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1. INTRODUCTION

If S, and S, are semigroups such that §; N S, = U is a non-empty
subsemigroup of both S; and S,, then [S,, S,; Ul is called an amalgam of
semigroups and U is the core of the amalgam. The amalgam [S,, S,; U] is
said to be strongly embeddable in a semigroup if these exist a semigroup S
and injective homomorphisms

¢S, —> S
such that
bilv = d,lu
and
Sip NSy, = Udp, = Ud,.

A semigroup S is a regular semigroup if for each a € S there exists ' € §
such that a = ad'a and a' = d'ad’: such an element &' is called an inverse
of a. If each element of § has a unique inverse, S is called an inverse
semigroup: equivalently, an inverse semigroup is a regular semigroup
whose idempotents commute. Such semigroups may be faithfully repre-
sented as semigroups of partial one—one maps on a set X. We refer the
reader to Petrich [13] for this result and many other standard results and
ideas about inverse semigroups.

It is well known that a semigroup amalgam [S,, S,; U] is not necessarily
strongly embeddable. On the other hand, an important theorem of T. E.
Hall [3] shows that every amalgam of inverse semigroups is strongly
embeddable (in an inverse semigroup) and another theorem of Hall [4]
shows that if [S;, S,; Ul is a semigroup amalgam in which S, S,, and U are
regular semigroups and U is a full subsemigroup of S, and S, (i.e, U
contains all of the idempotents of S, and S,), the this amalgam is strongly
embeddable in a regular semigroup S that contains S;, S,, and U as full
regular subsemigroups. It follows that in this case the amalgam [S}, S,; U1
is strongly embeddable in the amalgamated free product S, %, S, in the
category of regular semigroups. (The regular semigroup S, *,, S, is defined
by the usual universal diagram of regular semigroups and morphisms.) It is
clear that if S, S,, and U are inverse semigroups with U full in S; and S,
then S, =, S, is also inverse, so it is the amalgamated free product of S,
and S, over U in the category of inverse semigroups.

Hall’s proofs of his embeddability theorems are via extensions of repre-
sentations and provide little information about the structure of the amal-
gamated free product. Considerable additional information has been ob-
tained by Nambooripad and Pastijn [10] in the case where §;, S,, and U
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are regular semigroups and U is a full subsemigroup of S, and S,.
Nambooripad and Pastijn make use of Ordman’s work on amalgamated
free products in the category of groupoids [11].

A groupoid is a small category in which each morphism is an isomor-
phism. We refer to Higgins [5] for the theory of groupoids. In particular, it
is useful to associate with each groupoid G an underlying directed graph
whose vertices are the identities (objects) of G and whose directed edges
are the morphisms of G. We denote the initial (resp. terminal) vertex of an
edge g in G by i(g) [resp. t(g)] and we sometimes write g: i(g) — t(g).
Then the product gh of two edges g and /4 in a groupoid G is defined if
and only if #(g) = i(h). The inverse of an edge g in G is denoted as usual
by g *: clearly g7*: t(g) — i(g). It is convenient to identify the groupoid
G with the set of edges (morphisms) of G—the objects of G are identified
with the identities of G. At each vertex v of G the set G, of morphisms
from v to v forms a group with respect to the multiplication in G. We
refer to G, as the vertex group of G based at v.

Suppose that G, H, and U are groupoids and that U is a subgroupoid of
G and H with G N H = U. One can define the amalgamated free product
G+, H of G and H amalgamating U in the category of groupoids by the
usual universal diagram. Groupoid amalgams have been studied by Ord-
man [11, 12]. We briefly review Ordman’s results here. In order to
understand the groupoid G =, H we consider words of the form a,a, ...a,,
where a;, € G U H and t(a;) = i(a;_,) is an identity in U. Two such words
are equivalent if they are connected by a finite string of elementary
equivalences of the form:

(E1) If g, is anidentity of U then a,a,...a,and a,...a;,_,a,,,...a
are elementary-equivalent;

(E2) If a,a;,, = a¥, where a; and q,, , are both in G or both in H,
then a,a, ...a, is elementary-equivalent to a, ... a,_,afa;,,...a

n

n nt

Equivalence classes of words form a groupoid under the obvious opera-
tion of multiplication and the resulting groupoid is isomorphic to the
amalgamated free product G *, H (see [11]).

As in the case of group amalgams, one may refine this somewhat so as
to obtain a *normal form” for words in G =, H. We restrict attention for
the remainder of the paper to the case where G, H, and U are groupoids
with G N H = U and U contains all of the identities of G and of H, since
this is the only case that we shall need.

Define a relation ~; on G by g ~, g’ (for g, g’ € G) if g =g'u for
some u € U. (This equation means that #(g') = i(u) and g =g'u in G.)
An elementary calculation shows that ~, is an equivalence relation on G
since every identity of G is in U. Denote the equivalence class containing
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g€ G by gU. Thus

gU={gu:ueUt(g) =i(u)}.

By analogy with the situation in group theory, it is natural to refer to gU as
the left coset of U containing g. One may similarly consider the left coset
hU of U containing & for each h € H. Representatives for these left
cosets of U will be called coset representatives for U in G (or H). Choose a
system of coset representatives for the left cosets of U in G (resp. H). It is
not difficult to see, as in group theory, that every element of G *;, H may
be expressed in the form

a,a, ...a,u, (1)
where the a, are coset representatives for U in G or H, no a; is in U,
ueUanda; € Gifandonlyif a,,, € H (i.e, the a, are alternating coset
representatives for U in either G or H). A suitable modification of the
usual “van der Waerden” method from combinatorial group theory (see,
for example, Cohen [2]) shows that every element of G, H may be
uniquely expressed in such a form. This result is implicit in the paper of
Ordman [11].

THeORem 1. If U, G, and H are groupoids with G " H = U and U
contains all the identities of G and of H, then every element of G *,;, H may be
uniquely expressed in the form (1) for suitable choice of coset representatives
for Uin G or H.

We remark that a similar result may easily be formulated without the
restriction that U contain all the identities of G and H, but the relation
~y is not an equivalence relation in this case since ~, fails to be
reflexive. The corresponding canonical form is somewhat more cumber-
some to formulate and will not be needed in this paper.

We also record an essentially equivalent form of Theorem 1 which may
be obtained from that theorem by a straightforward argument similar to
the usual group-theoretic argument.

CoroLLARY 1. Ifay,a,,...,a,€(G—-U)U(H —-U) with a; € G —
U if and only if a; ., € H — U then the product a,a, ... a, is not an identity
of G+, H.

We turn now to a very brief description of Nambooripad's theory [9] of
inductive groupoids and its connection with the structure of amalgams of
regular semigroups. The basic idea is to associate an “inductive” groupoid
with each regular semigroup in a canonical way. Here we review only the
construction of the groupoid from the semigroup. If S is any regular
semigroup then the set G(S) = {(x, x'): x' is an inverse of x} forms a

n
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groupoid with the set E(S) of idempotents of S as its set of objects
(identities) and with (x, x') as a morphism form xx’ to x'x. Thus a product
(x, x' Xy, y") is defined in G(S) if and only if x'x =yy’. In this case the
product is (xy, y'x'). Note that the vertex group of G(S) at the idempotent
e of S is isomorphic to H,, the maximal subgroup of § at e. There is also a
natural additional structure on G(S) with respect to which G(S) becomes
what Nambooripad refers to as an “inductive groupoid” [9]. It suffices for
our purposes here to note that the category of inductive groupoids is
naturally equivalent to the category of regular semigroups—see [9] for
details.

In [10] Nambooripad and Pastijn provided an alternative proof of Hall’s
theorem [4] on the embeddability of regular semigroups amalgamating a
common full regular subsemigroup. In particular, their results show how to
construct a natural inductive structure on the groupoid amalgam
G(8)) #GyG(S,) when §; NS, = U is a full regular subsemigroup of S,
and S,. We refer to [10] for the details of this. We reformulate that
portion of the Nambooripad—Pastijn theorem that we need as follows.

THEOREM 2. Let [S,S,; U] be an amalgam of regular semigroups with
S, NS, = U a full regular subsemigroup of S, and S,. Then G(U) contains
all of the identities of G(S,) and G(S,) and G(S, x; S,) = G(S)) *;y, G(S,).
In particular, if e is an idempotent of U then the maximal subgroup H, of e in
Sy #y S, is isomorphic to the vertex group of G(S,)* g, G(S,) at e.

We remark that in the non-full case, G(S, #;, S,) # G(S})# 4, G(S,) in
general. This is because there are more idempotents in the general case
and the corresponding amalgam of groupoids must be taken in the cate-
gory of inductive groupoids. Thus the point of the Nambooripad—Pastijn
theorem is that in the case of a full amalgam, the amalgamated free
product of the corresponding groupoids in the category of groupoids has a
natural inductive structure.

While the theorem of Nambooripad and Pastijn implicitly carries com-
plete information about the structure of S, =, S, (when U is full in S, and
S,), we are able to obtain much more explicit structural information about
the maximal subgroups of S, *,, S, from the previous theorem by using the
Bass—Serre theory of graphs of groups.

Recall [2, 14] that a graph of groups (£, X) consists of

(1) a graph X: let V(X) [resp. E(X)] denote the set of vertices
[resp. edges] of X: recall from [2] that each edge y of such a graph has an
inverse edge denoted by y;

(2) for each vertex v € V(X) a group G, and for each edge y €
E(X) a group G, such that G, = Gj; and

(3) for each edge y € E(X) an embedding 7: G, = G,,,.
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We define o: G, = G,,, to be the embedding of G; in G, = Gy,
Then if X is connected and T is a spanning tree of X, the fundamental
group of (£, X) is the group =(&, X, T) generated by the set E(X) and
all the vertex groups of (£, X) subject to the relations that hold in these
vertex groups together with the relations y =y~ !, yr(g)y ! = o(g),
Vge G, Vy e E(X),and y =1, Vy € E(T).

This group is independent of the choice of spanning tree 7' and is
usually denoted by 7(£, X). See [14, 2] for details.

Recall also that if a group G acts on a tree I' with quotient graph
X = G /T (the graph of orbits of the action of G on T'), then there is a
natural graph of groups (£, X) whose vertex (edge) groups are the
stabilizers of the corresponding vertex (edge) of I'. One of the main
theorems of Bass—Serre theory [14, 2] then asserts that G = #(#, X).
Thus a presentation of a group G is known once its action on a tree is
understood. We shall exploit this to study the structure of a maximal
subgroup of S, *,, S, by finding a natural action of this group on a suitable
tree. The resulting graph of groups will be an arbitrary bipartite graph of
groups in general, quite in contrast to the situation for amalgamated free
products of groups whose associated graph of groups is a segment [14].

2. STRUCTURE OF THE MAXIMAL SUBGROUPS

Throughout this section G, H, and U will denote groupoids with G N H = U
such that U contains all of the identities of G and of H. Recall that Theorem
1 provides us with a normal form for elements of the amalgamated free
product A = G =, H. Fix an identity (object) e of U: we are interested in
calculating the structure of the vertex group A, of A = G, H at e. For
each element a € A denote by aU [resp. aG, aH] the left coset in A of U
[resp. G, H] containing a. Thus aU = {au:u € U, t(a) = i(w)}, etc.

Define a graph X as follows. The set V(X) of vertices of X is

V(X)={aG:a €A} U {aH:a € A}
and the set E, (X) of positively oriented edges of X is
E (X)={aU:a € A}.

The initial [resp. terminal] vertex of the edge aU is i(aU) = aG [resp.
t(aU) = aH]. The inverse of the edge aU is denoted by (aU)!: clearly
i((aU)™Y) =aH and t((aU)™ ') = aG. The set of inverses of positively
oriented edges is denoted by E_(X) and the set of edges of X is
E(X)=E_(X) U E_(X). Itis clear from the construction of X that X is
a bipartite graph: the vertices of X are naturally partitioned into two
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disjoint set (cosets of G in A and cosets of H in A) and each edge of X
has initial vertex in one of these sets and terminal vertex in the other. We
shall show that in fact X is a forest. We first record two easy lemmas for
future reference.

LEMMA 1. Ifa,b € A then aG = bG [resp. aH = bH, aU = bU] if and
onlyifa b € Glresp.a *b € H, a b € Ul

Proof. Suppose aG = bG. By definition this means that a = bg for
some g € G, where this is an equation in the groupoid A. This implies
that i(a) = i(b), t(a) = t(g), and t(b) = i(g) in A. Thus the element a b
is defined in A, i(a"'b) =t(g) and t(a 'b) = i(g). Furthermore, a 'bg
=a 'a is an identity of 4 so a 'bgg ! =a"tag™! =g ! and since gg*
is also an identity of A we have a bgg ' =a"'h,s0 a b =g ' €G.
Conversely, if a=*b € G, then a b = g for some g € G so0 aa b = ag,
so b = ag since aa™! is the identity at i(b). It follows that aG = bG, as
required.

In order to simplify the statements of several subsequent results it is
convenient to introduce the following notation, which is suggested by
analogy with standard notation in semigroup theory. If ¢ and f are
identities of a groupoid G we write eZ°f if e and f are in the same
connected component of G. It is well known [5] that e “f if and only if
there is g € G such that gg™* = e and g~ 'g = f: in this case gG,;¢™* = G,.
In the sequel we refer to the connected component of f in G as the
Z-class of f in G and denote it by Df.

LEMMA 2. If a,b € A and aG = bG [resp. aH = bH, aU = bU] then
i(a) = i(b) and t(a)Z°t(b) [resp. t(a) D t(b), t(a)2Yt(b)].

Proof. This is clear from the argument used in the proof of the
previous lemma.

LEMMA 3. The graph X is a forest.

Proof. If X is not a forest it must have a cyclically reduced circuit
(e, e,,...,e,)—a sequence of edges without backtracking and with i(e,)
=t(e,_,), i(e;) = t(e;) and e, # ¢; 1. Without loss of generality

e, =a.Uye, = (aZU)fl,...,ek = (akU)71
for some a; € A. We must then have that k is even and
aH=a,H, a,G=0a,G,...,a,H=a,_H,a,G=a,G,
so there exist hy,..., h, ,, € H and g,,..., g, € G such that

ay = 4,81, a4, = ay_1hy, ... a3 =484 5,4, = arhy ;.
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Furthermore, since e; # ¢; ' we must have g, & U (or else a,U = a,U).
Similarly since the circuit has no backtracking, g; ¢ U for each i and
h; & U for each i, so that

hy,....h,, €H = U, 8- 8p€G—U.
Then
ay = a8 = a_1hi g = ay_,8,Mg = - = alhk/zgk/z coohygohi gy

Hence

a;'a, = aflalhk/zgk/z hygohi gy = hk/zgk/z o hy8ohi 8y

is an identity of A. This contradicts Corollary 1, so X is a forest.

For each identity e of 4 denote by X, the connected component of X
containing the vertex eG. Clearly X, is a tree. Let us analyze the nature of
this tree in more detail. Choose any element a € 4 and write a in normal
form (1) a = a,a, ... a,u as in Theorem 1. Suppose that i(a) = i(a,) = e
(an identity of A4). Consider the case in which a, is a coset representative
for U in G. Then by Lemma 1, a,G = eG, so a,U is an edge in X, with
i(a,U) = a,G = eG and #(a,U) = a,H. Since t(a,) =i(a,) and a, is a
coset representative of U in H we have a,H = a,a,H and so a,a,U is an
edge in X, with i(a,a,U) = a,a,G and t(a,a,U) = a;a,H = a,H. Con-
tinuing by induction we see

LEMMA 4. For each element a € A, aG and aH are vertices of X, and aU
is an edge of X, if and only if i(a) = e. The subtrees X, and X, (for e and f
distinct identities of A) are disjoint.

There is an obvious (partial) left action of the groupoid 4 on the forest
X. Namely, if a,b € A then a.(bU) = abU if ab is defined in A4 (i.e., if
t(a) = i(b)) and similarly a.(bG) and a.(bH ) are defined in this case. From
Lemma 4 it follows that if @ € A, (the vertex group of A at ¢) then a acts
on X,; ie, aX, C X, and this action is well defined. Thus the group A4,
acts in a natural way on the tree X,. From the fundamental theorem of
Bass—Serre theory [14, 2] we obtain information about the structure of A4,
by studying the orbits and stabilizers of this action.

LEMMA 5. For each a € A for which i(a) = e the orbit of aG [resp. aH,
aU] under the action by A, is

0(aG) = {bG [resp. bH, bU]:i(b) = e and t(a) Z°1(b)
[resp. t(a) 2" 't(b),t(a) 2Vt(D)]}.
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Proof. Suppose that bG € O(aG). Then there exists ¢ € 4, such that
bG = c.aG. Since i(c) = t(c) = e = i(a) we see immediately by Lemma 2
that i(b) = e and t(b)2Ct(ca) = t(a). Conversely suppose that i(a) = i(b)
= e and t(a)2°t(b). Then there exists some edge c in G with i(c) = t(a)
and t(c) = t(b). Consider the element d = acb™! € A4,. Clearly d.bG =
acb™'bG = acG = aG by Lemma 1 since ¢ € G. Hence bG € 0(aG). A
similar argument applies to the calculation of O(aH) and O(aU).

LEMMA 6.  For each a € A with i(a) = e and t(a) = f the stabilizer of aG
[resp. aH, aU] under the action of A, on X, is achf1 [resp.
aHya™*, aUsa™"]; this group is isomorphic to Gy [resp. H;, U;].

Proof. Let a € A with i(a) = e. Suppose b € A, is in the stabilizer of
aG, i.e., b.(aG) = aG. Then by Lemma 1 there exists some g € G such
that a~'ba =g. It follows that i(g) =1(g) =f, so g€ G;, and that
b =aga™* and so Stab(aG) = aG;a™*. It is easy to check that the map
b — a~'ba is an isomorphism from the stabilizer of aG in 4, onto G;. A
similar argument applies to the stabilizers of aH and aU. '

We now construct a graph of groups (£, Y) associated with the groupoid
A = G=*, H. Let V(Y) be the disjoint union of the Z-classes (i.e., con-
nected components) of G and H. Let E, (Y) be the set of Z-classes of U.
For D € E_(Y) set

D, = the 9-class of G containing D, and
D7 = the 9-class of H containing D.

For each 9-class D of G [resp. H, U] let G, [resp. H,,U,] be a
specified vertex group at some vertex in D: if D € E_(Y) let U, = Us.
These specified groups will be the vertex and edge groups of (£,Y). For
D € E_(Y) let K be the vertex group of Do containing G,. Fix an
element g € Do such that g 'Kg = Gp,,. The map o: U, - Gp,, is then
given by u — g~ 'ug. We define the map 7: U, — H,,, in a similar fashion.
This specifies a graph of groups (£, Y). For each identity e of 4 note that
the @-class of e in G and the Z-class of e in H are in the same
connected component of Y, which we denote by Y,. Let (£,,Y,) be the
restriction of (¢,Y) to Y,.

THEOREM 3.  For each identity e of A, A, = w(Z,,Y,).

Proof. Consider the action of A4, on the tree X, defined above. This
defines a graph of groups (%,, Z,) in the usual way [14, 2]. We briefly
recall the construction of (&, Z,) here. The graph Z, is the quotient
graph Z, = A, \ X,; that is, V(Z,) is the set of orbits of vertices of X,
and E(Z,) is the set of orbits of edges of X, under the action by 4,. Let T
be a spanning tree of Z,. There is an embedding j: 7 — X, of T in X,.
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For each x € V(T) U E(T) let P, be the stabilizer of jx. Extend j to a
map (not a graph morphism) from Z, to X, such that for each y € E,(Z,),
(jy)o € jT. The embeddings P, — P,, for y € E(Z,) are defined as fol-
lows. If y & E_(Z,) — E(T) then the embedding is the natural embedding
of Stab(jy) into Stab(j(yr)). If y € E_(Z,) — E(T) then j(y7) # (jy)r
but they are in the same orbit: if we choose vy, € 4, such that (y)r =
y,j(y7), then define the embedding P, — P,, by p — v,py, *. Then by the
fundamental theorem of Bass—Serre theory, A, = w(%,, Z,).

Hence it suffices to show that the graphs of groups (%,, Z,) and (£,,Y,)
are conjugate isomorphic (see [2, p. 202] for this concept). We need
isomorphisms between Z, and Y, and between corresponding vertex and
edge groups of the two graphs of groups that are compatible up to
conjugation with the embeddings of edge groups into vertex groups.

There is a map ¢: Z, — Y, defined as follows. For each a € A for
which i(a) = e we define

¢:0(aG) - D, [resp. ¢: O(aH) — D), ¢: 0(aU) - DY, |.

Lemmas 4 and 5 guarantee that ¢ is well-defined, one-to-one, and onto.
Since aU: aG — aH in X, and D/,;: D7) — D/}, inY, it s clear that ¢
is a graph isomorphism.

We now define isomorphisms between the corresponding vertex groups
of the two graphs of groups. We need some notation in order to provide a
clear definition of these isomorphisms.

Let T be the spanning tree of Z, and j: T — X, the embedding that is
extended to a map j from Z, to X, as described above. For each a € A
denote by ay; [resp. a,, a,] the identity of DS, [resp. D}, ), D] that is
specified in the definition of the graph of groups (£, Y). Each vertex of Z,
is an orbit of a vertex of X, under the action by A4,: for the vertex O(aG)
[resp. O(aH)] the corresponding vertex group of (%,, Z,) is Stab(j(O(aG)))
[resp. Stab(j(O(aH)))]. To simplify notation, denote (j(O(aG)) [resp.
(j(O(aH))] by a¥ [resp. a%]. By Lemma 6,

_1 -1
Stab(ak) = a%G, s, a [resp. Stab(aj) = af s afy |-

Since af € 0(aG) [resp. a¥ € O(aH)] it follows from Lemma 6 that
1(a§) € Dy, [resp. t(af;) € D)1 so there exists g, € G [resp. h, € H]
such that

g, t(at) »ag  [resp. h,:t(afy) = ay].

Define ¢: Stab(af;G) — G, by atsat, — g lsg, for s € Giaz)- 11
easy to check that ¢ is an isomorphism from the vertex group Stab(afG)
of (£,,Z,) to the vertex group G, of (£,Y,). Similarly the map ¢:
Stab(aj; H) — H, defined by at sat, - h;'sh, for s € Hy,3, is an
isomorphism.
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We now define isomorphisms between the corresponding edge groups of
the two graphs of groups. Let y be a positively oriented edge of Z, and
suppose that jy = aU, so y = O(alU). The edge group of y in (#,, Z,) is
Stab(aU) = aU,(a)a* and the map ¢ from this edge group to the corre-
sponding edge group U, in(Z,,Y,) is given by asa~t - u; su,, where u,
t(a) = ay is in U. It remains to show that, up to conjugatlon the
morphisms ¢ between vertex (edge) groups respect the embeddings of
edge groups into vertex groups. We provide a proof below: the reader may
find it convenient, in the following proof, to sketch a diagram of the
relevant arrows and vertices of A4 indicated in the proof.

Suppose first that the edge y = O(aU) is in T and that jy = aU. Then
by definition of af; and a7}, it follows that aG = zng and aH = a};H so
there exist g, € G and h, € H such that a = af g, and a = aj;h,. Take
an element asa~' € Stab(aU) for some s € U,,,. Then

(asa™Y)op = (asa ) = (agys81 () )b = g, 8198; '8,
and

(asa™ ') po = (ug ' su,)o =g tu, su,g

for some g € G. Since g 'u,; ! and g, 'g, are both elements of G with

initial identity a; and termlnal identity #(a) it follows that (asa ')o¢ and
(asa ')¢po are equal up to conjugation by an element of G, . Similarly
(asa™*)r¢ and (asa')¢pr are equal up to conjugation by an element of
H, .

Suppose finally that y = O(aU) is a positively oriented edge of Z, that
is not necessarily in T and let aU = j(O(alU)). As before, if asa ! €
Stab(aU) for some s € U,,, then (asa "o = g, 'g,58, 'g, for some
g, € G and (asa V)¢po =g *u, su,g for some g € G, and these are
equal up to conjugation by an element of G, . Finally, since v,.aH = ay H
there exists some h, € H such that

(asa~*)rdp = (y,asa™y; *) b = (afyhyshy *(afy) ") = hy  hyshy h,,
and
(asa )7 = (u, su,)t=h""u; su,h

for some i € H. Again we see that 4, *h, and h~'u; ! are elements of H
with initial identity a, and termlnal |dent|ty t(a) so (asa ')¢r and
(asa~')r¢ are equal to conjugation by an element of H, .We have proved
that the graphs of groups (%,, Z,) and (£,,Y,) are conjugate isomorphic
and hence A, = m(%,,Y,), as desired.

e’ e
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As a consequence of the Nambooripad—Pastijn theorem (Theorem 2
above) it is possible to reformulate Theorem 3 in an equivalent form that
provides structural information about the maximal subgroups of an amal-
gamated free product S, #, S, in the case where S;, S, and U are regular
semigroups with U full in S; and S,. For the convenience of the reader, we
provide this reformulation below. The proof of the resulting theorem is an
immediate consequence of Theorems 2 and 3 and the equivalence between
the category of regular semigroups and the category of inductive groupoids.

Let [S,, S,; U] be an amalgam of regular semigroups with U full in S;
and S, and let § = S, *,, §,. Construct a graph of groups (., W) in the
following fashion. Let V(W) be the disjoint union of the Z-classes of S,
and S,. Let E_ (W) be the set of Z-classes of U. For D € E_ (W) set

Do = the 9-class of S, containing D, and
Dt = the 9-class of §, containing D.

For each 9-class D of S, [resp. S,,U] let S [resp. S, U,] be a
specified maximal subgroup in D: if D € E_(W) let U, = Uz. These
specified groups will be the vertex and edge groups of (%, W). For
D € E_(W) let K be the maximal subgroup of Do containing S% . Fix an
element g € Do such that g7 'Kg = S%). The map o: U, > D) is then
given by u — g 'ug. We define the map 7: U, — S in a similar fashion.
This specifies a graph of groups (%, W). For each identity e of 4 note that
the 2-class of e in §; and the Z-class of e in S, are in the same
connected component of W, which we denoted by W,. Let (., W,) be the
restriction of (7, W) to W,. We have the following theorem as an immedi-
ate corollary of Theorems 2 and 3.

THEOREM 4.  Let [Sy, S,; U] be an amalgam of regular semigroups with U
fullin S; and S, and let S = S, *; S,. Then for each idempotent e € S, the
maximal subgroup of S containing e is isomorphic to w(%,, W,).

3. SOME APPLICATIONS AND EXAMPLES

In this section we discuss some examples and applications of the
theorem proved in the previous section. The examples that we consider are
examples of inverse semigroup presentations, where the situation is partic-
ularly pleasant. We shall employ standard notation from inverse semigroup
theory and refer the reader to Petrich’s book [13] for any undefined
notation.

ExampLE 1. Let S, =S8, be the bicyclic monoid B. That is, B =
Mon{a,b:ab = 1) (or, when presented as an inverse monoid, B =
Inv(a:aa~! = 1)). Let U be a full inverse submonoid of B. If U is just
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the semilattice of idempotents of B then clearly U has infinitely many
Z-classes. It is well known that all other full inverse subsemigroups of B
have only finitely many & -classes. There is exactly one full embedding of
Uin §; and §,. It is clear that the inverse monoid S = §, ,, S, is bisimple
with the same semilattice of idempotents as B (a chain isomorphic as a
poset to the negative integers): that is, S is a bisimple w-semigroup (in the
standard notation of semigroup theory). The maximal subgroups of S may
be easily calculated from Theorem 4. Since S; and S, are bisimple the
graph W has two vertices (S, and S,). The number of positively oriented
edges in W is equal to the number of Z-classes in U. Since all vertex and
edge groups are trivial (the bicyclic monoid is combinatorial), the graph of
groups (%, W) is just the graph W. Hence its fundamental group is just a
free group whose rank is one less than the number of Z-classes in U (or
this rank is infinite if U is just the semilattice of idempotents of B).

Remark. The semigroup S = S, #; S, constructed in Example 1 is a
bisimple w-semigroup of the form B(G, «), where G is a (free) group and
a is an endomorphism of G (see [13] for an explanation of this notation
and for the structure of such semigroups). While the rank of the free
group G is determined solely by the number of Z-classes in U, the
endomorphism « is not. There are n non-isomorphic full inverse subsemi-
groups of B that contain nZ-classes and these all yield a free group of
rank n — 1, but the corresponding subsemigroups B(G, d) are associated
with different endomorphisms o« and are non-isomorphic semigroups. It is
clear that one may extend Example 1 somewhat to the study of amalgams
of the form S, =, S,, where §; S,, and U are all bisimple w-semigroups
(with U full in S; and S,). The nature of the associated endomorphisms
determines the structure of the resulting semigroup.

Example 1 illustrates the following observation, which is an immediate
consequence of Theorem 4.

COROLLARY 2. Let [S;, S,; U] be an amalgam of regular semigroups with
Ufullin S, and S, andlet S = S, S,. If S, and S, are both combinatorial
then every maximal subgroup of S is a free group.

Proof. If S, and S, are both combinatorial then all vertex and edge
groups of (&%, W) are trivial, so (., W) is just a graph, and its fundamental
group is a free group.

Similarly one obtains the following results directly from Theorem 4.

CoROLLARY 3. Let [S, S,; Ul be an amalgam of regular semigroups with
Ufull in S, and S, and let S = S, *, S,. If U is combinatorial then every
maximal subgroup of S is a free product of maximal subgroups of S, and S,
and a free group.
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COROLLARY 4. Let [S,, S,; U] be an amalgam of regular semigroups with
Ufullin S, and S, and let S = S, *; S,. Then S is combinatorial if and only
if S, and S, are both combinatorial and the corresponding graph of groups
(&, W) is a forest.

ExampLE 2. Denote by B,(G) the n X n Brandt semigroup with maxi-
mal subgroup G in its non-zero Z-class. If U is an inverse subsemigroup
of B,(G) then clearly every non-zero idempotent of U is primitive, so U is
a O-disjoint union of Brandt semigroups. Suppose now that S; = B,(G,) for
i=12 and that U is a full inverse subsemigroup of each §; with
U =S5, NS, Then all of the non-zero idempotents of S, [resp. S,] are in
the same Z-class of S = S, *;, S, and each non-zero idempotent of S, is
identified with some non-zero idempotent of S, in S, so in fact S must be
an n X n Brandt semigroup. The structure of the non-trivial maximal
subgroup of § is immediately determined from Theorem 4.

For example, suppose that S, = B,(G,) and S, = B,(G,), where G, =
Z, (the cyclic group of order 4) and G, = Z,. Let U = B,(H) where
H = Z,. There is a unique embedding of Z, in Z, and a unique embed-
ding of Z, in Z; and these embeddings extend in an obvious way to full
embeddings of U in S; and S,. By Theorem 4, the non-zero maximal
subgroup of S = S, %, S, is the fundamental group of a segment whose
vertex groups are Z, and Z, and whose edge group is Z,, so this group is
isomorphic to the amalgamated free product Zg +,, Z, in the category of
groups, which is isomorphic to SL,(Z) by a well- known isomorphism (see
[14, p. 11]).

On the other hand, if S; and S, are as above and U is a full
subsemigroup of §; that is a semilattice of three groups, two of which are
isomorphic to Z, and the other is trivial then the corresponding graph of
groups has three positively oriented edges instead of two and the maximal
subgroup of the non-zero 9-class of § is the fundamental group of the
graph of groups with two vertices and two positively oriented edges
between these vertices. The vertex groups are Z, and Z,; and both edge
groups are Z,.

We indicate in the next example how a finite inverse semigroup may be
decomposed as an amalgamated free product of simpler inverse semi-
groups in a non-trivial way. This is quite in contrast to the situation in
group theory, where any non-trivial amalgamated free product is necessar-
ily infinite.

ExampLE 3. Let S; and S, be copies of the six element semigroup
which is a O-direct union of the five element combinatorial Brandt semi-
group and the two element semilattice. Thus we may write S, =
{e;, fia;,a;t, g;,0;} for i = 1,2 with ¢;, f; and g; idempotents and

-1 _ -1 -1 _ -1 _ -1
a,a; - =e;,a; a,=f,a,e;,=a;=fa;, ea;  =a; =a; f

i L
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and all other products in S; are 0,. Let
gy = e, qb, = 8, rdby = f1, 1rd; =€y, 5y =81, 50, = [,,0¢; = 0;.

The corresponding graph of groups (., W) has six vertices and eight edges
with incidence given by the ¢; maps since the Z-relation is trivial in U.
Since S, and S, are combinatorial, (%, W) is just a graph W. The
connected components of W are trees. Hence S = S, #, S, is combinato-
rial. Notice that the images of e, and g, are Z-related in § since, in §,
e, = ajaa;a,)”t and g, = (a;a,) 'a,a,. Hence S is the ten-element
combinatorial Brandt semigroup.

We shall return to this phenomenon of decomposing a finite inverse
semigroup as a non-trivial amalgamated free product. We first provide a
characterization of the class of graphs of groups belonging to Z-classes of
amalgamated free products. It is clear from the definition of the graph of
groups (., W) belonging to S =S, *, S, that W is bipartite. Hence if
(7, W,) is the component of (%, W) belonging to the Z-class D of S,
then W, is connected and bipartite. In fact the converse is true.

THEOREM 5. If (&, W) belongs to the D-class D of S = S, *,, S, (with
S., S,, and U regular and U full in S, and S,), then W is connected and
bipartite. Conversely if (7, W) is a graph of groups and W is connected and
bipartite, then there is an inverse semigroup S = S, *; S, with U full in S, and
S,, and a D-class D of S such that (¥, W) belongs to D.

Proof. Suppose that (&#, W) is a graph of groups with W connected and
bipartite, so that V(W) is a disjoint union V(W) = V; U V, and edges of
W connect vertices in V,; with vertices in V,. We construct inverse
semigroups S;, S,, and U such that (¥, W) belongs to the non-zero
g-class of § = 8, %, S,.

Define U to be (U, c gw)G,) U {0} with multiplication of g, € G, and
8, € G,, given by g,.8, = 8,8, if y;, =y, and all other products are 0.
That is, U is the 0-disjoint union of all the edge groups of W. We build S,
and S, by first constructing a collection of Brandt semigroups and then
taking 0-disjoint unions of these Brandt semigroups.

Let v be a vertex of W. Let Star(v) ={y € E,(W):i(y) = v} and let
S, = B,(G,), where n = |Star(v)|. Then let S, [resp. S,] be the 0-disjoint
union of the S, with v € IV} [resp. v € V,]. For y € E(W) let § denote
the edge in {y, ¥} whose origin is in V,. Then define ¢;: U - S, by0 - 0
and if g€ G, then g — (3, 0(g),y). The map ¢, is constructed in a
similar fashion. One checks that S, =, 5, is a Brandt semigroup: denote its
non-zero 2-class by D. If we let (Z, X) be the graph of groups determined
by the amalgam [S,, S,; U]l then it is routine to see that (7, X,,) = (%, W).
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COROLLARY 5.  Every tree of groups (£, T) for which T is a tree with at
least two vertices arises in this setting.

Proof. 1t is clear that a tree with at least two vertices is a bipartite
graph.

The reader may contrast this with the situation that occurs with group
amalgams, where the underlying graph of the associated graph of groups is
a segment. The wide class of graphs of groups that can arise in connection
with inverse semigroup amalgams gives rise to multiple decompositions of
inverse semigroups (even finite ones) as non-trivial amalgamated free
products. Let B, = B,({1}) be the n X n combinatorial Brandt semigroup
and let E, = E(B,) be its semilattice of idempotents. As we saw in
Example 3, B, can be expressed as a non-trivial amalgamated free product
over its semilattice Ej.

Given a tree with n edges we can construct the non-zero -classes of
two inverse semigroups §; and S, and write B, = S, #, S, as in the proof
of Theorem 5. Conversely, suppose that B, = S, #; S, is a decomposition
of B,. Then S, and S, are combinatorial and by Corollary 4 the graph of
groups belonging to the non-zero 2-class of B, is a tree T, which has n
edges by definition. The set of idempotents of each Z-class D of S, or S,
is in one to one correspondence with the set of edges in the star set of the
vertex of T corresponding to D. Hence the structure of the non-zero
Z-classes of S; and S, can be read off T as above. We have proved:

THEOREM 6. The number of non-isomorphic decompositions of B, =
S1#g, S, Is equal to the number of non-isomorphic trees having n edges.

For example, B, can be written as a non-trivial amalgamated free
product over its semilattice of idempotents in 105 different ways. Of course
there are many more ways to write By as an amalgamated free product.

We close by remarking that the structure of amalgamated free products
S, *#y S, of inverse semigroups in the case where U is not full in S, and S,
is far from understood. Some recent work along these lines is contained in
the thesis of Bennett [1] and several other “ad hoc” cases have been
considered, but the general case seems to be very complex. Even the
structure of the free product S, S, of two inverse semigroups is relatively
complicated (see [6—8] for details).
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