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We show that if S is a finite semigroup with aperiodic idempotent-generated subsemi-
group and H is a pseudovariety of groups, then the sequence of iterated H-kernels of
S stops at the idempotent-generated subsemigroup if and only if each subgroup of S

belongs to the wreath product closure of H. Applications are given to Mal’cev products.
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1. Introduction

In this paper, all semigroups are assumed to be finite unless otherwise stated. If H

is a pseudovariety of groups (i.e. a class of groups closed under formation of finite
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direct products, subgroups and quotients groups), then it is natural to define a

group to be H-solvable if it has a subnormal series, each of whose quotients belongs

to H. For instance, a group is solvable in the classical sense if and only if it is Ab-

solvable where Ab is the pseudovariety of Abelian groups. A group is a p-group if

and only if it is Zp-solvable where Zp is the pseudovariety generated by a cyclic

group of order p. One should not confuse Zp-solvablity with the classical notion of

p-solvability [16]. Recall [9] that a group G is p-solvable if it has a normal series

each of whose quotients is a p-group or a p′-group (the latter meaning the order is

relatively prime to p). If H is the pseudovariety generated by Zp and the simple

p′-groups, then the p-solvable groups are precisely the H-solvable groups in our

sense.

It is easy to see that a group is H-solvable if and only if its simple group

divisors belong to H and moreover the collection of H-solvable groups is the smallest

pseudovariety of groups containing H and closed under extension (or equivalently

wreath product); see [6]. This pseudovariety is denoted WH.

Alternatively a group is H-solvable if iteration of the operation of taking the

verbal subgroup corresponding to H eventually yields the trivial subgroup. For in-

stance, a group is solvable if and only if iteration of the derived subgroup eventually

arrives at the trivial subgroup.

One possible way to generalize these notions to semigroups is to consider all

semigroups whose simple group divisors belong to H. Equivalently, one is consider-

ing all semigroups whose subgroups belong to WH. This set forms a pseudovariety

of semigroups (defined analogously to the group case), which is normally denoted

WH. The Krohn–Rhodes theorem [3, 6] implies that this pseudovariety consists

precisely of all semigroups that divide a wreath product of groups in H and copies

of the monoid obtained by adjoining a unit to the two element right zero semigroup.

However, we do not choose this as the definition of H-solvability for semigroups.

Instead we choose a definition introduced by the first and second authors in [5].

In [5], motivated by the fact that the verbal subgroup associated to H of a

group can be generalized to semigroups via the notion of the H-kernel, they defined

a semigroup to be H-solvable if iterating the H-kernel operator eventually arrives

at the subsemigroup generated by the idempotents. In [5], they showed that a

semigroup with commuting idempotents is Ab-solvable if and only if its subgroups

are solvable groups. This paper supersedes [5] by proving a much more general

result that is in some sense optimal. This paper can be read independently of [5],

although that paper is a source for several ideas in this paper.

For a pseudovariety V of semigroups, we denote by EV the pseudovariety con-

sisting of all semigroups whose idempotent-generated subsemigroup belongs to V.

Let A be the pseudovariety of all aperiodic semigroups and let V be a subpseu-

dovariety of A. Recall that ©m denotes the Mal’cev product. Our main result states

that, for a non-trivial pseudovariety H of groups,

EV ∩WH =
⋃

(· · · ((V ©m H) ©m H) ©m H · · ·) ©m H = V ω©mH .
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In particular,

EA = A ω©mG .

There are many examples of pseudovarieties V ⊆ A such that the stronger

equality EV = V ©m G holds. Most of them are direct consequences of the main

result of [15]. Denote by Reg(S) the set of regular elements of S and let DA be the

pseudovariety consisting of all semigroups whose regular elements are idempotents.

Let

RV = {S | 〈Reg(S)〉 ∈ V} .

Results of [15] imply that Reg(〈E(S)〉) = Reg(KG(S)), for S ∈ EDA (where KG(S)

is the G-kernel of S). Hence, if V ⊆ DA is such that V = RV, then

EV = V ©m G .

Clearly RV = V for V any of J, R, L or DA, where J,R and L are respectively

the classes of all J-trivial, R-trivial, and L-trivial semigroups. See [10] for more in-

formation on pseudovarieties of the form V©m G. See also [2] for some new examples

and syntactic proofs.

It is natural to ask: does EA = A ©m G? The answer is negative. In fact,

although all semigroups in A©m G have complexity 1, Rhodes and Tilson [15] have

shown the existence of regular semigroups of arbitrary complexity in EA. The

subpseudovariety (A ©m G) ©m G of EA also has semigroups of larger complexity.

Rhodes has a published example [13] of a semigroup of complexity 2 in (A©m G)©m G

and has unpublished examples of semigroups with arbitrary complexity in this

pseudovariety. A construction of Rhodes and Tilson [15] implies that, for all positive

integers n and any non-trivial pseudovariety H of groups, A n©m H 6= An−1©m H. It

follows that the hierarchy EA∩WH = Aω©mH is strict, that is EA∩WH 6= An©m H,

for any positive integer n.

2. Definitions, Notation and Preliminaries

For basic notions related to pseudovarieties of semigroups or monoids we refer the

reader to Almeida’s book [1]. For background on Green’s relations and Rees matrix

semigroups see the book of Clifford and Preston [4] and the chapters of Krohn,

Rhodes and Tilson in [3]; see also Lallement’s book [12] and Tilson’s chapters in

Eilenberg [6].

Let S be a semigroup. As usual, denote by SI the monoid obtained from S by

adjoining an identity element and, for a subset X of S, denote by E(X) the subset

of all idempotents of S contained in X and by 〈X〉 the subsemigroup of S generated

by X .

The quasi-order≤J associated to Green’s relation J is defined by: for all u, v ∈ S,

u ≤J v if and only if SIuSI ⊆ SIvSI .



November 18, 2004 12:4 WSPC/132-IJAC 00202

658 M. Delgado et al.

Of course, for every u, v ∈ S, uJv if and only if u ≤J v and v ≤J u. Denote by Ju

the J-class of the element u ∈ S. As usual, a partial order relation ≤J is defined

on the set S/J by setting, for all u, v ∈ S, Ju ≤J Jv if and only if u ≤J v. Given

u, v ∈ S, we write u <J v and Ju <J Jv if and only if u ≤J v and (u, v) 6∈ J.

Similar notations are used for Green’s relations R, L, H = R∩L and D = R∨L.

Let S be a semigroup and J be a J-class of S. We denote by J0 the semigroup

with support J ∪ {0}, with 0 6∈ J , and multiplication defined by:

a · b =

{

ab if a, b ∈ J and ab ∈ J

0 otherwise ,

for all a, b ∈ J ∪ {0}.

Now, let A and B be non-empty sets, G a group and C : B ×A → G0 a B ×A

matrix over G0. The Rees matrix semigroup M0(G, A, B, C) is the semigroup with

support (A × G × B) ∪ {0} and multiplication defined by

(a, g, b)0 = 0(a, g, b) = 00 = 0

and

(a, g, b)(a′, g′, b′) =

{

(a, gC(b, a′)g′, b′) if C(b, a′) ∈ G

0 otherwise (i.e. C(b, a′) = 0) ,

for all a, a′ ∈ A, b, b′ ∈ B and g, g′ ∈ G.

It is well-known that M0(G, A, B, C) is a regular semigroup if and only if C is

a regular matrix, i.e. each row and column of C has at least one non-zero entry, and

in this case M0(G, A, B, C) is a (completely) 0-simple semigroup.

Given semigroups S and T , a relational morphism of semigroups τ : S −→◦ T is

a function from S into P(T ), such that τ(s1) 6= ∅ and τ(s1)τ(s2) ⊆ τ(s1s2), for all

s1, s2 ∈ S.

A relational morphism τ : S −→◦ T is, in particular, a relation from S to T

and we may compose relational morphisms in the obvious way. Homomorphisms,

viewed as relations, and inverses of onto homomorphisms are examples of relational

morphisms.

From now on, H will always denote a pseudovariety of groups; we use H for the

pseudovariety of semigroups whose subgroups are in H.

The H-kernel of a semigroup S is the subsemigroup KH(S) =
⋂

τ−1(1), with

the intersection being taken over all relational morphisms τ : S −→◦ G, with G ∈ H.

It is well-known [15] that there always exists a relational morphism τ : S −→◦ G,

with G ∈ H such that τ−1(1) = KH(S).

One of the most widely studied operators on the lattice of pseudovarieties is the

Mal’cev product; see [14] for more on operators and iteration of operators on the

lattice of pseudovarieties. Its definition, when the rightmost factor is a pseudovariety

of groups, may be formulated as follows: for a pseudovariety V, the Mal’cev product

of V and H is the pseudovariety

V ©m H = {S |KH(S) ∈ V} .
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We refer the reader to [10] for some history concerning the Mal’cev product and

for connections with the all-important semidirect product.

Next, we define recursively K
(n)
H

(S) as follows:

• K
(0)
H

(S) = S;

• K
(n)
H

(S) = KH(K
(n−1)
H

(S)), for n ≥ 1.

Since S is finite and the operator KH is non-increasing, it follows that the

sequence K
(n)
H

(S) is eventually constant; we denote this constant value by K
(ω)
H

(S).

Observe that K
(ω)
H

(S) is the largest subsemigroup of S fixed by KH.

We say that S is H-solvable if K
(ω)
H

(S) = 〈E(S)〉.

Herein, we consider iterated Mal’cev products. More specifically, we consider

iterations of the operator ( )©m H. For a pseudovariety V and n ≥ 1, we define the

operator ( ) n©m H recursively as follows:

• V 1©m H = V ©m H;

• V n+1©m H = (V n©m H) ©m H;

• V ω©m H = ∪n≥1V
n©m H.

We use left exponentiation to distinguish iteration of the operator ( )©m H from

iteration of the operator V ©m ( ).

It is easy to see that we have V n©m H = {S |K
(n)
H

(S) ∈ V}.

3. The Main Result

In this section, H denotes a non-trivial pseudovariety of groups.

First we state some preliminary results. The following lemma concerning the

idempotent-generated subsemigroup of a semigroup is due to Fitzgerald [7].

Lemma 3.1. Let S be a (perhaps infinite) semigroup and let s ∈ 〈E(S)〉 be an

element of a regular D-class D. Then, there exist e1, e2, . . . , em ∈ E(D) such that

e1 R e2 L e3 R · · ·L em−1 R em

and s = e1e2 · · · em. Hence 〈E(S)〉 ∩ D = 〈E(D)〉 ∩ D.

Recall that a J-class is called null [3] if it is not regular.

Lemma 3.2. Let S be a semigroup. If J is a null J-class of S such that J 6⊆ 〈E(S)〉

and J ′ >J J implies J ′ ⊆ 〈E(S)〉, then J ∩ 〈E(S)〉 = ∅.

Proof. Suppose that there exists t ∈ J ∩ 〈E(S)〉. If s ∈ J , then s = xty, for some

x, y ∈ SI . As J is null, we must have x, y strictly J-above J . Thus x, y ∈ 〈E(S)〉I ,

which implies that s ∈ 〈E(S)〉, and therefore J ⊆ 〈E(S)〉, a contradiction.

Lemma 3.3. If S ∈ EA is H-solvable, then the subgroups of S are H-solvable.
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Proof. Let G be a subgroup of S. Then K
(ω)
H

(G) ⊆ K
(ω)
H

(S) = 〈E(S)〉. As S ∈ EA,

the semigroup 〈E(S)〉 is aperiodic and so its subgroup K
(ω)
H

(G) must be trivial, as

required.

In the sequel we shall make extensive use of the following theorem of Graham

[8].

Theorem 3.4. Let S be a semigroup and let J be a regular J-class of S. Then

there exists an isomorphism (i.e. a Rees coordinatization)

ι : J0 → M0(G, A, B, C)

from J0 to a Rees matrix semigroup M0(G, A, B, C) such that :

• A and B can be partitioned into subsets A1, . . . , An and B1, . . . , Bn, respectively.

• The matrix C is the direct sum of the n blocks C1, . . . , Cn, as suggested by the

following picture (all the entries outside these blocks are zeros):















C1

C2

.

.

.

C
n















A1 A2 A
n

. . .

B1

B2

B
n

.

.

.

0

0

• Each matrix Ci : Bi × Ai → G0 is regular and

〈E(J0)〉 = ∪n
i=1M

0(Gi, Ai, Bi, Ci) ,

where Gi is the subgroup of G generated by all non-zero entries of Ci, for i =

1, . . . , n.

A Rees coordinatization satisfying the properties described in the above theorem

is called a Graham normalization of J and can be computed in polynomial time

from the multiplication table for J0 [8].

Lemma 3.1 and Theorem 3.4 then combine to give the following result charac-

terizing membership in EA.

Corollary 3.5. A semigroup S belongs to EA if and only if , for each regular J-

class J, there exists a Rees coordinatization such that all the matrix entries are 0 or

1 if and only if , for each Graham normalization of such a J-class J, all the entries

of the matrix are 0 or 1.

Now, we are in a position to establish our main result.
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Theorem 3.6. Let H be a non-trivial pseudovariety of groups. Then every semi-

group in EA ∩WH is H-solvable.

Proof. Let S ∈ EA ∩WH. The proof is by induction on |S\〈E(S)〉|. Clearly, the

statement is true when S = 〈E(S)〉. Suppose now that S 6= 〈E(S)〉. Then, it suffices

to construct a relational morphism τ : S −→◦ G ∈ H such that |τ−1(1)| < |S|.

Indeed, this would imply

|KH(S)| ≤ |τ−1(1)| < |S|

and so

|KH(S)\〈E(KH(S))〉| < |S\〈E(KH(S))〉| = |S\〈E(S)〉| .

Hence, by induction,

K
(ω)
H

(KH(S)) = 〈E(KH(S))〉 ,

that is,

K
(ω)
H

(S) = 〈E(S)〉 .

Let J be a J-class of S which is ≤J-maximal amongst the J-classes of S

not contained in 〈E(S)〉. To prove our result it suffices to construct a rela-

tional morphism τ : S −→◦ H such that |τ−1(1) ∩ J | < |J |. Consider the subsets

T (J) = {s ∈ S | J <J Js} and B(J) = S\T (J) of S. Figure 1 may help the reader

to visualize the situation. Note that both B(J) and B(J)\J are ideals of S. Two

cases may arise: J may be regular or null.

If J is null, then by Lemma 3.2, J ∩ 〈E(S)〉 = ∅. It is then straightforward to

verify that, for any non-trivial group H ∈ H and any fixed element g ∈ H\{1}, the

relation τ : S −→ H defined by

τ(x) =











{1} if x ∈ T (J)

{g} if x ∈ J

H otherwise (i.e. if x ∈ B(J)\J) ,

for all x ∈ S, is a relational morphism such that 0 = |τ−1(1) ∩ J | < |J |.

• Each matrix Ci : Bi × Ai → G0 is regular and

〈E(J0)〉 = ∪n
i=1M

0(Gi, Ai, Bi, Ci),

where Gi is the subgroup of G generated by all non-zero entries of Ci, for i = 1, . . . , n.

A Rees coordinatization satisfying the properties described in the above theorem is called
a Graham normalization of J and can be computed in polynomial time from the multiplica-
tion table for J0 [8].

Lemma 3.1 and Theorem 3.4 then combine to give the following result characterizing
membership in EA.

Corollary 3.5 A semigroup S belongs to EA if and only if, for each regular J-class J , there
exists a Rees coordinatization such that all the matrix entries are 0 or 1 if and only if, for
each Graham normalization of such a J-class J , all the entries of the matrix are 0 or 1. 2

Now, we are in a position to establish our main result.

Theorem 3.6 Let H be a non-trivial pseudovariety of groups. Then every semigroup in
EA ∩WH is H-solvable.

Proof. Let S ∈ EA ∩ WH. The proof is by induction on |S \ 〈E(S)〉|. Clearly, the
statement is true when S = 〈E(S)〉. Suppose now that S 6= 〈E(S)〉. Then, it suffices to
construct a relational morphism τ : S−→◦ G ∈ H such that |τ−1(1)| < |S|. Indeed, this
would imply

|KH(S)| ≤ |τ−1(1)| < |S|

and so
|KH(S) \ 〈E(KH(S))〉| < |S \ 〈E(KH(S))〉| = |S \ 〈E(S)〉|.

Hence, by induction,
K

(ω)
H

(KH(S)) = 〈E(KH(S))〉,

that is,
K

(ω)
H

(S) = 〈E(S)〉.

Let J be a J-class of S which is ≤J-maximal amongst
the J-classes of S not contained in 〈E(S)〉. To prove
our result it suffices to construct a relational morphism
τ : S−→◦ H such that |τ−1(1) ∩ J | < |J |. Consider
the subsets T (J) = {s ∈ S | J <J Js} and B(J) =
S \ T (J) of S. The figure on the right may help the
reader to visualize the situation. Note that both B(J)
and B(J) \ J are ideals of S. Two cases may arise: J
may be regular or null.

J

T (J)

B(J)\J

6

Fig. 1.
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Thus, it remains to consider the case where J is regular. Let us consider a

Graham normalization ι : J0 → M0(G, A, B, C) of J and suppose that C is the

direct sum of blocks C1, . . . , Cn, as in Graham’s theorem. Without loss of generality

we take A and B to be disjoint. Let N = KH(G). Since H is non-trivial, there is a

prime number p such that the cyclic group Zp belongs to H. We may then consider

the vector space Zn
p over Zp with base {v1, . . . , vn}. The construction of the required

relational morphism is divided into several steps.

Step 1. First, we construct a partial homomorphism ϕ : J → G/N × Zn
p . Recall

that ϕ is a partial homomorphism if

s, t, st ∈ J ⇒ ϕ(s)ϕ(t) = ϕ(st) .

To this effect we consider the auxiliary function bl : A ∪ B → {v1, . . . , vn} defined

by bl(x) = vi, if x ∈ Ai∪Bi. Then, we define ϕ by ϕ(a, g, b) = (Ng, bl(a)−bl(b)), for

all (a, g, b) ∈ J . Next, we prove that ϕ is, indeed, a partial homomorphism. First,

we observe that (a, g, b)(a′, g′, b′) ∈ J if and only if C(b, a′) 6= 0 (i.e. C(b, a′) = 1,

by Corollary 3.5). Since C is the direct sum of the Ci, from C(b, a′) = 1 it follows

that bl(b) = bl(a′) and (a, gg′, b′) = (a, g, b)(a′, g′, b′). Thus

ϕ(a, g, b)ϕ(a′, g′, b′) = (Ng, bl(a) − bl(b))(Ng′, bl(a′) − bl(b′))

= (Ngg′, bl(a) − bl(b) + bl(a′) − bl(b′))

= (Ngg′, bl(a) − bl(b′))

= ϕ(a, gg′, b′)

= ϕ((a, g, b)(a′, g′, b′)) .

Note that, for an idempotent e, we have

ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e) ,

whence ϕ(e) = 1 = (N, 0). It follows that if s ∈ 〈E(J)〉 ∩ J then ϕ(s) = (N, 0).

Step 2. Next, we extend ϕ to a relational morphism τ : B(J)−→◦ G/N × Zn
p by

defining τ(s) = G/N ×Zn
p , for all s ∈ B(J)\J . Since B(J)\J is an ideal, τ is clearly

a relational morphism.

Step 3. Finally, we extend τ to a relational morphism τ̃ : S −→◦ G/N × Zn
p by

defining τ(s) = {1}, for all s ∈ T (J).

In order to verify that τ̃ is in fact a relational morphism, choose s, t ∈ S. Let us

prove that τ̃(s)τ̃ (t) ⊆ τ̃(st). Since τ is a relational morphism and B(J)\J is an ideal,

the only non-immediate cases are: s, t ∈ T (J); s ∈ T (J) and t ∈ J ; and t ∈ T (J) and

s ∈ J . First, let s, t ∈ T (J). Then τ̃(s)τ̃ (t) = {1}. If st ∈ T (J) or st ∈ B(J)\J , then

clearly 1 ∈ τ̃(st). On the other hand, noting that s, t ∈ 〈E(S)〉, by the maximality
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of J , we conclude that if st ∈ J , then st ∈ 〈E(S)〉 ∩ J = 〈E(J)〉 ∩ J , by Lemma

3.1. Thus τ̃ (st) = ϕ(st) = 1 and, in both cases, we have τ̃ (s)τ̃ (t) ⊆ τ̃ (st).

Next, consider s ∈ T (J) and t ∈ J . Then st ∈ B(J)\J or st ∈ J . In the first

case, it is obvious that τ̃ (s)τ̃ (t) ⊆ τ̃ (st). So, suppose that st ∈ J . Then, we will

prove that ϕ(st) = ϕ(t). Let t′ be an inverse of t. Then

st = stt′t = (stt′)t .

Since s ∈ 〈E(S)〉 and tt′ ∈ E(S), we have

stt′ ∈ 〈E(S)〉 ∩ J = 〈E(J)〉 ∩ J ,

by Lemma 3.1. Thus ϕ(stt′) = 1. Therefore, ϕ(st) = ϕ(stt′)ϕ(t) = ϕ(t).

Finally, the case t ∈ T (J) and s ∈ J is dual to the previous one and so τ̃ is,

indeed, a relational morphism.

Now, one immediately sees from the definition that

τ̃−1(N, 0) ∩ J = {(a, g, b) | bl(a) = bl(b) and g ∈ N}

and so we must consider two cases. First, if J has more than one block, then

|τ̃−1(N, 0) ∩ J | < |J | ,

as required. On the other hand, if J has only one block, then as J 6⊆ 〈E(S)〉, by

Graham’s theorem, we must have that G is non-trivial. Therefore, since G ∈ WH

(whence K
(ω)
H

(G) = 1), we may conclude that N = KH(G) is a proper subgroup

and so τ̃−1(N, 0) ∩ J is again strictly contained in J , completing the proof.

We remark that this proof is effective (assuming the decidability of H) in the

sense that we have explicitly constructed relational morphisms to groups in H

witnessing that K
(ω)
H

(S) = 〈E(S)〉. Moreover, no computability hypotheses on KH

were necessary.

Lemma 3.3, Theorem 3.6 and the fact that V ω©m H ⊆ EV (see [5, 10]) imply

the following result:

Corollary 3.7. Let V ⊆ A and 1 ( H ⊆ G. Then

EV ∩WH = V ω©mH .

In particular, for V = Sl and H = Ab, we recover the main result from [5],

where Gsol denotes the pseudovariety of all solvable finite groups.

Corollary 3.8. ESl ∩ Gsol = Sl ω©mAb = (· · · ((Sl©m Ab) ©m Ab) · · ·) ©m Ab.

Notice if one shifts to the right all the parentheses in the above corollary one

obtains the strictly smaller pseudovariety Sl ©m Gsol [11]. However it is still open

whether an inverse semigroup belongs to Sl©m Gsol if and only if its subgroups are

solvable.

For V = A and H = G, we obtain:
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Corollary 3.9. EA = A ω©m G.

Notice that, if S 6∈ EA, then we cannot in general guarantee that S H-

solvable implies S belongs to WH. In fact, for any positive integer n, the semigroup

〈E(Tn+1)〉, where Tn+1 is the full transformation semigroup on n + 1 letters, is H-

solvable, but it contains the symmetric group Sn. It follows that unless H = G,

there exists H-solvable semigroups whose subgroups do not belong to WH.
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