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Sciences, Unï ersity of Nebraska at Lincoln, Lincoln, Nebraska 68588

Stuart W. Margolis†

Department of Computer Science and Engineering, Center for Communication and
Information Sciences, Unï ersity of Nebraska at Lincoln, Lincoln, Nebraska 68588

and

John Meakin‡

Department of Mathematics and Statistics, Center for Communication and Information
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w xT. E. Hall proved in 1978 that if S , S ; U is an amalgam of regular semigroups1 2
Žin which S l S s U is a full regular subsemigroup of S and S i.e., S , S , and1 2 1 2 1 2

.U have the same set of idempotents , then the amalgam is strongly embeddable in
a regular semigroup S that contains S , S , and U as full regular subsemigroups. In1 2
this case the inductive structure of the amalgamated free produce S ) S was1 U 2
studied by Nambooripad and Pastijn in 1989, using Ordman’s results from 1971 on
amalgams of groupoids. In the present paper we show how these results may be
combined with techniques from Bass]Serre theory to elucidate the structure of the
maximal subgroups of S ) S . This is accomplished by first studying the appropri-1 U 2
ate analogue of the Bass]Serre theory for groupoids and applying this to the study
of the maximal subgroups of S ) S . The resulting graphs of groups are arbitrary1 U 2
bipartite graphs of groups. This has several interesting consequences. For example
if S and S are combinatorial, then the maximal subgroups of S ) S are free1 2 1 U 2
groups. Finite inverse semigroups may be decomposed in non-trivial ways as
amalgams of inverse semigroups. Q 1996 Academic Press, Inc.
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1. INTRODUCTION

If S and S are semigroups such that S l S s U is a non-empty1 2 1 2
w xsubsemigroup of both S and S , then S , S ; U is called an amalgam of1 2 1 2

w xsemigroups and U is the core of the amalgam. The amalgam S , S ; U is1 2
said to be strongly embeddable in a semigroup if these exist a semigroup S
and injective homomorphisms

f : S ª Si i

such that

< <f s fU U1 2

and

S f l S f s Uf s Uf .1 1 2 2 1 2

A semigroup S is a regular semigroup if for each a g S there exists aX g S
such that a s aaXa and aX s aXaaX: such an element aX is called an in¨erse
of a. If each element of S has a unique inverse, S is called an in¨erse
semigroup: equivalently, an inverse semigroup is a regular semigroup
whose idempotents commute. Such semigroups may be faithfully repre-
sented as semigroups of partial one]one maps on a set X. We refer the

w xreader to Petrich 13 for this result and many other standard results and
ideas about inverse semigroups.

w xIt is well known that a semigroup amalgam S , S ; U is not necessarily1 2
strongly embeddable. On the other hand, an important theorem of T. E.

w xHall 3 shows that every amalgam of inverse semigroups is strongly
Ž . w xembeddable in an inverse semigroup and another theorem of Hall 4
w xshows that if S , S ; U is a semigroup amalgam in which S , S , and U are1 2 1 2

Žregular semigroups and U is a full subsemigroup of S and S i.e., U1 2
.contains all of the idempotents of S and S , the this amalgam is strongly1 2

embeddable in a regular semigroup S that contains S , S , and U as full1 2
w xregular subsemigroups. It follows that in this case the amalgam S , S ; U1 2

is strongly embeddable in the amalgamated free product S ) S in the1 U 2
Žcategory of regular semigroups. The regular semigroup S ) S is defined1 U 2

.by the usual universal diagram of regular semigroups and morphisms. It is
clear that if S , S , and U are inverse semigroups with U full in S and S1 2 1 2
then S ) S is also inverse, so it is the amalgamated free product of S1 U 2 1
and S over U in the category of in¨erse semigroups.2

Hall’s proofs of his embeddability theorems are via extensions of repre-
sentations and provide little information about the structure of the amal-
gamated free product. Considerable additional information has been ob-

w xtained by Nambooripad and Pastijn 10 in the case where S , S , and U1 2
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are regular semigroups and U is a full subsemigroup of S and S .1 2
Nambooripad and Pastijn make use of Ordman’s work on amalgamated

w xfree products in the category of groupoids 11 .
A groupoid is a small category in which each morphism is an isomor-

w xphism. We refer to Higgins 5 for the theory of groupoids. In particular, it
is useful to associate with each groupoid G an underlying directed graph

Ž .whose vertices are the identities objects of G and whose directed edges
Ž .are the morphisms of G. We denote the initial resp. terminal vertex of an

Ž . w Ž .x Ž . Ž .edge g in G by i g resp. t g and we sometimes write g : i g ª t g .
Then the product gh of two edges g and h in a groupoid G is defined if

Ž . Ž .and only if t g s i h . The inverse of an edge g in G is denoted as usual
y1 y1 Ž . Ž .by g : clearly g : t g ª i g . It is convenient to identify the groupoid

Ž .G with the set of edges morphisms of G}the objects of G are identified
with the identities of G. At each vertex ¨ of G the set G of morphisms¨
from ¨ to ¨ forms a group with respect to the multiplication in G. We
refer to G as the ¨ertex group of G based at ¨ .¨

Suppose that G, H, and U are groupoids and that U is a subgroupoid of
G and H with G l H s U. One can define the amalgamated free product
G) H of G and H amalgamating U in the category of groupoids by theU
usual universal diagram. Groupoid amalgams have been studied by Ord-

w xman 11, 12 . We briefly review Ordman’s results here. In order to
understand the groupoid G) H we consider words of the form a a . . . a ,U 1 2 n

Ž . Ž .where a g G j H and t a s i a is an identity in U. Two such wordsi i iy1
are equï alent if they are connected by a finite string of elementary
equivalences of the form:

Ž .E1 If a is an identity of U then a a . . . a and a . . . a a . . . ai 1 2 n 1 iy1 iq1 n
are elementary-equivalent;

Ž . UE2 If a a s a , where a and a are both in G or both in H,i iq1 i i iq1
then a a . . . a is elementary-equivalent to a . . . a aUa . . . a .1 2 n 1 iy1 i iq2 n

Equivalence classes of words form a groupoid under the obvious opera-
tion of multiplication and the resulting groupoid is isomorphic to the

Ž w x.amalgamated free product G) H see 11 .U
As in the case of group amalgams, one may refine this somewhat so as

to obtain a ‘‘normal form’’ for words in G) H. We restrict attention forU
the remainder of the paper to the case where G, H, and U are groupoids
with G l H s U and U contains all of the identities of G and of H, since
this is the only case that we shall need.

X Ž X . XDefine a relation ; on G by g ; g for g, g g G if g s g u forU U
Ž Ž X. Ž . X .some u g U. This equation means that t g s i u and g s g u in G.

An elementary calculation shows that ; is an equivalence relation on GU
since every identity of G is in U. Denote the equivalence class containing
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g g G by gU. Thus

gU s gu : u g U, t g s i u .� 4Ž . Ž .

By analogy with the situation in group theory, it is natural to refer to gU as
the left coset of U containing g. One may similarly consider the left coset
hU of U containing h for each h g H. Representatives for these left

Ž .cosets of U will be called coset representatï es for U in G or H . Choose a
Ž .system of coset representatives for the left cosets of U in G resp. H . It is

not difficult to see, as in group theory, that every element of G) H mayU
be expressed in the form

a a . . . a u , 1Ž .1 2 n

where the a are coset representatives for U in G or H, no a is in U,i i
Žu g U and a g G if and only if a g H i.e., the a are alternating coseti iq1 i

.representatives for U in either G or H . A suitable modification of the
Žusual ‘‘van der Waerden’’ method from combinatorial group theory see,

w x.for example, Cohen 2 shows that every element of G) H may beU
uniquely expressed in such a form. This result is implicit in the paper of

w xOrdman 11 .

THEOREM 1. If U, G, and H are groupoids with G l H s U and U
contains all the identities of G and of H, then e¨ery element of G) H may beU

Ž .uniquely expressed in the form 1 for suitable choice of coset representatï es
for U in G or H.

We remark that a similar result may easily be formulated without the
restriction that U contain all the identities of G and H, but the relation
; is not an equivalence relation in this case since ; fails to beU U
reflexive. The corresponding canonical form is somewhat more cumber-
some to formulate and will not be needed in this paper.

We also record an essentially equivalent form of Theorem 1 which may
be obtained from that theorem by a straightforward argument similar to
the usual group-theoretic argument.

Ž . Ž .COROLLARY 1. If a , a , . . . , a g G y U j H y U with a g G y1 2 n i
U if and only if a g H y U then the product a a . . . a is not an identityiq1 1 2 n
of G) H.U

w xWe turn now to a very brief description of Nambooripad’s theory 9 of
inductive groupoids and its connection with the structure of amalgams of
regular semigroups. The basic idea is to associate an ‘‘inductive’’ groupoid
with each regular semigroup in a canonical way. Here we review only the
construction of the groupoid from the semigroup. If S is any regular

Ž . �Ž X. X 4semigroup then the set G S s x, x : x is an inverse of x forms a
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Ž .groupoid with the set E S of idempotents of S as its set of objects
Ž . Ž X. X Xidentities and with x, x as a morphism form xx to x x. Thus a product
Ž X.Ž X. Ž . X Xx, x y, y is defined in G S if and only if x x s yy . In this case the

Ž X X. Ž .product is xy, y x . Note that the vertex group of G S at the idempotent
e of S is isomorphic to H , the maximal subgroup of S at e. There is also ae

Ž . Ž .natural additional structure on G S with respect to which G S becomes
w xwhat Nambooripad refers to as an ‘‘inductive groupoid’’ 9 . It suffices for

our purposes here to note that the category of inductive groupoids is
w xnaturally equivalent to the category of regular semigroups}see 9 for

details.
w xIn 10 Nambooripad and Pastijn provided an alternative proof of Hall’s

w xtheorem 4 on the embeddability of regular semigroups amalgamating a
common full regular subsemigroup. In particular, their results show how to
construct a natural inductive structure on the groupoid amalgam
Ž . Ž .G S ) G S when S l S s U is a full regular subsemigroup of S1 GŽU . 2 1 2 1

w xand S . We refer to 10 for the details of this. We reformulate that2
portion of the Nambooripad]Pastijn theorem that we need as follows.

w xTHEOREM 2. Let S , S ; U be an amalgam of regular semigroups with1 2
Ž .S l S s U a full regular subsemigroup of S and S . Then G U contains1 2 1 2

Ž . Ž . Ž . Ž . Ž .all of the identities of G S and G S and G S ) S s G S ) G S .1 2 1 U 2 1 GŽU . 2
In particular, if e is an idempotent of U then the maximal subgroup H of e ine

Ž . Ž .S ) S is isomorphic to the ¨ertex group of G S ) G S at e.1 U 2 1 GŽU . 2

Ž . Ž . Ž .We remark that in the non-full case, G S ) S / G S ) G S in1 U 2 1 GŽU . 2
general. This is because there are more idempotents in the general case
and the corresponding amalgam of groupoids must be taken in the cate-
gory of inductive groupoids. Thus the point of the Nambooripad]Pastijn
theorem is that in the case of a full amalgam, the amalgamated free
product of the corresponding groupoids in the category of groupoids has a
natural inductive structure.

While the theorem of Nambooripad and Pastijn implicitly carries com-
Žplete information about the structure of S ) S when U is full in S and1 U 2 1

.S , we are able to obtain much more explicit structural information about2
the maximal subgroups of S ) S from the previous theorem by using the1 U 2
Bass]Serre theory of graphs of groups.

w x Ž .Recall 2, 14 that a graph of groups GG, X consists of

Ž . Ž . w Ž .x1 a graph X : let V X resp. E X denote the set of vertices
w x w xresp. edges of X : recall from 2 that each edge y of such a graph has an
inverse edge denoted by y;

Ž . Ž .2 for each vertex ¨ g V X a group G and for each edge y g¨
Ž .E X a group G such that G s G ; andy y y

Ž . Ž .3 for each edge y g E X an embedding t : G ª G .y tŽ y .
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We define s : G ª G to be the embedding of G in G s G .y iŽ y . y tŽ y . iŽ y .

Then if X is connected and T is a spanning tree of X, the fundamental
Ž . Ž . Ž .group of GG, X is the group p GG, X, T generated by the set E X and

Ž .all the vertex groups of GG, X subject to the relations that hold in these
y1 y1Ž . Ž .vertex groups together with the relations y s y , yt g y s s g ,

Ž . Ž .;g g G , ; y g E X , and y s 1, ; y g E T .y
This group is independent of the choice of spanning tree T and is

Ž . w xusually denoted by p GG, X . See 14, 2 for details.
Recall also that if a group G acts on a tree G with quotient graph

Ž .X s GrG the graph of orbits of the action of G on G , then there is a
Ž . Ž .natural graph of groups GG, X whose vertex edge groups are the

Ž .stabilizers of the corresponding vertex edge of G. One of the main
w x Ž .theorems of Bass]Serre theory 14, 2 then asserts that G ( p GG, X .

Thus a presentation of a group G is known once its action on a tree is
understood. We shall exploit this to study the structure of a maximal
subgroup of S ) S by finding a natural action of this group on a suitable1 U 2
tree. The resulting graph of groups will be an arbitrary bipartite graph of
groups in general, quite in contrast to the situation for amalgamated free

w xproducts of groups whose associated graph of groups is a segment 14 .

2. STRUCTURE OF THE MAXIMAL SUBGROUPS

Throughout this section G, H, and U will denote groupoids with G l H s U
such that U contains all of the identities of G and of H. Recall that Theorem
1 provides us with a normal form for elements of the amalgamated free

Ž .product A s G) H. Fix an identity object e of U: we are interested inU
calculating the structure of the vertex group A of A s G) H at e. Fore U

w xeach element a g A denote by aU resp. aG, aH the left coset in A of U
w x � Ž . Ž .4resp. G, H containing a. Thus aU s au : u g U, t a s i u , etc.

Ž .Define a graph X as follows. The set V X of vertices of X is

� 4 � 4V X s aG : a g A j aH : a g AŽ .

Ž .and the set E X of positively oriented edges of X isq

� 4E X s aU : a g A .Ž .q

w x Ž . wThe initial resp. terminal vertex of the edge aU is i aU s aG resp.
Ž . x Ž .y1t aU s aH . The inverse of the edge aU is denoted by aU : clearly
ŽŽ .y1 . ŽŽ .y1 .i aU s aH and t aU s aG. The set of inverses of positively

Ž .oriented edges is denoted by E X and the set of edges of X isy
Ž . Ž . Ž .E X s E X j E X . It is clear from the construction of X that X isq y

a bipartite graph: the vertices of X are naturally partitioned into two
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Ž .disjoint set cosets of G in A and cosets of H in A and each edge of X
has initial vertex in one of these sets and terminal vertex in the other. We
shall show that in fact X is a forest. We first record two easy lemmas for
future reference.

w xLEMMA 1. If a, b g A then aG s bG resp. aH s bH, aU s bU if and
y1 w y1 y1 xonly if a b g G resp. a b g H, a b g U .

Proof. Suppose aG s bG. By definition this means that a s bg for
some g g G, where this is an equation in the groupoid A. This implies

Ž . Ž . Ž . Ž . Ž . Ž . y1that i a s i b , t a s t g , and t b s i g in A. Thus the element a b
Ž y1 . Ž . Ž y1 . Ž . y1is defined in A, i a b s t g and t a b s i g . Furthermore, a bg

s ay1a is an identity of A so ay1 bggy1 s ay1agy1 s gy1 and since ggy1

is also an identity of A we have ay1 bggy1 s ay1 b, so ay1 b s gy1 g G.
Conversely, if ay1 b g G, then ay1 b s g for some g g G so aay1 b s ag,

y1 Ž .so b s ag since aa is the identity at i b . It follows that aG s bG, as
required.

In order to simplify the statements of several subsequent results it is
convenient to introduce the following notation, which is suggested by
analogy with standard notation in semigroup theory. If e and f are
identities of a groupoid G we write e DDG f if e and f are in the same

w x Gconnected component of G. It is well known 5 that e DD f if and only if
there is g g G such that ggy1 s e and gy1 g s f : in this case gG gy1 s G .f e
In the sequel we refer to the connected component of f in G as the
DD-class of f in G and denote it by DG.f

w xLEMMA 2. If a, b g A and aG s bG resp. aH s bH, aU s bU then
Ž . Ž . Ž . G Ž . w Ž . H Ž . Ž . U Ž .xi a s i b and t a DD t b resp. t a DD t b , t a DD t b .

Proof. This is clear from the argument used in the proof of the
previous lemma.

LEMMA 3. The graph X is a forest.

Proof. If X is not a forest it must have a cyclically reduced circuit
Ž . Ž .e , e , . . . , e }a sequence of edges without backtracking and with i e1 2 k s

Ž . Ž . Ž . y1s t e , i e s t e and e / e . Without loss of generalitysy1 1 k 1 k

y1 y1e s a U, e s a U , . . . , e s a UŽ . Ž .1 1 2 2 k k

for some a g A. We must then have that k is even andi

a H s a H , a G s a G, . . . , a H s a H , a G s a G,1 2 2 3 k ky1 k 1

so there exist h , . . . , h g H and g , . . . , g g G such that1 k r2 1 k r2

a s a g , a s a h , . . . , a s a g , a s a h .1 k 1 k ky1 1 3 2 k r2 2 1 k r2
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y1 Ž .Furthermore, since e / e we must have g f U or else a U s a U .1 k 1 1 k
Similarly since the circuit has no backtracking, g f U for each i andi
h f U for each i, so thati

h , . . . , h g H y U, g , . . . , g g G y U.1 k r2 1 k r2

Then

a s a g s a h g s a g h g s ??? s a h g . . . h g h g .1 k 1 ky1 1 1 ky2 2 1 1 1 k r2 k r2 2 2 1 1

Hence

ay1a s ay1a h g . . . h g h g s h g . . . h g h g1 1 1 1 k r2 k r2 2 2 1 1 k r2 k r2 2 2 1 1

is an identity of A. This contradicts Corollary 1, so X is a forest.

For each identity e of A denote by X the connected component of Xe
containing the vertex eG. Clearly X is a tree. Let us analyze the nature ofe
this tree in more detail. Choose any element a g A and write a in normal

Ž . Ž . Ž .form 1 a s a a . . . a u as in Theorem 1. Suppose that i a s i a s e1 2 n 1
Ž .an identity of A . Consider the case in which a is a coset representative1
for U in G. Then by Lemma 1, a G s eG, so a U is an edge in X with1 1 e
Ž . Ž . Ž . Ž .i a U s a G s eG and t a U s a H. Since t a s i a and a is a1 1 1 1 1 2 2

coset representative of U in H we have a H s a a H and so a a U is an1 1 2 1 2
Ž . Ž .edge in X with i a a U s a a G and t a a U s a a H s a H. Con-e 1 2 1 2 1 2 1 2 1

tinuing by induction we see

LEMMA 4. For each element a g A, aG and aH are ¨ertices of X and aUe
Ž . Žis an edge of X if and only if i a s e. The subtrees X and X for e and fe e f

.distinct identities of A are disjoint.

Ž .There is an obvious partial left action of the groupoid A on the forest
Ž . ŽX. Namely, if a, b g A then a. bU s abU if ab is defined in A i.e., if

Ž . Ž .. Ž . Ž .t a s i b and similarly a. bG and a. bH are defined in this case. From
Ž .Lemma 4 it follows that if a g A the vertex group of A at e then a actse

on X ; i.e., aX : X and this action is well defined. Thus the group Ae e e e
acts in a natural way on the tree X . From the fundamental theorem ofe

w xBass]Serre theory 14, 2 we obtain information about the structure of Ae
by studying the orbits and stabilizers of this action.

Ž . wLEMMA 5. For each a g A for which i a s e the orbit of aG resp. aH,
xaU under the action by A ise

w x GO aG s bG resp. bH , bU : i b s e and t a DD t bŽ . Ž . Ž . Ž .�
H Uresp. t a DD t b , t a DD t b .Ž . Ž . Ž . Ž . 4



HAATAJA, MARGOLIS, AND MEAKIN46

Ž .Proof. Suppose that bG g O aG . Then there exists c g A such thate
Ž . Ž . Ž .bG s c.aG. Since i c s t c s e s i a we see immediately by Lemma 2

Ž . Ž . G Ž . Ž . Ž . Ž .that i b s e and t b DD t ca s t a . Conversely suppose that i a s i b
Ž . G Ž . Ž . Ž .s e and t a DD t b . Then there exists some edge c in G with i c s t a

Ž . Ž . y1and t c s t b . Consider the element d s acb g A . Clearly d.bG se
y1 Ž .acb bG s acG s aG by Lemma 1 since c g G. Hence bG g O aG . A

Ž . Ž .similar argument applies to the calculation of O aH and O aU .

Ž . Ž .LEMMA 6. For each a g A with i a s e and t a s f the stabilizer of aG
w x y1 wresp. aH, aU under the action of A on X is aG a resp.e e f

y1 y1 x w xaH a , aU a ; this group is isomorphic to G resp. H , U .f f f f f

Ž .Proof. Let a g A with i a s e. Suppose b g A is in the stabilizer ofe
Ž .aG, i.e., b. aG s aG. Then by Lemma 1 there exists some g g G such

y1 Ž . Ž .that a ba s g. It follows that i g s t g s f , so g g G , and thatf
y1 Ž . y1b s aga and so Stab aG s aG a . It is easy to check that the mapf

b ª ay1 ba is an isomorphism from the stabilizer of aG in A onto G . Ae f
similar argument applies to the stabilizers of aH and aU.

Ž .We now construct a graph of groups GG, Y associated with the groupoid
Ž . ŽA s G) H. Let V Y be the disjoint union of the DD-classes i.e., con-U
. Ž .nected components of G and H. Let E Y be the set of DD-classes of U.q

Ž .For D g E Y setq

D s the DD-class of G containing D, ands

Dt s the DD-class of H containing D.

w x w xFor each DD-class D of G resp. H, U let G resp. H , U be aD D D
Ž .specified vertex group at some vertex in D: if D g E Y let U s U .y D D

Ž .These specified groups will be the vertex and edge groups of GG, Y . For
Ž .D g E Y let K be the vertex group of Ds containing G . Fix anq D

element g g Ds such that gy1Kg s G . The map s : U ª G is thenDs D Ds

given by u ª gy1 ug. We define the map t : U ª H in a similar fashion.D Dt

Ž .This specifies a graph of groups GG, Y . For each identity e of A note that
the DD-class of e in G and the DD-class of e in H are in the same

Ž .connected component of Y, which we denote by Y . Let GG , Y be thee e e
Ž .restriction of GG, Y to Y .e

Ž .THEOREM 3. For each identity e of A, A ( p GG , Y .e e e

Proof. Consider the action of A on the tree X defined above. Thise e
Ž . w xdefines a graph of groups PP , Z in the usual way 14, 2 . We brieflye e
Ž .recall the construction of PP , Z here. The graph Z is the quotiente e e

Ž .graph Z s A R X ; that is, V Z is the set of orbits of vertices of Xe e e e e
Ž .and E Z is the set of orbits of edges of X under the action by A . Let Te e e

be a spanning tree of Z . There is an embedding j: T ª X of T in X .e e e
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Ž . Ž .For each x g V T j E T let P be the stabilizer of jx. Extend j to ax
Ž . Ž .map not a graph morphism from Z to X such that for each y g E Z ,e e q e

Ž . Ž .jy s g jT. The embeddings P ª P for y g E Z are defined as fol-y yt e
Ž . Ž .lows. If y f E Z y E T then the embedding is the natural embeddingy e

Ž . Ž Ž .. Ž . Ž . Ž . Ž .of Stab jy into Stab j yt . If y g E Z y E T then j yt / jy ty e
Ž .but they are in the same orbit: if we choose g g A such that jy t sy e

Ž . y1g j yt , then define the embedding P ª P by p ª g pg . Then by they y yt y y
Ž .fundamental theorem of Bass]Serre theory, A ( p PP , Z .e e e
Ž . Ž .Hence it suffices to show that the graphs of groups PP , Z and GG , Ye e e e

Ž w x .are conjugate isomorphic see 2, p. 202 for this concept . We need
isomorphisms between Z and Y and between corresponding vertex ande e
edge groups of the two graphs of groups that are compatible up to
conjugation with the embeddings of edge groups into vertex groups.

There is a map f : Z ª Y defined as follows. For each a g A fore e
Ž .which i a s e we define

G H Uf : O aG ª D resp. f : O aH ª D , f : O aU ª D .Ž . Ž . Ž .tŽa. tŽa. tŽa.

Lemmas 4 and 5 guarantee that f is well-defined, one-to-one, and onto.
Since aU: aG ª aH in X and DU : DG ª D H in Y it is clear that fe tŽa. tŽa. tŽa. e
is a graph isomorphism.

We now define isomorphisms between the corresponding vertex groups
of the two graphs of groups. We need some notation in order to provide a
clear definition of these isomorphisms.

Let T be the spanning tree of Z and j: T ª X the embedding that ise e
extended to a map j from Z to X as described above. For each a g Ae e

w x G w H U xdenote by a resp. a , a the identity of D resp. D , D that isG H U tŽa. tŽa. tŽa.
Ž .specified in the definition of the graph of groups GG, Y . Each vertex of Ze

Ž .is an orbit of a vertex of X under the action by A : for the vertex O aGe e
w Ž .x Ž . Ž Ž Ž ...resp. O aH the corresponding vertex group of PP , Z is Stab j O aGe e
w Ž Ž Ž ...x Ž Ž Ž .. wresp. Stab j O aH . To simplify notation, denote j O aG resp.
Ž Ž Ž ..x U w U xj O aH by a resp. a . By Lemma 6,G H

y1 y1U U U U U U
U UStab a s a G a resp. Stab a s a H a .Ž . Ž .G G tŽa . G H H tŽa . HG H

U Ž . w U Ž .xSince a g O aG resp. a g O aH it follows from Lemma 6 thatG H
Ž U . G w Ž U . H x w xt a g D resp. t a g D so there exists g g G resp. h g HG tŽa. H tŽa. a a

such that
U Ug : t a ª a resp. h : t a ª a .Ž . Ž .a G G a H H

Ž U . U Uy1 y1
UDefine f : Stab a G ª G by a sa ª g sg for s g G . It isG a G G a a tŽa .G G

Ž U .easy to check that f is an isomorphism from the vertex group Stab a GG
Ž . Ž .of PP , Z to the vertex group G of GG , Y . Similarly the map f :e e a e eG

Ž U . U Uy1 y1
UStab a H ª H defined by a sa ª h sh for s g H is anH a H H a a tŽa .H H

isomorphism.
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We now define isomorphisms between the corresponding edge groups of
the two graphs of groups. Let y be a positively oriented edge of Z ande

Ž . Ž .suppose that jy s aU, so y s O aU . The edge group of y in PP , Z ise e
Ž . y1Stab aU s aU a and the map f from this edge group to the corre-tŽa.

Ž . y1 y1sponding edge group U in GG , Y is given by asa ª u su , where u :a e e a a aU
Ž .t a ª a is in U. It remains to show that, up to conjugation, theU

Ž .morphisms f between vertex edge groups respect the embeddings of
edge groups into vertex groups. We provide a proof below: the reader may
find it convenient, in the following proof, to sketch a diagram of the
relevant arrows and vertices of A indicated in the proof.

Ž .Suppose first that the edge y s O aU is in T and that jy s aU. Then
by definition of aU and aU it follows that aG s aU G and aH s aU H soG H G H
there exist g g G and h g H such that a s aU g and a s aU h . Take1 1 G 1 H 1

y1 Ž .an element asa g Stab aU for some s g U . ThentŽa.

y1U Uy1 y1 y1 y1 y1asa sf s asa f s a g sg a f s g g sg g ,Ž . Ž . Ž .Ž .G 1 1 G a 1 1 a

and

asay1 fs s uy1su s s gy1 uy1su gŽ . Ž .a a a a

for some g g G. Since gy1 uy1 and gy1 g are both elements of G witha a 1
Ž . Ž y1 .initial identity a and terminal identity t a it follows that asa sf andG

Ž y1 .asa fs are equal up to conjugation by an element of G . SimilarlyaG
Ž y1 . Ž y1 .asa tf and asa ft are equal up to conjugation by an element of
H .aH

Ž .Suppose finally that y s O aU is a positively oriented edge of Z thate
Ž Ž .. y1is not necessarily in T and let aU s j O aU . As before, if asa g

Ž . Ž y1 . y1 y1Stab aU for some s g U , then asa sf s g g sg g for sometŽa. a 1 1 a

Ž y1 . y1 y1g g G and asa fs s g u su g for some g g G, and these are1 a a
equal up to conjugation by an element of G . Finally, since g .aH s aU Ha y HG

there exists some h g H such that1

y1U Uy1 y1 y1 y1 y1 y1asa tf s g asa g f s a h sh a f s h h sh h ,Ž . Ž .Ž . Ž .y y H 1 1 H a 1 1 a

and

asay1 ft s uy1su t s hy1 uy1su hŽ . Ž .a a a a

for some h g H. Again we see that hy1 h and hy1 uy1 are elements of Ha 1 a
Ž . Ž y1 .with initial identity a and terminal identity t a so asa ft andH

Ž y1 .asa tf are equal to conjugation by an element of H . We have provedaH

Ž . Ž .that the graphs of groups PP , Z and GG , Y are conjugate isomorphice e e e
Ž .and hence A ( p GG , Y , as desired.e e e
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ŽAs a consequence of the Nambooripad]Pastijn theorem Theorem 2
.above it is possible to reformulate Theorem 3 in an equivalent form that

provides structural information about the maximal subgroups of an amal-
gamated free product S ) S in the case where S , S and U are regular1 U 2 1 2
semigroups with U full in S and S . For the convenience of the reader, we1 2
provide this reformulation below. The proof of the resulting theorem is an
immediate consequence of Theorems 2 and 3 and the equivalence between
the category of regular semigroups and the category of inductive groupoids.

w xLet S , S ; U be an amalgam of regular semigroups with U full in S1 2 1
Ž .and S and let S s S ) S . Construct a graph of groups SS , W in the2 1 U 2

Ž .following fashion. Let V W be the disjoint union of the DD-classes of S1
Ž . Ž .and S . Let E W be the set of DD-classes of U. For D g E W set2 q q

Ds s the DD-class of S containing D, and1

Dt s the DD-class of S containing D.2

w x Ž1. w Ž2. xFor each DD-class D of S resp. S , U let S resp. S , U be a1 2 D D D
Ž .specified maximal subgroup in D: if D g E W let U s U . Thesey D D

Ž .specified groups will be the vertex and edge groups of SS , W . For
Ž . Ž1.D g E W let K be the maximal subgroup of Ds containing S . Fix anq D

element g g Ds such that gy1Kg s S Ž1. . The map s : U ª DŽ1. is thenDs D Ds

given by u ª gy1 ug. We define the map t : U ª S Ž2. in a similar fashion.D Dt

Ž .This specifies a graph of groups SS , W . For each identity e of A note that
the DD-class of e in S and the DD-class of e in S are in the same1 2

Ž .connected component of W, which we denoted by W . Let SS , W be thee e e
Ž .restriction of SS , W to W . We have the following theorem as an immedi-e

ate corollary of Theorems 2 and 3.

w xTHEOREM 4. Let S , S ; U be an amalgam of regular semigroups with U1 2
full in S and S and let S s S ) S . Then for each idempotent e g S, the1 2 1 U 2

Ž .maximal subgroup of S containing e is isomorphic to p SS , W .e e

3. SOME APPLICATIONS AND EXAMPLES

In this section we discuss some examples and applications of the
theorem proved in the previous section. The examples that we consider are
examples of inverse semigroup presentations, where the situation is partic-
ularly pleasant. We shall employ standard notation from inverse semigroup

w xtheory and refer the reader to Petrich’s book 13 for any undefined
notation.

EXAMPLE 1. Let S s S be the bicyclic monoid B. That is, B s1 2
² : ŽMon a, b : ab s 1 or, when presented as an inverse monoid, B s

² y1 :.Inv a : aa s 1 . Let U be a full inverse submonoid of B. If U is just
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the semilattice of idempotents of B then clearly U has infinitely many
DD-classes. It is well known that all other full inverse subsemigroups of B
have only finitely many DD-classes. There is exactly one full embedding of
U in S and S . It is clear that the inverse monoid S s S ) S is bisimple1 2 1 U 2

Žwith the same semilattice of idempotents as B a chain isomorphic as a
. Žposet to the negative integers : that is, S is a bisimple v-semigroup in the

.standard notation of semigroup theory . The maximal subgroups of S may
be easily calculated from Theorem 4. Since S and S are bisimple the1 2

Ž .graph W has two vertices S and S . The number of positively oriented1 2
edges in W is equal to the number of DD-classes in U. Since all vertex and

Ž .edge groups are trivial the bicyclic monoid is combinatorial , the graph of
Ž .groups SS , W is just the graph W. Hence its fundamental group is just a

Žfree group whose rank is one less than the number of DD-classes in U or
.this rank is infinite if U is just the semilattice of idempotents of B .

Remark. The semigroup S s S ) S constructed in Example 1 is a2 U 2
Ž . Ž .bisimple v-semigroup of the form B G, a , where G is a free group and

Ž w xa is an endomorphism of G see 13 for an explanation of this notation
.and for the structure of such semigroups . While the rank of the free

group G is determined solely by the number of DD-classes in U, the
endomorphism a is not. There are n non-isomorphic full inverse subsemi-
groups of B that contain n DD-classes and these all yield a free group of

Ž .rank n y 1, but the corresponding subsemigroups B G, d are associated
with different endomorphisms a and are non-isomorphic semigroups. It is
clear that one may extend Example 1 somewhat to the study of amalgams
of the form S ) S , where S S , and U are all bisimple v-semigroups1 U 2 1 2
Ž .with U full in S and S . The nature of the associated endomorphisms1 2
determines the structure of the resulting semigroup.

Example 1 illustrates the following observation, which is an immediate
consequence of Theorem 4.

w xCOROLLARY 2. Let S , S ; U be an amalgam of regular semigroups with1 2
U full in S and S and let S s S ) S . If S and S are both combinatorial1 2 1 U 2 1 2
then e¨ery maximal subgroup of S is a free group.

Proof. If S and S are both combinatorial then all vertex and edge1 2
Ž . Ž .groups of SS , W are trivial, so SS , W is just a graph, and its fundamental

group is a free group.

Similarly one obtains the following results directly from Theorem 4.

w xCOROLLARY 3. Let S , S ; U be an amalgam of regular semigroups with1 2
U full in S and S and let S s S ) S . If U is combinatorial then e¨ery1 2 1 U 2
maximal subgroup of S is a free product of maximal subgroups of S and S1 2
and a free group.
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w xCOROLLARY 4. Let S , S ; U be an amalgam of regular semigroups with1 2
U full in S and S and let S s S ) S . Then S is combinatorial if and only1 2 1 U 2
if S and S are both combinatorial and the corresponding graph of groups1 2
Ž .SS , W is a forest.

Ž .EXAMPLE 2. Denote by B G the n = n Brandt semigroup with maxi-n
mal subgroup G in its non-zero DD-class. If U is an inverse subsemigroup

Ž .of B G then clearly every non-zero idempotent of U is primitive, so U isn
Ž .a 0-disjoint union of Brandt semigroups. Suppose now that S s B G fori n i

i s 1, 2 and that U is a full inverse subsemigroup of each S withi
w xU s S l S . Then all of the non-zero idempotents of S resp. S are in1 2 1 2

the same DD-class of S s S ) S and each non-zero idempotent of S is1 U 2 1
identified with some non-zero idempotent of S in S, so in fact S must be2
an n = n Brandt semigroup. The structure of the non-trivial maximal
subgroup of S is immediately determined from Theorem 4.

Ž . Ž .For example, suppose that S s B G and S s B G , where G s1 2 1 2 2 2 1
Ž . Ž .Z the cyclic group of order 4 and G s Z . Let U s B H where4 2 6 2

H s Z . There is a unique embedding of Z in Z and a unique embed-2 2 4
ding of Z in Z and these embeddings extend in an obvious way to full2 6
embeddings of U in S and S . By Theorem 4, the non-zero maximal1 2
subgroup of S s S ) S is the fundamental group of a segment whose1 U 2
vertex groups are Z and Z and whose edge group is Z , so this group is6 4 2
isomorphic to the amalgamated free product Z ) Z in the category of6 Z 42

Ž . Žgroups, which is isomorphic to SL Z by a well-known isomorphism see2
w x.14, p. 11 .

On the other hand, if S and S are as above and U is a full1 2
subsemigroup of S that is a semilattice of three groups, two of which arei
isomorphic to Z and the other is trivial then the corresponding graph of2
groups has three positively oriented edges instead of two and the maximal
subgroup of the non-zero DD-class of S is the fundamental group of the
graph of groups with two vertices and two positively oriented edges
between these vertices. The vertex groups are Z and Z and both edge4 6
groups are Z .2

We indicate in the next example how a finite inverse semigroup may be
decomposed as an amalgamated free product of simpler inverse semi-
groups in a non-trivial way. This is quite in contrast to the situation in
group theory, where any non-trivial amalgamated free product is necessar-
ily infinite.

EXAMPLE 3. Let S and S be copies of the six element semigroup1 2
which is a 0-direct union of the five element combinatorial Brandt semi-
group and the two element semilattice. Thus we may write S si
� y1 4e , f , a , a , g , 0 for i s 1, 2 with e , f and g idempotents andi i i i i i i i i

a ay1 s e , ay1a s f , a e s a s f a , e ay1 s ay1 s ay1 fi i i i i i i i i i i i i i i i
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and all other products in S are 0 . Leti i

qf s e , qf s g , rf s f , rf s e , sf s g , sf s f , 0f s 0 .1 1 2 2 1 1 2 2 1 1 2 2 i i

Ž .The corresponding graph of groups SS , W has six vertices and eight edges
with incidence given by the f maps since the DD-relation is trivial in U.i

Ž .Since S and S are combinatorial, SS , W is just a graph W. The1 2
connected components of W are trees. Hence S s S ) S is combinato-1 U 2
rial. Notice that the images of e and g are DD-related in S since, in S,1 1

Ž .y1 Ž .y1e s a a a a and g s a a a a . Hence S is the ten-element1 1 2 1 2 1 1 2 1 2
combinatorial Brandt semigroup.

We shall return to this phenomenon of decomposing a finite inverse
semigroup as a non-trivial amalgamated free product. We first provide a
characterization of the class of graphs of groups belonging to DD-classes of
amalgamated free products. It is clear from the definition of the graph of

Ž .groups SS , W belonging to S s S ) S that W is bipartite. Hence if1 U 2
Ž . Ž .SS ,W is the component of SS , W belonging to the DD-class D of S,1 1
then W is connected and bipartite. In fact the converse is true.1

Ž . ŽTHEOREM 5. If SS , W belongs to the DD-class D of S s S ) S with1 U 2
.S , S , and U regular and U full in S and S , then W is connected and1 2 1 2

Ž .bipartite. Con¨ersely if SS , W is a graph of groups and W is connected and
bipartite, then there is an in¨erse semigroup S s S ) S with U full in S and1 U 2 1

Ž .S , and a DD-class D of S such that SS , W belongs to D.2

Ž .Proof. Suppose that SS , W is a graph of groups with W connected and
Ž . Ž .bipartite, so that V W is a disjoint union V W s V j V and edges of1 2

W connect vertices in V with vertices in V . We construct inverse1 2
Ž .semigroups S , S , and U such that SS , W belongs to the non-zero1 2

DD-class of S s S ) S .1 U 2
Ž . � 4Define U to be D G j 0 with multiplication of g g G andy g EŽW . y 1 y1

g g G given by g . g s g g if y s y and all other products are 0.2 y 1 2 1 2 1 22

That is, U is the 0-disjoint union of all the edge groups of W. We build S1
and S by first constructing a collection of Brandt semigroups and then2
taking 0-disjoint unions of these Brandt semigroups.

Ž . � Ž . Ž . 4Let ¨ be a vertex of W. Let Star ¨ s y g E W : i y s ¨ and letq
Ž . < Ž . < w xS s B G , where n s Star ¨ . Then let S resp. S be the 0-disjoint¨ n ¨ 1 2

w x Ž .union of the S with ¨ g V resp. ¨ g V . For y g E W let y denoteˆ¨ 1 2
� 4the edge in y, y whose origin is in V . Then define f : U ª S by 0 ª 01 1 1

Ž Ž . .and if g g G then g ª y, s g , y . The map f is constructed in aˆ ˆy 2
similar fashion. One checks that S ) S is a Brandt semigroup: denote its1 U 2

Ž .non-zero DD-class by D. If we let HH, X be the graph of groups determined
w x Ž . Ž .by the amalgam S , S ; U then it is routine to see that HH , X ( SS , W .1 2 D D
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Ž .COROLLARY 5. E¨ery tree of groups GG, T for which T is a tree with at
least two ¨ertices arises in this setting.

Proof. It is clear that a tree with at least two vertices is a bipartite
graph.

The reader may contrast this with the situation that occurs with group
amalgams, where the underlying graph of the associated graph of groups is
a segment. The wide class of graphs of groups that can arise in connection
with inverse semigroup amalgams gives rise to multiple decompositions of

Ž .inverse semigroups even finite ones as non-trivial amalgamated free
Ž� 4.products. Let B s B 1 be the n = n combinatorial Brandt semigroupn n

Ž .and let E s E B be its semilattice of idempotents. As we saw inn n
Example 3, B can be expressed as a non-trivial amalgamated free product3
over its semilattice E .3

Given a tree with n edges we can construct the non-zero DD-classes of
two inverse semigroups S and S and write B s S ) S as in the proof1 2 n 1 E 2n

of Theorem 5. Conversely, suppose that B s S ) S is a decompositionn 1 E 2n

of B . Then S and S are combinatorial and by Corollary 4 the graph ofn 1 2
groups belonging to the non-zero DD-class of B is a tree T , which has nn
edges by definition. The set of idempotents of each DD-class D of S or S1 2
is in one to one correspondence with the set of edges in the star set of the
vertex of T corresponding to D. Hence the structure of the non-zero
DD-classes of S and S can be read off T as above. We have proved:1 2

THEOREM 6. The number of non-isomorphic decompositions of B sn
S ) S is equal to the number of non-isomorphic trees ha¨ing n edges.1 E 2n

For example, B can be written as a non-trivial amalgamated free9
product over its semilattice of idempotents in 105 different ways. Of course
there are many more ways to write B as an amalgamated free product.9

We close by remarking that the structure of amalgamated free products
S ) S of inverse semigroups in the case where U is not full in S and S1 U 2 1 2
is far from understood. Some recent work along these lines is contained in

w xthe thesis of Bennett 1 and several other ‘‘ad hoc’’ cases have been
considered, but the general case seems to be very complex. Even the
structure of the free product S )S of two inverse semigroups is relatively1 2

Ž w x .complicated see 6]8 for details .
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