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CHARACTERIZATION OF GROUP RADICALS WITH AN
APPLICATION TO MAL’CEV PRODUCTS

JORGE ALMEIDA, STUART MARGOLIS, BENJAMIN STEINBERG

AND MIKHAIL VOLKOV

Abstract. Radicals for Fitting pseudovarieties of groups are in-
vestigated from a profinite viewpoint in order to describe Mal’cev

products on the left by the corresponding local pseudovariety of
semigroups.

1. Introduction

The study of radicals in group theory emerged in the early 1960s following
earlier work on radicals in rings. In recent years, there has been a surge of
interest in obtaining simple characterizations of finite solvable groups and the
solvable radical of finite groups modeled on classical results concerning the
nilpotent case [8, 10, 12, 18, 23, 24, 39].

Extending earlier work of Rhodes and Tilson [33, 38], radical congruences
have also been studied in the context of finite semigroup theory [5, 25, 29]. In
the authors’ recent paper [3], some relationships between radicals associated
with specific pseudovarieties of groups and semigroup radical congruences have
been explored via representation theory, generalizing and clarifying earlier
work of Rhodes [32].

One of the aims of that paper is to describe Mal’cev products of the form
LH ©m V, where LH is the pseudovariety consisting of all finite semigroups
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whose local submonoids belong to a given pseudovariety H of groups and V
is a pseudovariety of semigroups. For the purpose of applying representation
theory, only the cases of the trivial pseudovariety and pseudovarieties of p-
groups are considered there. Yet, as shown in the present paper, the same
original argument of Rhodes and Tilson applies to pseudovarieties of groups
possessing a radical, which are named Fitting pseudovarieties since they are
pseudovarieties of groups which are simultaneously Fitting classes [14]. We
further investigate how to obtain bases of pseudoidentities for LH ©m V from
a given Fitting pseudovariety H and a basis of pseudoidentities for V (cf.
Section 6). For this purpose, we need to obtain the type of characterization
of H-radicals that is available since the 1950s for nilpotent groups and p-
groups and for which group theorists have been searching in the solvable case.
This leads us to set up a general profinite framework for studying radicals for
Fitting pseudovarieties, in particular for extension-closed pseudovarieties.

2. Preliminaries

Given finite semigroups S and T , we write S ≺ T if S is a homomorphic
image of a subsemigroup of T , in which case we also say that S divides T .
A nonempty class of finite semigroups closed under taking divisors and finite
direct products is called a pseudovariety. We denote respectively, by S and G
the pseudovarieties consisting of all finite semigroups and all finite groups.

The following definition is a special case of a more general definition of
radical class which is classical in group theory [36]. A radical class of finite
groups is a subclass X ⊆ G with the following properties:
(1) X is closed under taking homomorphic images;
(2) if G is a finite group and N1 and N2 are normal subgroups of G which

belong to X , then so does their product N1N2; we then denote by GX
the product of all normal subgroups of G which belong to X and we call
it the X -radical of G;

(3) for every finite group G, the subgroup (G/GX )X is trivial.
It is well known and easy to see that, in the presence of the other two condi-
tions, condition (3) is equivalent to X being extension-closed. On the other
hand, since an extension-closed pseudovariety H of groups satisfies condi-
tion (3) by the second isomorphism theorem, H is a radical class of finite
groups. Hence, a pseudovariety of groups is radical if and only if it is exten-
sion closed. The radical pseudovarieties of groups are therefore in bijection
with the division-closed sets of finite simple groups.

For a class of specific examples, given a set π of prime integers, consider the
class Gπ of all finite groups G such that all primes dividing |G| belong to π.
Note that Gπ is an extension-closed pseudovariety of groups and, therefore,
radical. Here are some particular cases of interest:
• if π is the set of all primes, then Gπ = G;
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• if π = ∅, then Gπ is the trivial pseudovariety I;
• if π = {p} is a singleton, then Gπ is the pseudovariety Gp of all finite p-

groups;
• if π = 2′ consists of all primes different from 2, then Gπ is the pseudovariety

of all finite groups of odd order.

The class Gsol, of all finite solvable groups, is also a radical pseudovariety.
In case a pseudovariety H of groups satisfies (2) but not necessarily (3), we

will also say that H is a Fitting pseudovariety of groups. The identification of
Fitting pseudovarieties is apparently harder.

For example, the class Gnil, of all finite nilpotent groups, is a Fitting but not
a radical pseudovariety. The Gnil-radical of a finite group G is also known as
its Fitting subgroup, and is denoted Fit(G). Note that the intersection of any
nonempty family of Fitting (respectively, radical) pseudovarieties has again
the same property. In particular, for every set π of primes, Gπ,nil = Gπ ∩ Gnil

is a Fitting pseudovariety while Gπ,sol = Gπ ∩ Gsol is a radical pseudovariety.
These pseudovarieties are, respectively, the smallest pseudovariety and the
smallest extension-closed pseudovariety containing all Gp with p ∈ π. By the
Feit–Thompson theorem [15], we have G2′ = G2′,sol.

A useful remark about the radical GX of a group G for a Fitting class X
is that it is a characteristic subgroup of G. More generally, in view of
property (1), if ϕ : G → H is an onto homomorphism of finite groups then
ϕ(GX ) ⊆ HX . The following result presents some further elementary obser-
vations about radicals.

Lemma 2.1. Let (Hi)i∈I be a family of Fitting pseudovarieties and let G
be a finite group. Then H =

⋂
i∈I Hi is also a Fitting pseudovariety and GH =⋂

i∈I GHi .

As a consequence, we conclude that the Fitting pseudovarieties form a
complete lattice under inclusion.

Given two pseudovarieties of groups H1,H2, we denote by H1H2 the product
pseudovariety consisting of all extensions of a group in H1 by a group in H2.
We remind the reader that this multiplication is associative and distributes
on the left over pseudovariety joins and meets. We write Hn to denote the
n-fold product of copies of H. The following elementary result connects our
study of Fitting pseudovarieties with the classical theory of Fitting classes.

Lemma 2.2. Let H1 and H2 be Fitting pseudovarieties of groups and let G
be a finite group.

(1) We have G ∈ H1H2 if and only if G/GH1 ∈ H2.
(2) The product H1H2 is also a Fitting pseudovariety.
(3) The formula GH1H2/GH1 = (G/GH1)H2 holds.
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Proof. (1) By definition of H1H2, each G ∈ H1H2 must have a normal sub-
group K such that K ∈ H1 and G/K ∈ H2. By definition of the radical, it
follows that K ⊆ GH1 and so also G/GH1 ∈ H2. The converse is obvious.

(2) Suppose that N1 and N2 are two normal subgroups of G which belong to
H1H2. Let Ri = (Ni)H1 (i = 1,2). By (1), both quotients Ni/Ri belong to H2.
Since Ri is a characteristic subgroup of Ni, Ri is also a normal subgroup
of G. Since H1 is a Fitting pseudovariety, we deduce that R1R2 ∈ H1. Thus,
to conclude that N1N2 ∈ H1H2, it suffices to show that N1N2/R1R2 ∈ H2.
Note that

N1N2/R1R2 = (N1R2/R1R2) · (N2R1/R1R2).

Moreover, N1R2/R1R2 is a normal subgroup of N1N2/R1R2 and a homo-
morphic image of N1/R1, which therefore belongs to H2, and similarly for
the other factor. Hence, the quotient N1N2/R1R2 belongs to H2 since this
pseudovariety is a Fitting class.

(3) Let now R = GH1H2 and K = GH1 . Note that the H1-radical of R
coincides with K: as R is a normal subgroup of G, its characteristic subgroup
RH1 is also a normal subgroup of G and, since it belongs to H1, RH1 ⊆ K;
conversely, K is a normal subgroup of R, since it is contained in R, and
therefore K ⊆ RH1 . Since R ∈ H1H2, we obtain R/K ∈ H2 by (1). Hence,
R/K ⊆ (G/K)H2 since R/K is a normal subgroup of G/K. For the reverse
inclusion, let N be the union of all cosets of K which belong to (G/K)H2 .
Then N is a normal subgroup of G such that N/K = (G/K)H2 ∈ H2, with
K ∈ H1, and so N ∈ H1H2. This shows that N ⊆ R and establishes the equality
R/K = (G/K)H2 . �

Part (1) of Lemma 2.2 states that the product of Fitting pseudovarieties
coincides with their product as Fitting classes (cf. [13]). Thus, parts (2)
and (3) are well-known facts in the theory of Fitting classes. Proofs are being
provided for the sake of completeness.

3. Pseudoidentities for exclusion pseudovarieties

We say that a finite group P is prime for direct products or ×-prime if,
whenever P ≺ H1 × H2, for finite groups H1 and H2, P ≺ H1 or P ≺ H2.
This is precisely the condition that guarantees that the following class of
finite groups is a pseudovariety:

ExclG(P ) = {H ∈ G : P 	≺ H}.

Note that cyclic groups of prime power and finite simple groups are ×-prime.
But there are many other ×-prime groups (see [28, Theorem 53.31]).

For the sequel, we recall some background on the profinite approach to the
theory of pseudovarieties. See [1, 2] for further details.
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A profinite semigroup is a compact zero-dimensional semigroup or, equiv-
alently, a compact semigroup which is residually finite as a topological semi-
group [2]. We denote by ΩnS the free profinite semigroup on a free generating
{x1, . . . , xn} set with n elements (often called variables). It may be described
as the completion of the free semigroup {x1, . . . , xn}+ with respect to met-
ric d such that d(u, v) ≤ 2−r if and only if the identity u = v is verified in all
semigroups with at most r elements. We view ΩnS as naturally embedded
in Ωn+1S by sending each free generator xi of ΩnS to the corresponding free
generator xi of Ωn+1S.

Elements of ΩnS may be viewed as n-ary implicit operations on S: fami-
lies (uS)S∈S of n-ary operations such that, for every homomorphism ϕ : S →
T between finite semigroups and for all s1, . . . , sn ∈ S, ϕ(uS(s1, . . . , sn)) =
uT (ϕ(s1), . . . , ϕ(sn)). Given u ∈ ΩnS, the corresponding operation uS : Sn →
S maps the n-tuple (s1, . . . , sn) to f(u), where f : ΩnS → S is the unique
continuous homomorphism that maps the ith variable xi to si (i = 1, . . . , n).
For simplicity, we may write u(s1, . . . , sn) instead of uS(s1, . . . , sn). Also, we
may refer to the implicit operation u(x1, . . . , xn).

A formal equality u = v of elements of some ΩnS is called a pseudoidentity.
We say that a finite semigroup S satisfies the pseudoidentity u = v and we
write S |= u = v if ϕ(u) = ϕ(v) for every continuous homomorphism ϕ : ΩnS →
S. We use u = 1 to abbreviate the pseudoidentities ux = xu = x, where x is a
variable that is not a factor of u. For a set Σ of pseudoidentities, [[Σ]] stands
for the class of all finite semigroups that satisfy all pseudoidentities from Σ.
It is easy to see that [[Σ]] is a pseudovariety and by Reiterman’s theorem [31]
every pseudovariety V can be so described by a set Σ of pseudoidentities,
which is called a basis of pseudoidentities for V.

Proposition 3.1. Suppose that P is an n-generated ×-prime finite group.
Then there is some uP ∈ ΩnS such that ExclG(P ) = [[uP = 1]].

Proof. We make the collection n-ExclG(P ) of all n-generated groups in
ExclG(P ) (up to isomorphism respecting the choice of generators) be an or-
dered set by letting a group K be greater than or equal to a group H if there
is a homomorphism K → H which respects the choice of generators. (Observe
that such a homomorphism is automatically onto.) It is easy to see that this
ordered set is upwards directed—indeed, if G with the generators g1, . . . , gn

and H with the generators h1, . . . , hn are two groups in n-ExclG(P ), then
the subgroup of G × H generated by the pairs (g1, h1), . . . , (gn, hn) belongs
to n-ExclG(P ) (since P is ×-prime) and is greater than or equal to both G
and H . Since n-ExclG(P ) is countable, it implies that this ordered set has a
cofinal sequence. Let (Hk)k be such a sequence. Since each Hk ∈ ExclG(P )
and P is ×-prime, P does not belong to the pseudovariety generated by Hk.
By Reiterman’s theorem, there is a pseudoidentity of the form uk = 1 which
is valid in Hk but not in P . Since P is n-generated, we may assume that
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uk ∈ ΩnS. Let u be the limit of a subsequence of (uk)k in the compact metric
space ΩnS.

We first note that P fails the pseudoidentity u = 1. Indeed, there is k such
that P |= u = uk and, by construction, P 	|= uk = 1. On the other hand, every
Hk satisfies u = 1. Indeed, given k, there is � ≥ k such that Hk |= u = u�

and, by construction, H� |= u� = 1; hence Hk |= u = u� = 1 since Hk is a
homomorphic image of H�.

Next, we claim that ExclG(P ) = [[u = 1]]. Let H be a finite group. If H is
divisible by P , then it cannot satisfy the pseudoidentity u = 1 since P does
not satisfy it, as was shown above. Conversely, if H is not divisible by P , to
show that H |= u = 1, it suffices to assume that H is n-generated. Then H is
a homomorphic image of some Hk, so that Hk |= u = 1 by the above. Hence,
H |= u = 1. This proves the claim and establishes the proposition. �

The above proof can be easily put in the more general setting of pseudova-
rieties of finite algebraic structures. A more efficient proof and its setting
in the context of the theory of continuous lattices can be found in [35] (cf.
Section 7.1 and, in particular, Proposition 7.1.9).

It is well known that the classification of finite simple groups implies that
all finite simple groups are 2-generated. Combining with Proposition 3.1, we
obtain the following result.

Theorem 3.2. Let V be an extension-closed pseudovariety of groups. Then
there is w ∈ Ω2S such that V = [[w = 1]].

Proof. Let S be the set of all division-minimal simple groups, up to iso-
morphism, which do not belong to V. Note that

V =
⋂

P ∈S
ExclG(P ).

Let S = {P1, P2, . . .} be an enumeration of the elements of S . For each index i,
let ui ∈ Ω2S be such that ExclG(P ) = [[ui = 1]], as given by Proposition 3.1.
Let w be the limit in Ω2S of a subsequence of the (possibly finite) sequence
of products (u1 · · · uk)k. We claim that V = [[w = 1]].

Let G be a finite group. Then, for arbitrarily large k, we have G |= w =
u1 · · · uk. Suppose first that G ∈ V. Then G ∈ ExclG(Pi) for all i ≥ 1, which
implies that G satisfies each of the pseudoidentities ui = 1. Hence, G |= w = 1.
Conversely, assume that G |= w = 1. Suppose furthermore that G does not
belong to a certain ExclG(Pi), that is Pi ≺ G. Since the elements of S are
incomparable under division, Pi belongs to ExclG(Pj) for all j 	= i, and so
Pi |= uj = 1 whenever j 	= i. In particular, if we choose k above so that k ≥ i
then G, and therefore also Pi, satisfies the pseudoidentities u1 · · · uk = w = 1.
Since Pi also satisfies uj = 1 for j 	= i, we conclude that Pi |= ui = 1, which
contradicts the choice of ui. Hence, G belongs to all ExclG(Pi), and so it
belongs to V. �
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Note that the proofs of Proposition 3.1 and Theorem 3.2 are based on ex-
istence compactness arguments. It is another problem to exhibit pseudoiden-
tities defining the pseudovarieties in question. One may wish, for instance,
that the implicit operations appearing in them be (efficiently) computable. Of
course, since there are uncountably many extension-closed pseudovarieties of
groups, not all of them are decidable, and so it is certainly not always possible
to obtain such pseudoidentities.

An important example is the pseudovariety of solvable groups. Bases con-
sisting of a single 2-variable pseudoidentity for Gsol can be drawn from recent
work in group theory [9, 12]. The mere existence of such bases had previ-
ously been established in [11, 27] while the existence of bases consisting of
some set of 2-variable pseudoidentities follows from [37]. The original proofs
of all these results depend on part of the classification of finite simple groups.
A direct elementary but intricate proof of the existence of 2-variable bases
has also been obtained [16]. Theorem 3.2 is a much more general result with
a rather straightforward proof but which is again highly dependent on the
classification of finite simple groups.

Some extension-closed pseudovarieties of groups may be even defined by a
single-variable pseudoidentity. The following result is actually a special case
of Proposition 3.1 but its proof provides a more direct “construction” of a
defining pseudoidentity.

Proposition 3.3. Let π be a set of primes. Then Gπ is defined by a
pseudoidentity in one variable.

Proof. Since G∅ is defined by the pseudoidentity x = 1, we may assume
that π is nonempty. Let p1, p2, . . . be an enumeration of the elements of π,
allowing repetitions. Define

(3.1) xν = lim
n→∞

x(p1···pn)n!
.

We will prove that this limit exists and is independent of the enumeration
of π. Denote by π′ the complementary set of primes to π. Let S = 〈s〉 be a
finite monogenic semigroup with minimal ideal the cyclic group K = 〈sω+1〉.
We show that sν is the π′-component of sω+1. Assume sω+1 = s1s2 where s1

is the π-component and s2 is the π′-component of sω+1. Set in = (p1 · · · pn)n!.
We need to show that, for n sufficiently large, sin = s2. Suppose that S has
order �. For n ≥ �, clearly in ≥ � and so sin is in K. Next, we compute

(sω+1)in = (sin)ω+1 = (sin)ωsin = sωsin = sin

where the last equality follows because sin is in the minimal ideal of S, which
is a group with identity element sω . Thus, without loss of generality, we may
assume that s = sω+1 generates a cyclic group of order �.
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Suppose s1 has order j and s2 has order k; so j is divisible only by
primes in π and k by primes in π′ and also � = jk. Let r be the small-
est index such that all prime divisors of j occur among p1, . . . , pr. Choose
N = max{j, r,ϕ(k)} where ϕ is the Euler totient function. We claim that, for
n ≥ N , the equality sin = s2 holds. Because n ≥ max{j, r,ϕ(k)} the following
hold:

j | (p1 · · · pn)n! = in and ϕ(k) | n!.
Indeed, if p is a prime dividing j, then certainly p is among the list p1, . . . , pn

as n ≥ r; if pu is the largest power of p dividing j, then evidently u ≤ j! and
so j | (p1 · · · pn)n! as claimed. Because p1 · · · pn is prime to k, Euler’s theorem
(or the fact that the group of units of Zk has order ϕ(k)) yields

in = (p1 · · · pn)n! ≡ 1 mod k.

Therefore, sin = sin
1 sin

2 = s2. This completes the proof that sν is the π′-
component of s. It follows that Gπ is defined by the pseudoidentity xν = 1. �

A simpler basis of pseudoidentities may be given for the pseudovariety G2′

of all finite groups of odd order, namely

G2′ = [[x2ω −1 = 1]],

where x2ω −1 = limn→∞ x2n!−1. If a finite group G satisfies the pseudoidentity
x2ω −1 = 1, then G has odd order. Conversely, if m is odd, then 2 is invertible
in the ring Z/mZ and so 2ω = 1 in this ring. It follows that every finite group
of odd order satisfies the pseudoidentity x2ω

= x. Note also that the proof
of Proposition 3.3 establishes the equality G{p1,...,pn } = [[x(p1···pn)ω

= 1]] for all
primes p1, . . . , pn.

4. Characterizations of the radical

Recall the standard notation in group theory for iterated commutators:
[x, 1y] = [x, y] = x−1y−1xy and [x,n+1y] = [[x,ny], y]. For a group G, L(G)
denotes the set of all left Engel elements of G consisting of those x ∈ G such
that, for every y ∈ G, there exists r ≥ 1 such that [y, rx] = 1.

For a subset X of a group G, denote by 〈X〉 the subgroup generated by X .
The following result has been recently established [23].

Theorem 4.1. An element a of a finite group G belongs to its solvable
radical if and only if, for every b ∈ G, the subgroup 〈a, b〉 is solvable.

On the other hand, Bandman, Borovoi, Grunewald, Kunyavskĭı, and
Plotkin [8] have formulated and investigated a general conjecture which would
lead to a description of the solvable radical similar to Baer’s description of
the nilpotent radical in terms of left Engel elements. They established the
analog of the conjecture for finite-dimensional Lie algebras and reduced the
conjecture to a slight strengthening of the case of finite direct products of
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isomorphic non-Abelian finite simple groups. Although they also proposed
constructions of specific candidates, their conjecture amounts to the existence
of w ∈ Ω2S such that, for every finite group G and every a ∈ G, a belongs to
the solvable radical if and only if, for every b ∈ G, w(a, b) = 1.

More generally, let V be a Fitting pseudovariety of groups. We say that the
V-radical is characterized by a subset W ⊆ Ωr+1S if, for every finite group G,

(4.1) GV = {a ∈ G : ∀b1, . . . , br ∈ G ∀w ∈ W,w(a, b1, . . . , br) = 1}.

We then say that r+1 is the arity of the characterization. In case the equation
holds for all G in a given class C of finite groups, then we say that the V-
radical is characterized by W over C. Note that every such characterization
contains a countable one.

In this language, the above conjecture is equivalent to the statement that
the solvable radical admits a singleton binary characterization {w}.

For example, as a consequence of a theorem of Baer [7], the nilpotent radical
is characterized by the ω-iterated commutator

u(x1, x2) = [x2,ωx1]

which is defined as the limit of [x2,n!x1] as n → ∞, where [x2, x1] = xω−1
2 ×

xω−1
1 x2x1 and, recursively, [x2,n+1x1] = [[x2,nx1], x1].1 Moreover, also by

Baer’s theorem, the p-group radical of a finite group G consists of the ele-
ments of L(G) which have order a power of p. Thus, the Gp-radical is charac-
terized by the set {[x2,ωx1], x

pω

1 }, where xpω

denotes the limit limn→∞ xpn!
.

A singleton characterization is given by

(4.2) [x2,ωx1]x
pω

1 .

Indeed, for a finite group G, if [h,ωg]gpω

= 1 for all h ∈ G then, in particular,
taking h = 1, we obtain gpω

= 1. Hence, the equality [h,ωg]gpω

= 1 holds for
all h ∈ G if and only if the equalities [h,ωg] = gpω

= 1 hold for all h ∈ G.
The following is a tool to build up characterizations of radicals, although

it creates the technical difficulty of the simultaneous build up of the number
of variables.

Proposition 4.2. Suppose that v1 ∈ Ωn+1S and v2 ∈ Ωm+1S characterize
the radicals of the Fitting pseudovarieties H1 and H2, respectively. Then the
(H1H2)-radical is characterized by the (m + n + 1)-ary implicit operation

(4.3) v = v1(v2(x1, x2, . . . , xm+1), xm+2, . . . , xm+n+1).

Proof. Let G be a finite group and let g ∈ G. If g ∈ GH1H2 then, by
Lemma 2.2, gGH1 ∈ (G/GH1)H2 and so, for all a1, . . . , am ∈ G, we have v2(g, a1,
. . . , am) ∈ GH1 , which implies that

(4.4) v1(v2(g, a1, . . . , am), b1, . . . , bn) = 1

1 By xω−1 we denote the limit of xn!−1 as n → ∞.
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for all b1, . . . , bn ∈ G. Conversely, suppose that g ∈ G is such that the equal-
ity (4.4) holds for all ai, bj ∈ G. Since v1 characterizes the H1-radical, v2(g, a1,
. . . , am) is an element of GH1 for all ai ∈ G. Since v2 characterizes the H2-
radical, we deduce that gGH1 ∈ (G/GH1)H2 . By Lemma 2.2, it follows that
gGH1 ∈ GH1H2/GH1 , which implies that g ∈ GH1H2 . Hence, v characterizes the
(H1H2)-radical. �

Denote by Ab the pseudovariety of all finite Abelian groups. The following
easy observation already intervenes in the proof of Theorem 4.1.

Lemma 4.3. Let V be an extension-closed pseudovariety of groups contain-
ing Ab. If G is a finite group, a ∈ GV, and b ∈ G, then 〈a, b〉 ∈ V.

Proof. Let H = 〈a, b〉. Then H is a cyclic extension of its normal subgroup
N = H ∩ GV. Since N ∈ V and V contains Ab, it follows that H ∈ V. �

The following notation will be convenient for a pseudovariety V:

(Ω2S)V = {u ∈ Ω2S : V |= u = 1}.

Note that, if V is a Fitting pseudovariety of groups and W is a binary char-
acterization of the V-radical GV, then W ⊆ (Ω2S)V.

Theorem 4.1 may be formulated in the language of characterizations of
radicals as stating that the solvable radical admits a binary characterization.
More generally, we have the following result.

Proposition 4.4. Let V be an extension-closed pseudovariety of groups
containing Ab. Then the V-radical admits a binary characterization if and
only if, for every finite group G,

(4.5) GV = {a ∈ G : ∀b ∈ G, 〈a, b〉 ∈ V}.

Proof. Suppose first that W is a binary characterization of the V-radical
and let G ∈ G and a, b ∈ G. Consider the subgroup Hb = 〈a, b〉. If a ∈ GV, then
Hb ∈ V by Lemma 4.3. On the other hand, if Hb ∈ V for every b ∈ G, then
w(a, b) = 1 for every w ∈ W since W ⊆ (Ω2S)V. Since W is a characterization
of the V-radical, it follows that a ∈ GV. Hence, the equality (4.5) holds.

Conversely, suppose that the V-radical of every finite group G is given
by (4.5). By Theorem 3.2, there exists u ∈ Ω2S such that V = [[u = 1]]. Let

W =
{
u(x, y) : x, y ∈ {x1, x2}+

}
,

where x1, x2 are the free generators of Ω2S. We claim that W characterizes
the V-radical. Let G be a finite group and let a ∈ G. By (4.5), a ∈ GV if
and only if, for every b ∈ G, the subgroup 〈a, b〉 belongs to V, that is if it
satisfies the pseudoidentity u = 1. Since the elements of 〈a, b〉 are described
by arbitrary positive words in a and b, the latter condition is equivalent to
w(a, b) = 1 for all w ∈ W , which shows that W is a binary characterization of
the V-radical. �
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Further evidence towards the conjecture of Bandman et al. is given by the
following recent result [39], which also depends on Theorem 4.1 and whose
finite version translates in our language by saying that there is a singleton
binary characterization of the solvable radical over the class of all finite linear
groups.

Theorem 4.5. There is a sequence (wn)n of group words in the free group
on x1, x2 which converges in Ω2G such that, for every linear group G and
element g ∈ G, g lies in the solvable radical of G if and only if, for all h ∈ G,
we have wn(g,h) = 1 for all sufficiently large n.

For the remainder of this section, V denotes a Fitting pseudovariety of
groups.

We observe that there is a formulation of the existence of characterizations
by sets of implicit operations similar to the property in Theorem 4.5. For
simplicity, we illustrate it in the case of binary characterizations.

Proposition 4.6. The V-radical admits a binary characterization if and
only if there is a sequence (wn)n of {x1, x2}+ such that, for every finite
group G,

(4.6) GV = {g ∈ G : ∀h ∈ G ∃n0 ∀n ≥ n0,wn(g,h) = 1}.

Proof. Suppose first that W is a binary characterization of the V-radical.
As has been observed, we may assume that it is countable. Let v1, v2, . . . be an
enumeration of its elements. For each pair of positive integers n,k, let vn,k ∈
{x1, x2}+ be such that d(vn,k, vn) ≤ 2−k. Let w1,w2, . . . be an enumeration
of the list of words vn,k with k ≥ n. Then we claim that equation (4.6) holds
for every finite group G. Indeed, given g ∈ GV and h ∈ G, vn(g,h) = 1 for
all n and so vn,k = 1 for all k ≥ |G|, which implies that wn(g,h) = 1 for every
sufficiently large n. On the other hand, if g ∈ G is such that, for all h ∈ G,
wn(g,h) = 1 for every sufficiently large n, then certainly, for every n and
sufficiently large k, vn,k(g,h) = 1, which implies that vn(g,h) = 1 for every n,
whence g ∈ GV.

Conversely, suppose that the sequence of words (wn)n satisfies (4.6) for
every finite group G. Let W denote the set of all accumulation points of the
sequence (wn)n in Ω2S. Then, given a finite group G and g,h ∈ G, we have
w(g,h) = 1 for every w ∈ W if and only if wn(g,h) = 1 for every sufficiently
large n. Hence, W is a binary characterization of the V-radical. �

For each finite group G, we let UV(G) denote the set of all u ∈ Ω2S such
that the following two conditions hold:
(1) V |= u = 1;
(2) for every a ∈ G \ GV there exists b ∈ G such that u(a, b) 	= 1.
If, additionally, a, b are specific elements of G, then we let

U b
V,a(G) = {u ∈ Ω2S : u(a, b) 	= 1,V |= u = 1}
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and
UV,a(G) =

⋃

g∈G

Ug
V,a(G),

so that

(4.7) UV(G) =
⋂

a∈G\GV

UV,a(G),

where the intersection is viewed as specifying a subset of (Ω2S)V and so it
is taken to be (Ω2S)V in case the intersected family is empty, that is G ∈
V. Note that U b

V,a(G) is a closed subset of Ω2S as it is the intersection of
(Ω2S)V with the clopen set ϕ−1(G \ {1}), where ϕ : Ω2S → G is the continuous
homomorphism which maps x1 to a and x2 to b. Hence, each of the sets
UV,a(G) and UV(G) is closed in Ω2S.

Lemma 4.7. The following formula holds for every pseudovariety V con-
taining Ab and all finite groups G1, . . . ,Gn:

(4.8) UV(G1 × · · · × Gn) =
n⋂

i=1

UV(Gi).

Proof. We start by observing that the hypothesis that V contains Ab im-
plies that G satisfies the pseudoidentity u(1, x2) = 1 whenever u ∈ (Ω2S)V.
Indeed, the assumption on u implies that it holds in V and therefore also in
every finite cyclic group. Since the pseudoidentity u(1, x2) = 1 involves only
one variable, it holds in G.

Let G = G1 × · · · × Gn. It can be easily verified that

(4.9) GV = (G1)V × · · · × (Gn)V.

To prove the inclusion from left to right in (4.8), take u ∈ UV(G) and let
ai ∈ G \ (Gi)V. By (4.9), the n-tuple (1, . . . ,1, ai,1, . . . ,1), with ai in the ith
position, belongs to G \ GV. Hence, there exists an n-tuple (b1, . . . , bn) ∈ G
such that

(4.10) u((1, . . . ,1, ai,1, . . . ,1), (b1, . . . , bn)) 	= 1.

Now, the left side of (4.10) has ith component u(ai, bi), in Gi, and remaining
components of the form u(1, bj), in Gj . Since u ∈ UV(G1 × · · · × Gn) ⊆ (Ω2S)V

and G |= u(1, x2) = 1, it follows from (4.10) that u(ai, bi) 	= 1. Hence u ∈
UV(Gi).

For the reverse inclusion, let u ∈
⋂n

i=1 UV(Gi) and suppose that a = (a1, . . . ,
an) is an element of G \ GV. By (4.11), there is some index i such that
ai /∈ (Gi)V. Since u ∈ UV(Gi), there exists bi ∈ Gi such that u(ai, bi) 	= 1.
Hence, for b = (1, . . . ,1, bi,1, . . . ,1), with ith component bi, we have u(a, b) 	= 1,
which shows that u ∈ UV(G). �

The relevance of the sets UV(G) comes from the following result.
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Proposition 4.8. Let V be an extension-closed pseudovariety of groups
containing Ab. Then the set

⋂
G∈G UV(G) consists precisely of the binary

implicit operations u that characterize the V-radical of finite groups.

Proof. Suppose that u ∈ UV(G) for every finite group G. We show that u
characterizes the V-radical of finite groups, that is, for every finite group G,
its V-radical is given by the formula

(4.11) GV = {a ∈ G : ∀b ∈ G,u(a, b) = 1}.

Indeed, if a ∈ G \ GV then u ∈ UV(G) ⊆ UV,a(G) and, therefore, there exists
b ∈ G such that u(a, b) 	= 1. Suppose next that a ∈ GV. Given b ∈ G, the
equality u(a, b) = 1 holds by Lemma 4.3 since u ∈ (Ω2S)V, which completes
the proof of equation (4.11).

Conversely, suppose that u is a binary implicit operation which character-
izes the V-radical of finite groups. If G is a group in V then GV = G and so, in
view of (4.11), we obtain u(a, b) = 1 for all a, b ∈ G. Hence the pseudoidentity
u = 1 holds in V, which shows that u ∈ (Ω2S)V. On the other hand, for an
arbitrary finite group G, from (4.11) it also follows that, if a ∈ G \ GV, then
there exists b ∈ G such that u(a, b) 	= 1, whence u ∈ UV(G). �

The following result is a simple compactness theorem which reformulates
the existence of binary singleton characterizations of the V-radical which work
for all finite groups in terms of binary singleton characterizations of the V-
radical for each specific finite group.

Theorem 4.9. Let V be an extension-closed pseudovariety of groups con-
taining Ab. Then the set UV(G) is nonempty for every finite group G if and
only if the V-radical admits a binary singleton characterization.

Proof. By Proposition 4.8, it suffices to show that, if each of the sets UV(G)
(G ∈ G) is nonempty, then so is their intersection. Now, from (4.8) we conclude
that the family of closed subsets (UV(G))G∈G of (Ω2S)V has the nonempty
finite intersection property. By compactness, the intersection of the family is
nonempty. �

We proceed to formulate the existence of binary characterizations of the
V-radical in terms of properties of the sets UV,a(G).

Proposition 4.10. For an extension-closed pseudovariety of groups V con-
taining Ab, the V-radical admits a binary characterization if and only if, for
every finite group G and every a ∈ G \ GV, the set UV,a(G) is nonempty.

Proof. Suppose that W is a binary characterization of the V-radical and
let G ∈ G and a ∈ G \ GV. Then there exist b ∈ G and w ∈ W such that
w(a, b) 	= 1. Since w ∈ W ⊆ (Ω2S)V, it follows that w ∈ U b

V,a(G) ⊆ UV,a(G),
which shows that UV,a(G) 	= ∅.
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For the converse, let W be the union of all UV,a(G) with G ∈ G and a ∈
G \ GV. We claim that W characterizes the V-radical. Indeed, given a ∈ GV

and b ∈ G, w(a, b) = 1 for all w ∈ W by Lemma 4.3 since W ⊆ (Ω2S)V. On the
other hand, if a ∈ G \ GV, then by hypothesis there exists w ∈ W such that
w(a, b) 	= 1 for some b ∈ G. Hence, W characterizes the V-radical. �

Combining Theorem 4.1 with Propositions 4.4 and 4.10, we deduce that,
for every finite group G and every a ∈ G, the set UGsol,a(G) is nonempty. On
the other hand, in view of Theorem 4.9, the conjecture of Bandman et al.
about the solvable radical amounts to the set

UGsol(G) =
⋂

a∈G\GGsol

UGsol,a(G)

being nonempty for every finite group G.

Lemma 4.11. Let V be an extension-closed pseudovariety containing Ab.
If the sets UV,a1(G) and UV,a2(G) are nonempty for a given finite group G
and elements a1, a2 ∈ G then the intersection UV,a1(G) ∩ UV,a2(G) is also non-
empty.

Proof. If at least one of the ai belongs to GV, then UV,ai(G) = (Ω2S)V by
Lemma 4.3. Hence, the intersection UV,a1(G) ∩ UV,a2(G) is the other UV,aj (G),
which is nonempty by hypothesis. Hence, we may assume that neither a1

nor a2 belong to GV. Let ui ∈ UV,ai(G) (i = 1,2). Then there exist bi ∈ G
such that ui(ai, bi) 	= 1 (i = 1,2).

If, for some i ∈ {1,2}, there is g ∈ G such that ui(aj , g) 	= 1, where {i, j} =
{1,2}, then ui ∈ UV,a1(G) ∩ UV,a2(G), and we are done. Hence, we may assume
that ui(aj , g) = 1 whenever i 	= j and g ∈ G. Let u = u1u2. Then u is an
element of (Ω2S)V such that u(ai, bi) = ui(ai, bi) 	= 1 (i = 1,2), and so u ∈
UV,a1(G) ∩ UV,a2(G). �

We did not manage to show that UV(G) is always nonempty for every finite
group under the hypothesis that UV,a(G) 	= ∅ for every finite group G and a ∈
G. To illustrate the difficulty, we consider the case of three elements a1, a2, a3

of a finite group for which we assume that each UV,ai(G) is nonempty. The
aim is to show that

⋂
i=1,2,3 UV,ai(G) 	= ∅. Assuming that V is extension closed

and contains Ab, as in the proof of Lemma 4.11 it suffices to consider the case
in which none of the ai belongs to GV. By Lemma 4.11, for each i ∈ {1,2,3},
there exists vi ∈

⋂
j �=i UV,aj (G). We may further assume that vi(ai, g) = 1 for

every g ∈ G for, otherwise, vi ∈
⋂

i=1,2,3 UV,ai(G) and we are done. Moreover,
if v1(a3, c)2 	= 1 for some c ∈ G, then either w = v1v2 or w = vω−1

1 v2 belongs to⋂
i=1,2,3 UV,ai(G): indeed, for {i, j} = {1,2} w(ai, g) = vj(ai, g)±1 is not the

identity element for some g ∈ G; on the other hand, if v1(a3, c)−1v2(a3, c) = 1
then v1(a3, c)v2(a3, c) 	= 1 by hypothesis. It remains to consider the case where
vi(aj , g)2 = 1 whenever g ∈ G and i 	= j, which we do not know how to handle.
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Problem 4.12. Let V be an extension-closed pseudovariety. Is it true that,
for every finite group G, the set UV(G) is nonempty?

In view of Theorem 4.9, for an extension-closed pseudovariety V contain-
ing Ab, an affirmative answer is equivalent to the existence of a binary implicit
characterization of the V-radical. Equivalently, it means that there exists a
sequence wn(x1, x2) of words in the letters x1, x2 which converges in Ω2S such
that, for every finite group G and every a ∈ G, a ∈ GV if and only if, for every
b ∈ G, wn(a, b) = 1 for all sufficiently large n. In particular, Problem 4.12 gen-
eralizes to arbitrary extension-closed pseudovarieties of groups the Bandman
et al. conjecture for the case of solvable groups.

An alternative characterization of radicals has been receiving a lot of at-
tention from group theorists. It is based on the observation that, for a finite
group G, an element g lies in the V-radical if and only if its conjugacy class gG

generates a subgroup from V. Thus, one may ask, if one needs to consider
the subgroup generated by the whole conjugacy class gG or whether a much
smaller subset, of size bounded by some number independent of G suffices.
The Baer–Suzuki theorem shows that two elements suffice for V = Gnil. For
V = Gsol, it has been recently shown that four elements suffice, while two suf-
fice if they have prime order p > 3 [17, 19–22]. There seems to be no obvious
relationship between this type of characterization of radicals and the implicit
characterizations considered in this section.

5. Semigroup radicals

Let V be a pseudovariety of semigroups. We denote by LV the class of all
finite semigroups S such that, for every idempotent e ∈ S, the monoid eSe
belongs to V. We say that a congruence on a finite semigroup is a congruence
over V if its idempotent classes belong to V.

The purpose of this section is to give a description of the largest congruence
over LH on a finite semigroup S when H is a Fitting pseudovariety. There
is already such a description available [25]. It is formulated in terms of the
Rees matrix structure of regular J -classes. Ours, which appears to be more
suitable for the applications in Section 6, is essentially an extension of the
description given in [26] for the case of H = G (see also [3] for the case of
H = Gp and the connections of both with representation theory).

Let J be a regular J -class of a finite semigroup S and let GJ be a maximal
subgroup contained in J . Let N be a normal subgroup of GJ . We denote by
Ri (i ∈ I) the R-classes of J and by Lλ (λ ∈ Λ) the L-classes of J . Suppose
that GJ = R1 ∩ L1. For each i ∈ I and λ ∈ Λ, choose coordinates ri ∈ J such
that s �→ ris is a bijection Ri → R1 and lλ ∈ J such that s �→ slλ is a bijection
Lλ → L1. With this notation, if Hiλ = Ri ∩ Lλ, then s �→ rislλ is a bijection
Hiλ → GJ .
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We define a congruence by s ≡(J,GJ ,N) t if and only if, for all x, y ∈ J ,

(5.1) xsy ∈ J ⇐⇒ xty ∈ J

and in this case if x ∈ Ri and y ∈ Lλ, then

(5.2) rixsylλN = rixtylλN.

The quotient S/≡(J,GJ ,N) is denoted GGM(J,GJ ,N) [26]. In case S is a
group, S = J = GJ and ≡(J,GJ ,N) is the congruence determined by the normal
subgroup N . Note also that, if K is another normal subgroup of GJ then

(5.3) N ⊆ K =⇒ ≡(J,GJ ,N) ⊆ ≡(J,GJ ,K).

From hereon, H always denotes a Fitting pseudovariety of groups. For a
finite semigroup S, we define RadH(S) to be the congruence on S which is ob-
tained by taking the intersection of all congruences of the form ≡(J,GJ ,(GJ )H).
It is a standard exercise in semigroup theory to show that the congruence
≡(J,GJ ,(GJ )H) depends only on J and not on the choice of the maximal sub-
group GJ and of the coordinates.

Theorem 5.1. The congruence RadH(S) on a finite semigroup S is the
largest congruence over LH on S.

Proof. Suppose that θ is a congruence over LH on S and let (s, t) ∈ θ. We
show that (s, t) ∈ RadH(S). Let J be a regular J -class of S and suppose
that x, y,xsy ∈ J . Let z ∈ S be such that xsyz is an idempotent in J . Then
xsyz and xtyz lie in the same idempotent θ-class T . Since θ is a congruence
over LH by hypothesis, the subsemigroup T belongs to LH. As the elements
xsyz and xtyz both lie in T and xsyz is regular, it follows that we have the
following chain of relations in S : x ≥J xty ≥J xtyz ≥J xsyz ≥J x. Hence,
xty ∈ J which, together with the dual argument, establishes condition (5.1).
Suppose next that x, y,xsy,xty ∈ J , say x ∈ Ri and y ∈ Lλ. Choose GJ

to be the maximal subgroup containing the idempotent xsyz and let N =
GJ ∩ T . Then N is a normal subgroup of GJ which is contained in the
semigroup T from LH, and so N ∈ H. In particular, N ⊆ (GJ)H and the
congruence ≡(J,GJ ,N) is contained in ≡(J,GJ ,(GJ )H) by (5.3). Since the elements
rixsylλ and rixtylλ lie in GJ and they are θ-equivalent, they define the same
N -coset. Hence, s and t are ≡(J,GJ ,N)-equivalent and therefore they are also
≡(J,GJ ,(GJ )H)-equivalent. Since the regular J -class J of S is arbitrary, we
conclude that (s, t) ∈ RadH(S). This establishes that θ ⊆ RadH(S).

It remains to show that RadH(S) is itself a congruence over LH. Let T be
an idempotent class of RadH(S). We must verify that, for every idempotent e
of T , eTe is a group from H. Let J be the J -class of S which contains e and
let GJ be the maximal subgroup containing e. Since T is a RadH(S)-class,
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in particular every element x of eTe is such that x ≡(J,GJ ,(GJ )H) e, hence x

lies in J . Since x ∈ eTe, it follows that x ∈ GJ and so x ∈ (GJ )H by (5.2).
Hence, eTe is a subgroup of (GJ)H, which shows that eTe ∈ H and completes
the proof of the theorem. �

For two pseudovarieties V and W, denote by V ©m W the pseudovariety
generated by the class of all finite semigroups S which admit a congruence ρ
over V such that S/ρ ∈ W. The following result can be easily deduced from
Theorem 5.1 (cf. [25]).

Theorem 5.2. Let S be a finite semigroup. Then S ∈ LH ©m V if and only
if the quotient S/RadH(S) belongs to V.

An immediate application is the following decidability result, where a
pseudovariety is said to be decidable if there is an algorithm for testing mem-
bership of finite semigroups in it. It is a particular case of a more general
result from [25, Corollary 2.12].

Corollary 5.3. If H is a decidable Fitting pseudovariety of groups and V
is a decidable pseudovariety of semigroups then the Mal’cev product LH ©m V
is decidable.

Note that in general the Mal’cev product of decidable pseudovarieties may
not be decidable [6, 34].

6. Bases of pseudoidentities

We say that an n-tuple (α1, . . . , αn) of members of ΩnS is group-generic if
the following conditions hold:

• given a finite semigroup S and n elements s1, . . . , sn ∈ S, the elements
αi(s1, . . . , sn) (i = 1, . . . , n) lie all in the same subgroup of S;

• if G is a finite group and g1, . . . , gn ∈ G then αi(g1, . . . , gn) = gi (i = 1, . . . , n).

The existence and characterizations of such tuples have been extensively in-
vestigated in [4]. A simple example is obtained by considering the continu-
ous endomorphism ϕ of the free profinite semigroup ΩnS which maps xi to
x1 · · · xεi

i · · · xn (i = 1, . . . , n), where εi = 2 for i < n and εn = 1. Since the
monoid of continuous endomorphisms of a finitely generated profinite semi-
group is itself profinite [2], there is a unique idempotent limit ϕω of sequences
of finite powers of ϕ, namely ϕω = limn→∞ ϕn!. We can take αi = ϕω(xi)
(i = 1, . . . , n) [4].

Throughout this section, we suppose again that H is a Fitting pseudovari-
ety. We now show how characterizations of the radical may be used to obtain
bases of pseudoidentities for pseudovarieties of the form LH ©m V.
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Theorem 6.1. Let Σ = {ui = vi : i ∈ I} be a set of pseudoidentities and let
V = [[Σ]]. Suppose that W is an (m + 1)-ary characterization of the H-radical.
Then the Mal’cev product LH ©m V is defined by the following pseudoidentities:

(6.1) ((xuiy)ωxviy(xuiy)ω)ω = (xuiy)ω,

w(α1(xviy, z1, . . . , zm)ω−1α1(xuiy, z1, . . . , zm)α1(xviy, z1, . . . , zm)ω,(6.2)
α2(xviy, z1, . . . , zm), . . . , αm+1(xviy, z1, . . . , zm))
= α1(xviy, z1, . . . , zm)ω,

with i ∈ I and w ∈ W , where x, y, z1, . . . , zm are new variables and the αj are
such that (α1, . . . , αm+1) is a group-generic (m + 1)-tuple of implicit opera-
tions. In particular, if V is finitely based and W is finite, then LH ©m V is also
finitely based.

Proof. We first show that LH ©m V satisfies the pseudoidentities (6.1)
and (6.2). Let S be a semigroup in LH ©m V. By Theorem 5.2, the quotient
S/RadH(S) belongs to V. Consider the values s and t resulting from an eval-
uation of the implicit operations xuiy and xviy in S. Let σ(z0, z1, . . . , zn) ∈
Ωm+1S be an implicit operation which is an element of a subgroup, whose
idempotent we denote by e. Since RadH(S) is a congruence, given any r1, . . . ,
rn ∈ S, the elements σ(s, r1, . . . , rn) and σ(t, r1, . . . , rn) are in the same
RadH(S)-class. Consider the idempotent ē = e(s, r1, . . . , rn). We claim that,
as a consequence of Theorem 5.1, the element ēσ(t, r1, . . . , rn)ē belongs to the
maximal subgroup of S containing ē:

(6.3) ē H σ(s, r1, . . . , rn) H ēσ(t, r1, . . . , rn)ē.

Indeed, since S is a finite semigroup, there is some finite word w such that
S |= σ = w. Note that ē = (w(s, r1, . . . , rn))ω . We consider w as a word in the
variables z0, z

′
0, z1, . . . , zn and we show that changing the first occurrence of

z0 to z′
0 in w leads to a word w′ such that

(6.4) ēw′(s, t, r1, . . . , rn)ē H ē.

Let w = w1z0w2, where z0 does not occur in w1. Then the products ēw1(s, t, r1,
. . . , rn) and w2(s, t, r1, . . . , rn)ē are both elements of the J -class J of ē. Let G
be the maximal subgroup of S containing ē. Since s ≡(J,G,GH) t by the def-
inition of RadH(S), we conclude that ēw′(s, t, r1, . . . , rn)ē belongs to J and,
therefore, it belongs to G, which proves (6.4). The claim (6.3) now follows by
induction on the number of occurrences of z0 in w.

We first apply (6.3) to the implicit operation

σ(z0, z1) = (zω
1 z0z

ω
1 )ω,

with r1 = t. The claim yields the first of the following equalities

(tωstω)ω = (tωttω)ω = tω,
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which shows that S satisfies (6.1). On the other hand, if α ∈ Ωm+1S lies in a
subgroup and we let

σ(z0, z1, �z) = (α(z1, �z)ωα(z0, �z)α(z1, �z)ω)ω+1,

where �z abbreviates z2, . . . , zm+1, then by (6.3), for any m-tuple �r of elements
of S the elements s̄ = σ(s, t,�r) and t̄ = σ(t, t,�r) = α(t,�r) lie in a maximal
subgroup G of S. Since s̄ and t̄ are RadH(S)-equivalent, the element

t̄−1s̄ = α(t,�r)ω−1(α(t,�r)ωα(s,�r)α(t,�r)ω)ω+1

= α(t,�r)ω−1α(s,�r)α(t,�r)ω

belongs to the unipotent radical GH. In particular, if we let α = α1, since
the elements (αk)(t,�r) (k = 1, . . . ,m + 1) all lie in G and W characterizes the
H-radical, the following equality holds for every w ∈ W :

w(t̄−1s̄, α2(t,�r), . . . , αm+1(t,�r)) = α1(t,�r)ω,

which shows that S satisfies (6.2).
Conversely, let S be a finite semigroup that satisfies the pseudoidenti-

ties (6.1) and (6.2). By Theorem 5.2, it suffices to show that S/RadH(S)
satisfies each of the pseudoidentities ui = vi. Consider again the values s
and t resulting from an evaluation of the implicit operations ui and vi in S,
respectively. We claim that (s, t) ∈ RadH(S). By the definition of RadH(S),
we should show that s ≡(J,G,GH) t for every regular J -class J of S, any max-
imal subgroup G of S contained in J , and “coordinates” ra, lb. Recall that
the subgroup and coordinates may be suitably chosen since the congruence
≡(J,G,GH) does not depend on them.

Let x̄, ȳ ∈ J , for a regular J -class J , and suppose that x̄sȳ ∈ J . Let z̄ ∈ S
be such that x̄sȳz̄ is an idempotent in J . Then, from the pseudoidentity (6.1)
we deduce that x̄sȳz̄ = ((x̄sȳz̄)ωx̄tȳz̄(x̄sȳz̄)ω)ω which shows that

(6.5) x̄ ≤J x̄sȳz̄ ≤ J x̄tȳz̄ ≤J x̄tȳ ≤J x̄

and so x̄tȳ ∈ J . Conversely, assuming that x̄tȳ ∈ J , let z̄ ∈ S be such that
x̄tȳz̄ is an idempotent in J . Complete the evaluation of the variables in
the pseudoidentity ui = vi to an evaluation of those in any pseudoidentity
from (6.2), by making the following assignment to the new variables: x �→ x̄,
y �→ ȳz̄, zi �→ x̄tȳz̄ (i = 1, . . . ,m). Then (6.2) yields that x̄sȳz̄ is a factor of
x̄tȳz̄ from which it follows, as in (6.5) with s and t interchanged, that x̄sȳ ∈ J .2

Suppose next that the six elements a, b, r, l, rasbl, ratbl lie in J and that the
H-class of rasbl is a group G. Then s̄ = rasbl and t̄ = ratbl are both elements
of G. Let c1, . . . , cm be arbitrary elements of G and, for brevity, denote
(c1, . . . , cm) by �c. Since the (m+1)-tuple of implicit operations (α1, . . . , αm+1)

2 This argument is adapted from [30] where, among other results, a basis of pseudoidenti-

ties for LG ©m V is given in terms of a basis of pseudoidentities for V. The basis in question
consists precisely of the pseudoidentities ((xuiy)ωxviy(xuiy)ω)ω = (xuiy)ω and its dual,

which is obtained by interchanging ui and vi.
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is group-generic, s̄ = α1(s̄,�c), t̄ = α1(t̄,�c), and ci = αi+1(s̄,�c) (i = 1, . . . ,m).
We apply the pseudoidentities (6.2) with the evaluation of the new variables
defined by x �→ ra, y �→ bl, and zi �→ ci, to obtain w(t̄−1s̄, c1, . . . , cm) = t̄ω

whenever w ∈ W . Since W is assumed to be a characterization of the H-
radical, it follows that t̄−1s̄ ∈ RadH(G) which shows that s ≡(J,G,GH) t. �

As particular cases of Theorem 6.1, we exhibit bases of pseudoidentities
for pseudovarieties of the form LH ©m V for Fitting pseudovarieties H of special
interest.

Corollary 6.2. Let Σ = {ui = vi : i ∈ I} be a set of pseudoidentities and
let V = [[Σ]]. Then the Mal’cev product LGnil ©m V is defined by the pseudoiden-
tities (6.1) together with:

(6.6) [β(xviy, z),ωα(xviy, z)ω−1α(xviy, z)α(xuiy, z)ω] = β(xviy, z)ω,

with i ∈ I , where x, y, z are new variables and (α,β) is a fixed group-generic
pair of implicit operations. If V is finitely based, then so is LGnil ©m V.

Corollary 6.3. Let Σ = {ui = vi : i ∈ I} be a set of pseudoidentities and
let V = [[Σ]]. Then the Mal’cev product LGp ©m V is defined by the pseudoiden-
tities (6.6) together with:

(6.7) ((xviy)ω−1(xuiy(xviy)ω)ω+1)pω

= (xviy)ω

with i ∈ I , where x, y, z are new variables and (α,β) is a fixed group-generic
pair of implicit operations. If V is finitely based, then so is LGp ©m V.

Proof. The proof is obtained by minor adaptations of the proof of Theo-
rem 6.1 taking into account that, in a finite group G, an element a lies in GGp

if and only if it lies in GGnil and it has order a power of p. �

Note that if the implicit operations ui, vi of the basis of pseudoidentities
of V are computable then so are the implicit operations of the bases of the
Mal’cev products given by Corollaries 6.2 and 6.3.

The following result depends on the Bandman et al. conjecture.

Corollary 6.4. Let Σ = {ui = vi : i ∈ I} be a set of pseudoidentities and
let V = [[Σ]]. If the Bandman et al. conjecture holds and {u} is a binary
characterization of the solvable radical, then the Mal’cev product LGsol ©m V is
defined by the pseudoidentities (6.1) together with:

u(α(xviy, z)ω−1α(xviy, z)α(xuiy, z)ω, β(xviy, z)) = β(xviy, z)ω,

with i ∈ I , where x, y, z are new variables and (α,β) is a fixed group-generic
pair of implicit operations. Hence, still under the hypothesis that the Bandman
et al. conjecture holds, if V is finitely based then so is LGsol ©m V.
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Another type of application is the following. Say that a pseudovariety V
has rank n if it admits a basis of pseudoidentities in n variables. Equivalently,
V has rank n if a finite semigroup S lies in V if and only if all its n-generated
subsemigroups lie in V.

Corollary 6.5. Suppose that the Fitting pseudovariety H admits an (m+
1)-ary characterization and that the pseudovariety V has rank n. Then LH ©m V
has rank at most n + m + 2.

In particular, in view of Theorem 4.1 and Proposition 4.4, if V has rank n
then LGsol ©m V has rank at most n + 4.
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