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INTRODUCTION 

A transformation semigroup (ts) X = (Q,, S,) in this paper consists of a 
finite set of states Qx and a subsemigroup of transformations S, of PF(Q,), 
the monoid of all partial functions on Q, with composition as multiplication. 

For n > 1, ii’ denotes the transformation monoid (tm) with n states and 
with the n constant maps on those n states (along with the identity function) 
as transformations. 

The main theorem (Theorem 2.2) of this paper shows that if a ts X does 
not contain a copy of ii’ as a sub-ts, then the complexity of X is less than n. 

Recall that a ts X has complexity less than or equal to II (written Xc Q n) 
iff 

X<A,oG,oA,o..-oA,_,oG,oA,, (0.1) 

where the Ai are aperiodic ts’s, the Gi are groups, and i and 0 denote 
division and wreath product, respectively. The reader is refered to [ 1, 41 for 
a complete exposition of this subject. We will follow the notation of these 
references. 

Let X = (Q, S) be a ts. Then x’ denotes the transformation monoid (tm) 
obtained from X by adjoining to S (if necessary) the identity transformation 
on Q. 

For each q E Q, we denote by 4: Q + Q the constant function with value q 
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(i.e., q’@= q for all q’ E Q). By 2 we mean the ts obtained from X by 
adjoining to S all the constant maps on Q. 

Let n be a non-negative integer. By n we mean the ts with states 
(0, I,..., n - 1) and with no transformations. We then obtain the ts’s 

n’, ii, and ii’. 

Let x be a collection of ts’s. Then 1x1 is the smallest collection of ts’s 
containing x that is closed under division and wreath products, and (x) = 
(Xl YkX for all YE%}. 

Let X and Y be ts’s. Then we say X is Y-free if Y k X, i.e., X E (Y). 
Then, for example, (2’) denotes the collection of Z.-free ts’s. 
The importance of the tm 2’ is exhibited by the following theorems: 

[2’, (z’)] = TS (all ts’s). (0.2) 

[Z’] = all aperiodic (group-free) ts’s. (0.3) 

Also, it is shown in [4] that the groups in expression (0.1) can be replaced 
with Z.-free ts’s with no resulting change in the complexity function. Conse- 
quently, if X is Z.-free, then Xc < 2. The main theorem, then, generalizes this 
fact to all n > 1. 

Section I introduces the notions of inseparable ts’s and semilocal classes of 
ts’s, and shows their connection. Section III gives necessary and sufficient 
conditions for a ts to be inseparable. The results of Section III are needed in 
Section II, but for clarity of presentation we have chosen this arrangement. 

The main theorem is proved in Section II. The proof uses the following 
result, due to Margolis [2]. 

A partial function s: Q + Q is called a k-map if 

card qs-’ <k for all q E Q. 

A ts X is a k-ts if every transformation of X is a k-map. Define the function 
r: TS + N by 

Xr = inf{k 1 X is a k-ts}. 

Thus Xr < k iff at most k states can be mapped to one state under the action 
of any transformation of X. 

THEOREM 0.1. For any ts X, 

xc < xr. 

In other words, r is an upper bound to complexity. 
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Section IV presents a corresponding theorem for relational morphisms of 
semigroups. 

This paper assumes a working knowledge of the derived ts of a relational 
cover. For the convenience of the reader, an appendix has been provided 
expositing this theory. Complete details can be found in [ 11. 

I. SEMILOCAL CLASSES 

A family X of ts’s is called a class if it is closed under division, i.e., Y < X 
and X E X imply YE X. If x is a collection of ts’s, then [x] ‘and (x) are 
classes. 

If X and Y are classes. then we define the class 

xoY={z~z<xo Y,XEX,YEY). 

If 1’ E X, then Y c X o Y; if 1’ E Y, then X c X o Y. 
It is useful to extend the notion of complexity to classes. If X is a class of 

ts’s, then 

xc= sup(Xc]XE X}. 

Of course, if there is no bound on the complexity of members of X, then 
xc= co. 

If X and Y are classes, it readily follows that 

and 

xcYs-xc~Yc (1.1) 

(XoY)c<Xc+Yc. (1.2) 

Let X be a class of ts’s. The localization of X, denoted LX, is the largest 
class Y such that 

ZEY, Zatm-ZEX, 

i.e., 

YnTMcX 

Equivalently, 

LX = {X ] X, E X for all idempotents e in X), 

where X, is the tm (Qe, eSe) in X. LX is a class, and X c LX = LLX. A 
class X is local if LX = X. 
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It is shown in [ 1, Exercise IV, 7.21 that 

x 0 [Z] c LX (1.3) 

for any class X containing 1’. The question of what conditions on X force 
(1.3) to be an equality is unresolved; there are examples both ways. 

Consider the main series of prime ts’s (see Chapter IV of [ 11) 

0, 1, 2, E, C, F, 2. 

If X = (2), (C), (F) or (Z), then equality holds in (1.3). If, however, 
X = (E), the inequality (1.3) is strict. 1’ 6YG (0) and (l), so (1.3) does not 
apply. 

Another case where the inequality (1.3) is strict is when X is the class of 
all ts’s with complexity less than or equal to one (see [3]). 

We shall call a class X of ts’s semifocal if 

A local class is semilocal, but the reverse, of course, is not true. 
Let X be a semilocal class. Then 

XcLXcXo[2]. 

Since [Z]c = 0, it follows from (1.1) and (1.2) that 

LXC = xc. (1.4) 

We now proceed to identify a large number of semilocal classes. In what 
follows we assume familiarity with relational covers, traces, and derived ts’s. 
The reader is refered to the Appendix or to Chapter III of [ 1 ] for details. 

A ts X is inseparable if whenever X divides a derived ts @, then X divides 
one of the traces of @. 

In Section III, we will completely classify all inseparable ts’s. It will be 
shown that among the inseparable ts’s are all tm’s and all complete ts’s X 
such that S, # 0. The next theorem motivates the definition of inseparable 
ts’s. 

THEOREM 1.1. Let x be a collection of inseparable ts’s. If 1’ E (x), then 
(x) is semilocal. 

Proof Since 1’ E (x), [2] G (x) 0 [Z]. Let XE L(x). If S, = 0, then 
X z n, where n = card Q,. Therefore X z n E [Z] G (x) o [2]. 

Now suppose that S, # 0. Then the Trace-Delay theorem (Theorem A2 
in the Appendix) guarantees the existence of a relational cover 
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and a parametrization of (o such that 

0) YE @I, 
(ii) for each p E Q,, there is an idempotent e in X such that Tr, < X,. 

Since XE L(x), condition (ii) implies 

Tr, E (x) for each p E Q,,. 

Theorem Al yields 

X<@O Y, 

where @ is the derived ts of (o. Since YE [Z], it suffices to show that 

@ E w 
If 2 E x and Z < @, then Z must divide Tr, for some p E Qy , for Z is 

inseparable. But Tr, E (x), so this is impossible. Therefore @ E (x) and 
X E (x) 0 [Z]. Therefore 

and (x) is semilocal. 1 

It should be noted that if x is a collection of ts’s satisfying the hypothesis 
of Theorem 1.1 then 

L(x) = (x) o PI* 

II. THE CLASS (ii’) 

We now present the main theorem of this paper. Its proof depends upon 

PROPOSITION 2.1. For each n > 1, ii is inseparable. 

The proof of Proposition 2.1 is fairly easy, but rather than writing it out 
here we prefer to present a complete classification of inseparable ts’s in the 
next section from which Proposition 2.1 follows. The reader may prefer to 
develop his own proof of Proposition 2.1 and skip Section III. 

THEOREM 2.2. Let n > 1. Zf X E (ii’), then Xc < n. In other words 

(ii’)c < n. 

Proof. Since ii is inseparable, (1.4) and Theorem 1.1 imply 

L(ii)c = (ii)c. 
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It is well known that L(ii) = (ii’) (e.g., see Proposition IV, 1.1 of [ 1 I). Thus 
we obtain 

(ii’)c = (il)c. 

Therefore it suffices to prove (ii)c < n. This we will do in the following series 
of propositions. 

Let X = (Q, S) be a ts. A non-empty set R of Q is transitive if for any two 
distinct states q,, q2 E R we have q1 E q2S. The maximal transitive subsets 
of Q are called the transitivity (or .‘ip) classes of X. 

If Q itself is transitive, we say X is a transitive ts. 

PROPOSITION 2.3. Let X be a ts. Then there exists a transitive ts Y 
satisfiing 

(i) YcX, 

(ii) Yc = Xc. 

Proof. Let R be a transitivity class of X. Define the function 
19, : S + PF(R) by 

q(4) = P if qsER 

=0 otherwise. 

Since q and qs,s, being in R implies qs, E R, it easily follows that 19, is a 
homomorphism. There results the transitive ts X, = (R, S,), where 
S, = Se,. Clearly X, c X, and hence X,c <Xc. 

It thus suffices to show that X, c > Xc for some transitivity class R of X. 
Since the complexity of a ts (Q, S) is the same as that of S, we shall show 
that S,c > SC for some R. 

Let R , ,..., R, be the transitivity classes of X and define the product 
morphism 

n 
8: s+ n SRI’ 

i-1 

se = (se, ,...) se,> where Bi = ORi. 

Let T= SO. Then T is a subsemigroup of the direct product of the SRi. 
Consequently (applying basic properties of complexity), 

Tc < max{SRjc: i = l,..., n}. 

Thus for some R we have Tc < S, c. 
Now we will show that t9 is an aperiodic morphism. The Fundamental 

Lemma of Complexity then yields SC < Tc and subsequently, SC < S,c for 
some R. 



524 MARGOLIS ANDTILSON 

To show that 8 is aperiodic, we need to prove that 19 is injective on groups 
in S. Let G be a group in S with identity e and let g E G with g # e. Then 
there is a state q E Q such that qe # qg. But qe and qg are in the same tran- 
sitivity class, say R, because (qe)g = qg and (qg) g-’ = qe. Since (qe)e # 
(qe)g, it follows that et9, # g0, and, of necessity, e0 # gt9. 0 is therefore 
injective on groups in S, and the assertion is established. 1 

Recall that if X= (Q, S) is a ts, then 

Xt<k iff each transformation of X is a k-map. 

A transformation s E S is a k-map if 

card qs-’ <k for all q E Q. 

If ii <X, then ii c X, and if ii is contained in X, then clearly Xr > n. The 
converse does not hold, however, unless X is transitive. 

PROPOSITION 2.4. Let X be transitive. Then Xs > n iflii c X. 

Proof: Let X = (Q, S). If Xr > n, then there are n distinct states 
q1 ,..., qn E Q, an element s E S and state q E Q such that qis = q for each 
i = I,..., n. Since X is transitive, there exist elements ti E S, such that qti = qi, 
i= l,..., n. It follows that 

ii z ((qi: i = l,..., n), (sti: i = I,..., n}) 

sowehaveiicx. 1 

PROPOSITION 2.5. (ii)c < n. 

Proof: Let X E (ii). By Proposition 2.3, there is a transitive ts Y such 
that Y c X and Yc = Xc. Since Y c X, we have YE (ii). Since ii does not 
divide Y, Proposition 2.4 implies that Yr ( n. Now Theorem 0.1 gives us the 
desired result 

Xc = Yc < Yr < n. I 

This completes the proof of Theorem 2.2. 
For each n > 1, U, is the monoid { 1, U, ,..., u,} with uiuj = uj for all 1 < i, 

j < n. Except in the case n = 1, the semigroup of ii’ is U,,. S,. = 1, not U, . 
Since ii’ is a complete ts (all its transformations are functions), it follows 

that ii’ <X = (Q, S) implies S, < S. This leads to 

COROLLARY 2.6. Let S be a semigroup and let n > 2. If S is U,,-free, 
then SC < n. 
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It may be that a ts X = (Q, S) is ii--free while U, < S. For example let 
X = (5, PF(5)). There are six distinct s-equivalent idempotents er E PF(5) 
with /5e,l = 2, i = I,..., 6. It follows that there is a copy of U, in PF(5). But 
clearly X E (5’). Thus the condition ii’ < (Q, S) is more restrictive than the 
condition U, < S. 

Let Y, = Z, o (n, PF(n)), where Z, is the cyclic group of order 2. It is 
easy to check that Y,, is transitive and that Y,r = n. By Proposition 2.4, - - 
Y, E (n + 1) c (n + 1’). It is also known that Y,,c = n so that the bound on 
complexity in Theorem 2.2 is the best possible. That is, (ii’)c = n - 1. 

III. INSEPARABLE ts’s 

In this section we give necessary and sufficient conditions for a ts to be 
inseparable. We will show that all tm’s and all complete ts’s with transfor- 
mations are inseparable, among others. 

Recall that a ts X is inseparable if whenever X divides a derived ts, then X 
divides one of the traces of the derived ts. 

In this section we make use of the following notation; let X= (Q, S) and 
let s E S. Then set 

doms=Qs-‘=(qiqs#IZI}, 

rg s z Qs = (dom s)s, 

domS-QS’=U {doms/sES}, 

rg S E QS = (dom S)S. 

The proof of Theorem 2.2 depends upon results in this section. Therefore, 
of course, no result of Section II is assumed here. 

We first present a lemma which will prove useful in the sequel. 

LEMMA 3.1. Let X be an inseparable ts and suppose there exists a 
relational cover 

with the property that for each s E S,, there exists a unique p E Q, such that 
domsnpcp#0. Then there exists a p E Q, such that pq = Qx. 
Furthermore, with respect to any parametrization of p, 

XcTr,. 
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ProoJ Let X = (Q, S), Y = (P, 7) and let @ be the derived ts of cp with 
respect to any parametrization (G!, a, p). We will first establish the cover 

x-c, @, (3.1) 

where I,U is defined by (q, p)t,u = q. 
Cover s E S by (p,, w, pJ, where p, is the unique member of P such that 

domsnp,(o#B, and where wa=s andp,wcp,. Now if 

(43 P) W = qs $: 03 

then q E dom s. Since p1 is the only state of P satisfying dom s n p, rp # 0 
and since dom s c p, rp, it follows that p = pI. Now, on the other hand 

(4, Pl)(P, 9 09 PJW = (qw, p2)v = qs, 

so we have shown vs c (p,, w, p& and established (3.1). 
Since X is inseparable, (3.1) implies that 

X <,, Tr, 

for some p E P. Recall that 

Tr, = (P% S,), 

where S, is the subsemigroup of S generated by 

{waIoEf2+,pocp}. 

Since pa, c Q and v is a surjective partial function, it follows that p(p = Q 
and q is a permutation on Q. Furthermore, (Q, S,) c (Q, S), so by the tran- 
sitivity of division we obtain 

<Qy 9 -c,k <Q, S,> 

for any k > 1. Choosing k so that $ is the identity on Q yields 

XcTr,. I 

A state q in X= (Q, S) is called isolated if q @ dom S U rg S. Thus, in a 
diagram for X, no arrow will enter or leave an isolated state. 

PROPOSITION 3.2. Let X be an inseparable Is with card Q, > 2. Then X 
has no isolated states. 

Proof. Let X= (Q, S) be inseparable with card Q > 2, and suppose 
qO E Q is isolated. Let Y be the ts given by the diagram 

oG1 0. 
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Then clearly 

where lu,=Q- (q,,} and Op=q,, and where each transformation of X is 
covered by u. 

This relational cover satisfies the hypothesis of Lemma 3.1, so either Oq or 
ly, must equal Q. But since card Q > 2, this is impossible. Therefore X is not 
inseparable. I 

We now introduce a series of definition needed for the next proposition. 
Let X = (Q, S) be a ts. Define a relation - on dom S by 

41-92 iff either q, , q2 E dom s, for some s E S 

or q1 3 q2 E rg s, for some s E S. 

Let E be the smallest equivalence relation on dom S that contains -. We 
will call E the separation relation of X. 

Let P= {p,,...,pn ) be the equivalence classes of =. It follows directly 
from the definition of - that for each s E S there exist p, p’ E P such that 

domscp, rg s n dom S c p’. 

Let X = (Q, S) be a ts and let r be a subset of S. We say s E S is weakly 
generated by r if s c t, .*. t, for some t i ,..., tn E K If every element of S is 
weakly generated by r, we say X is weakly generated by r. 

Let S, be the subsemigroup of S generated by K Then saying r weakly 
generates X is equivalent to saying 

A transformation s E S is called terminal if rg s n dom S = 0, i.e., 
QsS = 0. Otherwise, s is called non-terminal. 

PROPOSITION 3.3.. Let X be an inseparable ts with card Q, > 2. Then 

(i) The separation relation of X is trivial, and 

(ii) X is weakly generated by its non-terminal elements. 

Proof. Let X = (Q, S) and let P = (p,,..., p,} be the equivalence classes 
of the separation relation of X. We will establish 

XG,n+ 1, 
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where o: lo,..., n} + Q is defined by 

Oy,=Q-domS, 

irp=piU(Q-domS), i> 1. 

Since lJ {pi 1 i = l,..., n} = dom S, cp is surjective. 
Define the parametrization (n, a, p) by s2 = S, sa = s, and 

sp=j if s is non-terminal and rg s n dom S c pj 

=ij if s is terminal. 

To establish (3.2), we must show ~0s c ($3)~ for all s E S. 
Let q E i(p, s E S with qs 2: 0. If s is terminal, then qs E Q - dom S. But 

i(sj3)rp = i&o = Oyl = Q-dom S. 

Therefore rps c ($)(D when s is terminal. 
If s is non-terminal, then qs E pj U (Q-dom S) where rg s n dom S cpi. 

But in this case 

i(s/?)cp = &Tp =.@ = pj U (Q-dom S). 

Therefore (3.2) is established. 
Now (3.2) satisfies the hypothesis of Lemma 3.1, so there exists an 

i E (O,..., n) such that 

irp = Q 

and 

Xc Tri. 

If i = 0, then dom S = 0, and all the states of X are isolated. Since X is 
inseparable and card Q > 2, Proposition 3.2 rules out i = 0. 

Therefore Q = pi U (Q-dom S) for some i. Necessarily, then, i = 1 and 
p, = dom S. In other words, the separation relation of X is trivial. 

Let Tr, = (Q, S,). S, is the subsemigroup generated by the set 

{SESI l(SP)C 1). 

But this is exactly the set of non-terminal elements of S. Since 

Xc (Q, S,), 

we can conclude that X is weakly generated by its non-terminal elements. m 
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THEOREM 3.4. X is an inseparable ts @ either X < 1’ or 

(i) X has no isolated states, 

(ii) the separation relation of X is trivial, and 

(iii) X is weakly generated by its non-terminal elements. 

Proof. Propositions 3.2 and 3.3 have shown that if X is inseparable, then 
either X < 1’ or X satisfies conditions (i)-(iii). Conversely, it is an easy 
exercise to show that all divisors of 1’ are inseparable. Thus it remains to 
show that a ts with two or more states that satisfies conditions (i)-(iii) is 
inseparable. 

Let X = (Q, S) satisfy (i)-(iii) with card Q > 2, and let 

x-c* @, 

where @ is the derived ts of 

with respect to some parametrization (a, a, p). 
Recall that for p E P, 

and Tr, =: Qp. In the following discussion we will identify p(o with 

((rvP)IrEPa)l. 
We first prove 

There exists p E P such that (dom S) v-’ c p(p. (3.3) 

Let s E S be covered by (p, w, p’) in @, and let q E dom s. If (r, p”)yl= q, 
then 

(r, p”)(p, w, P’)v = qs Z 0. 

Therefore p” must be p. This shows: 

(a) For each q E dom S, there exists pq E P such that 

qw- I CPq(P. 

(b) If q,, q2 E dom s for some s E S, then ps, =pq2. Now if q,, 
q2 E rg s n dom S for some s E S and s is covered by (p, w, p’), then there 
exists ri, i = 1, 2 such that 

4i = (ri3 P)(P, WV P’)w 

= (riW P’)V. 
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Therefore: 

(c) If ql, q2 E rg s f7 dom S for some s E S, then p4, = pq2. 

Statements (b) and (c) imply 

41-q2*Pq,=Pq2 

which in turn implies 

91-q2*Pq,=P 42' 

Since the separation relation of X is assumed to be trivial, this implies (3.3). 
Let p. E P be the state specified by (3.3). We next prove 

Every element of S is covered by an element of the form 

(PO, m PO) in @. (3.4) 

Since it is assumed that X is weakly generated by its non-terminal 
elements, it suffices to prove (3.4) for non-terminal elements only. Let s E S 
be non-terminal and suppose s is covered by (p, w, p’) in @. 

Let q E dom s. If (I, p&y = q, then 

G-~PJ(P~ WP')Y = qs Z 0 

and p,, = p. Since s is non-terminal, there is a q E rg s n dom S, and there 
exists an r E R such that 

4 = (r, Po>(Po9 UT P’)v 

= (ru, p’)v. 

Since q E dom S, p’ must be pa. This proves (3.4). 
Statement (3.4) implies that 

To prove the theorem, it suffices to show that v when restricted to prp is still 
surjective. For then 

X< Trp,,. 

Since X has no isolated states, 

Q = dom S U (dom S)S 

Statement (3.3) shows that dom S c (p,,q)y. Let q E (dom S)S. Then 
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4 = q’s for some q E dom S and s E S. Let (r, p,,)ty = q’ and let (pO, 0, pO) 
cover s. Then 

4 = q’s = (c p,)(Po9 ah PJw 

= (w k&. 

Therefore (dom S)S c (pOv)w, and w  restricted to pOv is surjective. fl 

COROLLARY 3.5. Let X = (Q, S) be a ts with dom S = Q # 0. Then X is 
inseparable $f the separation relation of X is trivial. 

Proof. Let X be inseparable. Then either the separation relation is trivial 
or X < 1’. But since dom S = Q # 0, X must be 1’ and again the separation 
relation is trivial. 

Conversely, assume the separation relation on X is trivial. Since 
dom S = Q # 0, X has no isolated states, every non-empty transformation of 
X is non-terminal, and X has a non-empty transformation, say s. But the 
empty transformation is contained in s, so X is weakly generated by its non- 
terminal elements. Thus by Theorem 3.4, X is inseparable. m 

COROLLARY 3.6. Let X be a ts with at least one function among its 
transformations. Then X is inseparable. 

Proof: Let X = (Q, S) and let s E S with dom s = Q. Then 
dom S = Q # 0 and the separation relation is trivial. 1 

COROLLARY 3.1. All transformation monoids and all complete ts’s with 
transformations are inseparable. 

Since ii is a complete ts with transformations, Corollary 3.7 implies 
Proposition 2.1. 

EXAMPLES 

(a) Consider the ts given by the diagram 

o and r are non-terminal, so this ts is weakly generated by its non-terminal 
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elements. However, the separation realtion is not trivial, for 1 & 3 and 2 & 4. 
Therefore this ts is not inseparable. 

(b) Consider the ts 

The separation relation is trivial, but r is terminal and is not contained in 
any power of c. Therefore this ts is not weakly generated by its non-terminal 
elements and hence is not inseparable. 

(c) Of the main series of primes 

0, 1, 2, E, C, F, 2 

all are inseparable except for 2, 

and 
A 

F: 1 0 
7 

2 has isolated states, E is not weakly generated by its non-terminal elements 
(since it has none), and the separation relation of F is not trivial. 
Nevertheless, (2) and (F) are semilocal. This shows that X being inseparable 
is not necessary in order for (X) to be semilocal. 

IV. U,,-FREE MORPHISMS 

By a morphism of semigroups in this section, we mean a relation 

satisfying 

(i) dom rp = S, 

6) (w)(s2rp)=v2rp for all si , s2 E S. 

If, further, (p is a function, then rp is the usual homomorphism of semigroups. 
In this case we say (p is a functional morphism. 
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Let V be a class of semigroups, i.e., a collection of semigroups closed 
under division. We say a morphism 

fp:S+T 

is a V-morphism if whenever T’ is a subsemigroup of T such that T’ E V, 
then T’rp- ’ E V. Note that the composition of V-morphisms is again a V- 
morphism. 

We will be concerned with V-morphisms in the following cases. 

(i) V is all aperiodic semigroups, denoted A, 

(ii) V is all U,-free semigroups, denoted (U,),. 

There is a complexity theory for semigroup morphisms that is intimately 
related to the complexity of semigroups. Let 9: S + T be a morphism; the 
complexity of rp is denoted PC and satisfies 

v < n iff there exists a factorization 

(4=%P,al “‘%,P” a,, where the ai are aperiodic (4.1) 

morphisms and the ai are U,-free morphisms. 

SC < qx + Tc. (4.2) 

(Fundamental Lemma of Complexity) (4.3) 

(a) If rp is aperiodic, then SC < Tc. 

(b) If rp is iJz-free, then SC < 1 + Tc. 

The theorem of this section generalizes (4.3b) 

THEOREM 4.1. Let cp: S -+ T be a U,,-free morphism, n > 2. Then 

qx < n. 

From (4.2) we obtain 

COROLLARY 4.2. Let qx S + T be a U,,-free morphism, n > 2. Then 

SC < n + Tc. 

To prove Theorem 4.1 we need the notion of the derived semigroup of a 
morphism, its traces, and the Rhodes expansion 

of T. The reader is directed to [4] for a complete treament of this subject. 
Familiarity with [4] will be assumed from this point forth. 
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The key relation between complexity of semigroups and complexity of 
morphisms is 

Let q: S -+ T be a morphism. Then (4.4) 

rpc = !I+, 

where Y is the derived semigroup of 

(see [4, Exercise 10.31). 
Thus it sufftces, assuming u, is U,-free, to show that Yc < n. Since 

vT: p+ T is a functional morphism, 9; i is a U,-free morphism. Therefore 
the composition w: S + T is U,-free. 

Let !Pt = {(t, s, t) E Y) be a trace of Y. Then 

where p( = {t’ E F 1 tt’ = t}, the stabilizers of t E i? Recall that the stabilizers 
of p are UZ-free, hence U,-free for all n > 2. Since w is U,-free, we can 
conclude that 

u: E (UJS for each t E f (4.5) 

To conclude the proof we need to show that Y is U,-free, for then 
Corollary 2.6 yields 

Yc < n. 

To this end we present 

PROPOSITION 4.3. Let @ be the derived semigroup of 9: S + T. If W is a 
semigroup without a zero and if W < @, then W < Qt for some t E T. 

Proof: Since W < @, there exists a subsemigroup W’ of @ and surjective 
functional morphisms 8: W’ + W. Because zeros map onto zeros under 
homomorphisms, we can conclude that the zero of 4p does not belong to W’. 
Now let 

wi = (li, si, tj) E W’, i= 1, 2. 

Since wi # 0, it must be that ti = tj, i = 1, 2. Since w, w2 # 0, it follows that 
t, = f2. In other words, W’ < QI for some f E T. Therefore 

w-c Qt for some t E T. 1 
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For n > 2, U, has no zero. Therefore it follows from (4.5) and 
Proposition 4.3 that Y is U,-free and 

APPENDIX: RELATIONAL COVERS,TRACES AND THE DERIVED ts 

Let X = (Q, S) 4 ~ (P, T> = Y be a relational cover, This means 

(i) 9: P-+ Q is a surjective relation, and 

(ii) For each s E S, there exists t tZ T such that peps cptq~ for all 
p E P. We say t couers s in this situation. 

If further, v, is a partial function, then X< Y. 
A parametrization for rp consists of a finite alphabet fi and a pair of 

morphisms 

a:R++S, 8:0+-T 

such that 

G) a is surjective, 

(ii) wa is covered by o/3 for all w E Qn+. 

Each relational cover has at least one parametrization; set 
a = {(s, t) E S x T: t covers s } and define (s, t)a = s and (s, t)/l = t. 

Given a parametrization (J2, a, /I) of o, it is convenient to write 
q(wa) = qw; p(@) = po for all q E Q p E P and o E R+. 

The derived ts @ of v, relative to a given parametrization (Q, a, p) has its 
states the graph of q, that is, 

Q, = {(a P) I P E P, q E PVL 

To define S, we consider triples 

(PY Q4 P’) 

with p, p’EP,c0Ef2~ and pwcp’. Each triple is regarded as a partial 
function on Q, by setting 

(93 P”)(P, WY P’l = (40, P’) if p” = p 

=0 otherwise. 

S, is then the semigroup generated by all such partial functions, and 
@ = @cl, SC.>. 
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We note the following properties of S,. Let O denote the empty transfor- 
mation. 

(P, w, p’>(r9 u, J) = (I-4 wu, r’) if p’ = r 

=O otherwise. 
(Al) 

(p, o, p’) = ~9 if pw = 0. Therefore, every non-empty transformation 

of S, has the form (p, w,pw). 642) 

The reason for the derived ts is the following: 

THEOREM Al. Let X as Y be a relational cover equipped with a 
parametrization (l2, a, ,f?). If Qy # 0, then 

where @ is the derived ts of 9 relative to the given parametrization. 

The important portion of the derived ts @ is a set of sub-ts’s that it shares 
with X. For each p E P consider the subsemigroup 

n; = {cuEn+:poCp} 

of Of. Since pqw cpwcp cpp, each element of ~2; defines a partial function 
on ~IJL The ts represented by 

is called the trace of v, at p and is denoted Tr,. 
Since pv, c Q and the action of w E R+ on pp is the action of wa E S 

restricted to p(p, we see that. 

Tr, c X. 

Also, Tr, is easily seen to be isomorphic to the sub-ts 

@,=({(q~P):q~Prpl7 {(P,o-%P)l) 

of @. Thus 

Tr, c @. 

Since Tr p z @,, we interchange the expressions “trace of I$’ and “trace of 
@” at will. 
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In general, we can only infer that Tr, cX, but for a special relational 
cover, called the delay cover of X, we can make a stronger statement. 

Let e be an idempotent of X. Then by X, we mean the sub-ts (Qe, eSe) of 
X. X, is a transformation monoid (tm). 

THEOREM A2 (Trace-Delay Theorem). Let X = (Q, S) be a ts with 
S # 0. Then there exists a relational cover X xl0 Y and a parametrization 
of q satisfying 

G) YE [?I, 

(ii) For each p E P, there exists an idempotent e E S such that 
Tr,<X,. 

For proofs and further details of the derived ts, please refer to Chapter III 
of 111. 
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