigroup is covered by a finite semigroup whose stabilizers are
group-free and the covering is one-to-one on groups. Our conjecture is
especially interesting for finite semigroups as is shown in our third paper
[8].

We are more successful with the second fundamental result and we prove
the following generalization: extensions of groups by semilattices are
exactly E-unitary dense semigroups. The next step consists in extending the
notion of P-semigroups and seems more embarrassing at first sight. In fact,
P-semigroups have a very nice interpretation in terms of algebraic
topology. First, it is necessary to adopt a slightly more general point of
view by replacing semigroups by categories. Notice that categories are not
considered here as “abstract nonsense” but as algebraic objects similar to
groups or vector spaces. This point of view has already been investigated
by different authors [2, 15] in semigroup theory and analogous techniques
have proved to be very useful in the theory of free groups [5, 23]. Follow-
ing Higgins [5], we next define the fundamental group of a connected
category. If this category is a monoid M (that is, a one-object category),
the fundamental group is just the “free group over M” in the terminology
of Clifford and Preston [3]. Moreover if M is E-dense, it is the quotient of
M by a classical congruence: two elements # and v are equivalent if eu = ev
for some idempotent e.

To any monoid morphism ¢:M — N we associate a category C, the
derived category of ¢, which is a natural extension of the “derived
semigroup” introduced by Tilson [25]. This derived category covers M in
the topological sense. In particular, if M is E-unitary dense and ¢ is the
surjective morphism from M onto its fundamental group G then C is a con-
nected category and the endomorphisms of any object of C forms a
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semilattice. (We say that C is idempotent and commutative in this case.)
Moreover G acts transitively without fixpoints on C and M is isomorphic
to C/G. Conversely if a group G acts transitively without fixpoints on a
connected idempotent and commutative category C, then the monoid C/G
is E-unitary dense. In fact this thcorem is the proper extension of
McAlister’s theorem on P-semigroups. Indeed in the regular case, C is an
inverse category and C/G is isomorphic to the P-semigroup P(G, F, E),
where F is the partially ordered set of #-classes of C and E is a subsemilat-
tice of F isomorphic to the semilattice of idempotents of C/G. Furthermore,
C/G is a submonoid of a semidirect product S = G, where S is the semilat-
tice of ideals of C under intersection. Thus, even in the regular case, our
description of E-unitary monoids is more natural then the description using
P-semigroups.

The paper breaks up into four main sections. In the Section | we give
some definitions relative to semigroups and in Section 2 we review the
structure theory of inverse semigroups. In Section3 we introduce
categories, coverings, and fundamental groups and we prove our main
result, Theorem 3.15. We come back to the regular case in the Section 4
and we show the connection between categories and P-semigroups.

1. PRELIMINARIES

Let S be a semigroup. The elements x and y of S are inverses if xyx=x
and yxy=y. S is said to be a regular semigroup if every element of S has an
inverse. S is an inverse semigroup if every element of S has a unique inverse.
It is well known that S is an inverse semigroup iff S is a regular semigroup
whose idempotents commute [3]. A semilattice is a commutative and
idempotent semigroup.

Let O be a set. We denote by I(Q) the semigroup of all partial injective
(that is, one-to-one) functions from Q to Q under composition of pariial
functions. Then I{Q) is an inverse semigroup and the following represen-
tation theorem, due to Vagner and Preston [3], holds.

THEOREM 1.1. S is an inverse semigroup iff S is isomorphic 1o a regular
subsemigroup of I(Q) for some set Q.

Let S be a semigroup. Then S' denotes the monoid constructed as
follows. S'=S if § is a monoid and if S is not a monoid S'=Su {1},
where 1 is an identity.

Let T be a subsemigroup of a semigroup S. Then T is called unitary if for
all7, e Tand se S, ts={ implies se T and sz =1t implies se T. T is called
dense if every element sc .S can be completed on the right and on the left
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into an element of 7, that is, if there exist s,, 5, € S* such that s,s€ T and
ss,eT.

As usual E(S) denotes the set of idempotents of S. An E-semigroup is
a semigroup such that E(S) is a semilattice. An E-semigroup S is called
E-unitary (resp. E-dense, E-unitary dense) if E(S) is a unitary (resp.
dense, unitary and dense) subsemigroup of S. For example, every finite E-
semigroup and every inverse semigroup is E-dense. E-unitary semigroups
have been especially studied in the case of inverse semigroups [17]. In fact,
one can give a great number of equivalent conditions defining FE-unitary
inverse semigroups. The next proposition selects four of them. Of course
conditions (3) and (4) could be dualized.

PROPOSITION 1.2. Let S be an inverse semigroup. The following con-
ditions are equivalent:

(1) S is E-unitary.

(2) S is E-unitary dense.

(3) For all ee E(S) and s€ S, es=e implies s € E(S).
(4) For all s,te S, st=s implies te E(S).

Proof. Condition (1) implies (2). Let s€ S and let § be the inverse of s.
Then s5, 55 € E(S) and thus S is E-dense.

Condition (2) implies (3) follows from the definition of E-unitary.

Condition (3) implies (4). If st=s then §st=3se E(S). Thus by (3),
te E(S).

Condition (4) implies (1). Since S is inverse, E(S) is a semilattice.
Moreover if e, ese E(S) then (es) s=e(es)s=(es)es=es so that se E(S)
by (4). Finally, assume that e, see E(S). Then ses= (ses)es and thus
ese E(S) by (4). Therefore (es) s=e(es) s = eses = es so that se E(S) by (4)
again. |

Let S be a semigroup and let M be a monoid with 1 as an identity. To
simplify notation, we will write S additively, without assuming that S is
commutative. A left action of M on S is a mapping

MxS->8
(m, s) > ms

satisfying for all s, s,, s,€ S and m, m,, m,e M

(1) m(s,+s5,)=ms, + ms,,
(2) my(mys)=(m; my)s,
(3) ls=s.

Of course, this just amounts to giving a morphism from M to the
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monoid of endomorphisms acting on the left of S. This action is used to
form a semigroup S = M on the set Sx M with multiplication

(s, m)(s’,m')= (s +ms', mm’).

S = M is called a semidirect product of S and M.
Note that if elements of S x M are represented by matrices of the form
(1 9), where se.S and me M, then the previous formula can be written

<1 0 ) (1 0\ ( 1 0 )
s m)\s m') \s+ms mm')
Given a semigroup S, the reverse semigroup of S is denoted S”. Given a

left action of M* on S, the reverse semidirect product of S and M is the
semigroup M =, S defined by

M %, S=(S"* M").

More directly, one can associate to the left action of M® on S a right
action of M on S (denoted by (s, m) — s - m) by setting s - m = ms. Then one
can define the product in M *_ S by (m, s)}(m', s')= (mm’, s -m’' +5').

If elements of M x S are represented by matrices of the form (7 9) the
previous formula can be written

m O\/m'" O\ [ mm 0)

s IN\s 1) \sm'+s 1)
If M is a group, the following result shows that there is no difference
between semidirect and reverse semidirect product.

PROPOSITION 1.3. Let S be a semigroup and let G be a group. Then every
semidirect product S * G is isomorphic to a reverse semidirect product G xS
and vice versa.

Proof. Given a left action of G on S, define a right action of G on S by
setting s-g=g~'s. A simple calculation now shows that the function
¢: 8% G— G % S defined by (] §)d= (2 %} is an isomorphism.

151

2. INVERSE SEMIGROUPS AS EXTENSIONS OF GROUPS BY SEMILATTICES

The aim of this short section is to give a unified presentation of the struc-
ture theory of inverse semigroups, as developed, for example, by McAlister
[9-117, O’Carroli [16], Munn [14], Reilly [18], and others (see [12] for
an extensive bibliography).
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A natural construction to obtain inverse semigroups from semilattices
and groups is the semidirect product.

ProposITION 2.1. [11]. Let S be a semilattice and let G be a group.
Then S = G is an inverse semigroup for any left action of G on S.

Proof. Let x=(s,g) and x=(5, g) be two elements of S G. Then
XXx=(s+g5+ggs, ggg) and XxxX=(5+ gs+ ggs, ggg). Therefore X is an
inverse of x iff g=g ', s+g5=s, and §5=5+g 5. It follows that
g5=g(5+g 's)=g5+s=s and thus x= (g 's, g ') is the unique inverse
of x and S is inverse. |

A description of the Green’s relations and the ideal structure of these
semidirect products is given in [12]. Unfortunately, Proposition 2.1 does
not characterize all inverse semigroups. However, the following result
shows how to construct an arbitrary inverse semigroup from semilattices
and groups. It is a consequence of the results of McAlister [9, 10] and
O’Carroll [16]. A related result was given by Tilson [24].

THEOREM 2.2. Let R be an inverse semigroup. Then there exists an
inverse semigroup T such that

(1) there is a surjective morphism ¢. T — R which is one-to-one on
idempotents,

(2) T is a subsemigroup of a semidirect product S+ G, where S is a
semilattice and G is a group.

In view of this last result, inverse subsemigroups of semidirect products
S * G, where S is a semilattice and G is a group, play a central role in the
study of inverse semigroups. There are now many known characterizations
of these semigroups. One of them states that these semigroups are exactly
the E-unitary inverse semigroups. A more precise description was obtained
by McAlister [9, 10] in terms of P-semigroups. The notion of P-semigroup
arose from Scheiblich’s construction of free inverse semigroups [207]. Here
is the definition, from McAlister [9].

Let F be a (down) directed partially ordered set and let E be an ideal
and subsemilattice of F. Let G be a group acting on the left on F by order
automorphisms in such a way that F=G - E and set P(G, F, E)={(e, g) €
ExG|g 'ecE}. Then if (e, g) and (£, k) are in P(G, F, E) it can be shown
[97 that e and gf have a greatest lower bound denoted e A gf. Moreover
e A gf'is in E. Thus we can define a multiplication on P(G, F, E) by setting

(e, &) fs h) = (e A gf, gh).

Then one shows [9, 10] that P(G, F, E) is an inverse semigroup, called a
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P-semigroup. We may now summarize the results of [9, 10, 16] in the
following theorem.

THEOREM 2.3. Let T be an inverse semigroup. The following conditions
are equivalent.

(1) There exist a group G and a surjective morphism ¢: T - G such
that 1¢ ' = E(T).

(2} T is E-unitary.
(3) T is isomorphic to a P-semigroup P(G, F, E), where E= E(T).

(4) T is a subsemigroup of a semidirect product S = G, where S is a
semilattice and G is a group.

3. EXTENSIONS OF GROUPS BY SEMILATTICES

Theorem 2.3 characterizes regular E-semigroups T such that there exists
a surjective morphism ¢ onto a group with 1¢ ~' = E(T). It is convenient to
say in this case that T is an extension of a group by a semilattice. The aim
of this section is to extend Theorem 2.3 to the non-regular case. In fact we
shall only extend conditions (1), (2), and (3) of this theorem but the
restriction of our extended theorem to the regular case will give back
Theorem 2.3 in full.

The main problem is that all the proofs of Theorem 2.3 [9, 10, 14, 22]
rely heavily on the regularity of T and do not generalize immediately. In
particular, a new definition of P-semigroups is needed. It appears that the
proper framework to generalize Theorem 2.3 is to study groups acting on a
category. Following [5], we consider here only “small” categories in the
sense that the objects of a category always form a set. In fact categories are
considered here as algebraic structures in their own right, on the same
footing as rings, vector spaces, or groups. Therefore the “elements” of this
algebra are the morphisms and their composition is an associative partial
binary operation. Functors thus appear as algebra homomorphisms. In the
case of a category with just one object, the resulting algebra is just a
monoid. Thus we shall define for categories a number of notions borrowed
either from semigroup theory (Green’s relations, ideals) or from algebraic
topology (coverings, fundamental groups). Now we give the details.

3.1. Categories

Let C be a category. Ob(C) denotes the objects of C and for
u, ve Ob(C), Mor(u, v) denotes the set of all morphisms from u to v. C is
connected if, for all u, ve Ob(C), Mor(u, v) is non-empty. Mor(u, C)
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denotes the set of all morphisms starting from w». Thus Mor(u, C)=
Uveobicy Mor(u, v). Similarly Mor(C) =, c obcy Mor(u, C) is the set of all
morphisms of C.

A category is a groupoid if all morphisms are isomorphisms.

We shall adopt an additive notation for composition of morphisms,
although this composition is not assumed to be commutative. Thus if
peMor(u, v) and ge Mor(v, w), p+gecMor(u, w), and if ue Ob(C), O,
denotes the identity on u. Although this notation may seem a little unsettl-
ing at first, it will allow us to write group actions multiplicatively.

A category C is regular if for all objects u, ve Ob(C) and for all
p e Morx(u, v) there exists g€ Mor(v, u) such that p+g+p=p. g is called
an inverse of p if, furthermore, ¢+ p+g=gq. Notice that if p+gq+p=p
then g + p+ ¢ is an inverse of p.

A category is inverse iff every morphism has a unique inverse. If C is
inverse p will denote the inverse of p.

A morphism peMor(y, v) is idempotent if p+ p=p. This implies in
particular that u=w.

A category C is idempotent (resp. commutative, torsion) if for all
ue Ob(C), the monoid Mor(u, u) is idempotent (resp. commutative,
torsion).

Let C be a category. We define the Green’s relations #, ¥, 2, #, and §
and the preorders < 4, < », <4, <, on Mor(C) as for a semigroup. For
example, p < 4 g iff there exists € Mor(C) such that p=¢+r and p £ g iff
P<zqgand g <4zp.

All the standard proofs on Green’s relations and regular semigroups
carry over without much trouble. Therefore we just state without proof the
basic facts we need on categories.

ProrosiTION 3.1. (1) The relations R and &£ commute. Therefore
R =S R=9.

(2) If C is a torsion category, then & = ¢ on C.

ProprosiTION 3.2. (1) A category is regular iff every R-class and every
P-class contains an idempotent.

(2) A regular category C is inverse iff, for every ue Ob(C), the set of
idempotents of Mor(u, u) forms a semilattice.

ProrosITION 3.3. Let C be an inverse category and let p, q be two idem-
potents such that p 9 q. Then there exists a unique r€ Mor(C) such that
p=r+rand g=r+r.

We need the following slightly more technical result.
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ProrosITION 34. Let C be a regular, idempotent, and commutative
category and let u,ve Ob(C). Then for all p, qe Mor(u, v), p ¥ q implies
P=4q.

Proof. First C is inverse by Proposition 3.2. Now p # g and since
p=p+p+p and g=q+4+q we also have p Fp+p, q Fp+p and
g¥fq+q It follows that p+p £qg+q, that is, there exist
a, b, ¢c,de Mor(C) such that a+(p+p)+b=¢g+q and c+(g+g)+d=
p+p. But p+p, g+ §eMor(u, u) and thus a, b, ¢, de Mor(u, u). Therefore
p+p and g+g are Z-related in the semilattice Mor(w, #) and hence
p+p=¢g+4. A similar argument shows that p+p=g+ 9. Now we have
(p+@)+qg+p=p+p+p+p=p+pand (p+p)+p+g=p+4 It follows
that p+p # p+ g and hence, by the above argument, p+p=p+g=g+4.
Finally, we obtain p=p+p+p=p+q+q=q+4+q=4q. |

Let C be a category. An ideal I of C is a subset of Mor(C) such that
for all u,v,w,zeOb(C) and for all xeMor(y, v), peMor(v, w), and
yeMor(w, z), pel implies x+p+yel

A congruence on a category C is an equivalence relation ~ on Mor(C)
satisfying the following conditions:

(1) If p~g then p and ¢ are coterminal, that is, there exist
u, v € Ob(C) such that p, g€ Mor(u, v).

(2) For all w,v,weOb(C) and for all p,,p,eMor{u,v) and
q1.q>€Mor(v, w), py~p, and g, ~ ¢, imply p; +py ~q, +¢>.

Let~ be a congruence on a category C. The guotient category C/~ is
the category whose objects are the objects of C and whose morphisms are
the ~-classes of the morphisms of C. Condition (2) above implies that
composition of morphisms is well defined on C/~.

An important example of a category is the free category on a graph.
Intuitively, a graph is a set of arrows between points called vertices. More
formally a graph consists of a set V" of vertices, a set £ of edges, and two
maps o: E— Vand w: E— V. If ¢ is an edge, eo is the origin of e and ew is
the end of e. Two edges e, and e, are consecutive if the end of ¢, is equal to
the origin of ¢,. A path is a sequence of consecutive edges. Given a path
p=e,---¢,, the origin of p is the origin of ¢, and the end of p is the end of
e,. Let I be a graph. The free category on I is defined as follows. The
objects are the vertices of /" and the set of morphisms from u to v is the set
of all paths with origin u and end v. If u=v we also include a trivial path
0,,. The morphism composition is the natural path composition, completed
by the rules O,+ p=p—for each path with origin u—and p+ Q,=p for
each path with end u.
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An automorphism of a category C is a functor F: C — C such that:
(1) For all ue Ob(C), F induces a permutation on Ob(C).

(2) For all u,veOb(C), F induces a bijection Mor(u, v) —
Mor(F(u), F(v)).

We denote by Aut(C) the group of automorphims of C. A group G acts
on C if there exists a group morphism G — Aut(C). In this case we write gv
(resp. gp), the result of the action of g on the object v (resp. on the
morphism p). Since an automorphism is a functor, we have the following
identities, where u, v, we Ob(C).

(1) g(p+q)=gp+gq forall ge G, peMor(u, v) and g Mor(v, w).
(2) (gh)p=g(hp) for all g, he G, pe Mor(u, v).

(3) g0,=0,,forall geG.

(4) 1p=p for all pe Mort(u, v).

G acts transitively if for all u, v € Ob(C) there exists g€ G such that gu=7.
G acts withour fixpoints if the condition “gv = v for some v € Ob(C)” implies
g=1. Thus if G acts transitively without fixpoints, then for all u, v e Ob(C)
there exists a unique g € G such that gu=v.

Let G be a group acting on a category C. We define a category C/G as
follows. The objects are the orbits of Ob(C) under G. If Gu and Gv are two
orbits, the set Mor(Gu, Gv) is the quotient of the set

(U Mor(u. v")
u' s Gu
v'e G

under the equivalence defined by p ~ g iff there exists g € G such that p=ggq.
Composition of morphisms needs care. If peMor(Gu, Gv) and
¢ € Mor(Gv, Gw), then p+¢=(p+q) where p and ¢ are morphisms selec-
ted as follows. First peMor(¢/,v’') is an arbitrary element of the
equivalence class p (and thus ©’ € Gu and v’ € Gv). Now since G is transitive
on Gv there exists in the equivalence class § a morphism g € Mor(v', w'),
where w'e Gw. Now p+ g Mor(u', w') is well defined and one can easily
verify that the class of p + ¢ modulo ~depends only on p and 4. The fact
that C/G is now really a category is left to the reader.
We conclude this subsection by an obvious, but useful, observation.

PROPOSITION 3.5. Let G be a group acting on a category C. If p # q then
gp F gq for all geG.
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Proof. 1f p # q there exist a, b, ¢, de Mor(C) such that g=a+p+5
and p=c+g+d. It follows that gg=ga+gp+gb and gp=gc+ gq+ gd,
that is, gp # gq. |

3.2. Fundamental Groups

Another important concept is the fundamental groupoid of a category C.
Consider the graph whose vertices are the objects of C and whose edges are
the triples (u, p, v) or (v, p, u) such that pe Mor(u, v). Let F be the free
category over this graph and let ~ be the congruence on F generated by the
relations  (u, p, v} + (v, p, u)~O,~ (v, p,u)+(u,p,v) and (u,p,v)+
(v, g, w)~ (u, p+q, w) for all pe Mor(x, v) and g Mor(v, w).

The quotient F/~ is a groupoid, called the fundamental groupoid of C.
Thus for every ve Ob(F/~), Mor(v, v) is a group, called the fundamental
group of C at the point v and denoted I1,(C, v). Moreover if C is connected,
all the groups I7,(C, v} are isomorphic [5], and thus we will simply refer in
this case to the fundamental group of C, denoted by IT1,(C).

In particular, if M is a monoid (that is, a one-object category), the fun-
damental group I7,{M) can be computed as follows. Let F(M) be the free
group with basis M. To avoid confusion between the elements of M and
the elements of F(M) we shall denote by 11 M — F(M) the natural embed-
ding. Notice that 1 is not a monoid morphism. Now I7,(M) is the quotient
of F(M) under the relations (w)(v1) = (ur) t for all u, ve M. Thus IT,(M) is
nothing else than the “free group over M” in the terminology of [31].
Indeed let m: F(M)— II,(M) be the surjective group morphism onto
I1,(M). Then the map n=n: M - I1,(M) has the following universal
property:

PROPOSITION 3.6. #n is a monoid morphism and for every monoid
morphism y=M — G into a group such that My generates G as a group,
there exists a unique group wmorphism ¢.I1,(M)— G such that y=ng.
Moreover ¢ is surjective.

M ———— II,(M)
G

Proof. First 5 is a monoid morphism, since for all u, ve M, we have
(un)(vn) = (mun)(vin) = ((w)(v1)) = (uv) im = (uv) . Next let ;: M > G be a
monoid morphism into a group such that My generates G as a group. Since
F(M) is the free group with basis M there exists a unique group morphism
p: F(M) — G such that 18 =1y. Thus if there exists a group morphism ¢ such
that y = 5¢ = 1(n¢), the uniqueness of § implies f = n¢. Moreover since M¢
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generates G as a group, f is surjective. Let us summarize the situation with
the diagram

M —'— F(M)—"— II,(M)
!
!
G

v ¢

Now KermcKer . Indeed Kern is the normal subgroup of F(M)
generated by the set {(uv)u(vi) '(w)"'|u,ve M} and for all u,ve M we
have (uv)1f = (uv)y= (uy)(vy)= () (v1f)= ((w1)(v1)) f. Therefore there
exists a unique group morphism ¢ such that n¢ = f and ¢ is surjective. |

The quotients of a monoid M are naturally (pre) ordered by the relation
N, <N, iff there exists a surjective morphism N, — N,. Notice that if N, is
a group then N, is also a group. Proposition 3.6 implies that if
n: M — II,(M) is surjective then I7,(M) is the maximal quotient group of
M (relative to the preorder < ). This is the case for an important class
of monoids.

PROPOSITION 3.7. Let M be a monoid such that the semigroup generated
by E(M) is dense in M. Then the fundamenial group II (M) is the maximal
quotient group of M.

Proof. By Proposition 3.6 we only have to show that I7,(M) is a
quotient of M. Let u e M. Since the semigroup generated by E(M) is dense
there exists ve M such that uv is a product of idempotents. Therefore
(uv) n =1 and thus (un) ' = vy e My. Consequently the set {(uy) '|uec M}
is contained in Mn and since My generates {I,(M) as a group, it also
generates /1,(M) as a monoid. Therefore 5 is surjective. |

The last proposition applies in particular in the case where M is finite. In
this case the construction of the maximal quotient group is well known
[1]. Let K be the minimal ideal of M. Then K is a completely simple
semigroup with structure group G. Let S be the subsemigroup of K
generated by E(K). Then S is again a simple semigroup with structure
group Hc G. Let N be the smallest normal subgroup of G containing H.
Then I1,(M) is isomorphic to G/N.

Proposition 3.7 also applies to the case of inverse monoids. Indeed it is
well known that the maximal quotient group of an inverse monoid M is the
quotient of M under the congruence ~defined by w~ v iff there exists
e € E(M) such that eu=ev. In fact this result holds for a more general class
of semigroups.
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PrROPOSITION 3.8. Let M be an E-dense monoid. Then [1, (M) is the
quotient of M by the congruence ~ defined by u~ v iff there exists e € E{(M)
such that eu=ev.

Proof. Clearly ~ is reflexive and symmetric. Assume that u~p» and
v~w. Then there exists e, fe E(M) such that ew=ev and fv=fw. Since
E(M) is a semilattice, it follows that feu =fev = efv = efw = few and hen-
ce ~ is transitive. Now if x € M then eux = evx and thus ux ~ vx. Moreover
since M is E-dense there exists ye M such that yxe E(M). Therefore
(yx)eu=(yx)ev=e(yx)u=e(yx)v. Now there exists z such that
z{ey) e E(M) and thus (zey) xu = (zey) xv and hence xu ~ xv. Consequently
~ is a congruence.

We claim that M/~ is a group. Indeed let ue M. Then there exists ve M
such that uv e E(M). Therefore (uv) - | = (uv)(uv) and thus uv ~ 1. Similarly,
for each ue M there exists we M such that wu~1 and this proves the
claim. Thus M/~ is a quotient group of M. Moreover if ¢: M — G is a sur-
jective morphism onto a group, then u~v implies eu=ev for some
ec E(M) and hence (ed)(ug)= (ed)(vd), that is, ugp =v¢. Therefore there
exists a surjective morphism M/~ — G and thus M/~ is the maximal
quotient group of M. Thus by Proposition 3.7, M/~ is isomorphic to
m,(M). |

All the results of this subsection were stated for monoids only. Now if S
is a semigroup one can define a monoid S' as follows: S'=S if S is a
monoid and S'=Su {1}, where 1 is an identity if S is not a monoid. The
fundamental group of S can be defined by setting 77,(S) = 7,(S") and then
Propositions 3.6 to 3.8 can be readily extended to semigroups.

We now generalize conditions (1) and (2) of Theorem 2.3 to the non-
regular case.

THEOREM 3.9. Ler T be a semigroup whose idempotents commute. Then
the following conditions are equivalent:

(1) There exist a group G and a surjective morphism ¢: T — G such
that 1¢ ' = E(T).

(2) There exists a surjective morphism n: T— II(T) such that
In~t= E(T).

(3) T is E-unitary dense.

Proof. We prove (3) implies (2), (2) implies (1), and (1) implies (3) in
this order. Let 7 be a E-unitary dense semigroup. Then by Proposition 3.7
there exists a surjective morphism »: T— I (T) and by Proposition 3.8
IT(T) is the quotient of T wunder the congruence ~. Therefore
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lp~'={teT|t~1}. But if u~1, then eu=e for some ec E(T) and thus
ue E(T), since T is E-unitary. Therefore 1 ' = E(T), proving (2).

Condition (2) implies (1) is obvious.

Finally, assume that (1) holds. Then if eu=f for some e, fe E(T) and
ueT, then (ug)= l(ugp)= (el up)=(eu)p=fp=1 and thus ue E(T).
Therefore T is E-unitary. Moreover for every se T there exists te T such
that ¢ = (s¢)~"' and thus ste 1¢~'= E(T). It follows that T is E-dense,
proving (3).

3.3. Coverings

A functor F: C— D is a covering if for all ue Ob(C), F induces a bijec-
tion from Mor(u, C) to Mor(EF(u), D).
The following result is an analog of a well-known result of topology.

ProrosITION 3.10. Let G be a group acting without fixpoints on a
category C. Then F: C — C/G is a covering.

If G acts transitively without fixpoints, the category C/G is a monoid and
a direct description of this monoid is possible. Let u# be any object of C
and let C,={(p,g)|peMor(u, gu)}. Then C, is a monoid under the
mulitiplication

(p, g)a, h)=(p+gq, gh).

This is well defined since if peMor(u, gu) and geMor(u, hu) then
gq € Mor(gu, ghu) and thus p+ gg € Mor(u, ghu). Then we have

PrOPOSITION 3.11.  Let G be a group acting transitively without fixpoints
on a category C. Then for all ue Ob(C), the monoid C, is isomorphic to
C/G.

Proof. Define a function @: C, — C/G by setting (p, g) @ =p. Then we
have ((p, g)(q, h)) @ =(p+gq, gh) @ =(p+gq). But since pe Mor(u, gu)
and gg e Mor(gu, ghu), (p+gq) =p + ¢ by definition of C/G. Therefore @
is a monoid morphism. Assume that (p,,g,) @ =(p,, g,) ©, that is,
Py =p,. Then there exists he G such that hp, =p,. It follows that hu=u
and hence 7 =1 since G acts without fixpoints. Thus p, =p, and @ is injec-
tive. Finally, let pe Mor(C). Since G acts transitively on C there exists
he G such that hpeMor(u, C). Therefore if hpeMor(u, gu) we have
(hp, g) © = (hp) = p. Thus O is an isomorphism.

The multiplication in C, is somewhat reminiscent of the multiplication in
a P-semigroup. Indeed, as we shall see later, the monoids C,—or C/G, by
the previous proposition—are the generalization of P-semigroups we need
to extend Theorem 2.3.

We turn now to an important example of coverings, the derived covering
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of a morphism. Some years ago, the derived semigroup of a morphism was
introduced by Tilson [25] for applications to finite semigroups and it has
proved to be one of the most important tools in the study of wreath
product decompositions. Rhodes [197 recently proposed an extension to
arbitrary semigroups. In fact it is both more natural and more convenient
to consider the point of view of coverings.

Let ¢: M— N be a monoid morphism Define a category C with
Ob(C)=N and for u, ve N, Mor(u, v)= {(u, m, v) e Nx M x Nlu(mg)=0}.

Composition is given by (u, m,v)+ (v, n, w) = (u, mn, w). Clearly this is
associative and O,=(u, 1,u). So C is a category, called the derived
category of ¢. Note that the derived semigroup of ¢ is simply the set
Mor(C)u {0} with multiplication given by

_{p+gq if p+ q is defined
Pa= 0 otherwise.

Now the derived covering of ¢ is the functor F: C - M defined by
(a) for all ue Ob(C), F(u) is the only object of M,
(b) for all (u, m, v)e Mor(u, v), F(u, m, v)=m.

It is easy to verify that F is indeed a covering.

We consider now the particular case where ¢: M — G is a morphism into
a group.

ProposITION 3.12. Let ¢: M — G be a morphism into a group and let
F:C—> M be the derived covering of ¢. Then G acts transitively without
fixpoints on C and M is isomorphic (as a monoid) to C/G.

Proof. Since Ob(C)= G, the muitiplication of G defines an action of G
on Ob(C). Now if (h, m, k)eMor(h, k), we set glh, m, k)= (gh, m, gk).
This defines a transitive action of G on C and obviously this action has no
fixpoints. Moreover if g€ Ob(C) is fixed, the function M — Cg defined by
m— {(g, m, g(me)), glmg)g~') is an isomorphism since

(g, m, g(m)), g(mg) g~ )N(g, n, g(ng)), g(ng) g~ ")
=((g, m, g(mg))+g(mp) g~ '(g, n, g(nd)), g(mé)(np) g~
=((g, m, g(m@)) + (g(m¢), n, g(m@)(ng)), g(me)(ng) g ~*

= ((g, mn, g(mn) §), g(mn) p g~ ").

It follows by Proposition 3.11 that M is isomorphic to C/G. |}

481/110/2-2
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We consider now the case where M is an E-unitary dense monoid. By
Proposition 3.7, there exists a surjective morphism #: M — II,(M). Let C
be the derived category of  and let F: C — M be the derived covering of #.
Then we have.

PrROPOSITION 3.13.  For all ge Ob(C), Mor(g, g) is isomorphic to E(M).
Moreover C is connected, idempotent, and commutative and 2= ¢ on C.
Finally, if M is regular, C is regular.

Proof. By definition (g, m, g)eMor(g,g) iff mely~' But
1y ~'= E(M) by Theorem 3.9 and thus Mor(g, g)= {(g, m, g)|me E(M)}
is isomorphic to E(M). Thus C is idempotent and commutative and, by
Proposition 3.1, Z = ¢ on C. Finally, let g, A Ob(C) and let me M be
such that mn =g 'h. Then by definition (g, m, h)e Mor(g, h). Thus C is
connected.

Finally, assume that M is regular. Let (g, m, ) e Mor(g, #) and let # be
an inverse of m. Then mnm =m and nmr=n and thus (mn)y=(nm)np= 1
It follows that (4, n, g)e Mor(h, g) since h(nn)=g(mn)np)=g(mn)n=g
and a simple calculation shows that (4, n, g) is an inverse of (g, m, k). Thus
C is regular. [

Propositions 3.12 and 3.13 combined show that if M is E-unitary dense,
then IT,(M) acts transitively without fixpoints on the connected, idem-
potent, and commutative category C and that M is isomorphic to
C/IT,(M). Conversely we have the following result.

PrROPOSITION 3.14. Let G be a group acting transitively without fixpoints
on an idempotent, commutative, and connected category C. Then the monoid
C/G is E-unitary dense. Furthermore, if C is regular, then C/G is an inverse
monoid.

Proof. By Proposition 3.11, C/G is isomorphic to C, for each
ue Ob(C). Now (p, g) is an idempotent in C,, iff p=p + gp and g = g°, that
is, iff g=1 and p is idempotent. Since C is idempotent and commutative,
every morphism p € Mor(u, u) is idempotent and thus E(C,)={(p, l})|pe
Mor(u, u)} is isomorphic to Mor(u, u). It follows that E(C,) is a semilattice.

Assume now that (p, 1)(g, #) e E(C,). This means that (p+ g, #) is idem-
potent and, by the previous description of the idempotents, =1 and
q € Mor(u, u). Thus (¢, h)e E(C,) and C,, is unitary.

Next we show that C, is E-dense. Indeed let (p, g)eC,. Since C is
connected there exists a morphism geMor(u, g7 'u). Therefore
(p.g)g. g7 )Y=(p+gq, 1)e E(C,). Thus C, is E-dense and C/G is an
E-unitary dense monoid.

Finally, assume that C is regular. Let (p, g)e C, and let ¢ be an inverse
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of p. Then geMor(gu, u) and thus g 'qeMor(u, g~ 'u). It follows that
(p.g)g 'a.g ' )p.g) = (P+q 1)p,g) = (p+q+p,g) = (p.g) and

similarly (g 'q,¢ ')(p,g)g ‘¢, 27" )=(g '¢,g'). Thus C, is regular
and hence an inverse monoid. |

The result of this section can now be summarized into the following
main result, which extends Theorem 2.3 to the non-regular case.

THEOREM 3.15. Let M be a monoid whose idempotents commute. Then
the following conditions are equivalent:

(1) There exists a surjective morphism ¢: M — G onto a group such
that 1¢ ' = E(M).

(2) M is E-unitary dense.

(3) M is isomorphic to a monoid C/G, where G is a group acting

transitively without fixpoints on a connected, idempotent, and commutative
category C.

4. BACK TO THE REGULAR CASE

In this section we apply Theorem 3.15 to the regular case. This leads to a
new proof of Theorem 2.3 and to a more precise statement of this theorem.
Indeed Theorem 2.3 states in particular that if there exists a surjective
morphism ¢ from an inverse semigroup 7 onto a group G, then T is
isomorphic to a subsemigroup of a semidirect product S = G, where S is a
semilattice. However, if one follows the previous proofs of [9, 10, 14, 227,
the explicit construction of such a semilattice S is rather involved. Here we
show that one can simply choose for S the semilattice (under intersection)
of all #-classes of C, the derived category of ¢.

We first state the “regular” version of Theorem 3.15 which follows from
the regular version of Propositions 3.13 and 3.14.

THEOREM 4.1. Let M be an inverse monoid. Then the following conditions
are equivalent:

(1) There exists a surjective morphism ¢: M — G onto a group such
that 1¢ "= E(M).
(2) M is E-unitary.

(3) M is isomorphic to a monoid C/G, where G is a group acting
transitively without fixpoints on a connected idempotent, commutative inverse
category C.

We now establish the connection with P-semigroups.
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THEOREM 4.2. Let G be a group acting transitively without fixpoints on a
connected idempotent, commutative inverse category C. Then the inverse
monoid C/G is isomorphic to a P-semigroup P(G, F, E), where F is the par-
tially ordered set of #-classes of C and E is a subsemilattice of F isomorphic
to E(C/G).

Proof. We simply denote by < the relation <, on C. Then < is a
partial order on the set F= C/ ¢ of #-classes of C. Let ue Ob(C) and set
E,={JeF|JnMor(u, u)# & }. By Proposition 3.11, C/G is isomorphic
to C,. We claim that C, is isomorphic to P(G, F, E,). We first need a
lemma to verify that G, E,, and F satisfy the conditions required to form a
P-semigroup.

ur

Lemma 43. (1) F=GE,.
(2) E, is a semilattice isomorphic to Mor(u, u) and to E(C/G).
(3) E, is an order ideal of F.

Proof. (1) Let JeF and let pe Mor(v, w) be an element of J. Since G
acts transitively on C, u=gv for some geG. Let J' be the #-class of
gp+gp. Since gp+gpeMor(u, u), J' € E,. Moreover since gp=gp+
gp+gp, gp # gp + gp and hence gp € J'. Now by Proposition 3.5, G respects
the #-classes and thus g~ 'J'=J. Therefore GE,=F.

(2) By Proposition 3.4 one can define a bijection d: E, — Mor(u, u)
by setting Jo =Jn Mor(u, u). Moreover for every J,, JoeE,, J,<J, iff
J,8<J,6 in Mor(u, u). Thus J is a semilattice isomorphism. Finally, it
follows from Proposition 3.11 that Mor(x, u) is isomorphic to E(C/G).

(3) Let JeE, and let J'<J. Since C is regular and # =% on C by
Proposition 3.1, J' contains an idempotent p’. Then p’ € Mor(v, v) for some
ve Ob(C). Let peJ n Mor(u, u). Since p’ < p there exist x, y € Mor(C) such
that p'=x+p+y. Tt follows that xeMor(v, u) and ye Mor(u, v). Now
since x+p+(y+p +x)+p+y=p, we have p' Fy+p +x But
y+p +xeMor(u, u) and thus J'e E,. |

We now prove the claim. Let y: C,— P=P(G, F, E,) be the function
defined by (p, g) v = (J, g), where J is the #-class of p. First, (J, g) is effec-
tively in P. Indeed, since p+ p and p+ p are two idempotents in the same
@-class as p, we have p + pe Mor(gu, gu) nJ and thus g '(p +p)eg™'Jn
Mor(u, u). Therefore g~ 'Je E, and (J, g) e P.

y is surjective. Indeed if (J,g)e P, there exist by definition two
idempotents peJn Mor(u,u) and geJn Mor(gu, gu). Therefore by
Proposition 3.3 there is a (unique) r € Mor(u, gu) such that p=r+7 and
q=r+r. It follows that (r,g)y=(J, g).

y is injective. Indeed if (p, g,) 7= (p2, £,) y=(J, g) then g, =g, =g and
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thus p, and p, are two #Z-equivalent elements of Mor(u, gu). Therefore
p, =p, by Proposition 3.4.

Finally, we show that y is a morphism. Let (p,,g,)y=(J1.2),
(P2, &2)y=(J3, ;) and let (p, g,)(p2, &2)=(p, g)- Then (p, g)y=(J, g),
where J is the #-class of p. Since p=p,+g,p, we have p<p, and p<g,p,
and hence J<J, and J<g,J,. Assume that J'<J, and J' < g,J, for some
J' € F. Then since J,e E, we have g,J,€ E, u and thus J' € E, u because
E, u is an order ideal of F. Therefore there exists geJ' n Mor(g,u, g,u)
such that ¢<p, and g¢<gp,. But p, f(p,+p;) and gp,
F(g\p2+g:p2) Thus g<p,+p; and g<g,p,+§,p,. Since ¢, p, + p; and
g.p2.+g,p- are elements of the semilattice Mor(g, u, g,u) it follows that
q<p,+p;+8 P>+g P> On the other hand, p, +¢g,p, F p,+p+gp> +
gipysince p,+(p1+p1+ 8P+ 81P2) +81P2=p1+&iprand thus g<p, +
g.1P,- Therefore J' < J. Consequently J=J, A g,J, and y is a morphism. J

Part (4) of Theorem 2.3 can now be made more precise through the
following result.

THeOREM 4.4. Let G be a group acting transitively without fixpoints on a
connected idempotent, commutative inverse category C and let S be the
semilattice of ideals of C under intersection. Then the inverse monoid C/G is
isomorphic 1o a subsemigroup of a semidirect product S = G.

Proof. We first define an action of G on S by setting, for all ideals / of
C. gl={gp|lpel}. Tt is not difficult to see that this action defines a
semidirect product S = G.

Let f: C,— S = G be the function defined by (p, g) f={(I, g), where [ is
the ideal generated by p. Then f is injective. Indeed if (p,,g2,)f=
(P2, 82)B=(I,g) then g,=g,=g and p, 7 p,. Therefore p,=p, by
Proposition 3.4.

Now if (py,g)B=(l,g) and (p,,g)B=(L,g,) we have
(P> 8 (P2, 282)) B=(p1+81P2,8182) B=1(L, 8,8,), where [ is the ideal
generated by p,+g,p,. We claim that /=1, ng,[,. Clearly p,+g,p,€
I,ng, I, and thus I« I, ngI,. Conversely let ge I, ng,I,. Then g¢<p,,
q<g,p, and it follows from the proof of Theorem 4.2 that ¢<p, +g,p,.
Thus gel and the claim holds. Therefore § is an injective morphism and
since C/G is isomorphic to C, by Proposition 3.11, the theorem is
proved. J

CorROLLARY 4.5. Let M be an inverse monoid and let ¢: M — G be a sur-
Jjective morphism onto a group such that 1¢ ="' = E(M). Let C be the derived
category of ¢. Then M is isomorphic to a subsemigroup of a semidirect
product S = G, where S is the semilattice of ideals of C under intersection.
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We remark here that it can be shown that an E-unitary monoid M is

isomorphic to a semidirect product of a semilattice by a group iff the
derived category of the morphism ¢: M — G is equivalent, in the sense of
category theory [13] to a semilattice. We omit the proof.
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