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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 335, Number 1, January 1993 

INVERSE MONOIDS, TREES, AND CONTEXT-FREE LANGUAGES 

STUART W. MARGOLIS AND JOHN C. MEAKIN 

ABSTRACT. This paper is concerned with a study of inverse monoids presented 
by a set X subject to relations of the form ei = fi, i E I , where ei and fi are 
Dyck words, i.e. idempotents of the free inverse monoid on X. Some general 
results of Stephen are used to reduce the word problem for such a presentation 
to the membership problem for a certain subtree of the Cayley graph of the free 
group on X. In the finitely presented case the word problem is solved by using 
Rabin's theorem on the second order monadic logic of the infinite binary tree. 
Some connections with the theory of rational subsets of the free group and the 
theory of context-free languages are explored. 

1. INTRODUCTION 

We refer the reader to Lallement [5] for basic information about semigroups 
and connections with automata theory and formal language theory. We shall be 
concerned in this paper primarily with inverse semigroups and inverse monoids. 
For the convenience of the reader we briefly summarize the basic notions and 
results about inverse monoids that we will need in the present paper; many more 
details and results about inverse monoids may be found in the book of Petrich 

[9]. 
An inverse semigroup is a semigroup S with the property that, for each a e S 

there is a unique element a-' E S such that a = aa-la and a-' = a-laa-1 . 
If S has an identity 1, we refer to it as an inverse monoid. Equivalently, an 
inverse semigroup is a (von Neumann) regular semigroup in which the idem- 
potents commute. It follows that the set E(S) of idempotents of an inverse 
semigroup S forms a (lower) semilattice with respect to multiplication as the 
meet operation. Each inverse semigroup S is equipped with a natural partial 
order relation < on S defined by 

a<b (fora, beS) iffa=eb forsomeeeE(S). 

There is a smallest congruence a = as on S such that S/a is a group (a is 
called "the minimal group congruence on S" and S/a is called "the maximal 
group homomorphic image of S "). In fact 

a = {(a, b) E S x 5: 3c E S such that c < a and c < b}. 

S is called E-unitary if and only if as is idempotent-pure (i.e. if aa = ea 
for some a E 5, e E E(S), then a E E(S)). There are many equivalent 
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260 S. W. MARGOLIS AND J. C. MEAKIN 

definitions of E-unitary and this concept plays an important role in inverse 
semigroup theory (see Petrich [9] for much more information about this). 

The standard example of an inverse semigroup to keep in mind is the sym- 
metric inverse monoid SIM(X) on a set X. The monoid SIM(X) consists 
of all partial one-to-one maps of X (i.e. all bijections from subsets of X 
to subsets of X) under the usual composition of partial functions. Thus 
if D(a) (resp. R(a)) denotes the domain (resp. range) of the partial bi- 
jection a, then for all a, f, E SIM(X), D(afl) = (R(a) n D(f8))a1- and 
R(afl) = (R(a) n D(fi))fi. Clearly SIM(X) has a zero, the "empty mapping" 
from the empty subset of X to itself. It is easy to see that SIM(X) is an 
inverse monoid with a-1: R(a) -- D(a) as the inverse of the bijection a. 
The importance of this example stems from the following result, known as the 
Preston-Wagner representation theorem. 

Theorem 10. Let S be an inverse semigroup andfor each a E S define the partial 
map Pa by D(Pa) = Sa-1, R(Pa) = Sa, and XPa = xa for all x E D(Pa). 
Then Pa E SIM(S) and the map f: a -- Pa is an embedding of S into SIM(S). 

Thus inverse semigroup theory is concerned with the study of partial one-to- 
one transformations. The representation f: S -- SIM(S) described in Theo- 
rem 1.1 is called the Preston- Wagner representation of S. Closely related to the 
Preston-Wagner representation is the Schutzenberger representation of S rela- 
tive to an s-class R of S. (Recall that the 9-class Ra of an element a in 
the inverse semigroup S is the set 

Ra={bES:aS=bS}={bES: aa-1 =bb-1}; 

the Y-class La is defined dually.) If R is an 3-class of S then the Schutzen- 
berger representation of S relative to R is the representation PR: S -* SIM(R) 
defined by 

PR(a) = {(x, y) e R x R: y = xa}. 
It is clear that PR is a transitive representation of S by partial one-to-one 
transformations of R and that the Preston-Wagner representation f of S is 
the sum of the Schutzenberger representations PR as R runs over the set of all 
s-classes of S. 

Inverse semigroups form a variety of algebras of type (2, 1) defined by as- 
sociativity and the laws: 

X = xx-lx, (x-')-' = X, x-'xy-y = y<-yx-lx. 

Inverse monoids form a variety of algebras of type (2, 1, 0) defined by the 
above laws and x* 1 = 1 *x = x . As such, free inverse semigroups (monoids) ex- 
ist. We denote the free inverse semigroup (resp. monoid) on a set X by FIS(X) 
(resp. FIM(X)). To construct FIS(X) we let X-1 be a set disjoint from X 
and in one-to-one correspondence with X by a map x - x-1 (x E X). Then 
FIS(X) - (X U X-1)+/p where (X U X-1)+ denotes the free semigroup on 
XUX-1 and p is the Wagner congruence on (XUX-')+; i.e., p is the smallest 
congruence on (XUX-I)+ that forces the laws above to hold in (XuX-I)+/p . 
Also, FIM(X) - (X U X-')*/p FIS(X)1 . Of course this description of p is 
not effective-we would clearly like some sort of algorithm for deciding when 
two words u, v E (X U X-1) * are p-related. That is, we would like to solve 
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INVERSE MONOIDS 261 

the word problem for FIM(X). The first explicit description of the structure 
of FIM(X) was provided by Scheiblich [121. Much work has been done on 
this semigroup since then and we refer the reader to Petrich [9] for additional 
references and results. An elegant solution to the word problem for FIM(X) 
was provided by Munn [8] who associated with each word u e (X U X-1 )* a 
certain finite tree, which we may identify with a subtree of the Cayley graph of 
the free group FG(X) on X. 

Let G = gp(X: T) be the group presented by the set X of generators and 
the set T of relations, and let fT: (X U X-') -l) G be the natural map from 
(X U X-')* onto G. The Cayley graph IF = F(X, T) associated with this 
presentation has as vertices the elements of G and has an edge (g, x, g a XfT) 

for each x e X u X-l and g e G. Note that we are considering a graph 
here as a digraph with involution in the sense of Serre [13]. We may think 
of the edge (g, x, g * xfT) of J7(X, T) as being labelled by x, with initial 
vertex g and terminal vertex g * xfT. The edge (g xfT, x-1, g) may be 
viewed as the inverse of (g, x, g xfT) . The pair of edges (g, x, g xfT) and 
(g * xfT, x1, g) of I(X; T) is usually represented by the segment 

x 

g g * XfT 

or more simply by 
x 

g g*x 
when sketching the Cayley graph. Recall that F(X; T) is a tree if and only if 
T = z (i.e. when G = FG(X) relative to the usual representation). We denote 
the tree of FG(X) by r(X). Note that G acts on F(X; T) by left translation. 
The action of h E G on the edge 

x 
0 0 -v g g.x 

yields the edge 
x 

hg hg x. 
Associated with each group presentation G = gp(X: T) we build an inverse 
monoid M = M(X; T) as follows. Let 

M(X; T) = {(F, g): r is a finite connected subgraph 
of F(X, T) containing 1 and g as vertices} 

with multiplication (r, g)(A, h) = (r U g * A, gh) , where g * A denotes the 
graph obtained from A by acting on each vertex (edge) of A on the left by g. 
The following result is proved in Margolis and Meakin [6]. 

Theorem 1.1. If G = gp(X: T) then M = M(X; T) is an E-unitary inverse 
monoid with maximal group homomorphic image G. In particular, if T = 0 
then the corresponding inverse monoid M = M(X; T) is isomorphic to the free 
inverse monoid on X. 

In fact many more interesting properties of the monoids M(X; T) are estab- 
lished in [6]. In particular it is shown that this construction naturally induces 
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262 S. W. MARGOLIS AND J. C. MEAKIN 

a functor X from the category of X-generated groups to the category of X- 
generated E-unitary inverse monoids which is left adjoint to the functor a from 
X-generated E-unitary inverse monoids to X-generated groups. The construc- 
tion of the monoids M(X; T) may also be used to construct the relatively free 
objects in certain varieties of inverse monoids (see [6]). 

For the present paper, we are concerned only with case T = 0, in which case 
the corresponding Cayley graph F(X) is a tree and the corresponding inverse 
monoid M(X; 0) is FIM(X). This construction immediately yields a version 
of Munn's solution to the word problem for FIM(X), which we now describe. 
For each word u E (X U X-1)* we denote by MT(u) the subtree of F(X) ob- 
tained by traversing the path in JT(X) that starts at 1 and is labelled by the word 
u. Clearly MT(u) is a finite (birooted) subtree of F(X) with initial vertex 1 and 
terminal vertex r(u) (the reduced form of u in FG(X)). MT(u) is referred 
to as the Munn tree of u. For example, if u = abbb- I aa- 1 b- 1 a- I abb- l, then 

MT(u) is the finite tree shown below (with initial vertex indicated by ,;P and 

terminal vertex indicated by Q): 

b 

a 

b 

a 

The following version of a theorem of Munn [8] provides a solution to the word 
problem for FIM(X). 

Corollary 1.2. Let X be a nonempty set and p the Wagner congruence on 
(X u X-1)*. Then for words u, v e (X U X1)* we have u p v if and only if 
MT(u) = MT(v) and r(u) = r(v). 

It is possible to view the Munn tree of a word u E (X U X-l)* in several 
slightly different ways. In particular, we may view it as an automaton with ver- 
tices corresponding to the states of the automaton, and edges corresponding to 
transitions. There is one initial state (the initial vertex corresponding to 1) and 
one terminal state (the terminal vertex corresponding to r(u)). The language 
accepted by this automaton is L(u) = {w E (X U X-l)*: w labels a path from 
1 to r(u) in MT(u)}. This has a natural interpretation relative to the free in- 
verse monoid, namely L(u) = {w E (XUX-i)*: wp > up in the natural partial 
order on FIM(X)}. We may also view MT(u) as the graph associated with the 
Schutzenberger representation of FIM(X) relative to the 9-class Rup I That 
is, the vertices of MT(u) are in one-to-one correspondence with the elements 
of Rup (with 1 corresponding to (uu- )p and r(u) corresponding to up) and 
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INVERSE MONOIDS 263 

the edges are of the form 
x 

vp (vx)p 

with vp, (vx)p E Rup I This point of view is very useful and has been extended 
greatly by Stephen [15] to study arbitrary presentations of inverse monoids. 

Let X be a nonempty set and let T = {(ui, vi): i E I} be a relation on 
(X U X-)*; i.e., ui, vi (X U X-1)* for each i E I. We define the inverse 
monoid presented by the set X of generators and the set T of relations to be 
the inverse monoid M = Inv(X: T) = (X U X-1 )* /T where T is the congruence 
on (X U X- l)* generated by p U T7. We sometimes also abuse notation slightly 
and regard the ui, vi as elements of FIM(X) and think of Inv(X: T) as the 
inverse monoid Inv(X: T) - FIM(X)/T (where here we are viewing T as the 
congruence on FIM(X) generated by T). We refer to the pair P = (X: T) as 
a presentation of M = Inv(X: T). If PI = (X: T,) and P2 = (X: T2) are 
two inverse monoid presentations with the same set X of generators, we say 
that P1 and P2 are equivalent if T, and T2 induce the same congruence on 
FIM(X): clearly this implies that Inv(X: T,) - Inv(X: T2). 

The following simple fact is important in developing an understanding of 
presentations of inverse monoids. 

Lemma 1.3. If M = Inv(X: T) then G = GP(X: T) is isomorphic to MCMm; 
i.e., G is the maximal group homomorphic image of M. 

(For example, (Z, +) is the maximal group homomorphic image of the bi- 
cyclic monoid B = Inv(a: aa-1 = 1), FG(X) is the maximal group homomor- 
phic image of FIM(X), etc.) 

In order to study presentations of inverse monoids we shall associate with 
each word u E (X U X-l)* an automaton XW(u) that serves as a "canonical 
form" for the congruence class containing u relative to the given presentation, 
in the same way as the Munn tree of u serves as a canonical form for u in 
the free inverse monoid. Let M = Inv(X: T) = (X U X-l)*/T be an inverse 
monoid presentation and let u be a word in (X U X-l)* (so that uT is the 
image of u in the inverse monoid M). The Schiitzenberger graph SF(X; T; u) 
(usually denoted by SF(u) if the presentation is understood) is the labelled 
graph defined as follows. Its vertices are the elements of M that are related via 
Green's M-relation to uT in the monoid M (i.e., V(SF(u)) = RUT in M). 
There is a labelled edge (vT, x, wT) in SF(u) whenever v, w e (XUX-)*, 
VT, wT E RUT and wT = (vx)T for some x E XUX 1 . It is easy to see that this 
also forces (wx-')T = VT, so there is also an edge (wT, x1, vT) in SF(u). 
The pair of edges (VT, x, WT) and (WT, X-, VT) is usually represented by a 
segment 

x 
VT WT 

in a sketch of SF(u) . Notice that SF(u) is the graph of the Schutze4berger rep- 
resentation of M relative to the M-class RUT. The triple , (u) = V (X; T; u) 
= ((uu- )T, SF(u), uT) may be regarded as an automaton over the alphabet 
X U X-1 with set RUT of states, initial state (uu- )T, terminal state UT, and 
transitions corresponding to the edges in SF(u). Clearly X(u) is an inverse 
automaton (i.e., each x E X U X-1 induces a partial one-one function on the 
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264 S. W. MARGOLIS AND J. C. MEAKIN 

states of d (u), and x-I induces the inverse partial one-one function). Notice 
that X(u) = (1, MT(u), r(u)) if T = 0 (i.e., if M = FIM(X)). The automata 
X (u) have the following important properties, which are not difficult to verify. 
The reader is referred to Hopcroft and Ullman [4] for undefined notation. 

Theorem 1.4 (Stephen [15]). For all words u e (XuX-1)* we have thefollowing 
(1) d (u) =.vd(X; T; u) is deterministic, injective, and trim. 
(2) The language accepted by sQ (u) is L(s' (u)) = u 1= {w E (X U X-l)*: 

wT > uT in the natural partial order on M}. 
(3) s,'(u) is the minimal automaton of u T. 
(4) UT9VT if and only if u E L(.W (u)) and v E L(.,'(u)) . 

In view of this result, we regard d (u) as a "canonical form" for the T-class 
uT. Thus we can solve the word problem for the monoid M = Inv(X: T) 
if we can devise an algorithm that will test, for all words u, v E (X U X-')*, 
whether v E d (u) or not. In his paper [12], Stephen provides an iterative 
technique for constructing the automaton X (u). The idea basically is to start 
with (1, MT(u), r(u)) and successively apply "expansions" and "reductions" 
to intermediate automata, thus building a sequence of injective, deterministic, 
trim X U X- I -automata 

-VO(u) = (1, MT(u), r(u)), AlI(u), sV2(u), ... ,4 (u), .. 

with L(.(u)) C L(s41i+ (u)) c u I (for all i) and Un=o L(.V, (u)) = u 1 Briefly 
an "expansion" consists of adding to an automaton a new path labelled by one 
side (vi, say) of one of the relations ui = vi in T when there is already a 
path in the automaton labelled by the other side (ui). A "reduction" consists 
of identifying two edges with the same label and the same initial vertex (a 
"folding" in the sense of Stallings [14]). These ideas are discussed in detail in 
Stephen's paper [15], so we will not repeat the details here. 

If P = (X: T) is a presentation of an inverse monoid M Inv(X: T) = 
(X U X-l)*/z, then for each u E (X U X-l)*, the natural homomorphism a 
from M onto its maximal group homomorphic image G = gp (X: T) induces 
a graph morphism (again denoted by a) from SF(X; t; u) into F(X: T), the 
Cayley graph of the corresponding group presentation (X: T) . The morphism 
a simply maps the edge 

x 

VT (vx)T 

of Sr(X; T; u) to the corresponding edge 

(vT)a ((vx)T)a 

of F(X; T). Note that the idempotent (uu- )z in Rut maps to the vertex 1 
of F(X: T) under the morphism a. It is not difficult to observe the following 
fact: 

Lemma 1.5. Let P = (X: T) be a presentation of an inverse monoid M - 

Inv(X: T) = (X U X-l)*/z. Then the natural morphism 

a: M -G = gp(X: T) 
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INVERSE MONOIDS 265 

induces a graph embedding of each Schutzenberger graph SJ(X; T; u) (for u E 
(X U X-1)*) into F(X; T) if and only if M is E-unitary. 
Proof. This is simply a consequence of the well-known fact that an inverse 
monoid M is E-unitary if and only if a induces an embedding of each 3- 
class of M into the maximal group homomorphic image G of M. 

Our concern in this paper is with inverse monoids of the form M = Inv(X: 
ei = ft, i E I) where ei, f] are idempotents of FIM(X); that is, ei and f 
are Dyck words in (X u X-1)*, i.e. the reduced form of ei(f ) (in the usual 
group-theoretic sense) is 1. We may view FIM(X) itself as an example of such 
a presentation (take I = 0 or take ei = f = 1 Vi E I). Other standard 
examples include the bicyclic monoid B = Inv(a: aa- 1) or more generally 
the inverse monoids of the form 

M =Inv(X1n ,Xn: Xix I 1 1 XJ1j=1 

i=1,...,n,j= ,.. .,k) 

that arise naturally in connection with the (generalized) Dyck languages (see, 
for example, Berstel [2] for a study of these languages). Clearly the free group 
FG(X) may also be presented in this form, namely 

FG(X) = Inv(X: xx-1 = x-1x = 1 Vx E X). 

We first need a preliminary lemma that relates these presentations to subtrees 
of F(X). We recall that the trace of a congruence 0 on an inverse monoid M 
is the equivalence relation tr(0) = OIE(M)xE(M) (i.e., tr(0) is the restriction of 
0 to the semilattice E(M) of idempotents of M): the kernel of 0 is defined to 
be ker 0 = {a E M: a0a2}. It is well known (Petrich [9]) that every congruence 
0 on an inverse monoid M is uniquely determined by its trace and its kernel. 

In addition, if 0 is an arbitrary congruence on an inverse monoid M then 
there is a smallest congruence Omin on M with tr(Omin) = tr(0). If 0 is a 
congruence on FIM(X) then the natural morphism 0* from FIM(X) onto 
FIM(X)/0 factors according to the diagram 

FIM(X) l1 FIM(X)/Omin 

02 

FIM(X)/6 

where 01 is idempotent-pure and 02 is idempotent-separating (i.e., if e102e2 
for some idempotents el and e2, then el = e2). Idempotent-separating mor- 
phisms are well studied, and behave very much like morphisms between groups. 
It is thus clearly of interest to study idempotent-pure images of FIM(X). The 
next lemma relates these to the class of presentations under consideration in 
this paper. 

Lemma 1.6. Let P = (X: T) be a presentation of an inverse monoid M = 
Inv(X: T) = FIM(X)/0 = (X U X-1)*/T. The following are equivalent: 

(a) P is equivalent to a presentation of theform P1 = (X: Ti) where T1 = 
{(es, f): i E I} for some set I and idempotents ei, ft of FIM(X). 

(b) 0 is an idempotent-pure congruence on FIM(X) . 
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266 S. W. MARGOLIS AND J. C. MEAKIN 

(c) Each Schiitzenberger graph SF(X; T; u) (for u E (X U X-1)*) is a 
(labelled) tree. 

Proof. Suppose first that M Inv(X: ei = f, i E I) for some idempotents 
ei, fi of FIM(X). Let 01 be the congruence on FIM(X) generated by T1 = 
{(ei, f1): i E I}I. It is evident that 01 C a, the minimum group congruence on 
FIM(X), so 01 is an idempotent-pure congruence on FIM(X) since FIM(X) 
is E-unitary (see Petrich [9]). 

Suppose next that M - FIM(X)/0 for some idempotent-pure congruence 
0 on FIM(X). Since 0 C a, the natural homomorphism from FIM(X) onto 
FG(X) factors through M. Then M has the same maximal group homomor- 
phic image as FIM(X), and M is E-unitary since FIM(X) is E-unitary. By 
Lemma 1.5 it follows that the natural homomorphism from M onto FG(X) 
induces a graph embedding of each Schutzenberger graph SF(X; T; u) (for 
u E (X u X-1)*) into F(X), the Cayley graph of FG(X), so SG(X; T; u) is 
a (labelled) tree since F(X) is a (labelled) tree. 

Now suppose that each Schutzenberger graph SF(X; T; u) relative to the 
presentation P = (X: T) is a labelled tree. Corresponding to each vertex a 
of SF(X T: u) there is a (unique) geodesic path from (uu-1)T to a: let 
w(a) be the word in (X U X-1)* that labels the geodesic from (uu-1)T to a. 
Clearly w(a) is a reduced word in the usual group-theoretic sense. The map 
0: SF(X; T; u) -* F(X) that maps each vertex a of SF(X; T; u) to w(a) 
and the edge 

x 
0 ) O__ 

(for x EX U X-1) to 
x 

w (a) w (ax) 

is clearly a graph embedding of SF(X; T; u) into F(X) that maps (uu-1)T 
to 1. Recall also that for each u E (X U X-1)*, the Munn tree MT(u) 
is a (labelled) subtree of F(X). It is evident that the image under q of 
the path in SF(X; T; u) from (uu-1)T to UT labelled by the word u E 
(X U X-1)* is in fact the Munn tree MT(u), so we may regard MT(u) as 
a subtree of SF(X; T; u)q and the initial (resp. terminal) root of MT(u) co- 
incides with that of SF(X; T; u)q. Now let e be an idempotent of FIM(X) 
and suppose that e 0 u for some u E FIM(X), where 0 is the congruence 
on FIM(X) generated by R. Since e 0 u, the graphs SF(X T: e)q and 
SF(X; T; u)q coincide and their terminal roots coincide. But the terminal root 
of SF(X; T; e)q coincides with the terminal root of MT(e) and the terminal 
root of SF(S; T; u)q coincides with the terminal root of MT(u). Hence the 
terminal roots of MT(u) and MT(e) coincide. Since e is an idempotent the 
terminal root of MT(e) is 1 and so the terminal root of MT(u) is 1, so u 
is also an idempotent of FIM(X). It follows that 0 is an idempotent-pure 
congruence on FIM(X). 

Finally, suppose that M - FIM(X)/0 for some idempotent-pure congruence 
0 on FIM(X). Let T1 be the set of pairs of the form (e, f) where e is an 
idempotent of FIM(X) and f 0 e: clearly we also have f2 = f in FIM(X). 
Let v be the congruence on FIM(X) generated by T1 . By the argument given 
in the first paragraph of the proof, v is idempotent-pure, so Ker v = Ker 0, 
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where Ker v (resp. Ker 0) denotes the set of elements of FIM(X) that are v 
(resp. 0) related to an idempotent of FIM(X). Clearly v and 0 have the 
same restriction to the set of idempotents of FIM(X) since v C 0, so v and 
O have the same trace. It follows that v = 0 and hence M has a presentation 
of the desired form. 

Corollary 1.7. Every inverse monoid M = Inv(X: ei = fi, i E I) (where ei, fi 
are idempotents of FIM(X)) is E-unitary with maximal group image FG(X). 

In order to provide an effective construction of the Schutzenberger graphs 
corresponding to inverse monoid presentations of the form M = Inv(X: ei = 
fi, i = 1, ... , n) (for ei, fi idempotents of FIM(X) and X finite) we shall 
need to make use of some results from logic and formal language theory. We 
provide a brief discussion of these results in the next section. 

2. SECOND ORDER MONADIC LOGIC AND RATIONAL SETS 

In this section we review material from logic and formal language theory that 
we need for our solution to the word problem. We will be necessarily brief and 
we refer the reader to standard references on logic and language theory for more 
details. 

2.1. Rational sets. For proofs of theorems in this subsection see Berstel [2]. 
Let M be a monoid. The set Rat(M) of rational subsets of M is the smallest 

collection of subsets of M containing the singleton sets and closed under finite 
union, product of subsets and submonoid generation (usually referred to as 
the "star" operation). A subset L of M is recognizable if L = Pr1-I where 
r,: M -- N is a morphism into some finite monoid N and P C N. Let Rec(M) 
denote the recognizable subsets of M. The following is a fundamental result 
of the theory of automata and formal languages. 

Theorem 2.1 (Kleene's Theorem). Let M be a finitely generated free monoid. 
Then Rec(M) = Rat(M) . 

In general, Rec(M) :$ Rat(M) . An interesting case occurs when the monoid 
is a group. 

Theorem 2.2. Let G be a group and let H be a subgroup of G. Then H E 
Rec(M) if [G: H] < oo, and H E Rat(M) if H is finitely generated. 

Our main concern in this paper is with the rational subsets of FG(X), the 
free group on a finite set X. Let v: (X U X-')* FG(X) be the canonical 
morphism from the free monoid on X u X-l to FG(X) . Here, as usual, X-l 
is a set in bijection with and disjoint from X. There is also a function (not a 
morphism!) l: FG(X) -* (X U X-')* that assigns g E FG(X) to the unique 
reduced word in (X u X- l)* representing g. Note that if u E (X U X- l)* then 
uvi = r(u), the reduced from of u in the usual sense. 

Theorem 2.3 (Benois). Let L C FG(X). Then L E Rat(FG(X)) iff LI E 
Rat((X U X-l)*). 

Let L E Rat(FG(X)). Since LI E Rat(X U X-')*, it follows from Kleene's 
Theorem that there is a finite state automaton over X U X-l that recognizes 
Li. We define W(L) to be the minimal automaton of Li. 
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We need an effective version of Benois' Theorem for our intended appli- 
cations. We would like to effectively compute J(L) from a description of 
L C Rat(FG(X)) by a rational expression. This follows from the proof of 
Lemma 2.11 of Berstel [2], but for completeness we include a version of that 
lemma here. If L C (XUX-')* let L = Lvi C (XUX-')*, the set of reductions 
of words in L, i.e., L = {r(u): u E L}. 

Lemma 2.4. Let L C (X U X-1)*. If L is recognizable, then so is L. Fur- 
thermore, an automaton recognizing L can be effectively constructed from an 
automaton recognizing L. 
Proof. Let .v = (Q, XuX-I, 3, i, T) be an automaton recognizing L. Recall 
(Hopcroft and Ullman [4]) that this notation means Q is a (finite) set of states, 
X u X-I the alphabet, 3 the next state function, i E Q, the initial state, and 
T C Q, the set of terminal states.) Let Dx = 1 v-I, the (two-sided) Dyck set 
over X, consisting of words in (X u X- )* equal to 1 in the free group. 

For p, q E Q, let Ap,q = {W E (X U X-l)*I3(P, w) = q}. Ap,q is thus an 
effectively constructible recognizable language. 

It is well known that Dx is a context-free language. It follows that xDx and 
DxxDx are context-free languages for every x E XUX-'. Furthermore, we can 
assume by standard results of formal language theory that we have effectively 
constructible push-down automata for each of the languages xDx and DxxDx, 
x E XUX-1 . 

Now consider the nondeterministic finite state automaton R = (Q U {s}, 
XUX1,f',s,T') where s 0 Q and 3' isgivenby 

q E 3'(p, x) iff xDx nAp,q : 0, p, q E Q, 

and 
q E 3'(s, x) iff DxxDx nAi,q #0. 

Also 
T'| T if DxnLL 0, 

TU{s} ifDxnL=L . 

We claim that ' is effectively constructible. This follows from two impor- 
tant theorems of formal language theory (see Hopcroft and Ullman [4]). The 
first states that the intersection of a context free language L, and a recognizable 
set R is again context-free. Furthermore, a push-down automaton (p.d.a.) for 
L1 n R can be effectively constructed from a p.d.a. recognizing L1 and a finite 
state automaton recognizing R. The second theorem states that it is decidable 
whether the language accepted by a p.d.a. is empty or not. 

It is easy to see that the language L' accepted by M is given by 

L' = {W E (X U X-')*IW = Xi ... Xn, xi E X U X-l,1 < i < n and 

3do, ..., dd E Dx such that d0X1d1x2 **xedn E L}. 

Therefore L' is recognizable. Finally, the set R of reduced words is a recog- 
nizable language and clearly L = L' n R. Since we can effectively construct 
an automaton for L' and an automaton for R, we can effectively construct an 
automaton for their intersection L. 

Corollary 2.5. Let L E Rat(FG(X)) be given by a rational expression. Then we 
can effectively construct the automaton 6(L). 
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Proof. Let L E Rat(FG(X)). By definition, W(L) is the minimal automaton 
of Li C (X U X-1)*. Since L is given by a rational expression R we can 
effectively construct an automaton v accepting the language L1 defined by 
R considered as a language over X U X-1 . It is clear that L1 v = L and 
thus Li = Llvi = L1. By the lemma above we can effectively construct an 
automaton vW recognizing L1 and thus we can effectively construct q(L) by 
using standard results of the theory of automata. 

2.2. Second-order monadic logic. We assume some familarity with basic defi- 
nitions and ideas of (first-order) logic. See, for example, Barwise [1]. 

In second-order monadic logic, quantifiers refer to sets (i.e. unary or monadic 
predicates) as well as to individual members of a structure. We review the basic 
definitions. 

Let M = (A, {R1Ii E I}, {ffIj E J}) be a structure. Thus A is a nonempty 
set, each Ri, i E I, is an ni-ary relation on A for some ni > 0 and each 
fj, j E J, is an mj-ary function for some mj > 0: 0-ary functions are inter- 
preted as constants. 

The second-order monadic language Y appropriate for M consists of the 
following data: 

Individual variables- {x, In E N}; 

Set variables- {Xn In E N}; 
Predicate symbols- {Ri i E I}; 
Function symbols- {fj Ij E J}; 
Logical symbols- {A, V, -, (, ), =, V, E} (or any other complete set of 

connectives). 
Thus there is a one-to-one correspondence between function (predicate) sym- 

bols of Y and functions (relations) in M. We assume that each function 
(predicate) has the same arity as the corresponding function (predicate) of M. 

The syntax and semantics of terms and well-formed formulae ar,e defined 
inductively in the usual manner. Atomic formulae include those of the form 
t E X where t is a term and X is a set variable. A sentence of the form 
VXq(X) where X is a set variable, in particular, is true in M iff +(Y) is 
(inductively) true in M for each Y C M. If a sentence q is true in M 
we write M l= b and we define Th2(M) = {IIM 1= b}. The (second-order 
monadic) theory of M is decidable if there is an algorithm that tests whether 
a given sentence q of Y is in Th2(M) or not. 

We will be interested in two particular structures and their associated theories 
in this paper. 

Let A be a countable set and consider the structure TA = (A*, {ra Ia E A}, 
<). Here ra: A* -* A* is right multiplication by a, xra = xa VX E A* and 
< is the prefix order x < y iff 3U E A*, xu = y . We call Th2(TA) the theory 
of A-successor functions. We can now state Rabin's Tree Theorem. 

Theorem 2.6 (Rabin [ 10]). Th2 (TA) is decidable. 

The terminology "Tree Theorem" comes from the usual representation of A* 
as a labelled rooted tree. The root is labelled by the empty word, and a node 
labelled by x E A* has a descendant labelled xa for each a E A. The Tree 
Theorem is one of the deepest decidability results known. The decidability of 
a number of other theories can be reduced to Th2(TA) (see Barwise [1]). 
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The second result of Rabin that we need concerns the definable sets in TA. 
We say that a set L C A* is definable if there is a formula +(X) of 2 with 
exactly one free (set) variable X such that M k 3!X4(X) and M 1= +(L). 

The following theorem summarizes Theorem 2.1, Theorem 2.3, and Corollary 
2.4 of Rabin [1 1]. See also the remark following Theorem 2.3 of [1 1]. 

Theorem 2.7 (Rabin [11]). L C A* is definable if L is rational. Furthermore, 
if 3X+(X) is true in TA, then we can effectively find a rational set L such that 
TA l= (L). 

We now introduce our second structure of interest. Let Gx = (FG(X), {ax {x 
E X u X1 }) where FG(X) is the free group on a (countable) set X and if 
x E X U X-1, ax: FG(X) -- FG(X) is given by gax = gx. Notice here that 
this is right multiplication in FG(X), not concatenation in (X U X-1)* . We 
wish to show also that Th2(Gx) is decidable. We do this by reducing Th2(Gx) 
to Th2(T(X U X-1)*). We will, for each sentence b of Gx, give an (effectively 
constructible) sentence + of Txux-i such that Gx t 4 iff Txux-i l= +. We 
do this by the method of (semantic) interpretation (Barwise [1]). The idea is to 
represent FG(X) by (the 2'2 definable) set of reduced words considered as a 
subset of (X U X1)* and to define ax: FG(X) -- FG(X) by an 2'2 definable 
relation in (X U X-1)*: 0 can then be defined in a natural way inductively 
from the structure of q as a well-formed formula. Again see Barwise [1] for 
details. We mention that the decidability of Th2(Gx) follows also from the 
work of Muller and Schupp [7], but we include a proof here for the sake of 
completeness. 

Theorem 2.8. Th2(Gx) is decidable. 

Proof. Consider the formula +(w) of 22(Txux- ) given by 

A Vv(v < w A 3u urx = v) =* -_3z(zrx-i = u)). 
xEXUX-1 

This statement says that no prefix of w ends with the word x1- x, x E XUX-. 
Clearly, TxUx- 1= q$(g) with g E (X U X- 1)* iff g is in R, the set of reduced 
words over X U X-I in the sense of group theory. 

Now consider for each x E (X U X-) the formula lx(v, w) defined by 

4(v) A +(W) A (3z(zrx-i = v ? z = w) V vrx = w). 

It is easy to see that a pair (g, h), g, h e (X U X-1)*, has TxUx-1 1 
Vlx(g, h) iff g and h are both in R and gax = h in FG(X). 

Now given a sentence ae of Y2(GX) we define a formula & of Y2(TxUx-1) 
by relativizing quantifiers to R and replacing terms involving ax by Vx. 
Clearly Gx k ca iff TxUx-1 W & and thus Th2(Gx) is reduced to Th2(TxUx-1) 
and is thus decidable by Rabin's Tree Theorem. 

Corollary 2.9. Let L C FG(X). If L is definable then L is rational. 

Proof. Let L be defined by the Y2(Gx) sentence V' = T!Yq(Y). Then the 
sentence @/ constructed in Theorem 2.8 is T!Yk(Y). It follows that Txux- t 
@ and Txux-, W= Li. Therefore Li is rational by Theorem 2.7 and thus L is 
rational by Benois' theorem (Theorem 2.3). 
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3. THE WORD PROBLEM 

We turn now to a study of the word problem for an inverse monoid presen- 
tation of the form 

(*) M= Inv(X: ei = fi, i E I) 

where I and X are finite sets and ei, fi are idempotents of FIM(X). Note 
first that if ei and fi are idempotents of FIM(X) then ei = fi in M if and 
only if ei = eifi and fi = eif in M. Since eifi < ei, fi in the natural partial 
order on FIM(X), it is evident that each presentation of the form considered 
above is equivalent to one of the form M = Inv(X: ei = fi, i E I) where 
ei, fi are idempotents of FIM(X) and ei < fi in the natural partial order on 
FIM(X) . Consequently, in this section we shall study presentations of the form 
(*) with ei < fi in FIM(X). It follows that MT(fi) is a subtree of MT(e1), 
both being viewed as subtrees of F(X). We allow as a special case that some 
(or all) of the fi may be 1 (the identity of FIM(X)) or that I may be empty, 
in which case M is FIM(X). For each word u E (X U X-1)* we provide an 
iterative construction of a birooted labelled tree (i.e. automaton) BF(u) that 
recognizes the language u I; that is, we provide an iterative construction of the 
Schutzenberger automaton XV(u) relative to this presentation. The iterative 
construction is essentially that of Stephen [15], the only distinction being that 
at each stage of the iteration we map the corresponding iterate into the tree 
r(X) . Thus we iteratively construct, inside the tree F(X), the image of v (u) 
induced by the natural map a: M -* FG(X). The iterates are constructed as 
follows. 

Let IF (u) = MT(u). Then IF (u) may be considered as a birooted subtree 
of F(X), the roots being 1 (initial) and r(u) (terminal). Note that since IF (u) 
is a subtree of F(X) containing the vertex 1, the set V1 of vertices of IF (ut) 
is a Schreier subset of FG(X), that is, each element of V1 may be considered 
as a reduced word in FG(X) and if v = xl ... xk is a reduced word in V1, 
then xi .xi E V1 for all i with 0 < i < k. The approximate IF(u) is a 
birooted subtree of F(X) (with initial root 1 and terminal r(u)) constructed 
by induction from IF, -(u) in the following way. Let V, - denote the Schreier 
subset of FG(X) consisting of the vertices of the tree F,_ 1 (u) . For each i E I 
let Ei denote the set of vertices of MT(ei) and let Fi denote the set of vertices 
of MT(fi): thus Ei and Fi are finite Schreier subsets of FG(X) with Fi C Ei 
for each i E I. For each i E I let Gi = {v E Vn_1: v .Fi C Vn- } where v .Fi 
denotes the set of all reduced forms of the words v * x(x E Fi) in FG(X): also 
let Hi = GiEi (the set of all reduced forms of the word v * vI with v E Gi and 
vI E Ei). Then define 

Vn= Vn U (UGiEi) 

It is easy to see by induction that each set Vn is a (finite) Schreier subset of 
FG(X) containing the vertices 1 and r(u). Hence Vn serves as the set of 
vertices of a (uniquely determined) birooted subtree Fn(u) of F(X), the roots 
again being 1 (initial) and r(u) (terminal). Finally define BF(u) = Un?=l Fn(u) . 
Clearly BF(u) is the (possibly infinite) birooted subtree of F(X) whose set of 
vertices is Un'?l Vn and whose roots are 1 (initial) and r(u) (terminal). Each 
approximate Fn (u) as defined above is the image in F(X) of the corresponding 
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"full P-expansion" of Stephen [15], and the tree Br(u) is actually the image in 
F(X) of the "basic graph" BF(u) defined by Stephen [15]. Since the monoid 
M = Inv(X: ei = fi, i E I) is E-unitary (Corollary 1.5), the Schutzenberger 
graph SF(u) actually embeds in F(X) (Lemma 1.2). It follows from the results 
of Stephen [15] that the birooted graph Br(u) constructed above is actually the 
image of the (birooted) Schutzenberger graph ?V(u) = ((uu-1)T, SJ(u), UT) 
under the natural embedding into F(X). When viewed as automata, BF(u) and 
XW (u) may be identified with the minimal automaton recognizing the language 
u T. We summarize all of this in the following theorem, which is essentially a 
very special case of some of the results of Stephen [15]. 

Theorem 3.1. Let M = Inv(X: ei = fi, i E I), let u E (X u X-1)*, and let 
BF(u) be the birooted tree (i.e. automaton) constructed above. Then BF(u) is 
(isomorphic to) v (u), the minimal automaton recognizing the language u T . 

We now turn to a solution to the word problem for these presentations. Note 
that from our definition of the trees BI(u) (u E (X U X1 )*) it follows that the 
set V(BF(u)) of vertices of BF(u) is the smallest subset V of FG(X) such 
that (1) VI = V(MT(u)) C V, and (2) v -5Ei C V whenever v .Fi C V for 
some i E I and v E V. (Here, as before, the multiplication is in FG(X).) 
It is straightforward to define V in the monadic logic of the structure Gx = 
(FG(X), {crxIx E XuX-1 }) (see ?2 above). For completeness, we include these 
details here. 

Consider the formula: 

vy(Y) = (V1 C Y) A Avv(v * Fi C Y V v * Ei C Y). 
iEI 

Then L C FG(X) satisfies V/ iff L satisfies properties (1) and (2) above. 
It is easy to see that the containment relation " C " is definable in Y2(Gx). 
Furthermore, since V1, Ei, Fi, i E I, are all finite subsets of FG(X), (being 
vertices of Munn trees) we can construct 92-formulae representing the condi- 
tions V, C Y, v - Fi C Y, v * Ei C Y, i E I. Thus we can consider yi(Y) to 
be an $2-formula. Finally, if 

0b(Y) = ig(Y) AVZ(V/(Z) =Z Y C Z) 

then V = V(BJ(u)) is the unique subset of FG(X) that satisfies Gx l= 0(V). 
That is, Gx 1= ]!YO(Y) and Gx l= +(V). These observations lead to the 
following theorem. 

Theorem 3.2. Let M = Inv(X: ei = fi, i = 1, ..., n) (where ei, ft are idem- 
potents of FIM(X)). Let u E (XuX-l)* . Then V = V(BJ(u)) is an effectively 
constructible rational Schreier subset of FG(X) . In particular, the word problem 
for M is decidable. 

Proof. We have seen that we can effectively construct a formula in Y2(Gx) 
defining V. It follows from Theorem 2.7, Theorem 2.8, and Corollary 2.9 that 
the Schreier set V is an effectively constructible rational subset of FG(X). 
Furthermore, BF(u) = (1, V(BF(u)), r(u)) is the (effectively constructible) 
minimal automaton of u T. Thus u = v in M iff u T= v T iff V(BF(u)) = 
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V(BF(v)) and r(u) = r(v). Since these last two conditions can be effectively 
checked, it follows that the word problem for M is decidable. 

Remark 3.3. It is possible to provide a much more direct proof of the fact that 
each set V = V(BF(u)) in the statement of Theorem 3.2 is a rational Schreier 
subset of FG(X). However, in general we need Rabin's theorem to guarantee 
that V is effectively constructible and hence that the word problem is decidable. 
While Rabin's theorem does provide us with a tool to solve the word problem, 
this kind of solution is exceedingly complex and it would be desirable to find a 
much more direct solution to the word problem. In the case where each relation 
is of the form ei = 1, i.e. in the case where M = Inv(X: e = 1) for some 
e = e2 in FIM(X), it is possible to avoid the use of Rabin's theorem. This 
case is discussed in a later paper [3]. 

4. CONNECTIONS WITH CONTEXT-FREE LANGUAGES 

In this section we establish some connections between the inverse monoid 
presentations discussed above and the theory of context-free languages. We re- 
fer to Hopcroft and Ullman [4] and Berstel [2] for basic results and notation 
concerning context-free languages. In particular we shall view a determinis- 
tic pushdown automaton as a 7-tuple (Q, X, r, 3, qo, Zo, F) as defined by 
Hopcroft and Ullman [4, Chapter 5]. We first establish some basic results con- 
cerning rational Schreier subsets of the free group. The next result is a gener- 
alization of the well-known fact that the Dyck languages (see Berstel [2]) are 
deterministic context-free languages. 

Lemma 4.1. Let L C FG(X) be a rational Schreier subset of FG(X) and let 
F(L) be the subtree of F(X) determined by L. Then the language L = {w E 
(XuX-l)*: w labels a path from 1 to 1 in F(L)} is a deterministic context-free 
language. 
Proof. Since L is rational, Li is a recognizable subset of (X u X-1)* by the 
theorem of Benois (Theorem 2.3), so the minimal automaton q(L) of Li is 
a finite state automaton. Thus the tree of Li contains only a finite number of 
distinct (directed) rooted subtrees and in fact the states of the minimal automa- 
ton AJ(L) of Li are the isomorphism classes of directed rooted subtrees of 
the tree of Li. Let S be the set of states of the automaton W (L); then, for 
i, j E S and x E XUX-1, ix = j in W(L) if and only if x labels an edge 
from the root of a tree in the isomorphism class i to the root of a tree in the 
isomorphism class j. Denote the start state of W(L) by so. Now define the 
deterministic pushdown automaton 37 = (Q, X, r, 3, qo, Zo, F) as follows: 

Q = {p, q} is the set of states of 3 , 
X = X u X-1 is the input alphabet of SD, 
F=Sx[XuX-1u{Z}] (where Z isasymbolnotin XuX-1) is 
the stack alphabet of 37, 
q= p is the initial state of 37, 
ZO= (se, Z) is the start stack symbol of Y, 
F = {p} is the set of final states of 37, and 
3 is a partial map from Q x (E u {e}) x F to Q x F* defined by 
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6(p, X, (SO, Z)) = (q, (so, Z) (so -x, x)) if so .x is defined in V(L), 
undefined otherwise, 
(q, (i, y)(i - x, x)) if i - x is defined in q(L) and 

y y X 

6~(q, x, (i, y)) = (q, 1) if y = x-I (here 1 is the identity 

1 
of F*), undefined otherwise, 

3(q, X, (xo, Z)) = (p, (XO, Z)). 

Now let w be a word in (X u X-l)* . For (qi, ai) E Q x r*, i = 1, 2, we 
* * 

write (ql, c,) (q2, a2) if (q1, w, al) h-(q2, , a2) in the sense of Hopcroft 
and Ullman [4, ?5.2]. By an easy induction on the length of a word w E 
(XuX-l)*, we can see that w labels a path in F(L) from ito u if and only if 

* 

(p, (sO, Z)) H (q, a) where a = (so, Z)(si, xl) ... (sn, x,) with s, = so-(r(w)) 

and r(xl .xn) = r(w) = u. (Here, as before, r(w) is the reduced form 
of w in the group-theoretic sense.) It follows that w E L if and only if 

* 

(p, (so, Z)) F (q, (so, Z)) F (p, (so, Z)), so w E L if and only if w E L(9). 

Hence L is a deterministic context-free language. 

Remark 4.2. If L = FG(X) and X = {xl, ... , xn then L is just the Dyck 
language D* (in the notation of Berstel [2]). If L = X* (the positive cone of 
FG(X)) and X = {xl, ..., xn} then L is just the restricted Dyck language 
D` (see Berstel [2]). Thus the languages L may be viewed as generalizations 
of the Dyck languages discussed in Berstel [2]. 

Corollary 4.3. Let L be a rational Schreier subset of FG(X) and let u be a 
word in Li. Let Lu = {w E (X U X-l)*: w labels a path from 1 to u in 
F(L)}. Then Lu is deterministic context-free language. 
Proof. It is clear that w labels a path from 1 to u in F(L) if and only if wu1 
labels a path from 1 to 1 in F(L). If follows that Lu is the right quotient of 
L with respect to the rational language {u- }, and so Lu is a deterministic 
context-free language by Hopcroft and Ullman [4, Theorem 10.2]. 

Let M = Inv(X: ui = vi: i E I) = (XUX-l)*/z. From the results of Stephen 
[ 15] we know that, for each u E (X U X-1 )*, the transformation monoid of the 
automaton BF(u) is the image of M under the Schutzenberger representation 
PRUT relative to the '-class RUT of uT in M: we denote this by SchiitzRu, (M) 
in the following theorem. Recall that the Vagner congruence on (X u X-1)* 
is denoted by p and that FIM(X) = (X U X-1)*/p. We define a language 
L C(XUX-l)* tobe closedif, forall ue L and v E(XUX-l)*, vp>up in 
FIM(X) implies that v E L. Clearly, if L is closed, then Lp = {up: u E L} 
is a closed subset of FIM(X), so L is closed if and only if L is the inverse 
image under the Vagner homomorphism from (X U X-1)* onto FIM(X) of a 
closed subset of FIM(X). 

Theorem 4.4. Let M = Inv(X: ei = fi, i E I) = (X U X-1)*/T where I is 
a finite set and es, f1 are idempotents of FIM(X) for each i E I. Then for 
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each ue(XuX-1)*, the set uT={we(XuX-l)*:wT>uT} isa closed 
deterministic context-free language and the graph of the minimal automaton of 
u I is a (labelled) tree whose vertices embed as a rational Schreier subset of 
FG(X). Furthermore the syntactic monoid of the language u t is isomorphic to 
SchatzRUT (M), the image of M under the Schutzenberger representation relative 
to RUT 

Proof. Let u E (X U X-l)* . We have already seen that BF(u) is the minimal 
automaton of u T. From Theorem 2.2 we know that BF(u) is a labelled tree 
that embeds in the natural way in F(X) so the set L = V(Br(u)) of vertices 
of BF(u) forms a Schreier subset of FG(X). By Theorem 3.2, L forms a 
rational subset of FG(X). Again by the results of Stephen [15] we know that 
u t= {w E (XU X-l)*: w labels a path from I to r(u) in BF(u)} and so 
u t is a deterministic context free language by Corollary 4.3. It is obvious 
from the definition that u t is a closed language in (X U X-1)*. From the 
results of Stephen [15] cited above we know that the transformation monoid 
of BF(u) is Schi:tzRT(M), so the final statement in the theorem follows since 
BF(u) is the minimal automaton of u X, and hence the syntatic monoid of 
u t is isomorphic to the transformation monoid of BF(u) (see, for example, 
Lallement [5, Proposition 1.8]). 

Remark 4.5. The condition that I be finite is not essential to obtain the main 
conclusions of the theorem; this condition is sufficient but not necessary to 
guarantee that V(Br(u)) is rational for each u E (X U X-1)*; it is clear that if 
the ei, f1(i E I) are chosen in any way that guarantees that each set V(BF(u)) 
is rational for u E (X U X-1)*, then the remaining conclusions of the theorem 
hold. 

Corollary 4.6. Let M = Inv(X: ei = f, i E I) = (X U X-l)*/T where I is 
finite and ei, fi are idempotents of FIM(X) for each i E I. Then 1T = {w E 
(X U X-1)*: wTl in M} is a (closed) deterministic context-free language. 
Proof. This is evident from Theorem 4.4 since wT > IT in M implies wT = 
IT. 

Note, in particular, that the well-known fact that the (restricted) Dyck lan- 
guages are context free is a special case of this result (see Berstel [2]). 

CONCLUDING REMARKS 

The results of Theorem 3.2 were announced by the authors at an international 
conference on semigroups in Szeged, Hungary in August 1987. The authors 
wish to thank J. B. Stephen and J.-C. Birget for many fruitful conversations 
concerning parts of this paper. In particular, further results along these lines 
will appear in the forthcoming paper of Birget and the authors [3]. 
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