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Abstract

We show that the pseudovariety of semigroups which are locally
block groups is precisely that generated by power semigroups of semi-
groups which are locally groups; that is P(LG) = L(PG) (using that
PG = BG). We also will show that this pseudvariety corresponds to
the Boolean polynomial closure of the LG-languages which is hence
polynomial time decidable.

More generally, it is shown that if H is a pseudovariety of groups
closed under semidirect product with the pseudovariety of p-groups
for some prime p, then the pseudovariety of semigroups associated to
the Boolean polynomial closure of the LH-languages is P(LH). The
polynomial closure of the LH-languages is similarly characterized.

1 Introduction

A common approach to studying rational languages is to attempt to de-
compose them into simpler parts. Concatenation hierarchies allow this to
be done in a natural way which, in addition, has applications to logic and
circuit theory [8]. A concatenation hierarchy is built up from a base vari-
ety of languages V by taking, alternately, the polynomial closure and the
boolean polynomial closure of the previous half level of the hierarchy. The
most famous example in the literature of such a hierarchy is the dot-depth
hierarchy, introduced by Brzozowski [2], which starts of with the trivial +-
variety, and whose union is the +-variety of star-free (aperiodic) languages.
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Pin and Margolis [6] also studied the group hierarchy which takes as its base
the x-variety of all group languages.

In [13, 14], the author studied the levels one-half and one of the concate-
nation hierarchy associated to a pseudovariety of groups H. In particular,
it was shown that if H is a pseudovariety of groups closed under semidirect
product with the pseudovariety G, of p-groups for some prime p, then

PH = BPol(H)

where BPol(H) is the pseudovariety corresponding to the Boolean polyno-
mial closure of the H-languages [8]. A similar equality was shown to hold
between the pseudovariety corresponding to the polynomial closure of the
H-languages and an ordered analog of PH. All the aforementioned pseudo-
varieties were considered as pseudovarieties of monoids.

In this paper, we prove a semigroup analog of these results; here H is
replaced by LH, the pseudovariety of semigroups whose submonoids are in
H; we are then able to show that BPol(LH) = P(LH) and its ordered
analog (provided, of course, H = G, « H for some prime p). Special cases
include: G, the pseudovariety of finite groups; Gp; G, the pseudovariety
of finite solvable groups. For the case of G, we can characterize P(LG) as
L(PG), semigroups which are locally block groups; hence BPol(LG) has a
polynomial time membership algorithm.

2 Preliminaries

As this paper extends the results of [14] to the semigroup context, it seems
best to refer the reader there for basic notation and definitions, only monoids
will be replaced throughout by semigroups; the reader is also referred to the
general references [1, 3, 7, 8].

A semigroup S is a set with an associative multiplication. An ordered
semigroup (S, <) is a semigroup S with a partial order <, compatible with
the multiplication; that is to say, m < n implies rm < rn and mr < nr.
Any semigroup S can be viewed as an ordered semigroup with the equality
relation as the ordering, and free semigroups will always be regarded this
way.

An order ideal of an ordered semigroup (5, <) is a subset I such that
y € I and z < y implies € I. We note that the collection of order ideals
is closed under union and intersection. If X C S and s € S, then s~'X and
X s~ will denote, as usual, the, respectively, left and right quotients of X
by s. If I is an order ideal, then so is any of its left or right quotients.



Morphisms of ordered semigroups are defined in the natural way. One
can also define recognizability of a subset of an ordered semigroup; the only
difference is that all subsets in the usual definition are now required to be
order ideals.

A pseudovariety of (ordered) semigroups is a class of finite (ordered)
semigroups closed under finite products (with the product order), sub-
monoids (with the induced order), and images under (order-preserving)
morphisms. Pseudovarieties of (ordered) monoids are defined similarly. An
important example of such is J* = [z < 1] (finite ordered monoids with 1
as the greatest element). We use N for the pseudovariety of nilpotent semi-
groups (finite semigroups S such that S™ = 0 for some n > 0). We often
identify a pseudovariety of semigroups with the pseudovariety of ordered
semigroups which it generates.

If S is a semigroup, the power set P(S) is a semigroup under setwise
multiplication. We use P’(S) for the subsemigroup consisting of the non-
empty subsets of S. We note that the order D on P(S) is compatible with
the multiplication. If Uy = {0, 1} under multiplication, one can show that
P(S) is a quotient of a subsemigroup of Uy x P'(S).

If V is a pseudovariety of semigroups, we use PV to denote the pseudo-
variety generated by semigroups of the form P(S) with S € V, and P'V*
to denote the pseudovarieties generated by ordered semigroups of the form
(P'(S),D) with S € V. Suppose that V contains a non-trivial monoid
M; then {{1}, M} C P'(M) is isomorphic to U;. It now follows from the
previous paragraph that if V contains a non-trivial monoid, then PV is
generated, as a pseudovariety of semigroups, by P’ v

If V is a pseudovariety of (ordered) monoids, LV denotes the pseudovari-
ety of (ordered) semigroups, all of whose submonoids are in V. For instance,
L) = [z¥yz¥ < 2¥] where z¥ is interpreted as the idempotent power of .

If V is a pseudovariety of (ordered) semigroups, then EV is the pseudo-
variety of (ordered) semigroups whose idempotents generate a subsemigroup
in'V.

A relational morphism of (ordered) semigroups p : S —-e—+ T is a func-
tion p : S — P'(T) such that syusop C (s182)u for all s1,s0 € S. Note
that if S is an (ordered) semigroup and e € T is an idempotent, then
ep~ ! is a subsemigroup of S (where ep ! is the inverse relation). If V,
W are pseudovarieties of (ordered) semigroups, then the Mal'cev product
V @ W consists of all (ordered) semigroups S with a relational morphism
¢ : S -+ W € W such that ep~! € V for each idempotent e of W. One
can show that V @ W is generated by (ordered) semigroups S with a ho-
momorphism ¢ : § — W € W such that ep~! € V for each idempotent e



of W.

If V1 and V5 are pseudovarieties of (ordered) semigroups, then Vi x Vo
denotes the pseudovariety generated by semidirect products of (ordered)
semigroups in Vy with those in V3. The semidirect product is an associative
operations on pseudovarieties; see [1, 3, 14, 11] for more details. If V; and
Vs are pseudovarieties of groups, Vi « Vg can be shown to consist of all
groups which are an extension of a group in V; by a group in Vs.

If A is an alphabet, we let Rec(A™) denote the recognizable subsets of
A*. A class of recognizable languages is a correspondence C which associates
to each alphabet A, a set C(A') C Rec(AT). If V is a pseudovariety of
ordered semigroups, then one can define a class of recognizable languages,
which we also denote by V, by letting V(A™) be the set of all languages
of AT recognized by a member of V. Then the following result, proved by
Eilenberg [3] for semigroups and by Pin [7] in the version below, holds.

Proposition 2.1. Let V and W be pseudovarieties of ordered semigroups.
Then V. C W if and only if, for each finite alphabet A, V(AT) C W(A™T).

This, of course, leaves the question as to which classes arise in this fash-
ion. The answer is again due to Eilenberg [3] for semigroups and Pin [7] for
ordered semigroups. A positive variety of languages is a class of recognizable
languages V such that:

1. For every alphabet A, V(A™) is closed under finite unions and inter-
sections;

2. If ¢ : AT — B7% is a morphism, then L € V(B*) implies Lo~ ! €
V(A®);

3. fLeV(AT) and a € A, then a 'L, La™! € V(AT).
A wvariety of languages is a positive variety closed under complementation.

Proposition 2.2. IfV is a pseudovariety of (ordered) semigroups, the class
V is a (positive) variety.

If V is a (positive) variety of languages, then we associate to it the
pseudovariety, also denoted by V, generated by syntactic (ordered) semi-
groups [7, 8, 14] of languages L € V(A™) for some finite alphabet A. The
reason for this abuse of notation is that the class of rational languages as-
sociated to the pseudovariety V obtained in this manner is the original
(positive) variety.



3 Polynomials

If V is a pseudovariety of semigroups and A an alphabet, then a monomial
over V in variables A is an expression

upLiuy -+ Up_1Lpuy,

with the u; € A*, L; € V(A"), and ug non-empty if n = 0. A polynomial
over V in variables A is a finite union of monomials (over V in variables A).
The class

Pol(V)(A™) = {polynomials over V in variables A}

is then a positive variety of languages [10]. We let BPol(V)(A™) be the
closure of Pol(V)(A™) under finite boolean operations. Then one can verify
that BPol(V) is a variety of languages. One defines a hierarchy of (positive)
varieties of languages as follows:

e Vo =V;
o Vn+% = Pol(Vy,);
e V.1 = BPol(Vy,).

The dot depth hierarchy [2] comes from letting V be the trivial pseudova-
riety.
We recall the following important theorem of Pin and Weil [10].

Theorem 3.1. Let V be a pseudovariety of ordered semigroups. Then
Pol(V)=LJT@V.

We end this section with a technical lemma.

Lemma 3.2. Let V be a pseudovariety of semigroups containing N. Then
every polynomial in V over A can be written as a finite union of monomials
of the form Loay - - ay Ly, with the a; € A and the L; € V(A™).

Proof. The hypotheses are equivalent to assuming V contains all finite lan-
guages. It suffices to show that any monomial M = ugKiuq - - Up_1 Kpuy
with the u; € A* and K; € V(A™) can be so expressed. We induct on n
which we refer to as the degree of M. If n = 0, then by taking Ly = {up}
we are done; now assume n > 0. Observe that if w € Ky, then

M = (uowul)Kg s U1 Kpug U U,O(Kl \ {’UJ})’U,lKQ U1 Ky, (1)



Since V(A™) contains all finite languages, it follows that K\ {w} € V(A4™).
Since the first term in (1) has smaller degree, the above argument shows
that we can remove a finite number of words from K. In particular, we may
assume that every word in K has length at least 5. Note that (u ' Kjv 1) €
V(AT) for all u,v € AT. Since every word in K is assumed to have length
at least 5, it follows that

K, = U uw(u ' Ko™

u,vEA?

and so
M = U (uou) (u™ " K1v ") (vur) - - tn—1 K.
u,vEA2

Thus we may assume that ug and u; have length at least 2. Suppose ug = wa
and u; = a’w' with a,a’ € A, w,w' € AT. Then let Ly = {w}, a1 = a,
L1 = Ky, ap = da’. Now M' = w'Ksus---u,_1Kyu, has smaller degree
and hence can be expressed as a finite union of monomials of the desired
form. But then M = Lga;LiasM' can be written as a finite union of the
monomials of the desired form. O

4 Counters

Suppose that we have ai,...,a, € A, and Lg,... ,L, C A". Then, for
0 <r < m, we define
(L()al Tt anLn)r,m

to consist of those words w € A% with exactly r factorizations of the
form wpaq - - aywy, with w; € L; all ¢, modulo m. Such a language is
called a product with m-counter. A variety of languages is said to be
closed under products with m-counter if Ly, ... ,L, € V(AT) implies that
(Loay - -+ anLp)rm € V(AT). The following result is due to Weil [17].

Theorem 4.1. Let V be a pseudovariety of semigroups. Then V is closed
under products with p-counters, p a prime, if and only if V=LG, @ V.

5 The Power Operator and Polynomial Closure

We will need the following version [14, Proposition 5.1] of a well-known
proposition (see, for instance, [8] which also references the original sources);
the proof is included for completeness. If B and A are alphabets, a homo-
morphism ¢ : BY — AT is called a literal morphism if By C A.



Proposition 5.1. Let L € Rec(B™) be recognized by a semigroup S, with
L =Pyt and ¢ : BT — A% be literal morphism. Then (P(S), D) recog-
nizes L. If, in addition, By = A, then (P'(S),D) recognizes L.

Proof. Let ¢ : Bt — S be a morphism and P C S with L = Py~ . We
define a morphism 7 : AT — (P(S),2) by ar = {b|b € B,bp = a} for
a € A, and we let

Q={XePS)|XNP#0}.

Note that if Bo = A, then at # () for all a € A, whence A*T C P'(S). Also
0 ¢ Q. Observe that @ is an order ideal since if Y O X and X NP # (), then
Y NP #(. Suppose wr € Q and w = ag - - - a,, with ag, ... ,a, € A. Then,
by definition of 7 and @, there exist b, ... ,b, € B such that bjp = a; for
all j and bytp - - - bp1p € P. But then by---b, € L and (by---bp)p = ag -+ ap,

so w € L.
Conversely, suppose w € Lp. Let w = vp with v € L. By definition of
7, v € wr. But vy) € P, so wr € Q whence w € Q77'. O

The proof idea for the next theorem is borrowed from [5].

Theorem 5.2. Let 'V be a pseudovariety of semigroups such that, for some
prime p, LG, @V =V. Then

LIT@V C P'V" whence
BPol(V) CPV.

Proof. The second inequality follows immediately from the first. To prove
the first, since
NCLG,CV,

it suffices, by Lemma, 3.2, to consider a monomial over V in variables A of
the form

L= L0a1 T anLn
with Lg,... ,L, € V(AY), a1,... ,a, € A. Let B = AU A with A a disjoint
copy of A. We define a literal morphism ¢ : B* — A™ such that Bo = A by
ap = a and @y = a, and show that L is the image of an element of V(B™).
For each j, let K; = Ljp~'. Then K; € V(BT) for each j. Let

K = (KOG_I v %Kn)l,p-

By Theorem 4.1, K € V(B™'). We show K¢ = L. Clearly Ko C L. For
the converse, suppose u € L. Then u = wpay - - - a,w, with each w; € L;.
Consider v = woay - - - Wp—1Gpwy. Then, since the w; are in AT, v has exactly
one factorization in Kyay - - - @, K, namely the one above; hence v € K. But
ve = u, so Ko = L. Thus, by the above proposition, L € P'V(4t). O



6 Semigroups which are Locally Groups

In this section, we characterize the operations we have been considering for
pseudovarieties of semigroups which are locally groups.

Proposition 6.1. Let V1, Vy be pseudovarieties of (ordered) semigroups.
Then LV, @ LVy C L(LV, @ V3). In particular, if V1 and Vy are pseu-
dovarieties of groups, LV @ LVy C L(V7 x V).

Proof. Tt suffices to show that given a semigroup homomorphism ¢ : S — T
such that T € LV, and, for all idempotents e € T, ep~! € LV, one has
that S € L(LV; @ V3). Let M C S be a submonoid; then My € Vy,
being a monoid. If f € My is an idempotent, then fp~' € LV whence
fe 'NM € LV;y. Thus M € L(LV; @ V3).

Suppose now that Vi, Vy are pseudovarieties of groups. Then if M C S
is a monoid with identity e, we see that epp~! € LV. Since epp~! contains
all the idempotents of M (M being a group), it follows that M is a group
which is an extension of a group in V; by a group in V, whence M € V1%V,
as desired. O

We then obtain from Theorem 5.2:

Corollary 6.2. Let H be a pseudovariety of groups such that G, * H = H
for some prime p. Then

LJt@LHC P'(LH)" and
BPol(LH) C P(LH).

Proof. Proposition 6.1 shows that LG, (W LH = LH whence Theorem 5.2
applies to prove the result. ]

To prove the converse, we need the following characterization of finite
completely simple semigroups.

Lemma 6.3. A finite semigroup S is completely simple if and only if S €
LG and S? = S.

Proof. If S is completely simple, then clearly S? = S; also it is well-known
that any subsemigroup of a finite completely simple semigroup is completely
simple, and that a completely simple monoid is a group.

The converse follows immediately from the Delay Theorem [15, 16], but
we give an elementary proof here. Suppose that S € LG and S? = S. We
begin by showing that S is completely regular. Consider the natural map



¢ : ST — S which evaluates each letter as itself; let, for s € S, Ly = {w €
S*lwe = s}; Lg is rational, being recognized by S. Observe that S? = S
implies S™ = § for all n > 0 whence we can conclude that L is infinite.
The Pumping Lemma then applies to show that there exist s1,s9,53 € S
such that s = sysys3 for all n > 0. Thus, by choosing n carefully, we see
that s = s;es3 with e an idempotent. Then s*+! = s (es3s e)¥s3 for k > 0.
Since S € LG, it follows that for some m > 0, (esgsie)™ = e whence

smtl = s1(esgsie)™sg = sjesg = s.
Thus S is completely regular (and so every element is H-equivalent to an
idempotent).

Thus, to finish our proof, it suffices to show that all idempotents of S
are J-equivalent. Let e, f € S be idempotents. Then (efe)” = e for some
n > 0 (since s € LG) so e € SfS. Dually, f € SeS so e J f. The result
follows. O

We now prove a theorem which implies the converse of Corollary 6.2.

Theorem 6.4. Let V C LG. Then P'VT C LIt m V. Furthermore, if V
contains a non-trivial monoid, then PV C BPol(V).

Proof. The second statement follows from the first. It suffices to show that
if S € V, then (P'(S),2) € LIt @ V. The identity map 1 : P'(S) — P'(95)
gives rise to a relational morphism ¢ : P'(S) o= S;in fact, X¢pY¢p = XY =
(XY)1. Let e € S be an idempotent. Then

ep P ={X € P'(9)]e € X}.

An idempotent of ely~! is then a subsemigroup £ C S with e € E and
E? = E. Lemma 6.3 shows that F is completely simple, so FeE = E.
It follows that if Y € ey~ !, then EYE D EeE = E whence the local
monoid with identity £ has FE as its greatest element; we conclude that
ep ! e LIT. O

Since LH contains a non-trivial monoid, we immediately obtain the fol-
lowing theorem which is one of our main results.

Theorem 6.5. Let H be a pseudovariety of groups such that G, + H = H
for some prime p. Then Pol(H) = P'(LH)" and BPol(LH) = P(LH). In
particular, these results hold for H any of G, Gy, (p prime), or G-



7 Locally Block Groups

A block group is a semigroup whose regular elements have unique inverses
(or, equivalently, semigroups which do not have a right or left zero sub-
semigroup). The pseudovariety of such is denote BG. We use D for the
pseudovariety of semigroups whose idempotents are right zeros.

We now recall some important facts whose consequences we shall use
without comment:

1. PG=J+G =BG =EJ [4];

2. L(EJ) = EJ « D [12, Proposition 10.2], [16, The Delay Theorem];
3. LG = G+ D [15, 16];

4. If H is a pseudovariety of groups, then BPol(H) = J « H [9, 14];

5. For any pseudovariety of semigroups V, J %V is generated by semidi-
rect products M * N with M € J* and N € V [14];

6. If M is a monoid in J*, then M € LJ™.
Proposition 7.1. Let H be a pseudovariety of groups. Then

P'(LH)" C Pol(LH) C L(Pol(H));
P(LH) C BPol(LH) C L(BPol(H)).

Proof. The first containment of the first statement follows from Theorem 6.4.
The second containment follows from Proposition 6.1 which shows that

Pol(LH) = LIt @LH C L(LJJr @ H) = L(Pol(H)).
The second statement follows from the first. O

The following lemma will be of use.

Lemma 7.2. Let ¢ : S «T — T be a semidirect product projection from a
semidirect product of (ordered) semigroups, and let e € T' be an idempotent.
Then any submonoid of ep™" (order) embeds in S.

Proof. We shall use additive notation for the binary operation in S though
we do not assume commutativity. Define a map 1 : ep~! — S by (s,e) > es.
Then

((s1,€)(52,€))9 = (51 + es2,e)9) = es1 + esy = (s1,€)1) + (52,€)9

10



so 1 is a homomorphism. By the definition of an action [11], 9 preserves
order. We show that 1 is an (order) embedding when restricted to sub-
monoids of ep~!. Let M C ep~! be a submonoid with identity (f,e). Then,
for (s,e) € M,

(s,e) = (fe)(s,e) = (f +es,e) = (f + (s,e)¢,€)
whence 1) is an (order) embedding. O

Using our collection of facts and the above lemma, one deduces immedi-
ately

Corollary 7.3. Let V be a pseudovariety of semigroups. Then

J*«VCLIT@V = Pol(V);
J+«V C BPol(V).

We now show that for the case of G, all the pseudovarieties in question
are the same.

Theorem 7.4. P(LG) = L(PG) = L(BG)

Proof. Proposition 7.1 shows that P(LG) C L(PG) (here we are using that
PG =J %« G = BPol(G)). For the other direction, using that PG = EJ,

we see that
L(IPG)=EJ«D=J+«G+«D =JxLG.

But, by Corollary 7.3,
Jx LG C BPol(LG).

However, by Theorem 6.5, the righthand side is none other than P(LG).
The result follows. O

It is clear that one can verify if a semigroup is locally a block group in
polynomial time whence P(LG) = BPol(LG) has polynomial time mem-
bership problem. Observe that we have also shown that L(BG) = J « LG.
We note that an entirely similar argument would show that P'(LG)" =
Pol(LG) = L(P'G") if one could show that EJ* is local (the argument
of [12, Proposition 10.2] fails because (B)™ ¢ EJ™T).
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