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Abstract

We construct the freest idempotent-pure expansion of an inverse semigroup, generalizing an expansion
of Margolis and Meakin for the group case. We also generalize the Birget-Rhodes prefix expansion
to inverse semigroups with an application to partial actions of inverse semigroups. In the process of
generalizing the latter expansion, we are led to a new class of idempotent-pure homomorphisms which
we term F-morphisms. These play the same role in the theory of idempotent-pure homomorphisms that
F-inverse monoids play in the theory of £-unitary inverse semigroups.
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Birget-Rhodes expansion.

1. Introduction

Expansions have played an important role in the semigroup theory literature, yet the
only widely used 'expansions' in inverse semigroup theory have had as domain the
category of groups: namely the prefix expansion of Birget and Rhodes [3], and the
Cayley graph expansion of the second author and Meakin [11]. In this paper, we,
amongst other things, make these constructions true expansions by generalizing them
to arbitrary inverse semigroups. Applications are given to partial actions of inverse
semigroups.

The prefix expansion turns out to have a universal property in terms of what
we shall call F-morphisms. These are surjective homomorphisms cp : S —> T of
inverse semigroups such that t(p'[ has a maximum for each t e T; such morphisms
are necessarily idempotent-pure. An inverse monoid is F-inverse if and only if its
maximal group image homomorphism is an F-morphism. We show that F-morphisms
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are the analog of F-inverse monoids when one transfers the theory of £-unitary inverse
semigroups to surjective idempotent-pure homomorphisms. In particular, we prove
that if <p : S —> T is idempotent-pure, then <p = jfl with j an embedding and fi an
F-morphism. From this, one obtains in a straightforward way Billhardt's result on
factoring idempotent-pure morphisms through X-semidirect product projections.

2. Notation

Let A be a set and A = A U A"1. We will denote by A+ (A*) the free semigroup
(monoid) with involution on A and by FG(A) the free group on A. If S is an A-
generated inverse semigroup and w e A+, then [w]s will denote the image of w in S.
If 5 is an inverse semigroup, E(S) will denote the idempotents of S. In this paper,
we will only deal with inverse semigroups. We leave to the reader the straightforward
adjustments needed to handle the case of inverse monoids.

Inverse semigroup presentations will be written Inv(A | R) where A is the gener-
ating set and R the set of relations.

We use Inv for the category of inverse semigroups and homomorphisms, and we
use InvA for the category of A-generated inverse semigroups with homomorphisms
respecting the generators. Homomorphisms will also be called morphisms.

Green's relations and the natural partial order for inverse semigroups will be used
throughout; see [10, 16].

3. Expansions

An expansion of inverse semigroups is a functor F : Inv —> Inv equipped with
a natural transformation t) : F —*• lim such that each component r)S : F(S) -*• S
is surjective; expansions were introduced by Birget and Rhodes [2]. In other words,
an expansion assigns to each inverse semigroup S a semigroup F(S) and an onto
morphism r]s '• F(S) -> S such that whenever r : S —>• T is a morphism, the
following diagram commutes:

F( r )
F(S) :—• F(T)

T.

An expansion of inverse semigroups cut-to-generators is an assignment to each set
A of a functor FA : Inv^ —*• Inv,, with a natural transformation r)A : FA -» l\mA. In
general, we will consider a fixed set A and drop the subscript from the notation.
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4. Schiitzenberger graphs

Recall that two elements s, t of an inverse semigroup 5 are said to be H-equivalent
if ss~l = tt~l. The 7^-class of 5 is denoted Rs. If 5 is generated by A, then, for
w € A+, the Schiitzenberger graph of w, S{w), has vertices RMs and edges of the
form (s, a, t) where a € A, s, t e R[W]S>

 a n d sa = t. If (s, a, ?) is an edge, then
(t, a~\ s) will represent the same edge thought of as being traversed in the opposite
direction. The idempotent [ww~l]s is taken as the initial vertex and [w]s as the final
vertex. Observe that S(w) is dependent only on [w]s and so we can write S(s), for
s e S, without ambiguity. Also note that any two 7£-equivalent elements of 5 have
the same graph, up to the choice of the terminal vertex, while P-equivalent elements
have isomorphic Schiitzenberger graphs (here, up to the choice of initial and terminal
vertices). Schiitzenberger graphs were introduced by Stephen [21].

We let L(S(w)) be the collection of all words of A+ which read a path in S{w)
from the initial vertex to the terminal vertex. It is easy to check that v € L(S(w)) if
and only if [w]s < [v]s in the natural partial order. Schiitzenberger graphs are well
known [21] to be inverse graphs meaning that if a Schiitzenberger graph has edges
(s, a, t), (s, a, t') with a e A, then t = t'. Hence every word in A+ labels at most one
path into or out of any vertex. In general, an inverse automaton is a connected inverse
graph with distinguished initial and terminal vertices.

We observe that if cp : T —*• S is a morphism of A-generated inverse semigroups
respecting generators then <p induces, for each w e A+, an automaton morphism
<pw : S(w)T -> S(w)s (where the subscript indicates which semigroup is being con-
sidered). A morphism is called idempotent-pure if the inverse images of idempotents
consist of idempotents. For a morphism of A-generated inverse semigroups, this is
equivalent to asking that <pw be an embedding for each w e A+. This follows from
the following well-known facts: a morphism is idempotent-pure if and only if it is
injective when restricted to 7£-classes [10]; a morphism of inverse automata is an
embedding if and only if it is injective on the vertex set [20, 21]. For the case of
E-unitary inverse semigroups, see [12].

The following key observation is due to Stephen [21].

PROPOSITION 4.1. Let S be an A-generated inverse semigroup and v, w e A+.
Then [v]s = [w]s if and only if L(S(v)) = L(S(w)).

In particular, if all the Schiitzenberger graphs of 5 are finite, the word problem for S
is solvable provided the Schiitzenberger automata are constructible. Indeed, there is
an algorithm to check whether two finite automata accept the same language. Often
this can be done, see [21].

COROLLARY 4.2. Let S be an A-generated inverse semigroup with finite TZ-ciasses.

Then S is residually finite.
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PROOF. The transition semigroups of the Schiitzenberger graphs are clearly homo-
morphic images of S and are finite since the 7^-classes are finite. Suppose v, w 6 A*
are such that [v]s ^ [w]s, then L(S(v)) ^ L(S(w)) by Proposition 4.1, so v and
xv cannot act the same on the vertices of both S(v) and S(w). Thus v and w can be
separated in a finite image of S. •

Hence, by a well-known result of Evans [6], it follows that if S has finite Schiitzen-
berger graphs, is recursively presented, and one can effectively enumerate the finite
inverse semigroups satisfying the defining relations of S, then one can decide the word
problem for S.

The following is observed in [13].

PROPOSITION 4.3. Suppose S = lnv{A | R) where R consists of relations of the
form tm = tm+n with n < m. Then the Schiitzenberger graphs of S are finite.

This will also follow from our results (although the proof is basically the same).
Note that if s, t e S, then, since the 7?.-relation is a left congruence, left multipli-

cation by 5 on the vertex set of S(t) induces a labeled graph morphism from S(t) to
S(st) respecting the terminal vertices (though not necessarily the initial vertices). On
the other hand, left multiplication by stt~ls~] is easily seen to induce a labeled graph
morphism from S(s) to S(st) respecting the initial vertices (but not necessarily the
terminal vertices); this follows since (st)(st)~l =stt~ls~l <ss~l. If X is a subgraph
of S(t), then sX will denote the image of X (in S(st)) under the action of s. Observe
that if t e s~lsS (or, equivalently, tt~l < s~ls), then left multiplication by 5 induces
an isomorphism of labeled graphs (with inverse, left multiplication by s~l).

LEMMA 4.4. Let S be an A-generated inverse semigroup and u,v€ A+. Suppose
that Pu is the path read in S(u) from [uu~l]s by u and Pv is the path read in
S{v) from [vv~x]s by v. Then the path read by uv in S(uv) from [MU(MU)~']S is
[uvv-lu-l]sPll\J[uhPu.

PROOF. From what we have so far observed, [«i;u'l«"l]jr'k is a path labeled by u
from [uv(uv)~]]s in S(uv) whose endpoint must be [uvv~lu~lu]s = [uvv~l]s. On
the other hand, uPv is a path labeled by v in S(uv) with endpoint [uv]s and hence
whose starting point is [«UD"']J. It thus follows that the path read by uv in S(uv) is
precisely [MUU-'M~1]S/>

B U [U]SPV. •

We end this section with a related proposition.

LEMMA 4.5. Let S be an A-generated inverse semigroup and u € A+. Suppose
u = vw. Then in S(u), the paths u and uw~] use the same edges. Also,
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PROOF. Clearly any edges used in reading u is used in reading uw~l. While
reading u = vw from [ « M ~ ' ] S to [u]s, we read a path P labeled by w from [uu~iv]s

to [u]s. Hence uw~l first traverses the path labeled by u and then backtracks over the
subpath P: no new edges are used. The second statement follows since

MUJ-'CWU)"1)"1 = uw~iwu~i = vww~lww~lv~l = vww~lv~i = uu~l. •

5. Free idempotent-pure expansions

In this section, we introduce an expansion cut-to-generators (_)S1 such that each
component of the natural transformation r\ is idempotent-pure, and with the following
universal property: if <p : T —• S is an idempotent-pure morphism (T generated by
A), then there is a unique (necessarily idempotent-pure) morphism i/r : SSI —*• T such
that ijf<p = r)s-

5.1. Presentations Before giving an explicit construction, we will give a presen-
tation for 5SI and show, using Proposition 4.3, that the Schiitzenberger graphs of this
semigroup are finite.

Let S = Inv(A | R). Then SSI has presentation Inv(A | R') where R' consists of
all relations u = u2 with [u]s an idempotent; if p is the congruence associated to 5,
then the congruence associated to SSI is denoted pmm in [16]. Clearly, the congruence
generated by R' is contained in that of R, so rjs : 5S1 —*• S exists. Since the image
under a morphism of an idempotent is an idempotent, it is clear that (_)SI is a functor
and T) a natural transformation. The finiteness of the Schiitzenberger graphs now
follows from Proposition 4.3. By construction, r)s is idempotent-pure and universal
for this property. Note that if 5 has decidable word problem, the above presentation
is recursive.

We would like to obtain an explicit representation of this expansion (this was done
for the case that 5 is a group by the second author and Meakin [11]). This will allow us
to better understand Green's relations for the resulting inverse semigroup SSI as well as
to see such properties as, for instance, the finiteness of 5 and A implies the finiteness
of SSI. This can be proved by Brown's theorem [5], but our representation will make
this, as well as the finiteness of the Schiitzenberger graphs in general, evident.

First we describe explicitly the congruence on A+ giving rise to 5SI.

THEOREM 5.1. Let S be an A-generated inverse semigroup. Define a relation on
A+ by u = v if[u]s = [v]s, and u and v use the same edges in their respective runs
from [uu~l]s = [t>u~']s in S(u) = S(v). Then = is a congruence and Ssl = A+/=.

PROOF. Clearly = is an equivalence relation. That it is a congruence containing
the Wagner congruence [10] follows immediately from Lemma 4.4. We now show
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that it has the universal property of SS1. Suppose ~ is a congruence on A+ such that

u ~ v = > [u]s = [v]s,

[u]s = [u]2
s => u ~ u2.

Let T = A + / ~ . Then the natural morph i sm <p : T -> 5 is idempotent-pure. Suppose

u,v € A + and u = v. Then w e have the following: <pu : S(u)T - > < S ( H ) S is an

embedding, u runs from [ H H " 1 ] ? - to [u]T in S(u)T, and v runs from [uu~l]s to [u]s

in S(u)s using edges in S(u)T<pu. T h u s v e L(S{u)T) whence [u]T < [v]T- A

symmetr ic argument shows that [v]T < [u]T so [u]T = [v]T- Therefore = c ~ and the

result follows. HI

Note that if 5 has a decidable word problem, this presentation is recursive.

COROLLARY 5.2. Let S be an A-generated inverse semigroup and u e A+ such that

u = vw and[u]s — [uw~l]s. Then [u]sf» = [ «u ) " ' ] j a . In particular, if[u]" = [u]^+n

with n <m, then [u]£, = [u]"£n.

PROOF. This follows immediately from Lemma 4.5. •

COROLLARY 5.3. Let S = Inv(A | R) where R consists entirely of relations of
the form u = uw~l where u — vw, w e A+. Then SSI = S, that is, S has no
non-trivial, idempotent-pure A-generated extensions. In particular, this holds if R
consists entirely of relations of the form tm = tm+n with n < m.

5.2. Structure We now describe the structure of this expansion. Let 5 be an
A-generated inverse semigroup. Let T be the collection of inverse automata over A
which can be obtained as the (finite, connected) subautomaton of S(w) used in reading
w from [ww~l]s to [w]s for some w e A+. Let T be the set of all (X, s) € T x 5
such that X has initial state ss~l and final state 5 (so, by definition of T, X C S(s)).
We define a multiplication by

(Xl,si)(X2,s2) = (siSjS^s^XiUsiXj^^).

From Lemma 4.4, it is clear that if Xi e T corresponds to tui e A+ and X2 corresponds
to w2, then 51s2s^"1sj"'X| U S\X2 corresponds to W\W2. Thus the multiplication on T
is well defined. It is easily checked to be associative and the resulting semigroup is
inverse: (X, s)~l — (s~lX, s~l). In fact, the above argument shows that the map
<p : A+ -> T defined by w<p = (X, [w]s), where X is the collection of edges used
in reading w from [ w u r ' ] s to [w]s in S(w), is a surjection and that the congruence
associated to <p is s . Thus T = 5SI. The map to S is just the projection to the second
coordinate. Summing it all up, we have the following result.
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THEOREM 5.4. Let S be an A-generated inverse semigroup. Then Ssj consists of
all pairs (X, s) where s e S and there is a word w e A+ such that [w]s = s and X is
the subautomaton ofS(w) used in reading w from the initial vertex. The operations
are given by:

The natural transformation r)s is the projection to S; the map from A+ to Ssl takes w
to (X, [w]s) where X is the set of edges read by w in S(w).

For example, if S is a group, then 5SI consists of all pairs (X, s) where s € S and
X is a finite, connected subgraph of the Cayley graph of 5 containing 1 and s, so 5SI

is just the expansion of [11] applied to 5.
We observe that the above inverse semigroup does not in general consist of all pairs

(X, s) where X is a finite, connected subgraph of S(s) containing ss~l and s. Indeed,
if 5 is the free inverse semigroup on x, then the pair (X, x2x~2) where X consists just
of the edge (x2x~2, x, x2x~2x) (and its reverse) is not a valid element of 5SI = 5 as
no word mapping to x2x~2 can avoid passing through the vertex x2.

In [13], it is shown that for the free inverse semigroups satisfying x" = x"+i, any
finite connected inverse automaton over the same alphabet whose transition inverse
monoid satisfies x" = xn+x can be a Schiitzenberger graph. The question for the free
inverse semigroups satisfying x" = x2n seems interesting and hard.

We now restate Theorem 5.4 in a way which makes it clearer which graphs come
up, giving a more semantic description of 5SI.

PROPOSITION 5.5. Let S be an A-generated inverse semigroup. Then 5SI consists
of all pairs (X, s) where X is a finite connected subgraph ofS(s) containing ss~l, s
and there is a word w reading from ss~l to s using all the edges of X such that w
cannot be read in S(t) (from tt~x to t)for any t > s. The operations are given by:

(Xusl)(X2,s2) =

The natural transformation rjs is the projection to S; the map from A+ to SSi takes w
to (X, [w]s) where X is the set of edges read by w in S(w).

PROOF. First we show that if (X, s) is as in the theorem statement, then there is a
word w with [w]s — s and such that w uses precisely the edges of X in S(w) when
reading from ss~l to s. Indeed, let w be a word reading in X from ss~l to s using
every edge of X and which cannot be read on any S(t) (from tt~l to t) with t > s.
Then [w]s > s. Since w can be read on S(w), it follows [w]s = s.
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Suppose now that (X, s) is a valid element of SSI according to Theorem 5.4. Choose
w so that [w]s = s and w uses precisely the edges of X in S(w) when reading from
ss'* to s. Suppose there exists t > s such that w can be read on S(t) from trl to t.
Then s = [w]s > t, a contradiction. •

In our earlier example, any word readable on X is readable on S(x).
In fact it is not hard to show that if S is £-unitary, then the pairs (X, s) which arise

in 5S1 correspond to those subgraphs X of S(s) containing ss~l, s such that there is
no subgraph Y c S(t) with ss~l Y = X and t > s. We do not have as satisfactory a
description in general.

Observe that since r)s is idempotent-pure, the idempotents of 5SI are all pairs of the
form (X, e) with e e E(S). Note that the initial and final states of X will coincide.

Our coordinatization makes the following result obvious.

COROLLARY 5.6. Let A be finite and S be a finite A-generated inverse semigroup.
Then 5SI is also finite.

Let <S = (JV€S S(s). Then the left representation of 5 on itself induces an action
of 5 on the free semilattices F on the set of edges of S. One can then realize SSI

as an inverse subsemigroup of the A.-semidirect product F xi' 5 in an obvious way.
See [1, 10] for the definitions of A-semidirect products.

Our next goal is to characterize Green's relations on 5SI. In particular, we show
that the Schiitzenberger graphs of 5SI are finite. For the rest of this section, we
fix an A-generated inverse semigroup S. Since most of the results are straightfor-
ward calculations (or one can use general results about A-semidirect products or
L-representations [1, 10]), we omit the proofs.

PROPOSITION 5.7. Let (X, s), (Y, t) e SSi. Then (X, s) < (Y, t) if and only ifs < t
andss~lY C X.

Now we can turn to the Green's relations. The easiest to handle will be the TZ-
relation. First we remark that it is easy to see that if (X, s) e SSI and t 6 Ver(X)
(where Ver(X) is the set of vertices of X), then (X, t) e SS1.

PROPOSITION 5.8. Let (X, s) & SSI. Then (Y, t)TZ(X, s) if and only if tils and X
and Y agree except for the terminal vertex.

Dually,

PROPOSITION 5.9. Let (X, s) e SSI. Then (Y, t)C(X, s) ifandonly iftCs ands~lX
and t~'Y agree except for the terminal vertex.
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The above results shows that the £ and 7£-classes are finite. However, much more
can be said.

PROPOSITION 5.10. Let w e A+. Then (rjs)w : S(w)ss> —• S(w)s is an embedding
with image X where (X, [w]s) = [w]ss>. In other words, S((X, s)) is isomorphic to
X under the map which forgets the first coordinate.

PROOF. The two statements are clearly equivalent. By Proposition 5.8, the 7^-class
of an element (X, s) consists of all pairs (Y, t) where Y is obtained by changing
the terminal vertex of X to t. Thus r)s maps the vertices of S((X, s)) bijectively
to the vertices of X. To complete the proof, we need to show that if (s, a, t) is an
edge of X, then ((X, s), a, (X, t)) is an edge of S((X, s)). But we have already seen
(X, s)TZ(X, t) and if w € A maps to (X, s), then since (s, a, t) is an edge ofX c S{t),
it follows that [wa]s = t and uses precisely the edges of X. Thus ((X, s), a, (X, t))
is an edge of S((X, s)) as desired. The result follows. •

COROLLARY 5.11. For any set A and A-generated inverse semigroup S, the
Schiitzenberger graphs ofSsl are all finite.

The W-relation has a particularly pleasant description.

PROPOSITION 5.12. Let (X, e) be an idempotent of Ssl. Then the H-class of(X, e)
is isomorphic to the subgroup of He (the H-class of e) taking X to itself under left
multiplication. In particular, if the maximal subgroups of S are torsion-free, Ssl is
combinatorial (has only trivial subgroups).

PROOF. One easily verifies that (Y, t)H(X, e) if and only if Y = X,t e He and
tX = X. It now follows that the projection to 5 gives the desired isomorphism. Since
the 7£-classes of 5SI are finite, so are the H-classes whence the final statement. •

We remark that the 'D-classes of 5SI are finite since the C and 7^-classes are finite.

5.3. Applications We present an application to the theory of varieties. If V is a
variety of inverse semigroups (a class closed under products, inverse subsemigroups,
and quotients), then SI © V is the variety generated by inverse semigroups with an
idempotent-pure morphism to an inverse semigroup in V. A general nonsense-type
argument shows if F\(A) is the relatively free A-generated inverse semigroup in V,
then FV(A)SI is the A-generated relatively free inverse semigroup in SL © V. Hence
we can deduce the following.

THEOREM 5.13. Let V be a variety of inverse semigroups. Then the relatively free
inverse semigroup in SI © V on any finite set has finite IZ-classes and Schiitzenberger
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graphs. Furthermore, it has a decidable word problem provided the corresponding
free semigroup in V does and the finite members of SI © V are recursively enumerable.

PROOF. It is well known [6] that a residually finite, finitely generated algebra
defined by a recursive set of relations has decidable word problem if its finite images
are recursively enumerable. Under our hypotheses, this is the case for FV(A)S1. •

COROLLARY 5.14. Suppose V is defined by a recursive set of equations of the form
uw~x = u, where u = vw, whose validity can be effectively tested infinite inverse
semigroups; then F\{A) has decidable word problem for any finite set A. In particular,
the variety defined by the equation tm = tm+n with n < m has these properties.

PROOF. By Corollary 5.3, the variety V is fixed by the expansion (_)S1 whence
FV(A) = Fv(i4)si and hence is residually finite. The result now follows from the
above theorem. •

A similar argument to the above ones shows the following.

PROPOSITION 5.15. Let S be an inverse semigroup with a recursive presentation
over a finite set A consisting of relations of the form uw~l = u, where u = vw, which
can effectively be checked in finite A-generated inverse semigroups. Then S has a
decidable word problem.

We mention that the expansion 5G p which relates to Gp © V (where Gp is the
variety of groups) in the same way that 5SI relates to SI © V was investigated in [13].
The reader is also referred to [17].

6. A generalized prefix expansion

In [3], Birget and Rhodes introduce an expansion of semigroups called the prefix
expansion. If 5 is a semigroup, then S** consists of all pairs (X, s) where X is finite
subset of S1 containing 1 and s and which is an <•%-chain. The multiplication is given
by (X, s)(Y, t) = (XDsY,st). This semigroup is generated by the elements ({1, s], s)
and two words in S+ map to the same element of S** if and only if they map to the same
element of 5 and their set of prefixes map to the same set of elements of S (whence
the name). Now if G is a group, then every finite subset is an <7j-chain and G** is
an inverse semigroup where the inverse of (X, g) is (g~lX, g~l), and the projection
r)C : G** -*• G is idempotent-pure. In fact, it is easy to see that (X, g) < (X', g') if
and only if g = g' and X' c X. Thus, for each g € G, the set grj^1 has a maximum
element, namely ({1, g}y g), whence G** is what is called an F-inverse monoid [10].
Our goal in this section is to generalize this expansion to inverse semigroups. A
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word of caution: for the remainder of this paper, if 5 is an inverse semigroup, the
notation S** will denote our new prefix expansion of inverse semigroups and not
the Birget-Rhodes prefix expansion; in general the two only coincide on the class of
groups.

6.1. Dual Prehomomorphisms and F-morphisms First we try to motivate why we
wish to do this. In [22], Szendrei showed that G1"1" is the universal F-inverse monoid
with maximal group image G. That is, given any F-inverse monoid / with maximal
group homomorphism a : I -> G, there is a unique homomorphism yfr : G^ —> I
such that (maxCgrje1))^ = ma\(ga~l).

The first author and Kellendonk [9] then showed that GPr has another important
universal property. To describe it, we must introduce some further concepts. The
function r)*G : G -*• G** given by gr]G = m&\{gr]G

l) has the properties:

(1)
(2) rt

Such a function between inverse semigroups is called a dual prehomomorphism. As
motivation for considering them, we mention partial actions of an inverse semigroup
on a set, a concept we now introduce. Suppose S is an inverse semigroup acting on
a set Y by partial bijections and X c Y. Then there is a partial action of S on X
by restriction. The induced map from S to I(X) (the symmetric inverse monoid on
X) is an order-preserving dual prehomomorphism. This will be touched on again in
Section 6.5.

It turns out that the map T]G considered above is universal amongst all dual preho-
momorphisms from G to an inverse semigroup; that is, all dual prehomomorphisms
cp : G —*• I factor through r)G followed by a homomorphism. This result is due
to Kellendonk and Lawson [9], developing an earlier result of Exel [7]. We shall
shortly see that it follows from the result of Szendrei. Relationships between dual
prehomomorphisms and F-inverse monoids can also be found in [16].

The following lemma is straightforward, but of frequent enough use to be worth
isolating.

LEMMA 6.1. Let 0 : S -> T be a dual prehomomorphism and e e E(S). Then
eO e E(T).

PROOF. We have the following: eG = e9(e6)-le8 = edeQed < e6e6 < e6. •

Suppose tp : 5 -*• T is a surjective morphism of inverse semigroups such that t<p~x

has a maximum element for each t e T. Define <p* : T —> S by t<p* = max t<p~x; then
<p* is a dual prehomomorphism. We call cp an F-morphism if <p* is order-preserving.
Note that 5 is an F-inverse monoid if and only if the natural surjection to its maximal
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group image is an F-morphism. One can check that a surjective morphism <p is an
F-morphism if and only if it has a right adjoint (viewed as a map of partially ordered
sets). See [4] for more on homomorphisms of partially ordered semigroups which
have right adjoints.

Observe that the assumption that <p* be order-preserving is not redundant. Indeed,
letS = {JC, y,jcy}beafreesemilatticeon;c andy andT = {0, 1}(withmultiplication).
Define cp : S -*• T by x<p = 1, y<p = 0. Then x = max l<p~l and y = maxO<p~', but
y = 0(p* ^ x = \<p*. Thus <p is not an F-morphism.

We now aim to show that F-morphisms play the same role in the theory of
idempotent-pure homomorphisms that F-inverse monoids play in the theory of £-
unitary inverse semigroups; see [10, Chapter 7] for an exposition of this.

We mention that the F in F-morphism stands for ferine meaning closed in French.
This is because the order-preserving dual prehomomorphism cp<p* is a closure function
on S. A closure function a : 5 -> S is an order-preserving dual prehomomorphism
such that s < sot and sa = saa. Note that a is then a closure operator on S (that
is, an idempotent, increasing, order-preserving endomorphism of a partially ordered
set). One can then prove the following straightforward lemma on closure functions.

LEMMA 6.2. Let a : 5 -> 5 be a closure function. Then

(1) 5 € £(S) if and only ifsa e £(5);
(2) (ab)a = (aab)a = (aba)a = (aaba)a.

PROOF. If 5 € F(5), then sa € £(5) by Lemma 6.1. Ifsa € £(S), then s < sa,
so 5 e £(5). The second assertion is trivial. •

COROLLARY 6.3. Let (p : S —> T be an F-morphism. Then <p is idempotent-pure.

PROOF. Suppose sr\ is idempotent; then sr\rf is an idempotent by Lemma 6.1.
Since rjrj* is a closure function, s € E(S), as desired (using Lemma 6.2). •

If a is a closure function, then the set of closed elements 5a can be made into an
inverse semigroup via the multiplication s • t = (st)a. Moreover, a : S -> (5a, •) is
an F-morphism with aa* = a. Conversely, if <p : 5 —• T is an F-morphism, then
(S<p<p*, •) is isomorphic to T and the F-morphisms commute with the isomorphisms.
Thus the study of F-morphisms from 5 is the same as the study of closure functions
on 5.

To highlight the importance of F-morphisms, we prove two factorization results
for idempotent-pure surmorphisms of inverse semigroups. The first is a new result
generalizing the fact that any £-unitary inverse semigroup embeds in an F-inverse
monoid [10]; our proof, in fact, generalizes the proof of this older result. We then
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deduce, as a consequence, a result of Billhardt [1] on factoring idempotent-pure
homomorphisms through A.-semidirect products.

As background, we recall some classical results and definitions about partially
ordered semigroups.

A partially ordered semigroup is, of course, a semigroup equipped with a partial
ordering which is compatible with the multiplication.

Let S and T be partially ordered semigroups. McFadden [14] defines a morphism
9 : S -» T to be an m-homomorphism if for each a e S the set a96~l has a maximum
element ma such that a < b implies ma < mb.

In what follows, every inverse semigroup is partially ordered with respect to its
natural partial order. The following lemma is straightforward and we leave it to the
reader.

LEMMA 6.4. Let 6 : S —• T be a surjective homomorphism between inverse
semigroups. Then 0 is an m-homomorphism if and only if it is an F -morphism.

It follows that our notion of an 'F-morphism' is a special case of McFadden's
notion of an 'm-homomorphism'.

O'Carroll [15, Theorem 3] proves the following result. Let 9 : 5 —> T be a
surjective order preserving homomorphism of partially ordered semigroups 5 and T'«

Then 9 can be factored 9 = j/3 where S -4 M (5) —• T with j an order preserving
embedding, fi a surjective order preserving m-homomorphism, and M(S) a partially
ordered semigroup constructed from S and T.

We would like to prove the analog of this result for inverse semigroups. However,
in the case that S and T are both inverse, one finds that in general, M(S) need not
be inverse. Indeed, since injections and F-morphisms are idempotent-pure, only
surjective idempotent-pure maps can have a factorization as an inclusion followed by
an F-morphism.

Thus in seeking to formulate the analog of O'Carroll's result above, we must restrict
our attention to surjective idempotent pure homomorphisms.

We need two lemmas. Recall that a subset A of an inverse semigroup is said to be
compatible if, for all a,b e A, ab~l and a~xb are idempotents.

LEMMA 6.5. Let <p : S —*• T be a morphism of inverse semigroups. Then (p is
idempotent-pure if and only if A c T compatible, implies A<p~l is compatible.

PROOF. Suppose <p is idempotent-pure and A c T is compatible. Let a, 6 6 A<p~l.
Ihtn (ab~x)(p = a<p(b<p)~l 6 E(T) since A is compatible. ThusaZ?"1 € E(S) since <p
is idempotent-pure; dually a~lb e E(S).

Conversely, suppose <p~l preserves compatibility and e e E(T). Then e<p~l is a
compatible set. If a 6 e<p~\ then so are aa~l and a"1. Hence a — {aa~*)(a~x)~{ e
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E(S), as desired. •

The following lemma is evident.

LEMMA 6.6. Suppose <p : S —> T is an F-morphism and T C T is an inverse
subsemigroup. Let S' = T'<p~l and let <p' : S' —*• T be the restriction. Then <p' is an
F-morphism.

THEOREM 6.7. Let 9 : S -> T be a surjective idempotent-pure homomorphism
between inverse semigroups. Then there is an inverse semigroup M(S), an embedding
j : S -> M(S), and an F-morphism fi : M(S) -»• T such that 9 = jfi.

PROOF. We use the Schein completion C(S) of the inverse semigroup S (see [10,
18]). The inverse semigroup C(5) consists of all compatible order ideals of S. There
is an embedding is : S —• C(5) given by s i-»- [s], the principal order ideal generated
by 5. Similarly, we can consider C(T) and i(T). The reader should compare with the
proof of [10, Proposition 7.1.4].

Define © : C(5) —*• C(T) by A© = A0. Since 0 is surjective, A9 is a compatible
order ideal. Clearly © is a homomorphism. Notice that 6iT = 's®, so 0 extends 8.
We show that 0 is an F-morphism. Letfi € C(T). ThenB0- ' e C(S) by Lemma 6.5.
Since B6~l® = B, 0 is surjective. Moreover, we clearly have B9~l = max B@~K

Let M(5) = TiT&'1. Let us no longer distinguish Sis from 5, and likewise TiT

from T. Then 5 c M(S) and the restriction 0 ' : M(S) -»• T of 0 is an F-morphism
by Lemma 6.6. Since 0 ' extends 0, the result follows. •

Note that Theorem 6.7, when restricted to the case where T is a group, shows that
each F,-unitary inverse semigroup embeds in an F-inverse monoid.

As a corollary we obtain the following result of Billhardt [1].

COROLLARY 6.8. Let 6 : S —• T be a surjective idempotent-pure homomorphism of
inverse semigroups. Then there is a k-semidirectproduct E xkT with E a semilattice,
and an embedding i : S —*• E ~xkT such that 9 = in where n is the semidirectproduct
projection.

PROOF. By Theorem 6.7, 9 - jfi with j an embedding and £ : M(S) -> T
an F-morphism. The congruence associated to /8 is clearly a Billhardt congruence
(see [1, 10] for the definition). Hence, by [10, Theorem 5.3.5], fl can be factored
in where i : M(S) -*• Kerfi7 x* T is an inclusion and n is the semidirect product
projection. Setting i — y'(, we are done. D

This result is also proved in [8] and can be deduced from the techniques of [19].
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We thank the anonymous referee for pointing out that our Theorem 6.7 can, in turn,
be deduced from Bilhardt's theorem and so the two results are formally equivalent.

We have thus far seen how we can associate an order-preserving dual prehomomor-
phism to any F-morphism. Now we complete the connection by going in the opposite
direction.

PROPOSITION 6.9. Let \j/ : T -*• S be an order-preserving dual prehomomor-
phism. Then there exists an inverse semigroup / , an F-morphism cp : I -*• T, and a
homomorphism p : I -*• S such that \Jr = 6vp.

PROOF. Let / = {{s, t) e S x T \ s < tiff}. We claim / is an inverse subsemigroup

of 5 x T. Indeed, if (si,fi),(52,r2) e / , then

so S\S2 < {t\h)\}r. Closure under inverse follows easily since f~'i/r = (trjr)'1. The
projection <p to T is an F-morphism since (t\{r, t) = max(t<p~l)by definition of / , and
if fi < t2 € T, then t\i}r < t2\\i so (t\i\r, tx) < (hty, t2). Finally, if p is the projection
to 5, then q>* p = \{r. •

One says that an F-morphism r) : U —>• T is universal amongst F-morphisms to
T if whenever there is an F-morphism yj/ : 5 —>• T, there is a unique homomorphism
a : U -*• 5 with r) = a\j/ and r]*a = \j/*. If such an inverse semigroup U exists, it must
be unique up to isomorphism by the usual argument. One says that an order-preserving
dual prehomomorphism 9 : T —*• U is universal amongst order-preserving dual
prehomomorphisms from T if, given any dual order-preserving prehomomorphism
xjr : T -*• S, there is a unique homomorphism p : U -> 5 such that \jr = 6p. Again,
if such an inverse semigroup U exists, it must be unique up to isomorphism.

THEOREM 6.10. Let T be an inverse semigroup. Then ifr):U—> T is universal
amongst F-morphisms to T, the associated dual prehomomorphism r}* : T —>• U is
universal amongst order-preserving dual prehomomorphisms from T.

PROOF. Let V : T —> S be a dual prehomomorphism and let / , p, and <p be as in

the proof of Proposition 6.9. Then there exists a homomorphism a : ( / - > / such

that cup = r) and rj*a = cp*. Soi/r = <p*p = r\*ap. The uniqueness follows since if

\fr = r)*fi with ft : U -+ S, then y = P x r] : U —>/isa morphism satisfying the

properties demanded of a . Hence y = a. But p — yp = ap. •

Specializing to the case where T is a group, we have by [22] that r)T : r P r -> T

is universal amongst F-morphisms to T. Hence, Theorem 6.10 shows that Tn has

the universal property proved by Kellendonk and Lawson [9]. That is, given any
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dual prehomomorphism 9 : T -*• S with 5 an inverse semigroup, there is a unique
homomorphism cp : T** —*• S such that rfT<p = 0.

One might be tempted to prove a converse to Theorem 6.10. However, there is no
need to do so. Once we show that universal F-morphisms exist, it will follow that
universal dual prehomomorphisms exist and (by uniqueness) are constructed from
F-morphisms in the above fashion.

6.2. L -representations Since F-morphisms are idempotent-pure (by Corollary 6.3),
we can use the general theory of idempotent-pure homomorphisms to study them [10].
We begin by characterizing the L -representations of such inverse semigroups [10].
We briefly recall McAlister-O'Carroll triples. Let S be an inverse semigroup, X a
partially ordered set, and Y an order ideal of X which is a semilattice in the induced
order. Let I(X, <) be the inverse monoid of order isomorphisms (acting on the left)
between order ideals of X. If P is a partially ordered set and p € P, then [p] will
denote the order ideal generated by p. A McAlister-O'Carroll triple (y, q, Y) consists
of a morphism y : S ->• I(X, <) and a surjective morphism q : Y -*• E(S) such
that:

(1) (Sy)Y = X.
(2) For each y e Y and e € E(S), y 6 dom(ey) if and only if yq < e.
(3) For each s e S, there exists y € Y such that yq = ss~l and (s~ly)(y) e Y.

Usually, we denote (sy)(x) by sx. If (y, q, Y) is a McAlister-O'Carroll triple, then
one obtains an inverse semigroup

L(y, q, Y) = {(y, s) € Y x 5 | yq = ss-l,s~ly 6 Y)

with product given by (x, s)(y, t) = (^(i"1^: A y), st). The natural partial order turns
out to be the product order. One can show that E(L(y,q,Y)) = Y and that the
projection to 5 is surjective and idempotent-pure. Conversely, see for instance [10], if
<p : T ->• S is a surjective idempotent-pure morphism, then T = L(y, q, Y) for some
McAlister-O'Carroll triple (y, q, Y) and under this isomorphism, <p is transformed
into the projection. One calls this an L-representation of T. Since F-morphisms
are always idempotent-pure, we can attempt to characterize them in terms of their L-
representations. In the case that 5 is a group, and so one is considering an F-inverse
monoid 7, it is well known [10] that, in the L-representation of T, X is a semilattice
and Y is a semilattice with maximum. Our characterization of F-morphisms will
generalize this.

For s e 5, we set sd = ss~l and sr = s~ls. It is shown in [10] that, given
a McAlister-O'Carroll triple (y, q, Y), there is a unique order-preserving surjection
p : X —> E(S) extending q such that:

(1) dom(ey) = [e]p~x for e e E(S).
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(2) If xp = sr, then (sx)p = sd.

From now on we supress y from the notation.
We shall need the following lemma about McAlister-O'Carroll triples.

LEMMA 6.11. Suppose (y, q, Y) is a McAlister-O'Carroll triple and x € X. Then
there exist y e Y and s € S such that yq = sr and sy = x.

PROOF. By assumption, x = sy for some y e Y and s e S. Thus y e dom(sr)
whence yq < sr. Then y e dom(yq) so yqy = y. Hence x = sy = s(yq)y and
(s(yq))r = yqsr(yq) — yq. So s(yq) is as desired. •

PROPOSITION 6.12. Let(y, q, Y) be a McAlister-O'Carroll triple and p beasabove.
Then the projection <p : L(y,q,Y) —y S is an F-morphism if and only if for each
e € E{S), pairs of elements ofep~l have a meet, eq~l has a maximum element, and
the function e H> max(eq~x) is order-preserving.

PROOF. Suppose that the latter condition holds. We show that <p is an F-morphism.
Fore € E(S), let ye = max(eq~l) and let s € 5. Then (syST)p — sd so

ysd A sysr esdq'1

(recall: Y is an order ideal). Also

s-'Cy.d A sysr) <s~lsySI= ysr

and hence is in Y. Thus (ysd A sysr, s) e L(y, q, Y). Suppose (y, s) e L(y, q, Y).
We claim that ^ < ^ A syST. Indeed, yq = sd so y < ysA. But s~ly e srq'1 so
s~ly < ysr whence y < syST. It follows that (ysd A syST, s) is the maximum element
of scp~l. Suppose Si < 52, then s,d < s2d and 5]r < 52r, so ySli < yS2d and similarly
>V < yS2r- Thus

so (ySlt A siySlT, Si) < (ySld A s2yS2r, s2). Hence the projection is an F-morphism.
Suppose that the projection <p : L(y, q, Y) -^ S is an F-morphism. To show

that pairs of elements of ep~x have a meet, it suffices to show that, for x e ep']

and y € eq~l, there exists x A y. Indeed, suppose we have shown this and that
x, x' e ep~l. Then, by Lemma 6.11, x' = sz for some z € Y and s e S such that
zq = sr. So e = x'p = sd whence s~lx exists and (s~lx)p = sr. Therefore z A s~lx
and s(z As~*x) exist. But it is then straightforward to verify that x AX' = S(ZAS~1X).

Suppose x € ep~l and y e eq~l. Let x = sz with z e Y and zq = sr. Then
e = (sz)p = sd. Let (k, s) = max(s<p~'). Then kq = sd so y A k exists. But
(y A k)q = sd, so *"'(>> A k) exists. Also, since s~lk e Y and Y is an order ideal,



222 Mark V. Lawson, Stuart W. Margolis and Benjamin Steinberg [ 18]

€ Y. Thus we can take s~\yAk)Az which is in Y. It is then straightforward
to check that q of this expression is sr. So let h = s{s~x(y A k) A Z). We claim
h = x A y. Indeed, h < sz = x. Also h < ss~*y = y. Suppose that j < x, y.
Then jp < e = sd so s~lj < s~xx = z. Hence y, s~'y € Y and jq < e = sd.
So (y, ygs) € L(y, q, Y). Suppose (k', jqs) = max((jqs)<p~l). Then k' < k and
j < k',soj < k. Putting this all together, we see that s~lj < s~l(y A k) A z soy < h.

We now show that eq~l has a maximum. Let (y, e) = max(e<p~[). Suppose
y' e eq~x. Then (y',e) e L(y,q,Y) so / < y. It follows immediately that
e t-> max(e^"') preserves order since e \-+ max(e<p~l) preserves order. D

6.3. The expansion For each inverse semigroup S, we shall construct an inverse
semigroup S*1 together with an F-morphism r)s : S** -> S which will be the uni-
versal F-morphism to S. The construction 5 i-> S1* is functorial and the surjective
morphisms r)s for the components of a natural transformation from (_)Pr to the identity
functor. It follows that (_)Pr is an expansion of inverse semigroups.

We shall construct 5Pr by first constructing a MeAlister-O'Carroll triple from S
which satisfies Proposition 6.12 of Section 6.2. This will enable us to build S** and
r]s explicitly. We shall then prove that rj5 is the required universal F-morphism.
The triple (ys, qs, Ys) will be constructed in several stages with various intermediary
propositions which prove that things are well defined.

This expansion will be similar to SSI, only we will take 5 as the generating set and
we shall be interested only in vertices of Schiitzenberger graphs rather than subgraphs.

For those readers preferring a more direct construction, the reader is referred to
Proposition 6.16.

If A is a set, we use Vt\n(A) for the collection of non-empty finite subsets of A. Let

Xs = [A | A € V^(Re) for some e e E(S))

and

Ys = {A € Xs | A n £(5) £ 0}.

Suppose A G Vfin(Re) and B e V^Rf). Define A A B = /A U eB. It is easy to see
that A A B e V^iR,/). Also note that A A A = eA U eA = A and A A B = B A A.
So Xs is a semilattice.

PROPOSITION 6.13. Let A e V^iRe) and B € 7?
fin(/?/). Then A < B if and only if

e < f andeB c A.

PROOF. Suppose A < B. Then A = AAB = fAUeB e V^iRef) soe = ef and
eB C A. For the converse, A A B = / A U eB = A U eB = A. •

It is now easy to see that Ys is an order ideal (and hence a semilattice in its induced
order). Define ys : S -> I(XS, <) as follows:
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(1) dom(jys) - {A e Xs I A e Vbn{Re), e < sr};
(2) sy(A) = {sa | a € A}.

Again, we supress y and merely write s A. This action is, in some sense, induced by
the Preston-Wagner representation of S and the usual left action of S on its power set.
If 5 is a semigroup, s € S, and X c 5, then we will also let sX = {sx | x e X}.
There should be no confusion since the above actions differ only in their domain of
definition.

PROPOSITION 6.14. The function ys is a well-defined homomorphism.

PROOF. First note that dom(^ys) is an order ideal. Also, it is easy to see that

ran(sys) = {A e Xs | A e V6B(Re), e < sd}.

Suppose A < B e dom(sys), A e Pm,(/?«,), B e Vf>n(Rf), and e, f < sr. Then
e 5 / and eB c A; so ses~* < sfs~l. Now ses~lsB = seB c sA. Thus sB < sA.
We note that s~lys is the inverse morphism to sys and so sy is an isomorphism of
order ideals of X.

Now dom((st)ys) = {A e Xs \ A € Vnn(Re),e < t^srt}. However, for A e
dom(tys), tA € dom(^y5) if and only if A e V^R,,) with e < t~lt and tet~l < s~ls
which is if and only if e = t~ltet~lt < t~xsrt. In this case (st)A = s(tA). O

Define qs '• Ys —> E(S) by letting, for A e Vfin(Re), Aqs — e. Then qs is a
surjective homomorphism. Suppose A e Vj\n(Re) and let s e A. Then i d = e and
J - ' A e Ys. If A e Ys and e € £(5) , then A € domOys) if and only if Aq < e.
Finally, if s e S, then Rsi e Ys, Rsaqs = •s^~l and s~l Rsi € Ks-

We have thus proved the following.

THEOREM 6.15. (ys, qs, Ys) is a McAlister-O'Carroll triple.

Note that if A € Vf\n(Re), then Aps = e where ps is the extension of qs to Xs-
We let SPr = L(ys,qs, Ys) and r)s '• S*1 —>• 5 be the projection. Then, by

Proposition 6.12, ^ is an F-morphism. Indeed, since Xs is a semilattice, we just need
to show that eqj] has a maximum element for each e € E(S) and that the function
e H* maxCegf1) preserves order. But clearly [e] is such a maximum element and if
e < f, then {e} < {/}. Finally, note that if \j/ : S —> T is a homomorphism of inverse
semigroups, then there is an induced morphism \jr* : S9* —>• T1'1' sending (A, s) to

^ ) - Clearly rj is a natural transformation to the identity functor.
We now wish to give a description of S** in terms of the operation of union on

fm(S) and the usual left action of S on this set.
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PROPOSITION 6.16. S*1 = {(A, s) e Xs x 5 | sd, s e A] with multiplication:

(A, s)(B, t) = (stt~ls~l A UsB, st).

PROOF. If (A, s) e 51"1", then A e Ys and Aqs = sd, whence sd € A. Also, since
s~l A € Ys, s~ls e s~'A and so s e A. Conversely, if id, s € A, then A, s~lA e Ys

and Aq = sd. So (A, s) e S**. As for the multiplication,

(A,s)(B,t) = (s(s~lAAB),st)

by definition of multiplication in an L-semigroup, but

s~lA A B = tt^s^AUs^sB,

so s(s~l A A B) = stt^s^AUsB. The result follows. •

If 5 is a group, then Xs = V^iS) and the above result shows that 5Pr is the usual
prefix expansion of S. Note that if S is finite, then Xs is finite whence S** is also
finite.

It is easy to see that 5Pr is a subsemigroup of the A-semidirect product V^iS) xx S.
All that remains is to show that T]S is universal.

THEOREM 6.17. Let S be an inverse semigroup. Then the morphism r}$ '• 5 ^ —*• S
is universal amongst F-morphisms to S.

PROOF. Let (y, q, Y) be a McAlister-O'Carroll triple as in Proposition 6.12. Let p
be the extension of q to A". For e e E(S), we let ye = max(e<7~'). Since morphisms in
the comma category of idempotent-pure morphisms over 5 correspond to morphisms
(in the obvious sense) of McAlister-O'Carroll triples, we just need to show that there
is a unique morphism \fr : Xs -*• X preserving the structure of a McAlister-O'Carroll
triple, satisfying

(*) {sd, s)f = y s i Asysr.

The induced morphism xjr : S** —> L{y,q,Y) defined by i// x l s will then be the
unique morphism preserving maxima.

Let A € X, Aps = e. We define \jr by Axjr = f\s€A syST. Since s € A, sd = e
and so (sysr)p = sd. Thus, by hypothesis on (y, q, Y), Ax// is well defined. Also,
x//q = qs (obvious) and Ysir c Y (since, for A e Ys, yq e A, so A\f/ < yqyyq = yyq).
Clearly, {sd, s}\(r = yvd A syst.

To see that \fr preserves order, suppose that A < B with A 6 V^iRe), B € Vf\n(R/).
Then e < f and eB c A. Observe that, for f € B, (et)r = t~let < t'lt — tr, so
?<«)r < J/r whence (^?)y((.,,r = ty(el)r < ty,r. Therefore,

< /\(et)y(el)r < Bf.
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Now we show that \jr\Ys preserves meets. Let A, B e Ys. Since \{f preserves order,
we need only show Af A Bxfr < (A A B)\j/. Suppose Aqs = e, Bqs = f. Now

(A A BW = (fA U eB)ir = / \ fsy(fs)r A / \ ety(el)r.
seA t&B

On the other hand,

Air A flV = f\ sysr A / \ ty,r = /\(sysr A yf) A / \( /v, r A ye),
SEA teB seA leB

where the last equality follows because e e A, f e B. Thus, it suffices to show that,
for s e A, sysr A yf < fsy(fs)r and dually for f e S.

Since K is an ideal, svsr A ^ e F. Also (sysr)p = e, so (sysr A ̂ y^)^ < ef whence
sysr A v/ < vc/. Since yef < yf,

•5Vjr A V/ = i y i r A y / A Vc/ = 5ysr A yef.

Now observe 5"'(5vir A yef) < yST A s~lyef. However, the latter is ysr A s~l fyef.
But

(ysr A s-lfyef)q < sr(s-lf)d = *" ' /* = (/5)r,

so ysr A 5-'vf / < v(/j)r. We conclude s"'(5vjr A yf) < y(fs)r whence sysr A yf <
•sv(/i)r = fsyifs)r, as desired.

Finally, we show that ^ preserves the action. Suppose that t e 5 and Ap < tr.
Then, for s e A, (ts)r = s~lt'lts < s~ls and 5"'j = s'^s"^ < s'U'^s = (ts)r
(since ss~l < t~[t) whence (ts)r = sr. So

(tA)f = / \ sysr = /\tsyUs)t - /\tsysr.
setA seA s€A

But it is easy to check that multiplication by t preserves finite meets (since it is an
order isomorphism with inverse, multiplication by t""') so the right hand side is t (Axj/).

To show that \jr is unique, suppose r : Xs -*• X induces another morphism of
McAlister-O'Carroll triples satisfying (*). First of all, since, for all A e Xs, A = sB
for some s e S, B e Ys, and since r preserves the action, it suffices to show that r
agrees with \j/ on Ys. Let A = {e, su ..., sn} e Ys with Aqs — e. Then

A = {e, 5,} U • • • U [e, sn] = [e, 5,} A • • • A [e, sn).

Since, for all /, [e, 5,}r = ye A SiySjI by (*), and since T|KS preserves meets, it follow
that AT = /\xeA(ye A sy.ST) = Af (since e e A). •
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6.4. Structure We now study the structure of S1*. The following results are
straightforward deductions from the structure of L-semigroups.

PROPOSITION 6.18. Let S be an inverse semigroup.

(1) (A,s) < (B,t) if and only if s < t andss~lB c A.
(2) (A, s)TZ(B, t) if and only if A = B.
(3) (A,s)C(B, t) if and only if s~l A = t~lB.
(4) Let (A, e) 6 EiS*) and H'e = {s e He \ sA = A}. Then r]s induces an

isomorphism of H(Ae) with H'e.
(5) (A, s)T>(B, t) if and only if there exists u e S such that ud = sr, u 6 s~lA, and

COROLLARY 6.19. The TZ-classes ofS* are finite; hence S* is residually finite.
Moreover, if the maximal subgroups of S are torsion-free, then S** is combinatorial.

PROOF. The first assertion follow from Proposition 6.18 (2) since there are only
finitely many elements of S** of the form (A, s) (since A is finite). The last assertion
follows since the 7Y-classes of S** must then be finite and, by Proposition 6.18 (4),
are isomorphic to subgroups of the maximal subgroups of S. •

We end this subsection by observing that S** is generated by S via the map

s t->- ({sd, s], s).

Indeed, this follows from the universal property since if T c S^ is the inverse
subsemigroup generated by the elements of the form ({sd, s], s), then the restriction
*1S\T '• T —• S would be an F-morphism and would be universal. Since the projection
from S*1 is idempotent-pure, there is a natural surjective morphism i/r : 5SI —>• 5 ^
(where we view 5 as generated by S). This allows an alternate proof that if S is finite,
then so is S1"1". This map is easily seen to take a pair (X, s) to the pair (Ver(X), s)
(defined earlier).

6.5. Applications Our main application is to partial actions of inverse semigroups.
A partial action of an inverse semigroup 5 on a set X consists of an order-preserving
dual prehomomorphism 9 : S —*• I(X). These most commonly arise from a restricting
an action of S by partial bijections of a set Y to a subset X c. Y. We say the partial
action is graded if there is a map p : X —> E(S) such that: for each idempotent
e € £(S) , there exists ex if and only if xp < e; if xp = s~ls, then (sx)p = ss~l.
The first and third author can show that all graded partial actions arise from restricting
actions to a subset; that is, extending the terminology of [9], graded partial actions can
be globalized. It is not apparent this is true of all partial actions of inverse semigroups.
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For applications of partial group actions, see Exel [7] and the first author and
Kellendonk [9].

PROPOSITION 6.20. Let S be an inverse semigroup and X a set. Then all partial
actions ofS on X are of the form r)*s<p where (p : S** —*• I(X) is an action.

PROOF. By the universal property of S1*1" and by Theorem 6.10, there exists a
bijection between homomorphisms <p : S** -> I(X) and order-preserving dual pre-
homomorphisms 0 : S —• I(X) given by (p \-+ r)*s<p. •
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