
Applied Combinatorics

on

Words

Lothaire

June 23, 2004

2

Version June 23, 2004

Contents i

Contents

Presentation . v

Chapter 1 Algorithms on Words 1

1.0 Introduction . 2
1.1 Words . 3
1.2 Elementary algorithms . 7
1.3 Tries and automata . 15
1.4 Pattern matching . 35
1.5 Transducers . 39
1.6 Parsing . 50
1.7 Word enumeration . 66
1.8 Probability distributions on words 71
1.9 Statistics on words . 86

Problems . 91
Notes . 95

Chapter 2 Structures for Indexes 101

2.0 Introduction . 101
2.1 Suffix trie . 102
2.2 Suffix tree . 108
2.3 Contexts of factors . 116
2.4 Suffix automaton . 121
2.5 Compact suffix automaton 132
2.6 Indexes . 135
2.7 Finding regularities . 143
2.8 Pattern matching machine 147

Problems . 152
Notes . 153

Chapter 3 Symbolic Natural Language Processing 155

3.0 Introduction . 155
3.1 From letters to words . 156
3.2 From words to sentences 187

Version June 23, 2004

ii Contents

Notes . 196

Chapter 4 Statistical Natural Language Processing 199

4.0 Introduction . 199
4.1 Preliminaries . 200
4.2 Algorithms . 201
4.3 Application to speech recognition 213

Notes . 225

Chapter 5 Inference of Network Expressions 227

5.0 Introduction . 227
5.1 Inferring simple network expressions: models and related

problems . 228
5.2 Algorithms . 234
5.3 Inferring network expressions with spacers 240
5.4 Related issues . 244
5.5 Open problems . 247

Notes . 249

Chapter 6 Statistics on Words with Applications to Biological
Sequences . 251

6.0 Introduction . 252
6.1 Probabilistic models for biological sequences 254
6.2 Overlapping and non-overlapping occurrences 260
6.3 Word locations along a sequence 264
6.4 Word count distribution . 270
6.5 Renewal count distribution 291
6.6 Occurrences and counts of multiple patterns 294
6.7 Some applications to DNA sequences 306
6.8 Some probabilistic and statistical tools 315

Notes . 323

Chapter 7 Analytic Approach to Pattern Matching 329

7.0 Introduction . 329
7.1 Probabilistic models . 332
7.2 Exact string matching . 335
7.3 Generalized string matching 349
7.4 Subsequence pattern matching 366
7.5 Generalized subsequence problem 377
7.6 Self-repetitive pattern matching 383

Problems . 394
Notes . 395

Chapter 8 Periodic Structures in Words 399

Version June 23, 2004

8.0 Introduction . 399
8.1 Definitions and preliminary results 400
8.2 Counting maximal repetitions 402
8.3 Basic algorithmic tools . 408
8.4 Finding all maximal repetitions in a word 411
8.5 Finding quasi-squares in two words 416
8.6 Finding repeats with a fixed gap 418
8.7 Computing local periods of a word 421
8.8 Finding approximate repetitions 427
8.9 Notes . 439

Chapter 9 Counting, Coding and Sampling with Words 443

9.0 Introduction . 443
9.1 Counting: walks in sectors of the plane 445
9.2 Sampling: polygons, animals and polyominoes 456
9.3 Coding: trees and maps . 466

Problems . 477
Notes . 478

Chapter 10 Words in Number Theory 481

10.0 Introduction . 482
10.1 Morphic and automatic sequences: definitions and gener-

alities . 483
10.2 d-Kernels and properties of automatic sequences 487
10.3 Christol’s algebraic characterization of automatic sequences 496
10.4 An application to transcendence in positive characteristic . 502
10.5 An application to transcendental power series over the ra-

tionals . 503
10.6 An application to transcendence of real numbers 504
10.7 The Tribonacci word . 506
10.8 The Rauzy fractal . 511
10.9 An application to simultaneous approximation 522

Problems . 525
Notes . 531

References . 535

General Index . 556

Presentation v

Presentation

A series of important applications of combinatorics on words has emerged with
the development of computerized text and string processing, especially in bi-
ology and in linguistics. The aim of this volume is to present, in a unified
treatment, some of the major fields of applications. The main topics that are
covered in this book are

1. Algorithms for manipulating text, such as string searching, pattern match-
ing, and testing a word for special properties.

2. Efficient data structures for retrieving information on large indexes, in-
cluding suffix trees and suffix automata

3. Combinatorial, probabilistic and statistical properties of patterns in finite
words, and more general pattern, under various assumptions on the sources
of the text.

4. Inference of regular expressions.
5. Algorithms for repetitions in strings, such as maximal run or tandem

repeats.
6. Linguistic text processing, especially analysis of the syntactic and semantic

structure of natural language. Applications to language processing with
large dictionaries.

7. Enumeration, generation and sampling of complex combinatorial struc-
tures by their encodings in words.

This book is actually the third of a series of books on combinatorics on
words. Lothaire’s “Combinatorics on Words” appeared in its first printing in
1984 as Volume 17 of the Encyclopedia of Mathematics. It was based on the
impulse of M. P. Schützenberger’s scientific work. Since then, the theory devel-
oped to a large scientific domain. It was reprinted in 1997 in the Cambridge
Mathematical Library. Lothaire is a nom de plume for a group of authors ini-
tially constituted of former students of Schützenberger. Along the years, it has
enlarged to a broader community coordinated by the editors. A second volume
of Lothaire’s series, entitled “Algebraic Combinatorics on Words” appeared in
2002. It contains both complements and newx developments that emerged since
the publication of the first volume.

The content of this volume is quite applied, in comparison with the two
previous ones. However, we have tried to follow the same spirit, namely to
present introductory expositions, with full descriptions and numerous examples.
Refinements are frequently deferred to problems, or mentioned in Notes. There

Version June 23, 2004

vi Presentation

is presently no similar book that covers these topics in this way.
Although each chapter has a different author, the book is really a cooper-

ative work. A set of common notation has been agreed upon. Algorithms are
presented in a consistent way using transparent conventions. There is also a
common general index, and a common list of bibliographic references.

This book is independent of Lothaire’s other books, in the sense that no
knowledge of the other volumes is assumed.

The book has been written with the objective of being readable by a large
audience. The prerequisits are those of a general scientific education. Some
chapters may require a more advanced preparation. A graduate student in
science or engineering should have no difficulty in reading all the chapters. A
student in linguistics should be able to read part of it with profit and interest.

Outline of contents.
The general organisations is described below.

Core algorithms

Algorithms on words

Structures for indexes

Mathematics

Counting, coding and sampling

Words in number theory

Algorithmics

Analytic approach to pattern matching

Periodic structures in words

Bioinformatics

Inference of network expressions

Statistics on words with applications

Natural languages

Symbolic language processing

Statistical language processing

Figure 0.1. Overall structure of “Applied Combinatorics on Words”.

The two first chapters are devoted to core algorithms. The first, “Algorithms
on words”, is is quite general, and is used in all other chapters. The second
chapter, “Structures for indexes”, is fundamental for all advanced algorithmic
treatment, and more technical.

Among the applications, a first domain is linguistics, represented by two
chapters entitled “Symbolic language processing” and “Statictical language pro-
cessing”.

Version June 23, 2004

Presentation vii

A second application is biology. This is covered by two chapters, entitled
“Inference of network expressions”, and “Statistics on Words with Applications
to Biological Sequences”.

The next block is composed of two chapters dealing with algorithmics, a
subject which is of interest for its own in theoretical computer science, but also
related to biology and linguistics One chapter is entitled “Analytic approach
to pattern matching” and deals with generalized pattern matching algorithms.
A chapter entitled “Periodic structures in words” describes algorithms used for
discovering and enumerating repetitions in words.

A final block is devoted to applications to mathematics (and theoretical
physics). It is represented by two chapters. The first chapter, entitled “Count-
ing, coding and sampling with words” deals with the use of words for coding
combinatorial structures. Another chapter, entitled “Words in number theory”
deals with transcendence, fractals and dynamical systems.

Description of contents.
Basic algorithms, as needed later, and notation are given in Chapter 1 “Algo-

rithms on words”, written by Jean Berstel and Dominique Perrin. This chapter
also contains basic concepts on automata, grammars, and parsing. It ends with
an exposition of probability distribution on words. The concepts and methods
introduced are used in all the other chapters.

Chapter 2, entitled “Structures for indexes” and written by Maxime Croche-
more, presents data structures for the compact representation of the suffixes of
a text. These are used in several subsequent chapters. Compact suffix trees are
presented, and construction of these trees in linear time is carefully described.
The theory and algorithmics for suffix automata are presented next. The main
application, namely the construction of indexes, is described next. Many other
applications are given, such as detection of repetitions or forbidden words in a
text, use as a pattern matching machine, and search for conjugates.

The first domain of applications, linguistics, is represented by Chapter 3 and
Chapter 4. Chapter 3, entitled “Symbolic language processing” is written by
Eric Laporte. In language processing, a text or a discourse is a sequence of
sentences; a sentence is a sequence of words; a word is a sequence of letters.
The most universal levels are those of sentence, word and letter (or phoneme),
but intermediate levels exist, and can be crucial in some languages, between
word and letter: a level of morphological elements (e.g. suffixes), and the level
of syllables. The discovery of this piling up of levels, and in particular of word
level and phoneme level, delighted structuralist linguists in the 20th century.
They termed this inherent, universal feature of human language as “double
articulation”.

This chapter is organized around the main levels of any language modelling:
first, how words are made from letters; second, how sentences are made from
words. It surveys the basic operations of interest for language processing, and
for each type of operation, it examines the formal notions and tools involved.
The main originality of this presentation is the systematic and consistent use

Version June 23, 2004

viii Presentation

of finite state automata at every level of the description. This point of view
is reflected in some practical implementations of natural language processing
systems.

Chapter 4, entitled “Statistical language processing” is written by Mehryar
Mohri. It presents the use of statistical methods to natural language processing.
The main tool developed is the notion of weighted transducers. The weights are
numbers in some semiring that can represent probabilities. Applications to
speech processing are discussed.

The block of applications to biology is concerned with analysis of word oc-
curences, pattern matching, and connections with genome analysis. It is covered
by the next two chapters, and to some extent also by the alogrithmics bloc.

Chapter 5, “Inference of network expressions”, is written by Nadia Pisanti
and Marie-France Sagot. This chapter introduces various mathematical models
and algorithms for inferring regular expression without Kleene star that appear
repeated in a word or are common to a set of words. Inferring a network
expression means to discover such expressions which are initially unknown, from
the word(s) where the repeated (or common) expressions will be sought. This
is in contrast with the string searching problem considered in other chapters.
This has many applications, notably in molecular biology, system security, text
mining etc. Because of the richness of the mathematical and algorithmical
problems posed by molecular biology, we concentrate on applications in this
area. Applications to biology motivate us also to consider network expressions
that appear repeated not exactly but approximately.

Chapter 6 is written by Gesine Reinert, Sophie Schbath and Michael Wa-
terman, and entitled “Statistics on Words with Applications to Biological Se-
quences”. Properties of words in sequences have been of considerable interest
in many fields, such as coding theory and reliability theory, and most recently
in the analysis of biological sequences. The latter will serve as the key example
in this chapter.

Two main aspects of word occurrences in biological sequences are: where
do they occur and how many times do they occur? An important problem, for
instance, was to determine the statistical significance of a word frequency in a
DNA sequence. The naive idea is the following: a word may be significantly rare
in a DNA sequence because it disrupts replication or gene expression, (perhaps
a negative selection factor), whereas a significantly frequent word may have a
fundamental activity with regard to genome stability. Well-known examples
of words with exceptional frequencies in DNA sequences are certain biological
palindromes corresponding to restriction sites avoided for instance in E. coli,
and the Cross-over Hotspot Instigator sites in several bacteria.

Statistical methods to study the distribution of the word locations along a
sequence and word frequencies have also been an active field of research; the
goal of this chapter is to provide an overview of the state of this research.

Because DNA sequences are long, asymptotic distributions were proposed
first. Exact distributions exist now, motivated by the analysis of genes and
protein sequences. Unfortunately, exact results are not adapted in practice for

Version June 23, 2004

Presentation ix

long sequences because of heavy numerical calculation, but they allow the user to
assess the quality of the stochastic approximations when no approximation error
can be provided. For example, BLAST is probably the best-known algorithm
for DNA matching, and it relies on a Poisson approximation. This is another
motivation for the statistical analysis given in this chapter.

The algorithmics block is composed of two chapters. In Chapter 7, entitled
“Analytic approach to pattern matching”, and written by Philippe Jacquet
and Wojciech Szpankowski, pattern matching is considered for various types
of patterns, and for various types of sources. Single patterns, sequences of
patterns, and sequences of patterns with sepatation conditions are considered.
The sources are Bernoulli and Markov, and also more general sources arising
from dynamical systems. The derivation of the equations is heavily based on
combinatorics on words and formal languages.

Chapter 9, written by Roman Kolpakov and Gregory Koucherov and entitled
“Periodic structures in words”, deals with the algorithmic problem of detect-
ing, counting and enumeration repetitions in a word. The interest for this is in
text processing, compression and genome analysis, where tandem repeats may
have a particular signification. Linear time algorithm exist for detecting tan-
dem repeats, but since there may be quadratically many repetitions, maximal
repetitions or “runs” are of importance, and are considered in this chapter.

A final block is concerned with applications to mathematics. Chapter 8,
written by Dominique Poulalhon and Gilles Schaeffer, is entitled “Counting,
coding and sampling with words”. Its aim is to give typical descriptions of
the interaction of combinatorics on words with the treatments of combinatorial
structures. The chapter is focused on three aspects of enumeration: counting el-
ements of a family according to their size, generating them uniformly at random,
and coding them as compactly as possible by binary words. These aspects are
respectively illustrated on examples taken from classical combinatorics (walks
on lattices), from statistical physics (convex polyominoes and directed animals),
and from graph algorithmics (planar maps). The rationale of the chapter is that
nice enumerative properties are the visible traces of structural properties, and
that making the latters explicit in terms of words of simple languages is a way
to solve simultaneously and simply the three problems above.

Chapter 10 is written by Jean-Paul Allouche and Valérie Berthé. It is enti-
tled “Words in number theory”. This chapter is concerned with the intercon-
nection between combinatorial properties of infinite words, such as repetitions,
and transcendental numbers. A second part considers a famous infinite word,
called the Tribonacci word, to investigate and illustrate connections between
combinatorics on words and dynamical systems, quasicrystals, the Rauzy frac-
tal, rotation on the torus, etc. Relations to the cut and project method are
described, and an application to simultaneous approximation is given.

Acknowledgements.
Gesine Reinert, Sophie Schbath and Michael Waterman would like to thank

Simon Tavaré for many helpful comments. Thanks goes also to Xueying Xie

Version June 23, 2004

x Presentation

for pointing out inconsistencies in a previous version concerning testing for the
order of a Markov chain.

Their work was supported in part by Sandia National Laboratories, operated
by Lockheed Martin for the U.S. Department of Energy under contract No. DE-
AC04-94AL85000, and by the Mathematics, Information, and Computational
Science Program of the Office of Science of the U.S. Department of Energy. Ge-
sine Reinert was supported in part by EPSRC grant aGR/R52183/01. Michael
Waterman was partially supported by Celera Genomics.

An earlier and shorter version of chapter 6 appeared as Probabilistic and
statistical properties of words: an overview in the Journal of Computational
Biology, Vol. 7 (2000), pp. 1–46. The authors thank Mary Ann Liebert, Inc.
Publishers for permission to include that material here.

Philippe Jacquet and Wojciech Szpankowski thank J. Bourdon, P. Flajolet,
M. Régnier and B. Vallée for collaborating on pattern matching problems, co-
authoring papers, and commenting on this chapter. They also thank M. Drmota
and J. Fayolle for reading the chapter and providing useful comments.

W. Szpankowski acknowledges NSF and NIH support through grants CCR-
0208709 and R01 GM068959-01.

J.-P. Allouche and Valérie Berthé would like to express their gratitude to P.
Arnoux, A. Rémondière, D. Jamet and A. Siegel for their careful reading and
their numerous suggestions.

Jean Berstel
Dominique Perrin

Marne-la-Vallée, June 23, 2004

Version June 23, 2004

1

CHAPTER 1

Algorithms on Words

1.0 Introduction . 2
1.1 Words . 3

1.1.1 Ordering . 5
1.1.2 Distances . 6

1.2 Elementary algorithms . 7
1.2.1 Prefixes and suffixes . 7
1.2.2 Overlaps and borders . 7
1.2.3 Factors . 9
1.2.4 Subwords . 11
1.2.5 Conjugacy and Lyndon words 13

1.3 Tries and automata . 15
1.3.1 Tries . 15
1.3.2 Automata . 18
1.3.3 Determinization algorithm 23
1.3.4 Minimization algorithms 26

1.4 Pattern matching . 35
1.5 Transducers . 39

1.5.1 Determinization of transducers 45
1.5.2 Minimization of transducers 48

1.6 Parsing . 50
1.6.1 Top-down parsing . 53
1.6.2 Bottom-up parsing . 60

1.7 Word enumeration . 66
1.7.1 Two illustrative examples 66
1.7.2 The Perron–Frobenius theorem 68

1.8 Probability distributions on words 71
1.8.1 Information sources . 71
1.8.2 Entropy . 75
1.8.3 Topological entropy . 78
1.8.4 Distribution of maximal entropy 79
1.8.5 Ergodic sources and compressions 80
1.8.6 Unique ergodicity . 83
1.8.7 Practical estimate of the entropy 84

Version June 23, 2004

2 Algorithms on Words

1.9 Statistics on words . 86
1.9.1 Occurrences of factors 86
1.9.2 Extremal problems . 89
Problems . 91
Notes . 95

1.0. Introduction

This chapter is an introductory chapter to the book. It gives general notions,
notation and technical background. It covers, in a tutorial style, the main
notions in use in algorithms on words. In this sense, it is a comprehensive
exposition of basic elements concerning algorithms on words, automata and
transducers, and probability on words.

The general goal of “stringology” we pursue here is to manipulate strings of
symbols, to compare them, to count them, to check some properties and perform
simple transformations in an effective and efficient way.

A typical illustrative example of our approach is the action of circular per-
mutations on words, because several of the aspects we mentioned above are
present in this example. First, the operation of circular shift is a transduction
which can be realized by a transducer. We include in this chapter a section (Sec-
tion 1.5) on transducers. Transducers will be used in Chapter 3. The orbits of
the transformation induced by the circular permutation are the so-called con-
jugacy classes. Conjugacy classes are a basic notion in combinatorics on words.
The minimal element in a conjugacy class is a good representative of a class. It
can be computed by an efficient algorithm (actually in linear time). This is one
of the algorithms which appear in Section 1.2. Algorithms for conjugacy are
again considered in Chapter 2. These words give rise to Lyndon words which
have remarkable combinatorial properties already emphasized in Lothaire 1997.
We describe in Section 1.2.5 the Lyndon factorization algorithm.

The family of algorithms on words has features which make it a specific field
within algorithmics. Indeed, algorithms on words are often of low complexity
but intricate and difficult to prove. Many algorithms have even a linear time
complexity corresponding to a single pass scanning of the input word. This con-
trasts with the fact that correctness proofs of these algorithms are frequently
complex. A well-known example of this situation is the Knuth–Morris–Pratt
string searching algorithm (see Section 1.2.3). This algorithm is compact, and
apparently simple but the correctness proof requires an sophisticated loop in-
variant.

The field of algorithms on words still has challenging open problems. One
of them is the minimal complexity of the computation of a longest common
subword of two words which is still unknown. We present in Section 1.2.4 the
classic quadratic dynamic programming algorithm. A more efficient algorithm
is mentioned in the Notes.

The field of algorithms on words is intimately related to formal models of
computation. Among those models, finite automata and context-free grammars

Version June 23, 2004

1.1. Words 3

are the most used in practice. This is why we devote a section ((Section 1.3) to
finite automata and another one to grammars and syntax analysis (Section 1.6).
These models, and especially finite automata, regular expressions and transduc-
ers, are ubiquous in the applications. They appear in almost all chapters.

The relationship between words and probability theory is an old one. Indeed,
one of the basic aspects of probability and statistics is the study of sequences
of events. In the elementary case of a finite sample space, like in coin tossing,
the sequence of outcomes is a word. More generally, a partition of an arbitrary
probability space into a finite number of classes produces sequences over a fi-
nite set. Section 1.8 is devoted to an introduction to these aspects. They are
developed later in Chapters 6 and 7.

We have chosen to present the algorithms and the related properties in a
direct style. This means that there are no formal statements of theorems, and
consequently no formal proofs. nevertheless, we give precise assertions and
enough arguments to show the correctness of algorithms and to evaluate their
complexity. In some cases, we use results without proof and we give biblio-
graphic indications in the Notes.

For the description of algorithms, we use a kind of programming language
close to usual programming languages. It gives more flexibility and improves
the readability to do so instead of relying on a precise programming language.

The syntactic features of our programs make it similar to a language like
Pascal, concerning the control structure and the elementary instructions. We
take some liberty with real programs. In particular, we often omit declarations
and initializations of variables. The parameter handling is C–like (no call by
reference). Besides arrays, we use implicitly data structures like sets and stacks
and pairs or triples of variables to simplify notation. All functions are global, and
there is nothing like classes or other features of object-oriented programming.
However, we use overloading for parsimony. The functions are referenced in
the text and in the index by their name, like LongestCommonPrefix() for
example.

1.1. Words

We briefly introduce the basic terminology on words. Let A be a finite set
usually called the alphabet. In practice, the elements of the alphabet may be
characters from some concrete alphabet, but also more complex objects. They
may be themselves words on another alphabet, as in the case of syllables in nat-
ural language processing, as presented in Chapter 3. In information processing,
any kind of record can be viewed as a symbol in some huge alphabet. This has
as consequence that some apparently elementary operations on symbols, like
the test for equality, often needs a careful definition and may require a delicate
implementation.

We denote as usual by A∗ the set of words over A and by ε the empty
word. For a word w, we denote by |w| the length of w. We use the notation
A+ = A∗ − {ε}. The set A∗ is a monoid. Indeed, the concatenation of words

Version June 23, 2004

4 Algorithms on Words

is associative, and the empty word is a neutral element for concatenation. The
set A+ is sometimes called the free semigroup over A, while A∗ is called the free
monoid.

A word w is called a factor (resp. a prefix, resp. a suffix) of a word u if there
exist words x, y such that u = xwy (resp. u = wy, resp. u = xw). The factor
(resp. the prefix, resp. the suffix) is proper if xy �= ε (resp. y �= ε, resp. x �= ε).
The prefix of length k of a word w is also denoted by w[0..k − 1].

ε

a b

aa ab ba bb

aaa aab aba abb baa bab bba bbb

· · · · · ·

Figure 1.1. The tree of the free monoid on two letters.

The set of words over a finite alphabet A can be conveniently seen as a tree.
Figure 1.1 represents {a, b} as a binary tree. The vertices are the elements of
A∗. The root is the empty word ε. The sons of a node x are the words xa for
a ∈ A. Every word x can also be viewed as the path from leading from the root
to the node x. A word x is a prefix of a word y if it is an ancestor in the tree.
Given two words x and y, the longest common prefix of x and y is the nearest
common ancestor of x and y in the tree.

A word x is a subword of a word y if there are words u1, . . . , un and v0, v1,
. . . , vn such that x = u1 · · ·un and y = v0u1v1 · · ·unvn. Thus, x is obtained
from y by erasing some factors in y.

Given two words x and y, a longest common subword is a word z of maximal
length that is both a subword of x and y . There may exist several longest
common subwords for two words x and y. For instance, the words abc and acb
have the common subwords ab and ac.

We denote by alph w the set of letters having at least one occurrence in the
word w.

The set of factors of a word x is denoted F (x). We denote by F (X) the set of
factors of words in a set X ⊂ A∗. The reversal of a word w = a1a2 · · ·an, where
a1, . . . , an are letters, is the word w̃ = anan−1 · · · a1. Similarly, for X ⊂ A∗, we
denote X̃ = {x̃ | x ∈ X}. A palindrome word is a word w such that w = w̃.
If |w| is even, then w is a palindrome if and only if w = xx̃ for some word x.
Otherwise w is a palindrome if and only if w = xax̃ for some word x and some
letter a.

Version June 23, 2004

1.1. Words 5

An integer p ≥ 1 is a period of a word w = a1a2 · · ·an where ai ∈ A if
ai = ai+p for i = 1, . . . , n− p. The smallest period of w is called the period the
minimal period of w.

A word w ∈ A+ is primitive if w = un for u ∈ A+ implies n = 1.
Two words x, y are conjugate if there exist words u, v such that x = uv and

y = vu. Thus conjugate words are just cyclic shifts of one another. Conjugacy
is thus an equivalence relation. The conjugacy class of a word of length n
and period p has p elements if p divides n and has n elements otherwise. In
particular, a primitive word of length n has n distinct conjugates.

1.1.1. Ordering

There are three order relations frequently used on words. We give the definition
of each of them.

The prefix order is the partial order defined by x ≤ y if x is a prefix of y.
Two other orders, the radix order and the lexicographic order are refinements

of the prefix order which are defined for words over an ordered alphabetA. Both
are total orders.

The radix order is defined by x ≤ y if |x| < |y| or |x| = |y| and x = uax′ and
y = uby′ with a, b letters and a ≤ b. If integers are represented in base k without

1

10 11

100 101 110 111

1000 1001 1010 1011 1100 1101 1110 1111

· · · · · ·

Figure 1.2. The tree of integers in binary notation.

leading zeroes, then the radix order on their representations corresponds to the
natural ordering of the integers. If we allow leading zeroes, the same holds
provided the words have the same length (which always can be achieved by
padding).

For k = 2, the tree of words without leading zeroes is given in Figure 1.2.
The radix order corresponds to the order in which the vertices are met in a
breadth-first traversal. The index of a word in the radix order is equal to the
number represented by the word in base 2.

The lexicographic order, also called alphabetic order, is defined as follows.
Given two words x, y, we have x < y if x is a proper prefix of y or if there exist

Version June 23, 2004

6 Algorithms on Words

factorizations x = uax′ and y = uby′ with a, b letters and a < b. This is the
usual order in a dictionary. Note that x < y in the radix order if |x| < |y| or if
|x| = |y| and x < y in the lexicographic order.

1.1.2. Distances

A distance over a set E is a function d which assigns to each element of E a
nonnegative number such that:

(i) d(u, v) = d(v, u),

(ii) d(u, w) ≤ d(u, v) + d(v, w) (triangular inequality)

(iii) d(u, v) = 0 iff u = v.

Several distances between words are used. The most common is the Hamming
distance. It is only defined on words of equal length. For two words u =
a0 · · · an−1 and v = b0 · · · bn−1, where ai, bi are letters, it is the number dH(u, v)
of indices i with 0 ≤ i ≤ n− 1 such that ai �= bi. In other terms

dH(u, v) = Card{i | 0 ≤ i ≤ n− 1 and ai �= bi} .

Thus the Hamming distance is the number of mismatches between u and v. It
can be verified that dH is indeed a distance. Observe that dH(u, v) = n − p
where p is the number of positions where u nd v coincide. In a more general
setting, a distance between letters is used instead of just counting for 1 each
mismatch.

The Hamming distance takes into account the differences at the same posi-
tion. In this way, it can be used as a measure of modifications or errors caused
by a modification of a symbol by another one, but not of a deletion or an inser-
tion. Another distance is the subword distance which is defined as follows. Let

a b b a b a a b

a b a a b a b a

(a) Hamming distance

a b b a b a a b

a b a a b a b a

(b) Subword distance

Figure 1.3. The Hamming distance is 3 and the subword distance is 2.

u be a word of length n and v be a word of length m, and p be the length of a
longest common subword of u and v. The subword distance between u and v is
defined as dS(u, v) = n+m− 2p. It can be verified that dS(u, v) is the minimal
number of insertions and suppressions that changes u into v. The name indel
(for insertions and deletions) is used to qualify the transformation consisting in
either an insertion or a deletion.

Version June 23, 2004

1.2. Elementary algorithms 7

A common generalization of the Hamming distance and the subword distance
is the edit distance. It takes into account the substitutions of a symbol by
another in additions to indels (see Problem 1.1.2).

A related distance is the prefix distance. It is defined as d(u, v) = n+m−2p
where n = |u|, m = |v| and p is the length of the longest common prefix of u
and v. It can be verified that the prefix distance is actually the length of the
shortest path from u to v in the tree of the free monoid.

b a a b a b b a a b b a b a a b a b b a b a a b b a a b a b b a

a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b

Figure 1.4. The Hamming distance of these two Thue-Morse blocks of
length 32 is equal to their length, their subword distance is only 6.

1.2. Elementary algorithms

In this section, we treat algorithmic problems related to the basic notions on
words: prefixes, suffixes, factors.

1.2.1. Prefixes and suffixes

Recall that a word x is a prefix of a word y if there is a word u such that
y = xu. It is said to be proper if u is non empty. Checking whether x is a prefix
of y is straightforward. Algorithm LongestCommonPrefix below returns the
length of the longest common prefix of two words x and y.

LongestCommonPrefix(x, y)
1 � x has length m, y has length n
2 i ← 0
3 while i < m and i < n and x[i] = y[i] do
4 i ← i + 1
5 return i

In the tree of a free monoid, the length of the longest common prefix of two
words is the height of the least common ancestor.

As mentioned earlier, the conceptual simplicity of the above algorithm hides
implementation details such as the computation of equality between letters.

1.2.2. Overlaps and borders

We introduce first the notion of overlap of two words x and y. It captures the
amount of possible overlap between the end of x and the beginning of y. To

Version June 23, 2004

8 Algorithms on Words

avoid trivial cases, we rule out the case where the overlap would be the whole
word x or y. Formally, the overlap of x and y is the longest proper suffix of
x that is also a proper prefix of y. For example, the overlap of abacaba and
acabaca has length 5. The border of a non empty word w is the overlap of w
and itself. Thus it is the longest word u which is both a proper prefix and a
proper suffix of w. The overlap of x and y is denoted by overlap(x, y), and the
border of x by border(x). Thus border(x) = overlap(x, x).

As we shall see, the computation of the overlap of x and y is intimately
related to the computation of the border. This is due to the fact that the
overlap of x and y involves the computation of the overlaps of the prefixes of x
and y. Actually, one has overlap(xa, y) = border(xa) whenever x is a prefix of
y and a is a letter. Next, the following formula allows the computation of the
overlap of xa and y, where x, y are words and a is a letter. Let z = overlap(x, y).

overlap(xa, y) =
{

za if za is a prefix of y,
border(za) otherwise.

Observe that border(za) = overlap(za, y) because z is a prefix of y. The com-
putation of the border is an interesting example of a non trivial algorithm on
words. A naive algorithm would consist in checking for each prefix of w whether
it is also a suffix of w and to keep the longest such prefix. This would obviously
require a time proportional to |w|2. We will see that it can be done in time
proportional to the length of the word. This relies on the following recursive
formula allowing to compute the border of xa in terms of the border of x, where
x is a word and a is a letter. Let u = border(x) be the border of x. Then for
each letter a,

border(xa) =
{

ua if ua is a prefix of x,
border(ua) otherwise.

(1.2.1)

The following algorithm (Algorithm Border) computes the length of the
border of a word x of length m. It outputs an array b of m+1 integers such that
b[j] is the length of the border of x[0..j−1]. In particular, the length of border(x)
is b[m]. It is convenient to set b[0] = −1. For example, if x = abaababa, the
array b is

0 1 2 3 4 5 6 7 8

b : -1 0 0 1 1 2 3 2 3

Version June 23, 2004

1.2. Elementary algorithms 9

Border(x)
1 � x has length m, b has size m + 1
2 i ← 0
3 b[0]← −1
4 for j ← 1 to m− 1 do
5 b[j]← i
6 � Here x[0..i− 1] = border(x[0..j − 1])
7 while i ≥ 0 and x[j] �= x[i] do
8 i← b[i]
9 i ← i + 1

10 b[m]← i
11 return b

This algorithm is an implementation of Formula (1.2.1). Indeed, the body
of the loop on j computes, in the variable i, the length of the border of x[0..j].
This value will be assigned to b[j] at the next increase of j. The inner loop is a
translation of the recursive formula.

The algorithm computes the border of x (or the table b itself) in time O(|x|).
Indeed, the execution time is proportional to the number of comparisons of
symbols performed at line 7. Each time a comparison is done, the expression
2j − i increases strictly. In fact, either x[j] = x[i] and i, j increase both by 1.
Or x[j] �= x[i], and j remains constant while i decreases strictly (since b[i] < i).
Since the value of the expression is initially 0 and is bounded by 2|x|, the number
of comparisons is at most 2|x|.

The computation of the overlap of two words x, y will be done in the next
section.

1.2.3. Factors

In this section, we consider the problem of checking whether a word x is a
factor of a word y. This problem is usually referred to as a string matching
problem. The word x is called the pattern and y is the text. A more general
problem, referred to as pattern matching, occurs when x is replaced by a regular
expression X (see Section 1.4. The evaluation of the efficiency of string matching
or pattern matching algorithms depends on which parameters are considered. In
particular, one may consider the pattern to be fixed (because several occurrences
of the same pattern are looked for in an unknown text), or the text to be fixed
(because several different pattern will be searched in this text). When the
pattern or the text is fixed, it may be subject to a preprocessing. Moreover, the
evaluation of the complexity can take into account either only the computation
time, or both time and space. This may make significant difference on very
large texts and patterns.

We begin by a naive quadratic string searching algorithm. To check whether
a word x is a factor of a word y, it is clearly enough to test for each index
j = 0, . . . , n− 1 if x is a prefix of the word y[j..n− 1].

Version June 23, 2004

10 Algorithms on Words

NaiveStringMatching(x, y)
1 � x has length m, y has length n
2 (i, j)← (0, 0)
3 while i < m and j < n do
4 if x[i] = y[j] then
5 (i, j)← (i + 1, j + 1)
6 else j ← j − i + 1
7 i ← 0
8 return i = m

The number of comparisons required in the worst case is O(|x||y|). The
worst case is reached for x = amb and y = an. The number of comparisons
performed is in this case m(n−m− 1).

We shall see now that it is possible to search a word x inside another word y in
linear time, that is in time O(|x|+|y|). The basic idea is to use a finite automaton
recognizing the words ending with x. If we can compute some representation of
it in time O(|x|), then it will be straightforward to process the word y in time
O(|y|).

The wonderfully simple solution presented below uses the notion of border
of a word. Suppose that we are in the process of identifying x inside y, the
position i in x being placed in front of position j in y, as in the naive algorithm.
We can set then x = ubt where b = x[i] and y = wuaz where a = y[j]. If a=b,
the process goes on with i + 1, j + 1. Otherwise, instead of just shifting x to
the right one place (i.e. j = j − i + 1, i = 0), we can take into account that
the next possible position for x is determined by the border of u. Indeed, we
must have y = w′u′az and x = u′ct′ with u′ both a prefix of u and a suffix of
u since w′u′ = wu. Hence the next comparison to perform is between y[j] and
x[k] where k − 1 is the length of the border of u.

j

y : w u a z

x : u b t

i

x : u′ c t′

b[i]

Figure 1.5. Checking y[j] against x[i]: if they are different, y[j] is checked
against x[b[i]].

The algorithm is realized by the following program (Algorithm SearchFac-

tor). It returns the starting position of the first occurrence of the word x inside

Version June 23, 2004

1.2. Elementary algorithms 11

the word y, and |y| if x is not a factor of y. It uses an array b of |x|+ 1 integers
such that b[i] is the length of the border of x[0..i− 1].

SearchFactor(x, y)
1 � x has length m, y has length n
2 � b is the array of length of borders of the prefixes of x
3 b ← Border(x)
4 (i, j)← (0, 0)
5 while i < m and j < n do
6 while i ≥ 0 and x[i] �= y[j] do
7 i← b[i]
8 (i, j)← (i + 1, j + 1)
9 return i = m

The time complexity is O(|x| + |y|). Indeed, the computation of the array
b can be done in time O(|x|) as in Section 1.2.2. Further, the analysis of the
algorithm given by the function SearchFactor is the same as for the function
Border. The expression 2j − i increases strictly at each comparison of two
letters, and thus the number of comparisons is bounded by 2|y|. Thus, the
complete time required to check whether x is a factor of y is O(|x| + |y|) as
announced.

Computing the overlap of two word x, y can be done as follows. We may
suppose |x| < |y|. The value of overlap(x, y) is the final value of the variable i
in the algorithm SearchFactor applied to the pair (y, x)

1.2.4. Subwords

We now consider the problem of looking for subwords. The following algorithm
checks whether x is a subword of y. In contrast to the case of factors, a greedy
algorithm suffices to perform the check in linear time.

IsSubword(x, y)
1 � x has length m, y has length n
2 (i, j)← (0, 0)
3 while i < m and j < n do
4 if x[i] = y[j] then
5 i← i + 1
6 j ← j + 1
7 return i = m

We denote by lcs(x, y) the set of longest common subwords (also called
longest common subsequences) of two words x and y. The computation of
the longest common subwords is a classical algorithm with many practical uses.
We present below a quadratic algorithm. It is based on the following formula.

lcs(xa, yb) =
{

lcs(x, y)a if a = b,
max(lcs(xa, y), lcs(x, yb)) otherwise.

Version June 23, 2004

12 Algorithms on Words

where max() stands for the union of the sets if their elements have equal length,
and for the set with the longer words otherwise.

In practice, one computes the length of the words in lcs(x, y). For this, define
an array M [i, j] by M [i, j] = k if the longest common subwords to the prefixes
of length i of x and j of y have length k. The previous formula then translates
into

M [i + 1, j + 1] =
{

M [i, j] + 1 if a = b,
max(M [i + 1, j], M [i, j + 1]) otherwise.

For instance, if x = abba and y = abab, the array M is the following.

a b a b

0 0 0 0 0

a 0 1 1 1 1

b 0 1 2 2 2

b 0 1 2 2 3

a 0 1 2 3 3

The first row and the first column of the array M are initialized at 0. The
following function computes the array M .

LcsLengthArray(x, y)
1 � x has length m and y has length n
2 for i ← 0 to m− 1 do
3 for j ← 0 to n− 1 do
4 if x[i] = y[j] then
5 M [i + 1, j + 1]←M [i, j] + 1
6 else M [i + 1, j + 1]← max(M [i + 1, j], M [i, j + 1])
7 return M

The above algorithm has quadratic time and space complexity. Observe that
the length of the longest common subwords, namely the value M [m, n], can be
computed in linear space (but quadratic time) by computing the matrix M row
by row or column by column. To recover the a word in lcs(x, y), it is enough to
walk backwards through the array M .

Version June 23, 2004

1.2. Elementary algorithms 13

Lcs(x, y)
1 � result is a longest common word w
2 M ← LcsLengthArray(x, y)
3 (i, j, k)← (m− 1, n− 1, M [m, n]− 1)
4 while k ≥ 0 do
5 if x[i] = y[j] then
6 w[k]← x[i]
7 (i, j, k)← (i− 1, j − 1, k − 1)
8 else if M [i + 1, j] < M [i, j + 1] then
9 i ← i− 1

10 else j ← j − 1
11 return w

1.2.5. Conjugacy and Lyndon words

Two words x, y are said to be conjugate if x = uv, y = vu, for some words u, v.
Thus two words are conjugate if they differ only by a cyclic permutation of their
letters.

To check whether x and y are conjugate, we can compare all possible cyclic
permutations of x with y. This requires O(|x||y|) operations. Actually we can do
much better as follows. Indeed, x and y are conjugate if and only if |x| = |y| and
if x is a factor of yy. Indeed, if |x| = |y| and yy = uxv, we have |y| ≤ |ux|, |xv|
and thus there are words u′, v′ such that x = v′u′ and y = uv′ = u′v. Since
|x| = |y|, we have |u′| = |u|, whence u = u′ and v = v′. This shows that
x = vu, y = uv.

Hence, using the linear time algorithm SearchFactor of Section 1.2.3, we
can check in O(|x| + |y|) whether two words x, y are conjugate.

Recall that a Lyndon word is a word which is strictly smaller than any of its
conjugates for the alphabetic ordering. In other terms, a word x is a Lyndon
word if for any factorization x = uv with u, v non empty, one has uv < vu. A
Lyndon word is in particular primitive.

k k + j − i k + j

x :

x :

0 k + i

Figure 1.6. Checking whether x[k..k + m − 1] is the least circular con-
jugate of x.

Any primitive word has a conjugate which is a Lyndon word, namely its
least conjugate. Computing the smallest conjugate of a word is a practical way
to compute a standard representative of the conjugacy class of a word (this is
sometimes called canonization). This can be done in linear time by the following

Version June 23, 2004

14 Algorithms on Words

algorithm, which is a modification of the algorithm Border of Section 1.2.2.
It is applied to a word x of length m. We actually use an array containing x2,
and called this array x. Of course, an array of length m would suffice provided
the indices are computed mod m.

CircularMin(x)
1 (i, j, k)← (0, 1, 0)
2 b[0]← −1
3 while k + j < 2m do
4 � Here x[k..k + i− 1] = border(x[k..k + j − 1])
5 if j − i = m then
6 return k
7 b[j]← i
8 while i ≥ 0 and x[k + j] �= x[k + i] do
9 if x[k + j] < x[k + i] then

10 (k, j) ← (k + j − i, i)
11 i ← b[i]
12 (i, j)← (i + 1, j + 1)

Algorithm CircularMin looks like Algorithm Border. Indeed, if we dis-
card lines 5–6 and lines 9–10 in algorithm CircularMin, the variable k remains
0 and we obtain an essentially equivalent algorithm (with a while loop replac-
ing the for loop). The key assertion of this algorithm is that x[k..k + i − 1] =
border(x[k..k+j−1]) , as indicated at line 4. This is the same as the assertion in
Algorithm Border for k = 0. The array b contains the information on borders,
in the sense that b[j] is the length of border(x[k..k + j − 1]).

The value of k is the index of the beginning of a candidate for a least con-
jugate of x (see Figure 1.6). If the condition at line 9 holds, a new candidate
has been found. The assignment at line 10 shifts the value of k by j − i, and j
is adjusted in such a way that the value of k + j is not modified. The modifica-
tions of the value of k does not require the entire re-computation of the array
b. Indeed, the values b[j′] for 0 ≤ j′ < i serve both for the old and the new
candidate. For the same reason as for Algorithm Border, the time complexity
is linear in the size of x.

Any word admits a unique factorization as a non increasing product of Lyn-
don words. In other words, for any word x, there is a factorization

x = �n1
1 · · · �nr

r

where r ≥ 0, n1, . . . , nr ≥ 1, and �1 > · · · > �r are Lyndon words. We discuss
now an algorithm to compute this factorization.

The following program computes the pair (�1, n1) for x in linear time. By
iteration, it allows to compute the Lyndon factorization in linear time.

Version June 23, 2004

1.3. Tries and automata 15

LyndonFactorization(x)
1 � x has length m
2 (i, j)← (0, 1)
3 while j < m and x[i] ≤ x[j] do
4 if x[i] < x[j] then
5 i← 0
6 else i← i + 1
7 j ← j + 1
8 return (j − i, �j/(j − i)�)

The idea of the algorithm is the following. Assume that at some step, we
have x = �npy, where � is a Lyndon word, n ≥ 1 and p is a proper prefix of
�. The pair (�, n) is a candidate for the value (�1, n1) of the factorization. The
relation with the values i, j of the program is given by j = |�np|, j − i = |�|,
n = �j/(j − i)� . Let a = x[i], b = x[j]. Then � = paq for some word q, and
x = �npbz. If a < b, then �′ = �npb is a Lyndon word. The pair (�′, 1) becomes
the new candidate. If a = b, then pb replaces p. Finally, if a > b the pair (�, n)
is the correct value of (�1, n1).

The above algorithm can also be used to compute the Lyndon word � in the
conjugacy class of a primitive word x. Indeed, � is the only Lyndon word of
length |x| that appears in the Lyndon factorization of xx. Thus, Algorithm Lyn-

donFactorization gives an alternative to Algorithm CircularMin.

1.3. Tries and automata

In this section, we consider sets of words. These sets arise in a natural way
in applications. Dictionaries in natural language processing, or more generally
text processing in data bases are typical examples. Another situation is when
one considers properties of words, and the sets satisfying such a property, for
example the set of all words containing a given pattern. We are interested in
the practical representation for retrieval and manipulation of sets of words.

The simplest case is the case of finite, but possibly very large sets. General
methods for manipulation of sets may be used. This includes hash functions,
bit vectors, and various families of search trees. These general methods are
sometimes available in programming packages. We will be interested here in
methods that apply specifically to sets of words.

Infinite sets arise naturally in pattern matching. The natural way to han-
dle them is by means of two equivalent notions: regular expressions and finite
automata. We describe here in some detail these approaches.

1.3.1. Tries

A trie is the simplest non trivial structure allowing to represent a finite set X
of words. It has both the advantage of reducing the space required to store the
set of words and to allow a fast access to each element.

Version June 23, 2004

16 Algorithms on Words

A trie R is a rooted tree. Each edge is labelled with a letter. The labels have
the property that two distinct edges starting in the same vertex have distinct
labels. A subset T of the set of vertices is called the set of terminal vertices.
The set X of words represented by the trie R is the set of labels of paths from
the root to a vertex in T . It is convenient to assume that every vertex is on
a path from the root to some vertex in T (since otherwise the vertex could be
removed). In particular, every leaf of the tree is a terminal vertex.

Example 1.3.1. The trie represented on Figure 1.3.1 represents the set

X = {leader, let, letter, sent}.

The terminal vertices are doubly circled.

1

2
l

3
s

4
e

5
e

6
a

7
t

8
n

9
d

10
t

11
t

12
e

13
e

14
r

15
r

Figure 1.7. A trie

To implement a trie, we use a function Next(p, a) which gives the vertex q
such that the edge (p, q) is labeled a. We assume that Next(p, a)= −1 if the
function is not defined. The root of the tree is the value of Root().

IsInTrie(w)
1 � checks if the word w of length n is in the trie
2 (i, p)← LongestPrefixInTrie(w)
3 return i = n and p is a terminal vertex

Function IsInTrie returns true if the word w is in the set represented by
the trie. It uses the function LongestPrefixInTrie() to compute the pair
(i, p) where i is the length of the longest prefix of w which is the label of a path
in the trie, and p is the vertex reached by this prefix. For future use, we give a
slightly more general version of this function. It computes the pair (i, p) where
i is the length of the longest prefix of the suffix of w starting in position j.

Version June 23, 2004

1.3. Tries and automata 17

LongestPrefixInTrie(w, j)
1 � returns the length of the longest prefix of w[j..n− 1]
2 � in the trie, and the vertex reached by this prefix.
3 q ← Root()
4 for i ← j to n− 1 do
5 p ← q
6 q ← Next(q, w[i])
7 if q is undefined then
8 return (i− j, p)
9 return (n− j, q)

Searching a word in a trie is done in linear time with respect to the length of
the word. It does not depend on the size of the trie. This is the main advantage
of this data structure. However, this is only true under the assumption that the
function Next can be computed in constant time. In practice, if the alphabet
is of large size, this might not be longer true.

To add a word to a trie amounts to the following simple function.

AddToTrie(w)
1 � adds the word w to the trie.
2 (i, p)← LongestPrefixInTrie(w, 0)
3 for j ← i to n− 1 do
4 q ← NewVertex()
5 Next(p, w[j]) ← q
6 p ← q
7 Add q to the set of terminal vertices

We use a function NewVertex() to create a new vertex of the trie. The
function AddToTrie() is linear in the length of w, provided Next() is in
constant time.

To remove a word from a trie is easy if we have a function Father() giving
the father of a vertex. The function can be tabulated during the construc-
tion of the trie (by adding the instruction Father(q) ← p just after line 5
in Algorithm AddToTrie). The function Father() can also be computed
on the fly during the computation of LongestPrefixInTrie() at line 2 of
Algorithm RemoveFromTrie(.) Another possibility, avoiding the use of the
function Father(), is to write the function RemoveFromTrie() recursively.
We also use a boolean function IsLeaf() to test whether a vertex is a leaf or
not.

Version June 23, 2004

18 Algorithms on Words

RemoveFromTrie(w)
1 � removes the word w of length n from the trie
2 (i, p)← LongestPrefixInTrie(w, 0)
3 � i should be equal to n
4 Remove p from the set of terminal vertices
5 while IsLeaf(p) and p is not terminal do
6 (i, p)← (i− 1,Father(p))
7 Next(p, w[i])← −1

The use of a trie structure reduce the space needed to represent a set of
words, compared with a naive representation. If one wishes to further reduce
the size, it is possible to use an acyclic graph instead of a tree. The result is an
acyclic graph with labeled edges, an initial vertex and a set of terminal vertices.
This is sometimes called a directed acyclic word graph abbreviated as DAWG.

Example 1.3.2. We represent below a DAWG for the set

X = {leader, let, letter, sent}

of Example 1.3.1.

1

2
l

3
s

4
e

5
e

6a

7t

8
n

10

d

t

13
e

14

t

r

Figure 1.8. A directed acyclic word graph (DAWG).

For a given finite set X of words, there is a unique minimal DAWG repre-
senting X . This is a particular case of a statement concerning finite automata
that we shall see in the next section. The minimal DAWG is actually the min-
imal deterministic automaton recognizing X , and standard algorithm exist to
compute it.

1.3.2. Automata

An automaton over an alphabet A is composed of a set Q of states, a finite set
E ⊂ Q × A∗ × Q of edges or transitions and two sets I, T ⊂ Q of initial and
terminal states. For an edge e = (p, w, q), the state p is the origin, w is the
label, and q is the end.

Version June 23, 2004

1.3. Tries and automata 19

The automaton is often denoted A = (Q, E, I, T), or also (Q, I, T) when E
is understood, or even A = (Q, E) if Q = I = T .

A path in the automaton A is a sequence

(p0, w1, p1), (p1, w2, p2), . . . , (pn−1, wn, pn)

of consecutive edges. Its label is the word x = w1w2 · · ·wn. The path starts at
p0 and ends at pn. The path is often denoted

p0
x−→ pn

A path is successful if it starts in an initial state and ends in a terminal state.
The set recognized by the automaton is the set of labels of its successful paths.

A set is recognizable or regular if it is the set of words recognized by some
automaton.

The family of regular sets is both the simplest family of sets that admits
an algorithmic description. It is also the most widely used one, because of its
numerous closure properties.

A state p is accessible if there is a path starting in an initial state and ending
in p. It is coaccessible if there is a path starting in p and ending in a terminal
state. An automaton is trim if every state is accessible and coaccessible.

An automaton is unambiguous if, for each pair of states p, q, and for each
word w, there is at most one path from p to q labeled with w. An automaton
is represented as a labelled graph. Initial (final) states are distinguished by an
incoming (outgoing) arrow.

Example 1.3.3. The automaton given in Figure 1.9 recognizes the set of words
on the alphabet {a, b} ending with aba. It is unambiguous and trim.

1 2

b

a

aba

Figure 1.9. A nondeterministic automaton.

The definition of an automaton given above is actually an abstraction which
went up from circuits and sequential processes. In this context, an automaton
is frequently called a state diagram to mean that the states represent possible
values of time changing variables.

In some situations, this representation is not adequate. In particular, the
number of states can easily become too large. Indeed, the number of states
is in general exponential in the number of variables. A typical example is the

Version June 23, 2004

20 Algorithms on Words

automaton which memorizes the n last input symbols. It has 2n states on a
binary alphabet but can be represented simply with n binary variables. Observe
however that this situation is not general. In particular, automata occurring
in linguistics or in bioinformatics cannot in general be represented with such
parsimony.

We have introduced here a general model of automata which allows edges
labelled by words. This allows in particular edges labelled by the empty word.
Such an edge is usually called an ε-transition. We will use here two particular
cases of this general definition. The first is that of a synchronous automaton in
which all edges are labelled by letters. In this case, the length of a path equals
the length if its label.

An automaton which is not synchronous is called asynchronous. Among
asynchronous automata, we use literal automata as a second class. These have
labels that are either letters or the empty word. In this case, the length of a
path is always at least equal to the length of its label.

Example 1.3.4. The automaton A of Figure 1.10 is asynchronous but literal.
It recognizes the set a∗b∗.

1 2

a b

ε

Figure 1.10. A literal automaton for the set a∗b∗.

An automaton is deterministic if it is synchronous, it has a unique initial
state, and if, for each state p and each letter a, there is at most one edge which
starts at p and is labeled by a. The end state of the edge is denoted by p · a.
Clearly, a deterministic automaton is unambiguous. For any word w, there is
at most one path starting in p and labeled w. The end state of this is denoted
p · w. Clearly, for any state p and any words u, v, one has

p · uv = (p · u) · v

provided the paths exist.
An automaton is complete if for any state p and any letter a there exists an

edge starting in p and labelled with a. Any automaton can be completed, that is
transformed into a complete automaton by adding one state (frequently called
the sink) and by adding transitions to this state whenever they do no exist in
the original automaton.

Example 1.3.5. The automaton given in Figure 1.11 is deterministic. It rec-
ognizes the set of words having no occurrence of the factor aa. It is frequently

Version June 23, 2004

1.3. Tries and automata 21

called the Golden mean automaton, because the number of words of length n it
recognizes is the Fibonacci number Fn (with the convention F0 = 0 and F1 = 1).

1 2b

a

b

Figure 1.11. The golden mean automaton.

An automaton is finite if its set of states is finite. Since the alphabet is
usually assumed to be finite, this means that the set of edges is finite.

A set of words X over A is recognizable if it can be recognized by a finite
automaton.

The implementation of a deterministic automaton with a finite set of states
Q, and over finite alphabet A, uses the next-state function which is the partial
function Next(p, a) = p · a. In practice, the states are identified with integers,
and the next-state function is given either by an array or by a set of edges (a, q)
for each state p. The set may be either hashed, or listed, or represented in some
balanced tree structure. Other representations exist with the aim of reducing
the space while preserving the efficiency of the access.

The next-state function is extended to a function again called Next and
defined by Next(p, w) = p ·w, for a word w. A practical implementation has to
choose a convenient way to represent the case where the function is undefined.

Next(p, w)
1 � w has length n
2 for i ← 0 to n− 1 do
3 p ← Next(p, w[i])
4 if p is undefined then
5 break
6 return p

Example 1.3.6. For the Golden mean automaton, the next-state function is
represented by the following table (observe that 2 · a is undefined)

a b

1 2 1

2 1

For the implementation of nondeterministic automata, we restrict ourselves
to the case of a literal automaton which is the most frequent one. For each state,
the set of outgoing edges is represented by sets Next(p, a) for each letter a, and

Version June 23, 2004

22 Algorithms on Words

Next(p, ε) for the ε-transitions. By definition Next(p, a) = {q | (p, a, q) ∈ E},
and Next(p, ε) = {q | (p, ε, q) ∈ E}, where E denotes the set of edges. We
denote by Initial the set of initial states, and by Terminal the set of terminal
states.

In order to check whether a word is accepted by a nondeterministic automa-
ton, one performs a search in the graph controlled by the word to be processed.
We treat this search in a breadth-first manner in the sense that, for each prefix
p of the word, we compute the set of states reachable by p.

For this, we start with the implementation of the next-state function for a
set of states. We give a function Next(S, a) that computes the set of states
reachable from a state in S by a path consisting of an edge labelled by the letter
a followed by a path labelled ε. An other possible choice consists in grouping the
ε-transitions before the edge labelled by a. This will be seen in the treatment
of the computation of a word.

Next(S, a)
1 � S is a set of states, and a is a letter
2 T ← ∅
3 for q ∈ S do
4 T ← T ∪Next(q, a)
5 return Closure(T)

The function Closure(T) computes the set of states accessible from states
in T by paths labelled ε. This is just a search in a graph, and it can be per-
formed either depth-first or breadth-first. The time complexity of the function
Next(S, a) is O(d ·Card(S)), where d is the maximal out-degree of a state.

The function Next() extends to words as follows.

Next(S, w)
1 � S is a set of states, and w is a word of length n
2 T ← Closure(S)
3 for i ← 0 to n− 1 do
4 T ← Next(T, w[i])
5 return T

In order to test whether a word w is accepted by an automaton, it suffices
to compute the set S = Next(Initial, w), and to check whether S meets the
set of final states. This is done by the following function.

IsAccepted(w)
1 � S is a set of states
2 S ← Next(Initial, w)
3 return S ∩Terminal �= ∅

The time complexity of the function Accept(w) is O(nmd), where m is the
number of states and d is the maximal out-degree of a state. Thus, in all cases,
the time complexity is O(nm2).

Version June 23, 2004

1.3. Tries and automata 23

1.3.3. Determinization algorithm

Instead of exploring a nondeterministic automaton, one may compute an equiv-
alent deterministic automaton and perform the acceptance test on the resulting
deterministic automaton. This preprocessing is especially interesting when the
same automaton is going to be used on several inputs. However, the size of
the deterministic automaton may be exponential in the size of the original, non
deterministic one, and the direct search may be the unique realistic option.

We now show how to compute an equivalent deterministic automaton. The
states of the deterministic automaton are sets of states, namely the sets com-
puted by the function Next(). A practical implementation of the algorithm
will use an appropriate data structure for a collection of sets of states. This can
be a linked list or an array of sets. We only need to be able to add elements,
and to test membership.

The function Explore() consists essentially in searching, in the automaton
B under construction, the states that are accessible. As for any exploration,
several strategies are possible. We use a depth-first search realized by recursive
calls of the function Explore().

Explore(T , S, B)
1 � T is a collection of sets of states of A
2 � T is also the set of states of B
3 � S is an element of T
4 for each letter c do
5 U ← NextA(S, c)
6 NextB(S, c) ← U
7 if U �= ∅ and U /∈ T then
8 T ← T ∪ U
9 (T , B) ← Explore(T , U, B)

10 return (T , B)

We can now write the determinization algorithm.

NFAtoDFA(A)
1 � A is a nondeterministic automaton
2 B← NewDFA()
3 I ← Closure(InitialA)
4 InitialB ← I
5 � T is a collection of sets of states of A
6 T ← I
7 (T , B)← Explore(T , I, B)
8 TerminalB ← {U ∈ T | U ∩TerminalA �= ∅}
9 return B

The result of Algorithm NFAtoDFA is the deterministic automaton B. Its
set of states is the set T . In practice, it can be represented by a set of integers

Version June 23, 2004

24 Algorithms on Words

coding the elements of T , as the collection T itself is not needed any more. The
complexity of Algorithm NFAtoDFA is proportional to the size of the resulting
deterministic automaton times the complexity of testing membership in line 7.

Example 1.3.7. We show in a first example the computation of a deterministic
automaton equivalent to a nondeterministic one. We start with the automaton
A given in Figure 1.12. We have InitialA = {1, 2} and TerminalA = {1}.

1 2b

b

a

Figure 1.12. The nondeterministic automaton A.

The next-state function is given by the following table

a b

1 ∅ {1, 2}
2 {1} ∅

The collection T of sets of states of the resulting automaton computed by
Algorithm NFAtoDFA is T = {{1, 2}, {1}}. The automaton is represented in
Figure 1.13. It is actually the Golden mean automaton of Example 1.3.5.

1,2 1b

a

b

Figure 1.13. The deterministic version B of A.

Example 1.3.8. As a second example, we consider the automaton A of Ex-
ample 1.3.4. We have InitialA = {1}, and Closure(InitialA) = {1, 2}. The
resulting deterministic automaton is given in Figure 1.14

Example 1.3.9. For any set K of words, let F (K) denote the set of factors of
the words in K. We are going to verify a formula involving the shuffle of two
sets of words. Formally, the shuffle operator x is defined inductively on words
by ux ε = εx u = u and

uax vb =
{

(ux v)a if a = b
(uax v)b ∪ (ux vb)a otherwise.

Version June 23, 2004

1.3. Tries and automata 25

1, 2 2a b
b

Figure 1.14. A deterministic automaton for the set a∗b∗.

The shuffle of two sets is the union of the shuffles of the words in the sets.
The formula is the following

F ((ab)∗)x F ((ab)∗) = F ((ab + ba)∗) . (1.3.1)

This equality is the basis of a card trick known as Gilbreath’s card trick (see
Notes).

In order to prove this formula, we apply a general principle that is valid for
regular sets. It consists in computing deterministic automata for each side of
the equation and to check that they are equivalent.

The set F ((ab)∗) is recognized by the automaton on the left of Figure 1.15.
It is easy to see that the set F ((ab)∗)x F ((ab)∗) is recognized by the nonde-
terministic automaton on the right of Figure 1.15, realized by forming pairs of
states of the first automaton with action on either component.

1 2

a

b

(a) F ((ab)∗)

1,1 1,2

2,1 2,2

a

a

a

b

a

b

b

b

(b) F ((ab)∗)x F ((ab)∗)

Figure 1.15. Two automata, recognizing F ((ab)∗) and F ((ab)∗)x F ((ab)∗).

To compute a deterministic automaton, we first renumber the states as in-
dicated on the left of Figure 1.16. The result of the determinization is shown
on the right.

Next, an automaton recognizing (ab+ba)∗ is shown on the left of Figure 1.17.
To recognize the set F ((ab + ba)∗), we make all states initial and terminal

in this automaton. The determinization algorithm is then applied with the new
initial state {1, 2, 3}. The result is shown on the right of Figure 1.17. This
automaton is clearly equivalent to the automaton of Figure 1.16. This proves
Formula 1.3.1.

Version June 23, 2004

26 Algorithms on Words

1 2

3 4

a

a

a

b

a

b

b

b

(a) After renaming sta-
tes.

1234

234

123

4

1

23

a

b

a

ba

a

b

a

b

a

(b) Deterministic automaton

Figure 1.16. On the right, a deterministic automaton recognizing the
set F ((ab)∗)x F ((ab)∗) which is recognized by the automaton on the left.

1 2 3

b

a

a

b

(a) An automaton recognizing
the set F ((ab + ba)∗).

123

12

23

1

3

2

a

b

a

ba

a

b

a

b

a

(b) A deterministic automaton for this set.

Figure 1.17. Two automata recognizing the set F ((ab + ba)∗).

1.3.4. Minimization algorithms

A given regular language S ⊂ A∗ may be recognized by several different au-
tomata. There is however a unique one with a minimal number of states, called
the minimal automaton of S. We will give a description of the minimal automa-
ton and several algorithms allowing to compute it.

The abstract definition is quite simple: the states are the nonempty sets of
the form x−1S for x ∈ A∗ where

x−1S = {y ∈ A∗ | xy ∈ S} .

The initial state is the set S itself (corresponding to x = ε) and the final states
are the sets x−1S with x ∈ S (or, equivalently, such that ε ∈ x−1S). There is a
transition from the state x−1S by letter a ∈ A to the state (xa)−1S.

Example 1.3.10. Let us consider the set Sn of words over A = {a, b} that
have a symbol a at the (n + 1)th position before the end for some n ≥ 0.

Version June 23, 2004

1.3. Tries and automata 27

Formally, Sn = A∗aAn. For any x = a0a1 · · · am ∈ A∗, one has

x−1Sn = ∪i∈P (x)An−i

where P (x) = {i | 0 ≤ i ≤ n and am−i = a}. Thus the minimal automaton of
Sn has 2n+1 states since its set of states is the set of all subsets of {0, , 1, . . . , n}.
The set S is also recognized by the nondeterministic automaton of Figure 1.18.
This example shows that the size of the minimal automaton can be exponential,

0 1 2 . . . n n + 1

a, b

a a, b a, b

Figure 1.18. Recognizing the words which have the letter a at the n+1-
th position before the end.

compared with the size of a nondeterministic one.

A general method for computing the minimal automaton consists in three
steps.

(i) Compute a nondeterministic automaton (e.g. by the method explained
in the next section),

(ii) Apply the determinization algorithm of the preceding section 1.3.3 and
remove all states that are not accessible or coaccessible. The resulting automa-
ton is deterministic and trim.

(ii) Apply a minimization algorithm, as described below.
To minimize a deterministic automaton, one uses a sequence of refinements

of equivalence relations π0 ≥ π1 ≥ · · · ≥ πn in such a way that the classes of πn

are the states of the minimal automaton.
The equivalence relation πn is called the Nerode equivalence of the automa-

ton. It is characterized by

p ∼ q if and only if Lp = Lq ,

where Lp is the set of words recognized by the automaton with initial state p.
The sequence starts with the partition π0 in two classes separating the ter-

minal states from the other ones. Further, one has p ≡ q mod πk+1 if and only
if

p ≡ q mod πk and p · a ≡ q · a mod πk for all a ∈ A.

In the above condition, it is understood that p · a = ∅ if and only q · a = ∅.
A partition of a set with n elements can be simply represented by a function
assigning to each element x its class c(x).

The computation of the final partition is realized by the following algorithm
known as Moore’s algorithm.

Version June 23, 2004

28 Algorithms on Words

MooreMinimization()
1 f ← InitialPartition()
2 do e← f
3 � e is the old partition, f is the new one
4 f ← Refine(f)
5 while e �= f
6 return e

The refinement is realized by the following function in which we denote by
a−1e the equivalence p ≡ q mod a−1e if and only if p · a ≡ q · a mod e. Again, it
is understood that p · a is defined if and only if q · a is defined.

Refine(e)
1 for a ∈ A do
2 g ← a−1e
3 e← Intersection(e, g)
4 return e

The computation of the intersection of two equivalence relations on a n-
element set can be done in time O(n2) by brute force. A refinement using a
radix sort of the pairs of classes improves the running time to O(n). Thus, the
function Refine() runs in time O(nk) on an automaton with n states on an
alphabet with k symbols. The loop in the function Partition() is executed at
most n times since the sequence of successive partitions is strictly decreasing.
Moore’s algorithm itself thus computes in time O(n2k) the minimal automaton
equivalent to a given automaton with n states and k letters.

Example 1.3.11. Let us consider the set S = (a + bc + ab + c)∗. A nondeter-
ministic automaton recognizing S is represented on the left of Figure 1.19. The
determinization algorithm produces the automaton on the right of the figure.

Applying a renumbering of the states, we obtain the automaton on the
left of Figure 1.20. The minimization procedure starts with the partition e =
{1, 3, 4}{2}. Since a−1e = e, the action of letter a does not refine e. On the
contrary, b−1e = {1, 4}{2}{3} and thus e is refined to f = {1, 4}{2}{3} which
is found to be stable. Thus we obtain the minimal automaton represented on
Figure 1.20 on the right.

There is a more complicated but more efficient algorithm, known as Hopcroft’s
algorithm, which can be used to minimize deterministic automata. We assume
that the automaton is complete.

The idea is to replace the global operation of intersection of two partitions
by the refinement of a partition by a single block. Let P be a set of states, and
let a be a letter. Let a−1P = {q | q · a ∈ P}. A set B of states is refined into
B′ and B′′ by the pair (P, a) if the sets B′ = B ∩ a−1P and B′′ = B \ B′ are
both non empty. Otherwise, B is said to be stable by the pair (P, a).

Version June 23, 2004

1.3. Tries and automata 29

12 3

b

c

a, c

a

b

(a) A nondeterministic automaton.

1 13

2 12

c

a

a

c

ba

c

b

bc

(b) The determinized version.

Figure 1.19. Recognizing the set (a + bc + ab + c)∗

1 3

2 4

c

a

a

c

ba

c

b

bc

(a) Renaming the states.

12 3

b

c

c a

a

b, c

(b) The minimal automaton.

Figure 1.20. The minimization algorithm

The algorithm starts with the partition composed of the set T of terminal
states and its complement T c. It maintains a set S of pairs (P, a) formed of a
set of states and a letter.

The main loop consists in selecting a pair (P, a) from the set S. Then for
each block B of the current partition which is refined by (P, a) into B′, B′′, one
performs the following steps

1. replace B by B′ and B′′ in the current partition,

2. for each letter b,

(a) if (B, b) is in S, then replace (B, b) by (B′, b) and (B′′, b) in S,

Version June 23, 2004

30 Algorithms on Words

(b) otherwise add to S the pair (C, b) where C is the smaller of the sets
B′ and B′′.

If, instead of choosing the smaller of the sets B′ and B′′, one adds both sets
(B′, b) and (B′′, b) to S, the algorithm becomes a complicated version of Moore’s
algorithm. The reason why one may dispense with one of the two sets is that
when a block B is stable by (P, a) and when P is partitioned into P ′ and P ′′,
then the refinement of B by (P ′, a) is the same as the refinement by (P ′′, a).
The choice of the smaller one is the essential ingredient to the improvement of
the time complexity from O(n2) to O(n log n).

This is described in Algorithm HopcroftMinimization() below.

HopcroftMinimization()
1 e ← {T, T c}
2 C ← the smaller of T and T c

3 for a ∈ A do
4 Add((C, a), S)
5 while S �= ∅ do
6 (P, a) ← First(S)
7 for B ∈ e such that B is refined by (P, a) do
8 B′, B′′ ← Refine(B, P, a)
9 BreakBlock(B, B′, B′′, e)

10 � breaks B into B′, B′′ in the partition e
11 Update(S, B, B′, B′′)

where Update() is the function that updates the set of pairs used to refine the
partition, defined as follows.

Update(S, B, B′, B′′)
1 C ← the smaller of B′ and B′′

2 for b ∈ A do
3 if (B, b) ∈ S then
4 Replace((B, b), S, (B′, b), (B′′, b))
5 else Add((C, b), S)

A careful implementation of the algorithm leads to a time complexity in
O(kn log n) on an automaton with n states over k letters. One of the key points
is the implementation of the function BreakBlock(B, B′, B′′, e) which has to
be implemented so as to run in time O(Card(B)). The function actually replaces
B by B \B′ and adds a new block B′. For this, one traverses B (in linear time)
and removes each element which is in B′ from B in constant time and adds it
to the new block, also in constant time.

The states of a class are represented by a doubly linked list, one list for
each class of the partition. This representation allows to remove the element
from the list, and so also from the class, in constant time. An array of pointers

Version June 23, 2004

1.3. Tries and automata 31

0 1 2 3 4 5

class 1 2 0 2 0 2

0 1 2

card 2 1 3

(a) The classes and their size

0 1 2

block

0 1 2 3 4 5

location

2

4

0 1

3

5

(b) The blocks of the partition

Figure 1.21. A partition of Q = {0, . . . , 5}. The class of a state is the
integer in the array class. The size of a class is given in the array card.
The elements of a block are chained in a doubly linked list pointed to by
the entry in the array block. Each cell in these lists can be retrieved in
constant time by its state using the pointer in the array location.

indexed by the states allows to retrieve the location of a state in its block in the
partition.

In order to be able to check whether a block B is refined by a pair (P, a),
one maintains an array that counts, for each block B the number of states of
a−1P that are found to be in B. The test whether B is actually refined consists
in checking whether this number is both nonzero and strictly less than CardB.
This requires to maintain a table containing the number of elements of the
blocks in the current partition.

To summarize, an arbitrary deterministic finite automaton with n states can
be minimized in time O(n log n).

A trim automaton recognizing a finite set of words can be minimized in linear
time with respect to the size of the automaton. Let A be a finite automaton with
set of states Q recognizing a finite set of words. Since the automaton is trim, it
is acyclic. Thus we are faced again with DAWG’s already seen in Section 1.3.1.

The height h(q) of a state q is the length of the longest path in A starting in
q. Equivalently, it is the length of a longest word in the language Lq of words
recognized by the automaton with initial state q. Of course, for any edge (p, a, q)
one has h(p) > h(q). Since the automaton is trim, its initial state is the unique

Version June 23, 2004

32 Algorithms on Words

state of maximal height. The heights satisfy the formula

h(p) =
{ 0 if p has no outgoing edge,

1 + max(p,a,q) h(q) otherwise.

In the second case, the maximum is taken over all edges starting in p. Observe
that this formula leads to an effective algorithm for computing heights because
the automaton has no cycle.

The parameters in the algorithm are the number n of states of A, the number
m of transitions, and the size k of the underlying alphabet. Of course, m ≤ n ·k.
In practical situations like large dictionaries, the number m is much smaller than
the product. As we will see, the minimization algorithm can beimplemented in
time O(n + m + k).

A word about the representation of A. Since there are only few edges, a
convenient representation is to have, for each state p, a list of outgoing edges,
each represented by the pair (a, q) such that (p, a, q) is a transition. States are
numbered, so traversal, marking, copying, sorting is done by integers. Also,
terminal states are represented in such a way that one knows in constant time
whether a state is terminal.

It is easily seen that two states q and q′ can be merged into a single state
in the minimal automaton only if they have the same height. Therefore, the
Nerode equivalence is a refinement of the partition into states of equal height.

Recall that the Nerode equivalence is defined by

p ∼ q if and only if Lp = Lq .

Recall also that

p ∼ q if and only if (p ∈ T ⇔ q ∈ T) and p · a ∼ q · a for all a ∈ A (1.3.2)

This formula shows that if the equivalence is known for all states up to some
height h − 1, it can be computed, by this formula, for states of height h. To
describe this in more detail, we associate, to each state q, a sequence of data
called it signature. It has the form

σ(q) = (s, a1, ν(q1), a2, ν(q2), . . . , ar, ν(qr))

where s = 0 if q is a nonterminal state and s = 1 if q is a terminal state, where
(q, a1, q1), . . . , (q, ar, qr) are the edges starting in q, and where ν(p) is the class
of the state p. We consider that classes of states are represented by integers. We
assume moreover that a1, . . . , ar are in increasing order. This can be realized
by a bucket sort in time O(n + m + k).

Then Equation 1.3.2 means that

p ∼ q if and only if σ(p) = σ(q) .

Thus, a signature is a sequence of integers of length at most 1+2k, (k = CardA)
and each element in this sequence has a value bounded by max(2, k, n). Observe

Version June 23, 2004

1.3. Tries and automata 33

that the sum of the lengths of all signatures is bounded by 2m+n, where m is the
number of transitions. In fact, the signature of state p merely a representation
of the transitions in the minimal automaton starting in the state ν(p).

For computing the Nerode equivalence of the set Qh of states of height h,
one computes the set of signatures of states in Qh. This set is sorted by a radix
sort according to their signatures, viewed as vectors over integers. Then states
with equal signatures are consecutive in the sorted list and the test σ(p) = σ(q)
for equivalence can be done in linear time.

Here is the algorithm

AcyclicMinimization()
1 � ν[p] is the state corresponding to p in the minimal automaton
2 (Q0, . . . , QH) ← PartitionByHeight(Q)
3 for p in Q0 do
4 ν[p] ← 0
5 k ← 0
6 for h ← 1 to H do
7 S ← Signatures(Qh, ν)
8 P ← RadixSort(Qh, S) � P is the sorted sequence Qh

9 p ← first state in P
10 ν[p] ← k
11 k ← k + 1
12 for each q in P \ p in increasing order do
13 if σ(q) = σ(p) then
14 ν[q] ← ν[p]
15 else ν[q] ← k
16 (k, p)← (k + 1, q)
17 return ν

A usual topological sort can implement PartitionByHeight(Q) in time
O(n + m).

Each signature is then computed in time proportional to its size, so the whole
set of signatures is computed in time O(n + m). Each radix sort can be done
in time proportional to the sum of the sizes of the signatures, with an overhead
of one O(k) initialization of the buckets. So the total time for the sort is also
O(n + m + k).

Observe that the test at line 13 is linear in the length of the signatures, so
the whole algorithm is in time O(k + n + m).

Example 1.3.12. Consider the automaton of Figure 1.22. The computation
of the heights gives the follow partition:

Q0 = {4, 8}, Q1 = {3, 7}, Q2 = {2, 6, 10, 11}, Q3 = {1, 5, 9}, Q4 = {0} .

States of height 0 are always final states, and are merged into a class numbered
0.

Version June 23, 2004

34 Algorithms on Words

0

1

5

9

2

6

11

10

3

7

4

8

a

b

c

a

b

a

a

b

c

a, b

a

b

a

b

a

b

a

b

a

b

Figure 1.22. A trim automaton recognizing a finite set.

3 : 0a0b0
7 : 0a0b0

(a) Signatures of states
of height 1.

0 1 2 3 4 5 6 7 8 9 10 11
ν 1 0 1 0

(b) The corresponding states of the minimal
automaton.

The states of height 1 have the signatures given below. Observe that in a
signature, the next state appearing in an edge is replaced by its class. This
can be done because the algorithm works by increasing height. These states are
merged into a class numbered 1.

The radix sort of the four states of height 2 gives the sequence (10, 11, 2, 6),
so 10, 11 are grouped into a class 2 and 2, 6 are grouped into a class 3.

2 : 0a1b1
6 : 0a1b1

10 : 0a1b0
11 : 0a1b0

(c) Signatures of states
of height 2.

0 1 2 3 4 5 6 7 8 9 10 11
ν 3 1 0 3 1 0 2 2

(d) The corresponding states of the minimal
automaton.

The states of height 3 all give singleton classes, because the signatures are
different. This is already clear because they have distinct lengths. In other
term, a refinement of the algorithm could consist in partitioning the states of
same height into subclasses according to their width, that is the number of edges
starting in each state.
Thus, the minimal automaton has 8 states. It is given in Figure 1.23.

Version June 23, 2004

1.4. Pattern matching 35

1 : 0a3b2
5 : 0a3
9 : 1a3b2c2

(e) Signatures of states
of height 3

0 1 2 3 4 5 6 7 8 9 10 11
ν 7 5 3 1 0 4 3 1 0 6 2 2

(f) The final state vector of the minimal au-
tomaton.

7

5

4

6

3

2

1

0

a

b

c

a

b

a

a

b, c

a, b

a b

a, b

Figure 1.23. The corresponding minimal automaton.

1.4. Pattern matching

The specification of simple patterns on words uses the notion of a regular ex-
pression. It is an expression build using letters and a symbol representing the
empty word, and three operators:

• union, denoted by the symbol ‘+’,

• product, denoted by mere concatenation,

• star denoted by ‘*’.

These operators are used to denote the usual operations on sets of words. The
operations are the set union, set product

XY = {xy | x ∈ X , y ∈ Y}

and the star operation

X ∗ = {x1 · · ·xn | n ≥ 0, x1, . . . , xn ∈ X} .

A regular expression defines a set of words W (e), by using recursively the op-
erations of union, product and star.

W (e + f) = W (e) ∪W (f), W (ef) = W (e)W (f), W (e∗) = W (e)∗ .

Words in W (e) are said to match the expression e. The problem of check-
ing whether a word matches a regular expression is called a pattern matching
problem.

Version June 23, 2004

36 Algorithms on Words

For instance, e = (a+ b)∗abaab(a+ b)∗ is a regular expression. The set W (e)
is the set of words on A = {a, b} having abaab as a factor. More generally,
for any word w, the words matching the regular expression A∗wA∗ are those
having w as a factor. Thus, the problem of checking whether a word is a factor
of another is a particular case of a pattern matching problem. The same holds
for subwords.

For each regular expression e, there exists a finite automaton recognizing the
set of words W (e). In other terms, W (e) is a regular set. A proof of this assertion
consists in an algorithm for building such a finite automaton, inductively on the
structure of the expression. Several constructions exist that use slightly different
normalizations of automata or of expressions. The main variations concern the
use of ε-transitions. We present below a construction which makes extensive
use of ε-transitions. The main advantage is its simplicity, and the small size of
the resulting automaton.

One starts with simple automata recognizing respectively ε and a, for any
letter a. They are represented in Figure 1.24. One further uses a recursive con-

(a) Empty set.

ε

(b) Empty word.

a

(c) Letter a.

Figure 1.24. Automata for the empty set, for the empty word, and for
a letter.

struction on automata with three constructs implementing union product and
star. The construction is indicated below. This construction has the property to

Figure 1.25. Automata for union, product and star.

Version June 23, 2004

1.4. Pattern matching 37

construct finite automata with several particular properties. First, each state
has at most two edges leaving it. If there are two edges, they have each an
empty label. Also, there is a unique initial state i and a unique terminal state
t. Finally, there is no edge entering i and no edge leaving t. We call such an
automaton a pattern matching automaton.

We use a specific representation of nondeterministic automata tailored to the
particular automata constructed by the algorithm. A conversion to the repre-
sentation described above is straightforward. First, an automaton A has a state
Initial (the initial state) and a state Terminal (the terminal state). Then,
there are two functions Next1() and Next2(). For each state p, Next1(p) =
(a, q) if there is an edge (p, a, q). If there is an edge (p, ε, q), then Next1(p) =
(ε, q). If there is a second edge (p, ε, q′), then Next2(p) = (ε, q′). If no edge
starts from p, then Next(p) is undefined.

We use a function NewAutomaton() to create an automaton with just
one initial state and one terminal state and no edges. The function creating an
automaton recognizing a is given in Algorithm AutomatonLetter.

AutomatonLetter(a)
1 A ← NewAutomaton()
2 Next1(InitialA)← (a,TerminalA)
3 return A

The automata recognizing the union, the product and the star are depicted
in Figure 1.25. Boxes represent automata, up to their initial and terminal state
that are drawn separately. All drawn edges are ε-transitions. The implemen-
tation of the corresponding three functions AutomataUnion(), Automat-

aProduct() and AutomatonStar() is straightforward.

AutomataUnion(A, B)
1 C ← NewAutomaton()
2 Next1(InitialC) ← (ε, InitialA)
3 Next2(InitialC) ← (ε, InitialB)
4 Next1(TerminalA)← (ε,TerminalC)
5 Next1(TerminalB) ← (ε,TerminalC)
6 return C

The function AutomataProduct() uses a function Merge() that merges
two states into a single one.

AutomataProduct(A, B)
1 C ← NewAutomaton()
2 InitialC ← InitialA

3 TerminalC ← TerminalB

4 Merge(TerminalA, InitialB)
5 return C

Version June 23, 2004

38 Algorithms on Words

AutomatonStar(A)
1 B ← NewAutomaton()
2 Next1(InitialB)← (ε, InitialA)
3 Next2(InitialB)← (ε,TerminalB)
4 Next1(TerminalA)← (ε, InitialA)
5 Next1(TerminalA)← (ε,TerminalB)
6 return C

The practical implementation of these algorithms on a regular expression
is postponed to the next section. As an example, consider the automaton in
Figure 1.26. It has 21 states and 27 edges. The size of the pattern matching

i t

a

b

b

a a

b

Figure 1.26. The automaton for the expression (a + b)∗b(a + 1)(a + b)∗.

automaton recognizing the set of words matching a regular expression is linear
in the size of the expression. Indeed, denote by n(e) the number of states of the
pattern matching automaton corresponding to the expression e. Then

n(a) = 2 for each letter a
n(ε) = 2

n(e + f) = n(e) + n(f) + 2
n(ef) = n(e) + n(f)− 1
n(e∗) = n(e) + 2

Thus n(e) ≤ 2|e|, where |e| is the length of the expression e (discarding the left
and right parentheses). The number of edges is at most twice the number of
states. Thus the space complexity of the resulting algorithm is linear in the size
of the expression.

To realize the run of such an automaton on a word w, one uses Algo-
rithm IsAccepted. We observe that in a pattern matching automaton, the
out-degree of a state is at most 2. Therefore, the time complexity of a call
IsAccepted(w) is O(nm), where n is the size of the regular expression and
m = |w|.

In some particular cases, the quadratic complexity O(nm) can be replaced
by O(n + m). This is the case in particular for the string matching problem
treated in Algorithm SearchFactor.

Version June 23, 2004

1.5. Transducers 39

1.5. Transducers

Beyond formal languages, relations between words are a very natural concept.
We consider relations over words, but most of the general notions work for
relations over arbitrary sets.

Formally, a relation ρ between words over the alphabet A and words over
the alphabet B is just a subset of the Cartesian product A∗ × B∗. We call it
a relation from A∗ to B∗. Actually, such a relation can be viewed as a partial
function fρ from A∗ to the set P(B∗) of subsets of B∗ defined by

fρ(x) = {y ∈ B∗ | (x, y] ∈ ρ}, x ∈ A∗ .

The inverse of a relation σ from A∗ to B∗ is the relation σ−1 from B∗ to A∗

defined by
σ−1 = {(v, u) | (u, v) ∈ σ}.

The composition of a relation σ from A∗ to B∗ and a relation τ from B∗ to C∗
is the relation from A∗ to C∗ defined by (x, z) ∈ σ ◦ τ if and only if there exists
y ∈ B∗ such that (x, y) ∈ σ and (y, z) ∈ τ . The reader should be aware that the
composition of relations goes the other way round than the usual composition of
functions. The function fσ◦τ defined by the relation σ◦τ is fσ◦τ (x) = fτ (fσ(x)).
One can overcome this unpleasant aspect by writing the function symbol on the
right of the argument.

A particular case of a relation ρ from A∗ to B∗ is that of a partial function
from A∗ to B∗. In this case, fρ is a (partial) function from A∗ into B∗.

Example 1.5.1. Consider the relation γ ⊂ A∗ × A∗ defined by (x, y) ∈ γ if
and only if x and y are conjugate. Clearly, γ = γ−1. The image of a word x is
the set of conjugates of x.

Example 1.5.2. Consider the relation µ ⊂ A∗ ×A∗ defined by

µ = {(a1a2 · · · an, anan−1 · · ·a1) | a1, . . . , an ∈ A} .

Clearly, µ = µ−1 and µ ◦ µ is the identity relation.

Example 1.5.3. For the relation ρ ⊂ A∗×A∗ defined by doubling each letter:

ρ = {(a1a2 · · · an, a2
1a

2
2 · · · a2

n) | a1, . . . , an ∈ A}

the image of a word x = a1a2 · · · an is a2
1a

2
2 · · ·a2

n. The inverse is only defined
on words of the form a2

1a
2
2 · · · a2

n.

The set of relations on words is subject to several additional operations. The
union of two relations ρ, σ ⊂ A∗ × B∗ is the set union ρ ∪ σ. The product of ρ
and σ ⊂ A∗ × B∗ is the relation

ρσ = {(ur, vs) | (u, v) ∈ ρ, (r, s) ∈ σ}.

Version June 23, 2004

40 Algorithms on Words

The star of σ ⊂ A∗ × B∗ is the relation

σ∗ = {(u1u2 · · ·un, v1v2 · · · vn) | (ui, vi) ∈ σ, n ≥ 0}.
A relation from A∗ to B∗ is rational if it can be obtained from subsets of

(A ∪ {ε}) × (B ∪ {ε}) by a finite number of operations of union, product and
star.

A rational relation that is a (partial) function is called a rational function.

Example 1.5.4. The doubling relation is rational since it can be written, e.g.
on the alphabet {a, b} as ((a, aa) ∪ (b, bb))∗. More generally, for any morphism
f from A∗ to B∗, the relation ρ = {(x, f(x) | x ∈ A∗} is rational. Indeed,
ρ = (∪a∈A(a, f(a)))∗. Thus morphisms are rational functions.

Just like regular expressions correspond to automata, rational relations cor-
respond to a kind of automata called transducers which are just automata with
output. Formally, a transducer over the alphabets A, B is an automaton in
which the edges are elements of Q×A∗×B∗×Q. Thus each edge (p, u, v, q) has
an input label u which is a word over the alphabet A and an output label v which
is a word over the output alphabet B. The transducer is denoted (Q, E, I, T)
where Q is the set of states, E the set of edges, I the set of initial states and T
the set of final states.

There are two “ordinary” automata corresponding to a given transducer.
The input automaton is obtained by using only the input label of each edge.
The output automaton is obtained by using only the output labels.

The terminology introduced for automata extends naturally to transducers.
In particular, a path is labeled by a pair (x, y) formed of its input label x and
its output label y. Such a path from p to q is often denoted p

x|y−→ q. Just
as a finite automaton recognizes a set of words, a transducer recognizes or
realizes a relation. The algorithm of Section 1.4 can be easily adapted to build
a transducer corresponding to a given rational relation.

As for automata, we allow in the definition of transducers the input and
output labels to be arbitrary, possibly empty, words. The behavior of the trans-
ducer can be viewed as a machine reading an input word and writing an output
word through two “heads” (see Figure 1.27). The mechanism is asynchronous
in the sense that the two heads may move at different speeds.

The particular case of synchronous transducers is important. A transducer is
said to be synchronous if for each edge, the input label and the output label are
letters. Not every rational relation can be realized by a synchronous transducer.
Indeed, if ρ is realized by a synchronous transducer, then ρ is length-preserving.
This means that whenever (x, y) ∈ ρ, then |x| = |y|.

A transducer is literal if for each edge the input label and the output label
are letters or the empty word. It is not difficult to show that any transducer
can be replaced by a literal one.

Example 1.5.5. The relation between a word written in lower-case letters
a, b, c, . . . and the corresponding upper-case letters A, B, C, . . . is rational. In-
deed, it is described by the expression ((a, A) ∪ (b, B) ∪ . . .)∗. This relation is

Version June 23, 2004

1.5. Transducers 41

input

q

output

Figure 1.27. A transducer reads the input and writes the output.

realized by the transducer of Figure 1.28. This transducer is both literal and

a | A

b | B

· · ·

Figure 1.28. From lower case to upper case.

synchronous.

Example 1.5.6. The Fibonacci morphism defined by a → ab, b→ a is realized
by the transducer on the left of Figure 1.29. The transducer on the right of

0a | ab b | a 0b | a 1

a | a

ε | b

Figure 1.29. The Fibonacci morphism.

Figure 1.29 realizes the same morphism. It is literal.

Example 1.5.7. The transducer represented on the left of Figure 1.30 realizes
the circular right shift on a word on the alphabet {a, b} ending with letter a.
The transformation consists in shifting cyclically each symbol one place to the
right. For example

a b b a b a
a a b b a b

Version June 23, 2004

42 Algorithms on Words

The restriction to words ending with letter a is for simplicity (and corresponds
to the choice of state 0 as initial and final state in the automaton on the left
of Figure 1.30). The inverse of the right shift is the left shift which shifts

0 1a | a b | b
b | a

a | b
0 1a | a b | b

a | b

b | a

Figure 1.30. The circular right shift on words ending with a and its inverse.

all symbols cyclically one place to the left. Its restriction to words beginning
with a is represented on the right of Figure 1.30. The composition of both
transformations is the identity restricted to words ending with the letter a plus
the empty word.

An important property of rational relations is that the composition of two
rational relations is again a rational relation. The construction of a transducer
realizing the composition is the following. We start with a transducer S =
(Q, E, I, T) over A, B and a transducer S′ = (Q′, E′, I ′, T ′) over B, C. We
suppose that S and S′ are literal (actually we shall only need that the output
automaton of S is literal and that the input automaton of S′ is literal). We
build a new transducer U as follows. The set of states of U is Q×Q′. The set
of edges is formed of three kinds of edges.

1. the set of edges (p, p′)
a|c−→ (q, q′) for all edges p

a|b−→ q in E and p′
b|c−→ q′

in E′.
2. the set of edges (p, p′)

ε|c−→ (p, q′) for p′
ε|c−→ q′ in E′.

3. the set of edges (p, p′)
a|ε−→ (q, p′) for (p

a|ε−→ q) in E.
The set of initial states of U is I × I ′ and the set of terminal states is T × T ′.
The definition of the edges implies that

(p, r)
x|z−→ (q, s) ⇐⇒ ∃y : p

x|y−→ q and r
y|z−→ s .

This allows to prove that the composed transducer realizes the composition of
the relations.

Example 1.5.8. The composition of the circular right shift of Example 1.5.7
with itself produces the circular right 2-shift which consists in cyclically shifting
the letters two places to the right for words ending with aa.

For the implementation of transducers we use a function Next(p) which asso-
ciates to each state p the set of edges beginning at p, and two sets Initial and
Terminal to represent the initial and terminal states.

The algorithm computing the composition of two transducers is easy to write.

Version June 23, 2004

1.5. Transducers 43

0, 0

1, 0

1, 1

0, 1

a | a

b | a b | a

b | b

a | ba | b

b | b a | a

Figure 1.31. The right 2-shift.

ComposeTransducers(S, T)
1 � S and T are literal transducers
2 U ← NewTransducer()
3 for each edge (p, a, b, q) of S do
4 for each edge (r, b, c, s) of T do
5 add ((p, r), a, c, (q, s)) to the edges of U
6 for each edge (p, a, ε, q) of S do
7 for each state r of T do
8 add ((p, r), a, ε, (q, r)) to the edges of U
9 for each edge (r, ε, c, s) of T do

10 for each state p of S do
11 add ((p, r), ε, c, (p, s)) to the edges of U
12 InitialU ← InitialS × InitialT

13 TerminalU ← TerminalS ×TerminalT

14 return U

The composition can be used to compute an automaton that recognizes the
image of a word (and more generally of a regular set) by a rational relation.
Indeed, let ρ be a rational relation from A∗ to B∗, let x be a word over A. Let
R be a literal transducer realizing ρ, and let A be a literal transducer realizing
the relation {(ε, x)}. Let T = Compose(A, R) be the composition of A and R.
The image f(x) = {y ∈ B∗ | (x, y) ∈ ρ} is recognized by the output automaton
of T.

Example 1.5.9. Consider the word x = ab and the Fibonacci morphism of Ex-
ample 1.5.6. On the left of Figure 1.32 is a transducer realizing {(ε, x)}, and on
the right the transducer obtained by composing it with the literal transducer of
Figure 1.29. The composition of the transducers contains actually an additional
edge (0, 1)

ε|b−→ (0, 0) which is useless because the state (0, 1) is inaccessible from
the initial state.

A sequential transducer over A, B is a triple (Q, i, T) together with a partial
function

Q×A → B∗ ×Q

Version June 23, 2004

44 Algorithms on Words

0 1
ε | a

2
ε | b

0, 0 1, 1
ε | a

1, 0
ε | b

2, 0
ε | a

Figure 1.32. The image f(x) = aba of x = ab by the Fibonacci morphism.

which breaks up into a next state function Q×A → Q and an output function
Q×A → B∗. As usual, the next state function is denoted (q, a) �→ q · a and the
output function (q, a) �→ q ∗a. In addition, the initial state i ∈ Q has attached a
word λ called the initial prefix and T is actually a (partial) function T : Q → B∗

called the terminal function. Thus, an initial prefix and additional suffix can
be added to all outputs.

The next state and the output functions are extended to words by p · (xa) =
(p · x) · a and p ∗ (xa) = (p ∗ x)(p · x) ∗ a. The second formula means that the
output p∗(xa) is actually the product of the words p∗x and q∗a where q = p ·x.
The (partial) function f from A∗ to B∗ realized by the sequential transducer is
defined by f(x) = λvτ where u is the initial prefix, v = i ∗ x and τ = T (i · x).
A function from A∗ to B∗ that is realized by a sequential transducer is called a
sequential function.

Example 1.5.10. The circular left shift on words over {a, b} beginning with a
is realized, on the right of Figure 1.30, by a transducer which is not sequential
(two edges with input label a leave state 0). It can also be computed by the
sequential transducer of Figure 1.33 with the initial pair (ε, 0) and the terminal
function T (1) = a.

0 1
a | ε a

a | a

b | b

Figure 1.33. A sequential transducer for the circular left shift on words
beginning with a.

The composition of two sequential functions is again a sequential function. This
is actually a particular case of the composition of rational functions. The same

Version June 23, 2004

1.5. Transducers 45

construction is used to compose sequential transducers and it happens to pro-
duce a sequential transducer. We give explicitly the form of the composed
transducer.

Let S = (Q, i, T) be a sequential transducer over A, B and let S′ =
(Q′, i′, T ′) be a sequential transducer over B, C. The composition of S and
S′ is the sequential transducer S ◦ S′ with set of states Q′ × Q, initial state
(i′, i) and terminal states T ′′ = T ′ × T . Observe that we reverse the order for
notational convenience. The next state function and the output function are
given by

(p′, p) · x = (p′ · (p ∗ x), p · x)
(p′, p) ∗ x = p′ ∗ (p ∗ x)

The initial prefix of the composed transducer is the word λ′′ = λ′(i′ ∗ λ), and
the terminal function T ′′ is defined by

T ′′(q′, q) = (q′ ∗ T (q))T ′(q′ · T (q)) .

The value of the terminal function T ′′ on (q′, q) is indeed obtained by first
computing the value of the terminal function T (q) and then fitting this word in
the transducer S′ at state q′.

For the implementation of sequential transducers we use a partial function
Next(p, a) = (p ∗ a, p · a) grouping the output function and the next state
function. There is also a pair Initial = (λ, i) ∈ B∗ × Q for the initial prefix
and the initial state and a partial function Terminal(q) returning the terminal
suffix for each terminal state q ∈ T .

1.5.1. Determinization of transducers

Contrary to ordinary automata, it is not true that any finite transducer is
equivalent to a finite sequential one. It can be verified that a transducer is
equivalent to a sequential one if and only if it realizes a partial function and if
it satisfies a condition called the twinning property defined as follows. Consider
a pair of paths with the same input label and of the form

i
u|u′
−→ q

v|v′
−→ q

i′
u|u′′
−→ q′

v|v′′
−→ q′

where i and i′ are initial states. Two paths as above are called twin. The
twinning property) is that for any pair of twin paths, the output is such that
v′, v′′ are conjugate and u′v′v′ · · · = u′′v′′v′′ · · ·.

Example 1.5.11. The circular right shift on all words over {a, b} is realized
by the transducer of Figure 1.34. It is not a sequential function because the last
letter cannot be guessed before the end of the input. Formally, this is visible
because of the twin paths

0
b|a−→ 1

ab|ba−→ 1

Version June 23, 2004

46 Algorithms on Words

and
3

b|b−→ 3
ab|ba−→ 3.

with distinct outputs ababa · · · and bbababa · · ·.

0 1a | a b | b
b | a

a | b
2 3a | a b | b

b | a

a | b

Figure 1.34. The circular right shift.

The computation of an equivalent sequential transducer is a variant of the de-
terminization algorithm of automata. The main difference is that it may fail
to terminate since, as we have seen before, it cannot be always performed suc-
cessfully. We start with a transducer A which is supposed to be equivalent to
a sequential one. We suppose that A is literal (or, at least, that its input au-
tomaton is literal) and trim. The states of the equivalent sequential transducer
B are sets of pairs (u, q) ∈ B∗ ×Q. A pair (u, q) ∈ B∗ ×Q is called a half-edge.
The states are computed by using in a first step a function Next() represented
below. The value of Next(S, a) on a set S of half-edges and a letter a is the
union, for (u, p) ∈ S of the set of half-edges (uvw, r) such that there are, in A,

(i) an edge p
a|v−→ q

(ii) and a path q
ε|w−→ r

We use a function NextA(p, a) returning the set of half-edges (v, q) such that
(p, a, v, q) is an edge of the transducer A.

Next(S, a)
1 � S is a set of half-edges (u, q) ∈ B∗ ×Q, and a is a letter
2 T ← ∅
3 for (u, p) ∈ S do
4 for (v, q) ∈ NextA(p, a) do
5 T ← T ∪ (uv, q)
6 return Closure(T)

The set Closure(T) is the set of half-edges (uw, r) such that there is a path
q

ε|w−→ r in A for some half-edge (u, q) ∈ T . If the transducer is equivalent to a
deterministic one, this set is finite. The computation of Closure(T) uses as
usual an exploration of the graph composed of the edges of the form (q, ε, v, r). A
test can be added to check that this graph has no loop whose label is nonempty
word, i.e. that the set Closure(T) is finite.

As an auxiliary step, we compute the following function

Version June 23, 2004

1.5. Transducers 47

Lcp(U)
1 � U is a set of half-edges
2 v ← LongestCommonPrefix(U)
3 U ′ ← Erase(v, U)
4 return (v, U ′)

The function LongestCommonPrefix(U) returns the longest common
prefix of the words u such that there is a pair (u, q) ∈ U . The function
Erase(v, U) returns the set of half-edges obtained by erasing the prefix v of
the words u appearing in the half-edges (u, q) ∈ U .

In a second step, we build the set of states and the next state function
of the resulting sequential transducer B. As for automata, we use a function
Explore() which operates on the fly.

Explore(T , S, B)
1 � T is a collection of sets of half-edges
2 � S is an element of T
3 for each letter a do
4 (v, U) ← Lcp(Next(S, a))
5 NextB(S, a) ← (v, U)
6 if U �= ∅ and U /∈ T then
7 T ← T ∪ U
8 (T , B) ← Explore(T , U, B)
9 return (T , B)

We can finally write the function realizing the determinization of a trans-
ducer into a sequential one.

ToSequentialTransducer(A)
1 � A is a transducer
2 B← NewSequentialTransducer()
3 I ← Closure({ε} × InitialA)
4 InitialB ← I
5 � T is a collection of sets of half-edges
6 T ← I
7 (T , B)← Explore(T , I, B)
8 for S ∈ T do
9 for (u, q) ∈ S do

10 if q ∈ TerminalA then
11 TerminalB(S) ← u
12 return B

Example 1.5.12. The application of the determinization algorithm to the
transducer on the right of Figure 1.30 produces the sequential transducer of
Figure 1.33 as obtained on Figure 1.35

Version June 23, 2004

48 Algorithms on Words

ε,0 a,0
b,1

a | ε a

a | a

b | b

Figure 1.35. A sequential transducer for the circular left shift on words
beginning with a obtained by the determinization algorithm.

A test can be added to the determinization algorithm to stop the computation
in case of failure, that is if one of the folllowing situations occur, implying that
the transducer A is not equivalent to a sequential one. First, one may check
at line 4 in algorithm Explore() that the half edges appearing in a state of
B have a label of bounded length. Indeed, it can be shown that there exists a
constant K, depending on A such that for each half-edge (u, q) appearing in a
state of B, the length of u is bounded by K (otherwise A does not satisfy the
twinning property, see Problem 1.5.1). Second, a test can be added at line 10 of
algorithm ToSequentialTransducer() to check that if a state of B contains
two half-edges (u, q) and (v, r) with q, r terminal, then u = v (if this condition
fails to hold, then A does not realize a function).

1.5.2. Minimization of transducers

Just as there is a unique minimal deterministic automaton equivalent to a given
one, there is also a unique minimal sequential transducer equivalent to a given
one. The minimization of sequential transducers consists in two steps. A pre-
liminary one, called normalization allows to produce output as soon as possible.
The second step is quite similar to the minimization of finite automata.

Let A = (Q, i, T) be a sequential transducer. For each state p ∈ Q, let us
denote by Xp the subset of B∗ recognized by the output automaton correspond-
ing to A with p as initial state. The normalization consists in computing for
each state p ∈ Q, the longest common prefix πp of all words in Xp.

The normalized transducer is obtained by modifying the output function
and terminal function of A. We set

λ′ = λπi , p ∗′ a = π−1
p (p ∗ a)πp.a , T ′(p) = π−1

p T (p)

The computation of the words πp can be performed as follows. It uses the
binary operation associating to two words their longest common prefix. This
operation is associative and commutative and will be denoted in this section by

Version June 23, 2004

1.5. Transducers 49

a +, like a sum. We consider the set K = B∗ ∪ 0 formed of B∗ augmented with
0 as ordered by the relation x ≤ y if x is a prefix of y or y = 0. For p, q ∈ Q,
we denote by Mp,q the element of K which is the longest common prefix of all
words v such that there is an edge p

a|v−→ q (and Mpq = 0 if this set is empty).
We also consider the Q-vector N defined by Np = T (p), where T is the terminal
function, and Np = 0 if T (p) is empty. For a Q-vector X of elements of K, we
consider the vector Y = MX + N which is defined for p ∈ Q by

Yp =
∑
q∈Q

Mp,qXq + Np

Recall that all sums are in fact longest common prefixes and that the right-
hand side of the equation above is the longest common prefix of the words
Mp,qXq, for q ∈ Q, and Np. It can be checked that the function f defined by
f(X) = MX + N is order preserving for the partial order considered on the set
K. Thus, there is a unique maximal fix-point which satisfies X = MX + N .
This is precisely the vector of words P = (πp) we are looking for. It can be
computed as the limit of the decreasing sequence fk(0) for k = 1, 2,

Example 1.5.13. Consider the transducer realizing the Fibonacci morphism
represented on the right of Figure 1.29. The determinization of this transducer
produces the sequential transducer on the left of Figure 1.36. The computation

0b | a 1

a | a
a | ba

b | ba

b

0b | a 1

a | ab

a | ab

b | a

Figure 1.36. The normalization algorithm.

of the vector P uses the transformation Y = MX + N with

Y0 = aX1 + aX0 + ε
Y1 = baX0 + baX1 + b

The successive values of the vector P are P =
[
0 0
]
, P =

[
ε b
]
. The last value

satisfies P = MP + N and thus it is the final one. The normalized transducer
is shown on the right of Figure 1.36.

The algorithm to compute the array P is easy to write.

Version June 23, 2004

50 Algorithms on Words

LongestCommonPrefixArray(A)
1 � P, P ′ are arrays of strings initially null
2 � M is the matrix of transitions of A and N the vector of terminals
3 do P ← P ′

4 P ′ ←MP + N
5 while P �= P ′

6 return P

The expression MP+N should be evaluated using the longest common prefix
for the sum, including those appearing in the product MP . The normalized
transducer can now be computed by the following function.

NormalizeTransducer(A)
1 P ← LongestCommonPrefixArray(A)
2 (λ, i) ← Initial

3 Initial← (λP [i], i)
4 for (p, a) ∈ Q×A do
5 (u, q)← Next(p, a)
6 Next(p, a)← P [p]−1uP [q]
7 for p ∈ Q do
8 T [p]← P [p]−1T [p]

The last step of the minimization algorithm consists in applying the mini-
mization algorithm to the input automaton, starting from the initial partition
which is defined by p ≡ q if T (p) = T (q) and if p ∗ a = q ∗ a for each a ∈ A. Any
one of the minimization algorithms presented in Section 1.3.4 applies.

Example 1.5.14. We apply the minimization algorithm to the transducer ob-
tained after normalization on the right of Figure 1.37. The two states are found
to be equivalent. The result is the sequential transducer on the right of Fig-

0b | a 1

a | ab

a | ab

b | a
0b | a a | ab

Figure 1.37. The minimization algorithm.

ure 1.37 which is of course identical to the transducer on the left of Figure 1.29.

1.6. Parsing

There are other ways, beyond regular expressions, to specify properties of words.
In particular, context-free grammars offer a popular way to describe words sat-
isfying constraints. These constraints often appear as the syntactic constraints

Version June 23, 2004

1.6. Parsing 51

defining programming languages or also natural languages. The patterns speci-
fied by regular expressions can also be expressed in this way, but grammars are
strictly more powerful.

The problem of parsing or syntax analysis consists in computing the deriva-
tion tree of a word, given a grammar.

A grammar G on an alphabet A is given by a finite set V and a finite set
R ⊂ V× (A∪V)∗. The elements of V are called variables and the elements of R
are called the productions of the grammar. A production (v, w) is often written
v → w. One fixes moreover a particular variable i ∈ V called the axiom. The
grammar is denoted by G = (A,V ,R, i).

Given two words x, y ∈ (A ∪ V)∗, one writes x → y if y is obtained from x
by replacing some occurrence of v by w for some production (v, w) in R, i.e.
if x = pvq, y = pwq. One denotes by ∗→ the reflexive and transitive closure of
the relation →. Thus x

∗→ y if there exists a sequence w0 = x, w1, . . . , wn = y of
words wh ∈ (A ∪ V)∗ such that wh → wh+1 for 0 ≤ h < n. Such a sequence is
called a derivation from x to y. The language generated by the grammar G is
the set

L(G) = {x ∈ A∗ | i ∗→x}.
One may more generally consider the language generated by any variable v,
denoted by L(G, v) = {x ∈ A∗ | v ∗→x}.

A grammar G = (A,V ,R, i) can usefully be viewed as a system of equations,
where the unknowns are the variables. Consider indeed the system of equations

v = Wv (v ∈ V) (1.6.1)

where Wv = {w | (v, w) ∈ R}. If each variable v is replaced by the set L(G, v),
one obtains a solution of the system of equations which is always the smallest
solution (with respect to set inclusion) of the system.

A variant of the definition of a grammar is often used, where the sets Wv

of Equation 1.6.1 are regular sets. In this case, these sets are usually described
by regular expressions. This is equivalent to the first definition but often more
compact. We give two fundamental examples of languages generated by a gram-
mar.

Example 1.6.1. As a first example, let A = {a, b}, V = {v} and R be com-
posed of the two productions

v → avv, v → b.

The language generated by the grammar G = (A,V ,R, v) is known as the
Lukasiewicz language. Its elements can be interpreted as arithmetic expressions
in prefix notation, with a as an operator symbol and b as an operand symbol.
The first words of L(G) in radix order are b, abb, aabbb, ababb, aaabbbb, aababbb,
aabbabb, abaabbb, In alphabetic order (with a < b) the last words are
. . . , abb, b.

Version June 23, 2004

52 Algorithms on Words

Example 1.6.2. The second fundamental example is the Dyck language gen-
erated by the grammar G with the same sets A,V as above and the productions

v → avbv, v → ε.

Let M be the language generated by this grammar. Then M = aMbM + ε.
Set D = aMb. Then M = DM + ε. This shows that M = D∗, and thus
D = aD∗b. The set M is called the Dyck language, and D is the set of Dyck
primes. The words inM can be viewed as well-formed sequences of parentheses
with a as left parenthesis and b as right parenthesis. The words of D are the
words in M which are not products of two nonempty words of M. The first
words in radix order in D and in D∗ are respectively ab, aabb, aababb, . . ., and
ε, ab, aabb, abab, aabbab. A basic relation between the Lukasiewicz set L and the
Dyck language M is the equation

L = Mb .

This is easy to verify, provided one uses the equational form of the grammar.
The set L is indeed uniquely defined as the solution of the equation

L = aLL+ b (1.6.2)

Since M = aMbM+ ε, multiplying both sides by b on the right, we obtain

Mb = aMbMb + b .

which is Equation 1.6.2, whence Mb = L. There is a simple combinatorial
interpretation of this identity. Let δ(x) denote the difference of the number of
occurrences of a and of b in the word x. One can verify that a word x is in M
if and only if δ(x) = 0 and δ(p) ≥ 0 for each prefix p of x. Similarly, a word x
is in L if and only if δ(x) = −1 and δ(p) ≥ 0 for each proper prefix p of x.

A derivation tree for a word w is a tree T labeled by elements of A∪V ∪{ε}
such that

1. the root of T is labeled by i.

2. for each interior node n, the pair (v, x) formed by the label v of n and the
word x obtained by concatenating the labels of the children of n in left to
right order is an element of R.

3. A leaf is labeled ε only if it is the unique child of its parent.

4. The word w is obtained by concatenating the labels of the leaves of T in
increasing order.

A derivation tree is a useful shorthand for representing a set of derivations.
Indeed, any traversal of the derivation tree produces a derivation represented
by this tree, and conversely.

Version June 23, 2004

1.6. Parsing 53

v

a v

ε

b v

a v

a v

ε

b v

ε

b v

ε

Figure 1.38. A derivation tree for the word abaabb in the Dyck grammar.

We present now in an informal manner two strategies for syntax analysis.
Given a grammar G and a word x, we want to be able to check whether x is
in L(G). This amounts to build a derivation i

∗→x from the axiom i of G to
x. There are two main options for doing this. The first one, called top-down
parsing, builds the derivation from left to right (from i to x). This corresponds
to constructing the derivation tree from the root to the leaves. The second
one, called bottom-up parsing, builds the derivation from right to left (from x
backwards to i). This corresponds to constructing the derivation tree from the
leaves to the root.

1.6.1. Top-down parsing

The idea of top-down parsing is to build the derivation tree from the root. This
is done by trying to build a derivation i

∗→x and from left to right. The current
situation in a top-down parsing is as follows (see Figure 1.39). A derivation
i

∗→ yw has already been constructed. It has produced the prefix y of x = yz.
It remains to build the derivation w

∗→ z. We may assume that w starts with
a variable v, that is w = vs. The key point for top-down parsing to work is
that the grammar fulfills the following requirement. The pair (v, a), where a is
the first letter of z, uniquely determines the production v → α to be used, i. e.
such that there exists a derivation αs

∗→ z. Grammars having this property for
all x usually are called LL(1) grammars.

We illustrate this method on two examples. The first one is the example of
arithmetic expressions, and the second one concerns regular expressions already
considered in Section 1.4. We consider the following grammar defining arith-
metic expressions with operators + and ∗ and parenthesis. The grammar allows
unambiguous parsing of these expressions by introducing a hierarchy (expres-
sions > terms > factors) reflecting the usual precedence of arithmetic operators
(∗ > +).

E → E + T | T
T → T ∗ F | F
F → (E) | c

(1.6.3)

Version June 23, 2004

54 Algorithms on Words

i

w

x : y z

Figure 1.39. Top down parsing.

where c is any simple character.
We want to write a program to evaluate such an expression using top-down

parsing. The idea is to associate to each variable of the grammar a function
which acts according to the right side of the corresponding production in the
grammar. To manage the word to be analyzed, a function Current() gives the
first letter of the suffix of the input word that remains to be analyzed. In syntax
analysis, the value of the function Current() is called the lookahead symbol.

A function Advance() allows to progress on the input word. The value of
Current() allows one to choose the production of the grammar that should be
used.

As already said, this method will work provided one may uniquely select,
with the help of the value of Current(), which production should be applied.
However, we are already faced with this problem with the productions E →
E + T and E → T , because the first letter of the input word does not allow to
know whether there is a + sign following the first term. This phenomenon is
called left recursion. To eliminate this feature, we transform the grammar and
replace the two rules above by the equivalent form E = T (+T)∗. This shows
that every expression starts with a term, and the continuation of the derivation
is postponed to the end of the analysis of the first term.

The function corresponding to the variables E is given in Algorithm Eval-

Exp. It returns the numerical value of the expression.

EvalExp()
1 v ← EvalTerm()
2 while Current() = ‘+’ do
3 Advance()
4 v ← v + EvalTerm()
5 return v

The functions EvalTerm() and EvalFact() corresponding to T and F are
similar.

Version June 23, 2004

1.6. Parsing 55

EvalTerm()
1 v ← EvalFact()
2 while Current() = ‘∗’ do
3 Advance()
4 v ← v ∗ EvalFact()
5 return v

EvalFact()
1 if Current() = ‘(’ then
2 Advance()
3 v ← EvalExp()
4 Advance()
5 else v ← Current()
6 Advance()
7 return v

The instruction at line 5 of the function EvalFact() assigns to v the nu-
merical value corresponding to the current symbol.

The evaluation of an expression, involving the parsing of its structure, is
realized by the calling EvalExp().

As a second example, we show that the syntax of regular expressions can also
be defined by a grammar. This is quite similar to the previously seen grammar
of arithmetic expressions.

E → E + T | T
T → TF | F
F → G | G∗

G → (E) | c
(1.6.4)

The symbol c stands for a letter or the symbol representing the empty word. A
top-down parser for this grammar allows one to implement the constructions of
the previous section that produce a finite automaton from a regular expression.

We have just seen top-down parsing developed on two examples. These
examples show how easy it is to write a top-down analyzer. The drawback of
this method is that it assumes that the grammar defining the language has a
rather restricted form. In particular, it should not be left recursive, although
there exist standard procedures to eliminate left recursion. However, there
exist grammars that cannot be transformed into equivalent LL(1) grammars
that allow top-down parsing. The letters L in the acronym LL(1) refer to left
to right processing (on both the text and the derivation), and the number 1
refers to the number of lookahead symbols.

The precise definition of LL(1) grammars uses two functions called First()
and Follow() that associate to each variable a set of terminal symbols. For a
variable x ∈ V , First(x) is the set of terminal symbols a ∈ A such that there
is a derivation of the form x

∗→au. The function First() is extended to words
in a natural way: First(w) is the set of terminal symbols a such that w

∗→ au.
For each variable x ∈ V , Follow(x) is the set of terminal symbols a ∈ A

such that there is a derivation u
∗→ vxaw with a “following” x.

Version June 23, 2004

56 Algorithms on Words

To compute First(), we build a graph with A∪V as vertices and edges the
pairs (x, y) ∈ V × (A∪V) such that there is a production of the form x→ uyw
with u

∗→ ε. Then a ∈ First(x) iff there is a path from x to a in this graph.
The graph corresponding to the grammar of arithmetic expressions is shown on
Figure 1.40(a).

E T F

(

c

(a) First().

E

) + $

T F

(b) Follow().

Figure 1.40. The graphs of First() and of Follow().

The algorithm used to compute First() is given more precisely below. We
begin with an algorithm (Epsilon()) which computes a boolean array epsilon
indicating whether a symbol v is nullable, i.e. whether v

∗→ ε. The array epsilon
has of size n + k, where n is the number of variables in the grammar and k is
the number of terminals.

Epsilon()
1 for each production v → ε do
2 epsilon[v] ← true
3 for i ← 0 to n− 1 do
4 for each production v → x1 · · ·xm do
5 epsilon[v]← epsilon[v] ∨ (epsilon[x1] ∧ · · · ∧ epsilon[xm])
6 return epsilon

It is easy to compute a function IsNullable(w) for w = x1 · xn as the
conjunction of the boolean values epsilon[xi]. The computation of First()
consists in several steps. We first compute the graph defined above. The graph
is represented by the set FirstChild(v) of successors of each variable v. The
function First() is computed after a depth-first exploration of the graph has
been performed.

FirstChild(v)
1 � S is the set of successors of v
2 S ← ∅
3 for each production v → x1 · · ·xm do
4 for i← 1 to m do
5 S ← S ∪ xi

6 if epsilon[xi] = false then
7 break
8 return S

Version June 23, 2004

1.6. Parsing 57

We mark vertices in the graph by a standard depth-first exploration.

ExploreFirstChild(v)
1 firstmark[v]← true
2 for each x ∈ FirstChild(v) do
3 if firstmark[x] = false then
4 ExploreFirstChild(x)

The array firstmark is used for exploration of the graph of First(). Finally,
we compute First().

First(v)
1 � mark is an array initialized to false
2 ExploreFirstChild(v)
3 S ← ∅
4 for each terminal c do
5 if firstmark[c] then
6 S ← S ∪ c
7 return S

The values of the function First() could of course be stored in an array
first. The extension of First to words is straightforward.

First(w)
1 S ← ∅
2 for i ← 1 to n do � w has length n
3 S ← S ∪ First(w[i])
4 if epsilon[w[i]] = false then
5 break
6 return S

There is an alternative way to present the computation of First(), by means
of a system of mutually recursive equations. For this, observe that for each
variable x, First(x) is the union of the sets First(y) over the the set S(x) of
successors of x in the graph of First(). Thus, the function First() is the least
solution of the system of equations

First(x) = ∪y∈S(x)First(y) (x ∈ V)

such that First(a) = a for each letter a ∈ A. For example, the equations for
the grammar 1.6.3 are

First(E) = First(E) ∪ First(T)
First(T) = First(T) ∪ First(F)
First(F) = {(, c}

To compute the function Follow(), we build a similar graph. There are
two rules to define the edges.

Version June 23, 2004

58 Algorithms on Words

1. if there is a production x → uvw with a terminal symbol a in First(w),
then (v, a) is an edge.

2. if there is a production z → uxw with w
∗→ ε, then (x, z) is an edge (notice

that we use the productions backwards).

The graph of Follow() for the grammar of arithmetic expressions is shown
on Figure 1.40(b). The computation of the function Follow is analogous. It
begins with the computation of the graph Sibling(x).

Sibling(x)
1 S ← ∅
2 for each production z → uxw do
3 S ← S ∪First(w)
4 if IsNullable(w) then
5 S ← S ∪ z
6 return S

The depth-first exploration ExploreSibling(v) is then performed as be-
fore. It produces an array followmark which is used to compute the function
Follow().

Follow(v)
1 � followmark is an array initialized to false
2 ExploreSibling(v)
3 S ← ∅
4 for each terminal c do
5 if followmark[c] then
6 S ← S ∪ c
7 return S

As for the function First(), the function Follow() can also be computed
by solving a system of equations. The precise definition of an LL(1) grammar
can now be formulated. It is a grammar such that

1. for each pair of distinct productions x → u, x → v, with the same left side
and u, v �= ε, one has

First(u) ∩First(v) = ∅.

2. For each pair of distinct productions of the form x→ u, x→ ε, one has

First(u) ∩ Follow(x) = ∅.

Observe that our grammar for arithmetic expressions violates the first con-
dition, since for instance First(E) = First(T), although we have two produc-
tions E → E + T and E → T with the same left hand side. We have already

Version June 23, 2004

1.6. Parsing 59

met this problem of left recursion, and solved it by transforming the grammar.
The solution that we described is actually equivalent to consider the grammar

E → TE′

E′ → +TE′ | ε
T → FT ′

T ′ → ∗FT ′ | ε
F → (E) | c

(1.6.5)

This grammar is equivalent to grammar 1.6.3. It meets the two conditions
for being LL(1). Indeed, the functions First() and Follow() are given in
Figure 1.41.

E T F

(

c

E′ T ′+ ∗

(a) First().

E

E′

) +$

T

T ′

F

∗

(b) Follow().

Figure 1.41. The graphs of First() and Follow() for the grammar 1.6.5.

For example, consider the productions E′ → ε and E′ → +TE′. The symbol
+ is not in Follow(E′), and thus the second condition is satisfied for this pair
of productions. The characterization allows us to fill the entries of a table called
the parsing table given in 1.1. This is an equivalent way to define the mutually
recursive functions we defined above (for the wise : this is also a way to convince
oneself that the programs are correct !)

c + ∗ () $
E E → TE′ E → TE′

E′ E′ → +TE′ E′ → ε E′ → ε
T T → FT ′ T → FT ′

T ′ T ′ → ε T ′ → ∗FT ′ T ′ → ε T ′ → ε
F F → c F → (E)

Table 1.1. The parsing table of grammar 1.6.5.

The computation of the LL(1) parsing table uses the following algorithm.

Version June 23, 2004

60 Algorithms on Words

LLTable()
1 � computes the LL(1) parsing table M
2 for each production p : v → w do
3 for each terminal c ∈ First(w) do
4 M [v][c]← p
5 if w = ε then
6 for each terminal c ∈ Follow(v) do
7 M [v][c]← p
8 return M

The above algorithm as written supposes the grammar to be LL(1). Error
messages to inform that the grammar is not LL(1) can easily be added.

1.6.2. Bottom-up parsing

We now describe bottom-up parsing which is a more complicated but more
powerful method for syntax analysis.

The idea of bottom-up parsing is to build the derivation tree from the leaves
to the root. This method is more complicated to program, but is more powerful
than top-down parsing.

i

x : text

stack

Figure 1.42. Bottom up parsing.

The current situation of bottom-up parsing is pictured in Figure 1.42. The
left part of the text which has already been analyzed has been reduced, using
the productions backwards, to a string that is kept in a stack. We will see below
that this actually corresponds to a last-in first-out strategy.

We present bottom-up parsing on the example of arithmetic expressions
already used above.

1 : E → E + T
2 : E → T
3 : T → T ∗ F
4 : T → F
5 : F → (E)
6 : F → c

(1.6.6)

Version June 23, 2004

1.6. Parsing 61

We reproduce the grammar 1.6.3 with productions numbered from 1 to 6.
Programming a bottom-up analyzer involves the management of a stack

containing the part of the text that has already been analyzed. The evolution
of the stack and of the text is pictured below (Figure 1.43) to be read from top
to bottom.

Stack Text

1 (1 + 2) ∗ 3
2 (1 + 2) ∗ 3
3 (c +2) ∗ 3
4 (F +2) ∗ 3
5 (T +2) ∗ 3
6 (E +2) ∗ 3
7 (E+ 2) ∗ 3
8 (E + c) ∗ 3
9 (E + F) ∗ 3

10 (E + T) ∗ 3
11 (E) ∗ 3
12 (E) ∗3
13 F ∗3
14 T ∗3
15 T ∗ 3
16 T ∗ c
17 T ∗ F
18 T
19 E

Figure 1.43. Evolution of the stack and of the text during the bottom-up
analysis of the expression (1 + 2) ∗ 3.

At the beginning, the stack is empty. Each step consists either in

1. transferring a new symbol from the text to the stack (this operation is
called a shift);

2. reducing the top part of the stack according to a rule of the grammar (this
is a reduction).

As an example, the second and third row in Figure 1.43 are the results of shifts,
while the three following rows are the results of reductions by rules number 6,
4, and 2 respectively.

To be able to choose between shift and reduction, one uses a finite automaton
called LR automaton. This automaton keeps track of the information concerning
the presence of the right side of a rule at the top of the stack. In our example,
the automaton is given in Figure 1.44.

Version June 23, 2004

62 Algorithms on Words

0 1
E

6
+

9
T

to 7
∗

to 3
F

to 4
(

to 5
c

2
T

7
∗

10
F

to 4
(

to 5
c

3
F

4
(

(

8
E

11
)

to 6
+

to 2
T

to 3
F

5
c

c

Figure 1.44. The LR automaton.

The input to the LR automaton is the content of the stack. According to the
state reached, and to the lookahead symbol, the decision can be made whether
to shift or to reduce, and in the latter case by which rule. The fact that this
is possible is a property of the grammar. These grammars are called SLR–
grammars.

In practice, instead of pushing the symbols on the stack, one rather pushes
the states of the LR automaton. The result on the expression (1+2)∗3 is shown
on Figure 1.45.

The decision made at each step uses two arrays S and R, represented on
Figure 1.46.

The array S is the transition table of the LR automaton. Thus S[p][c] is the
state reached from state p by reading c. The table R indicates which reduction
to perform. The value R[p][c] indicates the number of the production to be
used backwards to perform a reduction when the state p is on top of the stack

Version June 23, 2004

1.6. Parsing 63

Stack Text

0 (1 + 2) ∗ 3$
0 4 1 + 2) ∗ 3$
0 4 5 +2) ∗ 3$
0 4 3 +2) ∗ 3$
0 4 2 +2) ∗ 3$
0 4 8 +2) ∗ 3$
0 4 8 6 2) ∗ 3$
0 4 8 6 5) ∗ 3$
0 4 8 6 3) ∗ 3$
0 4 8 6 9) ∗ 3$
0 4 8) ∗ 3$
0 4 8 11 ∗3$
0 3 ∗3$
0 2 ∗3$
0 2 7 3$
0 2 7 5 $
0 2 7 10 $
0 2 $
0 1 $

Figure 1.45. The stack of states of the LR automaton during the bottom-
up analysis of the expression (1 + 2) ∗ 3.

c + ∗ () $ E T F
0 5 4 1 2 3
1 6 Acc
2 7
3
4 5 4 8 2 3
5
6 5 4 9 3
7 5 4 10
8 6 11
9 7
10
11

(a) The array S.

c + ∗ () $ E T F
0
1
2 2 2 2
3 4 4 4 4
4
5 6 6 6 6
6
7
8
9 1 1 1
10 3 3 3 3
11 5 5 5 5

(b) The array R.

Figure 1.46. The arrays S and R

and the symbol c is the lookahead symbol. Empty entries in tables S and R

Version June 23, 2004

64 Algorithms on Words

correspond to non existing transitions. A special state Accept, abbreviated as
Acc is the accepting state ending the computation with a successful analysis.
The tables S and R could be superposed because their nonempty entries are
disjoint. Actually, this is necessary for the LR-algorithm to work!

The implementation of the algorithm is given in the function LRParse(). It
uses, on the input, the two functions Current(), Advance() already described
earlier, and the symbol ‘$’ to mark the end of the text. The function Top() and
Push() are the usual functions on stacks. The function Reduce() operates in
three steps. The call Reduce(n), where n is the index of the production r → u,
consists in the following

1. it erases from the stack the number of states equal to the length of u,

2. it computes the new value p = Top() and the state q = T [p][r],

3. it pushes q on the stack.

In the implementation, the value −1 represents non existing transitions. The
function returns the boolean value true if the analysis was successful, and false
otherwise. There are three cases of failure

1. there is no legal shift nor legal reduction, this is checked at lines 5 and 9.
This happens for instance if the input is x‘)’.

2. the text has not been exhausted at the end of the analysis, for instance if
x = ‘(’; this leads to the same situation as above, because the state Accept
can only be accessed by the end marker.

3. the text has been exhausted before the end of the analysis; in this case,
the end marker leads to an empty entry in the tables.

LRParse(x)
1 while Top() �= Accept do
2 p← Top()
3 c ← Current()
4 q ← T [p][c]
5 if q �= −1 then
6 Push(q)
7 Advance()
8 else n ← R[p][c]
9 if n �= −1 then

10 Reduce(n)
11 else return false
12 return true

There remains to explain how to compute the LR automaton and the corre-
sponding tables from the grammar. We work with an end marker ‘$’. Accord-
ingly, we add to the grammar an additional rule which, in our running example,

Version June 23, 2004

1.6. Parsing 65

is E′ → E$. The LR automaton recognizes the content of the stack and its
state allows one to tell whether the right side of some production is present on
the top of the stack. The set of possible stack contents (sometimes called the
viable prefixes) is the set

X = {p1p2 · · · pn | pi ∈ P, n ≥ 0}

where P is the set of prefixes of the right sides of the productions and where, for
each i, 1 ≤ i ≤ n− 1, there is a production (xi, vi) such that pixi+1 is a prefix
of vi, and x1 is the axiom of the grammar. One may verify this description
of X by working on the bottom-up analysis backwards. It is easy to build a
non deterministic automaton recognizing the set X above. It is built from the
automata recognizing the right sides of the productions and adding ε-transitions
from each position before a variable y to the initial positions of the productions
with left side y.

The result is represented on Figure 1.47. The circled states correspond to
full right hand sides and thus to productions of the grammar.

To be complete, we should add the transitions corresponding to the rule
E′ → E$. The states 0 and 4 which correspond to the productions with left
side E. The automaton of Figure 1.44 is just the result of the determinization
algorithm applied to the non deterministic automaton obtained. This explains
how the LR automaton and thus the table S, which is just its transition table,
are built. There still remains to explain how table R is built. We have R[p][c] =
n if and only if the reduction by production n : x → v is possible in state p,
and provided the lookahead symbol c is in Follow(x). This solves the conflicts
between shift and reduce.

Suppose for example that the variable T is on top of the stack, as at lines
5, 14, 18 of Figure 1.43. At each of these lines, we can either reduce by production
2 or shift. Similarly, at line 10 we can either reduce by production 1 or 2, or
shift. We should reduce only if the lookahead symbol is in Follow(E). This
is why we choose to reduce by production 2 at lines 5 and 18. At line 14, we
choose to shift, because the symbol ∗ is not in Follow(E). At line 10, we
reduce by production 1 because the corresponding state 9 allows this reduction
and the lookahead symbol ‘)’ is in Follow(E).

A grammar such that the method used above to fill the table R works is
called SLR(1). A word on this terminology. The acronym LR refers to a left
to right analysis of the text and a rightmost derivation (corresponding to a
bottom-up analysis). A grammar is said to be LR(0) if no shift-reduce conflict
appears on the LR automaton. The 0 means that no lookahead is needed to
make the decisions.This is not the case of Grammar 1.6.6, as we have seen. The
acronym SLR means ‘simple LR’ and the integer 1 refers to the length of the
lookahead. Formally, a grammar is said to be SLR(1) if for any state p of the
LR automaton and each terminal symbol c, at most one of the two following
cases arise.

1. There is a transition from p by c in the automaton.

Version June 23, 2004

66 Algorithms on Words

0 1E 2
+

3T

to 6, 10

4 5T

to 6, 10

6 7T 8∗ 9F

to 12, 16

10 11F

to 12, 16

12 13
(

14E 15
)

to 0, 4

16 17c

Figure 1.47. A non deterministic LR automaton

2. There is a possible reduction in state p by production n : x → v such that
c ∈ Follow(x).

In practice, this condition is equivalent to the property that the sets of non
empty entries of the tables S and R are disjoint.

More complicated methods exist, either with lookahead 1 or with a larger
lookahead, although a lookahead of size larger than 1 is rarely used in practice.
With lookahead 1, the class of LR(1) grammars uses an automaton called the
LR(1) automaton to keep track of the pair (s, c) of the stack content s and the
lookahead symbol c to be expected at the next reduction. The main drawback
is that the number of states is much larger than with the LR(0) automaton.

1.7. Word enumeration

One often has to compute the number of words satisfying some property. This
can be done using finite automata or grammars as illustrated in the following
examples.

1.7.1. Two illustrative examples

The first example illustrates the case of a property defined by a finite automaton.

Version June 23, 2004

1.7. Word enumeration 67

Example 1.7.1. The number un of words of length n on the binary alphabet
{a, b} which do not contain two consecutive a’s satisfies the recurrence formula
un+1 = un + un−1. Indeed, a nonempty word of length n can either terminate
with a or b. In the first case, it has to terminate with ba unless it is the word
a. Since u0 = 1 and u1 = 2, the number un is the Fibonacci number Fn+2.

This argument can be used quite generally when the corresponding set of
words is recognized by a finite automaton. In the present case, the set S without
factor bb is recognized by the Golden mean automaton of Figure 1.11. Let Sq

be the set of words recognized by the automaton with initial state 1 and final
state q. We derive from the automaton the following set of equations

S1 = S1b + S2b + ε
S2 = S1a

Since S = S1 + S2, summing up the equations gives

S = Sb + S1a + ε = S(b + ab) + ε .

This gives the expected recurrence relation.

A second example concerns the Dyck language.

Example 1.7.2. Recall from Example 1.6.2 that the Dyck language D∗ is
related to the Lukasiewicz language L by the relation D∗b = L. Let fn be the
number of words of length n in D and let un be the number of words of length
n in D∗.

It can be verified, using the function δ of Example 1.6.2, that each word x
of length 2n + 1 with δ(x) = −1 is primitive and has exactly one conjugate in
L. Since u2n is also the number of words of length 2n + 1 in L, one gets

u2n =
1

2n + 1

(
2n + 1

n

)
=

1
n + 1

(
2n

n

)
.

Since D = aD∗b, it follows that

f2n =
1
n

(
2n− 2
n− 1

)
.

The sequence (u2n) is the sequence of Catalan numbers.
The combinatorial method used to compute the numbers fn and un can be

frequently generalized in the case of more complicated grammars (see Chap-
ter 9). In the present case, the relation is the following.

We start with the relation D = aD∗b. This implies that the generating
function D(z) =

∑
n≥0 fnzn satisfies the equation

D2 −D + z2 = 0 .

It follows that

D(z) =
1−

√
1− 4z2

2
.

An elementary application of the binomial formula gives the the expected ex-
pression for the coefficient fn.

Version June 23, 2004

68 Algorithms on Words

1.7.2. The Perron–Frobenius theorem

Several enumeration problems on words involve the spectral properties of non-
negative matrices. The Perron–Frobenius theorem describes some of these prop-
erties and constitutes a very important tool in this framework. We shall see in
the next section several applications of this theorem.

Let Q be a set of indices (we have of course in mind the set of states of
a finite automaton). For two Q-vectors v, w with real coordinates, one writes
v ≤ w if vq ≤ wq for all q ∈ Q and v < w if vq < wq for all q ∈ Q. A vector v is
said to be nonnegative (resp. positive) if v ≥ 0 (resp. v > 0). In the same way,
for two Q × Q-matrices M, N with real coefficients, one writes M ≤ N when
Mp,q ≤ Np,q for all p, q ∈ Q and M < N when Mp,q < Np,q for all p, q ∈ Q.
The Q×Q-matrix M is said to be nonnegative (resp. positive) if M ≥ 0 (resp.
M > 0). We shall use often the elementary fact that if M > 0 and v ≥ 0 with
v �= 0, then Mv > 0.

A nonnegative matrix M is said to be irreducible if for all indices p, q, there
is an integer k such that Mk

p,q > 0, where Mk denotes the k–th power of M .
It is easy to verify that M is irreducible if and only if (I + M)n > 0 where n
is the dimension of M . It is also easy to prove that M is reducible (i.e. M
is not irreducible) if there is a reordering of the indices such that M is block
triangular, i.e. of the form

M =
[

U V
0 W

]
(1.7.1)

with U, W of dimension > 0.
A nonnegative matrix M is called primitive if there is an integer k such that

Mk > 0. A primitive matrix is irreducible but the converse is not true.
A nonnegative matrix M is called aperiodic if the greatest common divisor

of the integers k such that Mk
i,i > 0 for some i is equal to 1 (including the

case where the set of integers k is empty). It can be verified that a matrix is
primitive if and only if it is aperiodic and irreducible.

The Perron–Frobenius Theorem asserts that for any nonnegative matrix M ,
the following holds

1. The matrix M has a real eigenvalue ρM such that |λ| ≤ ρM for any
eigenvalue λ of M .

2. If M ≤ N with M �= N , then ρM < ρN .
3. There corresponds to ρM a nonnegative eigenvector v and ρM is the only

eigenvalue with a nonnegative eigenvector.
4. If M is irreducible, the eigenvalue ρM is simple and there corresponds to

ρM a positive eigenvector v.
5. If M is primitive, all other eigenvalues have modulus strictly less than ρM .

Moreover, 1
ρn

M
Mn converges to a matrix of the form vw, where v (w) is a

right (left) eigenvector corresponding to ρ, i.e. Mv = ρv (wM = ρw) and
wv = 1.

We shall give a sketch of a proof of this classical theorem. Let us first show that
one may reduce to the case where M is irreducible. Indeed, if M is reducible, we

Version June 23, 2004

1.7. Word enumeration 69

may consider a triangular decomposition as in Equation 1.7.1 above. Applying
by induction the theorem to U and W , we obtain the result with ρM equal to
the maximal value of the moduli of eigenvalues of U and W . The corresponding
eigenvector is completed with zeroes (and thus condition 4 fails to hold).

We suppose from now on that M is irreducible. For a nonnegative Q-vector
v, let

rM (v) = min{(Mv)i/vi | 1 ≤ i ≤ n, vi �= 0}
Thus rM (v) is the largest real number r such that Mv ≥ rv. The function rM is
known as the Wielandt function. One has rM (λv) = rM (v) for all real number
λ ≥ 0. Moreover, rM is continuous on the set of nonnegative vectors.

The set X of nonnegative vectors v such that ‖v‖ = 1 is compact. Since a
continuous function on a compact set reaches its maximum on this set, there
is an x ∈ X such that rM (x) = ρM where ρM = max{rM (w) | w ∈ X}. Since
rM (v) = rM (λv) for λ ≥ 0, we have ρM = max{rM (w) | w ≥ 0}.

We show that Mx = ρMx. By the definition of the function rM , we have
Mx ≥ ρMx.

Set y = Mx − ρMx. Then y ≥ 0. Assume Mx �= ρMx. Then y �= 0. Since
(I + M)n > 0, this implies that the vector (I + M)ny is positive. But

(I+M)ny = (I+M)n(Mx−ρMx) = M(I+M)nx−ρM (I+M)nx = Mz−ρMz ,

with z = (I + M)nx. This shows that Mz > ρMz, which implies that rM (z) >
ρM , a contradiction with the definition of rM . This shows that ρM is an eigen-
value with a nonnegative eigenvector.

Let us show that ρM ≥ |λ| for each real or complex eigenvalue λ of M .
Indeed, let v be an eigenvector corresponding to λ. Then Mv = λv. Let |v| be
the nonnegative vector with coordinates |vi|. Then M |v| ≥ λ|v| by the triangular
inequality. By the definition of the Wielandt function, this implies rM (|v|) ≥ |λ|
and consequently ρM ≥ |λ|. This completes the proof of assertion 1.

We have already seen that there corresponds to ρM a nonnegative eigenvector
x. Let us now verify that x > 0. But this is easy since (I +M)nx = (1+ρM)nx,
which implies that (1 + ρM)nx > 0 and thus x > 0.

In order to prove assertion 2, let us consider N such that M ≤ N . Then
obviously ρM ≤ ρN . Let us show that ρM = ρN implies M = N . Let v > 0
be such that Mv = ρMv. Then Nv ≥ ρMv and we conclude as above that
Nv = ρMv. From Mv = Nv with v > 0, we conclude that M = N as asserted.

We now complete the proof of assertion 3. Let Mv = λv with v ≥ 0. Since,
as above, (I + M)nv = (1 + λ)nv, we have actually v > 0. Let D be the
diagonal matrix with coefficients v1, v2, . . . , vn and let N = D−1MD. Since
ni,j = mi,jvj/vi, we have

∑
j bi,j = λ for 1 ≤ i ≤ n. Let w be a nonnegative

eigenvector of N for the eigenvalue ρM . We normalize w in such a way that
wi ≤ 1 for all i and wt = 1 for one index t. Then, ρM =

∑
j nt,jwj ≤

∑
j nt,j =

λ. Thus λ = ρM as asserted. This completes the proof of assertion 3.
We further have to prove that ρM is simple. Let p(λ) = det(λI − M) be

the characteristic polynomial of M . We have p′(λ) =
∑

i det(λI −Mi) where

Version June 23, 2004

70 Algorithms on Words

Mi is the matrix obtained from M by replacing the i-th row and column by 0.
Indeed,

det(λI −M) = det(λe1 − v1, . . . , λen − vn)

where ei is the i-th unit vector and vi is the i-th column of M . Since the
determinant is a multilinear function, this gives the desired formula for p′(λ).
One has Mi ≤M and Mi �= M for each i, because an irreducible matrix cannot
have a null row. By assertion 2, ρMi < ρM and thus det(ρMI−Mi) > 0, whence
p′(ρM) > 0. This shows that the root ρM is simple.

Let us finally prove assertion 5. Let λ be an eigenvalue of M such that
|λ| = ρM . Let v be an eigenvector for the eigenvalue λ. Then, from Mv = ρMv,
we obtain M |v| ≥ ρM |v| whence M |v| = ρM |v| by the same argument as above.
Let k be such that Mk > 0. Then, from |Mkv| = Mk|v|, we deduce that v is
collinear to a nonnegative real vector. This shows that λ is real and thus that
λ = ρM .

Since M has a simple eigenvalue ρM strictly greater than every other eigen-
value, the sequence 1

ρn
M

Mn converges to a matrix of rank one, which is thus of
the indicated form.

This completes the proof of the Perron–Frobenius theorem. For an indication
of another proof, see Problem 1.7.1.

The practical computation of the maximal eigenvalue of a primitive matrix
M can be done using the following algorithm. It is based on the fact that,
by Assertion 5 the sequence defined by x(n+1) = 1

r(x(n))
Mx(n) converges to an

eigenvector corresponding the maximal eigenvalue, and thus r(x(n)) converges
to an eigenvector. The starting value x(0) can be an arbitrary positive vector.

DominantEigenvalue(M, x)
1 y ← x
2 do (y, x)← (Mx, y)
3 r ← min1≤i≤n yi/xi

4 y ← 1
r y

5 while y �≈ x
6 return r

where y ≈ x means that y is numerically close to x.
The vector computed by this algorithm is called an approximate eigenvector .

The definition is the following. Let M be nonnegative matrix. Let r be such
that r ≤ ρM . Then a vector v such that Mv ≥ rv is called an approximate
eigenvector relative to r.

Example 1.7.3. Let

M =
[

1 1
1 0

]
.

The matrix M is nonnegative and irreducible. The eigenvalues of M are ϕ =

(1 +
√

5)/2 and ϕ̂ = (1−
√

5)/2. The vector x =
[

ϕ
1

]
is an eigenvector relative

Version June 23, 2004

1.8. Probability distributions on words 71

to ϕ. The vector v =
[

1
1

]
is an approximate eigenvector relative to r = 1 and

Mv is an approximate eigenvector relative to r = 3/2.

1.8. Probability distributions on words

In this section, we consider the result of randomly selecting the letters composing
a word. We begin with the formal definition of a probability law ruling this
selection.

1.8.1. Information sources

Given an alphabet A, a probability distribution on the set of words on A is a
function π : A∗ → [0, 1] such that π(ε) = 1 and for each word x ∈ A∗,∑

a∈A
π(xa) = π(x).

The definition implies that
∑

x∈An π(x) = 1 for all n ≥ 0. Thus a probability
distribution on words does not make the set of all words a probability space but
it does for each set An.

Probability distributions on words are sometimes defined with a different
vocabulary. One considers a sequence of random variables (X1, X2, . . . , Xn, . . .)
with values in the set A. Such a sequence is often called a discrete time in-
formation source or also a stochastic process. For x = a1 · · · an with ai ∈ A,
set

π(x) = P(X1 = a1, . . . , Xn = an)

Then π is a probability distribution in the previous sense. Conversely, if π is
a probability distribution, this formula defines the n-th order joint distribution
of the sequence (X1, X2, . . . , Xn, . . .). We will say that P and π correspond to
each other.

Two particular cases are worth mentioning: Bernoulli distributions and
Markov chains.

First, a Bernoulli distribution corresponds to successively independent choi-
ces of the symbols in a word, with a fixed distribution on letters. Thus it is given
by a probability distribution on the set A extended by simple multiplication.
For a1, a2, . . . , an ∈ A, one has π(a1a2 · · · an) = π(a1)π(a2) · · ·π(an). In the
terminology of information sources, a Bernoulli distribution corresponds to a
sequence of independent, identically distributed (i.i.d.) random variables.

For example, if the alphabet has two letters a and b with probabilities π(a) =
p and π(b) = q = 1 − p, then π(w) = p|w|aq|w|b. The random variable X whose
value is the number of b’s in a word w of length n has the distribution

P(X = m) =
(

n

m

)
pn−mqm

Version June 23, 2004

72 Algorithms on Words

This distribution is called the binomial distribution. Its expectation and variance
are

E(X) = np, Var(X) = npq .

Second, a Markov chain corresponds to the case where the probability of
choosing a symbol depends on the previous choice, but not on earlier choices.
Thus, a Markov chain is given by an initial distribution π on A and by an
A×A stochastic matrix P of conditional probabilities P (a, b), i.e. such that for
all a ∈ A,

∑
b∈A P (a, b) = 1. Then

π(a1a2 · · · an) = π(a1)P (a1, a2) · · ·P (an−1, an).

In terms of stochastic processes, P (a, b) is the conditional probability given for
all n ≥ 2 by P (a, b) = P(Xn = b | Xn−1 = a). The powers of the matrix P allow
to compute the probability P(Xn = a). Indeed, one has P(Xn = a) = (πPn)(a).

Example 1.8.1. Consider the Markov chain over A = {a, b} given by the
matrix [

1/2 1/2
1 0

]
and the initial distribution π(a) = π(b) = 1/2. For example, one has π(aab) =
π(aaba) = 1/8. This distribution assigns probability 0 to any word containing
two consecutive b’s because P (b, b) = 0.

A distribution π on A∗ is said to be stationary if for all x ∈ A∗, one has
π(x) =

∑
a∈A π(ax). In terms of stochastic processes, this means that the joint

distribution does not depend on the choice of time origin, that is,

P(Xi = ai, m ≤ i ≤ n) = P(Xi+1 = ai, m ≤ i ≤ n)

A Bernoulli distribution is a stationary distribution. A Markov chain is station-
ary if and only if πP = π, i.e. if π is an eigenvector of the matrix P for the
eigenvalue 1. The distribution π on A is itself called stationary.

A Markov chain is irreducible if, for all a, b ∈ A, there exists an integer n ≥ 0
such that Pn(a, b) > 0. This is exactly the definition of an irreducible matrix.

Similarly, a Markov chain is aperiodic if the matrix P is aperiodic.
The fundamental theorem of Markov chains says that for any irreducible

Markov chain, there is a unique stationary distribution π, and whatever be
the initial distribution, P(Xn = a) tends to π(a). The proof uses the Perron–
Frobenius theorem.

Example 1.8.2. Consider the Markov chain overA = {a, b} given by the same
matrix

P =
[

1/2 1/2
1 0

]
and the initial distribution π(a) = 2/3, and π(b) = 1/3. This Markov chain is
irreducible, and π is its unique stationary distribution.

Version June 23, 2004

1.8. Probability distributions on words 73

A Markov chain is actually a particular case of a more general concept which
is a probability distribution on words given by a finite automaton. Let A =
(Q,A) be a finite deterministic automaton. Let π be a probability distribution
on Q. For each state q ∈ Q, consider a probability distribution on the set of
edges starting in q. This is again denoted by π. Thus∑

q∈Q

π(q) = 1,
∑
a∈A

π(q, a) = 1 for all q ∈ Q

This defines a probability distribution on the set of paths in A: given a path
γ : q0

∗→a0 q1
∗→a1 · · ·, we set π(γ) = π(q0)π(q0, a0)π(q1, a1) · · ·. This in turn

defines a probability distribution on the set of words as follows: for a word w,
π(w) is the sum of π(γ) over all paths (γ) with label w. The probability on
words obtained in this way is a transfer of a Markov chain on the edges of the
automaton.

We now give two examples of probability distributions on words. The first
one is a distribution given by a finite automaton, the second one is more general.

Example 1.8.3. Consider the automaton given in Figure 1.48. Let π(1) = 1,
π(2) = π(3) = 0, and let π(1, a, 2) = π(1, b, 2) = 1/2, π(2, a, 2) = π(2, b, 2) =
1/2, and π(3, a, 3) = 0, π(2, b, 2) = 1. The probability π induced on words by

1

2

3

a

b

a, b

a, b

Figure 1.48. A finite automaton.

this distribution on the automaton is such that π(bn) = 1/2 for any word n ≥ 1.
This distribution keeps an unbounded memory of the past, and is therefore not
a Markov distribution.

Example 1.8.4. Let t = abbabaabbaababba · · · be the Thue–Morse word which
is the fixed point of the morphism µ which maps a to ab and b to ba. Let S be
the set of factors of t. Define a function δ on words in S of length at least 4 as
follows. For w ∈ S with |w| ≥ 4, set δ(w) = v, where v is the unique word of S
such that

µ(v) =
{

w or xwx if |w| is even,
wx or xw otherwise,

for some x ∈ {a, b}.

Version June 23, 2004

74 Algorithms on Words

For w ∈ S, define π(w) recursively by π(w) = δ(π(w))/2 if |w| ≥ 4, and
by the value given in Figure 1.49 otherwise. It is easy to verify that π is an
invariant probability distribution on S. Indeed, one has π(ε) = 1 and, for each
w ∈ S,

π(wa) + π(wb) = π(w), π(aw) + π(bw) = π(w) .

1

1/2

a

1/6
a

1/6
b

1/12a

1/12b

1/3
b

1/6a

1/12a

1/12b

1/6b 1/6
a

1/2

b
1/3

a

1/6a 1/6
b

1/6b
1/12a

1/12b

1/6
b

1/6
a

1/12a

1/12b

Figure 1.49. A probability distribution on the factors of the Thue-Morse
infinite word.

The notion of a probability distribution on words leads naturally to the def-
inition of a probability measure on the set Aω of infinite words. This allows
to obtain a real probability distribution, instead of the distribution on each set
An.

Let C be the set of thin cylinders, that is C = {wAω | w ∈ A∗}, and let
Σ be the σ-algebra generated by C. Recall that the σ-algebra generated by C
is the smallest family of sets containing C and closed under complements and
countable unions. A function µ from a σ-algebra Σ to the real numbers is said
to be σ-additive if

µ
(⋃

n

En

)
=
∑

n

µ(En)

for any family En of pairwise disjoint sets from Σ. A probability measure µ
on (Aω, Σ) is a real valued function on Σ such that µ(Aω) = 1 and which is
σ-additive.

Version June 23, 2004

1.8. Probability distributions on words 75

By a classical theorem due to Kolmogorov, for each probability distribution π
there exists a unique probability measure µ on (Aω , Σ) such that µ(xAω) = π(x).

Example 1.8.5. Let us consider again the distribution π on A∗ with A =
{a, b} of Example 1.8.3. The corresponding probability measure µ on Aω is
such that µ(bω) = 1/2. Indeed, since Aω = ∪i≥0b

iaAω ∪ bω one has by the
property of σ-additivity

µ(bω) = µ(Aω)−
∑
i≥0

µ(biaAω) = 1−
∑
i≥0

π(bia) = 1− π(a) = 1/2.

1.8.2. Entropy

Let U be a finite set, and let X be a random variable with values in U . Set
p(u) = P(X = u). We define the entropy of X as

H(X) = −
∑
u∈U

p(u) log p(u)

We use the convention that 0 log 0 = 0. We also use the convention that the
logarithm is taken in base 2. In this way, when the set U has two elements 0
and 1, with p(0) = p(1) = 1/2, then H(X) = 1. More generally, if U has n
elements, then

H(X) ≤ log n (1.8.1)

and the equality H(X) = log n holds if and only if p(u) = 1/n for u ∈ U .
To prove this statement, we first establish the following assertion: Let pi, qi,

for (1 ≤ i ≤ n) be two finite probability distributions with pi, qi > 0. Then∑
pi log pi ≥

∑
pi log qi (1.8.2)

with equality if and only if pi = qi for i = 1, . . . , n.
Indeed, observe first that loge(x) ≤ x− 1 for 0 < x with equality if and only

if x = 1. Thus for 1 ≤ i ≤ n

loge(qi/pi) ≤ qi/pi − 1

and consequently ∑
pi loge(qi/pi) ≤

∑
qi − 1 = 0

This shows the inequality (1.8.2) for the logarithm in base e. Multiplying by an
appropriate constant gives the general inequality. Equality holds if and only if
pi = qi for all i.

If we choose qi = 1/n for all i, inequality (1.8.2) becomes inequality (1.8.1).
If (X, Y) is a two-dimensional random variable with values in U ×V , we set

p(u, v) = P(X = u, Y = v). Thus

H(X, Y) = −
∑

(u,v)∈U×V

p(u, v) log p(u, v)

Version June 23, 2004

76 Algorithms on Words

Finally, set p(u|v) = P(X = u|Y = v). Then we first define

H(X |v) = −
∑
u∈U

p(u|v) log p(u|v)

and for two random variables X, Y , we set

H(X |Y) =
∑
v∈V

H(X |v)p(v)

It is easy to check that

H(X |Y) = −
∑

(u,v)∈U×V

p(u, v) log p(u|v)

It can be checked that

H(X, Y) = H(Y) + H(X |Y) (1.8.3)

Indeed
H(X, Y) = −

∑
u,v

p(u, v) log p(u, v)

= −
∑
u,v

p(u, v) log(p(u|v)p(v))

= −
∑
u,v

p(u, v) log p(u|v)−
∑
u,v

p(u, v) log p(v)

= H(X |Y) + H(Y)

It can also be verified that

H(X, Y) ≤ H(X) + H(Y) (1.8.4)

and that the equality holds if and only if X and Y are independent. Indeed,

H(X) + H(Y) = −
∑

u

p(u) log p(u)−
∑

v

p(v) log p(v)

= −
∑
u,v

p(u, v) log p(u)−
∑
u,v

p(u, v) log p(v)

= −
∑
u,v

p(u, v) log(p(u)p(v))

≥ −
∑
u,v

p(u, v) log p(u, v)

where the last inequality follows from Inequality (1.8.2).
More generally, if (X1, . . . , Xn) is an information source, then Hn = H(X1,

. . . , Xn) is defined as the entropy of the random variable (X1, . . . , Xn). In terms
of a probability distribution π, we have

Hn = −
∑

x∈An

π(x) log π(x)

Version June 23, 2004

1.8. Probability distributions on words 77

Thus Hn is the entropy of the finite probability space U = An.
Assume now that the source (X1, . . . , Xn, . . .) is stationary. The entropy of

the source is defined as
H = lim

n→∞

1
n

Hn

According to the context, we write indistinctly H or H(X). We show that this
limit exists. First, observe that, by Inequality (1.8.4), for all m, n ≥ 1

H(X1, , . . . , Xm+n) ≤ H(X1, , . . . , Xm) + H(Xm+1, , . . . , Xm+n)

Since the source is stationary, H(Xm+1, , . . . , Xm+n) = H(X1, , . . . , Xn). This
implies

Hm+n ≤ Hm + Hn

Thus the sequence (Hn) is a subadditive sequence of positive numbers. This
implies that Hn/n has a limit.

We now give expressions for the entropy of particular sources. The entropy
of a Bernoulli distribution π is

H = −
∑
a∈A

π(a) log(π(a))

Indeed, Hn = nH1 since the random variables X1, . . . , Xn are independent and
identical. As a particular case, if π(a) = 1/q for all a ∈ A, then H = log q.

The entropy of an irreducible Markov chain with matrix P and stationary
distribution π is

H =
∑
a∈A

π(a)Ha

where Ha = −
∑

b∈A P (a, b) logP (a, b). Indeed, by Formula (1.8.3), one has

H(X1, . . . , Xn) = H(X1) +
n−1∑
k=1

H(Xk+1 | Xk)

By definition,

H(Xn+1 | Xn) =
∑
a∈A

H(Xn+1 | Xn = a)P(Xn = a)

and H(Xn+1 | Xn = a) = Ha. Since P(Xn = a) tends to π(a), H(Xn+1 | Xn)
tends to

∑
a∈A Haπ(a). This implies

lim
1
n

H(X1, . . . , Xn) =
∑
a∈A

Haπ(a) .

Example 1.8.6. Consider again the Markov chain given by

P =
[

1/2 1/2
1 0

]
and the initial distribution π(a) = 2/3, and π(b) = 1/3. Then Ha = 1, Hb = 0
and H = 2/3.

Version June 23, 2004

78 Algorithms on Words

1.8.3. Topological entropy

For a set S of words, one defines the topological entropy of S as the limit

h(S) = lim sup
1
n

log sn

where sn is the number of words of length n in S. This entropy is called the
topological entropy to distinguish it from the entropy defined above.

Let π be a stationary distribution. Let S be the set of words x ∈ A∗ such
that π(x) > 0. Then

H(π) ≤ h(S).

Indeed, in view of Inequality (1.8.1), one has for each n ≥ 1,

Hn ≤ log sn

where sn is the number of words of length n in S. The inequality follows
by taking the limit. Thus the topological entropy of S is an upper bound to
the value of possible entropies related to a stationary probability distribution
supported by S.

In the case of a regular set S, the entropy h(S) can be easily computed using
the Perron–Frobenius theorem. Indeed, let A be a deterministic automaton
recognizing S, and let M be the adjacency matrix of the underlying graph. By
the Perron–Frobenius theorem, there is a real positive eigenvalue λ which is the
maximum of the moduli of all eigenvalues. One has the formula

h(S) = log λ .

This formula expresses the fact that the number sn of words of length n in S
grows as λn.

Example 1.8.7. Consider again the golden mean automaton of Example 1.3.5
which we redraw for convenience. It recognizes the set S of words without two
consecutive a’s. We have

1 2b

a

b

Figure 1.50. The golden mean automaton.

M =
[

1 1
1 0

]
and λ = (1 +

√
5)/2; Thus h(S) = log(1 +

√
5)/2.

Version June 23, 2004

1.8. Probability distributions on words 79

1.8.4. Distribution of maximal entropy

As we have seen in the previous section, the topological entropy of a set S is an
upper bound to the value of possible entropies related to a stationary probability
distribution supported by S. A probability distribution π supported by S such
that H(π) = h(S) is called a distribution of maximal entropy. Intuitively, a
distribution of maximal entropy on a set of words S is such that all words of S
of given length have approximately the same probability.

We are going to show that for each rational set S, there exists a distribution
π supported by S of maximal entropy, i.e. such that H(π) = h(S).

We consider a deterministic automaton A recognizing S. Let G be the
underlying graph of A with labels removed. We assume that G is strongly
connected. Let Q be the set of vertices of G and let M be its adjacency matrix.
The fact that G is strongly connected is equivalent to the property of M to be
irreducible.

By the Perron–Frobenius Theorem, an irreducible matrix M has a real pos-
itive simple eigenvalue λ larger than or equal to the modulus of any other
eigenvalue.

The number of paths of length n in G is asymptotically equivalent to λn.
We prove that there is a labelling of G by positive real numbers which results in
a Markov chain on Q of entropy log λ. This produces a probability distribution
on the words of S exactly which has maximal entropy log λ.

Again by the Perron–Frobenius theorem, there exist a right eigenvector v
and a left eigenvector w for the eigenvalue λ such that all vi and wi are strictly
positive. We normalize v and w such that v · w = 1. Let

Pij = (vj/λvi)mi,j

and let πi = viwi. The matrix P is stochastic since∑
j

Pi,j =
∑

j

(vj/λvi)mi,j =
∑

j

vjmi,j/λvi = 1 .

The Markov chain with transition matrix P and initial distribution π is station-
ary. Indeed,∑

i

πiPi,j =
∑

i

viwi(vj/λvi)mi,j = (vj/λ)
∑

i

wimi,j = (vj/λ)λwj = πj .

The entropy of the Markov chain is log λ. Indeed, the probability of any path
γ of length n from i to j is

p(γ) =
wivj

λn
.

This proves the existence of a distribution with maximal entropy on S when
the graph of the automaton is strongly connected. In this case, the uniqueness
can also be proved. The existence in the general case can be shown to reduce
to this one.

Version June 23, 2004

80 Algorithms on Words

1 2b| 1
ϕ

a| 1
ϕ2

b|1

Figure 1.51. The golden mean automaton with transition probabilities.

Example 1.8.8. Let us consider again the golden mean automaton of Exam-
ple 1.3.5 which recognizes the set S of words without aa. We have

M =
[

1 1
1 0

]
, w =

[
ϕ 1
]
, (1 + ϕ2)v =

[
ϕ
1

]
,

P =
[1

ϕ
1

ϕ2

1 0

]
, π =

[
ϕ2

1+ϕ2
1

1+ϕ2

]
.

The values of the transition probabilities are represented on the the automaton
of Figure 1.51. The probability distribution on words induced by this Markov
chain is pictured in Figure 1.52.

1

1/ϕ2

a
1/ϕ2

b
1/ϕ4a

1/ϕ3
b

1/ϕ
b

1/ϕ2
a 1/ϕ2

b

1/ϕ3b

1/ϕ5a

1/ϕ4
b

Figure 1.52. The tree of the golden mean.

As a consequence of the above construction, the distribution of maximal
entropy associated with a rational set S is given by a finite automaton. It is
even more remarkable that it can be given by the same automaton than the
set S itself. This appears clearly in the above example where the automaton of
Figure 1.51 is the same as the golden mean automaton of Figure 1.11.

1.8.5. Ergodic sources and compressions

Consider a source X = (X1, X2, . . . , Xn, . . .) on the alphabet A associated to
a probability distribution π. Given a word w = a1 · · · an on A, denote by

Version June 23, 2004

1.8. Probability distributions on words 81

fN(w) the frequency of occurrences of the word w in the first N terms of the
sequence X .

We say that the source X is ergodic if for any word w, the sequence fN (w)
tends almost surely to π(w). An ergodic source is stationary. The converse is
not true, as shown by the following example.

Example 1.8.9. Let us consider again the distribution of Example 1.8.3. This
distribution is stationary. We have fN(b) = 1 when the source outputs only b’s,
although the probability of b is 1/2. Thus, this source is not ergodic.

Example 1.8.10. Consider the distribution of Example 1.8.4. This source is
ergodic. Indeed, the definition of π implies that the frequency fN (w) of any
factor w in the Thue–Morse word tends to π(w).

It can be proved that any Bernoulli source is ergodic. This implies in particular
the statement known as the strong law of large numbers: if the sequence X =
(X1, X2, . . . , Xn, . . .) is independent and identically distributed then, setting
Sn = X1 + · · ·+ Xn, the sequence 1

nSn converges almost surely to the common
value E(Xi).

More generally, any irreducible Markov chain equipped with its stationary
distribution as initial distribution is an ergodic source.

Ergodic sources have the important property that typical messages of the
same length have approximately the same probability, which is 2−nH where H
is the entropy of the source. Let us give a more precise formulation of this
property, known as the asymptotic equirepartition property. Let (X1, X2, . . .) be
an ergodic source with entropy H . Then for any ε > 0 there is an N such that
for all n ≥ N , the set of words of length n is the union of two sets R and T
satisfying

(i) π(R) < ε
(ii) for each w ∈ T ,

2−n(H+ε) < π(w) < 2−n(H−ε)

where π denotes the probability distribution on An defined by π(a1a2 · · · an) =
P(X1 = a1, . . . , Xn = an). Thus, the set of messages of length n is partitioned
into a set R of negligible probability and a set T of “typical” messages having
all approximately probability 2−nH .

Since π(w) ≥ 2−n(H+ε) for w ∈ T , the number of typical messages satisfies
Card(T) ≤ 2n(H+ε). This observation allows us to see that the entropy gives a
lower bound for the compression of a text. Indeed, if the messages of length n are
coded unambiguously by binary messages of average length �, then �/n ≥ H− ε
since otherwise two different messages would have the same coding. On the
other hand, any coding assigning different binary words of length n(H + ε)
to the typical messages and arbitrary values to the other messages will give a
coding of compression rate approximately equal to H .

It is interesting in practice to have compression methods which are universal
in the sense that they do not depend on a particular source. Some of these
methods however achieve asymptotically the theoretical lower bound given by

Version June 23, 2004

82 Algorithms on Words

the entropy for all ergodic sources. We sketch here the presentation of one of
these methods among many, the Ziv–Lempel encoding algorithm. This algorithm
fits well in our selection of topics because it is combinatorial in nature.

We consider for a word w the factorization

w = x1x2 · · ·xmu

where
1. for each i = 1, . . . , m, the word xi is chosen the shortest possible not the

set {x0, x1, x2, . . . , xi−1}, with the convention x0 = ε.
2. the word u is a prefix of some xi.

This factorization is called the Ziv–Lempel factorization of w. It appears again
in Chapter 8. For example, the Fibonacci word has the factorization

(a)(b)(aa)(ba)(baa)(baab)(ab)(aab)(aba) · · ·

The coding of the word w is the sequence (n1, a1), (n2, a2), . . . , (nm, am) where
n1 = 0 and x1 = a1, and for each i = 2, . . . , n, we have xi = xniai, with
ni < i and ai a letter. Writing each integer ni in binary gives a coding of length
approximately m log m bits. It can be shown that for any ergodic source, the
quantity m logm/n tends almost surely to the entropy of the source. Thus this
coding is an optimal universal coding.

Practically, the coding of a word w uses a set D called the dictionary to
maintain the set of words {x1, . . . , xi}. We use a trie (see Section 1.3.1) to
represent the set D. We also suppose that the word ends with a final symbol to
avoid coding the last factor u.

ZLencoding(w)
1 � returns the Ziv–Lempel encoding c of w
2 T ← NewTrie()
3 (c, i)← (ε, 0)
4 while i < |w| do
5 (�, p)← LongestPrefixInTrie(w, i)
6 a ← w[i + �]
7 q ← NewVertex()
8 Next(p, a)← q � updates the trie T
9 c ← c · (p, a) � appends (p, a) to c

10 i← i + � + 1
11 return c

The result is a linear time algorithm. The decoding is also simple. The
important point is that there is no need to transmit the dictionary. Indeed, one
builds it in the same way as it was built in the encoding phase. It is convenient
this time to represent the dictionary as an array of strings.

Version June 23, 2004

1.8. Probability distributions on words 83

ZLdecoding(c)
1 (w, i) ← (ε, 0)
2 D[i]← ε
3 while c �= ε do
4 (p, a) ← Current() � returns the current pair in c
5 Advance()
6 y ← D[p]
7 i ← i + 1
8 D[i]← ya � adds ya to the dictionary
9 w ← wya

10 return w

The functions Current() and Advance() manage the sequence c, consid-
ering each pair as a token. The practical details of the implementation are
delicate. In particular, it is advised not to let the size of the dictionary grow
too much. One strategy consists in limiting the size of the input, encoding it by
blocks. Another one is to reset the dictionary once it has exceeded some pre-
scribed size. In either case, the decoding algorithm must of course also follow
the same strategy.

1.8.6. Unique ergodicity

We have seen that in some cases, given a formal language S, there exists a unique
invariant measure with entropy equal the topological entropy of the set S. In
particular, it is true in the case of a regular set S recognized by an automaton
with a strongly connected graph. In this case, the measure is also ergodic since
it is the invariant measure corresponding to an irreducible Markov chain. There
are even cases in which there is a unique invariant measure supported by S.
This is the so-called property of unique ergodicity . We will see below that this
situation arises for the factors of fixed points of primitive morphisms.

Example 1.8.4 is one illustration of this case. We got the result by an
elementary computation. In the general case, one considers a morphism f :
A∗ → A∗ that admits a fixed point u ∈ Aω. Let M be the A × A–matrix
defined by

Ma,b = |f(a)|b
where |x|a is the number of occurrences of the symbol a in the word x. We
suppose the morphism f to be primitive, which by definition means that the
matrix M itself is primitive. It is easy to verify that for any n, the entry Mn

a,b

is the number of occurrences of b in the word fn(a).
Since the matrix M associated to the morphism f is primitive it is also

irreducible. By the Perron–Frobenius theorem, there is a unique real positive
eigenvalue λ and a real positive eigenvector v such that vM = λv. We normalize
v by

∑
a∈A va = 1.

Using the fact that M is primitive, again by the Perron–Frobenius theorem,
1

λn Mn
a,b tends to a matrix with rows proportional to vb when n tends to∞. This

shows that the frequency of a symbol b in u is equal to vb.

Version June 23, 2004

84 Algorithms on Words

The value of the distribution of maximal entropy on the letters is given by
π(a) = va. For words of length � larger than 1, a similar computation can be
carried out, provided one passes to the alphabet of overlapping words of length
�, as shown in the following example.

Example 1.8.11. Let us consider again the set S of factors of the Thue-Morse
infinite word t (Example 1.8.4). The matrix of the morphism µ : a → ab, b → ba
is

M =
[

1 1
1 1

]
.

The left eigenvector is v = [1/2 1/2] an the maximal eigenvalue is 2. Accordingly,
the probability of the symbols are π(a) = π(b) = 1/2. To compute by this
method the probability of the words of length 2, we replace the alphabet A by
the alphabet A2 = {x, y, z, t} with x = aa, y = ab, z = ba and t = bb. We
replace µ by the morphism µ2 obtained by coding successively the overlapping
blocks of length 2 appearing in f(A2).

It is enough to truncate at length 2 in order to get a morphism that has as
unique fixed point the infinite word t2 obtained by coding overlapping blocks of
length 2 in t. Thus

µ2 :

x �→ yz
y �→ yt
z �→ zx
t �→ zy

has the fixed point
t2 = ytzyzxytzxyz · · · .

The matrix associated with µ2 is

M (2) =

0 1 1 0
0 1 0 1
1 0 1 0
0 1 1 0

 .

The left eigenvector is v2 = [1/6 1/3 1/3 1/6], consistently with the values of π
given in Figure 1.49.

1.8.7. Practical estimate of the entropy

The entropy of a source given by an experiment and not by an abstract model
(like a Markov chain for example) can usefully be estimated. This occurs in
practice in the context of natural languages or for sources producing signals
recorded by some physical measure.

The case of natural languages is of practical interest for the purpose of text
compression. An estimate of the entropy H of a natural language like English
implies for example that an optimal compression algorithm can encode using
H bits per character in the average. The definition of a quantity which can be
called ‘entropy of English’ deserves some commentary. First we have to clarify

Version June 23, 2004

1.8. Probability distributions on words 85

the nature of the sequences considered. A reasonable simplification is to assume
that the alphabet is composed of the 26 ordinary letters (and thus without the
upper/lower case distinction) plus possibly a blank character to separate words.
The second convention is of different nature. If one wants to consider a natural
language as an information source, an assumption has to be made about the
nature of the source. The good approximation obtained by finite automata
for the description of natural languages makes it reasonable to assume that a
natural language like English can be considered as an irreducible Markov chain
and thus as an ergodic source. Thus it makes sense to estimate the probabilities
by the frequencies observed on a text or a corpus of texts and to use these
approximations to estimate the entropy H by H ≈ Hn/n where

Hn = −
∑

k

pk log pk

and where the pk are the probabilities of the n-grams. One has actually H ≤
Hn/n. It is of interest to remark that the approximation thus obtained is much
better than by using H ≈ hn/n with

hn = log sn

where sn is the number of possible n-grams in correct English sentences. For
small n the approximation is bad because some n-grams are far more frequent
than others, and for large n the computation is not feasible because the number
of correct sentences is too large.

One has H ≤ log2(26) ≈ 4.7 when considering only 26 symbols and H ≤
log2(27) ≈ 4.76 on 27 symbols. Further values are given in the table below
leading to an upper bound H ≤ 3. An algorithm to compute the frequencies

number of symbols 26 27
H1 4.14 4.03

H2/2 3.56 3.32
H3/3 3.30 3.10

Table 1.2. Entropies of n-grams on an alphabet of 26 or 27 letters

of n-grams is easy to implement. It uses a buffer s which is initialized to the
initial n symbols of the text and which is updated by shifting the symbols one
place to the left and adding the current symbol of the text at the last place.
This is done by the function Current(). The algorithm maintains a set S of
n-grams together with a map Freq() containing the frequencies of each n-gram.
A practical implementation should use a representation of sets like a hashtable,
allowing to store the set in a space proportional to the size of S (and not to the
number of all possible n-grams which grows too fast).

Version June 23, 2004

86 Algorithms on Words

Entropy(n)
1 � returns the n-th order entropy Hn

2 S ← ∅ � S is the set of n-grams in the text
3 do s ← Current() � s is the current n-gram of the text
4 if s /∈ S then
5 S ← S ∪ s
6 Freq(s) ← 1
7 else Freq(s) ← Freq(s) + 1
8 while there are more symbols
9 for s ∈ S do

10 Prob(s) ← Freq(s)/CardS

11 return
1
n

∑
s∈S

Prob(s) logProb(s)

Another approach leads to a better estimate of H . It is based on an experi-
ment which uses a human being as an oracle. The idea is to scan a text through
a window of n−1 consecutive characters and to ask a subject to guess the sym-
bol following the window contents, repeating the question until the answer is
correct. The average number of probes is an estimate of the conditional entropy
H(Xn|X1, . . . , Xn−1). The values obtained are shown in Table 1.3.

n 1 2 3 4 5 6 7
upper bound 4.0 3.4 3.0 2.6 2.1 1.9 1.3
lower bound 3.2 2.5 2.1 1.8 1.2 1.1 0.6

Table 1.3. Experimental bounds for the entropy of English

1.9. Statistics on words

In this section, we consider the problem of computing the probability of appear-
ance of some properties on words defined using the concepts introduced at the
beginning of the chapter. In particular, we shall study the average number of
factors or subwords of a given type in a regular set.

1.9.1. Occurrences of factors

For any integer valued random variable X with probability distribution pn =
P(X = n), one introduces the generating series f(z) =

∑
n≥0 pnzn. If we denote

qn =
∑

m≥n pm, then the generating series g(z) =
∑

n≥0 qnzn is given by the
formula

g(z) =
1− f(z)

1− z
.

This implies in particular that the expectation E(X) =
∑

n≥0 npn of X has
also the expression E(X) = g(1). These general observations about random

Version June 23, 2004

1.9. Statistics on words 87

variables have an important interpretation when the random variable X is the
length of a prefix in a given prefix code.

Let π be a probability distribution on A∗. For a prefix code C ⊂ A∗, the
value π(C) =

∑
x∈C π(x) can be interpreted as the probability that a long enough

word has a prefix in C. Accordingly, we have π(C) ≤ 1.
Let C be a prefix code such that π(C) = 1.The average length of the words

of C is
λ(C) =

∑
x∈C

|x|π(x).

One has the useful identity
λ(C) = π(P)

where P = A∗−CA∗ is the set of words which do not have a prefix in C. Indeed,
let pn = π(C ∩ An) and qn =

∑
m≥n pm. Then, λ(C) =

∑
n≥1 npn =

∑
n≥1 qn.

Since π(P ∩ An) = qn, this proves the claim.
The generating series C(z) =

∑
n≥0 pnzn is related to P (z) =

∑
n≥0 qnzn

by
C(z)− 1 = P (z)(1− z).

When π is a Bernoulli distribution, one may use unambiguous expressions
on sets to compute probability of events definable in this way. Indeed, the
unambiguous operations translate to operations on probability generating series.
If W is set of words, we set

W (z) =
∑
n≥0

π(W ∩An)zn.

Then, if U + V , UV and U∗ are unambiguous expressions, we have

(U + V)(z) = U(z) + V (z), (UV)(z) = U(z)V (z), (U∗)(z) =
1

1− U(z)
.

We give below two examples of this method.
Consider first the problem of finding the expected waiting time T (w) before

seeing a word w. We are going to show that it is given by the formula

T (w) =
π(Q)
π(w)

(1.9.1)

where Q = {q ∈ A∗ | wq ∈ A∗w and |q| < |w|}. Thus Q is the set of (possibly
empty) words q such that w = sq with s a nonempty suffix of w.

Let indeed C be the prefix code formed of words that end with w for the first
time. Let V be the set of prefixes of C, which is also the set of words which do
not contain w as a factor. We can write

Vw = CR. (1.9.2)

Moreover both sides of this equality are unambiguous. Thus, since π(C) = 1,
π(V)π(w) = π(Q), whence Formula (1.9.2). Formula (1.9.2) can also be used

Version June 23, 2004

88 Algorithms on Words

to obtain an explicit expression for the generating series C(z). Indeed, using
(1.9.2), one obtains V (z)π(w)zm = C(z)Q(z), where m is the length of w.
Replacing V (z) by (1− C(z))/(1− z), one obtains

C(z) =
π(w)zm

π(w)zm + Q(z)(1− z)
(1.9.3)

The polynomial Q(z) is called the autocorrelation polynomial of w. Its explicit
expression is

Q(z) = 1 +
∑

p∈P (w)

π(wn−p · · ·wn−1)zp

where P (w) is the set of periods of the word w = w0 · · ·wn−1, and wi denotes
the i-th letter of w. A slightly more general definition is given in Chapter 6.

Example 1.9.1. In the particular case of w = am and A = {a, b} with π(a) =
p, π(b) = q = 1− p, the autocorrelation polynomial of w is

R(z) =
1− pmzm

1− pz
.

Consequently, π(R) = (1− pm)/q and formulas (1.9.1) and (1.9.3) become

T (am) =
1− pm

qpm
, C(z) =

(1− pz)pnzm

1− z + qpmzm+1
,

so that for p = q = 1/2,

T (w) = 2m+1 − 2, C(z) =
(1 − z/2)zm/2m

1− z + zm+1/2m+1

Formula (1.9.1) can be considered as a paradox. Indeed, it asserts that with
π(a) = π(b) = 1/2, the waiting time for the word w = aa is 6 while it is 4 for
w = ab.

Formula (1.9.1) is related with the automaton recognizing the words end-
ing with w and consequently with Algorithm SearchFactor. We illustrate
this on an example. Let w = abaab. The minimal automaton recognizing the
words on {a, b} ending with w for the first time is represented in Figure 1.53.
The transitions of the automaton can actually be computed using the array b
introduced in algorithm Border.

0 1 2 3 4 5

b : -1 0 0 1 1 2

For example, the transition from state 3 by letter b is to state 2 because b[3] = 1
and w[1] = b. The set R can also be read on the array b. Actually, we have
R = {ε, aab} since the the border of w has length 2 (b[5] = 2) and b[2] = 0.

Version June 23, 2004

1.9. Statistics on words 89

0 1 2 3 4 5

b

a

a

b
a

b

a

b

b

a

a

b

Figure 1.53. The minimal automaton recognizing the words ending with
abaab.

As a second example, we now consider the problem of finding the probability
fn that the number of a equals the number of b for the first time in a word of
length n on {a, b} starting with a, with π(a) = p, π(b) = q = 1− p. This is the
classical problem of return to 0 in a random walk on the line.

The set of words starting with a and having as many a as b for the first time
is the Dyck set D already studied in Section 1.6. We have already seen that
D = aD∗b. Thus, the generating series D(z) =

∑
n≥0 f2nz2n satisfies

D2 −D + pqz2 = 0.

D(z) =
1−
√

1− 4pqz2

2
.

This formula shows in particular that for p = q, π(D) = 1/2 since π(D) = D(1).
But for p �= q, π(D) < 1/2. An elementary application of the binomial formula
gives the coefficient fn of D(z) =

∑
n≥0 fnzn

f2n =
1
n

(
2n− 2
n− 1

)
pnqn .

1.9.2. Extremal problems

We consider here the problem of computing the average value of several maxima
concerning words. We assume here that the source is Bernoulli, i.e. that the
successive letters are drawn independently with a constant probability distribu-
tion π.

We begin with the case of longest run of successive occurrences of some letter
a with π(a) = p. The probability of seeing a run of k consecutive a’s beginning
at some given position in a word of length n is pk. So the average number
of runs of length k is approximately npk. Let Kn be the average value of the
maximal length of a run of a’s in the words of length n.

Intuitively, since the longest run is likely to be unique, we have npKn = 1.
This equation has the solution Kn = log1/p n. One can elaborate the above

Version June 23, 2004

90 Algorithms on Words

intuitive reasoning to prove that

lim
n→∞

Kn

log1/p n
= 1 . (1.9.4)

This formula shows that, in the average, the maximal length of a run of a’s is
logarithmic in the length of the word.

A simple argument shows that the same result holds when runs are extended
to be words over some fixed subset B of the alphabetA. In this case, p is replaced
by the sum of the probabilities of the letters in B.

Another application of the above result is the computation of the average
length of the longest common factor starting at the same position in two words
of the same length. Such a factor x induces in two words w and w′ the fac-
torizations w = uxv and w′ = yuxv′ with |u| = |u′|. A factor is just a run of
symbols (a, a) in the word (w, w′) written over the alphabet of pairs of letters.
The value of p for Equation 1.9.4 is

p =
∑
a∈A

π(a)2 . (1.9.5)

The average length of the longest repeated factor in a word is also logarithmic
in the length of the word. It is easily seen that over a q letter alphabet, the
length k of the longest repeated factor is at least �logq n� and thus the average
length of the longest repeated factor is at least logq n. It can be proved that it
is also O(log n).

The longest common factor of two words can be computed in linear time. An
algorithm (Lengths-of-factors) is given in Chapter 2. The average length of
the longest common factor of two words of the same length is also logarithmic
in the length. More precisely, let Cn denote the average length of the longest
common factor of two words of the same length n. Then

lim
n→∞

Cn

log1/p n
= 2 .

The intuitive argument used to derive Formula 1.9.4 can be adapted to this case
to explain the value of the limit. Indeed, the the average number of common
factors of length k in two words of length n is approximately n2pk. Solving the
equation n2pk = 1 gives k = log1/p n2 = 2 log1/p n.

The case of subwords contrasts with the case of factors. We have already
given in Section 1.2.4 an algorithm (LcsLengthArray(x, y)) which allows
to compute the length of the longest common subwords of two words. The
essential result concerning subwords is that the average length c(k, n) of the
longest common subwords of two words of length n on k symbols is O(n). More
precisely, there is a constant ck such that

lim
k→∞

c(k, n)
n

= ck.

Version June 23, 2004

Problems 91

This result is easy to prove, even if the proof does not give a formula for ck.
Indeed, we have c(k, n + m) ≥ c(k, n) + c(k, m) since this inequality holds for
the length of the longest common subwords of any pair of words. This implies
that the sequence c(k, n)/n converges (we have already met this argument in
Section 1.8.2). There is no known formula for ck but only estimates given in
Table 1.4.

k lower bound upper bound
2 0.76 0.86
3 0.61 0.77
10 0.39 0.54
15 0.32 0.46

Table 1.4. Some upper and lower bounds for ck

Problems

Section 1.1

1.1.1 Show that the number of words of length n on q letters with a given
subword of length k is

n−k∑
i=0

(
n− i− 1

k − 1

)
qi(q − 1)n−i−k.

In particular, this number does not depend on the particular word cho-
sen as a subword. (Hint Consider the automaton recognizing the set of
words having a given word as subword.)

1.1.2 Let c : (A ∪ ε) × (A ∪ ε) → R ∪ ∞ be a function assigning a cost to
each pair of elements equal to a symbol or to the empty word. Assume
that
(i) the restriction of c to A×A is a distance.
(ii) c(ε, a) = c(a, ε) > 0 for all a ∈ A.
Each transformation on a word is assigned a cost using the cost c as
follows. A substitution of a symbol a by a symbol b adds a cost c(a, b).
An insertion of a symbol a counts for c(ε, a) and a deletion for c(a, ε).
Let d(u, v) be the distance defined as the minimal cost of a sequence of
transformations that changes u into v.
Show that d is a distance on A∗. Show that d coincides with
1. the Hamming distance if c(a, b) = 1 for a �= b and c(a, ε) = c(ε, a) =

∞.
2. the subword distance if c(a, b) = ∞ for a, b ∈ A and a �= b, and

c(aε) = c(ε, a) = 1 for all a ∈ A.

Version June 23, 2004

92 Algorithms on Words

Section 1.2

1.2.1 The sharp border array of a word x of length m is the array sb of size
m + 1 such that sb[m] = b[m] and for 1 ≤ j ≤ m − 1, sb[j] is the
largest integer i such that x[0..i − 1] = x[j − i..j − 1] and x[j] �= x[i].
By convention, sb[j] = −1 if no such integer i exists. For example, if
x = abaababa, the array sb is

0 1 2 3 4 5 6 7 8

b : -1 0 -1 1 0 -1 3 -1 3

Show that the following variant of Algorithm Border computes the
array sb in linear time.

BorderSharp(x)
1 � x has length m, sb has size m + 1
2 i ← 0
3 sb[0]← −1
4 for j ← 1 to m− 1 do
5 � Here x[0..i− 1] = border(x[0..j − 1])
6 if x[j] = x[i] then
7 sb[j]← sb[i]
8 else sb[j]← i
9 do i ← sb[i]

10 while i ≥ 0 and x[j] �= x[i]
11 i← b[i]
12 i ← i + 1
13 sb[m]← i
14 return b

Show that, in Algorithm SearchFactor, one may use the table sb
of sharp borders instead of the table b of borders, resulting in a faster
algorithm.

Section 1.3

1.3.1 This exercise shows how to answer the following questions: what is the
minimal Hamming distance between a word w and the words of a regular
set X and how to compute a word of X which realizes the minimum?
These questions are solved by the following algorithm known as Viterbi
algorithm.
Let A = (Q, i, T) be a finite automaton over the alphabet A and, for
each p ∈ Q, let Xp be the set recognized by the automaton (Q, i, p).
Let w = a0 · · · an−1 be a word of length n. For a symbol a ∈ A and
0 ≤ i < n we denote c(a, i) = 0 if a = ai and c(a, i) = 1 otherwise. We
compute a function d : Q × N → N defined by d(p, i) is the minimal
Hamming distance of the words in Xp ∩Ai to the word a0 · · · ai−1.

Version June 23, 2004

Problems 93

Viterbi(w)
1 for i ← 0 to n− 1 do
2 for each edge (p, a, q) do
3 if d(p, i− 1) + c(a, i) < d(q, i) then
4 d(q, i)← d(p, i− 1) + c(a, i)
5 return mint∈T d(t, n− 1)

Show how to modify this algorithm to return a word in X that is closest
to w.

1.3.2 Prove that the minimal automaton recognizing the set S(w) of suffixes
of a word of length n has at most 2n states. Hint: show that for any
p, q, the sets p−1S(w) and q−1S(w) are either disjoint or comparable.
Conclude that the states of the automaton can be identified with the
internal nodes of a tree with n leaves corresponding to the elements of
S.

Section 1.5

1.5.1 Let A = (Q, I, T) be a transducer over A, B with n states. Let M be
the maximal length of output labels in the edges of A. Suppose that A
is equivalent to a sequential transducer B, obtained by the determiniza-
tion algorithm. Let (u, q) ∈ B∗×Q be a pair appearing in a state of B.
Show that |u| ≤ 2n2M .

Section 1.7

1.7.1 A rational function is a function of the form f(z) =
∑

n≥0 anzn such
that f(z)q(z) = p(z) for two polynomials p, q with q(0) = 1. It is said
to be nonnegative if an ≥ 0 for all n ≥ 0. We shall use the fact that if
f(z) is a nonnegative rational function such that f �= 0 and f(0) = 0,
then the radius of convergence σ of f∗(z) = 1/(1−f(z)) is a simple pole
of f∗ such that σ ≤ |π| for any other pole π (see the Notes Section for
a reference). Moreover σ is the unique real number such that f(σ) = 1.
Let M be an n× n irreducible matrix and let

M =
[

u v
w N

]
with N of dimension n − 1. Let f(z) = uz + v(I − zN)−1wz2. Show
that

1/(1− f(z)) = (I −Mz)−1
1,1.

Use the result quoted above on nonnegative rational functions to prove
that

1. the spectral radius ρM of M is 1/σ where σ is such that f(σ) = 1.

Version June 23, 2004

94 Algorithms on Words

2. each row of the matrix [(σ− z)(I −Mz)−1]z=σ is a positive eigen-
vector of M corresponding to 1/σ.

(hint: use the relation I + (I −Mz)−1M = (I −Mz)−1).

Section 1.8

1.8.1 Consider a primitive morphism f : A∗ → A∗ with a fixpoint u ∈ Aω.
We indicate here a method to compute the frequency of the factors of
length � in u by a faster method than the one used in Section 1.8.6. Let
F	 be the set of factors of length � of u. Let M () be the F	×F	–matrix
defined by M

()
x,y = |f(x)|y . Let p be an integer such that fp(a) > �−2 for

all a ∈ A. Let U be the F2 ×F	–matrix defined as follows. For a, b ∈ A
such that ab ∈ F2 and y ∈ F	, Uab,y is the number of occurrences of y
in fp(ab) that begin in the prefix fp(a). Show that

UM () = M (2)U,

that M (2) and M () have the same dominant eigenvalue ρ and that if
v2 is an eigenvector of M (2) corresponding to ρ, then v	 = v2U is an
eigenvector of M () corresponding to ρ.

1.8.2 Let µ : a → ab, b → ba be the morphism with fixpoint the Thue-
Morse word. Show that for � = 5, p = 3, the matrix U of the previous
problem (with the 12 factors of length 5 of the Thue-Morse word listed
in alphabetic order) is

U =

1 0 1 1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 1 1 0 1 1 0
1 1 0 1 0 1 1 0 1 1 0 1
1 0 1 1 0 1 1 0 1 1 0 1

and that the vector v2U with v2 =

[
1 2 2 1

]
is the vector with all

components equal to 4. Deduce that the 12 factors of length 5 of the
Thue-Morse word have the same frequency (see Example 1.8.4).

1.8.3 Consider the following transformation T on words: a word w is re-
placed by the word T (w) of the same length obtained as follows: list
the cyclic shitfs of w in alphabetic order as the rows w1, w2, . . . , wn of
an array. Then T (w) is the last column of the array. For example, let
w = abracadabra. The list of conjugates of w sorted in alphabetical

Version June 23, 2004

Notes 95

order is represented below.

1 2 3 4 5 6 7 8 9 10 11
1 a a b r a c a d a b r
2 a b r a a b r a c a d
3 a b r a c a d a b r a
4 a c a d a b r a a b r
5 a d a b r a a b r a c
6 b r a a b r a c a d a
7 b r a c a d a b r a a
8 c a d a b r a a b r a
9 d a b r a a b r a c a
10 r a a b r a c a d a b
11 r a c a d a b r a a b

The word T (w) is the last column of the array. Thus in our example
T (w) = rdarcaaaabb. Show that w �→ T (w) is a bijection.

1.8.4 Let uS(z) be the generating series of the number of words of length n
in S, that is

uS(z) =
∑
w∈S

z|w| .

Show that
uS(z) = S(qz),

where S(z) is the generating series for the uniform Bernoulli distribution
on q symbols.

1.8.5 Show that the generating series of the set F of words over {a, b} without
factor w = an is

uF(z) =
1− zn

1− 2z + zn+1
.

Notes

Several textbooks treat the subject of algorithms on words in much more detail
than we did here. In the first place, several general textbooks on algorithms like
Aho, Hopcroft, and Ullman (1975) or Sedgewick (1983) include automata and
pattern matching algorithms among many other topics. In the second place,
several books like Crochemore and Rytter (1994), Gusfield (1997) or Baeza-
Yates and Ribero-Neto (1999) are entirely dedicated to word algorithms.

Words. The distance introduced in Problem 1.1.2 is known as the edit distance
or also the alignment distance. It has been introduced first by Levenshtein
(1965) and it is used in many ways in bioinformatics (see Sankoff and Kruskal
1983).

The algorithm Viterbi in Problem 1.3.1 is used in the context of convolu-
tional error-correcting codes (see McEliece 2002). It appears again in Chapter 4.

Version June 23, 2004

96 Algorithms on Words

Elementary algorithms. The algorithm Border computing the border of a
word in linear time and the linear time algorithm SearchFactor that checks
whether a word is a factor of another (Algorithm SearchFactor) are originally
due to Knuth, Morris, and Pratt (1977). This algorithm is the first one of a
large family of algorithms constituting the field of pattern matching algorithms.
See Crochemore, Hancart, and Lecroq (2001) for a general presentation. The
algorithm BorderSharp of Problem 1.2.1 is from Knuth et al. (1977).

The quadratic algorithm to compute a longest common subword (Algo-
rithm Lcs) is usually credited to Hirschberg (1977), although many authors
discovered it independently (see Sankoff and Kruskal 1983). It is not known
whether there exists or not a linear algorithm. An algorithm working in time
O(p log n) on two words of length n with p pairs of matching positions is due to
Hunt and Szymanski (1977).

The linear algorithm CircularMin thato computes the least conjugate of a
word is due to Booth (1980). Several refinements where proposed, see Shiloach
(1981), Duval (1983), Apostolico and Crochemore (1991). The algorithm giving
the factorization in Lyndon words (Algorithm LyndonFactorization) is due
to Fredricksen and Maiorana (1978), see also Duval (1983).

Tries and automata. Tries are treated in many textbooks on algorithms (e.g.
Aho, Hopcroft, and Ullman 1983). Our treatment of the implementation of
automata and pattern matching is also similar to that of most textbooks (see
for example Aho et al. 1975).

The exact complexity of the minimisation problem for deterministic finite
automata is not yet known. Moore’s algorithm appears in a historical pa-
per (Moore 1956). Hopcroft’s minimization algorithm appears first in Hopcroft
(1971). The linear minimization algorithm for DAWG’s is from Revuz (1992).
It can be considered as an extension of the tree isomorphism algorithm in Aho
et al. (1975).

Gilbreath’s card trick (Example 1.3.9) is described as follows in Chapter 9
of Gardner (1966): Consider a deck of 2n cards ordered in such a way that red
and black cards alternate. Cut the deck into two parts and give it a riffle shuffle.
Cut it once more, this time not completely arbitrarily but at a place where two
cards of the same colour meet. Square up the deck.

Then for every i = 1, . . . , n the pair consisting of the (2i − 1)-th and the
2i-th card is of the form (red, black) or (black, red). The property of binary
sequences underlying the card trick is slightly less general than Formula 1.3.1.

The source of Exercise 1.3.2 is Blumer, Blumer, Haussler, Ehrenfeucht, Chen,
and Seiferas (1985). The automaton can be used in several contexts, including
as a transducer called the suffix transducer (see Chapter 2).

Pattern Matching. The equivalence of regular expressions and finite automata
is a classical result known as Kleene’s theorem. We present here only one di-
rection of this result, namely the construction of finite automata from regular
expressions. This transformation is used in many situations. Actually, regular
expressions are often used as a specification of some pattern and the equivalent

Version June 23, 2004

Notes 97

finite automaton can be considered as an implementation of this specification.
The converse transformation gives rise to algorithms that are less frequently
used. One case of use is for the computation of generating series (see Section
1.9).

There is basically only one method to transform a regular expression into
a finite automaton which operates by induction on the structure of the regular
expression. However, several variants exist. The one presented here is due to
Thompson Thompson 1968. It uses ε-transitions and produces a normalized
automaton that has a unique initial state with no edge entering it and a unique
terminal state with no edge going out of it. Another variant produces an au-
tomaton without ε-transitions (see Eilenberg 1974 for example). The resulting
automaton has in general fewer states than the one obtained by Thomson’s al-
gorithm. Yet another variant produces directly a deterministic automaton (see
Berry and Sethi 1986 or Aho, Sethi, and Ullman 1986).

Transducers. The notion of a rational relation and of a transducer dates back
to the origins of automata theory although there are few books treating exten-
sively this aspect of the theory. Eilenberg’s book (Eilenberg 1974) represents a
significant date in the clarification of the concepts and notation. Later books
treating transducers include Berstel (1979) and Sakarovich (2004). A word on
the terminology concerning what we call here sequential transducers. The term
“sequential machine” (also called “Mealy machine”) is in general used only in
the case of sequential letter-to-letter transducers. The version using (possibly
empty) word outputs is often called a “generalized sequential machine” (or gsm).
A further generalization, used by Schützenberger (1977), introduces a class of
tranducers called subsequential which allow the additional use of a terminal
suffix. We simply call here sequential these subsequential transducers.

Any sequential function is a rational function but the converse is of course
not true. Several characterizations of rational functions, in particular special
classes of transducers realize rational fuctions. Among these, so-called bima-
chines used in Chapter 3. The determinization algorithm has been first studied
in Schützenberger (1977) and Choffrut (1979). In particular, the characteriza-
tion of sequential transducers by the twinning property is in Choffrut (1977,
1979). See also Reutenauer (1990).

The source of Problem 1.5.1 is Béal and Carton (2002). It can be checked in
polynomial time whether a transducer is equivalent to a sequential one (see We-
ber and Klemm 1995 or Béal and Carton 2002). The normalization algorithm
has been first considered by Choffrut (1979) and subsequently by Mohri (1994)
and by Béal and Carton (2001).

A quite different algorithm relying on shortest paths algorithms has been
proposed by Breslauer (1998). For recent developments, see the survey on min-
imization algorithms of transducers in Choffrut (2003).

Parsing. The section on parsing follows essentially Aho et al. (1986). The Dyck
language is named after the group theorist Walther von Dyck (Dyck 1882).
Context-free grammars are an important model for modelling hierarchically

Version June 23, 2004

98 Algorithms on Words

structured data. They appear in various equivalent forms, such recursive tran-
sition networks (RTN) used in natural language processing (see Chapter 3).
Parsers are ubiquous is data processing systems, including natural language
processing. The abstract model of a parser is a pushdown automaton which is
a particular case of the general model of Turing machine.

It is a remarkable fact that a large class of grammars can be parsed in one
pass, from left to right, and in linear time. This was first established by Knuth
(1965) who introduced in particular the LR analysis described here.

Word enumeration. A detailed proof of the Perron–Frobenius theorem can be
found in Gantmacher (1959). The proof given here is due to Wielandt, whence
the name of “Wielandt function”, also called Collatz–Wielandt function (see Al-
louche and Shallit (2003)).

Problem 1.7.1 presents the connection between the theorem of Perron–Fro-
benius and related statements concerning the poles of nonnegative rational func-
tions. For a proof of the statement appearing at the beginning of the problem,
see Eilenberg (1974) or Berstel and Reutenauer (1984). This approach gives a
proof of the Perron–Frobenius theorem that differs from the one given in Sec-
tion 1.7.2. See McCluer (2000) for a survey on several possible proofs of this
theorem.

Probability. Our presentation of probability distributions on words is inspired
by Welsh (1988), Szpankowski (2001) and Shields (1969). A proof of the funda-
mental theorem of Markov chains can be found in most textbooks on probability
theory (see e. g. Feller (1968), chap. XV). The theorem of Kolmogorov on prob-
ability measures on infinite words can be found in Feller 1971, chap. IV. The
notion of entropy is due to Shannon (1948). Many textbooks contain a presenta-
tion of the main properties of entropy (see e. g. Ash 1990). The computation of
the distribution of maximal entropy (Section 1.8.4) is originally due to Shannon.
Our presentation follows Lind and Marcus 1996 (chap. 13).

The computation of the frequencies of factors in fixpoints of substitutions is
reproduced from Queffélec (1987). The method described in Problem 1.8.1 is
also from Queffélec (1987).

The asymptotic equirepartition property of ergodic sources is known as the
Shannon–McMillan theorem. See Shields (1969) for a proof. The Ziv–Lempel
coding originally appears in Ziv and Lempel (1977). A complete presentation
of this popular coding can be found in Bell, Cleary, and Witten (1990) with
several variants.

The entropy of english has been studied by Shannon. In particular, tables
1.2 and 1.3 are from Shannon (1951). They are reproduced in several manuals
on text compression (see e.g. Welsh 1988 or Bell et al. 1990).

Statistics on words. Events defined by prefix codes (Section 1.9.1) are presented
in Feller (1968) under the name of recurrent events. Formula (1.9.1) appears
already in the paper Schützenberger (1964). The name of autocorrelation poly-
nomial appears in Guibas and Odlyzko (1981b). Formula (1.9.4) is due to Erdős

Version June 23, 2004

Notes 99

and Rényi (1970) . For a proof, see Waterman (1995) (chap. 11). Formula (1.9.5)
is due to Arratia, Morris, and Waterman (1988) (see Waterman 1995, chap. 11).
Table 1.4 is from Sankoff and Kruskal (1983).

The transformation described in Problem 1.8.3 is known as the Burrows–
Wheeler transformation (see Manzini (2001)). It is the basis of a text com-
pression method. Indeed, the idea is that adjacent rows of the table of cyclic
shifts will often begin by a long common prefix and T (w) will therefore have
long runs of identical symbols. For example, in a text in english, most rows
beginning with ‘nd’ will end with ‘a’.

Version June 23, 2004

100 Algorithms on Words

Version June 23, 2004

101

CHAPTER 2

Structures for Indexes

2.0 Introduction . 101
2.1 Suffix trie . 102

2.1.1 Suffix links . 105
2.2 Suffix tree . 108

2.2.1 Construction . 110
2.2.2 Complexity . 113

2.3 Contexts of factors . 116
2.3.1 Suffix function . 118
2.3.2 Evolution of the congruence 119

2.4 Suffix automaton . 121
2.4.1 Size of suffix automata 121
2.4.2 Suffix links and suffix paths 124
2.4.3 On-line construction . 126
2.4.4 Complexity . 130

2.5 Compact suffix automaton . 132
2.6 Indexes . 135

2.6.1 Implementation of indexes 136
2.6.2 Basic operations . 137
2.6.3 Transducer of positions 141

2.7 Finding regularities . 143
2.7.1 Repetitions . 143
2.7.2 Forbidden words . 144

2.8 Pattern matching machine . 147
2.8.1 Lengths of common factors 147
2.8.2 Optimization of suffix links 149
2.8.3 Search for conjugates . 150
Problems . 152
Notes . 153

2.0. Introduction

The chapter presents data structures used to memorize the suffixes of a text and
some of their applications. These structures are designed to give a fast access

Version June 23, 2004

102 Structures for Indexes

to all factors of the text, and this is the reason why they have a fairly large
number of applications in text processing.

Two types of objects are considered in this chapter, digital trees and au-
tomata, together with their compact versions. Trees put together common
prefixes of the words in the set. Automata gather in addition their common
suffixes. The structures are presented in order of decreasing size.

The representation of all the suffixes of a word by an ordinary digital tree
called a suffix trie (Section 2.1) has the advantage of being simple but can lead
to a memory size that is quadratic in the length of the considered word. The
compact tree of suffixes (Section 2.2) is ensured to hold in linear memory space.

The minimization (related to automata) of the suffix trie gives the minimal
automaton accepting the suffixes and is described in Section 2.4. Compaction
and minimization yields the compact suffix automaton of Section 2.5.

Most algorithms that build the structures presented in the chapter work in
time O(n×log CardA), for a text of length n, assuming that there is an ordering
on the alphabetA. Their execution time is thus linear when the alphabet is finite
and fixed. Locating a word of length m in the text then takes O(m×log CardA)
time.

The main application of presented techniques is to provide the basis for
implementing indexes, which is described in Section 2.6. But the direct access
to factors of a word authorizes a great number of other applications. We briefly
mention how to detect repetitions or forbidden words in a text (Section 2.7).
Structures can also be used to search for fixed patterns in texts because they
can be regarded as pattern matching machines (see Section 2.8). This method is
extended in a particularly effective way for searching conjugates (or rotations)
of a pattern in Section 2.8.3.

2.1. Suffix trie

The tree of suffixes of a word, called its suffix trie, is a deterministic automaton
that accepts the suffixes of the word and in which there is a unique path from
the initial state to any state. It can be viewed as a digital tree which represents
the set of suffixes of the word. Standard methods can be used to implement
these automata, but its tree structure authorizes a simplified representation.

Considering a tree implies that the terminal states of the tree are in one-to-
one correspondence with the words of the accepted language. The tree is thus
finite only if its language is also finite. Consequently, the explicit representation
of the tree has an algorithmic interest only for finite languages.

Sometimes one forces the tries to have for terminal states only the external
nodes of the tree. With this constraint, a language L is representable by a trie
only if no proper prefix of a word of L is in L. It results from this remark that
if y is a nonempty word, only Suff(y) \ {ε} is representable by a trie having this
property, and this takes place only when the last letter of y appears only once
in y. For this reason one frequently adds for this purpose a marker at the end
of the word. We prefer to attach an output to the nodes of the tree, which is

Version June 23, 2004

2.1. Suffix trie 103

0 6

1 2

3 4 5 6 0

7
5

8 9 10 11 1

12 13 2

14

4

15 3

a

b

b
a

b

b b b

a

b

b b b

b

b

Figure 2.1. Trie T(ababbb) of suffixes of ababbb. Terminal states are
marked by double circles. The output associated with a terminal state is
the position of the corresponding suffix on the word ababbb. The empty
suffix, by convention, is associated with the length of the word.

in conformity with the concept used, that of automaton. Only the nodes whose
output is defined are regarded as terminals. In addition, there are only very
slight differences between the implementations of the two features.

The suffix trie of a word y is denoted by T(y). Its nodes are the factors of y,
ε is the initial state, and the suffixes of y are the terminal states. The transition
function δ of T(y) is defined by δ(u, a) = ua if ua is a factor of y and a ∈ A.
The output of a terminal state, which is then a suffix, is the position of this
suffix in y. An example of suffix trie is displayed in Figure 2.1.

A classical construction of T(y) is carried out by adding successive suffixes
of y in the tree under construction, from the longest suffix, y itself, until the
shortest, the empty word.

The current operation consists in inserting y[i . . n− 1], the suffix at position
i, in the structure which contains already all the longer suffixes. It is illustrated
by Figure 2.2. We call head of a suffix its longest prefix common to a suffix
occurring at a smaller position. It is also the longest prefix of y[i . . n− 1] that
is the label of some path starting at the initial state of the automaton in con-
struction. The target state of the path is called a fork (two divergent paths start
from this state). If y[i . . k − 1] is the head of the suffix at position i (y[i . . n− 1])
the word y[k . . n− 1] is called the tail of the suffix.

More precisely, one calls fork any state of the automaton which is of (out-
degree) degree at least 2, or which is both of degree 1 and terminal.

Algorithm SuffixTrie builds the suffix trie of y. Its code is given below. It
is supposed that the automaton is represented by lists of successors (adjacency
list). The list associated with state p is denoted by adj[p] and contains pairs
of the form (a, q) where a is a letter and q a state. The function Target

implements transitions of the automaton, so Target(p, a) is q when (a, q) ∈

Version June 23, 2004

104 Structures for Indexes

0

1 2

3 4 5 6 0

7

8 9 10 11 1

12 13 2
a

b

b
a

b

b b b

a
b b b

b

Figure 2.2. The trie T(ababbb) (see Figure 2.1) during its construction,
just after the insertion of suffix abbb. The fork, state 2, corresponds to
the head, ab, of the suffix. It is the longest prefix of abbb that appears
before the concerned position. The tail of the suffix is bb, label of the
path grafted at this stage from the fork and leading to states 12 and 13.

adj[p] (or more generally when (au, q) ∈ adj[p] for some word u, as considered
in next sections). States of the automaton have the attribute output whose
value is a position. When creating a state, the procedure NewState allocates
an empty adjacency list and set as undefined the value of the attribute output.
Only the output of terminal states is set by the algorithm. The procedure
NewAutomaton creates a new automaton, say M , with only one state, its
initial state initial(M).

In the algorithm, the insertion of the current suffix y[i . . n− 1] in the automa-
ton M under construction, starts with the computation of its head, y[i . . k − 1],
and of the associated fork, p = δ(initial(M), y[i . . k − 1]), from which is grafted
the tail of the suffix (denoting by δ the transition function of M). The value of
the function SlowFind applied to the pair (initial(M), i) is precisely the sought
pair (p, k). The creation of the path of label y[k . . n− 1] from p together with
the definition of the output of its target is carried out at lines 5–9.

The last step of the execution, insertion of the empty suffix, just consists
in defining the output of the initial state, which value is n = |y| by convention
(line 10).

Version June 23, 2004

2.1. Suffix trie 105

SuffixTrie(y, n)
1 M ← NewAutomaton()
2 for i ← 0 to n− 1 do
3 (fork, k)← SlowFind(initial(M), i)
4 p ← fork
5 for j ← k to n− 1 do
6 q ← NewState()
7 adj[p]← adj[p] ∪ {(y[j], q)}
8 p ← q
9 output[p]← i

10 output[initial(M)]← n
11 return M

SlowFind(p, i)
1 for k ← i to n− 1 do
2 if Target(p, y[k]) is undefined then
3 return (p, k)
4 p ← Target(p, y[k])
5 return (p, n)

Proposition 2.1.1. Algorithm SuffixTrie builds the suffix trie of a word of
length n in time Θ(n2).

Proof. The correctness is easy to check on the code of the algorithm.
For the evaluation of execution time, let us consider stage i. Let us suppose

that y[i . . n − 1] has head y[i . . k − 1] and has tail y[k . . n − 1]. The call to
SlowFind (line 3) performs k− i operations and the for loop at lines 5–8 does
n− k ones, which gives a total of n− i operations. Thus the for loop indexed
by i at lines 2–9 executes n + (n − 1) + · · · + 1 operations, which gives a total
execution time Θ(n2).

2.1.1. Suffix links

It is possible to accelerate the preceding construction by improving the search
for forks. The technique described here is used in the following section where
it leads to an actual gain in the execution time that is measurable with the
asymptotic evaluation.

Let av be a suffix of y with a nonempty head az (a ∈ A). The prefix z of
v thus appears in y before the considered occurrence. This implies that z is a
prefix of the head of suffix v. The search for this head and the corresponding
fork can thus be done by starting in state z instead of starting systematically
with the initial state as done in the preceding algorithm. However, this supposes
that, the state az being known, one has a fast access to state z. For that, one
introduces a function defined on the states of the automaton and called the
suffix link function. It is denoted by sy and defined, for each state az (a ∈ A,

Version June 23, 2004

106 Structures for Indexes

0 6

1 2

3 4 5 6 0

7
5

8 9 10 11 1

12 13 2

14

4

15 3

a

b

b
a

b

b b b

a

b

b b b

b

b

Figure 2.3. The trie T(ababbb) with suffix links of forks and of their
ancestors indicated by dashed arrows.

z ∈ A∗), by sy(az) = z. State z is called the suffix link of state az. Figure 2.3
displays in dashed arrows the suffix link function of the trie of Figure 2.1.

The algorithm SlowFind-bis uses the suffix link function for the compu-
tation of the suffix trie of y. The function is implemented by a table named
s�. Suffix links are actually computed there only for the forks and their ances-
tors, except for the initial state. The rest is just an adaptation of algorithm
SlowFind that includes the definition of the suffix link table s�. The new
algorithm is called SlowFind-bis.

SlowFind-bis(p, k)
1 while k < n and Target(p, y[k]) is defined do
2 q ← Target(p, y[k])
3 (e, f)← (p, q)
4 while e �= initial(M) and s�[f] is undefined do
5 s�[f]← Target(s�[e], y[k])
6 (e, f)← (s�[e], s�[f])
7 if s�[f] is undefined then
8 s�[f]← initial(M)
9 (p, k)← (q, k + 1)

10 return (p, k)

Algorithm SuffixTrie-bis is an adaptation of SuffixTrie. It uses the
function SlowFind-bis instead of SlowFind.

Version June 23, 2004

2.1. Suffix trie 107

SuffixTrie-bis(y, n)
1 M ← NewAutomaton()
2 s�[initial(M)]← initial(M)
3 (fork, k)← (initial(M), 0)
4 for i ← 0 to n− 1 do
5 k ← max{k, i}
6 (fork, k)← SlowFind-bis(s�[fork], k)
7 p ← fork
8 for j ← k to n− 1 do
9 q ← NewState()

10 adj[p]← adj[p] ∪ {(y[j], q)}
11 p ← q
12 output[p]← i
13 output[initial(M)]← n
14 return M

Proposition 2.1.2. Algorithm SuffixTrie-bis builds the suffix trie of y in
time Θ(CardQ), where Q is the set of states of T(y).

Proof. The operations of the main loop, apart from line 6 and the for loop at
lines 8–11, are carried out in constant time, which gives a time O(n) for their
total execution.

Each operation of the internal loop of the algorithm SlowFind-bis, which
is called at line 6, leads to create a suffix link. The total number of links
being bounded by CardQ, the cumulated time of all the executions of line 6 is
O(CardQ).

The execution time of the loop 8–11 is proportional to the number of states
that it creates. The cumulated time of all the executions of lines 8–11 is thus
still O(Card Q).

Consequently, the total time of the construction is Θ(CardQ), which is the
announced result.

The size of T(y) can be quadratic. This is the case for example for a
word whose letters are pairwise distinct. For this category of words algorithm
SuffixTrie-bis is in fact not faster than SuffixTrie.

For certain words, it is enough to prune the hanging branches (below the
forks) of T(y) to obtain a structure of linear size. This kind of pruning gives the
tree called the position tree of y (see Figure 2.4), which represents the shortest
factors occurring only once in y or the suffixes that identify other positions.
However, considering the position tree does not completely solve the question
of memory space for the structure that can still have a quadratic size. It can be
checked for example that the word akbkakbk (k ∈ N) of length 4k has a pruned
suffix trie that contains more k2 nodes.

The structure of compact tree of the following section is a solution to obtain
a structure of linear size. The automata of Sections 2.4 and 2.5 provide another
type of solution.

Version June 23, 2004

108 Structures for Indexes

0 6

1 2

3 0

7
5

8 1

12 2

14

4

15 3

a

b

b
a

b

a

b
b

Figure 2.4. Position tree of ababbb. It accepts the shortest factors which
identify positions on the word, and some suffixes.

0 6

1 0

2 1

3

4 2

5
5

6 37

4

ab

b

abbb

bb

abbb

b
b

Figure 2.5. The (compact) suffix tree S(ababbb) with its suffix links.

2.2. Suffix tree

The compact suffix trie of word y, simply called its suffix tree and denoted by
S(y), is obtained by removing the nodes of degree 1 which are not terminal in
its suffix trie. This operation is called the compaction of the trie. The compact
tree preserves only the forks and the terminal nodes of the suffix trie. Labels of
edges then become words of positive variable length. Observe that if two edges
starts from a same node and are labeled by the words u and v then the first
letters of these words are distinct, i.e., u[0] �= v[0]. This comes from the fact
that the suffix trie is a deterministic automaton.

Figure 2.5 shows the compact suffix tree obtained by compaction of the suffix
trie of Figure 2.1.

Version June 23, 2004

2.2. Suffix tree 109

0

1

2

3

4

5

67

(0, 2)

(1, 1)

(2, 4)

(4, 2)

(2, 4)

(4, 1)
(5, 1)

i 0 1 2 3 4 5
y[i] a b a b b b

Figure 2.6. Representation of labels in the (compact) suffix tree
S(ababbb). (To be compared with the tree in Figure 2.5.) Label (2, 4)
of edge (3, 1) represents the factor of length 4 at position 2 in y, i.e., the
word abbb.

Proposition 2.2.1. The compact suffix tree of a word of length n > 0 has
between n + 1 and 2n nodes. The number of forks of the tree is between 1 and
n.

Proof. The tree contains n + 1 distinct terminal nodes corresponding to the
n + 1 suffixes they represent. This gives the lower bound.

Each fork that is not terminal has at least two children. For a fixed number
of external nodes, the maximum number of these forks is obtained when each
one has exactly two children. In this case, one obtains at most n forks (terminal
or not). As for n > 0 the initial state is both a fork and a terminal node one
obtains the bound (n + 1) + n− 1 = 2n on the total number of nodes.

The fact that the compact suffix tree has a linear number of nodes does
not imply the linearity of its representation, because this also depends on the
total size of labels of the edges. The example of a word of length n that has n
distinct letters shows that this size can well be quadratic. Nevertheless, labels
of edges being all factors of y, each one can be represented by a pair position-
length (or also starting position-end position), provided that the word y resides
in memory with the tree to allow an access to the labels. A word u that is the
label of an edge (p, q) is represented by the pair (i, |u|) where i is the position
of some occurrence of u in y. We write label(p, q) = (i, |u|) and assume that
the implementation of the tree provides a direct access to this label. This
representation of labels is illustrated in Figure 2.6 for the tree of Figure 2.5.

Proposition 2.2.2. Representing labels of edges by pairs of integers, the total
size of the compact suffix tree of a word is linear in its length, i.e., the size of
S(y) is Θ(|y|).

Version June 23, 2004

110 Structures for Indexes

Proof. The number of nodes of S(y) is Θ(|y|) according to Proposition 2.2.1.
The number of edges of S(y) is one unit less than the number of nodes. The
assumption on the representation of labels of edges implies that each edge oc-
cupies a constant space. What gives the result.

The suffix link function introduced in the preceding section finds its com-
plete usefulness in the construction of compact suffix tries. It allows a fast con-
struction when, moreover, the algorithm SlowFind of the preceding section is
replaced by the algorithm FastFind hereafter that has a similar function. The
possibility of retaining only the forks of the tree, in addition to terminal states,
rests on the following lemma.

Proposition 2.2.3. In a suffix trie, the suffix link of a nonempty fork is a
fork.

Proof. For a nonempty fork, there are two cases to consider according to whether
the fork, say au (a ∈ A, u ∈ A∗) has degree at least 2, or has degree 1 and is
terminal.

Let us suppose first that the degree of au is at least 2. For two distinct
letters b and c, the words aub and auc are factors of y. The same property then
holds for u = sy(au) which is thus of degree at least 2 and therefore is a fork.

If the fork au has degree 1 and is terminal, then aub is a factor of y for some
letter b and simultaneously au is a suffix of y. Thus, ub is a factor of y and u is
a suffix of y, which shows that u = sy(au) is also a fork.

The following property is used as a basis for the computation of suffix links
in the algorithm SuffixTree that builds the suffix tree. We denote by δ the
transition function of S(y).

Lemma 2.2.4. Let (p, q) be an edge of S(y) and y[j . . k − 1], j < k, be its
label. If q is a fork of the tree, then

sy(q) =
{

δ(p, y[j + 1 . . k − 1]) if p is the initial state,

δ(sy(p), y[j . . k − 1]) otherwise.

Proof. As q is a fork, sy(q) is defined according to Proposition 2.2.3. If p is the
initial state of the tree, i.e., if p = ε, one has sy(q) = δ(ε, y[j + 1 . . k − 1]) by
definition of sy.

In the other case, there is a single path from the initial state ending at p
because S(y) is a tree. Let av be the nonempty label of this path with a ∈ A and
v ∈ A∗ (i.e., p = av). One has δ(ε, v) = sy(p) and δ(ε, v · y[j . . k − 1]) = sy(q).
It follows that sy(q) = δ(sy(p), y[j . . k−1]) (the automaton is deterministic), as
announced.

2.2.1. Construction

The strategy we select to build the suffix tree of y consists in successively in-
serting the suffixes of y in the structure, from the longest to the shortest, as in

Version June 23, 2004

2.2. Suffix tree 111

a u

i

v

j

w

k

z

a u v

u v w

initial
state t

fork
a · u · v

initial
state

sy(t) p fork
u · v · w

fast slow

Figure 2.7. Schema for the insertion of the suffix y[i . . n−1] = u ·v ·w ·z
of y in the (compact) suffix tree during its construction, when the suffix
link is not defined on the fork a ·u · v. Let t be the parent of this fork and
v be the label of the associated edge. One first computes p = δ(sy(t), v)
using FastFind, then the fork of the suffix using SlowFind as in Section
2.1.

the preceding section. As for the algorithm SuffixTrie-bis, the insertion of
the tail of the running suffix is done after a slow find starting from the suffix
link of the current fork. When this link does not exist it is created (lines 6–11
of SuffixTree) by using the equality of the preceding statement. Calculation
is performed by the algorithm FastFind that satisfies

FastFind(r, j, k) = δ(r, y[j . . k − 1])

for r state of the tree and j, k positions on y for which

r · y[j . . k − 1] is a factor of y.

The diagram for the insertion of one suffix inside the tree in construction is
presented in Figure 2.7.

Version June 23, 2004

112 Structures for Indexes

SuffixTree(y, n)
1 M ← NewAutomaton()
2 s�[initial(M)]← initial(M)
3 (fork, k)← (initial(M), 0)
4 for i ← 0 to n− 1 do
5 k ← max{i, k}
6 if s�[fork] is undefined then
7 t← parent of fork
8 (j, �)← label(t, fork)
9 if t = initial(M) then

10 � ← �− 1
11 s�[fork]← FastFind(s�[t], k − �, k)
12 (fork, k)← SlowFindC(s�[fork], k)
13 if k < n then
14 q ← NewState()
15 adj[fork]← adj[fork] ∪ {((k, n− k), q)}
16 else q ← fork
17 output[q]← i
18 output[initial(M)]← n
19 return M

Algorithm SlowFindC is merely adapted from algorithm SlowFind to
take into account the fact that labels of edges are words. However, when the
sought target falls in the middle of an edge it is now necessary to cut this edge.
Let us notice that Target(p, a), if it exists, is the state q for which a is the
first letter of the label of the edge (p, q). Labels can be words of length strictly
more than 1; thus, it is not true in general that Target(p, a) = δ(p, a).

SlowFindC(p, k)
1 while k < n and Target(p, y[k]) is defined do
2 q ← Target(p, y[k])
3 (j, �)← label(p, q)
4 i← j
5 do i ← i + 1
6 k ← k + 1
7 while i < j + � and k < n and y[i] = y[k]
8 if i < j + � then
9 adj[p]← adj[p] \ {((j, �), q)}

10 r ← NewState()
11 adj[p]← adj[p] ∪ {((j, i− j), r)}
12 adj[r] ← adj[r] ∪ {((i, �− i + j), q)}
13 return (r, k)
14 p← q
15 return (p, k)

The improvement on the execution time of the construction of a suffix tree

Version June 23, 2004

2.2. Suffix tree 113

by the algorithm SuffixTree rests, in addition to the compaction of the
data structure, on an additional algorithmic element: the implementation of
FastFind. Resorting to the particular algorithm describes by the code below
is essential to obtain the execution time stated in Theorem 2.2.7.

The algorithm FastFind is used to compute a fork. It is applied to state r
and word y[j . . k − 1] only when

r · y[j . . k − 1] is a factor of y.

In this case, from state r there is a path whose label is prefixed by y[j . . k − 1].
Moreover, as the automaton is deterministic, the shortest of these paths is
unique. The algorithm uses this property to determine edges of the path by
only checking the first letter of their label. The code below, or at least its main
part, implements the recurrence relation given in the proof of Lemma 2.2.5.

The algorithm FastFind is used more precisely for computing the value
δ(r, y[j . . k − 1]) (or that of δ(r, v) with the notations of the lemma). When
the end of the traversed path is not the sought state, a state p is created and
inserted between the last two states met.

FastFind(r, j, k)
1 � Computation of δ(r, y[j . . k − 1])
2 if j ≥ k then
3 return r
4 else q ← Target(r, y[j])
5 (j′, �)← label(r, q)
6 if j + � ≤ k then
7 return FastFind(q, j + �, k)
8 else adj[r] ← adj[r] \ {((j′, �), q)}
9 p ← NewState()

10 adj[r] ← adj[r] ∪ {((j′, k − j), p)}
11 adj[p]← adj[p] ∪ {((j′ + k − j, �− k + j), q)}
12 return p

The work of algorithms SlowFindC and FastFind is illustrated by Figures
2.8 and 2.9.

2.2.2. Complexity

The lemma which follows is used for the evaluation of the execution time of
FastFind(r, j, k). It is an element of the proof of the theorem 2.2.7. It indicates
that the computing time is proportional (up to a multiplicative coefficient that
comes from the computing time of transitions) to the number of nodes of the
traversed path, and not to the length of the label of the path, result which one
would obtain immediately by applying algorithm SlowFind (Section 2.1).

For a state r of S(y) and a word v for which r · v is a factor of y, we denote
by end(r, v) the final vertex of the shortest path having origin r and whose label
has v as a prefix. Observe that end(r, v) = δ(r, v) only if v is the label of the
path.

Version June 23, 2004

114 Structures for Indexes

0

1 0

2 1

abababbb

bababbb

(a) After insertion of abababbb and bababbb.

0

1 0

2 1

3

4 2
abab

bababbb

abbb

bb

(b) Suffix ababbb is added.

Figure 2.8. During the construction of S(abababbb), insertion of suffixes
ababbb and babbb. (a) Automaton obtained after the insertion of suffixes
abababbb and bababbb. The current fork is the initial state 0. (b) Suffix
ababbb is added using letter-by-letter comparisons (slow find) and starting
from state 0. This results in creating fork 3. The suffix link of 3 is not
yet defined.

Lemma 2.2.5. Let r be a node of S(y) and let v be a word such that r · v
is a factor of y. Let 〈r, r1, . . . , r	〉 be the path having origin r and end r	 =
end(r, v) in S(y). The computation of end(r, v) can be carried out in time
O(�× log CardA) in the comparison model.

Proof. It is noticed that the path 〈r, r1, . . . , r	〉 exists by the condition “r · v is
a factor of y” and is unique because the tree is a deterministic automaton. If
v = ε one has end(r, v) = r. If not, let r1 = Target(r, v[0]) and let v′ be the
label of edge (r, r1). Note that

end(r, v) =
{

r1 if |v| ≤ |v′| (i.e., v is a prefix of v′),
end(r1, v

′−1v) otherwise.

This relation shows that each stage of the computation takes time α + β where
α is a constant and β is the computing time of Target(r, v[0]). This gives time
O(log CardA) in the comparison model.

The computation of r	 which includes traversing the path 〈r, r1, . . . , r	〉 thus
takes time O(�× log CardA) as announced.

Corollary 2.2.6. Let r be a node of S(y) and j, k two positions on y, j < k,
such that r ·y[j . . k−1] is a factor of y. Let � be the number of states of the tree

Version June 23, 2004

2.2. Suffix tree 115

0

1 0

2 1

3

4 2

5

abab

bab

abbb

bb

abbb

(c) Definition of the suffix link of state 3.

0

1 0

2 1

3

4 2

5

6 3

abab

bab

abbb

bb

abbb

bb

(d) Insertion of babbb.

Figure 2.9. During the construction of S(abababbb) (continued). (c) The
first step of the insertion of suffix babbb starts with the definition of the
suffix link of state 3, which is state 5. This is a fast find process from state
0 by word bab. (d) The second step of the insertion of babbb leads to the
creation of state 6. State 5, which is the fork of suffix babbb, becomes the
current fork to continue the construction.

traversed during the computation of FastFind(r, j, k). Then, the execution
time of FastFind(r, j, k) is O(�× log CardA) in the comparison model.

Proof. Let v = y[j . . k−1] and let 〈r, r1, . . . , r	〉 be the path ending at end(r, v).
The computation of end(r, v) is done by FastFind that implements the recur-
rence relation of the proof of Lemma 2.2.5. It thus takes time O(�× log CardA).
During the last recursive call, a state p may be created and related edges mod-
ified. This operation takes time O(log CardA). What gives the total time
O(�× log CardA) of the statement.

Theorem 2.2.7. The computation of SuffixTree(y) = S(y) takes O(|y| ×
log CardA) time in the comparison model.

Version June 23, 2004

116 Structures for Indexes

Proof. The fact that SuffixTree(y) = S(y) is based mainly on Lemma 2.2.4 by
checking that the algorithm uses again the elementary technique of Section 2.1.

The evaluation of the running time rests on the following observations (see
Figure 2.7):

• Each stage of the computation done by FastFind, except perhaps the
last stage, leads to traversing a state and strictly increases the value of
k − � (j on the figure), which never decreases.

• Each stage of the computation done by SlowFind, except perhaps the
last stage, strictly increases the value of k, which never decreases.

• Each other instruction of the for loop leads to incrementing variable i,
which never decreases.

The number of stages done by FastFind is thus bounded by |y|, which gives
O(|y|× log CardA) time for these stages according to Corollary 2.2.6. The same
reasoning applies to the number of stages carried out by SlowFind, and also
for the other stages, still giving time O(|y| × log CardA).

Therefore, one obtains a total execution time O(|y| × log CardA).

2.3. Contexts of factors

We present in this section the formal basis for the construction of the minimal
automaton which accepts the suffixes of a word, and called the suffix automaton
of the word. Some properties contribute to the proof of the construction of the
automaton (Theorems 2.3.10 and 2.4.7 below).

The suffix automaton is denoted by A(y). Its states are classes of the (right)
syntactic equivalence associated with Suff(y), i.e., are the sets of factors of y
having the same right context within y. These states are in one-to-one corre-
spondence with the (right) contexts of the factors of y in y itself. Let us recall
that the (right) context of a word u is Ry(u) = u−1Suff(y). We denote by ≡y

the syntactic congruence which is defined, for u, v ∈ A∗, by

u ≡y v

if and only if
Ry(u) = Ry(v).

One can also identify the states of A(y) to sets of indices on y which are end
positions of occurrences of equivalent factors.

The right contexts satisfy some properties stated below that are used later
in the chapter. The first remark concerns the link between the relation “is a
suffix of” and the inclusion of contexts. For any factor u of y, one denotes by

end-pos(u) = min{|wu| | wu is a prefix of y} − 1,

the right position of the first occurrence of u in y. Note that end-pos(ε) = −1.

Version June 23, 2004

2.3. Contexts of factors 117

Lemma 2.3.1. Let u, v ∈ Fact(y) with |u| ≤ |v|. Then,

u is a suffix of v implies Ry(v) ⊆ Ry(u)

and

Ry(u) = Ry(v) implies both end-pos(u) = end-pos(v) and u is a suffix of v.

Proof. Let us suppose that u is a suffix of v. Let z ∈ Ry(v). By definition, vz is
a suffix of y and, since u is a suffix of v, the word uz is also a suffix of y. Thus,
z ∈ Ry(u), which proves the first implication.

Let us now suppose Ry(u) = Ry(v). Let w, z be such that y = w · z with
|w| = end-pos(u) + 1. By definition of end-pos, u is suffix of w. Therefore, z is
the longest word in Ry(u). The assumption implies that z is also the longest
word in Ry(v), which yields |w| = end-pos(v) + 1. The words u and v are thus
both suffixes of w, and as u is shorter than v one obtains that u is a suffix of v.
This finishes the proof of the second implication and the whole proof.

Another very useful property of the congruence is that it partitions the
suffixes of a factor of y into intervals according to their length.

Lemma 2.3.2. Let u, v, w ∈ Fact(y). If u is a suffix of v, v is a suffix of w and
u ≡y w, then u ≡y v ≡y w.

Proof. By Lemma 2.3.1, the assumption implies

Ry(w) ⊆ Ry(v) ⊆ Ry(u).

Then, the equivalence u ≡y w which meansRy(u) = Ry(w) gives the conclusion.

A consequence of the following property is that inclusion induces a tree
structure on the right contexts. In this tree, the parent link is related to the
proper inclusion of sets. This link, important for the fast construction of the
automaton, corresponds to the suffix function defined then.

Corollary 2.3.3. Let u, v ∈ A∗. Then, the contexts of u and v are compara-
ble for inclusion or are disjoint, i.e., at least one of the three following conditions
is satisfied:

1. Ry(u) ⊆ Ry(v),
2. Ry(v) ⊆ Ry(u),
3. Ry(u) ∩Ry(v) = ∅.

Proof. One proves the property by showing that the condition

Ry(u) ∩Ry(v) �= ∅
implies

Ry(u) ⊆ Ry(v) or Ry(v) ⊆ Ry(u).
Let z ∈ Ry(u) ∩ Ry(v). Then, uz, vz are suffixes of y, and u, v are suffixes
of yz−1. Consequently, among u and v one is suffix of the other. One obtains
finally the conclusion by Lemma 2.3.1.

Version June 23, 2004

118 Structures for Indexes

2.3.1. Suffix function

On the set Fact(y) we consider the function sy called the suffix function of y.
It is defined, for all v ∈ Fact(y) \ {ε}, by

sy(v) = longest suffix u of v such that u �≡y v.

After Lemma 2.3.1, one deduces the equivalent definition:

sy(v) = longest suffix u of v such that Ry(v) ⊂ Ry(u).

Note that, by definition, sy(v) is a proper suffix of v (i.e., |sy(v)| < |v|). The
following lemma shows that the suffix function sy induces a failure function on
states of A(y).

Lemma 2.3.4. Let u, v ∈ Fact(y) \ {ε}. If u ≡y v, then sy(u) = sy(v).

Proof. By Lemma 2.3.1 one can suppose without loss of generality that u is a
suffix of v. The word u cannot be a suffix of sy(v) because Lemma 2.3.2 would
imply sy(v) ≡y v, which contradicts the definition of sy(v). Consequently, sy(v)
is a suffix of u. Since, by definition, sy(v) is the longest suffix of v which is not
equivalent to itself, it is also sy(u). Thus, sy(u) = sy(v).

Lemma 2.3.5. Let y ∈ A+. The word sy(y) is the longest suffix of y that
appears at least twice in y itself.

Proof. The context Ry(y) is {ε}. As y and sy(y) are not equivalent, Ry(sy(y))
contains some non empty word z. Then, sy(y)z and sy(y) are suffixes of y,
which shows that sy(y) appears twice at least in y.

Any suffix w of y, longer than sy(y), is equivalent to y by definition of sy(y).
It thus satisfies Ry(w) = Ry(y) = {ε}. Which shows that w appears only once
in y and finishes the proof.

The following lemma shows that the image of a factor of y by the suffix
function is a word of maximum length in its equivalence class.

Lemma 2.3.6. Let u ∈ Fact(y) \ {ε}. Then, any word equivalent to sy(u) is a
suffix of it.

Proof. Let w = sy(u) and v ≡y w. We show that v is a suffix of w. The word w
is a proper suffix of u. If the conclusion of the statement is false, according to
Lemma 2.3.1 one obtains that w is a proper suffix of v. Let then z ∈ Ry(u). As
w is a suffix of u equivalent to v, we have z ∈ Ry(w) = Ry(v). Then, u and v
are both suffixes of yz−1, which implies that one is a suffix of the other. But this
contradicts either the definition of w = sy(u) or the conclusion of Lemma 2.3.2,
and proves that v is a suffix of w = sy(u).

The preceding property is considered in Section 2.8 where the automaton is
used as a pattern searching engine. One can check that the property of sy is not

Version June 23, 2004

2.3. Contexts of factors 119

satisfied in general on the minimal automaton which accepts the factors (and not
only suffixes) of a word, or, more exactly, is not satisfied on the similar function
defined from the right congruence defined from Fact(y) (instead of Suff(y)).

2.3.2. Evolution of the congruence

The on-line construction of suffix automata relies on the relationship between
≡wa and ≡w which we examine here. By doing this, we consider that the generic
word y is equal to wa for some letter a. The properties detailed below are also
used to derive precise bounds on the size of the automaton in the following
section.

The first relation states that ≡wa is a refinement of ≡w.

Lemma 2.3.7. Let w ∈ A∗ and a ∈ A. The congruence ≡wa is a refinement of
≡w, i.e.,, for all words u, v ∈ A∗, u ≡wa v implies u ≡w v.

Proof. Let us assume that u ≡wa v, that is, Rwa(u) = Rwa(v), and show that
u ≡w v, that is, Rw(u) = Rw(v). We show Rw(u) ⊆ Rw(v) only because the
opposite inclusion results by symmetry.

If Rw(u) = ∅ the inclusion is clear. If not, let z ∈ Rw(u). Then uz is a suffix
of w, which implies that uza is a suffix of wa. The assumption gives that vza
is a suffix of wa, and thus vz is a suffix of w, or z ∈ Rw(v), which finishes the
proof.

The congruence ≡w partitions A∗ in classes. Lemma 2.3.7 amounts to saying
that these classes are unions of classes according to ≡wa (a ∈ A). It proves that
only one or two classes with respect to ≡w are divided into two subclasses to
give the partition induced by ≡wa. One of these two classes consists of words
not appearing in w. It contains the word wa itself which produces a new class
and a new state of the suffix automaton (see lemma 2.3.8). Theorem 2.3.10 and
its corollaries give conditions for the division of another class and indicate how
this is done.

Lemma 2.3.8. Let w ∈ A∗ and a ∈ A. Let z be the longest suffix of wa that
appears in w. If u is a suffix of wa strictly longer than z, then the equivalence
u ≡wa wa holds.

Proof. It is a direct consequence of Lemma 2.3.5 because z occurs at least twice
in wa.

Before going to the main theorem we state an additional relation concerning
right contexts.

Lemma 2.3.9. Let w ∈ A∗ and a ∈ A. Then, for each word u ∈ A∗,

Rwa(u) =
{ {ε} ∪Rw(u)a if u is a suffix of wa,

Rw(u)a otherwise.

Version June 23, 2004

120 Structures for Indexes

Proof. First notice that ε ∈ Rwa(u) is equivalent to: u is a suffix of wa. It is
thus enough to show Rwa(u) \ {ε} = Rw(u)a.

Let z be a nonempty word of Rwa(u). We get that uz is a suffix of wa. The
word uz can be written uz′a with uz′ a suffix of w. Consequently, z′ ∈ Rw(u),
and thus z ∈ Rw(u)a.

Conversely, let z be a (nonempty) word in Rw(u)a. It can be written z′a for
z′ ∈ Rw(u). Thus, uz′ is a suffix of w, which implies that uz = uz′a is a suffix
of wa, that is, z ∈ Rwa(u). This proves the converse statement and ends the
proof.

Theorem 2.3.10. Let w ∈ A∗ and a ∈ A. Let z be the longest suffix of wa
that appears in w. Let z′ be the longest factor of w for which z′ ≡w z. Then,
for each u, v ∈ Fact(w),

u ≡w v and u �≡w z imply u ≡wa v.

Moreover, for each word u such as u ≡w z,

u ≡wa

{
z if |u| ≤ |z|,
z′ otherwise.

Proof. Let u, v ∈ Fact(w) be such that u ≡w v. By definition of the equivalence
we get Rw(u) = Rw(v). We suppose first that u �≡w z and show that Rwa(u) =
Rwa(v), which is equivalent to u ≡wa v.

According to Lemma 2.3.9, we have just to show that u is a suffix of wa if
and only if v is a suffix of wa. Indeed, it is enough to show that if u is a suffix of
wa then v is a suffix of wa since the opposite implication results by symmetry.

So, let us suppose that u is a suffix of wa. We deduce from the fact that u is
a factor of w and the definition of z that u is a suffix of z. We can thus consider
the greatest integer j ≥ 0 for which |u| ≤ |sw

j(z)|. Let us note that sw
j(z) is a

suffix of wa (like z is), and that Lemma 2.3.2 ensures that u ≡w sw
j(z). From

which we get v ≡w sw
j(z) by transitivity.

Since u �≡w z, we have j > 0. Lemma 2.3.6 implies that v is a suffix of sw
j(z),

and thus also of wa as wished. This proves the first part of the statement.
Let us consider now a word u such as u ≡w z.
When |u| ≤ |z|, to show u ≡wa z by using the above argument, we have only

to check that u is a suffix of wa because z is a suffix of wa. This, in fact, is a
simple consequence of Lemma 2.3.1.

Let us suppose |u| > |z|. The existence of such a word u implies z′ �= z and
|z′| > |z| (z is a proper suffix of z′). Consequently, by the definition of z, u and
z′ are not suffixes of wa. Using the above argument again, this proves u ≡wa z′

and finishes the proof.

The two corollaries of the preceding theorem stated below refer to situations
simple to manage during the construction of suffix automata.

Version June 23, 2004

2.4. Suffix automaton 121

Corollary 2.3.11. Let w ∈ A∗ and a ∈ A. Let z be the longest suffix of wa
that appears in w. Let z′ be the longest word such as z′ ≡w z. Let us suppose
z′ = z. Then, for each u, v ∈ Fact(w),

u ≡w v implies u ≡wa v.

Proof. Let u, v ∈ Fact(w) be such that u ≡w v. We prove the equivalence
u ≡wa v. The conclusion comes directly from Theorem 2.3.10 if u �≡w z. Else,
u ≡w z; by the assumption made on z and Lemma 2.3.1, we get |u| ≤ |z|.
Finally, Theorem 2.3.10 gives the same conclusion as above.

Corollary 2.3.12. Let w ∈ A∗ and a ∈ A. If the letter a does not appear
in w, then, for each u, v ∈ Fact(w),

u ≡w v implies u ≡wa v.

Proof. Since a does not appear in w, the word z of Corollary 2.3.11 is the empty
word. It is of course the longest of its class, which makes it possible to apply
Corollary 2.3.11 and gives the same conclusion.

2.4. Suffix automaton

The suffix automaton of a word y is the minimal automaton that accepts the set
of suffixes of y. It is denoted by A(y). The structure is intended to be used as
an index on the word (see Section 2.6) but also constitutes a device to search for
factors of y within another text (see Section 2.8). The most surprising property
of the automaton is that its size is linear in the length of y although the number
of factors of y can be quadratic. The construction of the automaton also takes
a linear time on a fixed alphabet. Figure 2.10 shows an example of such an
automaton to be compared with trees in Figures 2.1 and 2.5.

As we do not force the automaton to be complete, the class of words which
do not appear in y, whose right context is empty, is not a state of A(y).

2.4.1. Size of suffix automata

The size of an automaton is expressed both by the number of its states and the
number of its edges. We show that A(y) has less than 2|y| states and less than
3|y| edges, for a total size O(|y|). This result is based on Theorem 2.3.10 of
the preceding section. Figure 2.11 shows an automaton that has the maximum
number of states for a word length 7.

Proposition 2.4.1. Let y ∈ A∗ be a word length n and let st(y) be the
number of states of A(y). For n = 0, we have st(y) = 1; for n = 1, we have
st(y) = 2; for n > 1 finally, we have

n + 1 ≤ st(y) ≤ 2n− 1,

Version June 23, 2004

122 Structures for Indexes

0 1 2 3 4 5 6

2′ 5′

a b a

b

b b b

b

a

b

b

Figure 2.10. The (minimal) suffix automaton of ababbb.

and the upper bound is reached if and only if y is of the form abn−1, for two
distinct letters a, b.

Proof. The equalities concerning short words can be checked directly including
st(y) = 3 when |y| = 2. Let us suppose n > 2. The minimal number of states of
A(y) is obviously n + 1 (otherwise the path labeled by y would contain a cycle
yielding an infinite number of words recognized by the automaton), minimum
which is reached with y = an (a ∈ A).

Let us show the upper bound. By Theorem 2.3.10, each letter y[i], 2 ≤ i ≤
n− 1, increases by at most two the number of states of A(y[0 . . i− 1]). As the
number of states of A(y[0]y[1]) is 3, it follows that

st(y) ≤ 3 + 2(n− 2)
= 2n− 1,

as announced.
The construction of a word of length n whose suffix automaton has 2n− 1

states is still a simple application of the Theorem 2.3.10 by noting that each
letter y[2], y[3], . . . , y[n− 1] must effectively lead to the creation of two states
during the construction. Notice that after the choice of the first two letters that
must be different, there is no choice for the other letters. This produces the
only possible form given in the statement.

Lemma 2.4.2. Let y ∈ A+ and let ed(y) be the number of edges of A(y).
Then,

ed(y) ≤ st(y) + |y| − 2.

0 1 2 3 4 5 6 7

2′ 3′ 4′ 5′ 6′

a b b b b b b

b b b b b

b

Figure 2.11. A suffix automaton with the maximum number of states.

Version June 23, 2004

2.4. Suffix automaton 123

0 1 2 3 4 5 6 7

2′ 3′ 4′ 5′

a b b b b b c

b b b b

b

c

c

c

c

c

Figure 2.12. A suffix automaton with the maximum number of edges.

Proof. Let us call q0 the initial state of A(y), and consider the spanning tree of
longest paths starting at q0 in A(y). The tree contains st(y) − 1 edges of A(y)
because it arrives exactly one edge on each state except on the initial state.

With each other edge (p, a, q) we associate the suffix uav of y defined as
follows: u is the label of the path starting at q0 and ending at p; v is the label
of the longest path from q arriving on a terminal state. Doing so, we get an
injection from the set of concerned edges to the set Suff(y). The suffixes y and
ε are not concerned because they are labels of paths in the spanning tree. This
shows that there is at most Card(Suff(y) \ {y, ε}) = |y| − 1 additional edges.

Summing up the numbers of edges of the two types, we get a maximum of
st(y) + |y| − 2 edges in A(y).

Figure 2.12 shows an automaton that has the maximum number of edges for
a word length 7.

Proposition 2.4.3. Let y ∈ A∗ be a word of length n and let ed(y) be the
number of edges of A(y). For n = 0, we have ed(y) = 0; for n = 1, we have
ed(y) = 1; for n = 2, we have ed(y) = 2 or ed(y) = 3; finally, for n > 2, we have

n ≤ ed(y) ≤ 3n− 4,

and the upper bound is reached if y is of the form abn−2c, where a, b and c are
three pairwise distinct letters.

Proof. We can directly check the results on short words. Let us consider n > 2.
The lower bound is immediate and is reached by the word y = an (a ∈ A).

Let us examine then the upper bound. By Proposition 2.4.1 and Lemma 2.4.2
we obtain

ed(y) ≤ (2n− 1) + n− 2
= 3n− 3.

The 2n−1 quantity is the maximum number of states obtained only if y = abn−1

(a, b ∈ A, a �= b). But for a word in this form the number of edges is only 2n−1.
Thus, ed(y) ≤ 3n− 4.

Version June 23, 2004

124 Structures for Indexes

0 1 2 3 4 5 6 7

3′

3′′ 4′′

a a b b a b b

b

b

a

b b

a

Figure 2.13. The suffix automaton A(aabbabb). Suffix links on states
are : f [1] = 0, f [2] = 1, f [3] = 3′′, f [3′′] = 3′, f [3′] = 0, f [4] = 4′′,
f [4′′] = 3′, f [5] = 1, f [6] = 3′′, f [7] = 4′′. The suffix path of 7 is
〈7, 4′′, 3′, 0〉, which includes all the terminal states of the automaton (see
Corollary 2.4.6).

It can be checked that the automaton A(abn−2c) (where a, b, c ∈ A with
Card{a, b, c} = 3) has 2n− 2 states and 3n− 4 edges.

The following statement summarizes Propositions 2.4.1 and 2.4.3.

Theorem 2.4.4. The total size of the suffix automaton of a word is linear in
the length of the word.

2.4.2. Suffix links and suffix paths

Theorem 2.3.10 and its two consecutive corollaries provide the frame of the
on-line construction of the suffix automaton A(y). The algorithm controls the
conditions which appear in these statements by means of a function defined on
the states of the automaton, the suffix link function, and of a classification of
the edges in solid and non-solid edges. We define these two concepts hereafter.

Let p be a state of A(y), different from the initial state. State p is a class of
factors of y that are equivalent with respect to equivalence ≡y. Let u be any
word in the class (u �= ε because p is not the initial state). We define the suffix
link of p, denoted by fy(p), as the congruence class of sy(u). The function fy is
called the suffix link function of the automaton. According to Lemma 2.3.4 the
value of sy(u) is independent of the word u chosen in the class of p, which makes
the definition coherent. The suffix link function is also called a failure function
and used with this meaning in Section 2.8. An example is given in Figure 2.13.

For a state p of A(y), we denote by lgy(p) the maximum length of words u
in the congruence class of p. It is also the length of the longest path starting
from the initial state and ending at p. The longest paths starting at the initial
state form a spanning tree for A(y) (consequence of Lemma 2.3.1). Edges which
belong to this tree are qualified as solid. In an equivalent way,

edge (p, a, q) is solid

Version June 23, 2004

2.4. Suffix automaton 125

if and only if
lgy(q) = lgy(p) + 1.

This notion is used in the construction of the automaton.
Suffix links induce by iteration what we call suffix paths in A(y) (see Fig-

ure 2.13). One can note that

q = fy(p) implies lgy(q) < lgy(p).

So, the sequence
〈p, fy(p), fy

2(p), . . .〉
is finite and ends at the initial state (which does not have a suffix link). It is
called the suffix path of p in A(y), and is denoted by SP(p).

Let last be the state of A(y) that is the class of word y itself. This state is
characterized by the fact that it is not the origin of any edge. The suffix path
of last,

〈last, fy(last), fy
2(last), . . . , fy

k−1(last) = q0〉,
where q0 is the initial state of the automaton, plays an important part in the
on-line construction. It is used to effectively test conditions of Theorem 2.3.10
and its corollaries. We denote by δ the transition function of A(y).

Proposition 2.4.5. Let u ∈ Fact(y)\ {ε} and let p = δ(q0, u). Then, for each
integer j ≥ 0 for which sy

j(u) is defined,

fy
j(p) = δ(q0, sy

j(u)).

Proof. We prove the result by recurrence on j. If j = 0, fy
j(p) = p and

sy
j(u) = u, therefore the equality is satisfied by assumption.
Let j > 0 such as sy

j(u) is defined and suppose by recurrence assumption
that fy

j−1(p) = δ(i, sy
j−1(u)). By definition of fy, fy(fy

j−1(p)) is the congru-
ence class of the word sy(sy

j−1(u)). Consequently, fy
j(p) = δ(q0, sy

j(u)), which
completes the recurrence and the proof.

Corollary 2.4.6. The terminal states of A(y) are the states of the suffix path
of last, SP(last).

Proof. First, we prove that states of the path suffix are terminal. Let p be any
state of SP(last). One has p = fy

j(last) for some j ≥ 0. Since last = δ(q0, y),
Proposition 2.4.5 implies p = δ(q0, sy

j(y)). And as sy
j(y) is a suffix of y, p is a

terminal state.
Conversely, let p be a terminal state of A(y). Let then u be a suffix of y such

that p = δ(q0, u). Since u is a suffix of y, we can consider the greatest integer
j ≥ 0 for which |u| ≤ |sy

j(y)|. By Lemma 2.3.2 one obtains u ≡y sy
j(y). Thus,

p = δ(q0, sy
j(y)) by definition of A(y). Therefore, Proposition 2.4.5 applied to

y implies p = fy
j(last), which proves that p appears in SP(last). This ends the

proof.

Version June 23, 2004

126 Structures for Indexes

2.4.3. On-line construction

It is possible to build the suffix automaton of y by applying to the suffix trie of
Section 2.1 standard algorithms that minimize automata. But the suffix trie can
be of quadratic size what gives the time and space complexity of this approach.
We present an on-line construction algorithm that avoids this problem and works
in linear space with an execution time O(|y| × log CardA).

The algorithm treats the prefixes of y from the shorter, ε, to the longest, y
itself. At each stage, just after having treated prefix w, the following information
is available:
• The suffix automaton A(w) with its transition function δ.
• The table f , defined on the states of A(w), which implements the suffix

function fw.
• The table L, defined on the states of A(w), which implements the function

length, lgw.
• The state last.

Terminal states of A(w) are not explicitly marked, they are given implicitly
by the suffix path of last (Corollary 2.4.6). The implementation of A(w) with
these additional elements is discussed just before the analysis of complexity of
the computation.

Algorithm SuffixAutomaton that builds the suffix automaton of y relies
on the procedure Extension given further. This procedure treats the next
letter of word y. It transforms the suffix automaton A(w) already built into
the suffix automaton A(wa) (wa is a prefix of y, a ∈ A). After all extensions,
terminal states are eventually marked explicitly (lines 7 to 10).

SuffixAutomaton(y, n)
1 M ← NewAutomaton()
2 L[initial(M)] ← 0
3 last[M]← initial(M)
4 for each letter a of y, sequentially do
5 � Extension of M by letter a
6 Extension(a)
7 p ← last[M]
8 do terminal(p)← true

9 p← f [p]
10 while p is defined
11 return M

Contrary to what happens for the construction of suffix trees, a state-
splitting operation is necessary in some circumstances. It is realized by the
algorithm Clone below.

Version June 23, 2004

2.4. Suffix automaton 127

0 1 2 3 4 5 6 7 8 9

5′

c c c c b b c c c

b

b

b

b

b

c

Figure 2.14. Automaton A(ccccbbccc) on which is illustrated in Fig-
ures 2.15, 2.16, and 2.17 the procedure Extension(a) according to three
cases.

Extension(a)
1 new ← NewState()
2 L[new]← L[last[M]] + 1
3 p ← last[M]
4 do adj[p]← adj[p] ∪ {(a, new)}
5 p ← f [p]
6 while p is defined and Target(p, a) is undefined
7 if p is undefined then
8 f [new]← initial(M)
9 else q ← Target(p, a)

10 if (p, a, q) is a solid edge, i.e., L[p] + 1 = L[q] then
11 f [new] ← q
12 else clone ← Clone(p, a, q)
13 f [new] ← clone
14 last[M]← new

Clone(p, a, q)
1 clone ← NewState()
2 L[clone]← L[p] + 1
3 for each (b, q′) ∈ adj[q] do
4 adj[clone] ← adj[clone] ∪ {(b, q′)}
5 f [clone]← f [q]
6 f [q]← clone
7 do adj[p]← adj[p] \ {(a, q)}
8 adj[p]← adj[p] ∪ {(a, clone)}
9 p ← f [p]

10 while p is defined and Target(p, a) = q
11 return clone

Figures 2.14, 2.15, 2.16, and 2.17 illustrate how the procedure Extension

works.

Version June 23, 2004

128 Structures for Indexes

0 1 2 3 4 5 6 7 8 9

5′

10
c c c c b b c c c d

b

b

b

b

b

c

d

d

d

d

Figure 2.15. Suffix automaton A(ccccbbcccd) obtained by extending
A(ccccbbccc) of Figure 2.14 by letter d. During the execution of the first
loop of Extension(d), state p traverses the suffix path 〈9, 3, 2, 1, 0〉. At
the same time, edges labeled by letter d are created, starting from these
states and leading to 10, the last created state. The loop stops at the
initial state. This situation corresponds to Corollary 2.3.12.

0 1 2 3 4 5 6 7 8 9

5′

10
c c c c b b c c c c

b

b

b

b

b

c

Figure 2.16. Suffix automaton A(ccccbbcccc) obtained by extending
A(ccccbbccc) of Figure 2.14 by letter c. The first loop of the procedure
Extension(c) stops at state 3 = f [9] because an edge labeled by c starts
from this state. Moreover, the edge (3, c, 4) is solid. We obtain directly
the suffix link of the new state created: f [10] = δ(3, c) = 4. There is
nothing else to do according to Corollary 2.3.11.

Theorem 2.4.7. Algorithm SuffixAutomaton builds a suffix automaton,
that is SuffixAutomaton(y) is the automaton A(y), for y ∈ A∗.

Proof. We show by recurrence on |y| that the automaton is computed correctly,
as well as tables L and f and state last. It is shown then that terminal states
are computed correctly.

If |y| = 0, the algorithm builds an automaton consisting of only one state
which is both an initial and terminal state. No transition is defined. The

Version June 23, 2004

2.4. Suffix automaton 129

0 1 2 3 4 5 6 7 8 9

5′

10

5′′

c c c c b b c c c b

b

bbb

b

c

b

Figure 2.17. Suffix automaton A(ccccbbcccb) obtained by extending
A(ccccbbccc) of Figure 2.14 by letter b. The first loop of the procedure
Extension(b) stops at state 3 = f [9] because an edge labeled by b starts
from this state. In the automaton A(ccccbbccc) edge (3, b, 5) is not solid.
The word cccb is a suffix of ccccbbcccb but ccccb is not, although they both
lead to state 5. This state is duplicated into the final state 5′′ that is the
class of factors cccb, ccb and cb. Edges (3, b, 5), (2, b, 5) and (1, b, 5) of
A(ccccbbccc) are redirected onto 5′′ according to Theorem 2.3.10.

automaton thus recognizes the language {ε} which is Suff(y). Elements f and
last as well as tables L and f are also correctly calculated.

We consider now that |y| > 0 and that y = wa, for a ∈ A and w ∈ A∗.
We suppose, by recurrence, that the current automaton M is A(w) with its
transition function δw, that q0 = initial(M), that last = δw(q0, w), that the
table L satisfies L[p] = lgw(p) for any state p, and that the table f satisfies
f [p] = fw(p) for any state p different from the initial state.

We first show that the procedure Extension carries out correctly the trans-
formation of the automaton M , of the variable last, and of the tables L and
f .

The variable p of procedure Extension runs through the states of the suffix
path SP(last) of A(w). The first loop creates transitions labeled by a targeted
at the new state new in agreement with Lemma 2.3.8. We have also the equality
L[new] = lgy(new).

When the first loop stops, three disjoint cases arise:

1. p is not defined,

2. (p, a, q) is a solid edge,

3. (p, a, q) is a non-solid edge.

Case 1. This situation occurs when the letter a does not occur in w; one has
then fy(new) = q0. Thus, after the instruction at line 8 the equality f [new] =
fy(new) holds. For the other states r, one has fw(r) = fy(r) according to
Corollary 2.3.12. Which gives the equalities f [r] = fy(r) at the end of the
execution of the procedure Extension.

Version June 23, 2004

130 Structures for Indexes

Case 2. Let u be the longest word for which δ(q0, u) = p. By recurrence and
Lemma 2.3.6, we have |u| = lgw(p) = L[p]. The word ua is the longest suffix of y
which is a factor of w. Thus, fy(new) = q, which shows that f [new] = fy(new)
after the instruction of line 11.

Since edge (p, a, q) is solid, by recurrence again, we have |ua| = L[q] = lgy(q),
which shows that the words equivalent to ua according to ≡w are not longer
than ua. Corollary 2.3.11 applies with z = ua. And as in the case 1, f [r] = fy(r)
for all the states different from new .

Case 3. Let u be the longest word for which δ(q0, u) = p. The word ua
is the longest suffix of y which is a factor of w. So, fy(new) = q, and thus
f [new] = fy(new). Since edge (p, a, q) is not solid, ua is not the longest word in
its congruence class according to ≡w. Theorem 2.3.10 applies with z = ua, and
z′ the longest word for which δ(q0, z

′) = q. The class of ua according to ≡w is
divided into two subclasses with respect to ≡wa. They correspond to states q
and clone.

Words v no longer than ua and such as v ≡w ua are of the form v′a with v′ a
suffix of u (consequence of Lemma 2.3.1). Before the execution of the last loop,
all these words v satisfy q = δw(q0, v). Consequently, just after the execution of
the loop, they satisfy clone = δy(q0, v), as required by Theorem 2.3.10. Words
v longer than ua and such as v ≡w ua satisfy q = δy(q0, v) after the execution
of the loop as required by Theorem 2.3.10 again. On can check that table f is
updated correctly.

For each of the three cases, one can check that the value of last is correctly
computed at the end of the execution of the procedure Extension.

Finally, the recurrence shows that automaton M , state last, tables L and f
are correct after the execution of procedure Extension.

It remains to be checked that terminal states are correctly marked during
the execution of the last loop of algorithm SuffixAutomaton. But this is
a straight consequence of Corollary 2.4.6 because variable p runs through the
suffix path of last.

2.4.4. Complexity

To analyze the complexity of the algorithm SuffixAutomaton we first de-
scribe a possible implementation of the elements necessary for the construction.

We suppose that the automaton is represented by lists of successors. By
doing this, operations of addition, update, and access concerning an edge are
performed in time O(log CardA) with an efficient implementation of the lists.
Function fy is realized by table f which gives access to fy(p) in constant time.

To implement the solidity of edges table L is used. It represents the function
lgy, as the description of the procedure Extension suggests (line 10). Another
way of doing it consists in using a Boolean value per edge of the automaton.
This induces a slight modification of the procedure which we describe as follows:
each first edge created during the execution of the loops at lines 4–6 and lines 7–
10 must be marked as solid; the other created edges are marked as non solid.

Version June 23, 2004

2.4. Suffix automaton 131

This type of implementation does not require the use of table L which can then
be eliminated, reducing the memory space used. Nevertheless, table L finds its
utility in applications like those of Section 2.8. We retain that the two types
of implementation provide a constant-time access to the quality (solid or not
solid) of an edge.

Theorem 2.4.8. Algorithm SuffixAutomaton can be implemented so that
the construction of A(y) takes time O(|y| × log CardA) in a memory space
O(|y|).

Proof. We choose an implementation by lists of successors for the transition
function. States of A(y) and tables f and L require a space O(st(y)), lists
of edges a space O(ed(y)). Thus, the complete implementation takes a space
O(|y|), as a consequence of Propositions 2.4.1 and 2.4.3.

Another consequence of these propositions is that all the operations carried
out either once per state or once per edge of the final automaton take a total
time O(|y| × log CardA). The same result applies to the operations which are
performed once per letter of y. It thus remains to be shown that the time spent
for the execution of the two loops at lines 4–6 and lines 7–10 of the procedure
Extension is of the same order, namely O(|y| × log CardA).

We examine initially the case of the first loop. Let us consider the execution
of the procedure Extension during the transformation of A(w) into A(wa) (wa
is a prefix of y, a ∈ A). Let u be the longest word of state p during the test at
line 6. The initial value of u is sw(w), and its final value satisfies ua = swa(wa)
(if p is defined). Let k = |w| − |u|, position of the suffix occurrence of u in w.
Then, each test strictly increases the value of k during a call to the procedure.
Moreover, the initial value of k at the beginning of the execution of the next
call is not smaller than its final value reached at the end of the execution of the
current call. So, k is never decreased and thus, tests and instructions of this
loop are done in O(|y|).

A similar argument applies to the second loop at lines 7–10 of the procedure
Extension. Let v be the longest word of p during the test of the loop. The
initial value of v is sw

j(w), for j ≥ 2, and its final value satisfies va = swa
2(wa)

(if p is defined). Then, the position of v as a suffix of w increases strictly at each
test during successive calls to the procedure. Thus, again, tests and instructions
of the loop are done in O(|y|) time.

Consequently, the cumulated time of the executions of the two loops is
O(|y| × log CardA), which finishes the proof.

On a small alphabet, one can still choose an implementation of the automa-
ton that is even more efficient than that by lists of successors, to the detri-
ment of memory space however. It is enough to use a transition matrix within
O(|y| × CardA) memory space and managed it like a sparse table. With this
particular management, any operation on edges is done in constant time, which
leads to the following result.

Theorem 2.4.9. When the alphabet is fixed, algorithm SuffixAutomaton

Version June 23, 2004

132 Structures for Indexes

can be implemented so that the construction of A(y) takes time O(|y|) in a
memory space O(|y| × CardA).

Proof. One can use, to implement the transition matrix, the technique for
representing sparse tables which gives a direct access to each one of its entries
while avoiding initializing the complete matrix.

2.5. Compact suffix automaton

In this section, we describe briefly how to build a compact suffix automaton
denoted by AC(y) for y ∈ A∗. This automaton can be seen as the compact
version of the suffix automaton of the preceding section, i.e., it is obtained
by removal of the states having only one outgoing transition and that are not
terminal. It is the process used on the suffix trie of Section 2.1 to produce a
structure of linear size.

The compact suffix automaton is also the minimized version, in the sense of
automata theory, of the (compact) suffix tree of Section 2.2. It is obtained by
identifying subtrees which recognize the same words.

Figure 2.18 shows the compact suffix automaton of ababbb that can be com-
pared to the compact tree of Figure 2.5 and to the automaton of Figure 2.10.

Exactly as for the tree T(y), in the automaton A(y) we call fork any state
that is of (outgoing) degree at least 2, or that is both of degree 1 and termi-
nal. Forks of suffix automata satisfy the same property as forks of suffix trees,
property which allows the compaction of the automaton. The proof of the next
proposition is an immediate adaptation of that of Proposition 2.2.3.

Proposition 2.5.1. In the suffix automaton of a word, the suffix link of a
fork (different from the initial state) is a fork.

When one removes non fork states in A(y), edges of the automaton must
be labeled by (not empty) words and not only by letters. To get a structure
of size linear in the length of y, labels of edges must not be stored explicitly.

0 12

32′

ab abbb

bb

b

abbb

b

b

Figure 2.18. The compact suffix automaton AC(ababbb).

Version June 23, 2004

2.5. Compact suffix automaton 133

0 12

32′

(0, 2) (2, 4)

(4, 2)

(1, 1)

(2, 4)

(4, 1)

(5, 1)

i 0 1 2 3 4 5
y[i] a b a b b b

Figure 2.19. Representation of labels in the compact suffix automaton
AC(ababbb). (To be compared with the automaton in Figure 2.18.)

One represents them in constant space by means of a couple of integers. If
the word u is label of an edge (p, q), it is represented by the pair (i, |u|) for
which i is the position of an occurrence of u in y. We denote the label by
label(p, q) = (i, |u|) and suppose that the implementation of the automaton
provides a direct access to it. This forces to store the word y together with the
data structure. Figure 2.19 indicates how labels of the compact suffix automaton
of ababbb are represented.

The size of compact suffix automata evaluates rather directly from sizes of
compact suffix trees and of suffix automata.

Proposition 2.5.2. Let y ∈ A∗ be a word of length n and let ec(y) be the
number of states of AC(y). For n = 0, we have ec(y) = 1; for n > 0, we have

2 ≤ ec(y) ≤ n + 1,

and the upper bound is reached for y = an, a ∈ A.

Proof. The result can be checked directly for the empty word.
Let us suppose n > 0. Let c be a letter, c �∈ A, and let us consider the

tree S(y · c). This tree has exactly n + 1 external nodes on each one of those
arrives an edge whose label ends by letter c. The tree has at most n internal
nodes because they have at least two outgoing edges. When minimized to get
a compact automaton, all external nodes are identified in only one state, which
reduces the number of state to n + 1 at most. Removal of letter c does not
increase this value, which gives the upper bound. It is immediate to check that
AC(an) has n + 1 states exactly and that the obvious lower bound is reached
when the alphabet of y has size n.

Proposition 2.5.3. Let y ∈ A∗ be a word of length n and let fc(y) be the
number of edges of AC(y). For n = 0, we have fc(y) = 0; for n = 1, we have
fc(y) = 1; for n > 1, we have

fc(y) ≤ 2(n− 1),

Version June 23, 2004

134 Structures for Indexes

and the upper bound is reached for y = an−1b, where a, b are two distinct letters.

Proof. After checking the results for the short words, one notes that if x is of
the form an, n > 1, one has fc(y) = n−1, quantity that is smaller than 2(n−1).

Let us suppose now that Card alph(y) ≥ 2. We continue the proof of the
preceding lemma by still considering the word y · c, c �∈ A. Its suffix tree has at
most 2n nodes. Thus it has at most 2n− 1 edges, which after compaction gives
2n− 2 edges since the edges labeled by c disappear. This gives the announced
upper bound. The automaton AC(an−1b) has n states and 2n− 2 edges, as can
be directly checked.

The construction of AC(y) can be carried out starting from the tree S(y)
or from the automaton A(y) (see exercises 2.5.1 and 2.5.2). However, to save
memory space at construction time one rather takes advantage of a direct con-
struction. It is the schema of this construction that is sketched here.

The construction borrows elements from the algorithms SuffixTree and
SuffixAutomaton. Thus, the edges of the automaton are marked as solid or
not solid. The created edges targeted at new leaves of the tree become edges
to state last. We also use the concepts of slow and fast traversal from the
construction of suffix trees. It is on these two procedures that the changes are
essential, and that are added duplications of states and redirections of edges like
for the construction of suffix automata.

During the execution of a slow traversal, the attempt at crossing a non-
solid edge leads to cloning its target, with a duplication similar to what is done
during the execution of procedure Extension at line 6. One can note that
certain edges can be redirected by this process.

The second important point in the adaptation of the algorithms of the pre-
ceding sections relates to the fast traversal procedure. The main algorithm calls
it for the definition of a suffix link as in the algorithm SuffixTree. The differ-
ence comes when the target of a suffix link for a last-created fork (see lines 8–11
in procedure FastFind) is created. If a new state has to be created in the
middle of a solid edge, the same process applies. But, if the edge is not solid,
during a first step the edge is only redirected towards the concerned fork, and
its label is updated accordingly. This leaves the suffix link undefined and leads
to an iteration of the same process.

Phenomena that have been just described intervene in any sequential con-
struction of this type of automaton. Taking them into account is necessary for a
correct sequential computation of AC(y). They are present in the construction of
AC(ababbb) (see Figure 2.18) for which three stages are detailed in Figure 2.20.

To conclude the section, we state the complexity of the direct construction
of the compact suffix automaton. The formal description and the proof of the
algorithm are left to the reader.

Proposition 2.5.4. The computation of the compact suffix automaton AC(y)
can be done in time O(|y| × log CardA) in a space O(|y|).

Version June 23, 2004

2.6. Indexes 135

0 12
ab abbb

bb

babbb

(a) After three insertions.

0 12
ab abbb

bb

b

(b) Suffix link of state 2 is defined as state
0.

0 12

2′

ab abbb

bb

b

abbb

bb

(c) Duplication of state 2.

Figure 2.20. Three steps of the construction of AC(ababbb). (a) Au-
tomaton right after the insertion of the three longest suffixes of the word
ababbb. The suffix link of state 2 is still undefined. (b) Computation by
fast find of the suffix link of state 2, which results in transforming the
edge (0, babbb, 1) into (0, b, 2). At same time, the suffix bbb is inserted.
(c) Insertion of the next suffix, bb, is done by slow find starting from
state 0. Since edge (0, b, 2) is not solid, its target, state 2, is duplicated
as 2′ that has the same transitions as 2. To finish the insertion of suffix
bb it remains to cut the edge (2′, bb, 1) to insert state 3. Finally, the rest
of the construction amounts to determining final states, and we get the
automaton of Figure 2.18.

2.6. Indexes

Techniques introduced in the preceding sections find immediate applications to
the design of indexes on textual data. The utility to consider the suffixes of
a text for this kind of application comes from the obvious remark that any
factor of a word is a prefix of some suffix of the text. Using suffix structures
thus provides a kind of direct access to all the factors of a word or a language,

Version June 23, 2004

136 Structures for Indexes

and it is certainly the main interest of these techniques. This property gives
rise to an implementation of an index on a text or a family of texts, with
efficient algorithms for the basic operations (Section 2.6.2) such as questions
of membership, location and computation of lists of occurrences of patterns.
Section 2.6.3 gives a solution in the form of a transducer.

2.6.1. Implementation of indexes

The aim of an index is to provide an efficient mechanism for answering certain
questions concerning the contents of a fixed text. This word is denoted by y
(y ∈ A∗) and its length is n (n ∈ N). An index on y can be regarded as
an abstract data type whose basic set is the set of factors of y, Fact(y), and
that includes operations for accessing information related to factors of y. The
concept is similar to the index of a book which provides pointers to pages from
a set of selected keywords. We rather consider what can be called a generalized
index, in which all the factors of the text are present. We describe indexes for
only one word, but extending methods to a finite number of words is in general
a simple matter.

We consider four principal operations on the index of a text. They are related
to a word x, the query, to be searched for in y: membership, position, number of
occurrences and list of positions. This set of operations is often extended in real
applications, in connection with the nature of data represented by y, to yield
information retrieval systems. But the four operations we consider constitute
the technical basis from which can be developed broader systems of queries.

For implementing indexes, we choose to treat the main method that leads
to efficient and sometimes optimal algorithms. It is based on one of the data
structures that represent suffixes of y and that are described in previous sections.
The choice of the structure produces variations of the method. In this section
we recall the elements of the data structures that must be available to execute
the index operations. The operations themselves are treated in the next section.

The implementation of an index is built on automata of the preceding sec-
tions. Let us recall the data structures necessary to use the suffix tree, S(y), of
y. They are composed of:

• The word y itself stored in a table.

• An implementation of the automaton in the form of a transition matrix
or list of edges per state, to represent the transition function δ, the access
to the initial state, and a table of terminal states, for example.

• The table s�, defined on states, which represents the suffix link function
of the tree.

Note that the word y itself must be maintained in memory for the labeling of
edges refers to it (see Section 2.2). The suffix link is useful for certain applica-
tions only, it can of course be eliminated when the implemented operations do
not make use of it.

Version June 23, 2004

2.6. Indexes 137

One can also consider the suffix automaton of y, A(y), which produces in a
natural way an index on factors of the text y. The structure includes:

• an implementation of the automaton as for the tree above,

• the table f that implements the failure function defined on states,

• the table L that indicates for each state the maximum length of the words
reaching this state.

For this automaton it is not necessary to store the word y in memory. It appears
in the automaton as the label of the longer path starting from the initial state.
Tables f and L can be omitted if non useful for the set of selected operations.

Lastly, the compact version of the suffix automaton can be used in order
to reduce even more the memory capacity necessary to the store the structure.
Its implementation uses in a standard way the same elements as for the suffix
automaton (in non-compact version) with, in addition, the word y in order to
access to labels of edges, as for the suffix tree. One gets a noticeable space
reduction in using this structure rather than the two preceding ones.

In the rest of the section we examine several types of solutions for realizing
basic operations on indexes.

2.6.2. Basic operations

We considers in this section four operations related to factors of text y: member-
ship (in Fact(y)), first position, number of occurrences, and list of the positions.
The algorithms are presented after the global description of these four opera-
tions.

The first operation on an index is the membership of word x to the index,
i.e., the question of knowing if x is a factor of y. This question can be specified in
two complementary ways according to whether one expects to find an occurrence
of x in y or not. If x does not appear in y, it is often interesting in practice
to find the longest prefix of x which is a factor of y. It is usually the type of
response necessary to realize sequential searches in text editors.

Membership Given x ∈ A∗, find the longest prefix of x that belongs to
Fact(y).

In the contrary case (x ∈ Fact(y)), methods produce without much modifi-
cation the position of an occurrence of x, and even the position of the first or
last occurrence of x in y.

Position Given x a factor of y, find the (left) position of its first (respectively
last) occurrence in y.

Knowing that x is in the index another relevant information consists of
its number of occurrences in y. This information can drive later researches
differently.

Version June 23, 2004

138 Structures for Indexes

Number of occurrences Given x a factor of y, find how many time x appears
in y.

Lastly, under the same assumption as before, complete information on the
location of x in y is provided by the list of positions of its occurrences.

List of positions Given x a factor of y, produce the list of positions of the
occurrences of x in y.

We describe solutions obtained by using the above data structures. It should
be noticed that the structures sometimes require to be enriched to guarantee an
efficient execution of the algorithms.

Proposition 2.6.1. Given one of the automata S(y), A(y) or AC(y), com-
puting the longest prefix u of x that is a factor of y can be carried out in time
O(|u| × log CardA) within memory space O(|y|).

Proof. By means of A(y), to determine the word u, it is enough to follow a path
labeled by a prefix of x starting from the initial state of the automaton. The
traversal stops when a transition misses or when x is exhausted. This produces
the longest prefix of x which is also prefix of the label of a path starting at the
initial state, i.e., which appears in y since all the factors of y are labels of these
paths. On the overall, this is done after |u| successful transitions and possibly
one unsuccessful transition (when u is a proper prefix of x) at the end of the
test. As each transition takes a time O(log CardA) for an implementation in
space O(|y|) (by lists of successors), we obtain a total time O(|u| × log CardA).

The same process works with S(y) and AC(y). Taking into account the
representation of these structures, certain transitions are done by simple letter
comparisons, but the maximum execution time is unchanged.

Position

We now examine the operations for which it is supposed that x is factor of y.
The test of membership which can be carried out separately as in the preceding
proposition, can also be integrated into the solutions of the other problems that
interest us here. The use of transducers, which extend suffix automata for this
type of question, is considered in the following section.

Finding the position posy(x) of the first occurrence of x in y amounts to
calculating its right position end-posy(x) (see Section 2.3) because

posy(x) = end-posy(x) − |x|+ 1.

Moreover, this is also equivalent to computing the maximum length of right
contexts of x in y,

lcy(x) = max{|z| | z ∈ Ry(x)},
because

posy(x) = |y| − lcy(x) − |x|.

Version June 23, 2004

2.6. Indexes 139

In a symmetrical way, in order to find the position last-posy(x) of the last
occurrence of x in y, it remains to calculate the minimal length scy(x) of its
right contexts because

last-posy(x) = |y| − scy(x)− |x|.

To be able to quickly answer requests related to the first or last positions
of factors of y, structures of index are not sufficient alone, at least if one seeks
to obtain optimal execution times. Consequently, one precomputes two tables
indexed by the states of the selected automaton and that represent functions
lcy and scy. One thus obtains the following result.

Proposition 2.6.2. Automata S(y), A(y) and AC(y) can be preprocessed in
time O(|y|) so that the first (or last) position on y of a factor x of y, as well as
the number of occurrences of x, can be computed in time O(|x| × log CardA)
within memory space O(|y|).

Proof. Let us call M the selected structure, δ its transition function, F its set
of edges, and T its terminal states.

To begin let us consider the computation of posy(x). The preprocessing
of M relates to the computation of a table LC defined on states of M and
aimed at representing the function lcy. For a state p and a word u ∈ A∗ with
p = δ(initial(M), u), we define

LC [p] = lcy(u),

quantity that is independent of the word u that labels a path from the initial
state to p, according to Lemma 2.3.1. This value is also the maximum length
of paths starting at p and ending at a terminal state in the automaton A(y).
For S(y) and AC(y) this consideration still applies by defining the length of an
edge as that of its label.

The table LC satisfies the recurrence relation:

LC [p] =
{

0 if deg(p) = 0,
max{� + LC [q] | (p, v, q) ∈ F and |v| = �} otherwise.

The relation shows that the computation of values LC [p], for all the states of
M , is done by a simple depth-first traversal of the graph of the structure. As
its number of states and its number of edges are linear (see sections 2.2, 2.4
and 2.5) and since the access to the label length of an edge is done in constant
time according to the representation described in Section 2.2, the computation
of the table takes a time O(|y|) (independent of the alphabet).

Once the precomputation of the table LC is performed, the computation of
posy(x) is done by searching for p = δ(initial(M), x) and then by computing
|y|−LC[p]−|x|. We then obtain the same asymptotic execution time as for the
membership problem, namely O(|x| × log CardA). Let us note that if

end(initial(M), x) = δ(initial(M), xw)

Version June 23, 2004

140 Structures for Indexes

with w non empty, the value of posy(x) is then |y| − LC [p]− |xw|, which does
not modify the asymptotic evaluation of the execution time.

The computation of the position of the last occurrence of x in y is solved in
a similar way by considering the table SC defined by

SC [p] = scy(u),

with the notations above. The relation

SC [p] =
{

0 if p ∈ T ,
min{� + SC [q] | (p, v, q) ∈ F and |v| = �} otherwise,

shows that the precomputation of SC takes a time O(|y|), and that the compu-
tation of last-posy(x) takes then O(|x| × log CardA) time.

Lastly, for accessing the number of occurrences of x one precomputes a table
NB defined by

NB[p] = Card{z ∈ A∗ | δ(p, z) ∈ T },
which is precisely the sought quantity when p = end(initial(M), x). The linear
precomputation results from the relation

NB[p] =

{
1 +
∑

(p,v,q)∈F NB[q] if p ∈ T ,∑
(p,v,q)∈F NB[q] otherwise.

Then, the number of occurrences of x is obtained by computing the state p =
end(initial(M), x) and by accessing to NB[p], which is done in the same time
as for the above operations.

This ends the proof.

An argument similar to the last element of the preceding proof allows an
effective computation of the number of factors of y, i.e., of the size of Fact(y).
For that, one evaluates the quantity CS[p], for all states p of the automaton, by
using the relation

CS[p] =

{
1 if deg(p) = 0,
1 +
∑

(p,v,q)∈F (|v| − 1 + CS[q]) otherwise.

If p = δ(initial(M), u) for some factor u of y, CS[p] is the number of factors
of y starting with u. This gives a linear-time computation of CardFact(y) =
CS[q0] (q0 initial state of the automaton), i.e., in time O(|y|) independent of the
alphabet, given the automaton.

List of positions

Proposition 2.6.3. Given the tree S(y) or the automaton AC(y), the list
L of positions of the occurrences of a factor x of y can be computed in time
O(|x| × log CardA+ k) within memory space O(|y|), where k is the number of
elements in L.

Version June 23, 2004

2.6. Indexes 141

Proof. The tree S(y) is first considered. Let us point out from Section 2.1
that a state q of the tree is a factor of y, and that, if it is terminal, its output
is the position of the suffix occurrence of q in y (in this case q is a suffix of
y and output[q] = |y| − |q|). The positions of occurrences of x in y are the
positions of suffixes prefixed by x. One thus obtains these positions by seeking
terminal states of the subtree rooted at p = end(initial(M), x) (see section 2.2).
Exploration of this subtree takes a time proportional to its size and indeed to
its number of terminal nodes since each node that is not terminal has at least
two children by definition of the tree. Finally, the number of terminal nodes is
precisely the number k of elements of the list L.

In short, the computation of the list require that of p and then the traversal
of the subtree. The first phase is carried out in time O(|x| × log CardA), the
second in time O(k), which gives the announced result when S(y) is used.

A similar reasoning applies to AC(y). Let p = end(initial(M), x) and let w
be such that δ(initial(M), xw) = p. Starting from p, we explore the automaton
by memorizing the length of the current path (the length of an edge is that of its
label). A terminal state q that is reached by a path of length � corresponds to a
suffix of length � which therefore occurs at position |y| − �. Then, |y| − �− |xw|
is the position of an occurrence of x in y. The complete traversal takes a time
O(k) as its equivalent traversal of the subtree of S(y) describes above. We thus
obtain the same running time as with the compact suffix tree.

Notice that the computation of the lists of positions is obtained without pre-
processing the automata. By the way, using the (non-compact) suffix automaton
of y requires a preprocessing which consists in creating shortcuts to superimpose
the structure of AC(y) to it, if one wishes to obtain the same running time.

2.6.3. Transducer of positions

Some of the questions of locating factors within the word y can be described in
terms of transducers, i.e., automata in which edges have an output in addition
to outputs on states. As an example, the function posy is realized by the
transducer of positions of y, denoted by T (y). Figure 2.21 gives an illustration
of it.

The transducer T (y) is built upon A(y) by adding outputs to edges and by
modifying the outputs associated with the terminal states. Edges of T (y) are
of the form (p, (a, s), q) where p, q are states and (a, s) the label of the edge.
Letter a ∈ A is its input and integer s ∈ N is its output. The path

(p0, (a0, s0), p1), (p1, (a1, s1), p2), . . . , (pk−1, (ak−1, sk−1), pk)

of the transducer has as input label the word a0a1 · · · ak−1, concatenation of
input labels of edges of the path, and for output the sum s0 + s1 + · · ·+ sk−1.

The transformation of A(y) into T (y) is done as follows. When (p, a, q) is
an edge of A(y) it becomes the edge (p, (a, s), q) of T (y) with output

s = end-posy(q)− end-posy(p)− 1,

Version June 23, 2004

142 Structures for Indexes

0
7

1 2 3 4 5 6 7 0

3′

4

3′′ 4′′
3

a:0 a:0 b:0 b:0 a:0 b:0 b:0

b:2

b:0

a:1

b:1 b:0

a:0

Figure 2.21. Transducer that realizes in a sequential way the function
posy relative to y = aabbabb. Each edge is labeled by a pair (a, s) denoted
by a:s, where a is the input of the edge and s its output. When scanning
abb, the transducer produces the value 1 (= 0+1+0), which is the position
of the first occurrence of abb in y. The last state having output 3, one
deduces that abb is a suffix at position 4 (= 1 + 3) of y.

which is also
LC [p]− LC [q]− 1

with the notation LC used in the proof of Proposition 2.6.2. The output associ-
ated with a terminal state p is defined as LC [p]. It is shown how to compute the
table LC in the proof of Proposition 2.6.2, from which one deduces a computa-
tion of outputs associated with edges and terminal states. The transformation
is thus carried out in linear time.

Proposition 2.6.4. Let u be the input label of a path starting at the initial
state of the transducer T (y). Then, the output of the path is posy(u).

Moreover, if the end of the path is a terminal state having output t, u is a
suffix of y and the position of this occurrence of u in y is posy(u)+t (= |y|−|u|).

Proof. We prove it by recurrence on the length of u. The first step of the
recurrence, for u = ε, is immediate. Let us suppose that u = va with v ∈ A∗

and a ∈ A. The output of the path having input label va is r+s, where r and s
are respectively the outputs corresponding to inputs v and a. By the recurrence
hypothesis, we have r = posy(v). By definition of labels in T (y), we have

s = end-posy(u)− end-posy(v)− 1.

Therefore the output associated with u is

posy(v) + end-posy(u)− end-posy(v) − 1,

or also, since end-posy(w) = posy(w) + |w| − 1,

posy(u) + |u| − |v| − 1,

Version June 23, 2004

2.7. Finding regularities 143

which is posy(u) as expected. This finishes the proof of the first part of the
statement.

If the end of the considered path is a terminal state, its output t is, by
definition, LC [u], which is |y|− end-posy(u)−1 or |y|−posy(u)−|u|. Therefore
posy(u) + t = |y| − |u|, which is the position in y of the suffix u as announced.

The existence of the transducer of positions described above shows that the
position of a factor in y can be computed sequentially, while reading the factor.
The computation is even done in real time when transitions are performed in
constant time.

2.7. Finding regularities

2.7.1. Repetitions

In this section we examine two questions concerning repetitions of factors within
the text y. There are two dual problems that are solved efficiently by using a
suffix tree or suffix automaton:

• Compute longest repeated factors of y.

• Find shortest factors having few occurrences in y.

These questions are parameterized by an integer k which bounds the number of
occurrences.

Longest repetition Given an integer k, k > 1, find a longest word occurring
at least k times in y.

Let A(y) be the suffix automaton of y. If the table NB defined in the proof
of Proposition 2.6.2 is available, the problem of the longest repetition remains
to find the states p of A(y) which are the deepest in the automaton and for
which NB[p] ≥ k. The labels of longest paths from the initial state to p’s are
then solutions of the problem.

Indeed the solution comes without the use of table NB because values in the
table do not need to be stored. We show how this is done for the instance of
the problem with k = 2. One simply seeks a state (or all states), as deep as
possible, that satisfies one of the two conditions:

• at least two edges leave p,

• an edge leaves p and p is a terminal state.

State p is then a fork and it is found by a mere traversal of the automaton.
Proceeding in this way, no preliminary treatment of A(y) is necessary and nev-
ertheless the linear computing time is preserved. One can note that the execu-
tion time does not depend on the branching time in the automaton because no
transition is executed, the search only traverses existing edges.

The two descriptions above are summarized in the following proposition.

Version June 23, 2004

144 Structures for Indexes

Proposition 2.7.1. Given one of the automata S(y), A(y) or AC(y), comput-
ing a longest repeated factor of y can be done in time and space O(|y|).

The second problem deals with searching for a marker. A factor of y is so
called when it marks a small number of positions on y.

Marker Given an integer k, k > 1, find a shortest word having less than k
occurrences in y.

The use of a suffix automaton provides a solution to the problem of the same
vein as that of the solution to the longest repetition problem. It amounts to
find, in the automaton, a state that is as closest as possible to the initial state
and that is the origin of less than k paths to a terminal state. Contrary to the
above situation however, a state associated with a marker is not necessarily a
fork, but this has no effect on the solution. Again, a simple traversal of the
automaton solves the question, which gives the following result.

Proposition 2.7.2. Given one of the automata S(y), A(y) or AC(y), the com-
putation of a marker in y can be carried out in time and space O(|y|).

2.7.2. Forbidden words

Searching for forbidden words is a reverse question to finding repetitions. It
intervenes in the description of a certain type of text compression algorithms.

A word u ∈ A∗ is called a forbidden word in the word y ∈ A∗ if it is not
factor of y. And u is called a minimal forbidden word if in supplement all its
own proper factors are factors of y. In other words, the minimality relates to
the ordering “is a factor of”. This concept is in fact more relevant than the
preceding one. We denote by I(y) the set of minimal forbidden words in y.

One can notice that
u = u[0 . . k − 1] ∈ I(y)

if and only if

u is not a factor of y but u[0 . . k − 2] and u[1 . . k − 1] are factors of y,

which results in the equality

I(y) = (A · Fact(y)) ∩ (Fact(y) · A) ∩ (A∗ \ Fact(y)).

The equality shows in particular that the language I(y) is finite. It is thus
possible to represent I(y) by a trie in which the external nodes only are terminal
because of the minimality of words.

The algorithm ForbiddenWords, which code is given below, built the trie
accepting I(y) from the automaton A(y). Figure 2.22 shows the example of the
trie of forbidden words of aabbabb, obtained from the automaton of Figure 2.13.
In the algorithm, the queue is used to traverse the automaton A(y) in a width-
first manner.

Version June 23, 2004

2.7. Finding regularities 145

0 1 2 3 4 5 6 7

3′

3′′ 4′′

a a b b b b

b

b

a

b

c a a a

a b

Figure 2.22. Trie of minimal forbidden words of the word aabbabb on
the alphabet {a, b, c}, such as it is built by algorithm Forbidden. Non-
terminal states are those of automaton A(aabbabb) of Figure 2.13. Note
that states 3 and 4 as well as the edges reaching them can be removed.
The forbidden word babba, recognized by the tree, is minimal because babb
and abba are factors of aabbabb.

ForbiddenWords(A(y))
1 M ← NewAutomaton()
2 L ← EmptyQueue()
3 Enqueue(L, (initial(A(y)), initial(M)))
4 while not FileIsEmpty(L) do
5 (p, p′) ← Dequeue(L)
6 for each a ∈ A do
7 if Target(p, a) is undefined and

(p = initial(A(y)) or Target(f [p], a) is defined) then
8 q′ ← NewState()
9 terminal(q′)← true

10 adj[p′]← adj[p′] ∪ {(a, q′)}
11 elseif Target(p, a) is defined and

Target(p, a)notreachedyet then
12 q′ ← NewState()
13 adj[p′]← adj[p′] ∪ {(a, q′)}
14 Enqueue(L, (Target(p, a), q′))
15 return M

Proposition 2.7.3. For y ∈ A∗, the algorithm ForbiddenWords produces,
from the automaton A(y), a tree that accepts the language I(y). The execution
can be done in time O(|y| × log CardA).

Proof. It is noticed that edges created at line 13 duplicate the edges of the
spanning tree of shortest paths of the graph of A(y), because the automaton is
traversed in width-first order (the queue L is aimed at that). Other edges are
created at line 10 and are of the form (p′, a, q′) with p′, q′ ∈ T ′, denoting by
T ′ the set of terminal states of M . Let us denote by δ′ the transition function

Version June 23, 2004

146 Structures for Indexes

associated with the edges of M created by the algorithm. By construction, the
word u for which δ′(initial(M), u) = p′ is the shortest word that reaches the
state p = δ(initial(A(y)), u) in A(y).

We start by showing that any word recognized by the tree that the algorithm
produces is a minimal forbidden word. Let ua be such a word, necessarily
nonempty (u ∈ A∗, a ∈ A). By assumption, the edge (p′, a, q′) was created at
line 10 and q′ ∈ T ′. If u = ε, we have p′ = initial(M) and we notice that, by
construction, a /∈ alph(y); therefore ua is effectively a minimal forbidden word.
If u �= ε, let us write it bv with b ∈ A and v ∈ A∗. The state

s = δ(initial(A(y)), v)

satisfies s �= p because both |v| < |u| and, by construction, u is the shortest
word that satisfies p = δ(initial(M), u). Therefore f [p] = s, by definition of
suffix links. Then, again by construction, δ(s, a) is defined, which implies that
va is a factor of y. The word ua = bva is thus minimal forbidden since bv, va
are factors of y but ua is not a factor of y.

It is then shown conversely that any forbidden word is recognized by the tree
built the algorithm. Let ua such a word, necessarily nonempty (u ∈ Fact(y),
a ∈ A). If u = ε, the letter a does not appear in y, and thus δ(initial(A(y)), a)
is not defined. The condition at line 7 is met and causes to create an edge which
leads to the recognition of the word ua by the automaton M . If u �= ε, let us
write it bv with b ∈ A and v ∈ A∗. Let

p = δ(initial(A(y)), u).

As v is a proper suffix of u and va is a factor of y while ua is not a factor of y,
if we consider the state

s = δ(initial(A(y)), v),

we have necessarily p �= s and thus s = f [p] by definition of suffix links. The
condition at line 7 is thus still satisfied in this case, and this has the same effect
as above. In conclusion, ua is recognized by the tree created by the algorithm,
which finishes the proof.

An unexpected consequence of the preceding construction is an upper bound
on the number of minimal forbidden words in a word.

Proposition 2.7.4. A word y ∈ A∗ of length |y| ≥ 2 has no more than
CardA+(2|y|−3)× (Cardalph(y)−1) minimal forbidden words. It has CardA
of them if |y| < 2.

Proof. According to the preceding proposition the number of minimal forbidden
words in y is equal to the number of terminal states of the trie I(y), which is
also the number of edges entering these states.

There is exactly CardA−α such edges coming out from the initial state, by
noting α = Cardalph(y). There is at most α outgoing edges from the unique
state of A(y) having no outgoing transition. From other states there is at most

Version June 23, 2004

2.8. Pattern matching machine 147

α − 1 outgoing edges. Since, for |y| ≥ 2, A(y) has at most 2|y| − 1 states
(Proposition 2.4.1), we obtain

Card I(y) ≤ (CardA− α) + α + (2|y| − 3)× (α− 1),

which gives
Card I(y) ≤ CardA+ (2|y| − 3)× (α− 1),

as announced.
Finally, we have I(ε) = A and, for a ∈ A, I(a) = (A\{a})∪{aa}. Therefore

Card I(y) = CardA when |y| < 2.

2.8. Pattern matching machine

Suffix automata can be used like machines to locate occurrences of patterns.
We consider in this section the suffix automaton A(x) to implement the search
for x (length m) in a word y (length n). The other structures, compact tree
S(x) and compact automaton AC(x), can be used as well.

The searching algorithm rests on considering a transducer with a failure
function. The transducer computes sequentially the lengths �i defined below.
It is built upon the automaton A(x), and the failure function, used to cope
with non-explicitly defined transitions of the searching automaton, is nothing
else than the suffix link f defined on states of the automaton. The principle of
the searching method is standard. The search is carried out sequentially along
the word y. Adaptation and analysis of the algorithm with the tree S(x) are
immediate although the suffix link function of this structure is not a failure
function according to the precise meaning of this concept (see Exercise 2.2.4).

The advantage brought by the algorithm on other methods based on failure
functions lies in a bounded amount of time to treat a letter of y, together with
a more direct analysis of its time complexity. The price for this improvement
is a more important need of memory capacity intended to store the automaton
instead of a simple table, although the space remains linear.

2.8.1. Lengths of common factors

The search for x is based on computing lengths of factors of x appearing at any
position on y. More precisely, the algorithm computes, at any position i on y,
0 ≤ i < n, the length

�i = max{|u| | u ∈ Fact(x) ∩ Suff(y[0 . . i])}

of the longest factor of x ending at this position. The detection of occurrences
of x follows the obvious remark:

x occurs at position i− |x|+ 1 on y

if and only if
�i = |x|.

Version June 23, 2004

148 Structures for Indexes

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
y[i] a a a b b b a b b a a b b a b b b
�i 1 2 2 3 4 2 3 4 5 4 2 3 4 5 6 7 2
pi 1 2 2 3 4 4′′ 5 6 7 5 2 3 4 5 6 7 4′′

Figure 2.23. Using the automaton A(aabbabb) (see Figure 2.13), algo-
rithm Length-of-factors determines the factors common to aabbabb
and y. Values �i and pi are the respective values of variables � and p of
the algorithm related to position i. At position 8 for example, �8 = 5
indicates that the longest factor of aabbabb ending there has length 5; it
is bbabb; the current state is 7. An occurrence of the pattern is detected
when �i = 7 = |aabbabb|, as it is at position 15.

The algorithm which computes the lengths �0, �1, . . . , �n−1 is given below. It
uses the table L, defined on states of the automaton (Section 2.4), to reset the
length of the current factor, after a traversal through a suffix link (line 8). The
correction of this instruction is a consequence of Lemma 2.3.6. A simulation of
the computation is given in Figure 2.23.

LengthsOfFactors(A(x), y)
1 (�, p)← (0, initial(A(x)))
2 for i ← 0 to n− 1 do
3 if Target(p, y[i]) is defined then
4 (�, p)← (� + 1,Target(p, y[i]))
5 else do p ← f [p]
6 while p is defined and Target(p, y[i]) is undefined
7 if p is defined then
8 (�, p)← (L[p] + 1,Target(p, y[i]))
9 else (�, p)← (0, initial(A(x)))

10 output �

Theorem 2.8.1. The algorithm LengthsOfFactors applied to the automa-
ton A(x) and the word y (x, y ∈ A∗) produces the lengths �0, �1, . . . , �|y|−1. It
makes less than 2|y| transitions in A(x) and runs in time O(|y| × log CardA)
and space O(|x|).

Proof. The proof of correctness of the algorithm is done by recurrence on the
length of prefixes of y. We show more exactly than the equalities

� = �i

and
p = δ(initial(A(x)), y[i− � + 1 . . i])

are invariants of the for loop, by noting δ the transition function of A(x).

Version June 23, 2004

2.8. Pattern matching machine 149

Let i ≥ 0. The already-treated prefix has length i and the current letter is
y[i]. It is supposed that the condition is satisfied for i−1. Thus, u = y[i−� . . i−1]
is the longest factor of x ending at position i− 1 and p = δ(initial(A(x)), u).

Let w be the suffix of length �i of y[0 . . i]. Let us first suppose w �= ε;
therefore w rewrites v · y[i] with v ∈ A∗. Note that v cannot be longer than u
because this would contradict the definition of u, and thus v is a suffix of u.

If v = u, δ(p, y[i]) is defined and provides the next value of p. Moreover,
�i = � + 1. These two points correspond to the update of (�, p) carried out at
line 4, which shows that the condition is satisfied for i in this situation.

When v is a proper suffix of u, we consider the greatest integer k, k > 0,
for which v is a suffix of sk

x(u) where sx is the suffix function relative to x
(Section 2.3). Lemma 2.3.6 implies that v = sk

x(u) and that the length of this
word is Lx(q) where q = δ(initial(A(x)), v). The new value of p is thus δ(q, y[i]),
and that of � is Lx(q) + 1. It is done so by the instruction at line 8, since f
and L respectively implement the suffix function and the length function of the
automaton, and according to Proposition 2.4.5 which establishes the relation
with function sx.

When w = ε, this means that letter y[i] �∈ alph(x). It is thus necessary to
re-initialize the pair (�, p), which is done at line 9.

Finally, it is noted that the proof is also valid for the treatment of the first
letter of y, which finishes the proof of the invariant condition and proves the
correctness of the algorithm.

For the complexity, one notices that each transition done, successfully or
not, leads to incrementing i or to strictly increasing the value of i − �. As
each one of these two expressions varies from 0 to |y|, we deduces that the
number of transitions done by the algorithm is no more than 2|y|. Moreover, as
the execution time of all the transitions is representative of the total execution
time, it is O(|y| × log CardA).

The memory space necessary to run the algorithm is used mainly to store
the automaton A(x) which has size O(|x|) according to the theorem 2.4.4. This
gives the last stated result, and finishes the proof.

2.8.2. Optimization of suffix links

Since the algorithm LengthsOfFactors works in a sequential way, it is natu-
ral to consider its delay, that is, the maximum time spent on a letter of y. One
realizes immediately that it is possible to modify the suffix function in order to
reduce this time.

Optimization is based on sets of letters that label edges going out a state.
We define, for p state of A(x),

Next(p) = {a ∈ A | δ(p, a) is defined}.

Then, the new suffix link f̂ is defined, for p state of A(x), by the relation:

f̂ [p] =
{

f [p] if Next(p) ⊂ Next(f [p]),

f̂ [f [p]] else, if this value is defined.

Version June 23, 2004

150 Structures for Indexes

Note that the relation can leave the value of f̂ [p] undefined. The idea of this
definition comes from the fact that the link is used as a failure function: there
is no need to go to f [p] if Next(f [p]) ⊆ Next(p).

Note that in the automaton A(x) one always has

Next(p) ⊆ Next(f [p]).

So, we can reformulate the definition of f̂ as:

f̂ [p] =
{

f [p] if deg(p) �= deg(f [p]),

f̂ [f [p]] else, if this value is defined.

The computation of f̂ can thus be performed in linear time by considering
outgoing degrees (deg) of states in the automaton.

The optimization of the suffix link leads to a reduction of the delay of al-
gorithm LengthsOfFactors. The time can be evaluated as the number of
executions of the instruction at line 5. We get the following result, which shows
that the algorithm treat the letters of y in real time when the alphabet is fixed.

Proposition 2.8.2. When the algorithm LengthsOfFactors makes use of
the suffix link f̂ in place of f , the treatment of each letter of y takes a time
O(Card alph(x)).

Proof. The result is an immediate consequence of inclusions

Next(p) ⊂ Next(f̂ [p]) ⊆ A

for each state p for which f̂ [p] is defined.

2.8.3. Search for conjugates

The sequence of lengths �0, �1, . . . , �n−1 of the preceding section is a very rich
information on resemblances between the words x and y. It can be exploited
in various ways by algorithms comparing words. It authorizes for example an
efficient computation of LCF(x, y), the maximum length of factors common to
x and y. This is done in linear time on a bounded alphabet. This quantity
intervenes for example in the definition of the distance between words:

d(x, y) = |x|+ |y| − 2LCF(x, y).

We are interested in searching for conjugates (or rotation) of a word within
a text. The solution put forward in this section is another consequence of
the length computation described in the previous section. Let us recall that a
conjugate of word x is a word of the form v · u for which x = u · v.

Searching for conjugates Let x ∈ A∗. Locate all the occurrences of conju-
gates of x (of length m) occurring in a word y (of length n).

Version June 23, 2004

2.8. Pattern matching machine 151

A first solution consists in applying a classical algorithm for searching a finite
set of words after having built the trie of conjugates of x. The search time is
then proportional to n (on a fixed alphabet), but the trie can have a quadratic
size O(n2), as can be the size of the (non compact) suffix trie of x.

The solution based on the use of a suffix automaton does not have this
disadvantage while preserving an equivalent execution time. The technique is
derived from the computation of lengths done in the preceding section. For this
purpose, we consider the suffix automaton of the word x·x, by noting that every
conjugate of x is a factor of x · x. One could even consider the word x · wA−1

where w is the primitive root of x, but that does not change the following result.

Proposition 2.8.3. Let x, y ∈ A∗. Locating the conjugates of x in y can be
done in time O(|y| × log CardA) within a memory space O(|x|).

Proof. We consider a variant of algorithm LengthsOfFactors that produces
the positions of the occurrences of factors having a length not smaller than a
given integer k. The transformation is immediate since at each stage of the
algorithm the length of the current factor is stored in variable �.

The modified algorithm is applied to the automaton A(x2) and the word y
with parameter k = |x|. The algorithm thus determines factors of length |x| of
x2 which appear in y. The conclusion follows, noting that factors of length |x|
of x2 are conjugate of x, and that all conjugates x appear in x2.

The concept of index is strongly used in questions related to data retrieval
techniques. One can refer to the book of Baeza-Yates and Ribero-Neto 1999 to
go deeper into the subject, or to that of Salton 1989. Apostolico 1985 describes
several algorithmic applications of suffix trees that applies often to other suffix
structures.

Personal searching systems, or indexes used by search engines, often use
simpler techniques like the constitution of lexicons of rare words or k-grams
(i.e., factors of length k) with k relatively small.

The majority of topics covered in this chapter is classical in string algorith-
mics. The book of Gusfield 1997 contains a good number of problems, and es-
pecially those grounded on questions in computational molecular biology, whose
algorithmic solutions rest on the use of data structures for indexes, including
questions related to repetitions.

Forbidden words of Section 2.7.2 are used in the DCA compression method
of Crochemore, Mignosi, Restivo, and Salemi 2000.

The use of suffix automata as searching machines is due to Crochemore
1987. Using suffix trees for this purpose produces an immediate but less efficient
solution (see exercise 2.2.4).

Version June 23, 2004

152 Structures for Indexes

Problems

Section 2.2

2.2.1 Check that the execution of SuffixTree(an) (a ∈ A) takes a time
O(n). Check that the execution time of SuffixTree(y) is Ω(n log n)
when Card alph(y) = |y| = n.

2.2.2 How many nodes are there in the compact suffix tree of a de Bruijn
word? How many for a Fibonacci word? Same question for their com-
pact and non compact suffix automata.

2.2.3 Let Tk,l(y) be the compact trie that accepts the factors of word y that
have a length ranging between the two natural integers k and � (0 ≤ k ≤
� ≤ |y|). Design an algorithm to build Tk,l(y) and that uses a memory
space proportional to the size of the tree (and not O(|y|)) and that runs
in the same asymptotic time as the construction of the suffix tree of y.

2.2.4 Design an algorithm for the computation of LCF(x, y) (x, y ∈ A∗), max-
imum length of factors common to x and y, based on the tree S(x ·c ·y),
where c ∈ A and c �∈ alph(x ·y). What is the time and space complexity
of the computation? Compare with the solution in Section 2.8.

2.2.5 Give a bound on the number of cubes of primitive words occurring in a
word of length n. Same question for squares. (Hint: use the suffix tree
of the word.)

2.2.6 Design an algorithm for the fusion of two suffix trees.
2.2.7 Describe a linear time and space algorithm (on a fixed alphabet) for the

construction of the suffix tree of a finite set of words.

Section 2.3

2.3.1 Let y be a word in which the last letter does not appear elsewhere. Show
that F(y), the minimal deterministic automaton accepting the factors
of y, has the same states and same edges as A(y) (only the terminal
states differ).

2.3.2 Give the precise number of states and edges in the factor automaton
F(y).

Section 2.4

2.4.1 Design an on-line algorithm for the construction of the factor automaton
F(y). The algorithm should run in linear time and space on a finite and
fixed alphabet.

2.4.2 Design a linear-time algorithm (on a fixed alphabet) for the construction
of the suffix automaton of a finite set of words.

Version June 23, 2004

Notes 153

Section 2.5

2.5.1 Describe an algorithm for constructing AC(y) from S(y).
2.5.2 Describe an algorithm for constructing AC(y) from A(y).
2.5.3 Write in details the code of the algorithm for the direct construction of

AC(y).
2.5.4 Design an on-line algorithm for constructing AC(y).

Section 2.7

2.7.1 Let k > 0 be an integer. Implement an algorithm, based on one of the
automata of suffixes of y ∈ A∗, which determines factors that appear
at least k times in y.

2.7.2 For y ∈ A∗, design an algorithm for computing the maximum length
of factors of y which have two non-overlapping occurrences (i.e., if u is
such a factor, it appears in y at two positions i and j such as i+ |u| ≤ j).

2.7.3 It is said that a language M ⊆ A∗ avoids a word u ∈ A∗ if u is not
factor of any word of M . Let M be the language of words that avoid all
the words of a finite set I ⊆ A∗. Show that M is accepted by a finite
automaton. Give an algorithm that builds an automaton accepting M
given the trie of I.

2.7.4 Design a construction of the automaton F(y) given the trie of forbidden
words I(y).

Section 2.8

2.8.1 Provide an infinite family of words for which each word has a trie of its
conjugates that is of quadratic size.

2.8.2 Design an algorithm for locating conjugates of x in y (x, y ∈ A∗), given
the tree S(x · x · c · y), where c ∈ A and c �∈ alph(x · y). What is the
complexity of the computation?

Notes

The concept of position tree is due to Weiner 1973 who presented an algorithm
to compute its compact version. The algorithm of Section 2.2 is from McCreight
1976. A strictly sequential version of the suffix tree construction was described
by Ukkonen 1995.

For questions referring to formal languages, like concepts of syntactic con-
gruences and minimal automata, one can refer to the books of Berstel 1979 and
Pin 1986.

The suffix automaton of a text with unmarked terminal states is also known
as the suffix DAWG, Directed Acyclic Word Graph. Its linearity was discovered
by Blumer, Blumer, Ehrenfeucht, Haussler, and McConnel 1983 who gave a

Version June 23, 2004

154 Structures for Indexes

linear construction of it on a fixed alphabet (see also Blumer et al. 1985). The
minimality of the structure as an automaton is due to Crochemore 1986, who
showed how to build within the same complexity the factor automaton of a text
(see exercises 2.3.1, 2.3.2 and 2.4.1).

The notion of compact suffix automaton appears in Blumer, Ehrenfeucht,
and Haussler 1989. An algorithm for compacting suffix automata, as well as
a direct construction of compact suffix automata, is presented in Crochemore
and Vérin 1997. An on-line construction of compact suffix automata has been
designed by Inenaga, Hoshino, Shinohara, Takeda, Arikawa, Mauri, and Pavesi
2001.

For the average analysis of sizes of the various structures presented in the
chapter one can refer to Szpankowski 1993b and to Jacquet and Szpankowski
1994, who corrected a previous analysis by Blumer et al. 1989, extended by Raf-
finot 1997. These analyses rely on methods described in the book of Sedgewick
and Flajolet 1995.

On special integer alphabets, Farach 1997 has designed a linear time con-
struction of suffix trees.

Indexes can also be realized efficiently with the use of suffix arrays. This
data structure may be viewed as an implementation of a suffix tree. The notion
has been introduced by Manber and Myers 1993 who designed the first efficient
algorithms for its construction and use. On special integer alphabets, a suffix
array can be built in linear time by three independent algorithms provided by
Kärkkäinen and Sanders 2003, Kim, Sim, Park, and Park 2003, and Ko and
Aluru 2003.

Version June 23, 2004

155

CHAPTER 3

Symbolic Natural Language
Processing

3.0 Introduction . 155
3.1 From letters to words . 156

3.1.1 Normalization of encoding 156
3.1.2 Tokenization . 159
3.1.3 Zipf’s law . 160
3.1.4 Dictionary compression and lookup 161
3.1.5 Morphological analysis 166
3.1.6 Composition of transductions 175
3.1.7 Intersection of transducers 178
3.1.8 Commutative product of bimachines 181
3.1.9 Phonetic variations . 184
3.1.10 Weighted automata . 187

3.2 From words to sentences . 187
3.2.1 Engineering approaches 187
3.2.2 Pattern definition and matching 189
3.2.3 Parsing . 192
3.2.4 Lexical ambiguity reduction 194
Notes . 196

3.0. Introduction

Fundamental notions of combinatorics on words underlie natural language pro-
cessing. This is not surprising, since combinatorics on words can be seen as the
formal study of sets of strings, and sets of strings are fundamental objects in
language processing.

Indeed, language processing is obviously a matter of strings. A text or a
discourse is a sequence1 of sentences; a sentence is a sequence of words; a word
is a sequence of letters. The most universal levels are those of sentence, word
and letter (or phoneme), but intermediate levels exist, and can be crucial in

1In this chapter, we will not use the term “word” to denote a sequence of symbols, in order
to avoid ambiguity with the linguistic meaning.

Version June 23, 2004

156 Symbolic Natural Language Processing

some languages, between word and letter: a level of morphological elements
(e.g. suffixes), and the level of syllables. The discovery of this piling up of
levels, and in particular of word level and phoneme level, delighted structuralist
linguists in the 20th century. They termed this inherent, universal feature of
human language as “double articulation”.

It is a little more intricate to see how sets of strings are involved. There are
two main reasons. First, at a point in a linguistic flow of data being processed,
you must be able to predict the set of possible continuations after what is
already known, or at least to expect any continuation among some set of strings
that depends on the language. Second, natural languages are ambiguous, i.e. a
written or spoken portion of text can often be understood or analyzed in several
ways, and the analyses are handled as a set of strings as long as they cannot
be reduced to a single analysis. The notion of set of strings covers the two
dimensions that linguists call the syntagmatic axis, i.e. that of the chronological
sequence of elements in a given utterance, and the paradigmatic axis, i.e. the
“or” relation between linguistic forms that can substitute for one another.

The connection between language processing and combinatorics on words
is natural. Historically, linguists actually played a part in the beginning of the
construction of theoretical combinatorics on words. Some of the terms in current
use originate from linguistics: word, prefix, suffix, grammar, syntactic monoid...
However, interpenetration between the formal world of computer theory and
the intuitive world of linguistics is still a love story with ups and downs. We
will encounter in this chapter, for example, terms that specialists of language
processing use without bothering about what they mean in mathematics or in
linguistics.

This chapter is organized around the main levels of any language modeling:
first, how words are made from letters; second, how sentences are made from
words. We will survey the basic operations of interest for language processing,
and for each type of operation we will examine the formal notions and tools
involved.

3.1. From letters to words

All the operations in the world between letters and words can be collectively
denoted by the term “lexical analysis”. Such operations mainly involve finite
automata and transducers. Specialists in language processing usually refer to
these formal tools with the term “finite-state” tools, because they have a finite
number of states.

3.1.1. Normalization of encoding

The computer encoding of the 26 letters of the Latin alphabet is fairly stan-
dardized. However, almost all languages need additional characters for their
writing. European languages use letters with diacritics: accents (é, è), cedilla
(ç), tilde (ñ), umlaut (ü)... There are a few ligatures, the use of some of them
being standard in some conditions: æ, œ, ß, others are optional variants: ff,

Version June 23, 2004

3.1. From letters to words 157

fl. The encoding of these extensions of 7-bit ASCII is by no means normalized:
constructors of computers and software editors have always tended to propose
divergent encodings in order to hold users captive and so faithful. Thus, é
is encoded as 82 and 8E in two common extended ASCII codes, as 00E9 in
UCS-2 Unicode, as C3A9 in UTF-8 Unicode, and named “é” by ISO
8879:1986 standard. The situation of other alphabets (Greek, Cyrillic, Korean,
Japanese...) is similar. The encoding systems for the Korean national writing
system are based on different levels: in KSC 5601-1992, each symbol represents
a syllable; in “n-byte” encodings, each symbol represents a segment of a syllable,
often a phoneme.

Thus, generally speaking, when an encoding is transliterated into another,
a symbol may be mapped to a sequence of several symbols, or the reverse.
Transliteration implies (i) cutting up input text into a concatenation of seg-
ments, and (ii) translating each segment. Both aspects depend on input and
output encodings.

Transliteration is simple whenever it is unambiguous, i.e. when source en-
coding and target encoding convey exactly the same information in two different
forms. The underlying formal objects are very simple. The set of possible seg-
ments in input text is a finite code (the input code). It is often even a prefix
code, i.e. no segment is a prefix of another. Here is an example of an input code
that is not prefix: consider transliterating a phoneme-based Korean encoding
into a syllable-based encoding. A 5-symbol input sequence kilto must be seg-
mented as kil/to in order to be translated into a 2-symbol output sequence, but
kilo must be segmented as ki/lo.

In any case, encodings are designed so that transliteration can be performed
by a sequential transducer.

For the reader’s convenience, we will recall a few of the definitions of sec-
tion 1.5. A finite transducer over the alphabets A, B is a finite automaton
in which all edges have an input label u ∈ A∗ and an output label v ∈ B∗.
The input alphabet A can be different from the output alphabet B, but they
frequently have a nonempty common subset. The notation we will use is conve-
nient when a transducer is considered as an automaton over a finite alphabet of
the form X ⊂ A
 ×B
, as in section 3.1.5, and when we define a formal notion

of alignment, as in section 3.1.7. Elements of X will be denoted (u :v) or
(

u
v

)
as in Fig. 3.1; edges will be denoted (p, u : v, q). The label of a successful path
of a transducer consists of a pair of sequences (w :x) ∈ A
×B
. Corresponding
input and output sequences may be of different lengths in number of symbols,
and some of the edges may have input and output labels of different lengths. A
transducer over A and B is input-wise literal if and only if all input labels are in
A|ε, and input-wise synchronous if and only if they are in A. The set of labels of
successful paths of a transducer is the transduction realized by the transducer.
A transduction over A and B is a relation between A
 and B
. A transduction
over A and B can be specified by a regular expression in the monoid A
 × B

if and only if it is realized by a finite transducer.
A sequential transducer is a finite transducer with additional output labels

Version June 23, 2004

158 Symbolic Natural Language Processing

attached to the initial and terminal states, and with the following properties:
• it has at most one initial state,
• it is input-wise synchronous,
• for each state p and input label a ⊂ A, there is at most one edge (p, a :

u, q) ∈ E.
The output string for a given input string is obtained by concatenating the
initial output label, the output label of the path defined by the input string,
and the terminal output label attached to the terminal state that ends the
path. With a sequential transducer, input sequences can be mapped into output
sequences through input-wise deterministic traversal. All transductions realized
by sequential transducers are word functions. Sequential transducers can be
minimized (cf. section 1.5.2).

In practice, the output labels attached to terminal states are necessary for
transliteration when input code is not prefix. The second and third properties
above are obtained by adapting the alignment between input labels and output
labels, i.e. by making them shorter or longer and by shifting parts of labels be-
tween adjacent edges. Fig. 3.1 shows a sequential transducer that transliterates
é and è from their ISO 8879 names, “é” and “è”, to their codes
in an extended ASCII encoding, 82 and 8A.

0

1 2

3

7

4

8

5

9

6

10

„
&
ε

«
„

e
ε

« „
a
ε

«

„
g
ε

«

„
c
ε

«

„
r
ε

«

„
u
ε

«

„
a
ε

«
„

t
82

«

„
v

8A

«
„

e
ε

«

„
;
ε

«

Figure 3.1. A sequential transducer that substitutes “82” for “é”
and “8A” for “è”.

The number of edges of transducers for normalization of character encoding
is of the same order of magnitude as the sum of the lengths of the elements
of the input code, say 30 if only letters are involved and 3000 if syllables are
involved.

Transliteration from one encoding to another is ambiguous when the target
system is more informative than the source system. For example, 7-bit ASCII
encoding, frequently used in informal communication, does not make any dif-
ference between e and é, or between oe and the ligature œ. In a more elaborate
encoding, these forms are not equivalent: œ is not a free variant for oe; it can

Version June 23, 2004

3.1. From letters to words 159

be used in cœur but not in coexiste. Transliteration from 7-bit ASCII to an ex-
tended ASCII encoding involves recognizing more complex linguistic elements,
like words. It cannot be performed by small sequential transducers.

The situation is even more complex in Korean and Japanese. In these lan-
guages, text can be entirely written in national writing systems, but Chinese
characters are traditionally substituted for part of it, according to specific rules.
In Japan, the use of Chinese characters in written text is standard in formal
communication; in Korea, this traditional substitution is not encouraged by the
authorities and is on the waning. Let us consider text with and without Chi-
nese characters as two encodings. The version with Chinese characters is usually
more informative than the one without: when a word element is ambiguous, it
may have several transcriptions in Chinese characters, according to its respec-
tive meanings. However, the reverse also happens. For instance, an ambiguous
Chinese character that evokes “music”, “pleasure” or “love” in Korean words
is pronounced differently, and transcribed ak, lak, nak or yo in the national
writing system, depending on the words in which it occurs.

3.1.2. Tokenization

The first step in the processing of written text is helped by the fact that words
are delimited by spaces. During Antiquity, this feature was exclusive to unvow-
elled script of Semitic languages; it developed in Europe progressively during
the early Middle Ages (Saenger, 1997) and is now shared by numerous languages
in the world.

Due to word delimitation, a simple computer program can segment written
text into a sequence of words without recognizing them, e.g. without a dictio-
nary. This process is called tokenization. Once it has been performed, words
become directly available for further operations: statistics, full text indexation,
dictionary lookup...

The formal basis of delimiter-based tokenization is the unambiguous use of
certain characters as delimiters.

The alphabet of letters, A, and the alphabet of delimiters, D, are disjoint. A
text is a sequence of letters and delimiters. After tokenization, it is a sequence
of tokens. Word tokens are maximal occurrences of elements of A
 in the text.
Delimiter tokens can be defined either as single delimiters:

Why/?/ /1/./ /Because/ /of/ /temperature/.

or as sequences of delimiters:

Why/? 1. /Because/ /of/ /temperature/.

Some symbols, like dash (-) and apostrophe (’) in English, can be considered
either as letters or as delimiters. In the first case, trade-off and seven-dollar
are tokens; otherwise they are sequences of tokens. In any case, tokenization
can be performed by simulating the two-state automaton of Fig. 3.2, and by
registering a new word token whenever control shifts from state 1 to state 0.

Version June 23, 2004

160 Symbolic Natural Language Processing

0 1

D

A

A

D

Figure 3.2. An automaton for written text tokenization.

In this section, we used the term “word” in its everyday sense; I would even
say in its visual sense: a word in written text is something visibly separated by
spaces. However, this naive notion of word does not always give the best results
if we base further processing on it, because visual words do not always behave
as units conveying a meaning. For example white does in white trousers, but
not in white wine. We will return to this matter in section 3.1.4.

Delimiter-based tokenization is not applicable to languages written without
delimitation between words, like Arabic, Chinese or Japanese. In these lan-
guages, written text cannot be segmented into words without recognizing the
words. The problem is exactly the same with spoken text: words are not audibly
delimited.

However, in some cases, another type of tokenization consists in identifying
all the positions in the text where words are liable to begin. These positions cut
up text into tokens. After that, words can be recognized as certain sequences
of tokens. For instance, in Thai language, words can only begin and end at
syllable boundaries, and syllable boundaries cannot be preceded or followed by
any patterns of phonemes. These patterns can be recognized by a transducer.

3.1.3. Zipf’s law

During the tokenization of a text or of a collection of texts, it is easy to build
the list of all the different tokens in the text, to count the occurrences of each
different token, and to rank them by decreasing number of occurrences. What
is the relation between rank r and number of occurrences nr? Zipf observed
that the following law is approximately true:

nr = n1/ra (3.1.1)

with a ≈ 1. As a matter of fact, there are few frequent tokens, and many
infrequent tokens. In experiments on French text, 1 token out of 2 was found
to belong to the most frequent 139 tokens. In fact, for 20 ≤ r ≤ 2000, nr is a
little higher than predicted by (3.1.1).

Several equations can be derived from Zipf’s law. The number rn of different
tokens that occur at least n times is such that n = n1/ra

n, so:

rn =
(n1

n

)1/a

Version June 23, 2004

3.1. From letters to words 161

The number of different tokens that occur between n and n + 1 times is:(n1

n

)1/a

−
(

n1

n + 1

)1/a

(3.1.2)

For large values of n and a = 1, this is approximately n1/n2, which is confirmed
experimentally.

According to (3.1.2), the number of tokens that occur once (hapaxes) is
proportional to n

1/a
1 . It is easy to observe that the number of occurrences of

a very frequent token is approximately proportional to the size of the text, i.e.
n1/N depends on the language but not on the text. This means that all texts
comprise roughly the same proportion of hapaxes.

Can Zipf’s law be used to predict the relation between the size of a text and
the size of its vocabulary? The size of the text is the total number of occurrences
of tokens,

N = n1 + n2 + . . . + nR

where R is the size of the vocabulary, i.e. the number of different tokens. With
a = 1, we have:

N = n1

R∑
r=1

1/r ≈ n1 ln R

However, the relation between N and n1 in this equation is not confirmed ex-
perimentally. Firstly, n1 is proportional to N . Secondly, the growth of R
with respect to N tends to slow down, because of the tokens that occur again,
whereas this equation implies that it would speed up. Thirdly, if this law were
accurate, R would grow unbounded with N , which means that the vocabulary
of a language would be infinite. What is surprising and counter-intuitive is that
a steady growth of R with respect to N is maintained for texts up to several
million different tokens.

In other words, Zipf’s law correctly predicts that a collection of texts needs to
be very large and diverse to encompass the complete vocabulary of a language,
because new texts will contain new words for a very long time. Experience
shows, for example, that the proportion of vocabulary which is shared by one
year’s production of a newspaper and another year’s production is smaller than
simple intuition would suggest.

3.1.4. Dictionary compression and lookup

Most operations on text require information about words: their translation into
another language, for example. Since such information cannot in general be
computed from the form of words, it is stored in large databases, in association
with the words. Information about words must be formal, precise, systematic
and explicit, so that it can be exploited for language processing. Such informa-
tion is encoded into word tags or lexical tags. Examples of word tags are given
in Fig. 3.3. The tags in this figure record only essential information:

Version June 23, 2004

162 Symbolic Natural Language Processing

fit fit A
fit fit N:s
fit fit V:W:P1s:P2s:P1p:P2p:P3p
fitter fit A:C
fitting fit V:G
hop hop N:s
hop hop V:W:P1s:P2s:P1p:P2p:P3p
hope hope N:s
hope hope V:W:P1s:P2s:P1p:P2p:P3p
hoping hope V:G
hopping hop V:G
hot hot A
hot air hot air N:s
hotter hot A:C
open open A
open open N:S
open open V:W:P1s:P2s:P1p:P2p:P3p
open air open air N:S

Figure 3.3. The word tags for a few English words.

• the lemma, which is the corresponding form with default inflectional fea-
tures, e.g. the infinitive, in the case of verbs,

• the part of speech: A, N, V...,
• the inflectional features.

Lemmas are necessary for nearly all applications, because they are indexes to
properties of words. If all the vocabulary is taken into account, the tag set used
in Fig. 3.3 has many thousands of elements, due to lemmas. Size of tag sets is
a measure of the informative content of tags.

The operation of assigning tags to words in a text is called lexical tagging.
It is one of the main objectives of lexical analysis. The reverse operation is
useful in text generation: words are first generated in the form of lexical tags,
then you have to spell them. In many languages, it is feasible to construct a
list of roughly all words that can occur in texts. Such a list, with unambiguous
word tags, is called an electronic dictionary2, or a dictionary. The strange term
“full-form dictionary” is also in use. An electronic dictionary is in the order of
a million words. Such a list is always an approximation, due to the fact that
new words continuously come into use: proper nouns, foreign borrowings, new
derivatives of existing words...

2The term “electronic dictionary” emphasizes the fact that entries are designed for pro-
grams, whereas the content of “conventional dictionaries” is meant for human readers, no
matter whether they are stored on paper or on electronic support.

Version June 23, 2004

3.1. From letters to words 163

In inflectional languages like English, the construction of an electronic dictio-
nary involves generating inflected forms, like conjugated verbs or plurals. This
operation is usually carried out with tables of suffixes, prefixes or infixes, or
with equivalent devices.

What is considered as a word is not always clear, because words sometimes
appear as combinations of words, e.g. hot air “meaningless talk”, open air “out-
doors space”, white wine, which are called compound words. The situation is
less clear with numerals, e.g. sixty-nine: linguistically, each of them is equivalent
to a determiner, which is a word; technically, if we include them in the dictio-
nary, they are another million words; syntactically, they are made of elements
combined according to rules, but these rules are entirely specific to numerals and
are not found anywhere in the syntax of the language. The status of such forms
and of other examples like dates is not easy to assign. If they are considered as
words, then the simplest form of description for them is a finite automaton. We
will refer to such automata in section 3.2.2 by the term “local grammars”.

The most repetitive operation on an electronic dictionary is lookup. The
input of this operation is word forms, and the output, word tags. Natural and
efficient data structures for them are tries, with output associated to leaves, and
transducers. In both cases, lookup is done in linear time with respect to the
length of the word, and does not depend on the size of the dictionary.

Consider representing the dictionary in the form of a transducer. The dic-
tionary is viewed as a finite set of word form/word tag pairs, i.e. a transduction.
Alignment between input and output is based on the similarity between word
forms and the lemmas included in word tags. This transduction is not a word
function, since many word forms in a dictionary are associated with several word
tags, like fit in Fig. 3.3:

The shoes are fit for travel
Max had a fit of fever

These shoes fit me

Due to this universal phenomenon, known as lexical ambiguity or homogra-
phy, the transduction cannot be represented by a sequential transducer. A p-
sequential transducer is a generalization of sequential transducers with at most
p terminal output strings at each terminal state. A p-sequential transducer for
the words in Fig. 3.3 is shown in Fig. 3.4. In this transducer, the symbol #
stands for a space character. The notion of p-sequential transducer allows for
representing a transduction that is not a word function without resorting to an
ambiguous transducer. A transducer is ambiguous if and only if it has distinct
paths with the same input label. In a p-sequential transducer, there are no
distinct paths with the same input label; any difference between output labels
of the same path must occur in terminal output strings.

In order to make the transducer p-sequential, lexically ambiguous word forms
must be processed in a specific way: any difference between the several word
tags for such a word form must be postponed to terminal output strings, by
shifting parts of labels to adjacent edges. This operation may change the natu-
ral alignment between input and output, and increase the number of states and

Version June 23, 2004

164 Symbolic Natural Language Processing

0

1

2

3

.V:W:P1s:P2s:P1p:P2p:P3p

.N:s

4

.V:W:P1s:P2s:P1p:P2p:P3p

.N:s

5

6

7

8

9

.A

10

1112 13 14

.V:W:P1s:P2s:P1p:P2p:P3p
.A

.N:s

15

16

17 18 19

.V:W:P1s:P2s:P1p:P2p:P3p

.A
.N:s

20 21

22

„
h
h

«

„
o
o

«
„

p
p

«

„
e
e

«
„

p
ε

« „
i
ε

«

„
i
e

«

„
n

.V:G

«

„
g
ε

«
„

t
t

« „
t
ε

«

„
e
ε

«
„

r
.A:C

«„
f
f

« „
i
i

« „
t
t

« „
t
ε

«

„
i
ε

«

„
e
ε

«
„

o
o

«

„
p
p

«
„

e
e

« „
n
n

« „
#
#

«

„
#
#

«

„
a
a

« „
i
i

«

„
r

r.N:s

«

Figure 3.4. A p-sequential transducer for the words and tags in Fig. 3.3.

edges of the transducer, but the increase in size remains within reasonable pro-
portions because inflectional suffixes are usually short. After this operation, a
variant of algorithm ToSequentialTransducer (section 1.5) can be applied.

A dictionary represented as a transducer can be used to produce a dictionary
for generation, by swapping input and output. The resulting transducer can be
processed so as it becomes p-sequential too, provided that the dictionary is
finite.

Fig. 3.5 shows an approximation of the preceding transducer by an acyclic
automaton or DAWG. Most of the letters in the word form are identical to
letters in the lemma and are not explicitly repeated in the output. The end

Version June 23, 2004

3.1. From letters to words 165

of the output is shifted to the right and attached to terminal states, with an
integer indicating how many letters at the end of the word form are not part
of the lemma. When several output strings are possible for the same word,
they are concatenated and the result is attached to a terminal state. During
minimization of the DAWG, terminal states can be merged only if the output
strings attached to them are identical. For the tag set used in Fig. 3.3, and
for all the vocabulary, there are only about 2000 different output strings. The
practical advantage of this solution is that output strings are stored in a table
that need not be compressed and is easy to search for word tags.

0

1

2

3

0.V:W:P1s:P2s:P1p:P2p:P3p

0.N:s

4

0.V:W:P1s:P2s:P1p:P2p:P3p

0.N:s

5

6 7 23
3e.V:G

24 25 26
4.V:G

8
3.A:C

9

0.A

10

1112 13 14

0.A
0.V:W:P1s:P2s:P1p:P2p:P3p

0.N:s

15

16

17 18 19

0.A

0.V:W:P1s:P2s:P1p:P2p:P3p
0.N:s

20 21 22 27
0.N:s

h

o

p

e

p

i

i

n g

n g

t
t

e

rf i t t

i

e

o

p
e n #

#

a i r

Figure 3.5. The DAWG for the words and tags in Fig. 3.3.

In the previous figures, we have presented the same dictionary in different
forms. The form containing most redundancy is the list (Fig. 3.3): parts of
words are repeated, not only in lemmas and inflected forms, but also across
different entries. The DAWG (Fig. 3.5) is virtually free of this redundancy, but
it is unreadable and cannot be updated directly. In fact, linguistic maintenance
must be carried out on yet another form, the dictionary of lemmas used to
generate the list of Fig. 3.3. The dictionary of lemmas is readable and presents
little redundancy, two fundamental features for linguistic maintenance. But the

Version June 23, 2004

166 Symbolic Natural Language Processing

only way to exploit it computationally is to generate the list – a form with huge
redundancy – and then the DAWG. The flexibility of finite automata is essential
to this practical organization.

The main difficulties with dictionary-based lexical tagging are lexical lacu-
nae, errors and ambiguity.

Lexical lacunae, i.e. words not found in a dictionary, are practically impossi-
ble to avoid due to the continuous creation and borrowing of new words. Simple
stopgaps are applicable by taking into account the form of words: for example,
in English, a capitalized token not found in the dictionary is often a proper
noun.

Lexical errors are errors producing forms which do not belong to the vocab-
ulary of the language, e.g. coronre for coroner3. Lexical errors are impossible to
distinguish from lexical lacunae. A few frequent errors can be inserted in dictio-
naries, but text writers are so creative that this solution cannot be implemented
systematically. In order to deal with errors (find suggestions for corrections, re-
trieve lexical information about correct forms), an electronic dictionary can be
used. By looking up in an error-tolerant way, we find correct forms that are
close to the erroneous form.

Lexical ambiguity refers to the fact that many words should be assigned
distinct tags in relation to context, like fit. About half the forms in a text are
lexically ambiguous. Lexical ambiguity resolution is dealt with in section 3.2.4.

In some languages, sequences of words are written without delimiter in cer-
tain conditions, even if the sequence is not frozen. In German, ausschwimmen
“to swim out” is the concatenation of aus “out” and schwimmen “swim”. Ob-
viously, dictionary lookup has to take a special form in cases where a token
comprises several words.

Performing the lexical analysis of a text with a set of dictionaries requires
adapted software, like the open-source system Unitex. Fig. 3.6 shows the result
of the lexical analysis of an English text by Unitex. This system can also be
used for the management of the dictionaries in their different forms, and for the
operations on words that we will present in section 3.2.

3.1.5. Morphological analysis

Given a word in a written text, represented by a sequence of letters, how do you
analyse it into a sequence of underlying morphological elements? This prob-
lem is conveniently solved by the dictionary methods of the preceding section,
except when the number of morphological elements that make up words is too
large. This happens with agglutinative languages. English and other Indo-
European languages are categorized as inflected languages. A few agglutinative
languages are spoken in Europe: Turkish, Hungarian, Finnish, Basque... and
many others are from all other continents. In such languages, a word is a con-
catenation of morphological elements, usually written without delimiters4. For

3Errors can also produce words which belong to the vocabulary, like corner.
4When morphological elements are delimited by spaces, like in Sepedi, an African aggluti-

native language, the problem of recognizing their combinations is quite different.

Version June 23, 2004

3.1. From letters to words 167

Figure 3.6. Lexical analysis of an English text by Unitex.

example, the following Korean sequence, transliterated into the Latin alphabet:
manasiôs’takojocha “even that (he) met”, comprises 6 elements:
• mana “meet”
• si (honorification of grammatical subject)
• ôs’ (past)
• ta (declarative)

Version June 23, 2004

168 Symbolic Natural Language Processing

• ko “that”
• jocha “even”

and can be used in a sentence meaning “(The Professor) even (thought) that (he)
met (her yesterday)”. The form of each element can depend on its neighbors, so
each element has a canonical form or lemma and morphological variants. There
are two types of morphological elements: stems, which are lexical entries, like
“meet” in the Korean example, and grammatical affixes, like tense, mood or case
markers. Morphological analysis consists of segmenting the word and finding
the lemma and grammatical tag of each underlying morphological element. The
converse problem, morphological generation, is relevant to machine translation
in case of an agglutinative target language: words are constructed as sequences
of morphological elements, but you have to apply rules to spell the resulting
word correctly.

Finite transducers are usually convenient for representing the linguistic data
required for carrying out morphological analysis and generation. For example,
Fig. 3.7 represents a part of English morphology as if it were agglutinative.
This transducer analyses removably as the combination of three morphologi-
cal elements, remove.V, able.A and ly.ADV, and inserts plus signs in order to
delimit them. The transducer roughly respects a natural alignment between
written forms and underlying analyses. It specifies two types of information:
how written forms differ from underlying forms, and which combinations of
morphological elements are possible. Grammatical codes are assigned to mor-
phological elements: verb, adjective, tense/mood suffix, adverb. Some other
examples of words analyzed by this transducer are remove, removable, removed,
removing, accept, acceptable, acceptably, accepted, accepting, emphatic, emphati-
cally, famous and famously. The four initial states should be connected to parts
of the dictionary representing the stems that accept the suffixes represented in
the transducer.

In this toy example, it would have been simpler to make a list of all suffixed
forms with their tags. However, combinations of morphological elements are
more numerous and more regular in agglutinative languages than in English,
and they justify the use of a transducer.

Transducers of this kind obviously have to be manually constructed by lin-
guists, which implies the use of a convenient, readable graphic form, so that
errors are easily detected and maintenance is possible. A widely used set of
conventions consists in attaching labels to states and not to edges. States are
not explicitly numbered. This graphic form is sometimes called a “graph”. For
example, Fig. 3.8 shows the same transducer as Fig. 3.7 but with this presen-
tation. The expressive power is the same. When the transducer is used in an
operation on text or with another transducer, it is compiled into the more tra-
ditional form. During this compilation, states are assigned arbitrary numbers.

The main challenge with algorithmic tools for morphological processing is
the need to observe two constraints: manually constructed data must be pre-
sented in a readable form, whereas data directly used to process text must be
coded in adapted data structures. When no format is simultaneously readable
and adapted to efficient processing, the data in the readable form must be auto-

Version June 23, 2004

3.1. From letters to words 169

0 1

3

2

4 5

6 7

8 9

10

„
v

ve.V

«

„
abl

#able.A

«

„
ed

#ed.TM

«
,„

ing
#ing.TM

«
,

„
able

#able.A

«
„

y
#ly.ADV

«

„
ve

ve.V

«

„
t

t.V

«

„
abl

#able.A

«

„
ed

#ed.TM

«
,

„
ing

#ing.TM

«
,

„
able

#able.A

«

„
ic

ic.A

« „
ally

#ly.ADV

«

„
ous

ous.A

« „
ly

#ly.ADV

«

Figure 3.7. Morphological analysis in English.

matically compiled into the operation-oriented form. This organization should
not be given up as soon as operation-oriented data are available: linguistic main-
tenance, i.e. correction of errors, inclusion of new words, selection of vocabulary
for applications etc., can only be done in the readable form.

Transducers for morphological analysis are usually ambiguous. This happens
when a written word has several morphological analyses, like flatter, analyzable
as flatter.V in Advertisements flatter consumers ; and as flat.A+er.C in The
ground is flatter here. The fact that transducers are ambiguous is not a prob-
lem for linguistic description, since ambiguous transducers are as readable as
unambiguous ones. However, it can raise algorithmic problems: in general,
an ambiguous transducer cannot be traversed in an input-wise deterministic
way. In inflected languages, this problem is avoided by substituting p-sequential
transducers to ambiguous transducers, but this solution is no longer valid for
most agglutinative languages. When ambiguity affects the first element in a long
sequence of morphological elements, shifting output labels to terminal output
strings would change the natural alignment between input and output to such

Version June 23, 2004

170 Symbolic Natural Language Processing

Figure 3.8. Morphological analysis in English.

an extent that the number of states and edges of the transducer would explode.
Therefore, algorithm ToSequentialTransducer is not applicable: am-

biguous transducers have to be actually used. There are several ways of auto-
matically reducing the degree of input-wise nondeterminism of an ambiguous
transducer. We will see two methods which can be applied after the alignment
of the transducer has been tuned so as to be input-wise synchronous (see sec-
tion 3.1.1). Both methods will be exemplified on the transducer of Fig. 3.8,
which has 4 initial states. These distinct initial states encode dependencies
between stems and suffixes, as we will see in the last page of this section. For
simplicity’s sake, the stems are not included in this figure: thus, we will consider
it as a collection of 4 transducers, and artificially maintain the 4 initial states.

The first method consists in determinizing (algorithm NFAtoDFA, sec-
tion 1.3.3) and minimizing (section 1.3.4) the ambiguous transducer, consid-
ering it as an automaton over a finite alphabet X ⊂ A
 × B
. In general, the
resulting transducer is still ambiguous: distinct edges can have the same origin,
the same input label, and distinct ends, (p, a : u, q) and (p, a : v, r), but only if
their output labels u and v are distinct. The transducer of Fig. 3.9 is the result
of the application of this method to the transducer of Fig. 3.8. Applying the
resulting transducer to a word involves a variant of the nondeterministic search
of section 1.3.2 (algorithm IsAccepted), but the search is quicker than with
the original transducer, because algorithm NFAtoDFA reduces the nondeter-
minism of the transducer.

Version June 23, 2004

3.1. From letters to words 171

Figure 3.9. An ambiguous transducer determinized as an automaton.

In order to introduce the second method, we define a new generalization of
p-sequential transducers. We will allow differences between output labels of the
same path to occur at any place as long as they remain strictly local. Formally,
a generalized sequential transducer is a finite transducer with a finite set of
output labels I(i) for the initial state i, a finite set of output labels T (q) for
each terminal state q, and with the following properties:
• it has at most one initial state,
• it is input-wise synchronous,
• for each pair of edges (p, a :u, q), (p, a : v, r) with the same origin and the

same input label, q = r.
A transduction is realized by a generalized sequential transducer if and only
if it is the composition of a sequential transduction with a finite substitution.
Thus, such a transduction is not necessarily a word function: two edges can have
the same origin, the same input label, the same end and distinct output labels,
(p, a :u, q) and (p, a :v, q). However, given the input label of a path, a generalized
sequential transducer can be traversed in an input-wise deterministic way, even
if it is ambiguous.

The second method constructs a generalized sequential transducer equivalent
to the ambiguous transducer. When two edges with the same origin and the
same input label have different output labels and different ends, output labels
are shifted to adjacent edges to the right, but not necessarily until a terminal
state is reached. The condition for ceasing shifting a set of output strings to
the right is the following. Consider the set Ep,a of all edges with origin p and
input label a. Each edge e ∈ Ep,a has an output label ue ∈ B∗ and an end
qe ∈ Q. Consider the finite language Lp,a ⊂ B∗Q over the alphabet B ∪ Q
defined by Lp,a = {ueqe|e ∈ Ep,a}. If we can write Lp,a = MN with M ⊂ B∗

Version June 23, 2004

172 Symbolic Natural Language Processing

and N ⊂ B∗Q, then
• create a new state r; let r be terminal if and only if at least one of the

states qe is terminal;
• substitute a new set of edges for Ep,a: the edges (p, a :v, r) for all v ∈M ;
• shift the rest of output labels further to the right by replacing each edge

(qe, b : w, s) with the edges (r, b : xw, s) for all x ∈ N ; for each terminal
state among the states qe, substitute NT (qe) for T (qe).

There can be several ways of writing Lp,a = MN : in such a case, the longer the
elements of M , the better.

If the transduction realized by the ambiguous transducer is finite, this algo-
rithm terminates; otherwise it is not certain to terminate. If it does, we obtain
an equivalent generalized sequential transducer like that of Fig. 3.10.

Figure 3.10. A generalized sequential transducer.

Transducers for morphological analysis like those of Fig. 3.7–3.10 can be
used to produce transducers for morphological generation, by swapping input
and output. The resulting transducer can be processed with the same methods
as above in order to reduce nondeterminism.

When observable forms and underlying lemmas are very different, the de-
scription of morphology becomes complex. At the same time, it must still be

Version June 23, 2004

3.1. From letters to words 173

hand-crafted by linguists, which requires that it is made of simple, readable
parts, which are combined through some sort of compilation. For example, if
both morphological variations and combinatorial constraints are complex, they
are better described separately. Combinatorial constraints between morpho-
logical elements are described in an automaton at the underlying level, i.e. of
lemmas and grammatical codes, as in Fig. 3.11.

Figure 3.11. Combinatorial constraints between morphological elements.

Morphological changes are described in a transducer, with input at the level
of written text and output at the underlying level. This is done in Fig. 3.12,
which is more complex than Fig. 3.8, but also more general: it allows for more
combinations of suffixes, i.e. -ingly, which was not included in Fig. 3.8 because
it is not acceptable combined with remove.

How can we use these two graphs for morphological analysis? There are two
solutions. The simpler solution applies the two graphs separately. When we
apply the transducer of Fig. 3.12 to a word, we obtain, in general, an automaton.
The automaton has several paths if several analyses are possible, as with flatter.
Then when we compute the intersection of this automaton with that of Fig. 3.11,
this operation selects those analyses that obey the combinatorial constraints.
The algorithm of intersection of finite automata is based on the principle that
the set of states of the resulting automaton is the Cartesian product of the sets
of states of the input automata.

A more elaborate solution consists in performing part of the computation
in advance. The automaton of Fig. 3.11 and the transducer of Fig. 3.12 do not
depend on input text; they can be combined into the transducer of Fig. 3.8. If
the automaton recognizes a set L and the transducer realizes a relation R, the
operation consists in computing a transducer that realizes the relation R with
its output restricted to L. This can be implemented, for instance, by applying
algorithm ComposeTransducers (section 1.5) to the transducer of R and a
transducer realizing the identity of L. Note that this algorithm is a variant of

Version June 23, 2004

174 Symbolic Natural Language Processing

Figure 3.12. Morphological changes.

the algorithm of intersection of finite automata.
Morphological analysis and generation are not independent of the dictionary

of stems: combinations of stems with affixes obey compatibility constraints, e.g.
the verb fit does not combine with the suffix -able; stems undergo morphological
variations, like remove in removable. Due to such dependencies, morphological
analysis, in general, cannot be performed without vocabulary recognition. A
dictionary of stems is manually created in the form of a list of many thousands
of items and then compiled, so the interface with a transducer for morphologi-
cal analysis requires practical organization. Combinatorial constraints between
stems and affixes are represented by assigning marks to stems to indicate to
which initial states of the automaton each stem must be connected. During
compilation, the dictionary of stems and the automaton of combinatorial con-
straints are combined into an automaton. Morphological variations of stems are
taken into account in the transducer; if analogous stems behave differently in
an unpredictable way, like fit/fitted and profit/profited, marks are assigned to
stems and the transducer refers to these marks in its output. If these provisions
are taken, the operation on the automaton of constraints and the transducer of
variations can be performed as above and produces a satisfactory result.

Version June 23, 2004

3.1. From letters to words 175

In this case, the description is distributed over two data sets: an automaton
and a transducer, and the principle of the combination between them is that the
automaton is interpreted as a restriction on the output part of the transducer.

It is often convenient to structure manual description in the form of more
than two separate data sets: for example, one for the final e of verbs like remove,
another for the final e of -able, another for variations between the forms -ly, -ly,
-y of the adverbial suffix etc. This strategy can be implemented in three ways,
depending on the formal principle adopted to combine the different elements
of description: composition of transductions, intersection of transducers, and
commutative product of bimachines.

3.1.6. Composition of transductions

The simplest of these three techniques involves the composition of transductions.
Specialists in language processing usually refer to this operation by the bucolic
term “cascade”. The principle is simple. The data for morphological analysis or
generation consists of a specification of a transduction between input strings and
output strings. This transduction can be specified with several transducers. The
first transducer is applied to input strings, the next transducer to the output of
the first, and so on. The global transduction is defined as the composition of
all the transductions realized by the respective transducers.

For example, Fig. 3.8 is equivalent to the composition of the transductions
specified by Figs. 3.13–3.16. Fig. 3.13 delimits and tags morphological elements,

Figure 3.13. A cascade: first transducer.

but does not substitute canonical forms for variants. Fig. 3.14 inserts the final

Version June 23, 2004

176 Symbolic Natural Language Processing

e of the canonical form of remove. In Fig. 3.14, the input label @ stands for

Figure 3.14. A cascade: second transducer.

a default input symbol: it matches the next input symbol if, at this point of
the transducer, no other symbol matches. The output label @ means an output
symbol identical to the corresponding input symbol. Fig. 3.15 inserts the final
e of the canonical form of -able. Fig. 3.16 assigns the canonical form to the

Figure 3.15. A cascade: third transducer.

variants of the adverbial suffix -ly.

Figure 3.16. A cascade: fourth transducer.

Version June 23, 2004

3.1. From letters to words 177

During the application of a transducer, the input string is segmented accord-
ing to the input labels of the transducer, and the output string is a concatenation
of output labels. When transducers are applied as a cascade, the segmentation
of the output string of a transducer is not necessarily identical to the segmen-
tation induced by the application of the next. The global transduction is not
changed if we modify the alignment of one of the transducers, provided that it
realizes the same transduction.

As an alternative to applying several transducers in sequence, one can pre-
compute an equivalent transducer by algorithm ComposeTransducers, but
the application of the resulting transducer is not necessarily quicker, depending
on the number, size and features of the original transducers.

The principle of composition of rules was implemented for the first time in...
the 5th century B.C., in Panini’s Sanskrit grammar, in order to define Sanskrit
spelling, given that the form of each element depends on its neighbors.

Composition of relations is not a commutative operation. In our example of a
cascade, the transductions of Figs. 3.14–3.16 can be permuted without changing
the result of the composition, but they must be applied after Fig. 3.13, because
they use the boundaries of morphological elements in their input, and these
boundaries are inserted by the transduction of Fig. 3.13. In general, simple
transductions read and write only in a few regions of a string, but interactions
between different transductions are observed when they happen to read or write
in the same region.

The principle of defining a few levels in a determined order between the
global input level and the global output level is often natural and convenient.
The alphabet of each intermediate level is a subset of A ∪B. In morphological
generation, the level of underlying morphological elements may have something
to do with a previous state of the language, the sequence of levels being con-
nected to successive periods of time in the history of language changes.

However, in a language with complex morphological variations represented
by dozens of rules, the exclusive use of composition involves dozens of ordered
levels. This complicates the task of the linguist, because he has to form a mental
image of each level and of their ordering.

Intuitively, when two morphological rules are sufficiently simple and unre-
lated, one feels that it should be possible to implement them independently,
without even determining in which order they apply: hence the term “simul-
taneous combination”. In spite of this intuition, rules cannot be formalized
without specifying how they are interpreted in case of an overlap between the
application sites of several rules (or even of the same rule): if rules apply to
two sites uv and vw, the value of v taken into account for uvw can involve the
input or the output level, or both. Various formal ways of combining formal
rules have been investigated. Two main forms of simultaneous combination are
presently in use.

Version June 23, 2004

178 Symbolic Natural Language Processing

3.1.7. Intersection of transducers

The intersection of finite transducers can be used to specify and implement mor-
phological analysis and generation. The alignment between input and output
strings is an essential element of this model. This alignment must be literal,
i.e. each individual input or output symbol must be aligned either with a single
symbol or with ε. Several alignments are usually acceptable, e.g.(

u
u

)(
s
s

)(
ε
e

)(
ε
.V

)(
ε
#

)(
e
e

)(
d
d

)(
ε

.TM

)
and (

u
u

)(
s
s

)(
e
e

)(
ε
.V

)(
ε
#

)(
ε
e

)(
d
d

)(
ε

.TM

)
but one must be chosen arbitrarily.

Formally, an alignment over A and B is a subset of the free monoid X∗,
where X is a finite subset of A
×B
. An alignment is literal if it is a subset of
((A | ε)× (B | ε))∗.

The alignment is determined in order to specify explicitly the set of all pairs
(u :v) ∈ (A | ε)×(B | ε) that will be allowed in aligned input/output pairs for all
words of the language. Since all elements in the alignment will be concatenations
of elements in this set, we can call it X . In the English example above, this set
can comprise letters copied to output:(

v
v

)
,

(
e
e

)
,

(
d
d

)
,

(
i
i

)
,

(
n
n

)
,

(
g
g

)
,

(
a
a

)
,

(
b
b

)
,

(
l
l

)
,

(
t
t

)
,

(
c
c

)
,

(
y
y

)
,

(
o
o

)
,

(
u
u

)
,

(
s
s

)
,

plus a few insertions:(
ε
e

)
,

(
ε
.V

)
,

(
ε
#

)
,

(
ε

.TM

)
,

(
ε
.A

)
,

(
ε
l

)
,

(
ε

.ADV

)
,

and two deletions of letters: (
a
#

)
,

(
l
ε

)
The set of aligned input/output pairs for all words of the language is viewed as
a language over the alphabet X . This language is specified as the intersection
of several regular languages. Each of these languages expresses a constraint
that all input/output pairs must obey, and the intersection of the languages
is the set of pairs that obey simultaneously all the constraints. Since these
regular languages share the same alphabet X ⊂ A∗ ×B∗, they can be specified
by transducers over A and B. For example, the transducers in Figs. 3.17–3.20
specify necessary conditions of occurrence for some of the elements of X . In
Fig. 3.17, the label @ denotes a default symbol. It matches the next member
of X if and only if no other label explicitly present at this point of the graph

Version June 23, 2004

3.1. From letters to words 179

Figure 3.17. Conditions of occurrence of (ε :#).

does. One of the states has no outgoing edge and is not terminal: it is a sink
state which is used to rule out the occurrence of (ε :#) when it is not preceded
by (ε : .A) or (ε : .V).

Figure 3.18. Conditions of occurrence of (ε :e).

In order to be complete, we should add transducers to specify the conditions

Version June 23, 2004

180 Symbolic Natural Language Processing

Figure 3.19. Conditions of occurrence of (ε : l).

Figure 3.20. Conditions of occurrence of (a :#) and (l :ε).

of occurrence of (ε : .V), (ε : .TM), (ε : .A) and (ε : .ADV).
The intersection of transducers is computed with the algorithm of intersec-

tion of automata, considering transducers as automata over X . The resulting
transducer checks all the constraints simultaneously. This operation of inter-
section of transducers is equivalent to the intersection of languages in the free
monoid X
, but not to the intersection of relations in A
 × B
, because the
intersection of relations does not take into account alignment. (In addition, an
intersection of regular relations is not necessarily regular.)

As opposed to the framework of composition of transductions, all the trans-
ducers describe correspondences between the same input level and the same
output level. This is why this model is called “two-level morphology”. Composi-
tion of transductions and intersection of transducers are orthogonal formalisms,
and they can be combined: several batches of two-level rules are composed in a
definite order.

Two-level constraints expressed as transducers are hardly readable, and ex-
pressing them as regular expressions over X would be even more difficult and
error-prone. In order to solve this problem of readability, specialists in two-
level morphology have designed an additional level of compilation. Rules are
expressed in a special formalism and compiled into transducers. These trans-

Version June 23, 2004

3.1. From letters to words 181

ducers are then intersected together. The formalism of expression of two-level
rules involves logical operations and regular expressions over X . For example,
the following rule is equivalent to Fig. 3.17:(

ε
#

)
=⇒

((
ε
.A

)
|
(

ε
.V

)) ((
a
a

)(
b
b

)(
l
l

)(
ε
e

)(
ε
.A

))∗

(((
e
e

)(
d
d

)
|
(

i
i

)(
n
n

)(
g
g

))(
ε

.TM

)
|
(

a
a

)(
b
b

)(
l
l

)(
e
e

)(
ε
.A

)
|((

l
l

)
|
(

ε
l

))(
y
y

)(
ε

.ADV

))
This type of rule is more readable than a transducer, because it is structured
in three separate parts: the symbol involved in the rule, here (ε : #), the left
context (before), and the right context.

In this model, input and output are completely symmetrical: the same de-
scription is adapted for morphological analysis and generation.

3.1.8. Commutative product of bimachines

A bimachine is structured in three parts:
• a description of the left context required for the rule to apply,
• a similar description of the right context, and
• a mapping table that specifies a context-dependent mapping of input sym-

bols to output symbols.
As opposed to two-level rules, left and right context are described only at input
level. Fig. 3.21 is a representation of a bimachine that generates the variant
-ally of the adverbial suffix -ly in emphatically.

0 1 2 3 4 5 6 7

@ i @.ADV

i c

@ i

@

.A

@

i

.ADVy

@.ADV

@

l

@

.ADV

states: 4 5, 6, 7

0, 1, 2 @:@ @:@

3
#:al
@:@

@:@

Figure 3.21. Bimachine generating the variant -ally of the adverbial suffix -ly.

In this figure, the automaton on the left represents the left context and
recognizes occurrences of the sequence ic.A. Whenever this sequence occurs,
the automaton enters state 3. In the automaton, the label @ represents a

Version June 23, 2004

182 Symbolic Natural Language Processing

default symbol: it matches the next input symbol if no other label at this
point of the automaton does. The automaton on the right similarly recognizes
occurrences of ly.ADV, but from right to left. Whenever this sequence occurs,
the automaton enters state 4. The table specifies the mapping of input symbols
to output symbols. The alphabets A and B have a nonempty common subset.
In the table, @:@ represents a default mapping: any input symbol not explicitly
specified in the table is mapped onto itself. The symbol # is mapped to al when
its left and right context is such that the respective automata are in states 3
and 4, i.e. when it is preceded by ic.A and followed by ly.ADV. Other symbols
in such a context, and all symbols in other contexts, are copied to output.
Thus, the bimachine maps occurrences of ic.A#ly.ADV to ic.Aally.ADV and
leaves everything else unchanged. The input/output alignment that underlies
the bimachine is always input-wise synchronous.

Formally, a bimachine over alphabets A and B is defined by

• two deterministic automata over A; let
→
Q and

←
Q be the sets of states of the

two automata; the distinction between terminal vs. non-terminal states is
not significant;

• a function γ :
→
Q ×A×

←
Q −→ B∗, which is equivalent to the mapping table

in Fig. 3.21.
The transduction realized by a bimachine is defined as follows. One performs
a search in the left automaton controlled by the input word u = u1u2 · · ·un. If
this search is possible right until the end of the word, a sequence

→
q0

→
q1 · · ·

→
qn

of states of the left automaton is encountered, where
→
q0 is the initial state. A

similar search in the right automaton is controlled by un · · ·u2u1. If the search
can be completed too, states

←
qn · · ·

←
q1

←
q0 of the right automaton are encountered,

where
←
qn is the initial state.

The output string for the symbol ui of u is γ(
→

qi−1, ui,
←
qi) and the output for

u is the concatenation of these output strings. If one of the searches could not
be completed, or if one of the output strings for the letters is undefined, then
the output for u is undefined.

A transduction is realized by a bimachine if and only if it is regular and a
function.

The use of bimachines for specifying and implementing morphological anal-
ysis or generation requires that they can be combined to form complete descrip-
tions. In the mapping table of Fig. 3.21, the default pair @:@ occurs in all four
cases; the bimachine specifies an output string for some occurrences of #, and
copies all other occurrences of input symbols. We will say that the bimachine
“applies” to these occurrences of #, and “does not apply” to other occurrences
of input symbols. In morphology, separate rules belonging to the same descrip-
tion are complementary in so far as they do not “apply” to the same occurrences
of input symbols. This idea can be used to define a notion of combination of
bimachines over the same alphabets A and B.

Formally, we say that a bimachine “applies” to an input symbol a in a
given context, represented by two states

→
q and

←
q , if and only if γ(

→
q , a,

←
q)

either is undefined or is not equal to a. It “does not apply” if and only if

Version June 23, 2004

3.1. From letters to words 183

γ(
→
q , a,

←
q) = a. If two bimachines never apply to the same symbol in the same

input sequence, a new bimachine over the same input and output alphabets A
and B can be defined so that the output for a given input symbol is specified
by the bimachine that applies. The output is a copy of the input symbol if
none of them applies. (Each automaton of the new bimachine is constructed
from the corresponding automata of the two bimachines, with the algorithm of
intersection of automata.) This operation on bimachines is commutative and
associative; its neutral element is a bimachine that realizes the identity of A.
We call this operation “commutative product”.

The commutative product of a finite number of bimachines is defined if and
only if it is defined for any two of them.

With this operation, linguists can manually construct separate bimachines,
or rules, and combine them. These manually constructed rules must also be
readable. This can be achieved by ensuring that the rules are presented accord-
ing to the following conventions and have the following properties.
• Final states are specified in the two automata. The content of the mapping

table does not depend on the particular states reached when exploring the
context, but only on whether these states are terminal or not. For example,
in Fig. 3.21, states 3 and 4 would be specified as terminal.

• In the mapping table, whenever at least one of the two states represent-
ing the context is non-terminal, input symbols are automatically copied
to output, as in Fig. 3.21. When both states are terminal, only the in-
put/output pairs for which the output string is different from the input
symbol are specified. Let I be the set of input symbols that occur in the
input part of these pairs: if both states are terminal and the input symbol
is in I, the rule applies; otherwise, it does not apply and input is copied
to output.

• The languages recognized by the two automata are of the form A∗L and
A∗R, as in Fig. 3.21. Therefore, it suffices to specify L and R; automata
for A∗L and A∗R can be automatically computed. In addition, the mirror
image of R is specified instead of R itself, for the sake of readability.

The bimachine of Fig. 3.21 has these properties and is represented with these
conventions in Fig. 3.22.

Figure 3.22. The bimachine of Fig. 3.21 with the conventions for man-
ually constructed rules.

This figure represents L, R and the input/output pairs for which the rule
applies. These three parts are separated by the states labeled ∧.

The commutative product of two rules is defined if and only if A∗L1∩A∗L2,
A∗R1 ∩ A∗R2 and I1 ∩ I2 are not simultaneously nonempty. This condition is

Version June 23, 2004

184 Symbolic Natural Language Processing

tested automatically on all pairs in a set of rules written to be combined by
commutative product. If the three intersections are simultaneously nonempty
for a pair of rules, the linguist is provided with the set of left contexts, right
contexts and input symbols for which the two rules conflict, and he/she can
modify them in order to resolve the conflict. (A hierarchy or priorities between
rules would theoretically be possible but would probably make the system more
complex and its maintenance more difficult.)

The advantages of bimachines for specifying and implementing morphologi-
cal analysis and generation are their readability and the fact that only differences
between input and output need to be specified.

Bimachines are equivalent to regular word functions and, in principle, cannot
represent ambiguous transitions. They have to be adapted in order to allow for
limited variations in output. Take, for example, the generation of the preterite
of dream: for a unique underlying form, dream.V#ed.TM, where #ed.TM is
an underlying tense/mood suffix, there are two written variants: dreamed and
dreamt. Such variations are limited; in agglutinative languages, they can oc-
cur at any point of a word, not necessarily just at the end. This problem is
easily solved in the same way as we did for minimizing ambiguous transducers
in section 3.1.5: by composition with finite substitutions. Bimachines realize
transductions; several of these transductions can be composed in a definite order
together or with finite substitutions.

In the example of dream.V#ed.TM, the two variants can be generated by
introducing 3 new symbols 1, 2 and 3, and
• a bimachine that produces dream.V#1ed.TM,
• a finite substitution producing dream.V#2ed.TM and dream.V#3ed.TM,

and
• a second bimachine that outputs dreamed for dream.V#2ed.TM and the

variant dreamt for dream.V#3ed.TM.
However, a bimachine is an essentially deterministic formalism. It is ade-

quate for the direct description of morphological generation, because the under-
lying level is more informative and less ambiguous than the level of written text:
thus, for an input string at the level of underlying morphological elements, there
will often be a unique output string or limited variations in output. For instance,
flatter has two representations at the underlying level, but one spelling.

It is possible to do morphological analysis with bimachines, but one has
to carry out linguistic description for morphological generation, and automati-
cally derive morphological analysis from it. The method consists in compiling
each bimachine (or commutative product of bimachines) into a transducer, and
swapping input and output in the transducer. During the compilation of a bi-
machine into a transducer, the set of states of the transducer is constructed as
the Cartesian product of the sets of states of the two automata.

3.1.9. Phonetic variations

Morphological analysis and generation of written text have an equivalent for
speech: analysis and generation of phonetic forms. Phonetic forms are repre-

Version June 23, 2004

3.1. From letters to words 185

sented by strings of phonetic symbols. They describe how words are pronounced,
taking into account contextual variants and free variants. An example of contex-
tual phonetic variation in British English is the pronunciation of more, with r in
more ice and without in more tea. Free variation is exemplified by can which can
be either stressed or reduced in He can see. The input of analysis is thus a pho-
netic representation of speech. The output is some underlying representation of
pronunciation, which is either conventional spelling, or a specific representation
if additional information is needed, such as grammatical information.

The analysis of phonetic forms is useful for speech recognition. Their gen-
eration is useful for speech synthesis. A combination of both is a method for
spelling correction: generate the pronunciation(s) of a misspelled word, then
analyze the phonetic forms obtained.

A difference between phonetic processing and morphological processing is
that a text can usually be pronounced in many ways, whereas spelling is much
more standardized. In other aspects, the analysis and generation of phonetic
forms is similar to morphological analysis and generation. The computational
notions and tools involved are essentially the same.

The complexity of the task depends on the writing systems of languages.
When all information needed to deduce phonetic strings, including informa-
tion about phonetic variants, is encoded in spelling, then phonetic forms can
be derived from written text without any recognition of the vocabulary. This
is approximately the case of Spanish. Most Spanish words can be converted
to phonetic strings by transducers, two-level rules or bimachines that do not
comprise lexical information. Fig. 3.23 converts the letter c into the phonetic
symbol θ before the vowels e and i.

θ

Figure 3.23. A phonetic conversion rule in Spanish.

In most of other languages, spelling is ambiguous: the pronunciation of a
sequence of letters depends on the word in which it occurs in an unpredictable
way. For example, ea between consonants is pronounced differently in bead,
head, beatific, creation, react ; in read, the pronunciation depends on the gram-
matical tense of the verb; in lead, it depends on the part of speech of the word:
noun or verb. Due to such dependencies, which are most frequent in English
and in French, phonetic forms cannot be generated from written texts accurately
without vocabulary recognition. In other words, phonetic conversion requires a
dictionary, which can be implemented in the form of a transducer and adapted
for quick lookup into a generalized sequential transducer like that of Fig. 3.10.

Version June 23, 2004

186 Symbolic Natural Language Processing

However, even in languages with a disorderly writing system like English
or French, the construction of such a dictionary can be partially automated.
Transducers, two-level rules or bimachines can be used to produce tentative
phonetic forms which have to be reviewed and validated or corrected by linguists.

A transducer that recognizes the vocabulary of a language is larger than a
transducer that does not. They also differ in the way they delete word bound-
aries. In many languages, words are delimited in written text; they are not in
phonetic strings, because speech is continuous and there is no audible evidence
that a word ends and the next begins. In a transducer that recognizes the
vocabulary, edges that delete word boundaries, e.g. edges labelled (# : ε), can
be associated with ends of words. When the transducer is reversed by swap-
ping input and output, the resulting transducer not only converts phonetics
into spelling but also delimits words. The same cannot be done in a transducer
that does not recognize vocabulary: since certain edge(s) erase word boundaries
independently of context, the reversed transducer will generate optional word
boundaries everywhere.

Phonetic strings are usually very ambiguous, and the result of their analysis
consists of several hypotheses with different word delimitation, as in Fig. 3.24.

Figure 3.24. Acyclic automaton of the analyses of a phonetic form.

The result of the analysis of ambiguous input is naturally represented in
an acyclic automaton like that of Fig. 3.24. We will call it an automaton of
analyses, because it represents a set of mutually exclusive analyses. In language
engineering, most specialists call such an automaton a “lattice”5. The output of
a purely acoustic-to-phonetic phase of speech recognition is also an automaton
of analyses: a segment of speech signal, i.e. the equivalent of a vowel or a
consonant in acoustic signal, cannot always be definitely identified as a single
phone (phonetic segment).

5This term has a precise mathematical meaning: an ordered set where each pair has a
greatest lower bound and a least upper bound. As a matter of fact, in an acyclic graph, edges
induce an ordering among the set of states. But the ordered set of states of an acyclic graph is
not necessarily a lattice in the mathematical sense. In the acyclic automaton of Fig. 3.24, for
instance, cut has no greatest lower bound and new has no least upper bound. Consequently
we will avoid using the term “lattice” for denoting automata of analyses.

Version June 23, 2004

3.2. From words to sentences 187

3.1.10. Weighted automata

The notions of automata and transducers exemplified in the preceding sections
can be extended to weighted automata and transducers. In a weighted automa-
ton, each transition has a weight which is an element of a semiring K; the set of
terminal states is replaced with a terminal weight function from the set of states
to K. The weight of a path is the product of the weights of its transitions. A
Markov chain is a particular case of a weighted automaton.

In such models, weights approximate probabilities of occurrence of symbols
in certain contexts, and the semiring is often R+. For example, in an automaton
of analyses which contains phones recognized in a speech signal, weights can be
assigned to each transition in order to represent the plausibility of the phone
given the acoustic signal. The weighted automaton is exploited by selecting the
path that maximizes the product of the weights.

Another example can be derived from Fig. 3.11: the plausibility of occurrence
of a morphological element after a given left context could be added to this figure
by assigning weights to boxes. The only known method of setting the value of
these weights is based on statistics about occurrences of symbols or sequences
in a sample of texts, a learning corpus.

Weighted automata are also used to compensate for the lack of accurate
linguistic data. Weights are assigned to transitions in function of observable
hints as to the occurrence of specific linguistic elements. During the analysis of
a text, the weights are used to recognize those elements. For example, an initial
uppercase letter is a hint of a proper name; the word ending -ly is a hint of an
adverb like shyly. Weights are derived from statistics computed in a learning
corpus. Results are inferior to those obtained with word lists of sufficient lexical
coverage, e.g. lists of proper names or of adverbs: for instance, bodily ends in
-ly but is usually an adjective. Word lists tend to be more and more used, but
the two approaches are complementary, and the weighted-automaton method
can make systems more robust when sufficiently extensive word lists are not
available.

3.2. From words to sentences

3.2.1. Engineering approaches

The simplest model of the meaning of a text is the “word bag” model. Each
word in the text represents an element of meaning, and the meaning of the text
is represented by the set of the words that occur at least once in the text. The
number of occurrences is usually attached to each word. The “word bag” model
is used to perform tasks like content-based classification and indexation.

In order to implement the same tasks in a more elaborate way, or to im-
plement other tasks, the sequential order of words must be taken into account.
Translation is an example of an operation for which word order is obviously
relevant: in many target languages, The fly flies and The flies fly should be
translated differently. A model of text for which not only the value of words,

Version June 23, 2004

188 Symbolic Natural Language Processing

but also their order, is relevant can be called a syntactic model. The formal and
algorithmic tools involved in such a model depend entirely on the form of the
linguistic data required. The most rational approach consists in constructing
and using data similar to those mentioned in sections 3.1.4 to 3.1.9, but spec-
ifying ordered combinations of words. These data take the form of manually
constructed lists or automata; some of them are automatically compiled into
forms more adapted to computational operations. This approach is a long-term
one. The stage of manual construction of linguistic data implies even more skill
and effort than in the examples of section 3.1 (From letters to words), basically
because there are many more words than letters. In addition, engineers feel
uneasy with such data, that are largely outside their domain of competence;
linguists feel uneasy with the necessary formal encoding; and little of the task
can be automated. A consequence of this situation is a lack of linguistic re-
sources that has been widely recognized, since 1990, as a major bottleneck in
the development of language processing.

In order to avoid such work, alternative engineering techniques have been
implemented and have had a dramatic development in recent years. The com-
monest of these techniques rely on weighted automata. (They are the most pop-
ular techniques based on weighted automata in language processing.) Weighted
automata can be used to approximate various aspects of the grammar and syn-
tax of languages: they can, for instance, guess at the part of speech of a word if
the parts of speech of neighboring words are known. Weights are automatically
derived from statistics about occurrences of symbols or sequences in a sample of
texts, the learning corpus. The idea is similar to that with adverbs in -ly in sec-
tion 3.1.10, but works even less well, for the same reason: there are more words
than letters; there is a higher degree of complexity. As a matter of fact, in com-
plex applications like translation and continuous speech recognition, results are
still disappointing. Algorithms are well-known, but weights must be learnt for
all words, and the only way of obtaining weights producing satisfactory results
implies
• numerous occurrences of each word; therefore very large learning corpora

(cf. section 3.1.1 about Zipf’s law),
• statistics about sufficiently large contexts,
• sufficiently fine-grained tag sets.

The first constraint correctly predicts that if the learning corpus is too small,
results are inadequate. When the size of the learning corpus increases, perfor-
mances usually reach a maximum which is the best possible approximation in
this framework. The last two constraints would lead to an explosion of the size
of weighted automata and computational complexity. In practice, implementa-
tions of this method require considerable simplification of fundamental objects
of the model: there is no serious attempt at processing compound words or
ambiguity; the size of contexts is limited to two words to the left, and the size
of tag sets to a few dozen tags, which is less than the tags et of Fig. 3.3. Fi-
nally, taking into consideration the third constraint would increase the cost of
the manual tagging of the learning corpus, or require resorting to automatic
tagging, with a corresponding output of inferior quality.

Version June 23, 2004

3.2. From words to sentences 189

Resorting to such statistical approximations of grammar, syntax and the
lexicon of languages is natural in so far as sufficiently accurate and comprehen-
sive data seem out of reach. However, this is a short-term approach: it does not
contribute to the enhancement of knowledge in these areas, and the technologies
required for gathering exploitable and maintainable linguistic data have little
in common with example-based learning. We can draw a parallel with mete-
orology: future weather depends on future physical data, or on physical data
all around the world, including in marine areas where they are not measured
with sufficient accuracy and frequency. Thus, weather is forecast on the basis
of statistics about examples of past observations. However, designing weather
forecast programs does not contribute to the advance of thermodynamics.

We will now turn to the linguistic approach. In order to relate formal notions
with applications, we will refer primarily to translation, which is not a success-
fully automated operation yet, but which involves many of the basic operations
in language processing.

3.2.2. Pattern definition and matching

Defining and matching patterns are two of these basic operations. In order
to be able to translate a technical term like microwave oven, we must have
a description of it, a method to locate occurrences in texts, and a link to a
translation. The methods of description and location of such linguistic forms
must take into account the existence of variants like the plural, microwave ovens,
and possibly abbreviations like MWO if they are in use in relevant source texts.
Thus, many linguistic forms are in fact sets of variants, and the actual form of
all variants cannot always be computed from a canonical form. For example, the
abbreviation MWO cannot be predicted from microwave oven by capitalizing
initials, which would yield MO; the equivalence between MWO and the full
form cannot be automatically inferred, even if the acronym occurs in a sample
of source texts, because an explicit link between them, like microwave oven
(MWO), may be absent and, if present, would be ambiguous; etc. Thus the set
of equivalent variants must often be manually constructed by linguists who are
familiar with the field – a category of population which is often hard to find.

We can associate in a natural way microwave oven and its variants in the
finite automaton of Fig. 3.25. When several lines are included in the same state,
like oven and ovens here, they label parallel paths.

This type of automaton is more usual when there are more variants than with
microwave oven. It is also used when the forms described are not equivalent, but
constitute a small system which follows specific rules instead of general grammar
rules of the language (Fig. 3.26). Such a system is called a local grammar.

In very restricted domains, the vocabulary and the syntactic constructions
used in actual texts can be so stereotyped that all variability can be described
in this form. This is the case of short stock exchange reports, weather forecast
reports, sport scores etc. Local grammars can be used for translation, but this
implies linking two monolingual local grammars together, one for the source
language and another for the target language. Individual phrases of a grammar

Version June 23, 2004

190 Symbolic Natural Language Processing

Figure 3.25. Definition of a simple linguistic pattern.

Figure 3.26. A local grammar.

must be specifically linked with phrases of the other, because they are not
equivalent.

Finite automata defining linguistic patterns can be used to locate occur-
rences of the patterns in texts. When automata are as small as in the pre-
ceding instances, simple algorithms are sufficient: automata are compiled into
the more traditional format with labelled edges and numbered states; they are
determinized; they are matched against each point of the text.

A local grammar can be a representation of a subject of interest for a user
in a text, for example one or several particular types of microwave ovens. In
such a case, the local grammar can be used for text filtering, indexing and
classification. Weights can be assigned to transitions in order to indicate the
relevancy of paths with respect to the user’s interest.

Comprehensive descriptions accounting for general language can reach im-

Version June 23, 2004

3.2. From words to sentences 191

pressive sizes. A complete grammar of dates, including informal dates, e.g.
before Christmas, recognizes thousands of sequences. To be readable, such a
description is necessarily organized into several automata. ¿From the formal
point of view, the principle of such an organization is simple: a general finite
automaton invokes sub-automata by special labels. Sub-automata, in turn, can
equally invoke other sub-automata. Recursiveness may be allowed or not. In
Fig. 3.27, the general automaton for numbers from 1 to 999 written in letters

Figure 3.27. An automaton invokes another.

invokes the automaton for numbers from 1 to 99. The label for the second au-
tomaton is shown in grey. The use of labels for automata facilitates linguistic
description for another reason: the same automaton can be invoked from several
points and thus shared. Invoking an automaton via a label is thus equivalent
to substituting it for the label. With patterns like terms, dates or numbers,
invocations usually do not make up cycles: actual substitution is theoretically

Version June 23, 2004

192 Symbolic Natural Language Processing

possible; it makes the set of automata equivalent to one finite automaton. How-
ever, with large grammars, actual substitution can lead to an explosion in size.
For example, M. Gross’s grammar of dates in French, which is organized into
about 100 automata, becomes a 50-Mb automaton if sub-automata are system-
atically substituted. In the case of large grammars, the algorithms for locating
occurrences in texts efficiently are therefore different: sub-automata are kept
distinct and the matching algorithm is nondeterministic.

If cycles of invocations are allowed, the language recognized by the set of
automata can be defined by reference to an equivalent context-free grammar
(cf. section 1.6). The labels invoking sub-automata are the counterparts of
variables, including the label of the general automaton which corresponds to
the axiom of the grammar. Each of the automata is translated into a finite
number of productions of the grammar. Such a set of automata is called a
“recursive transition network” (RTN).

3.2.3. Parsing

If we consider more and more complex local grammars, we reach a point where
the identification of a linguistic form depends on the identification of free con-
stituents. Free constituents are syntactic constructs, like sentences or noun
phrases, which involve open categories, like verbs or nouns, in their content. For
example, recognizing the phrase take into account may imply identifying:
• its subject, which cannot be any noun, e.g. not air, and
• its free complement, which can occur before or after into account.

Both are free constituents. The subject is a noun phrase, which comprises at
least an open category, a noun. The free complement can be a noun phrase or a
sentential clause: Max took into account that Mary was early. The identification
of these free and frozen constituents is required for complex applications like
translation.

Several features of RTNs make them adequate for the formal description of
such phrases.
• Free constituents can be represented by labels invoking other parts

of the grammar. In the example of take into account, these labels will
represent types of noun phrases, of sentences and of sentential clauses.
Obviously, the labels are reusable from other points of the grammar, be-
cause other phrases or verbs will accept the same types of subjects or of
complements.

• Small lexical variations and alternative constructions are described in par-
allel paths of the automata, as in Fig. 3.28.

• Recursiveness can be used for embeddings between syntactic constructs.
In the example of Fig. 3.28, the phrase and the free constituents around
it make up a sentence; the label S included in the automaton represents
sentences. Thus, the rule is recursive.

A large variety of syntactic constructions in natural languages can be ex-
pressed in that way. A complete description of take into account, for example,
should include passive, interrogative forms etc., and would be much larger than

Version June 23, 2004

3.2. From words to sentences 193

Figure 3.28. A sample of a grammar of take into account.

this figure. In addition, the number of grammatical constructions in a language
is in some way multiplied by the size of the lexicon, since different words do not
enter into the same grammatical constructions. However, the construction of
large grammars for thousands of phrases and verbs can be partially automated.
General grammars are manually constructed in the form of parameterized RTNs,
then they are adapted to specific lexical items like take into account by setting
the values of the parameters. These values are encoded for each lexical item
in tables of syntactic properties. A large proportion of the parameters must be
at the level of specific lexical items, and not of classes of items (e.g. transitive
verbs), because syntactic properties are incredibly dependent on actual lexical
items.

Here are two examples of open problems in the construction of grammars6:
selectional constraints between predicates (i.e. verbs, nouns and adjectives) and
their arguments (i.e. subject and essential complements):

(Max + *The air) took into account that Mary was early

and selectional constraints between predicates and adverbs:

Max took the delay into account (last time + *by plane)

Present grammars either overgenerate or undergenerate when such constraints
come into play.

Even so, the construction of grammars of natural languages in the form of
RTNs now appears to be within reach.

This situation provides partial answers for a classical controversy about the
most popular two formal models of syntax: finite automata and context-free
grammars. The issue of the adequacy of these two models dates back to the
time of their actual definition and is still going on. Infrequent constructions have
been used to argue that both were inadequate, but they can be conveniently
dealt with as exceptions. ¿From 1960 to 1990, the folklore of the domain held
that it was reasonable practice to use context-free grammars, and a heresy to
use automata. Since then, investigation results suggested that the RTN model,
which is equivalent to grammars but relies heavily on the automaton form, is

6In the next two examples, the star * marks that a sequence is not acceptable as a sentence.

Version June 23, 2004

194 Symbolic Natural Language Processing

convenient for the manual description of syntax as well as for automatic pars-
ing. It is an open question as to whether the non-recursive counterpart of RTNs,
which is equivalent to finite automata, will be better. Recursiveness can surely
be eliminated from RTNs through an automatic compilation process, by sub-
stituting cycles for terminal embeddings and by limiting central embeddings to
a fixed maximal depth. But even without recursiveness, RTN-based parsing is
not necessarily more similar to automaton-based parsing than context-free pars-
ing. . . In any case, the issue now appears less theoretical than computational.

3.2.4. Lexical ambiguity reduction

We mentioned lexical tagging in section 3.1.4. This operation consists of as-
signing tags to words. Word tags record linguistic information. Lexical tagging
is not an application in itself, since word tags contain encoded information not
directly exploitable by users. However, lexical tagging is required for enhancing
the results of nearly all operations on texts: translation, spelling correction, lo-
cation of index terms etc. Section 3.1.4 shows how dictionary lookup contributes
to lexical tagging, but many words should be assigned distinct tags in relation
to context, like record, a noun or a verb. Such forms are said to be lexically
ambiguous. Syntactic parsing often resolves all lexical ambiguity. Sentences like
the following are rare:

The newspapers found out some record

This ambiguous sentence has two syntactic analyses: some record is a noun
phrase or a sentential clause, and record is accordingly a noun or a verb.

Syntactic parsing is not a mature technique yet, and there is a need for
procedures that can work without complete syntactic grammars of languages,
even if they resolve less lexical ambiguity than syntactic parsing.

Such a procedure can be designed on the following basis. After dictionary
lookup, a text can be represented as an acyclic automaton of analyses like that
of Fig. 3.29. Syntactic constraints can be represented as an automaton over the

Figure 3.29. The automaton of analyses of though a good deal soiled.

same alphabet. Fig. 3.30 states that when the word good is a noun, it cannot

Version June 23, 2004

3.2. From words to sentences 195

follow the indefinite determiner a. The label @ stands for a default symbol:

Figure 3.30. An automaton stating a syntactic constraint.

it matches the next input symbol if, at this point of the automaton, no other
symbol matches. The intersection of the two automata is shown in Fig. 3.31; it

Figure 3.31. The intersection of the two automata.

represents those analyses of the text that obey the constraints. The intersection
of two automata is an automaton that recognizes the intersection of the two
languages recognized. It is constructed by a simple algorithm. Different syn-
tactic constraints can be represented by different automata: since intersection
is associative and commutative, the automata can be intersected in any order
without changing the result. Thus, various syntactic constraints can be for-
malized independently and accumulated in order to reduce progressively more
lexical ambiguity. However, this approach needs a convenient interface to allow
linguists to express the constraints in the form of automata. Automata like that
of Fig. 3.30 can be directly constructed only in very simple cases.

An alternative approach combines dictionary lookup and ambiguity resolu-
tion in another way. It considers that the relevant data are (i) the probability
for a given word to occur with a given tag, and (ii) the probability of occurrence
of a sequence of words (or tags). Such probabilities are estimated on the basis of
statistics in a tagged corpus. The resulting values are inserted into a weighted
automaton to make up a model of language. This technique has been applied

Version June 23, 2004

196 Symbolic Natural Language Processing

to small tag sets, and the possibility of tagging compound words has not been
seriously investigated.

Notes

The notion of formal model in linguistics emerged progressively. We will men-
tion a few milestones on this path. During the first half of the twentieth century,
Saussure stated clearly that language is a system and that form/meaning as-
sociations are arbitrary. This was a first step towards the separation between
syntax and semantics. The translation of this idea into practice owes much to
the study of native American languages by Sapir 1921. During the second half
of the century, Harris incorporated the information aspect into the study of the
forms of language. In particular, he introduced the notion of transformation
(Harris 1952, Harris 1970). Gross 1975, Gross 1979 originated the construction
of tables of syntactic properties. The parameterized graphs of section 3.2.3 are
used in Senellart 1998 and Paumier 2001.

The theory of formal languages developed in parallel (Schützenberger and
Chomsky 1963; Gross and Lentin 1967). Discussions arose during the same
period of time about the adequacy of formal models for representing the behav-
ior of speakers (Miller and Chomsky 1963) or the syntax of natural languages.
Chomsky 1956, Chomsky 1957 mathematically “proved” that neither finite au-
tomata nor context-free languages were adequate for syntax, but he used infre-
quent constructions that can be conveniently dealt with as exceptions (Gross
1995). Gross gave an impulse to the actual production of extensive descriptions
of lexicon and syntax with finite automata.

The observations that led to the statement of Zipf’s law (Zipf 1935) were
not restricted to language. The results exposed in section 3.1.3 about Zipf’s law
applied to written texts are based on Senellart 1999.

Johnson 1972 investigated various ways of combining formal rules and estab-
lished whether the result of combination can be represented as a finite automa-
ton. The notion of sequential transducer originates from Schützenberger 1977.
Two algorithms of minimization of sequential transducers are known (Breslauer
1998; Béal and Carton 2001); the second one is based on successive contribu-
tions by Choffrut 1979, Reutenauer 1990 and Mohri 1994 (see also Chapter 1).
The definition of p-sequential transducers was proposed by Mohri 1994. The
algorithm of construction of generalized sequential transducers is adapted from
Roche 1997.

The representation of finite automata as graphs with labels attached to
states was introduced into language processing by Gross 1989 and Silberztein
1994 (http://acl.ldc.upenn.edu/C/C94/C94-1095.pdf). The Unitex system
(http://www-igm.univ-mlv.fr/~unitex), implemented by Sébastien Paumier
at the University of Marne-la-Vallée, is an open-source environment for language
processing with automata and dictionaries.

The use of the intersection of finite transducers for specifying and imple-
menting morphological analysis and generation, and for lexical ambiguity reso-

Version June 23, 2004

Notes 197

lution, was first suggested by Koskenniemi 1983. Bimachines were introduced
by Schützenberger 1961. The adaptation of bimachines to morphology and
phonetics comes from Laporte 1997.

Weighted automata and transducers are defined by Paz 1971 and Eilenberg
1974. The FSM library (Mohri, Pereira, and Riley 2000) offers consistent tools
related to weighted automata.

Algorithms for deriving weights from statistics about occurrences of symbols
or sequences in a learning corpus are available in handbooks, e.g. Jurafsky and
Martin 2000.

Version June 23, 2004

198 Symbolic Natural Language Processing

Version June 23, 2004

199

CHAPTER 4

Statistical Natural Language
Processing

4.0 Introduction . 199
4.1 Preliminaries . 200
4.2 Algorithms . 201

4.2.1 Composition . 201
4.2.2 Determinization . 206
4.2.3 Weight pushing . 209
4.2.4 Minimization . 211

4.3 Application to speech recognition 213
4.3.1 Statistical formulation 214
4.3.2 Statistical grammar . 215
4.3.3 Pronunciation model . 217
4.3.4 Context-dependency transduction 218
4.3.5 Acoustic model . 219
4.3.6 Combination and search 220
4.3.7 Optimizations . 222
Notes . 225

4.0. Introduction

The application of statistical methods to natural language processing has been
remarkably successful over the past two decades. The wide availability of text
and speech corpora has played a critical role in their success since, as for all
learning techniques, these methods heavily rely on data. Many of the compo-
nents of complex natural language processing systems, e.g., text normalizers,
morphological or phonological analyzers, part-of-speech taggers, grammars or
language models, pronunciation models, context-dependency models, acoustic
Hidden-Markov Models (HMMs), are statistical models derived from large data
sets using modern learning techniques. These models are often given as weighted
automata or weighted finite-state transducers either directly or as a result of the
approximation of more complex models.

Weighted automata and transducers are the finite automata and finite-state

Version June 23, 2004

200 Statistical Natural Language Processing

Semiring Set ⊕ ⊗ 0 1
Boolean {0, 1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R ∪ {−∞, +∞} ⊕log + +∞ 0
Tropical R ∪ {−∞, +∞} min + +∞ 0

Table 4.1. Semiring examples. ⊕log is defined by: x ⊕log y = − log(e−x + e−y).

transducers described in Chapter 1 Section 1.5 with the addition of some weight
to each transition. Thus, weighted finite-state transducers are automata in
which each transition, in addition to its usual input label, is augmented with
an output label from a possibly different alphabet, and carries some weight. The
weights may correspond to probabilities or log-likelihoods or they may be some
other costs used to rank alternatives. More generally, as we shall see in the next
section, they are elements of a semiring set. Transducers can be used to define
a mapping between two different types of information sources, e.g., word and
phoneme sequences. The weights are crucial to model the uncertainty of such
mappings. Weighted transducers can be used for example to assign different
pronunciations to the same word but with different ranks or probabilities.

Novel algorithms are needed to combine and optimize large statistical models
represented as weighted automata or transducers. This chapter reviews several
recent weighted transducer algorithms, including composition of weighted trans-
ducers, determinization of weighted automata and minimization of weighted
automata, which play a crucial role in the construction of modern statistical
natural language processing systems. It also outlines their use in the design
of modern real-time speech recognition systems. It discusses and illustrates
the representation by weighted automata and transducers of the components of
these systems, and describes the use of these algorithms for combining, search-
ing, and optimizing large component transducers of several million transitions
for creating real-time speech recognition systems.

4.1. Preliminaries

This section introduces the definitions and notation used in the following.
A system (K,⊕,⊗, 0, 1) is a semiring if (K,⊕, 0) is a commutative monoid

with identity element 0, (K,⊗, 1) is a monoid with identity element 1, ⊗ dis-
tributes over ⊕, and 0 is an annihilator for ⊗: for all a ∈ K, a⊗ 0 = 0⊗ a = 0.
Thus, a semiring is a ring that may lack negation. Table 4.1 lists some familiar
semirings. In addition to the Boolean semiring, and the probability semiring
used to combine probabilities, two semirings often used in text and speech pro-
cessing applications are the log semiring which is isomorphic to the probability
semiring via the negative-log morphism, and the tropical semiring which is de-
rived from the log semiring using the Viterbi approximation. A left semiring is
a system that verifies all the axioms of a semiring except from the right ditribu-
tivity. In the following definitions, K will be used to denote a left semiring or a

Version June 23, 2004

4.2. Algorithms 201

semiring.
A semiring is said to be commutative when the multiplicative operation ⊗

is commutative. It is said to be left divisible if for any x �= 0, there exists
y ∈ K such that y ⊗ x = 1, that is if all elements of K admit a left inverse.
(K,⊕,⊗, 0, 1) is said to be weakly left divisible if for any x and y in K such that
x⊕y �= 0, there exists at least one z such that x = (x⊕y)⊗z. The ⊗-operation
is cancellative if z is unique and we can write: z = (x ⊕ y)−1x. When z is not
unique, we can still assume that we have an algorithm to find one of the possible
z and call it (x ⊕ y)−1x. Furthermore, we will assume that z can be found in
a consistent way, that is: ((u ⊗ x) ⊕ (u ⊗ y))−1(u ⊗ x) = (x ⊕ y)−1x for any
x, y, u ∈ K such that u �= 0. A semiring is zero-sum-free if for any x and y in K,
x⊕ y = 0 implies x = y = 0.

A weighted finite-state transducer T over a semiring K is an 8-tuple T =
(A,B, Q, I, F, E, λ, ρ) where: A is the finite input alphabet of the transducer; B
is the finite output alphabet; Q is a finite set of states; I ⊆ Q the set of initial
states; F ⊆ Q the set of final states; E ⊆ Q×(A∪{ε})×(B∪{ε})×K×Q a finite
set of transitions; λ : I → K the initial weight function; and ρ : F → K the final
weight function mapping F to K. E[q] denotes the set of transitions leaving a
state q ∈ Q. |T| denotes the sum of the number of states and transitions of T.

Weighted automata are defined in a similar way by simply omitting the input
or output labels. Let Π1(T) (Π2(T)) denote the weighted automaton obtained
from a weighted transducer T by omitting the input (resp. output) labels of T.

Given a transition e ∈ E, let p[e] denote its origin or previous state, n[e]
its destination state or next state, i[e] its input label, o[e] its output label,
and w[e] its weight. A path π = e1 · · · ek is an element of E∗ with consecutive
transitions: n[ei−1] = p[ei], i = 2, . . . , k. n, p, and w can be extended to
paths by setting: n[π] = n[ek] and p[π] = p[e1] and by defining the weight of
a path as the ⊗-product of the weights of its constituent transitions: w[π] =
w[e1] ⊗ · · · ⊗ w[ek]. More generally, w is extended to any finite set of paths R
by setting: w[R] =

⊕
π∈R w[π]. Let P (q, q′) denote the set of paths from q to

q′ and P (q, x, y, q′) the set of paths from q to q′ with input label x ∈ A∗ and
output label y ∈ B∗. These definitions can be extended to subsets R, R′ ⊆ Q,
by: P (R, x, y, R′) = ∪q∈R, q′∈R′P (q, x, y, q′). A transducer T is regulated if the
weight associated by T to any pair of input-output string (x, y) given by:

[[T]](x, y) =
⊕

π∈P (I,x,y,F)

λ[p[π]]⊗ w[π] ⊗ ρ[n[π]] (4.1.1)

is well-defined and in K. [[T]](x, y) = 0 when P (I, x, y, F) = ∅. In particular,
when it does not have any ε-cycle, T is always regulated.

4.2. Algorithms

4.2.1. Composition

Composition is a fundamental algorithm used to create complex weighted trans-
ducers from simpler ones. It is a generalization of the composition algorithm

Version June 23, 2004

202 Statistical Natural Language Processing

presented in Chapter 1 Section 1.5 for unweighted finite-state transducers. Let
K be a commutative semiring and let T1 and T2 be two weighted transducers
defined over K such that the input alphabet of T2 coincides with the output al-
phabet of T1. Assume that the infinite sum

⊕
z T1(x, z)⊗T2(z, y) is well-defined

and in K for all (x, y) ∈ A∗×C∗. This condition holds for all transducers defined
over a closed semiring such as the Boolean semiring and the tropical semiring
and for all acyclic transducers defined over an arbitrary semiring. Then, the
result of the composition of T1 and T2 is a weighted transducer denoted by
T1 ◦ T2 and defined for all x, y by:

[[T1 ◦ T2]](x, y) =
⊕

z

T1(x, z)⊗ T2(z, y) (4.2.1)

Note that we use a matrix notation for the definition of composition as opposed
to a functional notation. There exists a general and efficient composition al-
gorithm for weighted transducers. States in the composition T1 ◦ T2 of two
weighted transducers T1 and T2 are identified with pairs of a state of T1 and
a state of T2. Leaving aside transitions with ε inputs or outputs, the following
rule specifies how to compute a transition of T1◦T2 from appropriate transitions
of T1 and T2:

(q1, a, b, w1, q2) and (q′1, b, c, w2, q
′
2) =⇒ ((q1, q

′
1), a, c, w1 ⊗ w2, (q2, q

′
2)) (4.2.2)

The following is the pseudocode of the algorithm in the ε-free case.

Weighted-Composition(T1, T2)
1 Q ← I1 × I2

2 S ← I1 × I2

3 while S �= ∅ do
4 (q1, q2) ← Head(S)
5 Dequeue(S)
6 if (q1, q2) ∈ I1 × I2 then
7 I ← I ∪ {(q1, q2)}
8 λ(q1, q2) ← λ1(q1)⊗ λ2(q2)
9 if (q1, q2) ∈ F1 × F2 then

10 F ← F ∪ {(q1, q2)}
11 ρ(q1, q2)← ρ1(q1)⊗ ρ2(q2)
12 for each (e1, e2) ∈ E[q1]× E[q2] such that o[e1] = i[e2] do
13 if (n[e1], n[e2]) �∈ Q then
14 Q ← Q ∪ {(n[e1], n[e2])}
15 Enqueue(S, (n[e1], n[e2]))
16 E ← E ∪ {((q1, q2), i[e1], o[e2], w[e1]⊗ w[e2], (n[e1], n[e2]))}
17 return T

The algorithm takes as input T1 = (A,B, Q1, I1, F1, E1, λ1, ρ1) and T2 =
(B, C, Q2, I2, F2, E2, λ2, ρ2), two weighted transducers, and outputs a weighted

Version June 23, 2004

4.2. Algorithms 203

0 1

2

3/0.7

a:b/0.1

a:b/0.2

b:b/0.3

b:b/0.4

a:b/0.5

a:a/0.6

0 1

2

3/0.6
b:b/0.1

b:a/0.2
a:b/0.3

a:b/0.4

b:a/0.5

(a) (b)

(0,0) (1,1)

(0,1)

(2,1) (3,1)

(3,2)

(3,3)/.42
a:b/.01

a:a/.04

a:a/.02

b:a/.06

b:a/.08

a:a/.1

a:b/.18

a:b/.24

(c)

Figure 4.1. (a) Weighted transducer T1 over the probabilityl semiring.
(b) Weighted transducer T2 over the probability semiring. (c) Composi-
tion of T1 and T2. Initial states are represented by an incoming arrow,
final states with an outgoing arrow. Inside each circle, the first number
indicates the state number, the second, at final states only, the value of
the final weight function ρ at that state. Arrows represent transitions and
are labeled with symbols followed by their corresponding weight.

transducer T = (A, C, Q, I, F, E, λ, ρ) realizing the composition of T1 and T2.
E, I, and F are all assumed to be initialized to the empty set.

The algorithm uses a queue S containing the set of pairs of states yet to
be examined. The queue discipline of S can be arbitrarily chosen and does
not affect the termination of the algorithm. The set of states Q is originally
reduced to the set of pairs of the initial states of the original transducers and S
is initialized to the same (lines 1-2). Each time through the loop of lines 3-16, a
new pair of states (q1, q2) is extracted from S (lines 4-5). The initial weight of
(q1, q2) is computed by ⊗-multiplying the initial weights of q1 and q2 when they
are both initial states (lines 6-8). Similar steps are followed for final states (lines
9-11). Then, for each pair of matching transitions (e1, e2), a new transition is
created according to the rules specified earlier (line 16). If the destination state
(n[e1], n[e2]) has not been found before, it is added to Q and inserted in S (lines
14-15).

In the worst case, all transitions of T1 leaving a state q1 match all those
of T2 leaving state q′1, thus the space and time complexity of composition is
quadratic: O(|T1||T2|). However, a lazy implementation of composition can
be used to construct just the part of the composed transducer that is needed.
Figures 4.1(a)-(c) illustrate the algorithm when applied to the transducers of
Figures 4.1(a)-(b) defined over the probability semiring.

More care is needed when T1 admits output ε labels and T2 input ε labels.
Indeed, as illustrated by Figure 4.2, a straightforward generalization of the ε-

Version June 23, 2004

204 Statistical Natural Language Processing

(0,0) (1,1) (1,2)

(2,1)

(3,1)

(2,2)

(3,2)

(4,3)/1

a:d/1

(x:x)

ε:e/1

(ε1:ε1)

b:ε/1
(ε2:ε2)

c:ε/1
(ε2:ε2)

b:ε/1
(ε2:ε2)

c:ε/1
(ε2:ε2)

d:a/1
(ε2:ε1)

ε:e/1

(ε1:ε1)

ε:e/1

(ε1:ε1)

b:e/1
(ε2:ε1) 0 1 2 2 3/1

a:a/1 b:ε/1 c:ε/1 d:d/1

0 1 2 3/1
a:d/1 ε:e/1 d:a/1

Figure 4.2. Redundant ε-paths. A straightforward generalization of
the ε-free case could generate all the paths from (1, 1) to (3, 2) when
composing the two simple transducers on the right-hand side.

free case would generate redundant ε-paths and, in the case of non-idempotent
semirings, would lead to an incorrect result. The weight of the matching paths
of the original transducers would be counted p times, where p is the number of
redundant paths in the result of composition.

To cope with this problem, all but one ε-path must be filtered out of the com-
posite transducer. Figure 4.2 indicates in boldface one possible choice for that
path, which in this case is the shortest. Remarkably, that filtering mechanism
can be encoded as a finite-state transducer.

Let T̃1 (T̃2) be the weighted transducer obtained from T1 (resp. T2) by
replacing the output (resp. input) ε labels with ε2 (resp. ε1), and let F be the
filter finite-state transducer represented in Figure 4.3. Then T̃1◦F◦T̃2 = T1◦T2.
Since the two compositions in T̃1◦F◦T̃2 do not involve ε’s, the ε-free composition
already described can be used to compute the resulting transducer.

Intersection (or Hadamard product) of weighted automata and composition
of finite-state transducers are both special cases of composition of weighted
transducers. Intersection corresponds to the case where input and output la-
bels of transitions are identical and composition of unweighted transducers is
obtained simply by omitting the weights.

In general, the definition of composition cannot be extended to the case of
non-commutative semirings because the composite transduction cannot always
be represented by a weighted finite-state transducer. Consider for example, the
case of two transducers T1 and T2 accepting the same set of strings (a, a)∗, with
[[T1]](a, a) = x ∈ K and [[T2]](a, a) = y ∈ K and let τ be the composite of the
transductions corresponding to T1 and T2. Then, for any non-negative integer
n, τ(an, an) = xn ⊗ yn which in general is different from (x ⊗ y)n if x and y

Version June 23, 2004

4.2. Algorithms 205

0/1

1/1

2/1

x:x/1

ε2:ε1/1
ε1:ε1/1

x:x/1

ε1:ε1/1

ε2:ε2/1

x:x/1

ε2:ε2/1

Figure 4.3. Filter for composition F.

do not commute. An argument similar to the classical Pumping lemma can
then be used to show that τ cannot be represented by a weighted finite-state
transducer.

When T1 and T2 are acyclic, composition can be extended to the case of non-
commutative semirings. The algorithm would then consist of matching paths
of T1 and T2 directly rather than matching their constituent transitions. The
termination of the algorithm is guaranteed by the fact that the number of paths
of T1 and T2 is finite. However, the time and space complexity of the algorithm
is then exponential.

The weights of matching transitions and paths are ⊗-multiplied in composi-
tion. One might wonder if another useful operation, ×, can be used instead of
⊗, in particular when K is not commutative. The following proposition proves
that that cannot be.

Proposition 4.2.1. Let (K,×, e) be a monoid. Assume that × is used in-
stead of ⊗ in composition. Then, × coincides with ⊗ and (K,⊕,⊗, 0, 1) is a
commutative semiring.

Proof. Consider two sets of consecutive transitions of two paths: π1 =
(p1, a, a, x, q1)(q1, b, b, y, r1) and π2 = (p2, a, a, u, q2)(q2, b, b, v, r2). Matching
these transitions using × result in the following:

((p1, p2), a, a, x× u, (q1, q2)) and ((q1, q2), b, b, y × v, (r1, r2)) (4.2.3)

Since the weight of the path obtained by matching π1 and π2 must also corre-
spond to the ×-multiplication of the weight of π1, x⊗ y, and the weight of π2,
u⊗ v, we have:

(x× u)⊗ (y × v) = (x⊗ y)× (u⊗ v) (4.2.4)

Version June 23, 2004

206 Statistical Natural Language Processing

This identity must hold for all x, y, u, v ∈ K. Setting u = y = e and v = 1 leads
to x = x ⊗ e and similarly x = e⊗ x for all x. Since the identity element of ⊗
is unique, this proves that e = 1.

With u = y = 1, identity 4.2.4 can be rewritten as: x ⊗ v = x × v for all x
and v, which shows that × coincides with ⊗. Finally, setting x = v = 1 gives
u⊗ y = y × u for all y and u which shows that ⊗ is commutative.

4.2.2. Determinization

This section describes a generic determinization algorithm for weighted au-
tomata. It is thus a generalization of the determinization algorithm for un-
weighted finite automata. When combined with the (unweighted) determiniza-
tion for finite-state transducers presented in Chapter 1 Section 1.5, it leads to
an algorithm for determinizing weighted transducers.1

A weighted automaton is said to be deterministic or subsequential if it has
a unique initial state and if no two transitions leaving any state share the same
input label. There exists a natural extension of the classical subset construc-
tion to the case of weighted automata over a weakly left divisible left semiring
called determinization.2 The algorithm is generic: it works with any weakly left
divisible semiring. The pseudocode of the algorithm is given below with Q′, I ′,
F ′, and E′ all initialized to the empty set.

Weighted-Determinization(A)
1 i′ ← {(i, λ(i)) : i ∈ I}
2 λ′(i′) ← 1
3 S ← {i′}
4 while S �= ∅ do
5 p′ ← Head(S)
6 Dequeue(S)
7 for each x ∈ i[E[Q[p′]]] do
8 w′ ←

⊕
{v ⊗ w : (p, v) ∈ p′, (p, x, w, q) ∈ E}

9 q′ ← {(q,
⊕{

w′−1 ⊗ (v ⊗ w) : (p, v) ∈ p′, (p, x, w, q) ∈ E
}
) :

q = n[e], i[e] = x, e ∈ E[Q[p′]]}
10 E′ ← E′ ∪ {(p′, x, w′, q′)}
11 if q′ �∈ Q′ then
12 Q′ ← Q′ ∪ {q′}
13 if Q[q′] ∩ F �= ∅ then
14 F ′ ← F ′ ∪ {q′}
15 ρ′(q′)←

⊕
{v ⊗ ρ(q) : (q, v) ∈ q′, q ∈ F}

16 Enqueue(S, q′)
17 return T′

1In reality, the determinization of unweighted and that of weighted finite-state transducers
can both be viewed as special instances of the generic algorithm presented here but, for clarity
purposes, we will not emphasize that view in what follows.

2We assume that the weighted automata considered are all such that for any string x ∈ A∗,
w[P (I, x, Q)] �= 0. This condition is always satisfied with trim machines over the tropical
semiring or any zero-sum-free semiring.

Version June 23, 2004

4.2. Algorithms 207

A weighted subset p′ of Q is a set of pairs (q, x) ∈ Q×K. Q[p′] denotes the
set of states q of the weighted subset p′. E[Q[p′]] represents the set of transitions
leaving these states, and i[E[Q[p′]]] the set of input labels of these transitions.

The states of the output automaton can be identified with (weighted) subsets
of the states of the original automaton. A state r of the output automaton
that can be reached from the start state by a path π is identified with the
set of pairs (q, x) ∈ Q × K such that q can be reached from an initial state
of the original machine by a path σ with i[σ] = i[π] and λ[p[σ]] ⊗ w[σ] =
λ[p[π]] ⊗ w[π] ⊗ x. Thus, x can be viewed as the residual weight at state q.
When it terminates, the algorithm takes as input a weighted automaton A =
(A, Q, I, F, E, λ, ρ) and yields an equivalent subsequential weighted automaton
A′ = (A, Q′, I ′, F ′, E′, λ′, ρ′).

The algorithm uses a queue S containing the set of states of the resulting
automaton A′, yet to be examined. The queue discipline of S can be arbitrarily
chosen and does not affect the termination of the algorithm. A′ admits a unique
initial state, i′, defined as the set of initial states of A augmented with their
respective initial weights. Its input weight is 1 (lines 1-2). S originally contains
only the subset i′ (line 3). Each time through the loop of lines 4-16, a new
subset p′ is extracted from S (lines 5-6). For each x labeling at least one of
the transitions leaving a state p of the subset p′, a new transition with input
label x is constructed. The weight w′ associated to that transition is the sum of
the weights of all transitions in E[Q[p′]] labeled with x pre-⊗-multiplied by the
residual weight v at each state p (line 8). The destination state of the transition
is the subset containing all the states q reached by transitions in E[Q[p′]] labeled
with x. The weight of each state q of the subset is obtained by taking the ⊕-sum
of the residual weights of the states p ⊗-times the weight of the transition from
p leading to q and by dividing that by w′. The new subset q′ is inserted in the
queue S when it is a new state (line 15). If any of the states in the subset q′

is final, q′ is made a final state and its final weight is obtained by summing
the final weights of all the final states in q′, pre-⊗-multiplied by their residual
weight v (line 14).

Figures 4.4(a)-(b) illustrate the determinization of a weighted automaton
over the tropical semiring. The worst case complexity of determinization is
exponential even in the unweighted case. However, in many practical cases
such as for weighted automata used in large-vocabulary speech recognition, this
blow-up does not occur. It is also important to notice that just like composition,
determinization admits a natural lazy implementation which can be useful for
saving space.

Unlike the unweighted case, determinization does not halt on all input
weighted automata. In fact, some weighted automata, non subsequentiable au-
tomata, do not even admit equivalent subsequential machines. But even for
some subsequentiable automata, the algorithm does not halt. We say that a
weighted automaton A is determinizable if the determinization algorithm halts
for the input A. With a determinizable input, the algorithm outputs an equiv-
alent subsequential weighted automaton.

There exists a general twins property for weighted automata that provides a

Version June 23, 2004

208 Statistical Natural Language Processing

0

1

2

3

a/1

a/2

c/5

d/6

b/3

b/3 (0,0) (1,0),(2,1) (3,0)/0
a/1

c/5

d/7

b/3

0

1

2

3

a/1

a/2

c/5

d/6

b/3

b/4

(a) (b) (c)

Figure 4.4. Determinization of weighted automata. (a) Weighted au-
tomaton over the tropical semiring A. (b) Equivalent weighted automaton
B obtained by determinization of A. (c) Non-determinizable weighted au-
tomaton over the tropical semiring, states 1 and 2 are non-twin siblings.

characterization of determinizable weighted automata under some general con-
ditions. Let A be a weighted automaton over a weakly left divisible left semiring
K. Two states q and q′ of A are said to be siblings if there exist two strings x
and y in A∗ such that both q and q′ can be reached from I by paths labeled
with x and there is a cycle at q and a cycle at q′ both labeled with y. When
K is a commutative and cancellative semiring, two sibling states are said to be
twins iff for any string y:

w[P (q, y, q)] = w[P (q′, y, q′)] (4.2.5)

A has the twins property if any two sibling states of A are twins. Figure 4.4(c)
shows an unambiguous weighted automaton over the tropical semiring that does
not have the twins property: states 1 and 2 can be reached by paths labeled
with a from the initial state and admit cycles with the same label b, but the
weights of these cycles (3 and 4) are different.

Theorem 4.2.2. Let A be a weighted automaton over the tropical semiring.
If A has the twins property, then A is determinizable.

With trim unambiguous weighted automata, the condition is also necessary.

Theorem 4.2.3. Let A be a trim unambiguous weighted automaton over the
tropical semiring. Then the three following properties are equivalent:

1. A is determinizable.
2. A has the twins property.
3. A is subsequentiable.

There exists an efficient algorithm for testing the twins property for weighted
automata, which cannot be presented briefly in this chapter. Note that any
acyclic weighted automaton over a zero-sum-free semiring has the twins property
and is determinizable.

Version June 23, 2004

4.2. Algorithms 209

4.2.3. Weight pushing

The choice of the distribution of the total weight along each successful path of
a weighted automaton does not affect the definition of the function realized by
that automaton, but this may have a critical impact on the efficiency in many
applications, e.g., natural language processing applications, when a heuristic
pruning is used to visit only a subpart of the automaton. There exists an
algorithm, weight pushing, for normalizing the distribution of the weights along
the paths of a weighted automaton or more generally a weighted directed graph.
The transducer normalization algorithm presented in Chapter 1 Section 1.5 can
be viewed as a special instance of this algorithm.

Let A be a weighted automaton over a semiring K. Assume that K is zero-
sum-free and weakly left divisible. For any state q ∈ Q, assume that the follow-
ing sum is well-defined and in K:

d[q] =
⊕

π∈P (q,F)

(w[π] ⊗ ρ[n[π]]) (4.2.6)

d[q] is the shortest-distance from q to F . d[q] is well-defined for all q ∈ Q when K

is a k-closed semiring. The weight pushing algorithm consists of computing each
shortest-distance d[q] and of reweighting the transition weights, initial weights
and final weights in the following way:

∀e ∈ E s.t. d[p[e]] �= 0, w[e] ← d[p[e]]−1 ⊗ w[e]⊗ d[n[e]] (4.2.7)
∀q ∈ I, λ[q] ← λ[q]⊗ d[q] (4.2.8)

∀q ∈ F, s.t. d[q] �= 0, ρ[q] ← d[q]−1 ⊗ ρ[q] (4.2.9)

Each of these operations can be assumed to be done in constant time, thus
reweighting can be done in linear time O(T⊗|A|) where T⊗ denotes the worst
cost of an ⊗-operation. The complexity of the computation of the shortest-
distances depends on the semiring. In the case of k-closed semirings such as the
tropical semiring, d[q], q ∈ Q, can be computed using a generic shortest-distance
algorithm. The complexity of the algorithm is linear in the case of an acyclic
automaton: O(Card(Q)+(T⊕+T⊗)Card(E)), where T⊕ denotes the worst cost
of an ⊕-operation. In the case of a general weighted automaton over the tropical
semiring, the complexity of the algorithm is O(Card(E)+Card(Q) log Card(Q)).

In the case of closed semirings such as (R+, +,×, 0, 1), a generalization of
the Floyd-Warshall algorithm for computing all-pairs shortest-distances can be
used. The complexity of the algorithm is Θ(Card(Q)3(T⊕+T⊗+T∗)) where T∗
denotes the worst cost of the closure operation. The space complexity of these
algorithms is Θ(Card(Q)2). These complexities make it impractical to use the
Floyd-Warshall algorithm for computing d[q], q ∈ Q, for relatively large graphs
or automata of several hundred million states or transitions. An approximate
version of a generic shortest-distance algorithm can be used instead to compute
d[q] efficiently.

Roughly speaking, the algorithm pushes the weights of each path as much as
possible towards the initial states. Figures 4.5(a)-(c) illustrate the application
of the algorithm in a special case both for the tropical and probability semirings.

Version June 23, 2004

210 Statistical Natural Language Processing

0

1

2

3

a/0

b/1
c/5

d/0

e/1

e/0

f/1

e/4

f/5

0/0

1

2

3/0

a/0

b/1
c/5

d/4

e/5

e/0

f/1

e/0

f/1

0/15

1

2

3/1

a/0

b/ 1
15

c/ 5
15

d/0

e/ 9
15

e/0

f/1

e/4
9

f/5
9

0/0 1 3/0

a/0

b/1

c/5

e/0

f/1

(a) (b) (c) (d)

Figure 4.5. Weight pushing algorithm. (a) Weighted automaton A.
(b) Equivalent weighted automaton B obtained by weight pushing in the
tropical semiring. (c) Weighted automaton C obtained from A by weight
pushing in the probability semiring. (d) Minimal weighted automaton
over the tropical semiring equivalent to A.

Note that if d[q] = 0, then, since K is zero-sum-free, the weight of all paths
from q to F is 0. Let A be a weighted automaton over the semiring K. Assume
that K is closed or k-closed and that the shortest-distances d[q] are all well-
defined and in K−

{
0
}
. Note that in both cases we can use the distributivity over

the infinite sums defining shortest distances. Let e′ (π′) denote the transition e
(path π) after application of the weight pushing algorithm. e′ (π′) differs from
e (resp. π) only by its weight. Let λ′ denote the new initial weight function,
and ρ′ the new final weight function.

Proposition 4.2.4. Let B = (A, Q, I, F, E′, λ′, ρ′) be the result of the weight
pushing algorithm applied to the weighted automaton A, then

1. the weight of a successful path π is unchanged after application of weight
pushing:

λ′[p[π′]]⊗ w[π′]⊗ ρ′[n[π′]] = λ[p[π]]⊗ w[π] ⊗ ρ[n[π]] (4.2.10)

2. the weighted automaton B is stochastic, i.e.

∀q ∈ Q,
⊕

e′∈E′[q]

w[e′] = 1 (4.2.11)

Proof. Let π′ = e′1 . . . e′k. By definition of λ′ and ρ′,

λ′[p[π′]] ⊗ w[π′] ⊗ ρ′[n[π′]] = λ[p[e1]] ⊗ d[p[e1]] ⊗ d[p[e1]]
−1 ⊗ w[e1] ⊗ d[n[e1]] ⊗ · · ·

⊗ d[p[ek]]−1 ⊗ w[ek] ⊗ d[n[ek]] ⊗ d[n[ek]]−1 ⊗ ρ[n[π]]

= λ[p[π]] ⊗ w[e1] ⊗ · · · ⊗ w[ek] ⊗ ρ[n[π]]

which proves the first statement of the proposition. Let q ∈ Q,M
e′∈E′[q]

w[e′] =
M

e∈E[q]

d[q]−1 ⊗ w[e] ⊗ d[n[e]]

= d[q]−1 ⊗
M

e∈E[q]

w[e] ⊗ d[n[e]]

Version June 23, 2004

4.2. Algorithms 211

= d[q]−1 ⊗
M

e∈E[q]

w[e] ⊗
M

π∈P (n[e],F)

(w[π] ⊗ ρ[n[π]])

= d[q]−1 ⊗
M

e∈E[q],π∈P (n[e],F)

(w[e] ⊗ w[π] ⊗ ρ[n[π]])

= d[q]−1 ⊗ d[q] = 1

where we used the distributivity of the multiplicative operation over infinite
sums in closed or k-closed semirings. This proves the second statement of the
proposition.

These two properties of weight pushing are illustrated by Figures 4.5(a)-(c): the
total weight of a successful path is unchanged after pushing; at each state of
the weighted automaton of Figure 4.5(b), the minimum weight of the outgoing
transitions is 0, and at at each state of the weighted automaton of Figure 4.5(c),
the weights of outgoing transitions sum to 1. Weight pushing can also be used
to test the equivalence of two weighted automata.

4.2.4. Minimization

A deterministic weighted automaton is said to be minimal if there exists no other
deterministic weighted automaton with a smaller number of states and realizing
the same function. Two states of a deterministic weighted automaton are said to
be equivalent if exactly the same set of strings with the same weights label paths
from these states to a final state, the final weights being included. Thus, two
equivalent states of a deterministic weighted automaton can be merged without
affecting the function realized by that automaton. A weighted automaton is
minimal when it admits no two distinct equivalent states after any redistribution
of the weights along its paths.

There exists a general algorithm for computing a minimal deterministic au-
tomaton equivalent to a given weighted automaton. It is thus a generalization
of the minimization algorithms for unweighted finite automata. It can be com-
bined with the minimization algorithm for unweighted finite-state transducers
presented in Chapter 1 Section 1.5 to minimize weighted finite-state transduc-
ers.3 It consists of first applying the weight pushing algorithm to normalize the
distribution of the weights along the paths of the input automaton, and then
of treating each pair (label, weight) as a single label and applying the classical
(unweighted) automata minimization.

Theorem 4.2.5. Let A be a deterministic weighted automaton over a semiring
K. Assume that the conditions of application of the weight pushing algorithm
hold, then the execution of the following steps:

1. weight pushing,
2. (unweighted) automata minimization,

3In reality, the minimization of both unweighted and weighted finite-state transducers can
be viewed as special instances of the algorithm presented here, but, for clarity purposes, we
will not emphasize that view in what follows.

Version June 23, 2004

212 Statistical Natural Language Processing

0

1

2

3/1

a/1

b/2
c/3

d/4

e/5

e/.8

f/1

e/4

f/5

0/459
5 1 2/1

a/ 1
51

b/ 2
51

c/ 3
51

d/ 20
51

e/ 25
51

e/ 4
9

f/ 5
9

0/25 1 2/1

a/.04

b/.08

c/.12

d/.80

e/1.0

e/0.8

f/1.0

(a) (b) (c)

Figure 4.6. Minimization of weighted automata. (a) Weighted automa-
ton A′ over the probability semiring. (b) Minimal weighted automaton
B′ equivalent to A′. (c) Minimal weighted automaton C′ equivalent to A′.

lead to a minimal weighted automaton equivalent to A.

The complexity of automata minimization is linear in the case of acyclic au-
tomata O(Card(Q) + Card(E)) and in O(Card(E) log Card(Q)) in the general
case. Thus, in view of the complexity results given in the previous section, in
the case of the tropical semiring, the total complexity of the weighted mini-
mization algorithm is linear in the acyclic case O(Card(Q) + Card(E)) and in
O(Card(E) log Card(Q)) in the general case.

Figures 4.5(a), 4.5(b), and 4.5(d) illustrate the application of the algorithm
in the tropical semiring. The automaton of Figure 4.5(a) cannot be further
minimized using the classical unweighted automata minimization since no two
states are equivalent in that machine. After weight pushing, the automaton
(Figure 4.5(b)) has two states (1 and 2) that can be merged by the classical
unweighted automata minimization.

Figures 4.6(a)-(c) illustrate the minimization of an automaton defined over
the probability semiring. Unlike the unweighted case, a minimal weighted au-
tomaton is not unique, but all minimal weighted automata have the same graph
topology, they only differ by the way the weights are distributed along each
path. The weighted automata B′ and C′ are both minimal and equivalent to
A′. B′ is obtained from A′ using the algorithm described above in the probabil-
ity semiring and it is thus a stochastic weighted automaton in the probability
semiring.

For a deterministic weighted automaton, the first operation of the semir-
ing can be arbitrarily chosen without affecting the definition of the function
it realizes. This is because, by definition, a deterministic weighted automaton
admits at most one path labeled with any given string. Thus, in the algorithm
described in theorem 4.2.5, the weight pushing step can be executed in any
semiring K′ whose multiplicative operation matches that of K. The minimal
weighted automata obtained by pushing the weights in K′ is also minimal in K

since it can be interpreted as a (deterministic) weighted automaton over K.
In particular, A′ can be interpreted as a weighted automaton over the semir-

ing (R+, max,×, 0, 1). The application of the weighted minimization algorithm

Version June 23, 2004

4.3. Application to speech recognition 213

to A′ in this semiring leads to the minimal weighted automaton C′ of Fig-
ure 4.6(c). C′ is also a stochastic weighted automaton in the sense that, at any
state, the maximum weight of all outgoing transitions is one.

This fact leads to several interesting observations. One is related to the
complexity of the algorithms. Indeed, we can choose a semiring K′ in which
the complexity of weight pushing is better than in K. The resulting automaton
is still minimal in K and has the additional property of being stochastic in K′.
It only differs from the weighted automaton obtained by pushing weights in
K in the way weights are distributed along the paths. They can be obtained
from each other by application of weight pushing in the appropriate semiring.
In the particular case of a weighted automaton over the probability semiring,
it may be preferable to use weight pushing in the (max,×)-semiring since the
complexity of the algorithm is then equivalent to that of classical single-source
shortest-paths algorithms. The corresponding algorithm is a special instance of
the generic shortest-distance algorithm.

Another important point is that the weight pushing algorithm may not be
defined in K because the machine is not zero-sum-free or for other reasons.
But an alternative semiring K′ can sometimes be used to minimize the input
weighted automaton.

The results just presented were all related to the minimization of the num-
ber of states of a deterministic weighted automaton. The following proposition
shows that minimizing the number of states coincides with minimizing the num-
ber of transitions.

Proposition 4.2.6. Let A be a minimal deterministic weighted automaton,
then A has the minimal number of transitions.

Proof. Let A be a deterministic weighted automaton with the minimal number
of transitions. If two distinct states of A were equivalent, they could be merged,
thereby strictly reducing the number of its transitions. Thus, A must be a
minimal deterministic automaton. Since, minimal deterministic automata have
the same topology, in particular the same number of states and transitions, this
proves the proposition.

4.3. Application to speech recognition

Much of the statistical techniques now widely used in natural language process-
ing were inspired by early work in speech recognition. This section discusses
the representation of the component models of an automatic speech recogni-
tion system by weighted transducers and describes how they can be combined,
searched, and optimized using the algorithms described in the previous sec-
tions. The methods described can be used similarly in many other areas of
natural language processing.

Version June 23, 2004

214 Statistical Natural Language Processing

4.3.1. Statistical formulation

Speech recognition consists of generating accurate written transcriptions for spo-
ken utterances. The desired transcription is typically a sequence of words, but it
may also be the utterance’s phonemic or syllabic transcription or a transcription
into any other sequence of written units.

The problem can be formulated as a maximum-likelihood decoding problem,
or the so-called noisy channel problem. Given a speech utterance, speech recog-
nition consists of determining its most likely written transcription. Thus, if we
let o denote the observation sequence produced by a signal processing system, w
a (word) transcription sequence over an alphabet A, and P(w | o) the probabil-
ity of the transduction of o into w, the problem consists of finding ŵ as defined
by:

ŵ = argmax
w∈A∗

P(w | o) (4.3.1)

Using Bayes’ rule, P(w | o) can be rewritten as: P(o|w)P(w)
P(o) . Since P(o) does

not depend on w, the problem can be reformulated as:

ŵ = argmax
w∈A∗

P(o | w)P(w) (4.3.2)

where P(w) is the a priori probability of the written sequence w in the language
considered and P(o | w) the probability of observing o given that the sequence
w has been uttered. The probabilistic model used to estimate P(w) is called
a language model or a statistical grammar. The generative model associated
to P(o | w) is a combination of several knowledge sources, in particular the
acoustic model, and the pronunciation model. P(o | w) can be decomposed into
several intermediate levels e.g., that of phones, syllables, or other units. In most
large-vocabulary speech recognition systems, it is decomposed into the following
probabilistic models that are assumed independent:

• P(p | w), a pronunciation model or lexicon transducing word sequences w
to phonemic sequences p;

• P(c | p), a context-dependency transduction mapping phonemic sequences
p to context-dependent phone sequences c;

• P(d | c), a context-dependent phone model mapping sequences of context-
dependent phones c to sequences of distributions d; and

• P(o | d), an acoustic model applying distribution sequences d to observa-
tion sequences.4

Since the models are assumed to be independent,

P(o | w) =
∑
d,c,p

P(o | d)P(d | c)P(c | p)P(p | w) (4.3.3)

4P(o | d)P(d | c) or P(o | d)P(d | c)P(c | p) is often called an acoustic model.

Version June 23, 2004

4.3. Application to speech recognition 215

Equation 4.3.2 can thus be rewritten as:

ŵ = argmax
w

∑
d,c,p

P(o | d)P(d | c)P(c | p)P(p | w)P(w) (4.3.4)

The following sections discuss the definition and representation of each of these
models and that of the observation sequences in more detail. The transduction
models are typically given either directly or as a result of an approximation as
weighted finite-state transducers. Similarly, the language model is represented
by a weighted automaton.

4.3.2. Statistical grammar

In some relatively restricted tasks, the language model for P(w) is based on
an unweighted rule-based grammar. But, in most large-vocabulary tasks, the
model is a weighted grammar derived from large corpora of several million words
using statistical methods. The purpose of the model is to assign a probability
to each sequence of words, thereby assigning a ranking to all sequences. Thus,
the parsing information it may supply is not directly relevant to the statistical
formulation described in the previous section.

The probabilistic model derived from corpora may be a probabilistic context-
free grammmar. But, in general, context-free grammars are computationally
too demanding for real-time speech recognition systems. The amount of work
required to expand a recognition hypothesis can be unbounded for an unre-
stricted grammar. Instead, a regular approximation of a probabilistic context-
free grammar is used. In most large-vocabulary speech recognition systems, the
probabilistic model is in fact directly constructed as a weighted regular gram-
mar and represents an n-gram model. Thus, this section concentrates on a brief
description of these models.5

Regardless of the structure of the model, using the Bayes’s rule, the probabil-
ity of the word sequence w = w1 · · ·wk can be written as the following product
of conditional probabilities:

P(w) =
k∏

i=1

P(wi | w1 · · ·wi−1) (4.3.5)

An n-gram model is based on the Markovian assumption that the probability
of the occurrence of a word only depends on the n− 1 preceding words, that is,
for i = 1 . . . n:

P(wi | w1 · · ·wi−1) = P(wi | hi) (4.3.6)

where the conditioning history hi has length at most n− 1: |hi| ≤ n− 1. Thus,

P(w) =
k∏

i=1

P(wi | hi) (4.3.7)

5Similar probabilistic models are designed for biological sequences (see Chapter 6).

Version June 23, 2004

216 Statistical Natural Language Processing

wi−2wi−1 wi−1wi

wi−1 wi

ε

wi

wi

wi−1Φ Φ

Φ

0

1/8.318

2/1.386

3

bye/8.318

hello/7.625

ε/-0.287

ε/-1.386 bye/0.693

hello/1.386

bye/7.625

ε/-0.693

(a) (b)

Figure 4.7. Katz back-off n-gram model. (a) Representation of a trigram
model with failure transitions labeled with Φ. (b) Bigram model derived
from the input text hello bye bye. The automaton is defined over the log
semiring (the transition weights are negative log-probabilities). State 0 is
the initial state. State 1 corresponds to the word bye and state 3 to the
word hello. State 2 is the back-off state.

Let c(w) denote the number of occurrences of a sequence w in the corpus. c(hi)
and c(hiwi) can be used to estimate the conditional probability P(wi | hi).
When c(hi) �= 0, the maximum likelihood estimate of P(wi | hi) is:

P̂(wi | hi) =
c(hiwi)
c(hi)

(4.3.8)

But, a classical data sparsity problem arises in the design of all n-gram models:
the corpus, no matter how large, may contain no occurrence of hi (c(hi) = 0).
A solution to this problem is based on smoothing techniques. This consists of
adjusting P̂ to reserve some probability mass for unseen n-gram sequences.

Let P̃(wi | hi) denote the adjusted conditional probability. A smoothing
technique widely used in language modeling is the Katz back-off technique.
The idea is to “back-off” to lower order n-gram sequences when c(hiwi) = 0.
Define the backoff sequence of hi as the lower order n-gram sequence suffix of
hi and denote it by h′

i. hi = uh′
i for some word u. Then, in a Katz back-off

model, P(wi | hi) is defined as follows:

P(wi | hi) =
{

P̃(wi | hi) if c(hiwi) > 0
αhiP(wi | h′

i) otherwise
(4.3.9)

where αhi is a factor ensuring normalization. The Katz back-off model admits a
natural representation by a weighted automaton in which each state encodes a

Version June 23, 2004

4.3. Application to speech recognition 217

0 1 2 3 4/1
d:ε/1.0

ey:ε/0.8

ae:ε/0.2

dx:ε/0.6

t:ε/0.4

ax:data/1.0

Figure 4.8. Section of a pronunciation model of English, a weighted
transducer over the probability semiring giving a compact representation
of four pronunciations of the word data due to two distinct pronunciations
of the first vowel a and two pronunciations of the consonant t (flapped or
not).

conditioning history of length less than n. As in the classical de Bruijn graphs,
there is a transition labeled with wi from the state encoding hi to the state
encoding h′

iwi when c(hiwi) �= 0. A so-called failure transition can be used to
capture the semantic of “otherwise” in the definition of the Katz back-off model
and keep its representation compact. A failure transition is a transition taken at
state q when no other transition leaving q has the desired label. Figure 4.3.2(a)
illustrates that construction in the case of a trigram model (n = 3).

It is possible to give an explicit representation of these weighted automata
without using failure transitions. However, the size of the resulting automata
may become prohibitive. Instead, an approximation of that weighted automaton
is used where failure transitions are simply replaced by ε-transitions. This turns
out to cause only a very limited loss in accuracy.6.

In practice, for numerical instability reasons negative-log probabilities are
used and the language model weighted automaton is defined in the log semiring.
Figure 4.3.2(b) shows the corresponding weighted automaton in a very simple
case. We will denote by G the weighted automaton representing the statistical
grammar.

4.3.3. Pronunciation model

The representation of a pronunciation model P(p | w) (or lexicon) with weighted
transducers is quite natural. Each word has a finite number of phonemic tran-
scriptions. The probability of each pronunciation can be estimated from a cor-
pus. Thus, for each word x, a simple weighted transducer Tx mapping x to its
phonemic transcriptions can be constructed.

Figure 4.8 shows that representation in the case of the English word data.
The closure of the union of the transducers Tx for all the words x considered
gives a weighted transducer representation of the pronunciation model. We will
denote by P the equivalent transducer over the log semiring.

6An alternative when no offline optimization is used is to compute the explicit represen-
tation on-the-fly, as needed for the recognition of an utterance. There exists also a complex
method for constructing an exact representation of an n-gram model which cannot be pre-
sented in this short chapter.

Version June 23, 2004

218 Statistical Natural Language Processing

(ε,C)

(p,p)

(q,q)

(p,q)

(q,p)

(p,ε)

(q,ε)

εpp:p/0

εqp:q/0

εqq:q/0

εpq:p/0
εpε:p/0

εqε:q/0

ppp:p/0

qqq:q/0

ppq:p/0

qqp:q/0

ppε:p/0

qqε:q/0

pqq:q/0

pqp:q/0

pqε:q/0

qpp:p/0

qpq:p/0
qpε:p/0

Figure 4.9. Context-dependency transducer restricted to two phones p and q.

4.3.4. Context-dependency transduction

The pronunciation of a phone depends on its neighboring phones. To design
an accurate acoustic model, it is thus beneficial to model a context-dependent
phone, i.e., a phone in the context of its surrounding phones. This has also
been corroborated by empirical evidence. The standard models used in speech
recognition are n-phonic models. A context-dependent phone is then a phone in
the context of its n1 previous phones and n2 following phones, with n1+n2+1 =
n. Remarkably, the mapping P(c | d) from phone sequences to sequences of
context-dependent phones can be represented by finite-state transducers. This
section illustrates that construction in the case of triphonic models (n1 = n2 =
1). The extension to the general case is straightforward.

Let P denote the set of context-independent phones and let C denote the
set of triphonic context-dependent phones. For a language such as English or
French, Card(P) ≈ 50. Let p1pp2 denote the context-dependent phone corre-
sponding to the phone p with the left context p1 and the right context p2.

The construction of the context-dependency transducer is similar to that of
the language model automaton. As in the previous case, for numerical instability
reasons, negative log-probabilities are used, thus the transducer is defined in the
log semiring. Each state encodes a history limited to the last two phones. There
is a transition from the state associated to (p, q) to (q, r) with input label the
context-dependent phone pqr and output label q. More precisely, the transducer
T = (C,P , Q, I, F, E, λ, ρ) is defined by:

• Q = {(p, q) : p ∈ P , q ∈ P ∪ {ε}} ∪ {(ε, C)};

• I = {(ε, C)} and F = {(p, ε) : p ∈ P};

Version June 23, 2004

4.3. Application to speech recognition 219

0 1 2 3

d1:ε d2:ε d3:ε

d1:ε d2:ε d3:pqr

Figure 4.10. Hidden-Markov Model transducer.

• E ⊆ {((p, Y), pqr, q, 0, (q, r)) : Y = q or Y = C}

with all initial and final weights equal to zero. Figure 4.9 shows that transducer
in the simple case where the phonemic alphabet is reduced to two phones (P =
{p, q}). We will denote by C the weighted transducer representing the context-
dependency mapping.

4.3.5. Acoustic model

In most modern speech recognition systems, context-dependent phones are mod-
eled by three-state Hidden Markov Models (HMMs). Figure 4.10 shows the
graphical representation of that model for a context-dependent model pqr. The
context-dependent phone is modeled by three states (0, 1, and 2) each mod-
eled with a distinct distribution (d0, d1, d2) over the input observations. The
mapping P(d | c) from sequences of context-dependent phones to sequences of
distributions is the transducer obtained by taking the closure of the union of
the finite-state transducers associated to all context-dependent phones. We will
denote by H that transducer. Each distribution di is typically a mixture of
Gaussian distributions with mean µ and covariance matrix σ:

P(ω) =
1

(2π)N/2|σ|1/2
e−

1
2 (ω−µ)T σ−1(ω−µ) (4.3.10)

where ω is an observation vector of dimension N . Observation vectors are
obtained by local spectral analysis of the speech waveform at regular intervals,
typically every 10 ms. In most cases, they are 39-dimensional feature vectors
(N = 39). The components are the 13 cepstral coefficients, i.e., the energy and
the first 12 components of the cepstrum and their first-order (delta cepstra) and
second-order differentials (delta-delta cepstra). The cepstrum of the (speech)
signal is the result of taking the inverse-Fourier transform of the log of its
Fourier transform. Thus, if we denote by x(ω) the Fourier transform of the
signal, the 12 first coefficients cn in the following expression:

log |x(ω)| =
∞∑

n=−∞
cne−inω (4.3.11)

are the coefficients used in the observation vectors. This truncation of the
Fourier transform helps smooth the log magnitude spectrum. Empirically, cep-
stral coefficients have shown to be excellent features for representing the speech

Version June 23, 2004

220 Statistical Natural Language Processing

t0 t1 t2 tk
o1 o2 . . . ok

Figure 4.11. Observation sequence O = o1 · · · ok. The time stamps ti,
i = 0, . . . k, labeling states are multiples of 10 ms.

signal.7 Thus the observation sequence o = o1 · · · ok can be represented by a
sequence of 39-dimensional feature vectors extracted from the signal every 10
ms. This can be represented by a simple automaton as shown in figure 4.11,
that we will denote by O.

We will denote by O � H the weighted transducer resulting from the appli-
cation of the transducer H to an observation sequence O. O � H is the weighted
transducer mapping O to sequences of context-dependent phones, where the
weights of the transitions are the negative log of the value associated by a dis-
tribution di to an observation vector Oj , -log di(Oj).

4.3.6. Combination and search

The previous sections described the representation of each of the components
of a speech recognition system by a weighted transducer or weighted automa-
ton. This section shows how these transducers and automata can be combined
and searched efficiently using the weighted transducer algorithms previously
described, following Equation 4.3.4.

A so-called Viterbi approximation is often used in speech recognition. It
consists of approximating a sum of probabilities by its dominating term:

ŵ = argmax
w

∑
d,c,p

P(o | d)P(d | c)P(c | p)P(p | w)P(w) (4.3.12)

≈ argmax
w

max
d,c,p

P(o | d)P(d | c)P(c | p)P(p | w)P(w) (4.3.13)

This has been shown to be empirically a relatively good approximation, though,
most likely, its introduction was originally motivated by algorithmic efficiency.
For numerical instability reasons, negative-log probabilities are used, thus the
equation can be reformulated as:

ŵ=argmin
w

min
d,c,p

− logP(o | d)−logP(d | c)−logP(c | p)−logP(p | w)−logP(w)

As discussed in the previous sections, these models can be represented by
weighted transducers. Using the composition algorithm for weighted trans-
ducers, and by definition of the �-operation and projection, this is equivalent

7Most often, the spectrum is first transformed using the Mel Frequency bands, which is a
non-linear scale approximating the human perception.

Version June 23, 2004

4.3. Application to speech recognition 221

HMM Transducer H CD Transducer C Pron. Model P Grammar G
observations O CD phones CI phones words words

Figure 4.12. Cascade of speech recognition transducers.

to:8

ŵ = argmin
w

Π2(O � H ◦ C ◦P ◦G) (4.3.14)

Thus, speech recognition can be formulated as a cascade of composition of
weighted transducers illustrated by Figure 4.12. ŵ labels the path of W =
Π2(O � H ◦ C ◦ P ◦ G) with the lowest weight. The problem can be viewed as
a classical single-source shortest-paths algorithm over the weighted automaton
W. Any single-source shortest paths algorithm could be used to solve it. In
fact, since O is finite, the automaton W could be acyclic, in which case the clas-
sical linear-time single-source shortest-paths algorithm based on the topological
order could be used.

However, this scheme is not practical. This is because the size of W can
be prohibitively large even for recognizing short utterances. The number of
transitions of O for 10s of speech is 1000. If the recognition transducer T =
H ◦ C ◦P ◦G had in the order of just 100M transitions, the size of W would be
in the order of 1000× 100M transitions, i.e., about 100 billion transitions!

In practice, instead of visiting all states and transitions, a heuristic pruning
is used. A pruning technique often used is the beam search. This consists of
exploring only states with tentative shortest-distance weights within a beam or
threshold of the weight of the best comparable state. Comparable states must
roughly correspond to the same observations, thus states of T are visited in the
order of analysis of the input observation vectors, i.e. chronologically. This
is referred to as a synchronous beam search. A synchronous search restricts
the choice of the single-source shortest-paths problem or the relaxation of the
tentative shortest-distances. The specific single-source shortest paths algorithm
then used is known as the Viterbi Algorithm, which is presented in Exercise
1.3.1.

The �-operation, the Viterbi algorithm, and the beam pruning techniques
are often combined into a decoder. Here is a brief description of the decoder.
For each observation vector oi read, the transitions leaving the current states of
T are expanded, the �-operation is computed on-the-fly to compute the acoustic
weights given by the application of the distributions to oi. The acoustic weights
are added to the existing weight of the transitions and out of the set of states

8Note that the Viterbi approximation can be viewed simply as a change of semiring, from
the log semiring to the tropical semiring. This does not affect the topology or the weights
of the transducers but only their interpretation or use. Also, note that composition does not
make use of the first operation of the semiring, thus compositions in the log and tropical
semiring coincide.

Version June 23, 2004

222 Statistical Natural Language Processing

reached by these transitions those with a tentative shortest-distance beyond a
pre-determined threshold are pruned out. The beam threshold can be used as a
means to select a trade-off between recognition speed and accuracy. Note that
the pruning technique used is non-admissible. The best overall path may fall
out of the beam due to local comparisons.

4.3.7. Optimizations

The characteristics of the recognition transducer T were left out of the previous
discussion. They are however key parameters for the design of real-time large-
vocabulary speech recognition systems. The search and decoding speed critically
depends on the size of T and its non-determinism. This section describes the
use of the determinization, minimization, and weight pushing algorithm for
constructing and optimizing T.

The component transducers described can be very large in speech recognition
applications. The weighted automata and transducers we used in the North
American Business news (NAB) dictation task with a vocabulary of just 40,000
words (the full vocabulary in this task contains about 500,000 words) had the
following attributes:

• G: a shrunk Katz back-off trigram model with about 4M transitions;9

• P : pronunciation transducer with about 70, 000 states and more than
150,000 transitions;

• C: a triphonic context-dependency transducer with about 1,500 states and
80,000 transitions.

• H: an HMM transducer with more than 7,000 states.

A full construction of T by composition of such transducers without any
optimization is not possible even when using very large amounts of memory.
Another problem is the non-determinism of T. Without prior optimization, T is
highly non-deterministic, thus, a large number of paths need to be explored at
the search and decoding time, thereby considerably slowing down recognition.

Weighted determinization and minimization algorithms provide a general
solution to both the non-determinism and the size problem. To construct an
optimized recognition transducer, weighted transducer determinization and min-
imization can be used at each step of the composition of each pair of component
transducers. The main purpose of the use of determinization is to eliminate
non-determinism in the resulting transducer, thereby substantially reducing
recognition time. But, its use at intermediate steps of the construction also
helps improve the efficiency of composition and reduce the size of the resulting
transducer. We will see later that it is in fact possible to construct offline the
recognition transducer and that its size is practical for real-time speech recog-
nition!

9Various shrinking methods can be used to reduce the size of a statistical grammar without
affecting its accuracy excessively.

Version June 23, 2004

4.3. Application to speech recognition 223

However, as pointed out earlier, not all weighted automata and transducers
are determinizable, e.g., the transducer P◦G mapping phone sequences to words
is in general not determinizable. This is clear in presence of homophones. But
even in the absence of homophones, P◦G may not have the twins property and
be non-determinizable. To make it possible to determinize P ◦G, an auxiliary
phone symbol denoted by #0 marking the end of the phonemic transcription of
each word can be introduced. Additional auxiliary symbols #1 . . .#k−1 can be
used when necessary to distinguish homophones as in the following example:

r eh d #0 read
r eh d #1 red

At most D auxiliary phones, where D is the maximum degree of homophony,
are introduced. The pronunciation transducer augmented with these auxiliary
symbols is denoted by P̃. For consistency, the context-dependency transducer
C must also accept all paths containing these new symbols. For further deter-
minizations at the context-dependent phone level and distribution level, each
auxiliary phone must be mapped to a distinct context-dependent phone. Thus,
self-loops are added at each state of C mapping each auxiliary phone to a new
auxiliary context-dependent phone. The augmented context-dependency trans-
ducer is denoted by C̃.

Similarly, each auxiliary context-dependent phone must be mapped to a new
distinct distribution. D self-loops are added at the initial state of H with aux-
iliary distribution input labels and auxiliary context-dependency output labels
to allow for this mapping. The modified HMM transducer is denoted by H̃.

It can be shown that the use of the auxiliary symbols guarantees the de-
terminizability of the transducer obtained after each composition. Weighted
transducer determinization is used at several steps of the construction. An n-
gram language model G is often constructed directly as a deterministic weighted
automaton with a back-off state – in this context, the symbol ε is treated as
a regular symbol for the definition of determinism. If this does not hold, G is
first determinized. P̃ is then composed with G and determinized: det(P̃ ◦G).
The benefit of this determinization is the reduction of the number of alternative
transitions at each state to at most the number of distinct phones at that state
(≈ 50), while the original transducer may have as many as V outgoing transi-
tions at some states where V is the vocabulary size. For large tasks where the
vocabulary size can be more than several hundred thousand, the advantage of
this optimization is clear.

The inverse of the context-dependency transducer might not be determin-
istic.10 For example, the inverse of the transducer shown in Figure 4.9 is not
deterministic since the initial state admits several outgoing transitions with the
same input label p or q. To construct a small and efficient integrated transducer,
it is important to first determinize the inverse of C.11

10The inverse of a transducer is the transducer obtained by swapping input and output
labels of all transitions.

11Triphonic or more generally n-phonic context-dependency models can also be constructed
directly with a deterministic inverse.

Version June 23, 2004

224 Statistical Natural Language Processing

C̃ is then composed with the resulting transducer and determinized. Simi-
larly H̃ is composed with the context-dependent transducer and determinized.
This last determinization increases sharing among HMM models that start with
the same distributions: at each state of the resulting integrated transducer,
there is at most one outgoing transition labeled with any given distribution
name. This leads to a substantial reduction of the recognition time.

As a final step, the auxiliary distribution symbols of the resulting trans-
ducer are simply replaced by ε’s. The corresponding operation is denoted by
Πε. The sequence of operations just described is summarized by the following
construction formula:

N = Πε(det(H̃ ◦ det(C̃ ◦ det(P̃ ◦G)))) (4.3.15)

where parentheses indicate the order in which the operations are performed.
Once the recognition transducer has been determinized, its size can be further
reduced by minimization. The auxiliary symbols are left in place, the minimiza-
tion algorithm is applied, and then the auxiliary symbols are removed:

N = Πε(min(det(H̃ ◦ det(C̃ ◦ det(P̃ ◦G))))) (4.3.16)

Weighted minimization can also be applied after each determinization step.
It is particularly beneficial after the first determinization and often leads to
a substantial size reduction. Weighted minimization can be used in different
semirings. Both minimization in the tropical semiring and minimization in the
log semiring can be used in this context. The results of these two minimiza-
tions have exactly the same number of states and transitions and only differ
in how weight is distributed along paths. The difference in weights arises from
differences in the definition of the key pushing operation for different semirings.

Weight pushing in the log semiring has a very large beneficial impact on
the pruning efficacy of a standard Viterbi beam search. In contrast, weight
pushing in the tropical semiring, which is based on lowest weights between
paths described earlier, produces a transducer that may slow down beam-pruned
Viterbi decoding many fold.

The use of pushing in the log semiring preserves a desirable property of
the language model, namely that the weights of the transitions leaving each
state be normalized as in a probabilistic automaton. Experimental results also
show that pushing in the log semiring makes pruning more effective. It has
been conjectured that this is because the acoustic likelihoods and the transducer
probabilities are then synchronized to obtain the optimal likelihood ratio test for
deciding whether to prune. It has been further conjectured that this reweighting
is the best possible for pruning. A proof of these conjectures will require a careful
mathematical analysis of pruning.

The result N is an integrated recognition transducer that can be constructed
even in very large-vocabulary tasks and leads to a substantial reduction of the
recognition time as shown by our experimental results. Speech recognition is
thus reduced to the simple Viterbi beam search described in the previous section
applied to N.

Version June 23, 2004

Notes 225

In some applications such as for spoken-dialog systems, one may wish to
modify the input grammar or language model G as the dialog proceeds to ex-
ploit the context information provided by previous interactions. This may be
to activate or deactivate certain parts of the grammar. For example, after a
request for a location, the date sub-grammar can be made inactive to reduce
alternatives.

The offline optimization techniques just described can sometimes be ex-
tended to the cases where the changes to the grammar G are pre-defined and
limited. The grammar can then be factored into sub-grammars and an op-
timized recognition transducer is created for each. When deeper changes are
expected to be made to the grammar as the dialog proceeds, each component
transducer can still be optimized using determinization and minimization and
the recognition transducer N can be constructed on-demand using an on-the-fly
composition. States and transitions of N are then expanded as needed for the
recognition of each utterance.

This concludes our presentation of the application of weighted transducer
algorithms to speech recognition. There are many other applications of these
algorithms in speech recognition, including their use for the optimization of the
word or phone lattices output by the recognizer that cannot be covered in this
short chapter.

We presented several recent weighted finite-state transducer algorithms and
described their application to the design of large-vocabulary speech recognition
systems where weighted transducers of several hundred million states and tran-
sitions are manipulated. The algorithms described can be used in a variety of
other natural language processing applications such as information extraction,
machine translation, or speech synthesis to create efficient and complex sys-
tems. They can also be applied to other domains such as image processing,
optical character recognition, or bioinformatics, where similar statistical models
are adopted.

Notes

Much of the theory of weighted automata and transducers and their mathe-
matical counterparts, rational power series, was developed several decades ago.
Excellent reference books for that theory are Eilenberg (1974), Salomaa and
Soittola (1978), Berstel and Reutenauer (1984) and Kuich and Salomaa (1986).

Some essential weighted transducer algorithms such as those presented in
this chapter, e.g., composition, determinization, and minimization of weighted
transducers are more recent and raise new questions, both theoretical and algo-
rithmic. These algorithms can be viewed as the generalization to the weighted
case of the composition, determinization, minimization, and pushing algorithms
described in Chapter 1 Section 1.5. However, this generalization is not always
straightforward and has required a specific study.

The algorithm for the composition of weighted finite-state transducers was
given by Pereira and Riley (1997) and Mohri, Pereira, and Riley (1996). The

Version June 23, 2004

226 Statistical Natural Language Processing

composition filter described in this chapter can be refined to exploit information
about the composition states, e.g., the finality of a state or whether only ε-
transitions or only non ε-transitions leave that state, to reduce the number of
non-coaccessible states created by composition.

The generic determinization algorithm for weighted automata over weakly
left divisible left semirings presented in this chapter as well as the study of
the determinizability of weighted automata are from Mohri (1997). The deter-
minization of (unweighted) finite-state transducers can be viewed as a special
instance of this algorithm. The definition of the twins property was first formu-
lated for finite-state transducers by Choffrut (see Berstel (1979) for a modern
presentation of that work). The generalization to the case of weighted automata
over the tropical semiring is from Mohri (1997). A more general definition for
a larger class of semirings, including the case of finite-state transducers, as well
as efficient algorithms for testing the twins property for weighted automata and
transducers under some general conditions is presented by Allauzen and Mohri
(2003).

The weight pushing algorithm and the minimization algorithm for weighted
automata were introduced by Mohri 1997. The general definition of shortest-
distance and that of k-closed semirings and the generic shortest-distance algo-
rithm mentioned appeared in Mohri (2002). Efficient implementations of the
weighted automata and transducer algorithms described as well as many oth-
ers are incorporated in a general software library, AT&T FSM Library, whose
binary executables are available for download for non-commercial use (Mohri
et al. (2000)).

Bahl, Jelinek, and Mercer 1983 gave a clear statistical formulation of speech
recognition. An excellent tutorial on Hidden Markov Model and their applica-
tion to speech recognition was presented by Rabiner (1989). The problem of the
estimation of the probability of unseen sequences was originally studied by Good
1953 who gave a brilliant discussion of the problem and provided a principled
solution. The back-off n-gram statistical modeling is due to Katz (1987). See
Lee (1990) for a study of the benefits of the use of context-dependent models in
speech recognition.

The use of weighted finite-state transducers representations and algorithms
in statistical natural language processing was pioneered by Pereira and Riley
(1997) and Mohri (1997). Weighted transducer algorithms, including those de-
scribed in this chapter, are now widely used for the design of large-vocabulary
speech recognition systems. A detailed overview of their use in speech recogni-
tion is given by Mohri, Pereira, and Riley (2002). Sproat 1997 and Allauzen,
Mohri, and Riley 2004 describe the use of weighted transducer algorithms in the
design of modern speech synthesis systems. Weighted transducers are used in a
variety of other applications. Their recent use in image processing is described
by Culik II and Kari (1997).

Version June 23, 2004

227

CHAPTER 5

Inference of Network Expressions

5.0 Introduction . 227
5.1 Inferring simple network expressions: models and related problems228

5.1.1 The star model . 228
5.1.2 The clique model . 232
5.1.3 Other models . 233

5.2 Algorithms . 234
5.2.1 Inference in the star model 234
5.2.2 Inference as a clique detection problem 238

5.3 Inferring network expressions with spacers 240
5.3.1 Mathematical models and related inference problem . . 240
5.3.2 Algorithms . 241

5.4 Related issues . 244
5.4.1 The concept of basis . 244
5.4.2 Inferring tandem network expressions 245

5.5 Open problems . 247
5.5.1 Inference of network expressions using edit distance . . . 247
5.5.2 Minimal covering set . 248
Notes . 249

5.0. Introduction

This chapter introduces various mathematical models and combinatorial algo-
rithms for inferring network expressions that appear repeated in a word or are
common to a set of words, where by network expression is meant a regular ex-
pression without Kleene closure on the alphabet of the input word(s). A network
expression on such an alphabet is therefore any expression built up of concate-
nation and union operators. For example, the expression A(C + G)T concatenates
A with the union (C + G) and with T. Inferring network expressions means dis-
covering such expressions which are initially unknown. The only input is the
word(s) where the repeated (or common) expressions will be sought for. This is
in contrast with another problem we shall not be concerned with, that consists
in searching for a known expression in a word(s) both of which are in this case
part of the input. The inference of network expressions has many applications,

Version June 23, 2004

228 Inference of Network Expressions

notably in molecular biology, system security, text mining etc. Because of the
richness of the mathematical and algorithmic Al problems posed by molecular
biology, we concentrate on applications in this area. The network expressions
considered may therefore contain spacers where by spacer is meant any number
of don’t care symbols (a don’t care is a symbol that matches anything). Con-
strained spacers are consecutive don’t care symbols whose number ranges over
a fixed interval of values. Network expressions with don’t care symbols but no
spacers are called “simple” while network expressions with spacers are called
“flexible” if the spacers are unconstrained, and “structured” otherwise. Both
notions are important in molecular biology. Applications to biology motivate
us also to consider network expressions that appear repeated not exactly but
approximately.

Only exact combinatorial methods that are non-trivial (that is, are not sim-
ple brute-force schemes which enumerate all possible network expressions) will
be mentioned. In most cases, the network expressions that have been considered
in the literature present some constraint that generally applies to the union op-
erator. Indeed, the operands concerned by the union operation will most often
be elements of the alphabet A and not arbitrary words in A+ as is the case with
unrestricted network expressions. For instance, we do not allow expressions such
as A(CG+ G)T.

The literature on the inference of regular expressions, also called grammatical
inference, is vast, and predates computational biology by many years. The
inference problems addressed in this chapter present special characteristics in
relation to such general problems. The most important ones are that, although
the expressions considered here are simpler in the sense indicated above, their
occurrences are not exact and come hidden inside often very large texts. To use
the terms commonly adopted in the grammatical inference community, we work
with (positive) examples that have first to be fished from a sea of other textual
information, consisting mostly in noise. Most often, there is not one regular
expression only, and thus one set of examples, but various distinct ones hidden
in the same text.

5.1. Inferring simple network expressions: models and re-
lated problems

5.1.1. The star model

A star expression X is an expression of the form X = e1e2 · · · em where each
ei is the union of elements of the alphabet, i.e. ei = ai,1 + ai,2 + · · · + ai,ni

with ai,j ∈ A for 1 ≤ j ≤ ni ≤ Card(A), 1 ≤ i ≤ m. Star expressions are
therefore words on the alphabet P(A) of all non empty subsets of A, that is,
they are elements of P(A)+. This includes the set A which we denote by • and
call the don’t care symbol1. Let F (w) denote the set of factors of a word w. A
star expression denotes also a finite set of words of length m. A star expression

1One also finds in the literature the terms wild card and joker.

Version June 23, 2004

5.1. Inferring simple network expressions: models and related problems 229

X ∈ P(A)+ is said to occur exactly in a word w ∈ A+ if there exists v ∈ F (w)
such that v ∈ X . The factor v is said to be an occurrence of X in w.

The notion of approximate occurrence relies on the notion of a distance
between two words u and v on A. In biology, like in a number of other text
applications, a natural distance measures the effort required to transform one
word into the other given certain allowed operations. The operations that model
best the mutational events that may happen during replication and survive are
the substitution (i.e. replacement) of a letter of A by another, the deletion of a
letter in one of the two words, and the insertion of a letter. Finally, a match is
an operation that leaves the letter unchanged. These are called edit operations.

Let S, D, I, M denote the four edit operations described above. An edit
transcript is a string over the alphabet S, D, I, M that describes a transformation
of a word u into another v. An equivalent way of describing such transformation
is through a global alignment of u and v. This is obtained by inserting spaces
in both u and v, transforming them into u′ and v′ defined over A ∪ {−} where
{−} denotes a space and |u′| = |v′|. An edit transcript can be easily converted
into a global alignment and vice-versa.

A cost c may be attributed to each operation where c is a function (A∪{−})×
(A∪{−})→ R. The cost of a global alignment (and thus of the associated edit
transcript) of two words u′ and v′ of length n is then

∑n−1
i=0 c(u′[i], v′[i]). Not

all cost functions define a distance. This will be the case if the function c is
symmetric and if c(a, b) for a, b ∈ A∪{−} is strictly greater than 0 if a �= b and
is 0 otherwise.

Two types of distances have attracted special attention. These are the Ham-
ming and the edit distance (this last is also called the Levenshtein distance).

In the case of the edit distance, the cost function is

c(a, b) =
{

1 if a �= b;
0 otherwise. for a, b ∈ A ∪ {−}

The edit distance is thus the minimum number of substitutions, insertions
and deletions required to transform u into v. The Hamming distance applies
only to words of same length, and is restricted to substitution/match operations.
The cost function is the same as for the edit distance applied to a, b ∈ A.
It counts the minimum number of substitutions needed to obtain v from u
assuming they have the same length. The Hamming distance will be denoted
by distH and the edit distance by distE .

Given a positive integer d, a d-occurrence of X in a word w is a word v ∈
F (w) such that there exists a word u ∈ X with dist(u, v) ≤ d for some fixed d.
An expression X ∈ P(A)+ is thus said to appear approximately in w if it has a
d-occurrence in w. Where there is no possible ambiguity, reference to d will be
dropped in all such notations.

The distances considered between words v and u are, as suggested, usually
Hamming or edit, although any other may be used. For ease of exposition, we
consider Hamming distance exclusively. Issues related to the use of the edit
distance instead are left as open problems in Section 5.5.1.

Version June 23, 2004

230 Inference of Network Expressions

The above definitions of approximate occurrence of an expression lead to the
following inference problem statements. They call upon the concept of quorum.
This is the minimum number of times an expression must appear repeated in
the input word(s). In the case of a set of words, the quorum is the number of
distinct words where the expression appears.

Expression inference problem for a star expression

Expression X repeated in a word
INPUT: A word w ∈ A+, a quorum q and a distance d.
OUTPUT: All star expressions X ∈ P(A)+ that occur d-appro-

ximately in w at least q times.

Expression X common to a set of words
INPUT: N words w1, w2, . . . , wN ∈ A+, a quorum q, a distance d.
OUTPUT: All star expressions X ∈ P(A)+ that occur d-appro-

ximately in at least q of the N words w1, w2, . . . , wN .

Observe that nothing, except algorithmic Al concerns, would forbid to con-
sider in all the above definitions and problem statements, network expressions
without constraints on the union operator.

These definitions and statements have been adopted in a number of exact
algorithms, namely Combi, Poivre, Speller, Smile, Pratt, and Mitra-

count. The main difference between the algorithms has been in the type of
further constraints put on the network expressions allowed. In Combi, the
expressions are indeed elements of P(A)+ with just a constraint on the number
of times the don’t care symbol A may be used in the expression. This last
constraint is used by all algorithms. In Poivre as in Pratt, the expressions are
over an alphabet S where S is a proper subset of P(A). In Pratt furthermore,
expressions must appear exactly in a word (d = 0). In Speller and Mitra-

count, the expressions are elements of A+. Speller was later extended to
handle elements of S ⊆ P(A)+ as is the case for Smile.

The model described in this section is called a star model because the ex-
pressions X given as output may be viewed as the center of star trees whose
edges have as length the distance between X and each of its occurrences in the
input word(s). A special case of the problem of finding such expressions has
been called the Closest substring problem. This is stated in the following way,
where by Fk(w) we denote the set F (w) ∩ Ak of w having length k.

Closest substring problem
INPUT: N words w1, w2, . . . , wN over the alphabet A and integers d and

k.

OUTPUT: A word x of length k overA such that there exist ui ∈ Fk(wi)
with distH(x, ui) ≤ d for all 1 ≤ i ≤ N .

Version June 23, 2004

5.1. Inferring simple network expressions: models and related problems 231

It is interesting to observe the relation between an expression within the star
model and another well known mathematical object: Steiner strings. Given a
set of words x1, . . . , xN of same length in A+, a Steiner string is a word x̄ also
in A+ which minimizes

∑N
i=0 distH(x̄, xi). One may then wonder whether an

expression X that solves the Expression inference problem for star expressions
leads to a Steiner string, that is, are the star expressions found also solutions of
the Steiner string problem for their sets of occurrences? The answer is negative.
A simple counter-example is the star expression ACAA repeated in the word
w = AAAAAACAC with d = 1 and q = 4. The expression ACAA of length 4 is indeed
a solution of the star expression inference problem since it has 4 occurrences in
w, namely at positions 0, 1, 2, 5 (positions in a word start at 0). Expression AAAC
is also a solution with 5 occurrences, at positions 0, 1, 2, 3, 5. Neither expression
is a Steiner string of its set of occurrences. In both cases, this is the word AAAA.
Notice that AAAA is not itself a solution of the problem.

The star-model admits a variant that is interesting for some biological appli-
cations. The variant applies to the case of expressions common to a set of words
and assumes a phylogenetic tree is given as input together with the words. This
is a binary tree that represents the speciation events that have led to the dif-
ferent species currently existing (each represented by a word in the input words
set and associated to a leaf of the tree) from the ancestors that are not known.
The tree may be unrooted, or rooted if the order of the events in time is known.
We assume here that the tree is rooted. It is this tree, and not a star-tree, that
is used to compute the distances.

In fact, each edge in the tree is labeled by the Hamming distance between
the words at its extremities. Given a phylogenetic tree, a set of words placed at
the leaves, and an integer k, factors of length k, one for each input word, and
intermediate expressions corresponding to internal nodes have to be inferred
such that the sum of the labels over all edges of the tree is minimized. Such
minimal sum is called parsimony score. The expressions are elements of A+, the
problem (in its decision version) as addressed by the Footprinter algorithm
is as follows.

Substring parsimony problem
INPUT: N words w1, w2, . . . , wN ∈ A+, a phylogenetic tree F for the

words, a length k, and an integer d.

OUTPUT: Factors of length k for the leaves and words of length k for
all internal nodes of the tree that have a parsimony score at most d.

Another variant that has been considered constrains the expressions given
as solutions to the expression inference problem to satisfy an uniform property.
Suppose expressions of a length k are sought and let X be a solution of the
problem. Let also two positive integers, d′ < d and k′ < k, be given. The
following must then be true: for all i such that 0 ≤ i ≤ |X |, distH(X [i..i + k′ −
1], v[i..i + k′ − 1]) ≤ d′. Intuitively, this constraint imposes that the possible
differences between an expression X solution of the problem and each of its
occurrences be uniformly spread, hence the name given to the property. A

Version June 23, 2004

232 Inference of Network Expressions

further variant has been used in Weeder where the constraint that must be
satisfied is: for all i such that 0 ≤ i ≤ |X |, distH(X [0..i], v[0..i]) ≤ � i×d

k �.
The inconvenient of a constraint of this latter type is that an asymmetry is
introduced: differences may accumulate at the end of the occurrences of an
expression.

5.1.2. The clique model

In this model, given an alphabet A, the network expressions on A that are con-
sidered have the constraint that union operators may this time be applied to
elements of Ak only, where k is the length of the expressions sought. Such ex-
pressions are therefore collections of words w ∈ Ak, and the notion of occurrence
is associated to both a distance and a quorum. The definition of occurrence in
this case is thus operational and includes within it the problem statement.

Such an alternative model has been used by some authors, most notably in
the algorithms Winnower, Mitra-graph and KMRC. Mitra-graph uses
in fact both models: the clique model and the star. Winnower and Mitra-

graph formalize the model and problem in graph-theoretical terms.
We state the problem in the case of a set of words. Given a set of N words

w1, w2, . . . , wN over the alphabet A and two non negative integers d and k, let
G = (V1 ∪ · · · ∪ VN , E) be an N -partite graph where Vi = F (wi) ∩ Ak (i.e, it
is the set of all factors of length k of wi for all i) and there is an edge between
vi ∈ Vi, vj ∈ Vj for i �= j if distH(wi, wj) ≤ 2d. Given d and k as above, and
given a quorum q, we say that a network expression X is a (d, q)-clique if and
only if it is a set of q words of length k such that (u, v) ∈ E for all u, v ∈ X .

The problem is then formulated as follows.

Expression inference as a clique problem
INPUT: N words w1, w2, . . . , wN ∈ A+, a quorum q, a length k, and a

distance d; the associated N -partite graph G.

OUTPUT: All (d, q)-cliques of G.

The output cliques correspond to expressions X having occurrences that
are all pairwise 2d-approximations2 of each other in at least q of the N words
w1, w2, . . . , wN . Expression X is the union of its occurrences.

In Poivre instead, the graph is built upon a relation R between the letters of
the alphabet A that is also part of the input. Typically, the relation will be non
transitive and model the degree to which shared physico-chemical properties
between the biological units denoted by the letters (nucleic or amino acids)
enables them to perform equivalent functions in a molecule. The relation R on
the letters of A is straightforwardly extended to a relation R on words of the
same length in A+ as follows: two factors u, v of length k are in relation by
R extended if u[i] is in relation with v[i] by R, for 0 ≤ i ≤ k − 1. Relation
R extended to factors of length k is denoted by Rk. The problem is then

2It will be explained later in this section why a 2d threshold is used instead of simply d.

Version June 23, 2004

5.1. Inferring simple network expressions: models and related problems 233

expressed in a way that resembles the formulation given above except that
graph G = (V1 ∪ . . . ∪ VN , E) is now such that there is an edge between nodes
vi ∈ Vi, vj ∈ Vj for i �= j if the corresponding factors in wi, wj are in relation
by Rk. In Poivre, the idea was used to infer contiguous motifs in protein
structures previously coded into a string of pairs of angles whose values are
discretized into integers by means of a grid.

A natural question is whether for each solution X of the expression inference
as a clique problem in the case of Winnower, there exists an expression Y such
that |Y | = |X | and Y is a solution under the star model for the collection of
words that is the set of occurrences of X , distance d and same quorum. The
answer is no. Let us assume expressions in A+ only are considered. Let the
input words be the set {w1 = ACAC, w2 = AGAG, w3 = ATAT}, d = 1 and q = 3.
The expressions in A+ of length 4, X1 = ACAC, X2 = AGAG and X3 = ATAT are
solutions of the Expression inference as a clique problem as the (non proper)
factors w1 = ACAC, w2 = AGAG, w3 = ATAT in the three input words wi form
a clique of the 3-partite graph G. Yet no expression Y in A4 exists that is a
solution of the problem as formulated in the star model for d

2 . Obviously, there
are solutions for distance d. In that case however, there may be more solutions
in the star model, some of which have more occurrences. Consider this time
the following set of input words {w1 = ACAC, w2 = AGAG, w3 = ATAT, w4 =
TCTG} and d, q as before. Expression X = ACAC|AGAG|ATAT remains a solution
within the clique model for quorum 3. Within the star model and with d

2 = 1,
any expression of the type AbAc, with b, c ∈ A, b �= c, is a solution with
three occurrences while expression Y = ACAG is also a solution but with four
occurrences (w1, w2, w3, w4).

5.1.3. Other models

Other models have been used, in general for inferring expressions that are either
elements of A+ or sets of elements of Ak for a given positive integer k. In the
case of expressions in A+, those sought are the “most surprising” ones in the
statistical sense. They correspond to expressions whose probability of occurring
(exactly or approximately) in the input word(s) is lower than expected assuming
a certain statistical model that is in general a Markov model of order p of
the input word(s) for p < (k − 1). The algorithms for computing the “most
surprising” expressions either perform brute-force enumeration of all possible
expressions and then sophisticated exact or approximate statistical evaluation
(described in detail in Chapter 6), or are heuristic (e.g Profile). We therefore
do not speak of this model further.

In the case of expressions that are sets of elements of Ak for a given positive
integer k, it is worth mentioning that another measure has been used to decide
whether a set of factors in some input word(s) should be grouped. The measure
corresponds to what has been called the relative entropy of a set of words or
Kullback-Leibler information number. This measure is not a distance (triangular
inequality is not satisfied) and is global: it is not built upon a pairwise relation
between the factors and therefore it does not lead to a graph-theoretical for-

Version June 23, 2004

234 Inference of Network Expressions

mulation as above. Algorithms that seek network expressions that are elements
of A+ can use the relative entropy of the sets of occurrences of the expressions
given as output as a measure of “surprise” that will be different from the mea-
sure given by the probability of occurrence of the expression under the same
conditions as it was inferred.

5.2. Algorithms

5.2.1. Inference in the star model

5.2.1.1. Preliminaries: suffix tree and generalized suffix tree

Long words, specially when they are defined over a small alphabet, may contain
many exact repetitions. From this observation follows the idea of using an
indexed representation of the input word(s). Using a representation that has
a unique pointer for identical factors enables to avoid comparing such factors
more than once with the expressions as these are inferred. The index used by
the algorithm whose description follows is a suffix tree.

Details on the suffix tree construction may be found in 2. We just recall
below that the suffix tree of an input word w, denoted by Tw or simply T when
the input word is clear from the context, has the following properties:

1. each edge of the suffix tree is labelled by a non empty factor of the input
word w;

2. each internal node of the suffix tree has at least two edges leaving it;
3. the factors labelling distinct edges that leave a same node start with dis-

tinct letters;
4. the label of each root-to-leaf path in the suffix tree represents a suffix of

the input word and the label of each root-to-node path represents a factor;
5. each suffix of w is associated with the label of a (unique) root-to-leaf path

in the tree.

Furthermore, an edge links the node spelling ax to the node spelling x for
every a ∈ A and x ∈ A∗. Such edges are called suffix links and are what allows
the tree to be built in time linear with respect to the length of the word.

When the input consists in a set of words W = {w1, w2, . . . , wN}, a tree
called generalized suffix tree is used to represent in a compact way all the suffixes
of the set of words. A generalized suffix tree is constructed in a way very similar
to the suffix tree for a single word. We denote such generalized trees by GT W or
simply GT when the input words are clear from the context. Generalized suffix
trees have properties similar to those of a suffix tree with word w substituted
by the set of words W . In particular, a generalized suffix tree GT satisfies the
fact that every suffix of every word wi in the set leads to a distinct leaf. When
several words share a suffix, the generalized suffix tree must have as many leaves
corresponding to the suffix, each associated with a different word. To achieve
this property during construction requires simply concatenating to each word
wi a symbol that is not in A and that is specific to that word.

Version June 23, 2004

5.2. Algorithms 235

5.2.1.2. Speller algorithm

We describe in this section the original Speller algorithm. The algorithm was
later extended to allow for more general network expressions (over P(A)+ and
not just A+) and its performance was improved (see Section 5.3.2.1).

For ease of exposition, the algorithm is first described for inferring expres-
sions of fixed length that are repeated in a single word. In fact, the length of
the expressions output by the algorithm may range over an interval (kmin, kmax)
with possibly kmax = ∞. In this last case, the longest expressions output will
be those still satisfying the quorum. When kmin = kmax = ∞, only the longest
expressions satisfying the quorum are output. It is relatively straightforward to
modify the algorithm to treat any of these cases, or to infer expressions common
to a set of words, as will be briefly indicated.

Speller uses a suffix tree representation of the input word. Actually, it
builds (at the same cost) a suffix tree with an additional information attached
to each non-leaf node indicating the number of leaves in the subtree rooted at
that node. This is also the number of occurrences in w of the factor spelled by
the path from the root to the node. Denoting both node and factor by v, the
information added to node v is denoted by �(v).

Candidate expressions in A+ are for convenience processed in lexicographical
order, starting from the empty word ε. For each candidate expression, say x,
all pointers to nodes spelling d-approximate occurrences of x are kept (we say
the nodes themselves are (node-)occurrences of x). Let

occ(x, i) = {y ∈ F (w) | dH(y, x) = i}

and let

occx =
d⋃

i=1

occ(x, i)

be the set of occurrences of x. Possibly, some such sets are empty. Let �(x) =∑
y∈occx

�(y). The candidate expression x is processed as long as �(occx) ≥ q.
If x has reached the length k, it is output, otherwise its possible extensions
are considered. Let xa be its first extension (recall that extensions are at-
tempted in lexicographical order) for a ∈ A. The occurrences of x belonging to
occ(x, 0)∪occ(x, 1)∪occ(x, 2) . . .∪occ(x, d−1) are also occurrences of xa. On the
other hand, among the occurrences of x that belong to the set occ(x, d) (their
Hamming distance from x is already the maximum allowed), only those followed
by a in w may be occurrences of xa. The procedure of extension of a candidate
expression is applied recursively. Clearly, if a given candidate expression x does
not satisfy the quorum anymore, it is useless to extend it.

A pseudo code for the algorithm speller is given below. It assumes the
suffix tree T of w has already been built. We define:

occ(x, i)a = {y ∈ occ(x, i) | ya ∈ F (w)}

(it is the subset of occ(x, i) followed by the letter a).

Version June 23, 2004

236 Inference of Network Expressions

InitializeSpeller()
1 x← ε
2 � by convention, the empty word occurs everywhere in w
3 � with Hamming distance 0
4 occ(ε, 0)← {0, 1, . . . , |w| − 1}
5 for i← 1 to d do
6 occ(ε, i)← ∅

Speller(x, w, q, k, d)
1 if �(x) ≥ q then
2 if |x| = k then
3 OUTPUT ← OUTPUT ∪ {x, occx}
4 else for a in A do
5 for i ← d downto 0 do
6 occ(xa, i) ← occ(x, i)a

7 if i ≥ 1 then
8 occ(xa, i)← occ(x, i)a∪

(occ(x, i− 1) \ occ(x, i− 1)a)
9 Speller(xa, w, q, k, d)

10 return OUTPUT

The time complexity of Speller is in O(nVH(d, k)) where n is |w| and
VH(d, k) is the size of the set containing all words of length k at Hamming
distance d from another of length k. We have that VH(d, k) ≤ kd Card(A)d.
Therefore, Speller is linear in the input size, but possibly exponential with
respect to d. It has linear space complexity. When d = 0, Speller has linear
(optimal) time complexity.

When the length of the expressions sought is given as a range of values
(kmin, kmax), the algorithm continues extending candidates as long as they do
not reach kmax. Any candidate expression x having already reached length kmin

that satisfies the quorum is output.
In the case where Speller is extended to handle expressions in S ⊆ P(A)+,

a ∈ A in line 4 just needs to be replaced by S ∈ S while x and xa in lines 6, 8,
and 9 are replaced, respectively, by X and XS.

Speller can also be applied to infer expressions in A+ common to a set
of words. As mentioned, a generalized suffix tree GT is used in this case for
representing all the suffixes of the input words. When we are dealing with N
words, it is not enough anymore to know the value of �(v) for each node v in
GT in order to be able to check whether an expression satisfies the quorum.
Indeed, for each node v, we need this time to know, not the number of leaves
in the subtree of GT having v as root, but that number for each different word
the leaves refer to.

In order to do that, we associate to each node v in GT a boolean array bitv
of size N , that is defined by:

Version June 23, 2004

5.2. Algorithms 237

bitv[i] =

 1, if at least one leaf in the subtree rooted at x
represents a suffix of wi

0, otherwise

for 1 ≤ i ≤ N .
Let �′(x) be the total number of cells set to 1 in the boolean array that

results from the OR of bitv for all nodes v that are occurrences of x in GT .
This corresponds to the number of distinct input words where x occurs. The
algorithm then changes only in that the condition to be satisfied now is �′(x) ≥ q.

The time complexity in this case is in O(nN2VH(d, k)) if n is the length of
each input word (assuming to simplify that they have same length). The space
complexity is O(nN2k).

5.2.1.3. Mitra-count algorithm

The Mitra-count algorithm proceeds in exactly the same way as Speller

except that Mitra-count works directly on the input word(s) and not on an
index of the word(s) in the form of a (generalized) suffix tree. The time and space
cost of building the suffix tree is thus saved. Another advantage of the approach
is that the positions of the occurrences of the expressions can be kept naturally
ordered as the expressions are recursively extended. This is also a characteristic
of earlier algorithms like Combi and Poivre which work in essentially the same
manner as Mitra-count. On the other hand, the inference step is less efficient
both in terms of time (if a factor has multiple copies in the input word(s), it will
be processed as many times as it has copies) and of space (for the same reason,
factors with multiple copies that are occurrences of an expression will need an
equal number of pointers to them).

5.2.1.4. Footprinter algorithm

Footprinter has a completely different approach from Speller, or from the
other approaches that will be described in this chapter. It can address only the
problem of inferring expressions common to a set of words. Unique among all
the approaches, it also needs as input a phylogenetic tree besides a set of words.
In a simplified way, a phylogenetic tree, that we denote by F , is a tree describing
the speciation events that have lead to the species currently observed, or to those
having existed in the past. It is a tree with values attached to the edges whose
topology represents the evolutionary relations between the species (current or
ancestral) and whose nodes correspond to the species. The value of an edge
indicates the evolutionary distance separating the species labelling the nodes at
the edge’s extremities. Each possible set of factors, one taken from each input
word, will be considered, that is, placed at the leaves of the input phylogenetic
tree. The parsimony score of the tree is then calculated before deciding whether
the set, and the expression at the root of the tree, are a solution of the substring
parsimony problem. The problem is known to be NP-hard.

Only expressions of a single fixed length k are addressed by Footprinter.
Extension to a range of length values is not straightforward: in practice, the

Version June 23, 2004

238 Inference of Network Expressions

algorithm has to be run again for each different length required for the output
expressions.

The algorithm couples a straightforward dynamic programming technique
with the use of a table tabv containing Card(A)k entries for each node v of F ,
including the leaves. All sets of factors are thus treated together. Each entry x
(with x ∈ Ak) in the table corresponds to one possible word of length k to be
assigned to node v, and contains the value of the best parsimony score that can
be achieved for the subtree rooted at v, if node v is labeled with x. Denote by
C(v) the set of children of node v in F . Then table tabv can be computed for
all nodes v of F starting from the leaves can be computed by performing the
steps indicated in the algorithm Footprinter below. The quorum is assumed
to be N .

Footprinter(F , w1, w2, . . . , wN , k, d)
1 for all nodes v ∈ F starting from the leaves do
2 for all x ∈ Ak do
3 if v is a leaf of F then
4 � let wv be the input word placed at leaf v in F
5 if x is a factor of wv then
6 tabv[x] ← 0
7 else tabv[x] ← +∞
8 else tabv[x]←

∑
u∈C(v) miny∈Ak(tabu[y] + distH(x, y))

9 return {x ∈ Ak | tabroot[x] ≤ d}

The algorithm has a structure that resembles the structure of the Fitch
algorithm for the so-called small parsimony problem. It proceeds from the leaves
up to the root looking for the optimum at each level up, and then, once the
root has been reached from all leaves, goes down the phylogenetic tree again
to recover the values at each internal node and leaf that actually produced all
optimal parsimony solutions that are below d.

It is possible to use a quorum lower than N , giving rise to the so called sub-
string parsimony problem with losses. The basic idea is the following. One as-
sumes the evolution time along the edges of the phylogenetic tree is also known,
and the quorum is in this case expressed as a minimum total evolutionary time
summed over all edges in the subtree containing as leaves the factors that are
occurrences of a same expression. An expression may therefore have less than N
occurrences, but the occurrences must then span a “wide-enough” evolutionary
time, that is, they must concern organisms that are “distant enough” in terms
of evolution.

5.2.2. Inference as a clique detection problem

5.2.2.1. Winnower algorithm

The algorithm Winnower allows to infer expressions that are collections of
words in Ak for a given positive integer k that is the length of the expression.
Like Footprinter (and unlike Speller or similar algorithms which do not use

Version June 23, 2004

5.2. Algorithms 239

an index), there is no efficient way of handling a range of values for the length
of the expressions sought.

The method was elaborated for inferring expressions common to a set of N
input words but may easily be adapted to find expressions repeated in a single
input word. It can as easily be modified to handle a quorum lower than N
although in what follows, the method is presented for a quorum of N only.

Given N input words, w1, w2, . . . , wN of the same length n, an integer d and
a length k, Winnower starts by building the graph G = (V1 ∪ . . . ∪ VN , E) as
indicated in Section 5.1.2. The graph has O(nN) nodes and O(n2N) edges.

The goal is then to find all cliques of size N in G, which is an NP-complete
problem. The idea of Winnower is to remove edges that cannot belong to
cliques. This makes the graph sparse enough that clique detection is easier to
perform.

This is achieved by incrementally eliminating what are called spurious edges.
An edge is spurious if it does not belong to any extendable clique of a given
size where by extendable clique of size c is meant a clique contained in all other
possible cliques of size c+1. By observing that every edge belonging to a clique
of size N also belongs to at least

(
N−2
c−2

)
extendable cliques of size c and through a

suitable choice of c, it is possible to eliminate spurious edges. This is recursively
done as long as possible. At the end, one expects the graph will contain only
cliques of size N , or that at least detecting cliques of size N will have become
very easy to do in the graph that remains.

The pseudo-code is not given in this case as the core ideas are those described
above. Care with implementation is required for the efficiency of some essential
parts of the algorithm but these are not given in enough detail that we feel we
can reproduce their essence with perfect fidelity. They are therefore omitted.

The time complexity of Winnower is claimed by the authors to be in
O((nN)c+1) which is the cost of eliminating spurious edges (for c = 3, elim-
inating spurious edges takes on average O(N4n2.66) time according to them.) If
d = 0, Winnower takes exponential time and is therefore, like Footprinter,
not optimal.

There are interesting instances with critical values of d that cannot be ef-
ficiently handled by Winnower because too few edges can be eliminated and
the clique detection step must thus be performed in a dense graph. This is the
case in what the authors called the challenge problem: for instance, for k = 15,
d = 4, and Card(A) = 4, it is already not feasible to apply Winnower to an
instance as small as 20 words of length 600 each.

5.2.2.2. Mitra-graph algorithm

Mitra-graph is an algorithm that mixes the ideas behind Mitra-count (that
is, behind Speller) and Winnower. It thus works within both the star and
clique model. The solutions produced are those that would be obtained with
Mitra-count for expressions in Ak with a distance of d and, originally, a
quorum of N . Extending it to expressions of a length covering a range of values,

Version June 23, 2004

240 Inference of Network Expressions

or to a quorum less than N is more straightforward and less costly to do than
for Winnower.

Like Winnower, Mitra-graph builds a graph and looks for cliques of size
N in it. The big difference is that the graph depends now at each step on the
candidate expression currently considered. The graph is thus denoted by G =
(x, V1∪ . . .∪VN , E), or G = (x, V, E) for short. The set of nodes of G are defined
as in Winnower. It is in the set of edges that the two graphs differ. For each
node vi, set vi = pisi with |pi| = |x| (and |si| = k−|x|). In Mitra-graph, there
is an edge between vi and vj if and only if the three inequalities distH(x, pi) ≤ d,
distH(x, pj) ≤ d, and distH(x, pi) + distH(x, pj) + distH(si, sj) ≤ 2d hold. The
condition of existence of an edge is therefore stronger with Mitra-graph than
with Winnower. Finding cliques in this graph is also much easier to do than
in the graph used by Winnower (it basically consists in eliminating all edges
that enter nodes with degree less than N − 1), while the pruning ideas of both
Mitra-count (when an expression does not satisfy the quorum any longer) and
Winnower allow this in theory to be a more efficient approach than Mitra-

count alone.
The algorithm presents an additional cost due to the fact that the graph has

to be updated continuously as viable expressions are recursively explored (in
lexicographic order like in Mitra-count). The key idea in this case comes from
the observation that once expression xy with y ∈ A+, x ∈ A∗ has been treated,
either expression xya with a ∈ A will be considered or, if xy did not satisfy the
quorum and y[1], . . . , y[|y| − 1] were all equal to the last letter in the alphabet,
it is expression xb with b ∈ A and different from the first letter in y (it will, in
fact, be the next letter in the alphabet) that will be considered. From the graph
G(xy, V, E), it is easy to obtain G(xb, V, E) if the values of distH(x, vi[0..(|x|−1)],
distH(x, vj [0..(|x| − 1)], distH(vi[|x|..(k − 1), vj [|x|..(k − 1)]) are kept for each
edge (vi, vj).

As for Winnower and for the same reason (not enough detail is presented in
the literature indicating how the algorithm is actually implemented), a pseudo-
code for Mitra-Graph is omitted.

5.3. Inferring network expressions with spacers

5.3.1. Mathematical models and related inference problem

In biology, network expressions with spacers are a first approach to model se-
quences along a molecule, typically DNA, that function in a cooperative way
in the sense that they need to simultaneously bind a same or different molecu-
lar complexes so that a given biological process may be initiated. In the case
of so-called “higher” organisms, the sites may even come in big clusters. The
relative positions along the molecule of the sites that are inside a cluster are in
general not random, either because they are recognized by the same complex
and cannot therefore stand too much apart, or because they are recognized by
different complexes that interact between them. In this last case, the distances
between sites along the molecule may be longer but is often quite constrained.

Version June 23, 2004

5.3. Inferring network expressions with spacers 241

Finally, not all positions within a site are equally important for the binding to
happen. In particular for binding sites in proteins where recognition is strongly
connected to the 3D structure of the molecule, even a single binding site (single
in the sense that it binds a unique site in the other molecule) may concern a
sequence of non contiguous positions at variable distances one from another that
correspond to amino acids close in 3D space.

Given an alphabet A, a network expression X with spacers is an ordered
sequence of simple network expressions X1, . . . , Xp with X1, . . . , Xp ∈ P(A)+

and p ≥ 2.
The expression X is said to appear exactly in a word w if there exist factors

u1, . . . , up of w such that w = t0u1t1 · · · tp−1uptp with t0, . . . , tp ∈ A∗ and
ui ∈ Xi for 1 ≤ i ≤ p. Given d = (d1, . . . , dp) non negative integers, X is said
to appear d-approximately in w if w = t0u1t1 · · · tp−1uptp with t0, . . . , tp ∈ A∗

and, for all i ∈ [1, p], there exists vi ∈ Xi such that distH(ui, vi) ≤ di.
Finally, given a network expression X with constrained spacers, that is,

given a sequence of simple network expressions X1, . . . , Xp, positive integers
d1, . . . , dp, and intervals [min1, max1], . . . , [minp−1, maxp−1] with mini ≤ maxi

non negative integers, X is said to appear approximately in a word w if w =
t0u1t1 · · · tp−1uptp with t0, . . . , tp ∈ A∗, ui a di-approximate occurrence of Xi

for all i ∈ [1, p] and |tj | ∈ [minj , maxj] for all j ∈ [1, p−1]. The case of intervals
containing negative values may also be considered but has not been treated in
the literature.

From now on, network expressions X with constrained spacers and com-
posed of p simple network expressions X1, . . . , Xp separated by distances within
the intervals [min1, max1], . . . , [minp−1, maxp−1] will be denoted by X = X1

[min1, max1] X2 . . . Xp−1 [minp−1, maxp−1]Xp. Network expressions with un-
constrained spacers and composed of p simple network expressions X1, . . . , Xp

will be denoted by X = X1 ∗ . . . ∗Xp.

5.3.2. Algorithms

5.3.2.1. Inferring network expressions with constrained spacers

Mitra-dyad algorithm. Mitra-dyad infers network expressions with con-
strained spacers for the case p = 2 only, that is expressions of the type X =
X1[min, max]X2. The reason is that the inference is performed in a but contain-
ing O(max−min + 1) times more nodes and potentially O((max−min + 1)2)
more edges. Indeed, supposing |X1| = |X2| = k, each factor u of length k of the
input words w1, . . . , wN , which corresponded to a node in the original graph,
gives now rise to O(max−min+1) nodes, each one corresponding to the factor
u followed by the factor v starting i positions after the end of u, when such po-
sition exists, for i between min and max. Nodes are then linked under the same
conditions as for Mitra-graph; in particular, the existence of an edge between
two nodes remains dependent on the expression X = X1[min, max]X2 that is
being currently considered. Once this graph is built, Mitra-dyad runs Mitra-

graph on it. The way the graph is built ensures that the solutions found in this

Version June 23, 2004

242 Inference of Network Expressions

way correspond to the required network expressions with constrained spacers.

Smile algorithm. There are in fact two versions of the Smile algorithm.
Both versions call the Speller algorithm given in Section 5.2.1 as an inter-
nal subroutine. The basic algorithm for a single input word is shown be-
low. It is straightforward to adapt it to the case of N input words. For
ease of exposition, we assume that, in the expression X = X1[min1, max1]X2

. . . Xp−1[minp−1, maxp−1]Xp, all expressions Xi have the same length k and
maximum number of differences allowed d. The way the search space is con-
sidered is what makes the main difference between the two versions of Smile.
It is worth observing that besides being able to handle a different distance d
for each simple expression in X , Smile can handle a global distance, something
Mitra-dyad cannot.

The Smile algorithm shown below assumes that p = 2 and that the suffix
tree T of w has been previously built. The notations X1 and X2 stand for
candidate motifs for, respectively, the first and second expressions in the network
expression with spacer that is being searched for.

Smile(w, q, k, d, (min1, max1), . . . , (minp, maxp))
1 for i← 1 to p− 1 do
2 for each solution of Speller(X1, w, q, k, d) do
3 consider only the search space of all factors of w
4 that start from mini to maxi positions after
5 occurrences of X1 in w
6 return Speller(X2, w, q, k, d)

The extension of Smile to the case where p > 2 is straightforward. The
difference between the two versions of the Smile algorithm are in how lines
3 to 5 are dealt with. We explain it in the simple case where p = 2 and
|X1| = |X2| = k. Generalization to different lengths (or range of lengths)
for each simple expression in X , or to a general p, is straightforward for the
first version and more elaborated for the second. Details may be found in the
literature indicated in the notes at the end of the chapter.

The first version of Smile proceeds as follows. For each expression X1 of
length k satisfying the quorum that is obtained, together with its set of node-
occurrences in T , that we denote by occX1 , all simple expressions X2 are sought.
The search starts (using Speller) with the expression X2 = ε and occX2 the set
of words v which have an ancestor u in occX1 with min ≤ level(v)− level(u) ≤
max , where level (v) indicates the length of the label of the path from the root
to node v in T . From a node-occurrence u in occX1 , a jump is therefore made
in T to all potential start node-occurrences v of X2. These nodes are the min
to max-generation descendants of u in T .

The second version of Smile initially proceeds like the first. For each simple
expression X1 inferred, and for each node-occurrence u of X1 considered in
turn, a jump is made in T down to the descendants of u located at lower levels.
This time however, the algorithm just passes through the nodes at these lower

Version June 23, 2004

5.3. Inferring network expressions with spacers 243

levels, grabs some information the nodes contain and jumps back up to level k
again. The information grabbed in passing is used to temporarily and partially
modify T and start, from the root of T , the inference of all possible companions
X2 for X1 that are located at the required distance (min, max). Once this
operation has ended, the part of T that was modified is restored to its previous
state. The inference of another simple expression X1 then follows. The whole
process unwinds in a recursive way until all expressions X satisfying the initial
conditions are inferred.

More precisely, the operation between the spelling of X1 and X2 locally
alterates T up to level k into a tree T ′ that contains only the prefixes of length
k of suffixes of w starting at a position between min and max from the end
position in w of an occurrence of X1. Tree T ′ is, in a sense, the union of all the
subtrees t of depth at most k rooted at nodes that represent start occurrences
of a potential companion X2 for X1. Speller can then be applied directly to
T ′. The information that is grabbed in passing is the one required to modify
T into T ′: it corresponds to the boolean arrays indicating to which factors of
w belong the leaves of all potential end node-occurrences of companions for X1

in the tree.
The complexity of the first version of Smile for a single input word is O(n+

n2k+maxV 2
H(d, k)) where n2k+max is the number of nodes at level 2k + max in

the suffix tree. Its space complexity is O(n(2k + max)).
The complexity of the second version of Smile for a single input word is

O(n+min{n2
k, n2k+max}V 2

H(d, k)+n2k+maxVH(d, k))) and its space complexity
O(n(2k + max) + nk).

5.3.2.2. Inferring network expressions with unconstrained spacers

Smile algorithm revisited. Extensions of the Smile algorithm enable also
to deal with flexible spacers.

The first extension concerns what is called “meta-differences”. Given a
non negative integer D, a network expression X = X1[min1, max1]X2 . . . Xp−1

[minp−1, maxp−1]Xp is said to appear exactly in a word w if there exist factors
uj1 , . . . , ujq of w such that p − D ≤ q ≤ p and w = t0uj1t1 · · · tq−1ujq tq, with
t0, . . . , tq ∈ A∗, 1 ≤ j1 < · · · < jq ≤ p and uji ∈ Xji for i = 1, . . . , q. An
equivalent definition may be derived for approximate occurrences of X .

The second extension allows Smile to handle restricted intervals of distances
between the simple network expressions X1, . . . , Xp, exploring in a same run a
wide range of possibilities for the middle value of the interval. The expres-
sions that may be inferred in this case are of the type X = X1[m1 ± ε1]X2

. . .Xp−1[mp−1 ± εp−1]Xp where, for 1 ≤ i < p, εi is a non negative integer and
mi ∈ [Mini, Maxi] with Maxi −Mini as large as desirable.

Pratt algorithm. Trying to infer network expressions with completely un-
constrained spacers would in most situations lead to trivial solutions besides
being a computationally harder problem. Pratt therefore imposes some con-
straints on the amount and distribution of don’t care symbols that are allowed.

Version June 23, 2004

244 Inference of Network Expressions

The expressions treated may however be more flexible than the constrained
spacers of Smile as presented in Section 5.3.2.1. We shall see in a moment the
extensions of Smile which enable to deal with spacers that are as unconstrained
as in Pratt, although in a different way.

The constraints that Pratt puts on the spacers are specified as input pa-
rameters. Some of the main ones are:

1. a maximum number of spacer regions, that is of regions that are composed
of a contiguous sequence of don’t care symbols;

2. a maximum length for spacer regions;

3. a maximum number of overall don’t care in the expressions sought;

4. a maximum length of the network expression.

Other possible constraints are omitted for the sake of simplicity.
takes in general as input N words, that is, it infers common network expres-

sions, but it can easily be modified to treat the case of a single input word. It
works basically like Speller for expressions in S ⊆ P(A)+. Unlike Speller,
Pratt does not use a suffix tree representation of the input word(s) but a sim-
ple queue or file data structure like Combi or Poivre. The don’t care symbol
is treated in a way similar to another element of S, with counters enabling to
check whatever spacer constraint was given as input.

The version of Smile that allows intervals for the distances between single
network expressions results in performances analogous to those of Pratt as far
as spacers are concerned, although in a slightly different way. Smile can be
more flexible and it further allows for differences in the inference process.

5.4. Related issues

5.4.1. The concept of basis

Given some input word(s), the number of even simpler expressions X ∈ A(A ∪
•)∗A can be exponential with the length of the input, so that it is infeasible to
list all of them along with their occurrences in the word(s). Fixing the Hamming
distance to 0 or using a high quorum does not avoid the explosive growth in the
number of such expressions. Several researchers are working to alleviate this
drawback.

Among the many methods proposed to select expressions, one can single
out those based on the notion of maximality or specificity. We assume d = 0.
Since the expressions may contain don’t cares, approximate occurrences are in a
certain sense still allowed. Informally, an expression X inA(A∪•)∗A is maximal
if it cannot be extended to the left or to the right by adding further symbols
and/or if none of its don’t care symbols can be replaced by an alphabet letter,
without losing any occurrences. In other words, specifying more a maximal
expression causes a loss of information, while this is not true for non-maximal

Version June 23, 2004

5.4. Related issues 245

expressions. While the notion of maximality reduces significantly the number
of expressions, their number may still be exponential.

A significant step in reducing the number of maximal expressions is the
introduction of the notion of basis . Informally speaking, a basis is a set of
(maximal) expressions that can generate all the (other) maximal expressions by
simple mechanical rules. The maximal expressions in the basis are representative
of the information content of the words in that they can generate all the other
repeated or common expressions. A notion of basis called the set of tiling
motifs was introduced. It has size linear in the length n of the input word(s)
and it is able to generate the repeated expressions (possibly exponential in
number) that appear at least twice with don’t care symbols in such input over an
alphabet A. This basis has some interesting features such as being (a) a subset
of previously defined bases, (b) truly linear as its expressions are less than n in
number and appear in the word for a total of 2n times at most; (c) symmetric
as the basis of the reversed word is the reverse of the basis; (d) computable in
polynomial time, namely, in O(n2 log n log Card(A)) time. As an example, the
basis of tiling motifs for repeats in the word w = ATATACTATCAT contains three
elements, namely x1 = ATA•••TAT, x2 = ATAT••T, and x3 = TATA••AT that are
able to generate (through a suitable operation that takes also into account the
positions where the motifs in the basis occur) all other repeated motifs such as
TAT, TA, AT, ATA•••T etc that appear at least twice in w. For instance, the motif
ATA•••T can be obtained by the overlap of the occurrences of x1 and of x2 at
position 0.

A more general and flexible framework is required for repeated or common
expressions when d > 0 and the notion of a basis may perhaps not be extended
in this case. Some fuzzy form of clustering should then be considered.

5.4.2. Inferring tandem network expressions

5.4.2.1. Problem definition

Tandem arrays (called tandem repeats when there are only two units) are ap-
proximate powers (squares) of a word, that is, a sequence of approximate repeats
that appear adjacent in a word. The inference of tandem arrays may proceed
in much the same way as for simple expressions appearing repeated a number
of times in a word (using for instance Speller or Mitra-count). Checking
that the expression appears tandemly repeated can then be done a posteriori.
This however can be a very inefficient approach as many expressions will be
generated whose occurrences have no chance of forming a tandem array. It is
therefore more interesting to develop a method that allows to check the tandem
condition of a repeat as it proceeds with the inference, that is, simultaneously
with it. The use of a suffix tree is not interesting when approximate matches
are sought because a suffix tree does not allow the positions of the occurrences
to be kept ordered for easy processing of the tandem condition. An approach
like the one adopted by Mitra-count, that was also used earlier in Combi or
Poivre, is the most appropriate in this case.

Version June 23, 2004

246 Inference of Network Expressions

Before sketching the main ideas of the algorithm, called Satellite, we need
to introduce the more complex models required by tandem arrays. There are in
fact two definitions related to a tandem array model, one called prefix model and
the other consensus model. This latter concerns tandem array models strictly
speaking while prefix models are in fact models for approximately periodic re-
peats that are not necessarily (yet) tandem. They correspond to the prefixes of
a consensus model.

Formally, a prefix model of a tandem array is a word x ∈ A+ (x could also
belong to P(A)+) that approximately matches a train of wagons. A wagon of x
is a factor u in w such that distE(x, u) ≤ d for d a non negative integer (observe
that in this case, it is the edit distance that has been considered). A train of a
prefix model x is a collection of wagons u1, u2, . . . , up ordered by their starting
positions in w and satisfying the following properties:

(P1) p ≥ q where q is again a quorum indicating this time the minimum
number of units the sought tandem arrays must have;

(P2) leftui+1
− leftui

∈ [min period, max period] is the position of the left
end of wagon u in w and min period, max period are the minimum
and maximum period of the repeat.

A consensus model must further satisfy the following property:
(P3) leftui+1

− rightui
= 0

where rightu is the position of the right-end of wagon u. The property checks
that the occurrences of consensus models are indeed tandem. This is verified
only when |x| ∈ [min period, max period], that is when the length of the repeat
has reached the value specified as input.

The tandem array inference problem is then the following.

Inference of tandem array problem
INPUT: A word w ∈ A+, a quorum q, an edit distance d and a minimum

and maximum period min period and max period.

OUTPUT: All expressions x ∈ A+ that are consensus models for tandem
arrays (that is, properties (P1), (P2) and (P3) are satisfied).

5.4.2.2. Satellite algorithm

Expressions for tandem arrays are inferred by increasing length. The algorithm
keeps track of individual wagons, and at each step determines, on the fly, if
they can be combined into at least one train (observe that a wagon can belong
to more than one train). The latter corresponds to checking, for each wagon,
whether it belongs to at least one set of wagons satisfying properties (P1) and
(P2/P3) above.

For each expression x that is a prefix model for a tandem array, a list of the
wagons of x that belong to at least one train of x is kept. When the expression
x is extended into the expression x′ = xa, two tasks must be performed:

1. determine which wagons of x can be extended to become wagons of x′;

Version June 23, 2004

5.5. Open problems 247

2. among these newly determined wagons of x′, keep only those that belong
to at least a train of x′. This requires effectively assembling wagons into
trains.

The trains do not need to be enumerated in the second step, it must only be
determined if a wagon is part of one. This allows to perform an extension step
in time linear with the length of the input word.

Consider the directed graph G = (V, E) where V is the set of all wag-
ons of x and there is an edge from wagon u to wagon v if leftv − leftu ∈
[min period, max period]. A wagon u is then part of a train if it is in a path of
length q or more in G. Determining this is quite simple as the graph is clearly
acyclic.

For each expression x of length between min period and max period, it
remains to check whether x satisfies the properties of a consensus model for
a tandem array. Consider now a directed bipartite graph Gx = (Lx ∪ Rx, E)
whose vertices are the positions at which, respectively, the left- and right-ends of
wagons of x occur. Edges i → j with i ∈ Lx, j ∈ Rx are wagon edges and edges
j → i with i ∈ Lx, j ∈ Rx are gap edges. There is a wagon edge i → j if and
only if w[i..j − 1] is a wagon, and there is a gap edge j → i if and only if i = j.
Thus, there is an edge sequence i → j → k occurs in Gx if and only if there are
wagons u and v such that u = wiwi+1 · · ·wj−1, leftv = k, and leftv− rightu = 0.
It follows that a position/node which is on a path of length 2q or more is part
of a train satisfying properties (P1), (P2) and (P3). Such a position is called a
final position or final node. Let G′

x be the graph induced by the set, Fx, of all
final nodes. If G′

x is non-empty, then x is a consensus model for a tandem array
having the characteristics specified in the input.

The complexity of Satellite is O(n max period ME(d, k)) where n is, as
before, |w| and ME(d, k) is the size of the set containing all words of length k at
edit distance d from another word of length k. This is actually the complexity
of Speller multiplied by the term max period because of the need to check for
the tandem condition. An extended version of Satellite allows to deal with
tandem arrays that may miss a period, meaning that the repeat may contain
some units that have accumulated more differences than allowed. Such units
are called bad wagons. A number of them may be authorized in a train.

5.5. Open problems

5.5.1. Inference of network expressions using edit distance

In theory, all algorithms presented in this chapter may be modified to handle
edit instead of Hamming distance. Indeed, edit distance is already an integral
part of Poivre (and of Satellite). Thus Mitra-count which behaves much
as Poivre can easily be extended to use an edit distance. The same is true of
Speller and such a modification was suggested and quickly sketched by the
authors. A more recent approach using a suffix tree like Speller introduces
what appears to be an algorithm producing a different solution from Speller

Version June 23, 2004

248 Inference of Network Expressions

given the same instance.
There has been also a theoretical discussion on how to introduce edit dis-

tance into Footprinter which includes the time complexity that the resulting
algorithm would have. However, Footprinter is not suitable for dealing with
expressions or occurrences of variable length which appear when insertions and
deletions are allowed. The reason comes from the data structure used (the table
at each node of the tree).

Winnower could also theoretically handle an edit distance, but the num-
ber of edges in the graph would grow as would the number of spurious edges.
Mitra-graph would have the same type of problem but the filtering of spu-
rious edges is easier to perform and therefore the algorithm might be able to
handle the situation a lot better than Winnower.

Finally, the first version of Smile is, like Speller, easily modifiable to
handle an edit distance. Although theoretically not impossible, introducing
such distance into the second version of Smile might be more tricky.

In all cases, it is worth exploring more compact ways of representing the
occurrences of an expression once insertions and deletions are allowed. One
possible way extends ideas for pattern matching in a long text with edit distance.

5.5.2. Minimal covering set

The concept of minimal covering set of expressions may enable to address two
difficulties encountered by currently existing combinatorial algorithms for net-
work expression inference in a set of words. These difficulties are, first how to
fix a priori the quorum, and second (an even harder problem) how to efficiently
identify weak and rare expressions? To solve the second problem one can in-
crease the value of d while simultaneously decreasing the value of q. However,
this may lead to a huge number of solutions, many of which are uninteresting.
A minimal covering set extends the concept of individual expressions, with or
without spacers, to that of a family of expressions which “completely explains”
a set of words. In a more precise way, the problem could be expressed in the
following (informal) way. Given a set of input words, one must find a minimal
set of r ≥ 1 expression(s) (the value of r is unknown at start) such that:

• each expression has an occurrence in at least one input word;

• distinct expressions among the r may have occurrences in the same input
word but the number of times this may happen is smaller than a threshold
value t (possibly t may be 0: there is no “word overlap” of the expressions);

• all words are covered by (at least) one expression in the family (strictly
one in case the threshold t is 0).

Version June 23, 2004

Notes 249

Notes

The term network expression to denote repeated regular expressions without
the Kleene closure was introduced for the first time in (Mehldau and Myers
1993).

The literature on grammatical inference is large. Three papers have been
influential on the theory of learning grammars. The first by Gold (Gold 1967)
introduced the notion of “language identification in the limit”, the second by
Wharton (Wharton 1974) relaxed the condition of an exact identification by al-
lowing for various descriptions of the correct solution, while the third by Valiant
(Valiant 1984) relaxed such condition by allowing for a solution to be only ap-
proximately correct. The earliest and main expository of inference problems for
regular grammars is Angluin (Angluin 1982, 1987).

The definitions and statements concerning the star model have been adopted
in several exact algorithms, namely Combi (Sagot and Viari 1996), Poivre

(Sagot, Viari, and Soldano 1997), Speller (Sagot 1998), Smile (Marsan and
Sagot 2000b, 2001), Pratt (Jonassen, Collins, and Higgins 1995), and Mitra-

count (Eskin and Pevzner 2002). The uniform property variant of the star
model has been introduced in (Sagot 1996) and a similar idea in a previous
paper (Sagot, Soldano, and Viari 1995).

The closest substring problem has been defined and proved to be NP-com-
plete in (Fellows, Gramm, and Niedermeier 2002). It remains an open problem
whether it is parameter-tractable for constant size alphabet when either d alone
or d and N are fixed (Fellows et al. 2002).

The definitions of the substring parsimony problem and the proof of its NP-
hardness are given in (Blanchette, Schwikowski, and Tompa 2000). The small
parsimony problem was introduced in (Fitch 1975) and the substring parsimony
problem with losses in (Blanchette 2001, Blanchette, Schwikowski, and Tompa
2002). The Footprinter algorithm was presented and analyzed in (Blanchette
et al. 2000, Blanchette 2001, Blanchette and Tompa 2002, Blanchette et al.
2002). The time complexity of Footprinter is O(Nk Card(A)k +nNk) where
n is the length of each input word (assuming they have same length). The
highest term was in fact Nk Card(A)k in a first paper (Blanchette et al. 2000).
This came from the fact that the computation of the Hamming distance between
two words of length k (which takes O(k) time) is done for each of the O(N) edges
in F , each of the O(Card(A)k) possible values for x and each of the O(Card(A)k)
possible values for y. In (Blanchette 2001), an improvement of the original
algorithm described in (Blanchette et al. 2000) was introduced which enabled
to get the exponent k instead of 2k. The improvement is achieved by means of
an auxiliary table for each edge in F . Details may be found in (Blanchette 2001).
Footprinter is thus linear with the size of the input words but exponential
with the length k of the expressions sought. If d = 0, Footprinter still takes
exponential time and is therefore not optimal. The algorithm Winnower was
described in (Pevzner and Sze 2000). One must observe that if a quorum lower
than N is used, the size of the cliques sought is the only thing that changes
in Winnower. In practice however, the smaller the quorum, the less spurious

Version June 23, 2004

250 Inference of Network Expressions

edges there will be that can be safely eliminated. Winnower’s descendant, , was
presented in (Eskin and Pevzner 2002, Eskin, Gelfand, and Pevzner 2003). The
two algorithms that are similar to Winnower and Mitra-graph, namely
KMRC and Poivre, appeared in (Sagot, Viari, Pothier, and Soldano 1995,
Soldano, Viari, and Champesme 1995).

Informations concerning the Profile data base can be found in (Buhler and
Tompa 2001).

Some examples of the use of relative entropy for the evaluation of network
expressions can be found in (Vanet, Marsan, and Sagot 1999, Pavesi, Mauri,
and Pesole 2001b).

The algorithm Speller was introduced in (Sagot 1998), while the two vari-
ants it inspired, Mitra-count and Weeder, where described in, respectively,
(Eskin and Pevzner 2002) and (Pavesi, Mauri, and Pesole 2001a). Detailed
information about the generalized suffix tree data structure can be found in
(Bieganski, Riedl, Carlis, and Retzel 1994, Hui 1992). A recent approach using
a suffix tree as in Speller but working with the edit distance is given in (Ade-
biyi, Jiang, and Kaufmann 2001, Adebiyi and Kaufmann 2002). The approach
seems to produce a different solution from the one that would result from an
application of an extension of Speller enabling to work with the edit distance.

Concerning algorithms for inferring network expressions with constrained
spacers, the various versions of the Smile algorithm are described in (Marsan
and Sagot 2000b, 2001), and Mitra-dyad is presented in (Eskin and Pevzner
2002, Eskin et al. 2003).

For the case of unconstrained spacers, Pratt is introduced in (Brazma,
Jonassen, Vilo, and Ukkonen 1998c, 1998b, Brazma, Jonassen, Eidhammer, and
Gilbert 1998a, Jonassen et al. 1995). A few years after Pratt was conceived,
an algorithm that is roughly equivalent to Pratt in terms of its output was
elaborated which uses a lazy implementation of the suffix tree (Giegerich, Kurtz,
and Stoye 1999) to represent the patterns as these are produced. The lazy suffix
tree construction as adapted by the authors to their needs takes quadratic time
but is claimed to be efficient in most practical situations (Brazma et al. 1998c).

The notion of basis of repeated motifs was introduced in (Parida, Rigoutsos,
Floratos, Platt, and Gao 2000, Parida, Rigoutsos, and Platt 2001). The more
recent notion of tiling motifs was described in (Pisanti, Crochemore, Grossi, and
Sagot 2003).

Finally, the Satellite algorithm for inferring tandem network expressions
can be found in (Sagot and Myers 1998).

Readers interested in approaches to the inference, in biological applications,
of simple network expressions or of network expressions with spacers using
heuristics or statistical methods may consult (Durbin, Eddy, Krogh, and Mitchi-
son 1998), (Pevzner 2000) and (Waterman 1995). Machine learning techniques
have also long been in use for inferring patterns or grammars. References to
some of these techniques as applies to biology may be found in (Baldi and
Brunak 1998).

Version June 23, 2004

251

CHAPTER 6

Statistics on Words with
Applications to Biological
Sequences

6.0 Introduction . 252
6.1 Probabilistic models for biological sequences 254

6.1.1 Markovian models for random sequences of letters 254
6.1.2 Estimation of the model parameters 256
6.1.3 Test for the appropriate order of the Markov model . . . 258

6.2 Overlapping and non-overlapping occurrences 260
6.3 Word locations along a sequence 264

6.3.1 Exact distribution of the distance between word occur-
rences . 264

6.3.2 Asymptotic distribution of r-scans 268
6.4 Word count distribution . 270

6.4.1 Exact distribution . 271
6.4.2 The weak law of large numbers 271
6.4.3 Asymptotic distribution: the Gaussian regime 271
6.4.4 Asymptotic distribution: the Poisson regime 278
6.4.5 Asymptotic distribution: the Compound Poisson regime 283
6.4.6 Large deviation approximations 289

6.5 Renewal count distribution . 291
6.5.1 Gaussian approximation 292
6.5.2 Poisson approximation 292

6.6 Occurrences and counts of multiple patterns 294
6.6.1 Gaussian approximation for the joint distribution of mul-

tiple word counts . 295
6.6.2 Poisson and compound Poisson approximations for the

joint distribution of declumped counts and multiple word
counts . 298

6.6.3 Competing renewal counts 302
6.7 Some applications to DNA sequences 306

6.7.1 Detecting exceptional words in DNA sequences 306

Version June 23, 2004

252 Statistics on Words with Applications to Biological Sequences

6.7.2 Sequencing by hybridization 312
6.8 Some probabilistic and statistical tools 315

6.8.1 Stein’s method for normal approximation 315
6.8.2 The Chen-Stein method for Poisson approximation . . . 316
6.8.3 Stein’s method for direct compound Poisson approxima-

tion . 318
6.8.4 Moment-generating function 320
6.8.5 The δ-method . 321
6.8.6 A large deviation principle 322
6.8.7 A CLT for martingales 322
Notes . 323

6.0. Introduction

Statistical and probabilistic properties of words in sequences have been of con-
siderable interest in many fields, such as coding theory and reliability theory,
and most recently in the analysis of biological sequences. The latter will serve
as the key example in this chapter. We only consider finite words.

Two main aspects of word occurrences in biological sequences are: where
do they occur and how many times do they occur? An important problem, for
instance, was to determine the statistical significance of a word frequency in a
DNA sequence. The naive idea is the following: a word may be significantly rare
in a DNA sequence because it disrupts replication or gene expression, (perhaps
a negative selection factor), whereas a significantly frequent word may have a
fundamental activity with regard to genome stability. Well-known examples
of words with exceptional frequencies in DNA sequences are certain biological
palindromes corresponding to restriction sites avoided for instance in E. coli,
and the Cross-over Hotspot Instigator sites in several bacteria. Identifying over-
and under-represented words in a particular genome is a very common task in
genome analysis.

Statistical methods to study the distribution of the word locations along a
sequence and word frequencies have also been an active field of research; the
goal of this chapter is to provide an overview of the state of this research.

Because DNA sequences are long, asymptotic distributions were proposed
first. Exact distributions exist now, motivated by the analysis of genes and
protein sequences. Unfortunately, exact results are not adapted in practice for
long sequences because of heavy numerical calculation, but they allow the user to
assess the quality of the stochastic approximations when no approximation error
can be provided. For example, BLAST is probably the best-known algorithm
for DNA matching, and it relies on a Poisson approximation. Approximate p-
values can be given; yet the applicability of the Poisson approximation needs to
be justified.

Statistical properties of words only make sense with respect to some under-
lying probability model. DNA sequences are commonly modeled as stationary
random sequences. Typical models are homogeneous m-order Markov chains

Version June 23, 2004

6.0. Introduction 253

(model Mm) in which the probability of occurrence of a letter at a given po-
sition depends only on the m previous letters in the sequence (and not on the
position); the independent case is a particular case with m = 0. Hidden Markov
models (HMMs) reveal however that the composition of a DNA sequence may
vary over the sequence. However, no statistical properties of words have been
yet derived in such heterogeneous models. DNA sequences code for amino acid
sequences (proteins) by non-overlapping triplets called codons. The three posi-
tions of the codons have distinct statistical properties, so that for coding DNA
we naturally think of three sequences where the successive letters come from the
three codon positions, respectively. The three chains and their transition ma-
trices are denoted as Mm-3. In this chapter, we will focus on the homogeneous
models Mm and give existing results for Mm-3.

Because these probabilistic models have to be fitted to the observed biolog-
ical sequence, we will pay attention to the influence of the model parameter
estimation on the statistical results. Some asymptotic results take care of this
problem but the exact results require that the true model driving the observed
sequence is known.

The choice of the Markov model order depends on the sequence length,
because of the data requirements in estimation. One might be able to test
hierarchical models using Chi-square tests to assign which order of Markovian
dependence is appropriate for the underlying sequence. From a practical point
of view, it also depends on the composition of the biological sequence one wants
to take into account. Indeed, if the sequence was generated from an m-order
Markov chain, then the model Mm provide a good prediction for the (m + 1)-
letter words.

In this chapter, we are concerned firstly with the occurrences of a single
pattern in a sequence. To begin, we discuss the underlying probabilistic models
(Section 6.1). The main complication for word occurrences arises from over-
laps of words. One might be interested either in overlapping occurrences or
in particular non-overlapping ones (Section 6.2). After presenting results for
the statistical distribution of word locations along the sequence (Section 6.3),
we focus on the distribution of the number of overlapping occurrences (Section
6.4) and the number of renewals (Section 6.5). In Section 6.6, we will study
the occurrences of multiple patterns. Section 6.7 gives two applications on how
probabilistic and statistical considerations come into play for DNA sequence
analysis. Firstly, we look for words with unexpected counts in some DNA se-
quences. The focus will be on the importance of the order m of the Markov
model used and on the interest of using a model of the type Mm-3 (with three
transition matrices), when analyzing a coding DNA sequence. We will also take
the opportunity to compare exact and asymptotic results on the word count
distributions. Secondly, we describe how to analyze so-called SBH chips, a fast
and effective method for determining a DNA sequence. These chips provide the
�-tuple contents of a DNA sequence, where typically � = 8, 10 or 12. A non-
trivial combinatorial problem arises when determining the probability that a
randomly chosen DNA sequence can be uniquely reconstructed from its �-tuple
contents. Finally, Section 6.8, meant as an appendix, gives a compilation of

Version June 23, 2004

254 Statistics on Words with Applications to Biological Sequences

more general techniques that are applied in this chapter.
Due to the abundance of literature, the present chapter has no intention of

being a complete literature survey (indeed even just a list of references would
take up all the space designated to this chapter), but rather to introduce the
reader to the major aspects of this field, to provide some techniques and to warn
of major pitfalls associated with the analysis of words. For the same reason we
completely omit the algorithmic aspect.

6.1. Probabilistic models for biological sequences

In this chapter, a biological sequence is either a DNA sequence or a protein
sequence, that is, a finite sequence of letters either in the 4-letter DNA alphabet
{a, c, g, t} or the 20-letter amino-acid alphabet. To model a biological sequence,
we will consider models for random sequences of letters. Even if we observed
a finite biological sequence S = s1s2 · · · sn, we consider for convenience in the
whole chapter an infinite random sequence X = (Xi)i∈Z on a finite alphabet
A, where Z is the set of integers. We present below two classes of Markov
models widely used to analyze biological sequences and how to estimate their
parameters according to the observed sequence. Then we give a classical Chi-
square test to choose the appropriate order of the Markov model for a given
sequence.

However, we will see in Section 6.7.1 that the choice of the model also has
to take biological considerations on the sequence composition into account.

6.1.1. Markovian models for random sequences of letters

The simplest model assumes that the letters Xi are independent and take on the
value a ∈ A with probability µ(a) = 1/ Card(A), where Card(A) denotes the
size of the alphabet. To refine this model, we can simply assume independent
letters taking values in A with probabilities (µ(a))a∈A such that

∑
a∈A µ(a) = 1.

This is called model M0. Typically for DNA sequences, this model is not very
accurate. Therefore, we consider a much more general homogeneous model, the
model Mm: an ergodic stationary m-order Markov chain on a finite alphabet A
with transition matrix Π = (π(a1 · · ·am, am+1))a1,...,am+1∈A such that

π(a1 · · ·am, am+1) = P(Xi = am+1 |Xi−1 = am, . . . , Xi−m = a1).

In general, a stationary distribution µ of an ergodic stationary Markov chain
with transition matrix Π is defined as a solution of µ = µΠ. This implies that
the above Markov chain has a unique stationary distribution µ on Am defined
by

µ(a1 · · · am) = P(Xi · · ·Xi+m−1 = a1 · · · am), ∀i ∈ Z

such that the equation

µ(a1 · · · am) =
∑
b∈A

µ(ba1 · · · am−1)π(ba1 · · · am−1, am)

Version June 23, 2004

6.1. Probabilistic models for biological sequences 255

is satisfied for all (a1 · · · am) ∈ Am. The model where the letters {Xi}i∈Z are
chosen independently with probabilities p1, p2, . . . , p|A| corresponds to the tran-
sition matrix Π with identical rows (p1 p2 · · · p|A|) and stationary distribution
µ = (p1, p2, . . . , p|A|).

A coding DNA sequence is naturally read as successive non-overlapping 3-
letter words called codons. These codons are then translated into amino acids
via the genetic code to produce a protein sequence. Several different codons can
code for the same amino acid, and often the first two letters of a codon suffice to
determine the corresponding amino acid. Therefore, letters may have different
importance depending on their position with respect to the codon partition.
To distinguish the letter probabilities according to their position modulo 3 in
the coding DNA sequence, we consider a stationary Markov chain with three
distinct transition matrices Π1, Π2 and Π3 such that, for a1, . . . , am+1 ∈ A and
k ∈ {1, 2, 3}

πk(a1 · · · am, am+1) = P(X3j+k = am+1 |X3j+k−1 = am, . . . , X3j+k−m = a1).

This is model Mm-3. The index k ∈ {1, 2, 3} is called phase and represents the
position of a letter inside a codon. By convention, the phase of a word is the
phase of its last letter in the sequence; codons are then 3-letter words in phase
3.
The stationary distribution µ on Am × {1, 2, 3} is given by

µ(a1 · · · am, k) = P(X3j+k−m+1 · · ·X3j+k = a1 · · · am), ∀j ∈ Z

such that the equation

µ(a1 · · ·am, k) =
∑
b∈A

µ(ba1 · · ·am−1, k − 1)πk(ba1 · · · am−1, am)

is satisfied for all (a1 · · · am, k) ∈ Am × {1, 2, 3}.

Some general results for Markov chains will be used in the exposition. For
simplicity we concentrate here on the case of a 1-order Markov chain.

The stationary distribution of a Markov chain can be obtained from its
transition matrix. For a 1-order Markov chain we diagonalize the transition
matrix as follows. Let (αt)t=1,...,|A| be the eigenvalues of Π such that |α1| ≥
|α2| ≥ · · · ≥ |α|A||. The Perron–Frobenius Theorem ensures that α1 = 1 and
|α2| < 1; we abbreviate

α := α2. (6.1.1)

Then (1, 1, . . . , 1)T is a right eigenvector of Π for the eigenvalue 1 whereas the
vector of stationary distribution (µ(a), a ∈ A) is a left-eigenvector of Π for the
eigenvalue 1. Let D = Diag(1, α, α3, · · · , α|A|). We decompose Π = PDP−1

such that the first column of P is (1, 1, . . . , 1)T ; then the first row of P−1 is
the vector of stationary distribution (µ(a), a ∈ A). For all t ∈ {1, . . . , |A|},

Version June 23, 2004

256 Statistics on Words with Applications to Biological Sequences

It denotes the |A| × |A| matrix such that all its entries are equal to 0 except
It(t, t) = 1, and we define

Qt := PItP
−1. (6.1.2)

We shall use the following decomposition of the h-step transition matrix Πh

Πh = PDhP−1 =
|A|∑
t=1

αh
t Qt (6.1.3)

and that

Q1(a, b) = µ(b), ∀a, b ∈ A. (6.1.4)

In the exposition, we shall also refer to the reversed Markov chain, for a
1-order chain. Its h-step transition probabilities are given by

π
(h)
R (b, a) =

µ(a)π(h)(a, b)
µ(b)

.

where the
(
π(h)(a, b)

)
’s are the h-step transition probabilities for the chain itself.

Another useful quantity is

ρ = 1−min

{∑
b∈A

min
a∈A

π(a, b),
∑
b∈A

min
a∈A

πR(a, b)

}
. (6.1.5)

These quantities can easily be generalized to m-order Markov chains, using
the following embedding. Let us now assume that the sequence (Xi)i∈Z is a m-
order Markov chain on the alphabet A, with transition probabilities π(a1 · · · am,
am+1), a1, · · · , am+1 ∈ A. Rewrite the sequence over the alphabet Am by
defining

Xi = XiXi+1 · · ·Xi+m−1, (6.1.6)

so that the sequence (Xi)i∈Z is a first-order Markov chain on Am with transition
probabilities, for A = a1 · · · am ∈ Am and B = b1 · · · bm ∈ Am,

Π(A, B) =
{

π(a1 · · ·am, bm) if a2 · · ·am = b1 · · · bm−1

0 otherwise.

6.1.2. Estimation of the model parameters

Modeling a biological sequence consists of choosing a probabilistic model (see
previous paragraph) and then estimating the model parameters according to
the unique realization that is the biological sequence. In the case of model
Mm, it means to estimate the transition probabilities π(a1 · · · am, am+1); their
estimators are classically denoted by π̂(a1 · · · am, am+1).

Version June 23, 2004

6.1. Probabilistic models for biological sequences 257

We now derive the estimators that maximize the likelihood of the M1 model
given the observed sequence; we will then give the maximum-likelihood estima-
tors in models Mm and Mm-3.

Assume X1 · · ·Xn is a stationary Markov chain on A with transition matrix
Π = (π(a, b))a,b∈A and stationary distribution (µ(a))a∈A. The likelihood L of
the model is

L(π(a, b), a, b ∈ A) = µ(X1)
∏

a,b∈A
(π(a, b))N(ab)

where N(ab) denotes the number of occurrences of the 2-letter word ab in the
random sequence X1 · · ·Xn. To find the transition probabilities that maximize
the likelihood, one maximizes the log likelihood

log L(π(a, b), a, b ∈ A) = log µ(X1) +
∑

a,b∈A
N(ab) log π(a, b).

One can separately maximize
∑

b∈A N(ab) log π(a, b) for a ∈ A, keeping in mind
that

∑
b∈A π(a, b) = 1. Let a ∈ A and choose c ∈ A; we have

∑
b∈A

N(ab) log π(a, b) =
∑
b�=c

N(ab) logπ(a, b) + N(ac) log

1−
∑
b�=c

π(a, b)

and for b �= c

∂

∂π(a, b)

(∑
b∈A

N(ab) log π(a, b)

)
=

N(ab)
π(a, b)

− N(ac)
π(a, c)

.

All the partial derivatives equal to zero means that

N(ab)
π(a, b)

=
N(ac)
π(a, c)

∀b ∈ A;

this implies in particular that

N(ab)
π(a, b)

=
∑

d∈A N(ad)∑
d∈A π(a, d)

=
∑
d∈A

N(ad) := N(a•) ∀b ∈ A.

It follows that
π̂(a, b) =

N(ab)
N(a•) ∀b ∈ A.

Note that the second partial derivatives of the likelihood function are negative,
assuring that we have indeed determined a maximum.

Remark 6.1.1. For notational convenience, the estimators mainly used in the
remainder of the chapter will be π̂(a, b) = N(ab)/N(a) since N(a•) = N(a)
except for the last letter of the sequence for which the counts differ by 1.

Version June 23, 2004

258 Statistics on Words with Applications to Biological Sequences

It is important to note that the estimators π̂(a, b) are random variables.
Assuming that the biological sequence is a realization of the random sequence,
one can calculate a numerical value for the estimator of π(a, b); that is

π̂obs(a, b) =
Nobs(ab)
Nobs(a•) ,

where Nobs(·) denotes the observed count in the biological sequence. As we will
see, some results are obtained assuming that the true parameters π(a, b) are
known and equal, in practice, to Nobs(ab)/Nobs(a•), and do not take care of
the estimation. It is indeed a common practice to substitute the estimator for
the corresponding parameter in distributional results, but sometimes it changes
the distribution being studied, as we will see later.

In the model Mm, the maximum-likelihood estimator of π(a1 · · · am, am+1),
a1, . . . , am+1 ∈ A, is

π̂(a1 · · · am, am+1) =
N(a1 · · ·amam+1)

N(a1 · · · am•)
,

and in model Mm-3, we have ∀a1, . . . , am+1 ∈ A, ∀k ∈ {1, 2, 3},

π̂k(a1 · · ·am, am+1) =
N(a1 · · · amam+1, k)∑
b∈A

N(a1 · · · amb, k)
.

6.1.3. Test for the appropriate order of the Markov model

To test which Markov model would be appropriate for a given sequence of length
n, the most straightforward test is a Chi-square test, which can be viewed as
a generalized likelihood ratio test. Most well-known is the Chi-square test for
independence.

Suppose we have a sample of size n cross-classified in a table with U rows
and V columns. For instance, we could have four rows labeled a, c, g, t, and
four columns labeled a, c, g, t, and we count how often a letter from the row
is followed by a letter from the column in the sequence. First we test whether
we may assume the sequence to consist of independent letters. To this purpose,
recall that N(ab) denotes the count in cell (a, b), whereas N(a•) is the ath row
count, and let N(•b) is the bth column count. Thus N(ab) counts how often
letter a is followed by letter b in the sequence. Let π(a, b) be the probability of
cell (a, b), let π(a, •) be the ath row marginal probability, and let π(•, b) be the
bth column marginal probability. We test the null hypothesis of independence

H0 : π(a, b) = π(•, b)

against the alternative that the π(a, b)’s are free. Under H0, the maximum-
likelihood estimate of π(a, b) is

π̂(a, b) = π̂(•, b) =
N(•b)
n− 1

.

Version June 23, 2004

6.1. Probabilistic models for biological sequences 259

The Pearson chi-square statistic is the sum of the square difference between
observed and estimated expected counts, divided by the estimated expected
count, where expectations are taken assuming that the null hypothesis is true.
Thus, under H0, for the count N(ab) we expect (n − 1)µ(a)π(•, b), estimated
by N(a•)π̂(•, b), and the chi-square statistic is

χ2 =
∑
a∈A

∑
b∈A

(N(ab)−N(a•)N(•b)/(n− 1))2

N(a•)N(•b)/(n− 1)
.

Under the null hypothesis, χ2 follows asymptotically a chi-square distribution
with (Card(A)−1)2 degrees of freedom. Thus we would reject the null hypothe-
sis when χ2 is too large, compared to the corresponding chi-square distribution.
As a rule of thumb, this test is applicable when the expected count in each row
and column is at least 5. Applying this test to DNA counts, we thus would have
to compare χ2 to a chi-square distribution with (4−1)2 = 9 degrees of freedom.
A typical cutoff level would be 5%, or, if one would like to be conservative, 1%.
The corresponding critical values are 16.92 for 5 %, and 21.67 for 1 %. Thus,
if χ2 > 16.92, we would reject the null hypothesis of independence at the 5 %
level (meaning that, if we repeated this experiment many times, in about 5%
of the cases we would reject the null hypothesis when it is true). If χ2 > 21.67,
we could reject the null-hypothesis at the 1 % level (so in only about 1 % of all
trials would we reject the null hypothesis when it is true). Otherwise we would
not reject the null hypothesis.

If the null hypothesis of independence cannot be rejected at an appropriate
level (say, 5 %), then one would fit an independent model. However, if the null
hypothesis is rejected, one would test for a higher-order dependence. The next
step would thus be to test for a first-order Markov chain. We describe here the
general case.

Suppose we know that our data come from a Markov chain of order at
most m. Let N(a1a2 . . . am+1) be the count of the vector (a1, a2, . . . , am+1)
in the sequence (X1, . . . , Xn), let N(a1a2 . . . am•) be the count of the vector
(a1, a2, . . . , am) in the sequence (X1, . . . , Xn−1), let N(•am−r+1 . . . am•) be the
count of the vector (am−r+1, . . . , am) in the sequence (Xr+1, . . . , Xn−1), r < m,
and let N(•am−r+1 . . . am+1) be the count of the vector (am−r+1, . . . , am+1) in
the sequence (Xr+1, . . . , Xn). Put

π̂(a1 . . . am, am+1) =
N(•am−r+1 . . . am+1)
N(•am−r+1 . . . am•)

.

Then under the null hypothesis of having a Markov chain of order r against the
alternative that it is a Markov chain of order higher than r, the test statistic

χ2 =
∑

a1,...,am+1∈A

(
N(a1a2 . . . am+1)−N(a1a2 . . . am•)π̂(a1 . . . am, am+1)

)2
N(a1a2 . . . am•)π̂(a1 . . . am, am+1)

is asymptotically chi-square distributed; the degrees of freedom are given by
(Card(A)m+1 − Card(A)m)− (Card(A)r+1 − Card(A)r).

Version June 23, 2004

260 Statistics on Words with Applications to Biological Sequences

Although this test can be carried out for arbitrary orders, caution is advised:
for higher order, a longer sequence of observations is required.

6.2. Overlapping and non-overlapping occurrences

Statistical inference is often based on independence assumptions. Even if the se-
quence letters are independent and identically distributed, the different random
indicators of word occurrences are not independent due to overlaps. For exam-
ple, if w = atat occurs at position i in the sequence, then another occurrence
of w is much more likely to occur at position i + 2 than if w did not occur at
position i, and an occurrence of w at position i+ 1 is not possible. Many of the
arguments needed for a probabilistic and statistical analysis of word occurrences
deal with disentangling this overlapping structure.

Let w = w1 · · ·w	 be a word of length � on a finite alphabet A. Two
occurrences of w may overlap in a sequence if and only if w is periodic, meaning
that there exists a period p ∈ {1, . . . , �−1} such that wi = wi+p, i = 1, . . . , �−p.
A word may have several periods: for instance gtgtgtg admits three periods,
2, 4, 6, and aacaa has the periods 3 and 4. The set P(w) of the periods of w is
defined by

P(w) := {p ∈ {1, . . . , �− 1} : wi = wi+p, ∀i = 1, . . . , �− p} .

A word w is not periodic if and only if P(w) is empty. As we will see later, not all
periods of a word will have the same importance; we distinguish the multiples of
the minimal period p0(w) of w from the so-called principal periods of w, namely
the periods that are not strictly multiples of the minimal period. We denote by
P ′(w) the set of the principal periods of w. For instance, P ′(gtgtgtg) = {2}
and P ′(aacaa) = {3, 4}.

Occurrences of periodic words tend to overlap in a sequence. There are
4 occurrences of aacaa in the sequence tgaacaaacaacaatagaacaaaa, starting
respectively at positions 3, 7, 10 and 18. The first 3 occurrences overlap and
form a clump. A clump of w in a sequence is a maximal set of overlapping
occurrences of w in the sequence. By definition two clumps of w in a sequence
cannot overlap. A clump composed of exactly k overlapping occurrences of w is
called a k-clump of w. There are 2 clumps of aacaa in the previous sequence,
the first one is a 3-clump starting at position 3 and the second one is a 1-clump
starting at position 18. Let Ck(w) be the set of the concatenated words composed
of exactly k overlapping occurrences of w. For example, C1(aacaa) = {aacaa}
and C2(aacaa) = {aacaacaa, aacaaacaa}.

For a word w = w1 · · ·w	 we use the following prefix and suffix notation:

w(p) = w1 · · ·wp denotes the prefix of w of length p

w(q) = w	−q+1 · · ·w	 denotes the suffix of w of length q, (6.2.1)

and w(p)w = w1 · · ·wpw1 · · ·w	 is the concatenated word obtained by two over-
lapping occurrences starting p positions apart. If p ∈ P(w) then w(p) is called
a root of w; if p ∈ P ′(w), w(p) is called a principal root of w.

Version June 23, 2004

6.2. Overlapping and non-overlapping occurrences 261

Related to the set of periods is the autocorrelation polynomial Q(z) associ-
ated with w defined by

Q(z) = 1 +
∑

p∈P(w)

µ(w)
µ(w(−p))

zp. (6.2.2)

Renewals are another type of non-overlapping occurrences of interest that
require scanning the sequence from one end to the other: the first occurrence of
w in the sequence is a renewal and a given occurrence of w is a renewal if and
only if it does not overlap a previous renewal. Renewals of w do not overlap
in a sequence. In the above example, there are 3 renewals of aacaa starting at
position 3, 10 and 18.

Depending on the problem, one could be interested in studying the over-
lapping occurrences of w in a sequence, or in restricting attention to non-
overlapping occurrences: the beginnings of clumps, the beginnings of k-clumps
or the renewals. We now introduce notation related to occurrences of a word
w = w1 · · ·w	, of a clump of w, of a k-clump of w, of a renewal of w in a
sequence, and to the corresponding counts.

Occurrence and number of overlapping occurrences An occurrence of w
starts at position i in the sequence X = (Xi)i∈Z if and only if Xi · · ·Xi+	−1 =
w1 · · ·w	. Let Yi(w) be the associated random indicator

Yi(w) := 1I{w starts at position i in X}. (6.2.3)

For convenience in some sections, Yi(w) will be the random indicator that an
occurrence of w ends at position i in X ; it will be made precise in that case.

In the stationary m-order Markovian model, the expectation of Yi(w), that
is, the probability that an occurrence of w occurs at a given position in the
sequence, is denoted by µm(w) and is given by

µm(w) = µ(w1 · · ·wm)π(w1 · · ·wm, wm+1) · · ·π(w	−m · · ·w	−1, w). (6.2.4)

When there is no ambiguity, the index m referring to the order of the model
will be omitted.

The number of overlapping occurrences of w in the sequence (Xi)i=1,...,n,
simply called count of w in this chapter, is defined by N(w) = Nn(w) =∑n−	+1

i=1 Yi(w) (or N(w) =
∑n

i=	 Yi(w) if Yi(w) is associated with an occur-
rence of w ending at position i).

Clump and declumped counts A clump of w starts at position i in the
infinite sequence X if and only if there is an occurrence of w starting at position
i that does not overlap a previous occurrence of w. It follows that

Ỹi(w) := 1I{a clump of w starts at position i in X}
= Yi(w)(1 − Yi−1(w)) · · · (1− Yi−	+1(w)). (6.2.5)

Version June 23, 2004

262 Statistics on Words with Applications to Biological Sequences

Often Ỹi(w) is zero, depending on the overlapping structure of w. Using the
principal periods, it turns that

Ỹi(w) = Yi(w) −
∑

p∈P′(w)

Yi−p(w(p)w) (6.2.6)

with the notation from (6.2.1). Equation (6.2.6) is obtained from the two fol-
lowing steps: (i) note that an occurrence of w starting at position i overlaps a
previous occurrence of w if and only if it is directly preceded by an occurrence
of a principal root of w, meaning that a principal root w(p), p ∈ P ′(w), occurs
at position i − p, (ii) note that the events Ep = {Yi−p(w(p)) = 1}, p ∈ P ′(w),
are disjoint. To prove (ii), we assume that two different principal roots w(p) and
w(q) occur simultaneously at position i − p and i − q. If so, the minimal root
w(p0) of w could be decomposed into w(p0) = xy = yx where x and y are two
nonempty words. Now, two words commute if and only if they are powers of
the same word. Thus, we would obtain the contradiction that the minimal root
is not minimal.

It follows from Equation (6.2.6) that the probability µ̃(w) that a clump of
w starts at a given position in X is given by

µ̃(w) = µ(w) −
∑

p∈P′(w)

µ(w(p)w)

= (1−A(w))µ(w) (6.2.7)

where A(w) is the probability for an occurrence of w to be overlapped from the
left by a previous occurrence of w:

A(w) =
∑

p∈P′(w)

µ(w(p)w)
µ(w)

. (6.2.8)

The number Ñ(w) of clumps of w in the finite sequence X1 · · ·Xn (or the
declumped count) may be different from the sum Ñinf(w) =

∑n−	+1
i=1 Ỹi(w)

because of a possible clump of w that would start in X before position 1 and
would stop after position �− 1. The difference Ñ(w) − Ñinf(w) is either equal
to 0 or equal to 1. In fact, it can be shown that P(Ñ(w) �= Ñinf(w)) ≤ (� −
1)(µ(w) − µ̃(w)).

k-clump and number of k-clumps A k-clump of w starts at position i in X
if and only if there is an occurrence of a concatenated word c ∈ Ck(w) starting
at position i that does not overlap any other occurrence of w in the sequence
X. As we proceeded for a clump occurrence, an occurrence of c ∈ Ck(w) is a
k-clump of w in X if and only if it is not directly preceded by any principal root
w(p) of w and it is not directly followed by any suffix w(q) = w	−q+1 · · ·w	 with
q ∈ P ′(w). Some straightforward calculation yields the expression

Ỹi,k(w) := 1I{a k-clump of w starts at position i in X} (6.2.9)

Version June 23, 2004

6.2. Overlapping and non-overlapping occurrences 263

=
∑

c∈Ck(w)

Yi(c)−
∑

p∈P′(w)

Yi−p(w(p)c)−
∑

q∈P′(w)

Yi(cw(q))

+
∑

p,q∈P′(w)

Yi−p(w(p)cw(q))

 ,

with the notation (6.2.1). It follows that the probability for a k-clump to start
at a given position is given by

µ̃k(w) =
∑

c∈Ck(w)

µ(c)− 2
∑

c′∈Ck+1(w)

µ(c′) +
∑

c′′∈Ck+2(w)

µ(c′′).

This formula can be simplified. Note that Ck+1(w) = {w(p)c, c ∈ Ck(w), p ∈
P ′(w)} and µ(w(p)c) = µ(c)µ(w(p)c)

µ(c) = µ(c)µ(w(p)w)
µ(w) . By using the overlap prob-

ability A(w) given in (6.2.8), we have that∑
c′∈Ck+1(w)

µ(c′) = A(w)
∑

c∈Ck(w)

µ(c)

and it follows that

µ̃k(w) = (1−A(w))2
∑

c∈Ck(w)

µ(c)

= (1−A(w))2A(w)
∑

c∈Ck−1(w)

µ(c)

...
= (1−A(w))2A(w)k−1µ(w). (6.2.10)

As for the declumped count, the number of k-clumps of w in the finite
sequence may be different from the sum Ñ

(k)
inf (w) =

∑n−	+1
i=1 Ỹi,k(w) because of

possible end effects. The probability that these counts are not equal can be
explicitly bounded, see (6.4.10), (6.4.11) below. Moreover, possible end effects
may lead to a difference between the count N(w) and

∑
k>0 kÑ

(k)
inf (w), but this

can also be controlled.

Renewal and renewal count A renewal of w starts at position i in X1 · · ·Xn

if and only if there is an occurrence of w starting at position i that either is the
first one or does not overlap a previous renewal of w. Let Ii(w) be the associated
random indicator:

Ii(w) = 1I{a renewal of w starts at position i in X1 · · ·Xn}

= Yi(w)
i−1∏

j=i−	+1

(1− Ij(w)) (6.2.11)

Version June 23, 2004

264 Statistics on Words with Applications to Biological Sequences

with the convention that Ij(w) = 0 if j < 1. Thus, for i ≤ �, a renewal
occurrence of w at position i is exactly a clump occurrence of w at i in the finite
sequence. The renewal count makes extensive use of the linear ordering in the
sequence: it is defined by R(w) = Rn(w) =

∑n−	+1
i=1 Ii(w).

6.3. Word locations along a sequence

Here we are concerned with the length of the gaps between word occurrences.
First we describe how to obtain the exact distribution of the distance between
successive occurrences of a word, and then we give asymptotic results.

6.3.1. Exact distribution of the distance between word occurrences

Let w = w1 · · ·w	 be a word of length � on a finite alphabet A. We assume
that X1 · · ·Xn is a stationary first-order Markov chain on A with transition
matrix Π = (π(a, b))a,b∈A and stationary distribution (µ(a))a∈A. Here we are
interested in the statistical distribution of the distance D between two successive
occurrences of w and more precisely in the probabilities

f(d) = P(D = d)
= P(w occurs at i + d and there is no occurrence of w

between i + 1 and i + d− 1 | w occurs at i), d ≥ 1.

In this section, we say that a word w occurs at position i if an occurrence of w
ends at position i; it happens with probability µ(w) given in (6.2.4).

The probability f(d) can be obtained via a recursive formula as follows. It
is clear that, if 1 ≤ d ≤ � − 1 and d ∈/ P(w), then f(d) = 0. If d ∈ P(w) or if
d ≥ � then we decompose the event

E = {w occurs at i + d}

into the disjoint events

E1 = {w occurs at i + d and there is no occurrence of w between i + 1
and i + d− 1}

and

E2 = {w occurs at i + d and there are some occurrences of w between i + 1
and i + d− 1}.

Thus {E1 | w at i} has probability f(d). Moreover E2 is itself decomposed as
E2 = ∪d−1

h=1E2(h), where

E2(h) = {there is no occurrence of w between i + 1 and i + h− 1,

w occurs at i + h and i + d}

Version June 23, 2004

6.3. Word locations along a sequence 265

are again disjoint events.
If 1 ≤ d ≤ � − 1 and d ∈ P(w), then P(E | w at i) = µ(w)/µ(w(−d)).

Moreover, if there are occurrences at positions i+h and i+d, for some h < d, then
the occurrences necessarily overlap, and this is only possible for d− h ∈ P(w);
in this case, P(E2(h) | w at i) = f(h)µ(w)/µ(w(−d+h)). Thus, we have

µ(w)
µ(w(−d))

= f(d) +
∑

1≤h≤d−1
d−h∈P(w)

f(h)
µ(w)

µ(w(−d+h))
.

If d ≥ �, then P(E | w at i) = Πd−	+1(w	, w1)µ(w)/µ(w1). If there is an oc-
currence at positions i + h and i + d, for some h < d, then we distinguish
two cases depending on the possible overlap between the occurrences at i + h
and i + d: if d − � + 1 ≤ h ≤ d − 1, they overlap and we use previous cal-
culation; if 1 ≤ h ≤ d − �, they do not overlap and P(E2(h) | w at i) =
f(h)Πd−	−h+1(w	, w1)µ(w)/µ(w1). Thus, from

P(E | w at i) = P(E1 | w at i) +
d−1∑
h=1

P(E2(h) | w at i)

we get

Πd−	+1(w	, w1)
µ(w)
µ(w1)

= f(d) +
∑

1≤h≤d−	

f(h)Πd−	−h+1(w	, w1)
µ(w)
µ(w1)

+
∑

d−	+1≤h≤d−1
d−h∈P(w)

f(h)
µ(w)

µ(w(−d+h))
.

This is the proof of the next theorem.

Theorem 6.3.1. The distribution f(d) = P(D = d) of the distance D be-
tween two successive occurrences of a word w in a Markov chain is given by the
following recursive formula:

If 1 ≤ d ≤ �− 1 and d ∈/ P(w), then f(d) = 0.

If 1 ≤ d ≤ �− 1 and d ∈ P(w),

f(d) =
µ(w)

µ(w(−d))
−

∑
1≤h≤d−1
d−h∈P(w)

f(h)
µ(w)

µ(w(−d+h))
.

If d ≥ �,

f(d) = Πd−	+1(w	, w1)
µ(w)
µ(w1)

−
∑

1≤h≤d−	

f(h)Πd−	−h+1(w	, w1)
µ(w)
µ(w1)

−
∑

d−	+1≤h≤d−1
d−h∈P(w)

f(h)
µ(w)

µ(w(−d+h))
.

Version June 23, 2004

266 Statistics on Words with Applications to Biological Sequences

Since D is the distance between two successive occurrences of w, note that,
even if d ∈ P(w), f(d) can be null. For instance, by taking w = aaa, we
have P(aaa) = {1, 2}, and f(1) = µ(aaa)/µ(aa) = π(a, a), f(2) = π2(a, a) −
f(1)π(a, a) = 0.

Note that the recurrence formula on f(d) is not a “finite” recurrence since
calculating f(d) requires the calculation of f(d − 1), . . . , f(1), involving sub-
stantial numerical calculations for large d. One can approach this computa-
tion problem by using the generating function defined by ΦD(t) := E(tD) =∑

d≥1 f(d)td. The key argument is that the ΦD(t) expression is a rational func-
tion of the form P (t)/Q(t), and hence the coefficient f(d) of td can be expressed
by a recurrence formula whose order is the degree of the polynomial Q(t) (see
Section 6.8.4).

Theorem 6.3.2. The generating function of D is

ΦD(t) = 1−µ−1(w)

 	−1∑
u=0

u∈P(W)∪{0}

tu

µ(w(−u))
+

1
µ(w1)

∑
u≥1

Πu(w	, w1)t	+u−1

−1

.

Remark 6.3.3. If the transition matrix Π is diagonalizable, there exists δi,
βi ∈ C, i = 2 · · · |A|, such that

1
µ(w1)

∑
u≥1

Πu(w	, w1)t	+u−1 =
t	

1− t

1 +
1− t

µ(w1)

|A|∑
i=2

δi

1− tβi

implying that the above expression is a rational function with a pole at t = 1.

Remark 6.3.4. Since ΦD(t) =
∑

d≥1 f(d)td, we have the general following
properties:

E(D) = Φ′
D(1) = µ−1(w)

Var(D) = Φ′′
D(1) + Φ′

D(1)(1 − Φ′
D(1)).

Successive derivatives of ΦD(t) are obtained using the decomposition stated in
the previous remark.

Proof
The proof of Theorem 6.3.2 is not complicated since one just has to develop

the sum
∑

d≥0 f(d)td with f(d) given by Theorem 6.3.1, but it is very technical.
We thus only give the main lines of the calculation. By replacing f(d) given by
Theorem 6.3.1 in

∑
d≥0 f(d)td, we obtain a sum of five term

ΦD(t) = K1 −K2 + K3 −K4 −K5

Version June 23, 2004

6.3. Word locations along a sequence 267

with

K1 =
	−1∑
d=1

d∈P(W)

µ(w)
µ(w(−d))

td

K2 =
	−1∑
d=1

d∈P(W)

d−1∑
h=1

d−h∈P(W)

f(h)
µ(w)

µ(w(−d+h))
td

=
	−2∑
h=1

f(h)
∑
u=1

u∈P(W)

µ(w)
µ(w(−u))

th+u

K3 =
∑
d≥	

Πd−	+1(w	, w1)
µ(w)
µ(w1)

td

=
µ(w)
µ(w1)

t	−1
∑
u≥1

Πu(w	, w1)tu

K4 =
∑
d≥	

d−	∑
h=1

f(h)Πd−	−h+1(w	, w1)
µ(w)
µ(w1)

td

=
µ(w)
µ(w1)

t	−1
∑
h≥1

f(h)th
∑
z≥h

Πz−h+1(w	, w1)tz−h+1

=
µ(w)
µ(w1)

t	−1ΦD(t)
∑
u≥1

Πu(w	, w1)tu

and

K5 =
∑
d≥	

d−1∑
h=d−	+1

d−h∈P(W)

f(h)
µ(w)

µ(w(−d+h))
td

K5 =
	−1∑
h=1

f(h)
h∑

z=1
z+	−h−1∈P(W)

µ(w)
µ(w(h−z+1))

tz+	−1

+
∑
h≥	

f(h)th
h∑

z=h−	+2
z+	−h−1∈P(W)

µ(w)
µ(w(h−z+1))

tz−h+	−1

=
	−1∑
h=1

f(h)
	−1∑

u=	−h
u∈P(W)

µ(w)
µ(w(−u))

th+u +
∑
h≥	

f(h)th
	−1∑
u=1

u∈P(W)

µ(w)
µ(w(−u))

tu.

Version June 23, 2004

268 Statistics on Words with Applications to Biological Sequences

Grouping K1 −K2 −K5 and K3 −K4 leads to

ΦD(t) = (1 − ΦD(t))

 	−1∑
u=1

u∈P(W)

µ(w)
µ(w(−u))

tu +
µ(w)
µ(w1)

t	−1
∑
u≥1

Πu(w	, w1)tu

 ,

hence

ΦD(t) = 1−

1 +
	−1∑
u=1

u∈P(W)

µ(w)
µ(w(−u))

tu +
µ(w)
µ(w1)

t	−1
∑
u≥1

Πu(w	, w1)tu

−1

Using µ(w)/µ(w()) = 1 establishes the theorem.

The distance D between two successive occurrences of w can be seen as
the distance between the j-th and (j + 1)-th occurrence of w in the sequence,
since we use a homogeneous model. It may be useful to study the distance
D(r) between the j-th and (j + r)-th occurrence of w, the so-called r-scan. The
distance D(r) is the sum of r independent and identically distributed random
variables with same distribution as D. Hence we have

ΦD(r)(t) =
(
ΦD(t)

)r
.

We obtain the exact distribution of D(r) from the Taylor expansion of ΦD(r)(t):
the probability P(D(r) = d) is the coefficient of td in the series.

6.3.2. Asymptotic distribution of r-scans

In the preceding paragraph, we presented how to obtain the exact distribution of
an r-scan D(r), the distance between a word occurrence and the (r− 1)-th next
one, in a stationary Markov chain of first order. Often one is interested in the
occurrence of any element of a subset of words; such a subset is called a motif.
When analyzing a biological sequence, assume we observe (h+1) occurrences of
a given motif, so that we observe h distances D1, . . . , Dh between occurrences of
the motif. Thus we observe (h− r + 1) so-called r-scans D

(r)
i =

∑i+r−1
j=i Dj. To

detect poor and rich regions with this motif, one is interested in studying the
significance of the smallest and the largest r-scans, or more generally the kth
smallest r-scan, denoted by mk, and the kth largest r-scan, denoted by Mk. In
this section, we present a Poisson approximation for the statistical distribution
of the extreme value mk using the Chen-Stein method. A similar result is
available for Mk by following an identical setup, so it will not be explained in
detail here.

We begin by defining the Bernoulli variables that will be used in the Chen-
Stein method (see Section 6.8.2):

W−
i (d) := 1I{D(r)

i ≤ d}, d ≥ 0.

Version June 23, 2004

6.3. Word locations along a sequence 269

Denote by

W−(d) =
h−r+1∑

i=1

W−
i (d)

the number of r-scans less or equal to d. Note the duality principle

{W−(d) < k} = {mk > d}, d ≥ 0.

We now use Theorem 6.8.2 to get a Poisson approximation for the distribu-
tion of W−(d). To apply this theorem, we first need to choose a neighborhood
of dependence for each indicator variable; ideally the indicator variables with
indices not from the neighborhood of dependence are independent of that indi-
cator variable. Secondly there are three quantities to bound, called b1, b2, and
b3, given in (6.8.1), (6.8.2), and (6.8.3). Piecing this together gives a bound
on the total variation distance between the distributions. Here we proceed as
follows.

For i ∈ {1, . . . , h− r + 1}, we choose the neighborhood Bi = {j | |i− j| < r},
so that D

(r)
i is independent of D

(r)
j if j ∈/ Bi (recall the distances D1, . . . , Dh

are independent). Let Zλ− be the Poisson variable with expectation λ−, where

λ− = E(W−(d))
= (h− r + 1)E(W−

i (d))

= (h− r + 1)P(D(r) ≤ d).

Theorem 6.8.2 gives that

dTV

(
L(W−(d)),L(Zλ−)

)
≤ 1− e−λ−

λ−

h−r+1∑
i=1

∑
j∈Bi

E(W−
i (d))E(W−

j (d))

+
h−r+1∑

i=1

∑
j∈Bi\{i}

E(W−
i (d)W−

j (d))

 .

Indeed the neighborhood Bi is chosen so that W−
i (d) is independent of W−

j (d),
∀j ∈/ Bi, leading to b3 = 0. For j > i, we have

E(W−
i (d)W−

j (d)) = P(D(r)
i ≤ d, D

(r)
j ≤ d)

= P(D(r)
j ≤ d |D(r)

i ≤ d)P(D(r)
i ≤ d)

= P(D(r)
j−i+1 ≤ d |D(r)

1 ≤ d)P(D(r) ≤ d).

Therefore,

h−r+1∑
i=1

∑
j∈Bi\{i}

E(W−
i (d)W−

j (d))

Version June 23, 2004

270 Statistics on Words with Applications to Biological Sequences

≤ 2(h− r + 1)P(D(r) ≤ d)
r∑

s=2

P(D(r)
s ≤ d |D(r)

1 ≤ d)

≤ 2λ−
r∑

s=2

P(D(r)
s ≤ d |D(r)

1 ≤ d).

It can be shown that

P(D(r)
s ≤ d |D(r)

1 ≤ d) ≤ P

(
s+r−1∑
i=r+1

Di ≤ d

)
= P(D(s−1) ≤ d).

We finally get

dTV

(
L(W−(d)),L(Zλ−)

)
≤
(

(2r − 1)P(D(r) ≤ d) + 2
r−1∑
s=1

P(D(s) ≤ d)

)
× (1− e−λ−

).

From the duality principle,

|P(mk > d)−P(Zλ− < k)| ≤
(

(2r − 1)P(D(r) ≤ d) + 2
r−1∑
s=1

P(D(s) ≤ d)

)
× (1 − e−λ−

).

This approximation is very useful for the comparison between the expected
distribution of the r-scans and the one observed in the biological sequence.

6.4. Word count distribution

Let again w = w1 · · ·w	 be a word of length � on a finite alphabet A and
X = (Xi)i∈Z be a random sequence on A. This section is devoted to the sta-
tistical distribution of the count N(w) of w in the sequence X1 · · ·Xn. First we
state how to compute the exact distribution in the model M1, using recursion
techniques. For long sequences, however, asymptotic results are obtainable, and,
in general, easier to handle. Here the appropriate asymptotic regime depends
crucially on the length � of the target word relative to the sequence length n.
For very short words, the law of large numbers can be applied to approximate
the word count by the expected word count. This being a very crude estimate,
one can easily improve on it by employing the Central Limit Theorem, stating
that the word count distribution is asymptotically normal. This approximation
will be satisfactory when the words are not too long. For rare words, as a rule
of thumb words of length � " log n, a compound Poisson approximation will
give better results. For the latter, the error made in the approximation can be
bounded in terms of the sequence length, the word length, and word probabil-
ities, so that it is possible to assess when a compound Poisson approximation
will be a good choice. Moreover, the error bound can be incorporated to give
conservative confidence intervals, as will be explained below.

Version June 23, 2004

6.4. Word count distribution 271

6.4.1. Exact distribution

If X is a stationary first-order Markov chain, the exact distribution of the count
N(w) can be easily obtained using the distribution of the successive positions
(Tj)j≥1 of the j-th occurrence of w in X1 · · ·Xn, using the duality principle

{N(w) ≥ j} = {Tj ≤ n}.

The exact distribution of Tj can be obtained as in Section 6.3.1, by deriving
the Taylor expansion of the generating function ΦTj (t) of Tj. If j = 1, the
generating function ΦT1(t) can be obtained as ΦD(t) (see Theorem 6.3.2). We
just state the result:

ΦT1(t) =
t	

1− t

 	−1∑
u=0

u∈P(W)∪{0}

tu

µ(w(−u))
+

1
µ(w1)

∑
u≥1

Πu(w	, w1)t	+u−1

−1

.

As Tj − T1 is a sum of j − 1 independent and identically distributed random
variables with the same distribution as D, we have ΦTj (t) = ΦT1(t)

(
ΦD(t)

)j−1.
Now P(Tj = a) = gj(a) is equal to the coefficient of ta in the Taylor expansion
of ΦTj (t). Using the duality principle, we obtain

P(N(w) = j) =
n∑

a=	

gj(a)− gj+1(a).

6.4.2. The weak law of large numbers

As a crude first approximation, the weak law of large numbers states that the
observed counts will indeed converge towards the expected counts. Indeed we
may use Chebyshev’s inequality to bound the expected deviation of the ob-
served counts from the expected number of occurrences. This approximation is
valid only for relatively short words, and in this case a normal approximation
gives more information. Such an approximation will be derived in the following
subsection.

6.4.3. Asymptotic distribution: the Gaussian regime

We assume that X = (Xi)i∈Z is a stationary m-order Markov chain on A,
0 ≤ m ≤ � − 2, with transition probabilities π(a1 · · · am, am+1) and stationary
distribution µ(a1 · · · am), a1, . . . , am+1 ∈ A. For convenience in this particular
subsection, we consider N(w) =

∑n
i=	 Yi(w) and

Yi = Yi(w) = 1I{w ends at position i in X}.

If the model is known, the asymptotic normality of (N(w)−E(N(w)))/
√

n
directly follows from a Central Limit Theorem for Markov chains. When

Version June 23, 2004

272 Statistics on Words with Applications to Biological Sequences

m = 1, the expectation and variance of N(w) are

E(N(w)) = (n− � + 1)µ1(w)

Var(N(w)) = E(N(w)) + 2
∑

p∈P(w)

E(N(w(p)w)) −E(N(w))2

+
2

µ(w1)
µ2

1(w)
n−2	+1∑

d=1

(n− 2� + 2− d)Πd(w	, w1) (6.4.1)

where µ1(w) is given in Eq. (6.2.4).
In the problem of finding exceptional words in biological sequences, the

model is unknown and its parameters are estimated from the observed sequence.
The expected mean of N(w) is not available and is approximated by an esti-
mator N̂m(w). In this paragraph, we derive both the asymptotic normality of
(N(w)−N̂m(w))/

√
n and the asymptotic variance. This is not a trivial problem

since the estimation changes the variance expression fundamentally.
The expected mean of N(w) is given by E(N(w)) = (n− � + 1)µ(w) where

µ(w) = µm(w) is the probability that an occurrence of w ends at a given position
in the sequence (see Eq. (6.2.4)). Estimating each parameter by its maximum
likelihood estimator (with the simplification from Remark 6.1.1) gives an esti-
mator N̂m(w) of E(N(w)):

N̂m(w) =
N(w1 · · ·wm+1) · · ·N(w	−m · · ·w)

N(w2 · · ·wm+1) · · ·N(w	−m · · ·w	−1)
. (6.4.2)

Maximal model Let us first consider the maximal model (m = �− 2), which
is mainly used to find exceptional words. To shorten the formulas, we introduce
the notation

w− := w1 · · ·w	−1 first �− 1 letters of w
−w := w2 · · ·w	 last �− 1 letters of w

−w− := w2 · · ·w	−1 �− 2 central letters of w.

Under the maximal model, the estimator of N(w) is

N̂	−2(w) =
N(w1 · · ·w	−1)N(w2 · · ·w)

N(w2 · · ·w	−1)
=

N(w−)N(−w)
N(−w−)

;

moreover, the asymptotic normality of (N(w) − N̂	−2(w))/
√

n and the asymp-
totic variance can be obtained in an elegant way using martingale techniques.
Indeed, N̂	−2(w) is a natural estimator of N(w−)π(−w−, w), and N(w) −
N(w−)π(−w−, w) is approximately a martingale as it is shown below.

We introduce the martingale Mn =
∑n

i=	 (Yi −E(Yi | Fi−1)) with Fi =
σ(X1, . . . , Xi); it is easy to verify that E(Mn | Fn−1) = Mn−1. Moreover, we
have

E(Yi | Fi−1) = P(w− ends at i− 1 and w	 occurs at i | Fi−1)
= 1I{w− ends at i− 1}π(−w−, w),

Version June 23, 2004

6.4. Word count distribution 273

and
n∑

i=	

E(Yi | Fi−1) =
(
N(w−)− 1I{w− ends at n}

)
π(−w−, w).

Therefore,

1√
n

Mn =
1√
n

(
N(w)−N(w−)π(−w−, w)

)
− 1√

n
1I{w− ends at n}π(−w−, w). (6.4.3)

Note that n−1/21I{w− ends at n}π(−w−, w) tends to zero as n →∞. The next
proposition establishes the asymptotic normality of Mn/

√
n.

Proposition 6.4.1. Let V = µ(w−)π(−w−, w)(1− π(−w−, w)). We have

1√
n

Mn
D−→ N (0, V) as n →∞.

Proof
This is an application of Theorem 6.8.7 for the one-dimensional random

variable ξn,i = n−1/2(Yi − E(Yi | Fi−1)). Three conditions have to be satis-
fied. Condition (i) holds from E(ξn,i | Fi−1) = 0. We then have to check that∑n

i=	 Var(ξn,i | Fi−1) converges to V as n → ∞. Since Yi is a 0-1 random
variable, we have

Var(Yi | Fi−1) = E(Yi | Fi−1)−
(
E(Yi | Fi−1)

)2
= 1I{w− ends at i− 1}π(−w−, w)

(
1− π(−w−, w)

)
.

We thus obtain
n∑

i=	

Var(ξn,i | Fi−1) =
1
n

n∑
i=	

Var(Yi | Fi−1)

=
1
n

N(w−)π(−w−, w)(1− π(−w−, w))

− 1
n

1I{w− ends at i− 1}π(−w−, w)(1 − π(−w−, w))

−→ V as n→∞;

the convergence follows from the Law of Large Numbers: N(w−)/n → µ(w−).
Finally, |ξn,i| ≤ 2√

n
, so that ∀ε > 0, ∀n > 4/ε2, P(|ξn,i| > ε) = 0, establishing

condition (iii). Using Theorem 6.8.7 proves the proposition.

Proposition 6.4.1 and Equation (6.4.3) also yield that

1√
n

(
N(w)−N(w−)π(−w−, w)

) D−→ N (0, V) as n →∞.

Version June 23, 2004

274 Statistics on Words with Applications to Biological Sequences

We want to prove such convergence for

Tn =
1√
n

(
N(w)−N(w−)π̂(−w−, w)

)
,

where

π̂(−w−, w) =
N(−w)

N(−w−)
.

To this purpose, we decompose Tn as follows:

Tn =
1√
n

(
N(w)−N(w−)π(−w−, w)

)
− 1√

n
N(w−)

(
π̂(−w−, w)− π(−w−, w)

)
=

1√
n

(
N(w)−N(w−)π(−w−, w)

)
− 1√

n

N(w−)
N(−w−)

(
N(−w)−N(−w−)π(−w−, w)

)
=

1√
n

Mn −
1√
n

N(w−)
N(−w−)

M ′
n + o(1), (6.4.4)

where M ′
n is the martingale M ′

n =
∑n

i=	 (Yi(−w) −E(Yi(−w) | Fi−1)). Now,
using Theorem 6.8.7 gives

1√
n

(
Mn

M ′
n

)
−→ N

((
0
0

)
;
(

V V12

V21 V22

))
(6.4.5)

with

V21 = V12 = lim
n→∞

1
n

n∑
i=	

E
((

Yi −E(Yi | Fi−1)
)(

Yi(−w)− E(Yi(−w) | Fi−1)
))

and

V22 = lim
n→∞

1
n

n∑
i=	

Var(Yi(−w) | Fi−1).

With the same technique as for the derivation of V , as YiYi(−w) = Yi, we get
V21 = V12 = V and V22 = µ(−w−)π(−w−, w)(1 − π(−w−, w)). Note that the
Law of Large Numbers guarantees that, almost surely,

N(w−)
N(−w−)

→ µ(w−)
µ(−w−)

as n →∞. (6.4.6)

From (6.4.4)–(6.4.6), we are now able to deduce that Tn converges in distribution
to N (0, σ2

	−2(w)) with

σ2
	−2(w) = V11 − 2

µ(w−)
µ(−w−)

V12 +
(

µ(w−)
µ(−w−)

)2

V22

Version June 23, 2004

6.4. Word count distribution 275

= µ(w−)
(

1− µ(w−)
µ(−w−)

)
π(−w−, w)(1− π(−w−, w))

=
µ(w)

µ(−w−)
(
µ(−w−)− µ(w−)

)
(1 − π(−w−, w))

=
µ(w)

µ(−w−)
(
µ(−w−)− µ(w−)− µ(−w) + µ(w)

)
=

µ(w)
µ(−w−)2

(
µ(−w−)− µ(−w)

)(
µ(−w−)− µ(w−)

)
.

We have just proved the following theorem.

Theorem 6.4.2. As n →∞, we have

1√
n

(
N(w)− N̂	−2(w)

)
D−→ N (0, σ2

	−2(w))

with

σ2
	−2(w) =

µ(w)
µ(−w−)2

(µ(−w−)− µ(−w))(µ(−w−)− µ(w−))

and
N(w)− N̂	−2(w)√

nσ̂2
	−2(w)

D−→ N (0, 1)

where nσ̂2
	−2(w) is the plug-in estimator of nσ2

	−2(w):

nσ̂2
	−2(w) =

N̂	−2(w)
N(−w−)2

(
N(−w−)−N(−w)

)(
N(−w−)−N(w−)

)
.

Non-maximal model In the non-maximal models (m < �−2), it is straight-
forward to extend the previous martingale approach to prove the asymptotic
normality of (N(w) − N̂m(w))/

√
n and to derive the asymptotic variance. In-

deed, for each value of �−m, the difference N(w)−N̂m(w) can be decomposed as
a linear combination of martingales, exactly as for Tn. For instance, if w = abcde
and m = 1, write

N(abcde)− N̂1(abcde) = N(abcde)− N(ab)N(bc)N(cd)N(de)
N(b)N(c)N(d)

= N(abcde)−N(abcd)
N(de)
N(d)

+
N(de)
N(d)

(
N(abcd)−N(abc)

N(cd)
N(c)

)
+

N(de)N(cd)
N(d)N(c)

(
N(abc)−N(ab)

N(bc)
N(b)

)
.

Version June 23, 2004

276 Statistics on Words with Applications to Biological Sequences

Another approach uses the δ-method. The idea is to consider N(w)−N̂m(w)
as f(N), where N is the count vector

N = (N(w), N(w1 · · ·wm+1), . . . , N(w	−m · · ·w),
N(w2 · · ·wm+1), . . . , N(w	−m · · ·w	−1))

(see Eq. (6.4.2)). There exists a covariance matrix Σ such that

1√
n

(N −E(N)) D−→ N (0, Σ).

The next step is to use the δ-method (Theorem 6.8.5) to transfer this conver-
gence to f(N):

1√
n

(f(N)− f(E(N))) D−→ N (0,∇Σ∇t),

where ∇ =
(

∂f(x1,...,x2(�−m))

∂xj
|E(N)

)
j=1,...,2(−m)

is the partial derivative vector

of f . Since f(E(N)) = 0, we finally obtain

1√
n

(
N(w)− N̂m(w)

)
D−→ N (0,∇Σ∇t).

However, this method does not easily provide an explicit formula for the asymp-
totic variance since the function f and its derivative depends on �−m.

An alternative method is given by the conditional approach. The princi-
ple is to work conditionally on the sufficient statistic Sm of the model Mm,
namely the collection of counts {N(a1 · · · am+1), a1, . . . , am+1 ∈ A} and the
first m letters of the sequence. One can derive both the conditional expectation
E(N(w) | Sm) and the conditional variance of N(w). The key arguments are
first that the conditional expectation is asymptotically equivalent to N̂m(w),
leading to the asymptotic normality of (N(w)−E(N(w) |Sm))/

√
n, and second,

that n−1Var(N(w) | Sm) has the limiting value σ2
m(w) with

Version June 23, 2004

6.4. Word count distribution 277

σ2
m(w) = µ(w) + 2

∑
p∈P(w), p≤	−m−1

µ(w(p)w) + µ(w)2
(∑

a1,...,am

n(a1 · · · am•)2
µ(a1 · · · am)

−
∑

a1,...,am+1

n(a1 · · ·am+1)2

µ(a1 · · · am+1)
+

1− 2n(w1 · · ·wm•)
µ(w1 · · ·wm)

 , (6.4.7)

where n(·) denotes the number of occurrences inside w, and n(a1 · · · am•) stands
for
∑

b∈A n(a1 · · · amb). Since the conditional moment of order 4 of N(w)/
√

n
is bounded, it follows that

1√
n

(
N(w)− N̂m(w)

)
D−→ N (0, σ2

m(w)).

The overlapping structure of w clearly appears in the limiting variance. It is
an exercise to verify that the limiting variances given by Theorem 6.4.2 and
Equation (6.4.7) with m = �− 2 are identical.

Taking the phase into account Both the martingale approach and the
conditional approach can be extended to the Mm-3 model (see Section 6.1 for
definition and notation). When one wants to distinguish the occurrences of
w in a coding DNA sequence according to a particular phase k ∈ {1, 2, 3} (k
represents the position of the word with respect to the codons), one is interested
in the count N(w, k) of w in phase k in X1 · · ·Xn; recall that the word phase is
the phase of its last letter. Here we state the result in the maximal model.

Theorem 6.4.3. Assume X = (Xi)i∈Z is a stationary (� − 2)-order Markov
chain on A with transition probabilities πk(a1 · · · a	−2, b) and stationary dis-
tribution µ(a1 · · ·a	−2, k), a1, . . . , a	−2, b ∈ A, k ∈ {1, 2, 3}. As n → ∞, we
have

1√
n

(
N(w, k) − N(w−, k − 1)N(−w, k)

N(−w−, k − 1)

)
D−→ N (0, σ2

	−2(w, k))

with

σ2
	−2(w, k) =

µ(w, k)
µ(−w−, k − 1)2

(
µ(−w−, k − 1)− µ(−w, k)

)
×
(

µ(−w−, k − 1)− µ(w−, k − 1)
)

and

µ(w−, k − 1) = µ(w1 · · ·w	−2, k − 2)πk−1(w1 · · ·w	−2, w	−1)
µ(−w, k) = µ(−w−, k − 1)πk(−w−, w)

µ(w, k) = µ(w−, k − 1)πk(−w−, w).

Version June 23, 2004

278 Statistics on Words with Applications to Biological Sequences

Error bound for the approximation Using Stein’s method for normal ap-
proximations, namely Theorem 6.8.1, provides a bound on the distance to the
normal distribution; however, it does not take the estimation of parameters into
account.

Recall v2 = Var(N(w)) from (6.4.1), and α given in (6.1.1). One has the
following result.

Theorem 6.4.4. Assume X = (Xi)i∈Z is a stationary 1-order Markov chain.
Let w be a word of length � and Z ∼ N ((n−�+1)µ(w), v2). There are constants
c and C1, C2, C3 such that

|P(N(w) ≤ x)−P(Z ≤ x)| ≤ c min
	≤s≤n

2

Bs,

where

Bs = 2(4s− 3)v−1 + 2n(2s− 1)(4s− 3)v−3(| log v−1|+ log n)
+C1nv−1µ(w)|α|s−	+1

+C2(| log v−1|+ log n)(2s− 1)|α|s−	+1

+C3(| log v−1|+ log n)(n− 2s + 1)nµ2(w)v−2|α|s−	+1.

The multivariate generalization will be presented in Theorem 6.6.1, where
the explicit forms of the constants C1, C2, and C3 will be given.

6.4.4. Asymptotic distribution: the Poisson regime

In the previous section, we showed that the count N(w) of a word w in a
random sequence of length n can be approximated by a Gaussian distribution
for large n. This Gaussian approximation is in fact not good when the expected
count (n − � + 1)µ(w) is very small, meaning that w is a rare word. Poisson
approximations are appropriate for counts of rare events. As an illustration,
it is well-known that a sum of independent Bernoulli variables can be either
approximated by a Gaussian distribution or a Poisson distribution, depending
on the asymptotic behavior of the expected value.

When the sequence letters are independent, Poisson and compound Poisson
approximations for N(w) have been widely studied in the literature. As we
will see, a Poisson distribution is not satisfactory for periodic words because of
possible overlaps; a compound Poisson distribution is proposed. Two classes
of tools can be used: generating functions, which do not provide any approx-
imation error, and the Chen-Stein method, which gives a bound for the total
variation distance between the two distributions (see Section 6.8.2 for details).
In this section, we chose to present the Chen-Stein approach under a first-order
Markovian model with known parameters; generalizations to higher order and
to estimated parameters are presented at the end of the section. No assumption
is made on the overlapping structure of the word w.

We assume that X = (Xi)i∈Z is a stationary first-order Markov chain
on A, with transition probabilities π(a, b) and stationary distribution µ(a),

Version June 23, 2004

6.4. Word count distribution 279

a, b ∈ A. Let w = w1 · · ·w	 be a word of length � on A. Here, Yi = Yi(w) =
1I{w starts at position i in X} and µ(w) = E(Yi(w)). Moreover, we make the
rare word assumption nµ(w) = O(1). Note that nµ(w) = O(1) also means
� = O(log n).

Applying Theorem 6.8.2 to the Bernoulli variables Yi, we obtain a bound
b1 + b2 + b3 for the total variation distance between the distribution of N(w)
and the Poisson distribution with mean (n− � + 1)µ(w) that does not converge
to 0 under the rare word assumption. The problem comes from the b2 term and
the possible overlaps of periodic words. Indeed, let w be a periodic word; its
set of periods P(w) is not empty. Take Bi = {i− 2� + 1, . . . , i + 2�− 1} for the
neighborhood of i ∈ I = {1, . . . , n−�+1}; then b1 and b3 tend to 0 as n → +∞.
We obtain

b2 :=
∑
i∈I

∑
j∈Bi\{i}

E(YiYj) = 2(n− � + 1)
∑

p∈P(w)

µ(w(p)w) + O(n�µ2(w));

this quantity can be of order O(1) if P(w) contains small periods p. The Poisson
approximation is however valid for the count of non-periodic words because
the set of periods is empty. For periodic words, the crucial argument is to
consider clumps, as by definition they cannot overlap. We first prove that
the declumped count Ñ(w) can be approximated by a Poisson distribution with
mean (n−�+1)µ̃(w) (see Eq. (6.2.7)) by applying Theorem 6.8.2 to the Bernoulli
variables Ỹi(w) defined in (6.2.5). For simplicity, the variables Ỹi(w) are denoted
by Ỹi. In the next section we prove a compound Poisson approximation for
N(w).

Poisson approximation for the declumped count Our aim is to approx-
imate the vector Ỹ = (Ỹi(w))i∈I of Bernoulli variables by a vector Z = (Zi)i∈I

with independent Poisson coordinates of mean E(Zi) = E(Ỹi(w)) = µ̃(w), where
µ̃(·) is defined in (6.2.7). To apply Theorem 6.8.2, we choose the following neigh-
borhood of i ∈ I:

Bi := {j ∈ I : |j − i| ≤ 3�− 3}.

The neighborhood is such that, for j not in Bi, there are no letters Xh common
to Ỹi and Ỹj , and moreover, the Xh’s defining Ỹi and those defining Ỹj are
separated by at least � positions. It is important to consider a lag converging
to infinity with n since it leads to the exponential decay of the b3 term given
by Theorem 6.8.2 as we will see below. Deriving a bound for the total variation
distance between Ỹ and Z consists of bounding the quantities b1, b2 and b3 given
in (6.8.1), (6.8.2) and (6.8.3). Bounding b1 presents no difficulty:

b1 :=
∑
i∈I

∑
j∈Bi

E(Ỹi)E(Ỹj) ≤ (n− � + 1)(6�− 5)µ̃2(w) = O

(
log n

n

)
.

Version June 23, 2004

280 Statistics on Words with Applications to Biological Sequences

Since clumps of w do not overlap in the sequence, ỸiỸj = 0 for |j − i| < �.
Therefore, we get

b2 :=
∑
i∈I

∑
j∈Bi\{i}

E(ỸiỸj) ≤ 2
∑
i∈I

i+3	−3∑
j=i+	

E(ỸiỸj)

using the symmetry of Bi. Now we have

E(ỸiỸj) ≤ E(ỸiYj) = µ̃(w)Πj−i−	+1(w	, w1)
µ(w)
µ(w1)

and

b2 ≤
2

µ(w1)
(n− � + 1)µ̃(w)µ(w)

2	−2∑
s=1

Πs(w	, w1) = O

(
log n

n

)
.

Bounding b3 is a little more involved but we give all the steps because the same
technique is used for the compound Poisson approximation of the count and will
not be described in detail there. By definition we have

b3 :=
∑
i∈I

E|E(Ỹi −E(Ỹi) | σ(Ỹj , j ∈/ Bi))| .

Since σ(Ỹj , j ∈/ Bi) ⊂ σ(X1, . . . , Xi−2	+1, Xi+2	−1, . . . , Xn), properties of condi-
tional expectation and the Markov property give

b3 ≤
∑
i∈I

E|E(Ỹi −E(Ỹi) |Xi−2	+1, Xi+2	−1)|

≤
∑
i∈I

∑
x,y∈A

|E(Ỹi −E(Ỹi) |Xi−2	+1 = x, Xi+2	−1 = y)|

×P(Xi−2	+1 = x, Xi+2	−1 = y).

To evaluate the right-hand term, we introduce the set of possible words of length
�− 1 preceding a clump of w:

G(w) = {g = g1 · · · g	−1 : for all p ∈ P(w), g	−p · · · g	−1 �= w(p)} . (6.4.8)

Thus a clump of w starts at position i in (Xi)i∈Z if and only if one of the words
gw, g ∈ G(w), starts at position i− � + 1. Therefore, we can write

Ỹi(w) =
∑

g∈G(w)

Yi−	+1(gw). (6.4.9)

This gives

b3

≤
∑
i∈I

∑
x,y∈A

∑
g∈G(w)

|E(Yi−	+1(gw)−E(Yi−	+1(gw)) |Xi−2	+1 = x, Xi+2	−1 = y)|

Version June 23, 2004

6.4. Word count distribution 281

×P(Xi−2	+1 = x, Xi+2	−1 = y)

=
∑
i∈I

∑
x,y∈A

∑
g∈G(w)

|P(Xi−2	+1 = x, Yi−	+1(gw) = 1, Xi+2	−1 = y)

−µ(gw)P(Xi−2	+1 = x, Xi+2	−1 = y)|

=
∑
i∈I

∑
x,y∈A

∑
g∈G(w)

∣∣∣∣µ(x)Π	(x, g1)
µ(gw)
µ(g1)

Π	(w	, y)− µ(gw)µ(x)Π4	−2(x, y)
∣∣∣∣ .

We now use the diagonalization (6.1.3) and (6.1.4), with α given in (6.1.1),
yielding

b3 ≤ (n− � + 1)|α|	
∑

g∈G(w)

µ(gw)
∑

x,y∈A
µ(x)

∣∣∣∣∣∣ 1
µ(g1)

∑
(t,t′)

α	
tα

	
t′

α	
Qt(x, g1)Qt′(w	, y)

−
|A|∑
t=1

α4	−2
t

α	
Qt(x, y)

∣∣∣∣∣∣
= (n− � + 1)|α|	

∑
g∈G(w)

µ(gw)
∑

x,y∈A
µ(x)

∣∣∣∣∣∣ 1
µ(g1)

∑
(t,t′) �=(1,1)

α	
tα

	
t′

α	
Qt(x, g1)Qt′(w	, y)

−
|A|∑
t=2

α4	−2
t

α	
Qt(x, y)

∣∣∣∣∣∣
≤ (n− � + 1)|α|	

∑
g∈G(w)

µ(gw)γ(�, w),

where

γ(�, a) =max
b∈A

∑
x,y∈A

µ(x)

∣∣∣∣∣∣ 1
µ(b)

∑
(t,t′) �=(1,1)

α	
tα

	
t′

α	
Qt(x, b)Qt′(a, y)−

|A|∑
t=2

α4	−2
t

α	
Qt(x, y)

∣∣∣∣∣∣ .
Note that γ(�, w) = O(1). From (6.4.8) we have

∑
g∈G(w) µ(gw) = µ̃(w) and

b3 ≤ (n− � + 1)µ̃(w)γ(�, w)|α|	 = O(|α|).

We have proved the next theorem.

Theorem 6.4.5. Let Z = (Zi)i∈I be independent Poisson variables with ex-

pectation E(Zi) = E(Ỹi(w)) = µ̃(w). We have

dTV

(
L(Ỹ),L(Z)

)
≤ (n− � + 1)µ̃(w)

{
(6�− 5)µ̃(w) + γ(�, w)|α|	

+
2

µ(w1)
µ(w)

2	−2∑
s=1

Πs(w	, w1)

}
.

Version June 23, 2004

282 Statistics on Words with Applications to Biological Sequences

The declumped count Ñ(w) can be approximated by Ñinf(w) :=
∑

i∈I Ỹi(w)
since

dTV

(
L(Ñ(w)),L(Ñinf(w))

)
≤ P(Ñ(w) �= Ñinf(w))

≤ (�− 1)(µ(w) − µ̃(w)). (6.4.10)

Using the triangle inequality leads to the following corollary.

Corollary 6.4.6. Let Z be a Poisson variable with expectation E(Z) = (n−
� + 1)µ̃(w). We have

dTV

(
L(Ñ(w)),L(Z)

)
≤ (n− � + 1)µ̃(w)

{
(6�− 5)µ̃(w) + γ(�, w)|α|	

+
2

µ(w1)
µ(w)

2	−2∑
s=1

Πs(w	, w1)

}
+(�− 1)(µ(w) − µ̃(w)).

Estimation of the parameters When the transition probabilities are un-
known and can only be estimated from the observed sequence, we need to eval-
uate the total variation distance between the word count distribution and the
distribution of

∑
k≥1 kZ ′

k, the Z ′
k’s being independent Poisson variables with

expectation (n− � + 1)̂̃µk(w), where ̂̃µk(w) is the observed value of the plug-in
maximum likelihood estimator of µ̃k(w). Similarly, we want to know the total
variation distance between the declumped count, Ñ(w), and the Poisson vari-
able with expectation (n − � + 1)̂̃µ(w). For this we use the triangle inequality
and the fact that the total variation distance between two Poisson variables with
expectation λ and λ′ is less than |λ− λ′|:

dTV

(
L(Ñ (w)),Po((n− � + 1)̂̃µ(w))

)
≤ dTV

(
L(Ñ (w)),Po((n− � + 1)µ̃(w))

)
+(n− � + 1)|̂̃µ(w) − µ̃(w)|.

Using the Law of Iterated Logarithm for Markov chains and Equation (6.2.4),
one can show that

µ̂(w) = µ(w)
(

1 + O

(
�
√

log log n√
n

))
almost surely (a.s.)

Under the rare word condition nµ(w) = O(1), we get

nµ̂(w)− nµ(w) = O

(
�
√

log log n√
n

)
a.s.

Now, using Equation (6.2.7), we obtain

n̂̃µ(w) − nµ̃(w) = O

(
�2
√

log log n√
n

)
a.s.

Version June 23, 2004

6.4. Word count distribution 283

This quantity converges to zero as n → ∞, because the rare word condition
implies that � = O(log n). Thus,

dTV

(
L(Ñ (w)),Po

(
(n− � + 1)̂̃µ(w)

))
≤ dTV

(
L(Ñ(w)),Po

(
(n− � + 1)µ̃(w)

))
+ O

(
�2
√

log log n√
n

)
.

The approximation follows from Corollary 6.4.8.
We do not have an explicit bound for this additional error term. However,

for long sequences the error term due to the maximum-likelihood estimation
will be small compared to the bound on the Poisson approximation error.

6.4.5. Asymptotic distribution: the Compound Poisson regime

Here we present two approaches for a compound Poisson approximation for the
count. Firstly, such an approximation can be derived using a Poisson process
approximation for the Bernoulli variables Ỹi,k(w) defined in (6.2.9) and by using
that N(w) is asymptotically equivalent to

∑
i∈I

∑
k≥1 kỸi,k(w) in probability.

For simplicity, the variables Ỹi,k(w) are denoted by Ỹi,k. Secondly, a direct
approximation for N(w) can be obtained using Stein’s method for compound
Poisson approximation. The second method yields better bounds on the approx-
imation, whereas the first method is easier to generalize to multivariate results,
as will be shown in Section 6.6.

Compound Poisson approximation via Poisson process To approxi-
mate the distribution of the count N(w), we first use that N(w) is asymptoti-
cally equivalent to Ninf(w) :=

∑n−	+1
i=1

∑
k≥1 kỸi,k in probability:

dTV (L(N(w)),L(Ninf(w))) ≤ P(N(w) �= Ninf(w))
≤ 2(�− 1)(µ(w) − µ̃(w)). (6.4.11)

Our goal is now to approximate the vector (Ỹi,k)(i,k)∈I , I = {1, . . . , n − � +
1}× {1, 2, . . .}, of Bernoulli variables by a vector (Zi,k)(i,k)∈I with independent
Poisson coordinates of expectation E(Zi,k) = E(Ỹi,k) = µ̃k(w) where µ̃k(·)
is given in Equation (6.2.10). The neighborhood Bi,k of (i, k) is such that,
for (j, k′) not in Bi,k, the letters Xh’s defining Ỹi,k and those defining Ỹj,k

are separated by at least � positions. Since Ỹi,k can be described by at most
Xi−	+1, . . . , Xi+(k+1)(−1), we consider

Bi,k := {(j, k′) ∈ I : −(k′ + 3)(�− 1) ≤ j − i ≤ (k + 3)(�− 1)} .

We bound successively the quantities given in (6.8.1), (6.8.2) and (6.8.3). By
definition

b1 :=
∑

(i,k)∈I

∑
(j,k′)∈Bi,k

E(Ỹi,k)E(Ỹj,k′)

Version June 23, 2004

284 Statistics on Words with Applications to Biological Sequences

≤
n−	+1∑

i=1

∑
k≥1

∑
k′≥1

i+(k+3)(−1)∑
j=i−(k′+3)(−1)

µ̃k(w)µ̃k′ (w)

≤ (n− � + 1)
∑
k≥1

∑
k′≥1

(
(k + k′ + 6)(�− 1) + 1

)
µ̃k(w)µ̃k′ (w).

From (6.2.7) and (6.2.10), we use that∑
k≥1

µ̃k(w) = µ̃(w) , (6.4.12)

∑
k≥1

kµ̃k(w) = µ(w) , (6.4.13)

to obtain

b1 ≤ (n− � + 1)
(

2(�− 1)µ̃(w)µ(w) + (6�− 5)µ̃(w)2
)

.

The b2 term involves products such as Ỹi,kỸj,k′ with (j, k′) ∈ Bi,k. Since
a k-clump of w at position i cannot overlap a k′-clump of w, many of these
products are zero. To identify them, we need to describe in more detail the
compound words c ∈ Ck(w) and c′ ∈ Ck′(w) that may occur at positions i and j.
For this purpose, we introduce the set of words of length �− 1 that can follow
a clump of w:

D(w) = {d = d1 · · · d	−1 : ∀p ∈ P(w), d1 · · ·dp �= w	−p+1 · · ·w	}.

Therefore, we can write

Ỹi,k(w) =
∑

g∈G(w),c∈Ck(w),d∈D(w)

Yi−	+1(gCd). (6.4.14)

For convenience, we write
∑

gcd for the sum over g ∈ G(w), c ∈ Ck(w), d ∈ D(w),
and, similarly,

∑
g′c′d′ for the sum over g′ ∈ G(w), c′ ∈ Ck′(w) and d′ ∈ D(w).

This gives

b2 :=
∑

(i,k)∈I

∑
(j,k′)∈I\{(i,k)}

E(Ỹi,kỸj,k′)

=
n−	+1∑

i=1

∑
k≥1

∑
k′≥1

∑
gcd

∑
g′c′d′

i+(k+3)(−1)∑
j=i−(k′+3)(−1)

E(Yi−	+1(gcd)Yj−	+1(g′c′d′)).

For i − |c′| < j < i + |c|, we have that Yi−	+1(gcd)Yj−	+1(g′c′d′) = 0 because
clumps do not overlap. We distinguish two cases:

(1) g′c′d′ at position j − � + 1 overlaps gcd at position i− � + 1 (this is only
possible over at most 2(�− 1) letters); that is, for

j ∈ {i− |c′| − 2� + 3, . . . , i− |c′|} ∪ {i + |c|, . . . , i + |c|+ 2�− 3} ;

Version June 23, 2004

6.4. Word count distribution 285

let b21 denote the associated term.

(2) g′c′d′ at position j− �+1 does not overlap gcd at position i− �+1; that
is, for

j ∈ {i−(k′+3)(�−1), . . . , i−|c′|−2�+2}∪{i+ |c|+2�−2, . . . , i+(k+3)(�−1)} ;

let b22 denote the associated term.

By symmetry, we have

b21 ≤ 2
n−	+1∑

i=1

∑
k≥1

∑
k′≥1

∑
gcd

∑
g′c′d′

i+|c|+2	−3∑
j=i+|c|

E(Yi−	+1(gCd)Yj−	+1(g′C′d′)) .

Summing over k′, g′, c′ and d′ gives

b21 ≤ 2
n−	+1∑

i=1

∑
k≥1

∑
gcd

i+|c|+2	−3∑
j=i+|c|

E(Yi−	+1(gcd)Ỹj(w)) ;

now, summing over d and using that Ỹj(w) ≤ Yj(w) leads to

b21 ≤ 2
n−	+1∑

i=1

∑
k≥1

∑
gc

i+|c|+2	−3∑
j=i+|c|

E(Yi−	+1(gc)Yj(w)) .

An occurrence of gc at position i− � + 1 does not overlap an occurrence of w at
position j ≥ i + |c|; thus it follows that

E(Yi−	+1(gc)Yj(w)) = µ(gc)Πj−i−|c|+1(w	, w1)
µ(w)
µ(w1)

,

and

b21 ≤ 2(n− � + 1)
µ(w)
µ(w1)

2	−2∑
s=1

Πs(w	, w1)
∑
k≥1

∑
gc

µ(gc).

Finally, note that∑
k≥1

∑
gc

µ(gc) =
∑
k≥1

∑
k∗≥k

µ̃k∗(w) =
∑
k∗≥1

k∗µ̃k∗(w) = µ(w) ,

which leads to

b21 ≤ 2(n− � + 1)
µ2(w)
µ(w1)

2	−2∑
s=1

Πs(w	, w1) = O

(
log n

n

)
.

The b22 term is easier to bound and we get

b22 ≤ 2(n− � + 1)
µ̃(w)
µmin

((�− 2)µ(w) + µ̃(w)) = O

(
log n

n

)
,

Version June 23, 2004

286 Statistics on Words with Applications to Biological Sequences

where µmin is the smallest value of {µ(a), a ∈ A}.
Combining these bounds, we have

b2 ≤ 2(n−�+1)
µ2(w)
µ(w1)

2	−2∑
s=1

Πs(w	, w1)+2(n−�+1)
µ̃(w)
µmin

((�− 2)µ(w) + µ̃(w)) .

Bounding b3 consists of following the different steps previously detailed for
the declumped count and using the decomposition (6.4.14) instead of (6.4.9).
Since there is no interest in repeating this technical part, we just give the bound
of b3 and state the theorem:

b3 ≤ (n− � + 1)µ̃(w)γ2(�)|α|	

with

γ2(�) =
∑

x,y∈A
µ(x) max

a,b∈A

 1
µ(b)

∑
(t,t′) �=(1,1)

∣∣∣∣α	
tα

	
t′

α	
Qt(x, b)Qt′(a, y)

∣∣∣∣
+

|A|∑
t=2

∣∣∣∣∣α5	−3
t

α	
Qt(x, y)

∣∣∣∣∣
 .

Theorem 6.4.7. Let (Zi,k)(i,k)∈I be independent Poisson variables with ex-

pectation E(Zi,k) = E(Ỹi,k(w)) = µ̃k(w). With the previous notation, we have

dTV

(
L
(
(Ỹi,k(w))(i,k)∈I

)
,L
(
(Zi,k)(i,k)∈I

))
≤ (n− � + 1)µ̃(w)

(
2(�− 1)µ(w) + (6�− 5)µ̃(w) + γ2(�)|α|	

)
+2(n− � + 1)

{
µ2(w)
µ(w1)

2	−2∑
s=1

Πs(w	, w1) +
µ̃(w)
µmin

(
(�− 2)µ(w) + µ̃(w)

)}
.

From the total variation distance properties, we have

dTV

(
L
(∑
(i,k)∈I

kỸi,k

)
,L
(∑
(i,k)∈I

kZi,k

))
≤ dTV

(
L
(
(Ỹi,k(w))(i,k)∈I

)
,L
(
(Zi,k)(i,k)∈I

))
.

Since the Zi,k’s are independent Poisson variables,
∑

(i,k)∈I kZi,k has the same
distribution as

∑
k≥1 kZk, where the Zk’s are independent Poisson variables

with expectation (n−�+1)µ̃k(w). Note that the latter has a compound Poisson
distribution with parameters

(
(n− � + 1)µ̃(w), (µ̃k(w)/µ̃(w))k

)
. Because of the

expressions of µ̃(w) and µ̃k(w) given by (6.2.7) and (6.2.10), this compound
Poisson distribution reduces to a Polýa-Aeppli distribution. Using the triangle
inequality leads to the following corollary.

Version June 23, 2004

6.4. Word count distribution 287

Corollary 6.4.8. Let (Zk)k≥1 be independent Poisson variables with expec-
tation E(Zk) = (n− � + 1)µ̃k(w). Let

CP = CP
(
(n− � + 1)µ(w)(1 −A(w)),

(
(1− A(w))Ak−1(w)

)
k≥1

)
(6.4.15)

denote the compound Poisson distribution of
∑

k≥1 kZk. With the previous
notation, we have
dTV (L(N(w)), CP) ≤

(n− � + 1)µ̃(w)
(

2(�− 1)µ(w) + (6�− 5)µ̃(w) + γ2(�)|α|	
)

+2(n− � + 1)

{
µ2(w)
µ(w1)

2	−2∑
s=1

Πs(w	, w1) +
µ̃(w)
µmin

(
(�− 2)µ(w) + µ̃(w)

)}
+2(�− 1)(µ(w) − µ̃(w))

= O

(
log n

n

)
.

Such a bound on the total variation distance between, for instance, the word
count distribution and the associated compound Poisson distribution has the
great advantage of providing confidence intervals (see Section 6.8.2). Indeed,
using notation from Corollary 6.4.8, for all t ∈ R, we have∣∣∣∣∣∣P(N(w) ≥ t)−P

∑
k≥1

kZk ≥ t

∣∣∣∣∣∣ ≤ dTV

L(N(w)),L

∑
k≥1

kZk

 .

Direct compound Poisson approximation Empirically, often a compound
Poisson approximation also gives good results when the underlying words are
not so rare, indicating that the theoretical bounds are not sharp. Using the
direct compound Poisson approximation Theorem 6.8.4, it is possible to obtain
improved bounds for N(w). For this, choose as neighborhoods in Theorem 6.8.4

B(i, k) = {(j, k′) : −(k′ − 2)(�− 1)− r + 1 ≤ j − i ≤ (k + 2)(�− 1) + r − 1},

where r ≥ 1 can be chosen. In Theorem 6.4.5 we had r = �. Recall (6.2.10), ρ
from (6.1.5), Γ from (6.5.5), and CP from (6.4.15). One obtains the following
result.

Theorem 6.4.9. If A(w) ≤ 1
5 , then

dTV (L(N(w)), CP) ≤ 1−A(w)
1− 5A(w)

(
∆1 +

√
(n− � + 1)µ(w)∆0

)
+ 2(�− 1)µ(w),

Version June 23, 2004

288 Statistics on Words with Applications to Biological Sequences

where

∆0 = 2ρr
(
2 + 3ρ3(−1)+r + 2ρr

)
,

∆1 = 2µ(w)
{

3(�− 1) + r + 2(�− 1)
A(w)

1−A(w)

+Γ
(

2A(w)(�− 1− p0)
(1−A(w))3

+
2(�− 1) + r − 1

(1 −A(w))2

)}
,

and p0 is the shortest period of w. The value r can be chosen to minimize the
estimates.

Estimation of the parameters When estimating the parameters, as in Sub-
section 6.4.4, the total variation distance between the two compound Poisson
distributions is bounded by

dTV

L
∑

k≥1

kZk

 ,L

∑
k≥1

kZ ′
k

 ≤∑
k≥1

|n̂̃µk(w)− nµ̃k(w)|.

Using Equation (6.2.10), this quantity tends to zero as n → ∞ when nµ(w) =
O(1).

Again, for long sequences the error term due to the maximum-likelihood
estimation will be small compared to the bound on the compound Poisson ap-
proximation error.

Generalization to Mm Let us now assume that the sequence (Xi)i∈Z is a m-
order Markov chain on the alphabet A, with transition probabilities π(a1 · · · am,
am+1), a1, · · · , am+1 ∈ A. The basic idea is to rewrite the sequence over the
alphabet Am using the embedding (6.1.6),

Xi = XiXi+1 · · ·Xi+m−1,

so that the sequence (Xi)i∈Z is a first-order Markov chain on Am with transition
probabilities (A = a1 · · · am ∈ Am , B = b1 · · · bm ∈ Am)

Π(A, B) =
{

π(a1 · · ·am, bm) if a2 · · ·am = b1 · · · bm−1

0 otherwise.

Denote by W = W1 · · ·W	−m+1 the word w = w1 . . . w	 written using the alpha-
bet Am, so that Wj = wj . . . wj+m−1. The results presented below are valid for
the number N(W) of overlapping occurrences and the number Ñ(W) of clumps
of W in X1 · · ·Xn−m+1. Since an occurrence of w at position i in X1 · · ·Xn

corresponds to an occurrence of W at position i − m + 1 in X1 · · ·Xn−m+1,
we simply have N(w) = N(W). In contrast, clumps of W in X1 · · ·Xn−m+1

are different from clumps of w in X1 · · ·Xn because W is less periodic than
w, leading to Ñ(W) �= Ñ(w). Let us take a simple example: w = ata and

Version June 23, 2004

6.4. Word count distribution 289

m = 2. Put A = at ∈ A2 and B = ta ∈ A2; we then have W = AB. The
sequence tatatatat contains a unique clump of at whereas the associated se-
quence BABABABA contains 3 clumps of AB. Indeed, AB has no period and
ata has one period. In fact, the periods of W are those periods of w that are
strictly less than � −m + 1. Therefore, the Poisson approximation for the de-
clumped count in a m-order Markov chain does not follow immediately from the
case m = 1; a rigorous proof would require applying the Chen-Stein theorem
with an adapted neighborhood and to bound the new quantities b1, b2 and b3

in Mm, but this has not yet been carried out.
Since N(w) = N(W), Corollary 6.4.8 ensures that N(w) can be approxi-

mated by a sum
∑

k≥1 kZk, where Zk is a Poisson variable whose expectation is
(n− � + 1) times the probability that a k-clump of W starts at a given position
in X1 · · ·Xn−m+1. From Equation (6.2.10), we obtain

E(Zk) = (n− � + 1)(1−A′(w))2A′(w)k−1µ(w)

with

A′(w) =
∑

p∈P′(w)∪{1,...,	−m}

µ(w(p)w)
µ(w)

.

An important consequence is that, in Mm, the compound Poisson approx-
imation for words that cannot overlap on more than m − 1 letters becomes a
single Poisson approximation.

6.4.6. Large deviation approximations

For long sequences, the probability that a given word occurs more than a cer-
tain number of times can be approximated using a Gaussian or a compound
Poisson distribution (Sections 6.4.3 and 6.4.5). The aim of this section is to
show that large deviation techniques can also be used to approximate the prob-
ability that a given word frequency deviates from its expected value by more
than a certain amount. Let w = w1 · · ·w	 be a word of length �; recall that
µ(w) denotes the probability that w occurs at a given position in X1 · · ·Xn.
We aim to provide good approximations for P(1

n−	+1N(w) ≥ µ(w) + b) and
P(1

n−	+1N(w) ≤ µ(w)− b) with 0 < b < 1.
We assume that X1 · · ·Xn is a stationary first-order Markov chain on a finite

alphabetA with transition probabilities π(a, b) > 0, a, b ∈ A. (Generalization to
Mm follows the same setup as in Section 6.4.5, using (6.1.6).) To use Theorem
6.8.6 for 1

n−	+1N(w), we need to consider the irreducible Markov chain X1,
. . . , Xn−	+1 on A	 where Xi = Xi · · ·Xi+	−1, with transition matrix IΠ =
(Π(u, v))u,v∈A� such that

Π(u1 · · ·u	, v1 · · · v) =
{

π(u	, v) if uj+1 = vj , j = 1 · · · �− 1,
0 otherwise.

Version June 23, 2004

290 Statistics on Words with Applications to Biological Sequences

The count N(w) can then be written as

N(w) =
n−	+1∑

i=1

1I{Xi · · ·Xi+	−1 = w1 · · ·w	}

=
n−	+1∑

i=1

1I{Xi = w}

Let I be the function

I(x) = sup
θ∈R

(θx− log λ(θ)),

x ∈ R, where λ(θ) is the largest eigenvalue of the matrix IΠθ = (Πθ(u, v))u,v∈A�

defined by

Πθ(u, v) =
{

eθΠ(u, v) if v = w,
Π(u, v) otherwise.

Let 0 < b < 1; applying Theorem 6.8.6 with the function f(u) = 1I{u = w} to
the closed subset [µ(w)+b, +∞] and the open subset (µ(w)+b, +∞), we obtain

lim
n→+∞

1
n− � + 1

logP
(

1
n− � + 1

N(w) ≥ µ(w) + b

)
= −I(µ(w) + b) ;

indeed, the rate function I is convex and minimal at E(f(Xi)) = µ(w). Similarly
we have

lim
n→+∞

1
n− � + 1

logP
(

1
n− � + 1

N(w) ≤ µ(w) − b

)
= −I(µ(w) − b).

Denoting the observed count of w in the biological sequence by Nobs(w), as
a consequence we have for large n:

if Nobs(w) > (n− � + 1)µ(w) and b := Nobs(w)
n−	+1 − µ(w), then

P(N(w) ≥ Nobs(w)) $ exp
(
−(n− � + 1)I

(
Nobs(w)
n− � + 1

))
,

if Nobs(w) < (n− � + 1)µ(w) and b := µ(w)− Nobs(w)
n−	+1 , then

P(N(w) ≤ Nobs(w)) $ exp
(
−(n− � + 1)I

(
Nobs(w)
n− � + 1

))
.

Note that this approximation is obtained assuming the transition probabilities
π(a, b), a, b ∈ A are known. Moreover, since λ(θ) is an eigenvalue of a |A|	×|A|	
matrix, the word length � is a limiting factor for the numerical calculation, even
if |A| = 4.

Version June 23, 2004

6.5. Renewal count distribution 291

6.5. Renewal count distribution

As a particular case of non-overlapping occurrence counts, in this section we
count renewals of a word w = w1w2 . . . w	 in a random sequence X1 · · ·Xn as de-
fined in Section 6.2. We then consider the renewal count Rn(w) =

∑n−	+1
i=1 Ii(w),

where Ii(w) is the random indicator that a renewal of w starts at position i in
X1 · · ·Xn (see (6.2.11)).

Exact results for the distribution of Rn have been proposed using a combi-
natorial approach and language decompositions. Because those tools are very
different from the ones used in this chapter, we only present asymptotic results.
First we derive the expected renewal count.

Expected renewal count If the random indicators Ii(w) had the same ex-
pectation, say µR(w), then E(Rn(w)) = (n−�+1)µR(w). This is the commonly
used expectation, but it ignores the end effect. For i > �, the Ii(w)’s are effec-
tively identically distributed by stationarity of the Markov process, but it is not
the case for 1 ≤ i ≤ �.

We start with the calculation of µR(w). Recall that P(w) is the set of
periods of w and that w(p) = w1w2 · · ·wp denotes the word composed of the
first p letters of w. When the Markov process is in stationarity, we have from
renewal theory that

µR(w) =
µ(w)
Q(1)

(6.5.1)

withQ given in (6.2.2). To understand this formula, note that we can decompose
the event {there is an occurrence of w starting at position i}, i > �, as the disjoint
union of {there is a renewal of w starting at position i} and {there is a renewal
of w starting at position j directly followed by the letters w	−i+j+1 · · ·w	 and
j − i is a period of w}, for j ∈ {i − � + 1, . . . , i − 1}. This can be written as
follows

Yi(w) =
i∑

j=i−	+1

Ij(w)Yj+	(w	−i+j+1 · · ·w)1I{i− j ∈ P(w) ∪ {0}}

=
∑

p∈P(w)∪{0}
Ii−p(w)Yi+	−p(w	−p+1 · · ·w).

Taking expectations on both sides thus gives

µ(w) =
∑

p∈P(w)∪{0}
µR(w)µ(w	−p · · ·w)

1
µ(w	−p)

.

Hence

µR(w) =
µ(w)

1 +
∑

p∈P(w) π(w	−p, w	−p+1) · · ·π(w	−1, w)
,

Version June 23, 2004

292 Statistics on Words with Applications to Biological Sequences

which gives the result (6.5.1).
As previously noted, the first variables I1(w), . . . , I	(w) are not identically

distributed because of boundary effects. For the asymptotic results we are
interested in in this section, this end effect may be ignored.

6.5.1. Gaussian approximation

Once the asymptotic variance is established, the normal approximation follows
from the Markov Renewal Central Limit Theorem. Calculating the asymptotic
variance is a little more involved than calculating the mean, relying much on
the autocorrelation polynomial. To this purpose, we define 1 as the Card(A)×
Card(A) matrix where all the entries equal 1. With Π denoting the Markovian
transition matrix, put

Z =
∞∑

k=1

(Π− µ1)k. (6.5.2)

Put

σ2 = µ2
R(w)

(
(1− 2�) + 2

Q′(1)
Q(1)

+
2Z(w	, w1)

µ(w1)

)
.

We then have the following Central Limit Theorem.

Theorem 6.5.1. We have that, as n →∞,

Rn(w) − nµR(w)√
n

D−→ N (0, σ2).

The main technique to prove this theorem being generating functions, no
bound on the rate of convergence is obtained. Note also that we do not have a
corresponding result when mean and standard deviation are estimated.

6.5.2. Poisson approximation

Similarly as with the declumped count, we can also derive a Poisson approxima-
tion for the renewal count under the rare word condition nµ(w) = O(1). Indeed
this is very simple. Recall (6.2.3)

Yi(w) := 1I{w starts at position i in X}.

We can write, for i > �,

Ii(w) = Yi(w)
i−1∏

j=i−	+1

(1− Ij(w))

= Yi(w)
i−1∏

j=i−	+1

(1− Yj(w))

Version June 23, 2004

6.5. Renewal count distribution 293

+Yi(w)

 i−1∏
j=i−	+1

(1− Ij(w))−
i−1∏

j=i−	+1

(1− Yj(w))

= Ỹi(w) + Yi(w)

 i−1∏
j=i−	+1

(1− Ij(w)) −
i−1∏

j=i−	+1

(1− Yj(w))

(6.5.3)

whereas Ii(w) = Yi(w)
∏i−1

j=1(1 − Yj(w)) if 1 ≤ i ≤ �. Note that a renewal
occurrence in the first � positions is a clump occurrence observed in the finite
sequence, and conversely. Thus we have

Rn(w) =
n−	+1∑

i=1

Ii(w)

= Ñ(w) +
n−	+1∑
i=	+1

Yi(w)

 i−1∏
j=i−	+1

(1− Ij(w)) −
i−1∏

j=i−	+1

(1 − Yj(w))

 .

We have already derived a Poisson approximation for the number of clumps
Ñ(w) (see Section 6.4.5). Let us consider the difference

Rn(w) − Ñ(w) =
n−	+1∑
i=	+1

Yi(w)

 i−1∏
j=i−	+1

(1− Ij(w)) −
i−1∏

j=i−	+1

(1− Yj(w))

 .

For a summand to be nonzero, firstly we need that Yi(w) = 1. Note that a
renewal always implies an occurrence, so that

i−1∏
j=i−	+1

(1− Ij(w)) ≥
i−1∏

j=i−	+1

(1− Yj(w)).

The product being always 0 or 1, the two products are different if and only if∏i−1
j=i−	+1(1− Ij(w)) = 1 and

∏i−1
j=i−	+1(1−Yj(w)) = 0. This implies that there

is no renewal between the positions i−�+1 and i−1, but that there must be an
occurrence not only at position i but also at some position j between i− � + 1
and i− 1. This occurrence again cannot be a renewal, so that it must be part
of a larger clump; repeating this argument we see that the occurrence at i must
be part of a clump that started before position i− �+1. This implies that there
had to be an occurrence of w somewhere between i− 2� + 2 and i− �, and this
occurrence is in the same clump as the occurrence at i. Thus

P(Rn(w) �= Ñ(w)) ≤
n−	+1∑
i=	+1

i−	∑
j=i−2	+2

E(Yi(w)Yj(w))

≤ (n− 2� + 1)(�− 1)µ(w)2
1

µ(w1)
. (6.5.4)

Version June 23, 2004

294 Statistics on Words with Applications to Biological Sequences

This quantity will be small under the asymptotic framework nµ(w) = O(1).
Thus we may use the Poisson bound for the number of clumps derived above,
and just add an error term of order log n/n.

A different type of bound is also available. Put

Γ = Γ(w) = sup
t≥1

π(t)(w	, w1)
µ(w1)

. (6.5.5)

Recall ρ given in (6.1.5), and E(Rn(w)) is given in (6.5.1). Using the Chen-Stein
method, it is possible to prove the following theorem (see Section 6.9).

Theorem 6.5.2. We have that

dTV (L(Rn(w)),Po(E(Rn(w))) ≤
(
1− e−E(eN(w))

)
D1

+ min

{
1,

√
2

eE(Ñ(w))

}
D2 + D3,

where

D1 = (2�− 5)(µ̃(w) + Γµ(w)) − Γ(2�− 1)µ(w),
D2 = 2E(Rn(w))ρ	

(
2 + 2ρ	 + ρ3	−2

)
,

D3 =
(
1 + min

{
1, (E(Rn(w)))−

1
2

})
(E(Rn(w)) −E(Ñ(w))).

It is also of interest to consider the case that n →∞, for a sequence of words
w(n) of length �(n), where �(n) may grow with n. Indeed, under the conditions

(i) limn→∞ E(Rn(w(n))) = λ < ∞

(ii) limn→∞
	(n)

n = 0,

the bound in Theorem 6.5.2 is of order O
(

	(n)

n

)
, which converges to zero for

n → ∞. Thus Rn(w(n)) converges in distribution to a Poisson variable with
mean λ.

6.6. Occurrences and counts of multiple patterns

In biological sequence analysis often the distribution of the joint occurrences of
multiple patterns rather than that of single words is of relevance, for example
when characterizing protein families via short motifs, or when assessing the
statistical significance of the count of degenerated words such as a(c or g)g(a
or t), describing the family of words {acga, agga, acgt, aggt}.

Since the exact distribution of the counts of multiple words is not easily
calculated in practice, we will focus in this section on the asymptotic point of
view.

Version June 23, 2004

6.6. Occurrences and counts of multiple patterns 295

Indeed, asymptotic results, similar to the above approximations, are avail-
able for the distribution of joint occurrences and joint counts of multiple patterns
and we will present them in this section. As we will see, the main new feature
one has to consider are the possible overlaps between different words from the
target family.

Consider the family of q words {w1, . . . , wq}, where wr = wr
1w

r
2 · · ·wr

	r
. For

two words w1 = w1
1w

1
2 · · ·w1

	1
and w2 = w2

1w
2
2 · · ·w2

	2
on A, we describe the

possible overlaps between w1 and w2 by defining

P(w1, w2) := {p ∈ {1, . . . , �1 − 1} : w2
i = w1

i+p, ∀i = 1, . . . , (�1 − p) ∧ �2}.

Thus P(w1, w2) �= ∅ means that an occurrence of w2 can overlap an occurrence
of w1 from the right, and P(w2, w1) �= ∅ means that w2 can overlap w1 from
the left. Note the lack of symmetry; for example, if w1 = aaagaagaa and
w2 = aagaatca, we have P(w1, w2) = {4, 7, 8} and P(w2, w1) = {7}. To avoid
trivialities, we make the following assumption.

(A1) ∀r �= r′ , wr is not a substring of wr′
.

Thus {w1, . . . , wq} is a reduced set of words. Again we model the sequence
{Xi}i∈Z as a stationary ergodic Markov chain.

We introduce the notation

� = max
1≤r≤q

�r (6.6.1)

�min = min
1≤r≤q

�r.

6.6.1. Gaussian approximation for the joint distribution of multiple
word counts

We assume the general model Mm, m ≤ �min− 2. We will show the asymptotic
normality of the vector n−1/2(N(wr)− N̂m(wr))r=1,...,q:

1√
n

(
N(wr)− N̂m(wr)

)
r=1,...,q

D−→ N (0, Σm).

To prove this result, we use a multivariate martingale central limit theorem.
The estimated count N̂m(wr) is given by (6.4.2). The novelty consists here of
deriving the asymptotic covariance matrix Σm = (Σm(wr , wr′

))r,r′=1,...,q.
Suppose all the words wr have the same length � and m = �−2 (the maximal

model) then the martingale technique (see Section 6.4.3) leads to

Σ	−2(wr , wr′
) = µ(wr)µ(wr′

)

(
1I{wr = wr′}

µ(wr)
− 1I{(wr)− = (wr′

)−}
µ((wr)−)

−1I{−(wr) =− (wr′
)}

µ(−(wr))
+

1I{−(wr)− =− (wr′
)−}

µ(−(wr)−)

)
.

Note that when r = r′, this formula reduces to the asymptotic variance σ2
	−2(w

r)
of Section 6.4.3.

Version June 23, 2004

296 Statistics on Words with Applications to Biological Sequences

More generally, for r �= r′, the conditional approach (see Section 6.4.3) leads
to

Σm(wr , wr′
) =

∑
p∈P(wr,wr′)
p≤	r−m−1

µ

(
(wr)(p)wr′

)
+

∑
p∈P(wr′ ,wr)
p≤	r′−m−1

µ

(
(wr′

)(p)wr

)

+µ(wr)µ(wr′
)

(∑
a1,...,am

n(a1 · · · am•)n′(a1 · · ·am•)
µ(a1 · · ·am)

−
∑

a1,...,am+1

n(a1 · · ·am+1)n′(a1 · · · am+1)
µ(a1 · · · am+1)

− n(wr′
1 · · ·wr′

m•)
µ(wr′

1 · · ·wr′
m)

+
1I{wr

1 · · ·wr
m = wr′

1 · · ·wr′
m} − n′(wr

1 · · ·wr
m•)

µ(wr
1 · · ·wr

m)

)
,

where n(·) denotes the number of occurrences inside wr and n′(·) denotes the
number of occurrences inside wr′

. (When r = r′, the formula reduces to Equa-
tion (6.4.7).)

Note that, if one wants to study the total number of occurrences of a word
family {wr, r = 1, . . . , q}, we have

1√
n

(
q∑

r=1

N(wr)−
q∑

r=1

N̂m(wr)

)
D−→ N

0,
∑
r,r′

Σm(wr , wr′
)

 .

Error bound for the normal approximation Similarly to Theorem 6.4.4,
it is possible to give a bound on the approximation when the parameters do not
have to be estimated. Let w = {w1, . . . , wq} be the word set and

N(w) = (N(w1), . . . , N(wq))

be the vector of word counts. Denote its covariance matrix by

Ln = Ln(w) = Cov(N(w)) =
(
Cov(N(wi), N(wj)

)
i,j=1,...,q

.

A calculation similar to (6.4.1) shows that, for two different words u and v of
length �u and �v such that u is not a substring of v and v is not a substring of
u:

Cov(N(u), N(v)) =∑
p∈P(u,v)

E(N(u(p)v)) +
∑

p∈P(v,u)

E(N(v(p)u))−E(N(u))E(N(v))

+ µ1(u)µ1(v)
n−	u−	v+1∑

d=1

(n− �u − �v + 2− d)
[
Πd(u	u , v1)

µ1(v1)
+

Πd(v	v , u1)
µ1(u1)

]
.

In particular, Ln is invertible.

Version June 23, 2004

6.6. Occurrences and counts of multiple patterns 297

Some more notation is needed. Let H denote the collection of convex sets
in Rq, and let

β = β(w) = max
1≤r≤q

µ(wr).

Recall, from the transition matrix diagonalization, α given in (6.1.1) and Qt

given in (6.1.2). Using Theorem 6.8.1, it is possible to derive the following
result.

Theorem 6.6.1. Assume the Markov model M1. Let Z ∼ N (E(N(w),Ln).
There are constants c and C1, C2, C3 such that, for any set w of q words with
maximal length �,

sup
A∈H

|P(N(w) ∈ A)−P(Z ∈ A)| ≤ c min
	≤s≤n

2

Bs,

where

Bs = 2q
3
2 (4s− 3)

∣∣L−1
n

∣∣ 12
+2q

1
2 n(2s− 1)(4s− 3)

(
q2
√∣∣L−1

n

∣∣)3(
| log(q2

√∣∣L−1
n

∣∣)|+ log n

)
+C1n

∣∣L−1
n

∣∣ 12 β|α|s−	+1

+C2

(
| log(q2

√∣∣L−1
n

∣∣)|+ log n

)
(2s− 1)|α|s−	+1

+C3

(
| log(q2

√∣∣L−1
n

∣∣)|+ log n

)
(n− 2s + 1)nq4β2

∣∣L−1
n

∣∣ |α|s−	+1.

Here,

C1 = max

 ∑
a,b∈A

µ(a)C1,1(a, b),
∑
a∈A

C1,2(a),
∑
a∈A

C1,3(a)

C2 = n

∣∣L−1
n

∣∣ q4β(2β + 1)C1

C3 = max
a,b∈A

∑
t≥2

|Qt(a, b)|
µ(a)

and

C1,1(a, b) = max
x,y∈A

 ∑
t≥2 or t′≥2

|Qt(a, x)Qt′(b, y)|
µ(x)

+
∑
t≥2

|Qt(a, b)|

C1,2(a) = max
b∈A

∑
t≥2

|Qt(b, a)|

C1,3(a) = max

b∈A

∑
t≥2

|Qt(a, b)|
µ(b)

 .

Version June 23, 2004

298 Statistics on Words with Applications to Biological Sequences

The constant c is not easy to describe. Note that convergence on the class
of convex sets is not as strong as convergence in total variation. Indeed, ap-
proximating discrete counts by a continuous multivariate variable might not be
expected to be very good in total variation distance.

6.6.2. Poisson and compound Poisson approximations for the joint
distribution of declumped counts and multiple word counts

We assume the model M1 since generalization to Mm follows the single pattern
case. To give a bound on the error for a Poisson process approximation for
overlapping counts, define the following quantities for all r and r′ in {1, . . . , q},
and for all a ∈ A:

Ωr =
3	−	r−2∑

s=1

Πs,

Ωr,r′ =
	r+	r′−2∑

s=1

Πs,

M(wr, wr′
) =

∑

p∈P(wr,wr′)

1
µ((wr′)(r−p))

if r �= r′ ,

0 if r = r′ ,

T1(wr, wr′
) = (2n− �r − �r′ + 2)µ(wr)µ̃(wr′

)

(
Ωr′(wr′

	r′
, wr

1)

µ(wr
1)

+ M(wr′
, wr)

)
,

T2(wr, wr′
) = (n− �r + 1)

(
(�− 1)(µ̃(wr)µ(wr′

) + µ(wr)µ̃(wr′
))

+(6�− 5)µ̃(wr)µ̃(wr′
)
)

,

T3(wr, wr′
) = (n− �r + 1)µ(wr)µ(wr′

)

(
Ωr,r′(wr

	r
, wr′

1)
µ(wr′

1)
+

Ωr,r′(wr′
	r′

, wr
1)

µ(wr
1)

)

+
(n− �r + 1)(6�− 3�r − 3�r′ + 2)

µmin
µ̃(wr)µ̃(wr′

) (6.6.2)

+
(n− �r + 1)(�− 2)

µmin

(
µ(wr)µ̃(wr′

) + µ(wr′
)µ̃(wr)

)
+(n− �r + 1)µ(wr)µ(wr′

)
(
M(wr, wr′

) + M(wr′
, wr)

)
,

γ1(�r, �, a) =
∑

x,y∈A
µ(x)max

b∈A

∣∣∣∣∣∣ 1
µ(b)

∑
(t,t′) �=(1,1)

α2	−	r
t α2	−	r

t′

α	
Qt(x, b)Qt′(a, y)

−
|A|∑
t=2

α4	−2
t

α	
Qt(x, y)

∣∣∣∣∣∣ ,

Version June 23, 2004

6.6. Occurrences and counts of multiple patterns 299

γ2(�r, �) =
∑

x,y∈A
µ(x) max

a,b∈A

 1
µ(b)

∑
(t,t′) �=(1,1)

∣∣∣∣∣α2	−	r
t α2	−	r

t′

α	
Qt(x, b)Qt′(a, y)

∣∣∣∣∣
+

|A|∑
t=2

∣∣∣∣∣α5	−3
t

α	
Qt(x, y)

∣∣∣∣∣
 .

Here we choose as index set I = {1, 2, . . . , q(n + 1)−
∑q

s=1 �s}; it can be
written as the disjoint union I =

⋃q
r=1 Ir with

Ir =

{
(r − 1)(n + 1)−

r−1∑
s=1

�s + 1, . . . , r(n + 1)−
r∑

s=1

�s

}
. (6.6.3)

We define [i] by

[i] := i− (r − 1)(n + 1) +
r−1∑
s=1

�s with r = r(i) such that i ∈ Ir . (6.6.4)

Joint distribution of declumped counts To apply Theorem 6.8.2, the
Bernoulli process Ỹ = (Ỹi)i∈I and the Poisson process Z = (Zi)i∈I are given
by

Ỹi = Ỹ[i](wr),
Zi ∼ Po(µ̃(wr)), (6.6.5)

where r is such that i ∈ Ir. For i ∈ I, we choose the neighborhood Bi := {j ∈
I : |[j]− [i]| ≤ 3�− 3}.

Then the following results can be proven. Recall the notation (6.6.2), (6.6.5),
and (6.6.1).

Theorem 6.6.2. Under assumption (A1) we have

dTV

(
L(Ỹ),L(Z)

)
≤ (n− �min + 1)(6�− 5)

(
q∑

r=1

µ̃(wr)

)2

+
∑

1≤r,r′≤q

T1(wr , wr′
)

+|α|	
q∑

r=1

γ1(�r, �, w
r
	r

)(n− �r + 1)µ̃(wr) .

Corollary 6.6.3. Let (Zr)r=1,...,m be independent Poisson variables with
E(Zr) = (n − �r + 1)µ̃(wr). With the previous notation and under assump-
tion (A1), we have

Version June 23, 2004

300 Statistics on Words with Applications to Biological Sequences

dTV

(
L
(
(Ñ(wr))r=1,...,q

)
,L
(
(Zr)r=1,...,q

))
≤ (n− �min + 1)(6�− 5)

(
q∑

r=1

µ̃(wr)

)2

+
∑

1≤r,r′≤q

T1(wr , wr′
)

+|α|	
q∑

r=1

γ1(�r, �, w
r
	r

)(n− �r + 1)µ̃(wr) +
q∑

r=1

(�r − 1)
(
µ(wr)− µ̃(wr)

)
.

The proof is a direct application of Theorem 6.8.2, similar as in Section 6.4.

Distribution of multiple word counts In a similar way a compound Pois-
son approximation for the numbers of occurrences can be obtained. Choose as
index set

I =

{
1, 2, . . . , q(n + 1)−

q∑
s=1

�s

}
× {1, 2, . . .}.

To apply Theorem 6.8.2, the Bernoulli process Ỹ = (Ỹi,k)(i,k)∈I and the Poisson
process Z = (Zi,k)(i,k)∈I are now defined as

Ỹi,k = Ỹ[i],k(wr),
Zi,k ∼ Po(µ̃k(wr)),

where r = r(i) is such that i ∈ Ir; Ir and [i] are given by (6.6.3) and (6.6.4).
For (i, k) ∈ I, the neighborhood is still Bi,k := {(j, k′) ∈ I : −(k′ + 3)(�− 1) ≤
[j]− [i] ≤ (k + 3)(�− 1)}.
We make the following weak assumption on the overlap structure.

(A2) ∀r �= r′ , wr is not a substring of any composed word in C2(wr′
).

Theorem 6.6.4. Under assumptions (A1), (A2) and with the notation (6.6.2),
we have

dTV

(
L(Ỹ),L(Z)

)
≤

∑
1≤r,r′≤q

T2(wr , wr′
) +

∑
1≤r,r′≤q

T3(wr , wr′
)

+|α|	
q∑

r=1

γ2(�r, �)(n− �r + 1)µ̃(wr) .

The following corollary is easily obtained.

Corollary 6.6.5. Let (Zk)k≥1 be independent Poisson variables with expec-
tation E(Zk) =

∑q
r=1(n− �r + 1)µ̃k(wr); CP denotes the (compound Poisson)

distribution of
∑

k≥1 kZk. With the notation (6.6.2) and under assumptions

Version June 23, 2004

6.6. Occurrences and counts of multiple patterns 301

(A1), (A2), we have

dTV

(
L
(

q∑
r=1

N(wr)

)
, CP

)
≤

∑
1≤r,r′≤q

T2(wr , wr′
) +

∑
1≤r,r′≤q

T3(wr , wr′
)

+|α|	
q∑

r=1

γ2(�r, �)(n− �r + 1)µ̃(wr)

+2
q∑

r=1

(�r − 1)
(
µ̃(wr)− µ(wr)

)
.

Again, empirically the compound Poisson approximation may perform better
than the bound suggests, in the case of not so rare words.

Expected count of mixed clumps For the family w = (w1, . . . , wq) of
words it is also interesting to consider the number of mixed clumps of occur-
rences. Let

Y c
i (w) =

q∑
r=1

Yi(wr)
i−1∏

j=i−	r+1

{
1−

q∑
r′=1

Yj(wr′
)

}
,

that is, Y c
i (w) = 1 if there is an occurrence of a word from the family w at i, and

if there is no previous occurrence of any word in w that overlaps position i. Thus
the mixed clumps can be composed of any words from w, whereas for Ỹi the
clumps are composed of the same word. Note that, for q = 1, Y c

i (w) = Ỹi(w1).
Let

N c(w) =
n−	min+1∑

i=1

Y c
i (w).

be the number of mixed clumps in the sequence. To calculate E(N c(w)), intro-
duce the quantities

er,s =
∑

p∈P(wr,ws)

µ
(
ws

(s−	r+p+1)

)
µ(wr

	r
)

,

where the summands are the probabilities of observing the last (�s − �r + p)
letters of ws successively given that the last letter of wr has just occured. It
can be shown that

E(N c) = (n− � + 1)
q∑

r=1

yr, (6.6.6)

where (y1, . . . , yq) is the solution of the q × q linear system of equations
q∑

r=1

yrer,s = µ(ws), s = 1, . . . , q.

Version June 23, 2004

302 Statistics on Words with Applications to Biological Sequences

6.6.3. Competing renewal counts

Related results to the above for renewal counts are available. We consider non-
overlapping occurrences in competition with each other. For example, in the
sequence cgtatattaaaaatattaga, the set of words tat, tta and aa has renewal
occurrences of tat at position 3 and 14, of tta at position 7, and of aa at
positions 10 and 12. The occurrences of tat at position 5, of tta at position
16, and of aa at positions 9 and 11 are not counted because they overlap with
some already counted words.

Let

Ic
i (w

r) = 1I{a competing renewal of wr starts at position i in X1 · · ·Xn},

and let

Rc
n(wr) =

n−	r+1∑
i=1

Ic
i (w

r)

be the number of competing renewals of wr in the sequence X1X2 · · ·Xn.
For the mean µc

R(wr) = E(Rc
n(wr)), some more notation is needed. For a

matrix A denote its transposed matrix by AT , and, if A is a square matrix,
Diag(A) represents the vector of the diagonal elements of A. Define the prob-
abilities of ending a word for 1 ≤ j ≤ �r − 1 as

Pr(j) = P(collect final j letters of wr| start with correct �r − j initial
letters of wr)

=
µ(wr)

µ((wr)(r−j))
.

Then, in analogy to (6.2.2), the correlation polynomials are defined as

Qr,r′(z) = 1 +
∑

p∈P(wr,wr′)

zpPr′(p).

Define the q × q matrix

∆(z) = (Qr,r′(z))r,r′=1,...,q

and

Λ(z) = (∆−1)(z)T

Λ = Λ(1).

Moreover put Kr = µ(wr
1)Pr(�r − 1) and define the vector

K = (K1, . . . , Kq)T .

Then the means µc
R(wr), r = 1, . . . , q, are given by

(µc
R(w1), . . . , µc

R(wq))T = ΛK.

Version June 23, 2004

6.6. Occurrences and counts of multiple patterns 303

Gaussian approximation for the joint distribution of competing re-
newal counts The main problem in the multivariate normal approximation
is to specify the covariance structure. To state the result, quite a bit of notation
is needed. Define

K̃r(z) = z	r−1Pr(�r − 1)

and the vector
K̃(z) = (K̃1(z), . . . , K̃q(z))T .

Denote by
Diag(K̃(z))

the q × q diagonal matrix with the components of K̃(z) as diagonal elements.
Put

K̃ = K̃(1)

H(z) =
d

dz
Λ(z)

H = H(1).

Define the vector
L = (�1K1, . . . , �qKq),

and the matrix

Z̃ = Z[ψ],

where Z is defined in (6.5.2), and for a matrix A the matrix A[ψ] is the q × q
matrix whose (r, r′) entry is the element of A at the row corresponding to the
last letter wr

	r
of the word wr, and at the columns corresponding to the first

letter wr′
1 of wr′

. Define the variance-covariance matrix

C =
1
2
(
ΛK(ΛK − 2HK − 2ΛL)T + (ΛK − 2HK − 2ΛL)(ΛK)T

)
+Diag(ΛK)Z̃Diag(K̃)ΛT + ΛDiag(K̃)Z̃T Diag(ΛK) + Diag(ΛK).

Now we have all the ingredients to state the normal approximation.

Theorem 6.6.6. Under Assumption (A1) we have(
Rc

n(wr)− nµc
R(wr)√

n

)
r=1,...,q

D−→ N (0, C).

In the case of a single pattern, this theorem reduces to Theorem 6.5.1.

Version June 23, 2004

304 Statistics on Words with Applications to Biological Sequences

Poisson approximation for the renewal count distribution For a Pois-
son approximation, the problem can be reduced to declumped counts, as in
the case of a single word. For a Poisson process approximation (and, follow-
ing from that, a Poisson approximation for the counts), we want to assess
P(Ic

i (w
r) �= Ỹi(wr)). First consider P(Ic

i (w
r) = 1, Ỹi(wr) = 0). Note that,

from (6.5.3), for i > �r, to have Ic
i (w

r) = 1, Ỹi(wr) = 0, there must be an oc-
currence of wr at position i, and this occurrence cannot be the start of a clump
of wr , so that there must be an overlapping occurrence of wr at some position
j = i − �r + 1, . . . , i − 1. Moreover, this occurrence cannot be a competing
renewal, so there must be another word wr′

overlapping this occurrence. Hence
we may bound

P(Ic
i (w

r) = 1, Ỹi(wr) = 0)

≤ µ2(wr)
∑

p∈P(wr)

1
µ((wr)(r−p))

q∑
r′=1

µ(wr′
)M(wr′

, wr),

with M given in (6.6.2). For i ≤ �r the above bound is still valid (the probability
is even smaller since there is not always enough space for these clumps to occur).
Secondly, consider P(Ic

i (w
r) = 0, Ỹi(wr) = 1). For Ic

i (w
r) = 0, Ỹi(wr) = 1

to occur, there must be an occurrence of wr at position i, overlapped by an
occurrence of a different word wr′

, so that we may bound

P(Ic
i (w

r) = 0, Ỹi(wr) = 1) ≤ µ(wr)
q∑

r′=1

µ(wr′
)M(wr′

, wr).

Again, for i ≤ �r the above bound remains valid. Thus we have

P(Ic(wr) �= Ỹ (wr)) ≤ (n− �r + 1)µ(wr)
q∑

r′=1

µ(wr′
)M(wr′

, wr)1 + µ(wr)
∑

p∈P(wr)

1
µ((wr)(r−p))

 .

Hence

P(Ic �= Ỹ) ≤
q∑

r=1

(n− �r + 1)µ(wr)
q∑

r′=1

µ(wr′
)M(wr′

, wr)1 + µ(wr)
∑

p∈P(wr)

1
µ((wr)(r−p))

 .

Thus we obtain as a corollary of Theorem 6.6.2

Version June 23, 2004

6.6. Occurrences and counts of multiple patterns 305

Corollary 6.6.7. Under assumption (A1) and with the notation (6.6.2) and
(6.6.5), we have

dTV (L(Ic),L(Z)) ≤ (n− �min + 1)(6�− 5)

(
q∑

r=1

µ̃(wr)

)2

+
∑

1≤r,r′≤q

T1(wr , wr′
)

+ |α|	
q∑

r=1

γ1(�r, �, w
r
	r

)(n− �r + 1)µ̃(wr)

+
q∑

r=1

(n− �r + 1)µ(wr)
q∑

r′=1

µ(wr′
)M(wr′

, wr)1 + µ(wr)
∑

p∈P(wr)

1
µ((wr)(r−p))

 .

Note that the order of the approximation is the same as in Theorem 6.6.2; the
additional error terms are comparable to T1 and T2, respectively. A Poisson
approximation for the competing renewal counts follows immediately.

Poisson approximation for competing renewal counts Alternatively to
the above approach, a Poisson approximation similar to Theorem 6.5.2 for the
number of competing renewals can be derived. Recall E(N c(w)) from (6.6.6),
and Γ from (6.5.5).

Theorem 6.6.8. We have that

dTV

(
L(

q∑
r=1

Rc
n(wr)),Po

(
q∑

r=1

E(Rc
n(wr))

))

≤
(
1− e−E(Nc(w))

)
D1 + min

{
1,

√
2

eE(N c(w))

}
D2 + D3,

where

D1 = (2�− 5)

(
E(Y c

i (w)) + Γ
q∑

r=1

µ(wr)

)
− Γ(2�min − 1)

q∑
r=1

µ(wr),

D2 = 2E(N c(w))ρ	
(
2 + 2ρ	 + ρ3	−2

)
,

D3 =
(
1 + min

{
1, (E(N c(w)))−

1
2

})(q∑
r=1

E(Rc
n(wr))−E(N c(w))

)
.

It is again interesting to consider the case that n → ∞, for a sequence of
words w(n) = (w1,n, . . . , wq,n) of maximal length �(n), where �(n) may grow with
n. It is possible to show that under the conditions

Version June 23, 2004

306 Statistics on Words with Applications to Biological Sequences

(i) limn→∞
∑q

r=1 E(Rc
n(wr,n)) = λ < ∞

(ii) limn→∞
	(n)

n = 0,

the bound in Theorem 6.5.2 is of order O
(

	(n)

n

)
, so that

∑q
r=1 Rc

n(wr,n) con-
verges in distribution to a Poisson variable with mean λ.

6.7. Some applications to DNA sequences

6.7.1. Detecting exceptional words in DNA sequences

We call exceptional word a word w that appears in an observed sequence with a
significantly high or low frequency. This significance is measured under a given
probabilistic model by the p-value P(N(w) ≥ Nobs(w)) using the distribution of
the count N(w). Depending on the sequence length and on the expected count
of the word it is often not realistic to use the exact distribution of the count
since it is time consuming to calculate In this section, we will first give some ele-
ments of comparison between the p-values obtained using the exact distribution
(Section 6.4.1) and the ones obtained using the Gaussian approximation (Sec-
tion 6.4.3) or the compound Poisson approximation (Section 6.4.5) or using the
large deviation techniques (Section 6.4.6). For convenience, we will manipulate
scores from R of the form φ−1(p−value) rather than the p-values, where φ is the
cumulative distribution function of the standard Gaussian distribution (probit
normalization). Exceptionally frequent words would then have high positive
scores whereas exceptionally rare words would have high negative scores.

Quality of the approximate p-values For each word of length 3, 6 and 9 of
the complete genome of the Lambda phage (� = 48 502), we can compare the ex-
act scores under the Bernoulli model M0 with the approximate ones using either
the Gaussian approximation or the compound Poisson distribution (the parame-
ters are assumed to be known). The results are presented on Figure 6.1 together
with the approximate scores obtained with the large deviation approach: the
x-axis of each plot is for the exact scores of 3-words (first row), 6-words (second
row) and 9-words (last row). The y-axis is for the scores approximated with
the Gaussian approximation (first column), the compound Poisson distribution
(second column) and the large deviation approach (last column). Due to nu-
merical errors the exact score of 5 words of length 3 have not been calculated
successfully. We observe that the accuracy of the Gaussian approximation de-
creases as the length of the words increases (rare words). The compound Poisson
approximation is surprisingly satisfactory even for short (frequent) words. This
agrees with the evolution of the total variation distance between the exact dis-
tribution of the count and both approximate distributions; when the expected
count of the word is close to 100 or greater then the accuracy of the Gaussian
approximation is very good. The large deviation approach seems also to provide
a good approximation for the exceptional words. However, it cannot manage
with words having an estimated expected count too close to the observed one.

Version June 23, 2004

6.7. Some applications to DNA sequences 307

� = 3

� = 6

� = 9

G CP LD

Figure 6.1. Normalized p-values of the counts of all the words of length
3, 6 and 9 in the genome of the Lambda phage (� = 48 502). Comparison
of the Gaussian, the compound Poisson and the large deviation approxi-
mations (y-axis) with the exact scores (x-axis).

The p-value is then set to 1/2 in this case and the flatness of the curves is an
artifact. An important feature is that every method to calculate or to approxi-
mate the p-values seems to classify the words in the same way; the score ranks
are almost the same. Moreover, in this example, the three methods agree on
the fact that there are no exceptionally rare words of length 9.

Influence of the model Whatever the word count distribution used to cal-
culate the normalized p-value, the choice of the model, in particular the order
m of the Markov chain, is important to interpret the exceptionality of a given
word. Using the model Mm means taking into account the 1- to (m + 1)-letter
word composition of the sequence. Therefore, the greater the order m of the
model, the closer the random sequences will be to the observed sequence, and
fewer unexpected words will be found. As an example, Figure 6.2 shows the

Version June 23, 2004

308 Statistics on Words with Applications to Biological Sequences

discrepancy of the scores for the 8-letter words in the complete genome of E.
coli (� = 4 638 858) under models M0 to M6. For each model, the box contains
half of the 65536 scores, the horizontal line is drawn through the box at the
median of the data, the upper and lower ends of the box are at upper and lower
quartiles (25% and 75%) and vertical lines go up and down from the box to the
extremes of the data, except for the outliers, which are plotted by themselves.
Here the outliers are the scores that are separated from the box by at least 3
times the inter-quartile range (height of the box). In models M7 and higher,
all the 8-letter words have a null score since their counts are included in these
models: they are expected as they occur. M6 is then the maximal model for
words of length 8.

M0 M1 M2 M3 M4 M5 M6 M7

−
20

0
20

40
60

80

Figure 6.2. Boxplots of the 8-letter word scores in the complete genome
of E. coli under models M0 to M7.

To analyze the frequency of a �-letter word, the maximal model is of order
m = � − 2; in this model the exceptionality of a word of length � cannot be
explained by an unexpected sub-word, since all the sub-word frequencies are
included into the maximal model. On the contrary, in small models such con-
tamination by exceptional sub-words may occur. As an illustration let us con-
sider the following example: Figure 6.3 compares the scores (using the Gaussian
approximation) of all the 256 4-letter words in the complete Lamdba genome
under the models M1 (x-axis) and M2 (y-axis). The most over-represented 4-
word under M1 is ccgg, and it remains significantly over-represented under M2
while taking into account the counts of ccg and cgg. However, many words
lose their exceptionality when the order of the model increases. For example,
gctg loses its exceptionality as soon as one takes into account the fact that
ctg occurs 1169 times and is thus a significantly frequent 3-letter word (see

Version June 23, 2004

6.7. Some applications to DNA sequences 309

Figure 6.3. Scores of the 4-letter words in the Lambda genome under
M1 (x-axis) and M2 (y-axis).

Table 6.2). The model M2 says that the 406 occurrences of gctg are expected
according to the 3-letter word composition of the sequence: gctg is expected 394
times under M2 (see Table 6.1). Its exceptionality under M1 (expected only 255
times) is an artifact due to the important over-representation of its sub-word
ctg. The number of times that we see gctg is not surprising given the number
of occurrences of ctg. This is what we call a contamination. Another such
example is ctag: it is exceptionally rare under M1 but not under M2. On the
other hand, some exceptionality may be hidden in small models and be revealed
in higher models, leading to very interesting interpretations. As an example,
ccat is not exceptional under M1 and becomes one of the most over-represented
word under M2. If we look at its two sub-words of length 3, cca and cat are
slightly under-represented (see Table 6.2). Given their low frequency, ccat is
expected only 191 times under M2, which is is significantly less than the 218
observed occurrences. So, cca and cat are slightly avoided in the sequence but
they are preferentially overlapping in the sequence. This is more pronounced
for tagt which is composed of the most avoided 3-word tag and is declared
under-represented under M1 (contamination in fact), but it seems that there is
an important constraint for these occurrences of tag to be followed by a t.

Version June 23, 2004

310 Statistics on Words with Applications to Biological Sequences

Model M1 Model M2

w N(w) bN1(w) σ1(w) score rank bN2(w) σ2(w) score rank

ctag 14 101.8 9.5 -9.21 2 28.7 4.7 -3.10 27
tagt 71 104.0 9.6 -3.42 57 47.3 5.8 4.07 246
ccat 218 191.1 12.6 2.12 180 168.6 10.0 4.94 253
gctg 406 255.2 14.3 10.52 254 394.6 11.9 0.96 170
ccgg 328 169.7 12.0 13.16 256 273.5 11.6 4.68 252

Table 6.1. Statistics of some 4-letter words in the Lambda genome under
the models M1 and M2. The rank of the scores are obtained while sorting
the 256 scores by increasing order.

w N(w) N̂1(w) σ1(w) score rank
tag 217 481.2 17.6 -15.04 1
cat 803 869.4 21.6 -3.07 18
cca 675 706.5 19.9 -1.58 25
agt 595 590.2 19.1 0.25 34
gct 856 806.6 20.7 2.39 46
cgg 963 772.1 21.0 9.10 60
ccg 884 684.3 19.7 10.15 61
ctg 1169 802.4 20.8 17.63 63

Table 6.2. Statistics of some 3-letter words in the Lambda genome under
model M1. The rank of the scores are obtained while sorting the 64 scores
by increasing order.

Utility of models Mm 3 Coding DNA sequences are composed of successive
trinucleotides called codons. Each base in the sequence is associated to a phase
k in {1, 2, 3} depending on its position in the associated codon. In the general
model Mm 3, the transition probabilities of a letter depend on its phase and
word occurrences can be analyzed separately for each phase or for all phases
together (see p. 277); note that N(w) =

∑
k N(w, k). Recall that the phase of

an occurrence is by convention in this chapter the phase of its last letter. It is
well-known to biologists that there exists a bias in the codon usage: codons that
code for the same amino acid are not used uniformly. The following analysis
illustrates the importance of taking the 3-letter word composition on each phase
into account, in particular the codon composition (3-words on phase 3). Let us
consider 36 genes of E. coli (� = 44 856) and analyze the trinucleotide frequency.
Figure 6.4 shows that the majority of the trinucleotides have the same behavior
under M1 or M1 3; however, some trinucleotides are less exceptional when one
takes the phase into account. If we now calculate the scores of the trinucleotides
on phase 1, on phase 2 and on phase 3 under M1 3, we see that the main
exceptional trinucleotides are the ones on phase 3: the codons. Figure 6.5
presents the discrepancy of theses scores: codons are much more exceptional

Version June 23, 2004

6.7. Some applications to DNA sequences 311

than the trinucleotides on phase 1 and 2.

aag

aat

acc

gag
ggg

ggt

cag

ctg

tgg

tgt

−12 −9 −6 −3 0 3 6 9 12 15 18 21 24

−12

−9

−6

−3

0

3

6

9

12

15

18

21

24

Figure 6.4. Scores of the 3-letter words in 36 genes of E. coli under the
models M1 (x-axis) and M1 3 (y-axis).

−1
0

0
10

20

phase 1 phase 2 phase 3 all

Figure 6.5. Boxplots of the scores of the 3-letter words for each phase
and for all phases in 36 genes of E. coli under the model M1 3.

Figure 6.6 compares the scores of the 4-words on phase 1 under M1 3 (the
codon composition is not taken into account) and M2 3 (the codon composition
is taken into account). Note that a 4-word on phase 1 starts with a codon. The
3 most over-represented codons are ctg, cag and tgg. This over-representation
is responsible of the exceptionality of ctgg, tggt, tggc and cagc. The over-
representation of cagg seems to be a strong constraint since it is still exceptional
given the high frequency of cag. When analyzing coding sequences, to be sure

Version June 23, 2004

312 Statistics on Words with Applications to Biological Sequences

to find exceptional words that are not contaminated by the codon usage, the
minimal model to use is the model M2 3.

gagg

cagg

cagc

ctgg

cttg

cttt

tatc

tggc

tggt

ttgg

ttcc

−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18
−10

−8

−6

−4

−2

0

2

4

6

8

10

12

14

16

18

Figure 6.6. Scores of the 4-letter words on phase 1 in 36 genes of E. coli
under the models M1 3 (x-axis) and M2 3 (y-axis).

6.7.2. Sequencing by hybridization

As a slightly more involved example of how statistics and probability on words
are applied in DNA sequence analysis, we describe a problem related to sequenc-
ing by hybridization. Sequencing by hybridization is an approach to determine
a DNA sequence from the unordered list of all �-tuples contained in this se-
quence; typical numbers for � are � = 8, 10, 12. It is based on the fact that DNA
nucleotides bind or hybridize with each other: a and t hybridize, and c and
g hybridize. DNA strands have a polarity (5’, 3’), and hybridizing sequences
must be of opposite polarity. To avoid introducing notation to show polarity,
we present complementary strands written in reverse direction. For example,
the sequence tgtgtgagtg hybridizes with acacactcac. In a sequencing chip, all
4	 possible oligonucleotides (“probes”) of length � are attached to the surface of
a substrate, each fragment at a distinct location.

To use an SBH chip, the single-stranded target DNA is amplified, labeled
by a fluorescent, and exposed to the sequencing chip. The probes on the chip
will hybridize to a copy of the single-stranded target DNA if the substring
complementary to the probe exists in the target. These probes are then detected

Version June 23, 2004

6.7. Some applications to DNA sequences 313

with a spectroscopic detector. For example, if � = 4, the sequence tgtgtgagtg
will hybridize to the probes acac, actc, caca, cact, ctca and tcac.

As chips can be washed and used again, and due to automatization, this
method is not only fast but also inexpensive. There are still technical difficulties
in producing an error-free chip; moreover the SBH image may be difficult to read.
We remark that the microarray industry grew out of attempts to make SBH
technology practical. However, even if these sources of errors are eliminated,
a major drawback of the SBH procedure is that more than one sequence may
produce the same SBH data. For example, if � = 4, the sequence acactcacac
will hybridize to the same probes as the sequence acacactcac.

To control this error resulting from non-unique recoverability, we are inter-
ested in an estimate for the probability that a sequence is uniquely recoverable.
This probability will depend on the probe length �, on the length n of the tar-
get sequence, and on the frequencies of the different nucleotides, a, c, g and t,
in the sequence. Furthermore we need to bound the error made in estimating
the probability of unique recoverability in order to make assertions about the
reliability of the chip.

As a simplification, we assume that we not only know the set of all �-tuples
in the sequence but also their multiplicity (but not the order in which they
occur). This multiset is called the �-spectrum of the sequence. In the sequel,
unique recoverability is understood to mean unique recoverability of a sequence
from its �-spectrum.

Unique recoverability from the �-spectrum can be characterized using the de
Bruijn graph whose vertices are the (�−1)-tuples in the sequence. Two vertices
v and w are joined by a directed edge from v to w if the �-spectrum contains
an �-tuple for which the first (� − 1) nucleotides coincide with v and the last
(� − 1) nucleotides coincide with w. A sequence is uniquely recoverable from
its �-spectrum if and only if there is a unique (Eulerian) path connecting all
the vertices. It was shown that there are exactly three structures that prevent
unique recoverability:
1. Rotation. The sequence starts and ends with the same (� − 1)-tuple. In
this case, the de Bruijn graph is a cycle, and any vertex could be chosen as the
starting point.
2. Transposition with a three-way repeat. If an (�− 1)-tuple occurs three
times in the sequence, then the de Bruijn graph has two loops at this vertex,
and the order in which these loops are passed is not fixed.
3. Transposition with two interleaved pairs of repeats. There are two
“interleaved” pairs of (� − 1)-tuple repeats, i.e. in the de Bruijn graph there
are two vertices x and y connected by a path of the form . . . c . . . y . . . x . . . y . . .,
where we described a path connecting all the vertices by listing the vertices in
the order they are used in the path. This implies that there are two ways of
going from x to y in the graph.

Example 6.7.1. The sequence acacactcac possesses as 4-spectrum the mul-
tiset {acac, acac, caca, cact, actc, ctca, tcac}. The competing sequence
acactcacac has the same 4-spectrum. The de Bruijn graph for the sequence

Version June 23, 2004

314 Statistics on Words with Applications to Biological Sequences

acacactcac has as vertices aca, cac, act, ctc and tca. There are two directed
edges from aca to cac, and one directed edge each from cac to aca, from cac
to act, from act to ctc, from ctc to tca, and from tca to cac. The com-
peting sequence acactcacac has the same de Bruijn graph. For the sequence
acacactcac, a path connecting all vertices is

aca, cac, aca, (cac, act, ctc, tca), cac.

The alternate path

aca, (cac, act, ctc, tca), cac, aca, cac

also connecting all the vertices, corresponds to the sequence, acactcacac, with
the same 4-spectrum.

Thus unique recoverability can be described in terms of possibly overlapping
repeats of (�− 1)-tuples within a single sequence. We use the model M0. For a
sequence to be uniquely recoverable, the event of an (�− 1)-tuple repeat should
be rare. This implies that we consider the occurrence of (�− 1)-tuples under a
Poisson regime. (Note that we are interested in the configuration in which the
repeats occur; hence we need a Poisson process approximation for the process
of repeats rather than a Poisson approximation for the number of repeats.) If
repeats are rare, then three-way repeats are negligible, and so is the probability
that a sequence starts and ends with the same (� − 1)-tuple. After bounding
these probabilities, we thus restrict our attention to interleaved pairs of repeats.
Under the Poisson regime, if there are k pairs of repeats, then the occurrences of
these repeats are discrete uniform. Additional randomization makes the position
of the repeats continuously uniform, so that all orderings of these pairs will be
approximately equally likely. This allows the application of a combinatorial
argument using Catalan numbers to obtain that the number of interleaved pairs
of repeats, if k repeats are present, is approximately 2k/(k + 1)!. If λ is the
expected number of repeats of �-tuples in a single sequence, we hence get, for
the probability P	 that X1X2 . . .Xn is uniquely recoverable from its �-spectrum,

P	 ≈ e−λ
∑
k≥0

(2λ)k

k!(k + 1)!
.

The Chen-Stein method for Poisson approximation provides explicit bounds for
the error terms in this approximation, as follows.

In the sequence X1 . . . Xn of independent identically distributed letters, let
p =

∑
a∈A µ2(a) be the probability that two random letters match. We write

t for � − 1, as we are interested in (� − 1)-repeats. Again we have to declump:
Define Yi,i = 0 for all i, and

Yi,j =
{

1I{X1 · · ·Xt = Xj+1 · · ·Xj+t} if i = 0
(1− 1I{Xi = Xj})1I{Xi+1 · · ·Xi+t = Xj+1 · · ·Xj+t} otherwise.

Thus Yi,j = 1 if and only if there is a leftmost repeat starting after i and j.
Put I = {(i, j), 1 ≤ i, j ≤ n− � + 1}. A careful analysis yields that the process

Version June 23, 2004

6.8. Some probabilistic and statistical tools 315

Y = (Yα)α∈I is sufficient to decide whether a sequence is uniquely recoverable
from its �-spectrum (although Y contains strictly less information than the
process of indicators of occurrences).

For a Poisson process approximation, we first identify the expected number
λ of leftmost repeats. If α = (i, j) does not have self-overlap, that is, if j− i > t,
then

E(Yα) =
{

pt if i = 0
(1− p)pt otherwise.

Hence the expected number λ∗ of repeats without self-overlap is

λ∗ =
(

n− 2t

2

)
(1− p)pt + (n− 2t)pt.

If α does have self-overlap, then, in order to have a leftmost repeat at α, for
indices in the overlapping set, two matches are required, and for indices in the
non-overlapping set, one match is required. Let d = j − i; then E(Yα) depends
on the decomposition of t + d into a quotient q of d and a remainder r (such
that t + d = qd + r): if pq is the probability that q random letters match, then

E(Yα) =
{

pr
q+1p

d−r
q if i = 0

(pq − pq+1)rpd−r
q otherwise.

If λ∗ is bounded away from 0 and infinity, which corresponds to having t =
2log1/p(n) + c for some constant c, then it can be seen that

λ ≈ n2

2
(1− p)pt.

Under the regime that λ is bounded away from 0 and infinity, here is a
general result. Let µmax = maxa µ(a) be the probability of the most likely
letter.

Theorem 6.7.2. Let Z ≡ (Zα)α∈I be a process with independent Poisson
distributed coordinates Yα, with E(Zα) = E(Yα), α ∈ I. Then

dTV(Y , Z) ≤ b(n, t),

where the error term b(n, t) is such that

b(n, t) ∼
{

16λ2 t
n in the uniform case

nµt
max in the nonuniform case.

6.8. Some probabilistic and statistical tools

6.8.1. Stein’s method for normal approximation

Stein’s method for the normal approximation makes it possible to obtain mul-
tivariate normal approximations with a bound on the error in the distance of
suprema over convex sets, as follows.

Version June 23, 2004

316 Statistics on Words with Applications to Biological Sequences

Let H denote the class of convex sets in Rd. Let Yj , j = 1, . . . , n be random
vectors taking values in Rd, and let W =

∑n
j=1 Yj be the vector of sums.

Assume there is a constant B such that |Yj | :=
∑d

i=1 |Y(j,i)| ≤ B. Let Z ∼
N (0, Id) have the d−dimensional standard multivariate normal distribution.

Theorem 6.8.1. Let Si and Ni be subsets of {1, . . . , n}, such that i ∈ Si ⊂
Ni, i = 1, . . . , n. Assume that there exist constants D1 ≤ D2 such that

max{Card(Si), i = 1, . . . , n} ≤ D1

and
max{Card(Ni), i = 1, . . . , n} ≤ D2.

Then, for d = 1 there exists a universal constant c such that

sup
x∈R

|P(W ≤ x) −P(Z ≤ x)|

≤ c{2D2B + n(2 +
√

E(W 2))D1D2B
3 + χ1 + χ2 + χ3}.

For d ≥ 1 there exists a constant c depending only on the dimension d such that

sup
A∈H

|P(W ∈ A)−P(Z ∈ A)| ≤ c{2
√

dD2B + 2
√

dnD1D2B
3(| log B|+ log n)

+χ1 + (| log B|+ log n)(χ2 + χ3)},

where

χ1 =
n∑

j=1

E

∣∣∣∣∣∣E(Yj |
∑
k �∈Sj

Yk)

∣∣∣∣∣∣
χ2 =

n∑
j=1

E

∣∣∣∣∣∣E(Yj(
∑
k∈Sj

Yk)T)−E(Yj(
∑
k∈Sj

Yk)T |
∑
l �∈Nj

Yl)

∣∣∣∣∣∣
χ3 =

∣∣∣∣∣∣I −
n∑

j=1

E(Yj(
∑
k∈Sj

Yk)T)

∣∣∣∣∣∣ .
Note that there are no explicit assumptions on the mean vector and the

variance-covariance matrix; however, for a good approximation it would be de-
sirable to have the mean vector close to zero, and the variance-covariance matrix
close to the identity.

6.8.2. The Chen-Stein method for Poisson approximation

The Chen-Stein method is a powerful tool for deriving Poisson approximations
and compound Poisson approximations in terms of bounds on the total variation
distance. For any two random processes Y and Z with values in the same space

Version June 23, 2004

6.8. Some probabilistic and statistical tools 317

E, the total variation distance between their probability distributions is defined
by

dTV(L(Y),L(Z)) = sup
B⊂E,measurable

|P(Y ∈ B)−P(Z ∈ B)|

= sup
h:E→[0,1],measurable

|E(h(Y))−E(h(Z))| .

The following general bound on the distance to a Poisson distribution is avail-
able.

Theorem 6.8.2. Let I be an index set. For each α ∈ I, let Yα be a Bernoulli
random variable with pα = P(Yα = 1) > 0. Suppose that, for each α ∈ I, we
have chosen Bα ⊂ I with α ∈ Bα. Let Zα, α ∈ I, be independent Poisson
variables with mean pα. The total variation distance between the dependent
Bernoulli process Y = (Yα, α ∈ I) and the Poisson process Z = (Zα, α ∈ I)
satisfies

dTV (L(Y),L(Z)) ≤ b1 + b2 + b3,

where

b1 =
∑
α∈I

∑
β∈Bα

pαpβ (6.8.1)

b2 =
∑
α∈I

∑
β∈Bα,β �=α

E(YαYβ) (6.8.2)

b3 =
∑
α∈I

E |E {Yα − pα|σ(Yβ , β /∈ Bα)}| . (6.8.3)

Moreover, if W =
∑

α∈I Yα and λ =
∑

α∈I pα < ∞, then

dTV(L(W), Po(λ)) ≤ 1− e−λ

λ
(b1 + b2) + min

(
1,

√
2
λe

)
b3.

Note that b3 = 0 if Yα is independent of σ(Yβ , β /∈ Bα}. We think of Bα as
a neighborhood of strong dependence of Yα.

One consequence of this theorem is that for any indicator of an event, i.e.
for any measurable functional h from E to [0, 1], there is an error bound of the
form |E(h(Y))−E(h(Z))| ≤ dTV(L(Y),L(Z)). Thus, if T (Y) is a test statistic
then, for all t ∈ R,

|P (T (Y) ≥ t)−P (T (Z) ≥ t) | ≤ b1 + b2 + b3 ,

which can be used to construct confidence intervals and to find p-values for tests
based on this statistic.

Note that this method can also be used to prove compound Poisson ap-
proximations. For multivariate compound Poisson approximations it is very
convenient. For univariate compound Poisson approximations, better bounds
are at hand, as will be illustrated in the next subsection.

Version June 23, 2004

318 Statistics on Words with Applications to Biological Sequences

6.8.3. Stein’s method for direct compound Poisson approximation

A drawback of the point process approach to compound Poisson approximation
is that the bounds are not very accurate. Instead it is possible to set up a
related method for obtaining a compound Poisson approximation directly, in
the univariate case.

Denote by CP (λ, ν) the compound Poisson distribution with parameters
λ and ν, that is, the distribution of the random variable

∑
k≥1 kMk, where

(Mk)k≥1 are independent, and Mk ∼ Po(λνk), k = 1, 2,
The particular case where λ = nφ(1 − p) and νk = pk−1(1 − p) for some

φ > 0 and 0 < p < 1, is called the Polya-Aeppli distribution.
Again, let I be an index set, and let

W =
∑
α∈I

Vα,

where (Vα)α∈I are nonnegative integer-valued random variables. Similarly to
the Poisson case, for each α ∈ I decompose the index set into disjoint sets as

I = α ∪ Sα ∪Wα ∪ Uα.

Here, Sα would correspond to the set of indices with strong influence on α, Wα

would correspond to the set of indices with weak influence on α, and Uα collects
the remaining indices. Put

Sα =
∑

β∈Sα

Vα

Wα =
∑

β∈Wα

Vα

Uα =
∑

β∈Uα

Vα.

Then, for α ∈ I,

W = Vα + Sα + Wα + Uα.

Define the canonical parameters (λ, ν) of the corresponding compound Poisson
distribution by

λνk =
1
k

∑
α∈I

E{Vα1I(Vα + Sα = k)}, , k ≥ 1

λ =
∑
k≥1

kνk. (6.8.4)

Put

q
(α)
jk =

P(Vα = j, Sα = k)
mi,1

, ≥ 1, k ≥ 0,

Version June 23, 2004

6.8. Some probabilistic and statistical tools 319

and

m1,k = E(Vα)

m1 = E(W) =
∑
α∈I

m1,α.

Similarly to the Poisson case, we shall need the quantities

δ1 =
∑
α∈I

m1,α

∑
j≥1

∑
k≥1

q
(α)
jk E

∣∣∣∣P(Vα = j, Sα = k|Wα)
P(Vα = j, Sα = k)

− 1
∣∣∣∣

δ2 = 2
∑
α∈I

E {VαdTV(L(Wα|Vα, Sα);L(Wα)}

δ3 =
∑
α∈I

{E(VαUα) + E(Vα)E(Vα + Sα + Uα)} .

Then, roughly, δ3 corresponds to b1 + b2 in the Poisson case, whereas δ1 and δ2

correspond to b3 in the Poisson case.
The following result can be shown to hold.

Theorem 6.8.3. There exist constants H0 = H0(λ, ν), H1 = H1(λ, ν), inde-
pendent of W , such that, with (λ, ν) given in (6.8.4),

dTV(L(W), CP (λ, ν)) ≤ H0 min(δ1, δ2) + H1δ3,

and

H0, H1 ≤ min(1, (λν1)−1)eλ.

If in addition

kνk ≥ (k + 1)νk+1, k ≥ 1, (6.8.5)

then, with γ = λ(ν1 − 2ν2),

H0 ≤ min
{

1,
1
√

γ

(
2− 1

√
γ

)}
H1 ≤ min

{
1,

1
√

γ

(
1
4γ

+ log+(2γ)
)}

.

An important special case is the declumped situation, that is, W can be
written as

W =
∑
α∈I

∑
k≥1

k1Iαk,

where

1Iαk = 1I(α is the index of the representative of a clump of size k).

Version June 23, 2004

320 Statistics on Words with Applications to Biological Sequences

For α ∈ I, k ∈ N, let B(α, k) ⊂ I × N contain {α} × N; this set can be viewed
intuitively as the neighborhood of strong dependence of (α, k).

The canonical parameters are now

λ =
∑
α∈I

∑
k≥1

E(1Iαk)

νk = λ−1
∑
α∈I

E(1Iαk). (6.8.6)

For example, if 1Iαk = Ỹi,k, then W = N(w), and the canonical parameters
are (n − � + 1)µ̃k, k ≥ 1, and λ̃ = E(Ñ(w)), so that the approximating distri-
bution is as before, L(

∑
k≥1 kZk) with Zk’s independent Poisson variables with

parameters (n− �+1)µ̃k. Thus it is the same distribution as in Corollary 6.4.8.
Similarly as in the Poisson case, we shall need the quantities

b∗1 =
∑

(α,k)∈I×N

∑
(β,k′)∈B(α,k)

k′kE(1Iαk)E(1Iβk′)

b∗2 =
∑

(α,k)∈I×N

∑
(β,k′)∈B(α,k)\{(α,k)}

k′kE(1Iαk 1Iβk′)

b∗3 =
∑

(α,k)∈I×N

kE |E{1Iαk −E(1Iαk)|σ(1Iβk′ , (β, k′) �∈ B(α, k)}| .

The following result holds.

Theorem 6.8.4. With the parameters as in (6.8.6), we have that

dTV(L(W), CP (λ, ν)) ≤ b∗3H0 + (b∗1 + b∗2)H1.

6.8.4. Moment-generating function

Here is a short outline of moment-generating functions. The moment-generating
function M of a random variable X is defined as

ΦX(t) = E(etX).

So, if X has a discrete distribution p, we have that

ΦX(t) =
∑

x

etxp(x).

If the moment-generating function exists for all t in an open interval containing
zero, it uniquely determines the probability distribution.

In particular, under regularity conditions the moments of a random vari-
able can be obtained via the moment-generating function using differentiation.
Namely, if ΦX(t) is finite, we have

Φ′
X(t) =

d

dt
E(etX) = E(XetX).

Version June 23, 2004

6.8. Some probabilistic and statistical tools 321

Thus
Φ′

X(0) = E(X)

if both sides of the equation exist. Similarly, differentiating r times we obtain

Φ(r)
X (0) = E(Xr).

A special case is when the moment-generating function ΦX(t) is rational,
that is, when ΦX(t) can be written as

ΦX(t) =
p0 + p1t + . . . + prt

r

q0 + q1t + . . . + qsts
=
∑

d

f(d)td,

for some r, s and coefficients p1, . . . , pr, q1, . . . , qs. By normalization we may
assume q0 = 1. Then

p0 + p1t + . . . + prt
r =

∑
d

f(d)td(1 + q1t + . . . + qst
s).

Identification of the coefficients of ti on both sides yields

pi =
i∑

d=0

f(d)qi−d for i ≤ r

0 =
i∑

d=0

f(d)qi−d for i > r.

This gives a recurrence formula for the coefficients f(d); we have

f(0) = p0

f(d) = pd −
min(d,s)∑

i=1

f(d− i)qi, d ≥ 1

where pd = 0 for d > r.

6.8.5. The δ-method

In general, the δ-method, or propagation of error, is a linear approximation
(Taylor expansion) of a nonlinear function of random variables. Here we are
particularly interested in the validity of a normal approximation for functions
of random vectors.

Theorem 6.8.5. Let Xn = (Xn1, Xn2, . . . , Xnk) be a sequence of random vec-
tors satisfying

bn(Xn − µ) D−→ N (0, Σ)

Version June 23, 2004

322 Statistics on Words with Applications to Biological Sequences

with bn → ∞. The vector valued function g(x) = (g1(x), . . . , g	(x)) has real
valued gi(x) with non-zero differential

∂gi

∂gx
=
(

∂gi

∂gx1

, . . . ,
∂gi

∂gxk

)
.

Define D = (di,j) where di,j = ∂gi

∂gxj
(µ). Then

bn(g(Xn)− g(µ)) D−→ N (0,DΣDT).

6.8.6. A large deviation principle

Assume X1 · · ·Xn is an irreducible Markov chain on a finite alphabet A with
transition probabilities π(a, b), a, b ∈ A. Large deviations from the mean can
be described as follows.

Theorem 6.8.6 (Miller). Let f be a function mapping A into R. Then,
n−1

∑n
i=1 f(Xi) obeys a large deviation principle with rate function I defined

below: for every closed subset F ⊂ R and every open subset O ⊂ R,

lim sup
n→+∞

1
n

logP

(
1
n

n∑
i=1

f(Xi) ∈ F

)
≤ − inf

x∈F
I(x),

lim inf
n→+∞

1
n

logP

(
1
n

n∑
i=1

f(Xi) ∈ O

)
≥ − inf

x∈O
I(x).

The rate function I is positive, convex, uniquely equal to zero at x = E(f(X1))
and given by

I(x) = sup
θ

(θx − log λ(θ))

where λ(θ) is the largest eigenvalue of the matrix
(
eθf(b)π(a, b)

)
a,b∈A.

6.8.7. A CLT for martingales

For martingales, the following central limit theorem is available.

Theorem 6.8.7. Let (ξn,i)i=1,...,n be a triangular array of d-dimensional ran-
dom vectors such that E||ξn,i||22 < ∞, and V be a positive d × d matrix. Put
Fn,i = σ(ξn,1, . . . , ξn,i); E(ξn,i |Fn,i−1) denotes the conditional expectation vec-
tor of ξn,i and Cov(ξn,i | Fn,i−1) denotes the conditional covariance matrix of
ξn,i. If as n→∞

(i)

n∑
i=1

E(ξn,i | Fn,i−1)
P→ 0,

(ii)
n∑

i=1

Cov(ξn,i | Fn,i−1)→ V ,

Version June 23, 2004

Notes 323

(iii) ∀ε > 0,

n∑
i=1

P(|ξn,i| > ε | Fn,i−1)
P→ 0,

then
∑n

i=1 ξn,i
D→ N (0, V).

Notes

The material in this chapter can be viewed as an updated version of Reinert
et al. (2000). Recent progress on exact distributional results, as well as on
compound Poisson approximation and on multivariate normal approximation,
is included.

This chapter does not deal with the algorithmic issues; an excellent starting
point would be Waterman (1995) or Gusfield (1997). For a particular example
see also Apostolico et al. (1998), and for a recent exposition see Lonardi (2001).

Number of clumps. Equations (6.2.6) and (6.2.9) that characterize the occur-
rence of a clump, or a k-clump, of the word w at a given position with respect
to the periods of w are due to Schbath (1995a).

Word locations. The recursive formula for the exact distribution of the distance
D between two word occurrences (Theorem 6.3.1) is from Robin and Daudin
(1999). It was first proposed for independent and uniformly distributed letters
by Blom and Thorburn (1982). The moment-generating function of the distance
D, expressed as a rational function and given in Theorem 6.3.2, also comes from
Robin and Daudin (1999). Recently, Stefanov (2003) obtained another expres-
sion for the generating function that avoids the calculation of the “infinite” sum
of the Πu’s.

Similar results are derived in Robin and Daudin (2001) and Stefanov (2003)
for the probability distribution of the distance between any word in a given
set. They are not presented in Section 6.6 but are useful for instance for the
purpose of calculating the occurrence probability of a structured motif (Robin
et al. (2002)). These motifs are of particular interest since they are candidate
promotors for transcription. Indeed, a structured motif is of the form v(d1 :
d2)w, denoting a word v separated from a word w by a distance between d1 and
d2; where v and w can be approximate patterns. Efficient algorithms exist to
find such structured motifs (Marsan and Sagot (2000a)).

A related problem concerns the position T1 of the first occurrence of a word;
it is treated in Rudander (1996) and more recently in Stefanov (2003). The
moment generating function of T1 given on page 271 is taken from Robin and
Daudin (1999).

The Poisson approximation for the statistical distribution of the k-smallest
r-scan presented on page 268 is due to Dembo and Karlin (1992). This approx-
imation is very useful for the comparison between the expected distribution of
the r-scans and the one observed in the biological sequence. It has been first
applied in Karlin and Macken (1991) to the E. coli genome by approximating
the r-scan distribution given in Section 6.3.1 by a sum of r − 1 independent

Version June 23, 2004

324 Statistics on Words with Applications to Biological Sequences

exponential random variables. Robin and Daudin (2001) refined this approxi-
mation using the exact distribution of the r-scans. Related work is presented
by Robin (2002) but using a compound Poisson model for the word occurrences
rather than a Markov model for the sequence of letters. This new approach
has the advantage of taking the eventual unexpected frequency of the word of
interest into account when analyzing its location along a sequence. See Glaz
et al. (2001) for more material and applications of scan statistics.

Word count distribution. The method of obtaining the exact distribution of the
word count presented here generalizes the result that Gentleman and Mullin
(1989) obtained for the case that the sequence is composed of i.i.d. letters, where
each letter occurs with equal probability. In this case, Gentleman (1994) also
gives an algorithm for calculating the word frequency distribution. Moreover, in
the Markov case the exact distribution of the count can also be obtained by other
techniques: Kleffe and Langbecker (1990) as well as Nicodème et al. (2002) used
an automaton built on the pattern structure matrix, whereas Régnier (2000)
used a language decomposition approach to obtain the generating function of
the count (see Chapter 7).

The variance (6.4.1) of the count N(w) is inspired by Kleffe and Borodovsky
(1992).

Gaussian approximation. The asymptotic normality of the difference between
the word count and its estimator was first proposed by Lundstrom (1990) using
the δ-method. For an exposition, see Waterman (1995). The two alternative
approaches presented in this chapter, the martingale and the conditional ones,
have the advantage to provide explicit formulas for the asymptotic variance.
They are both due to Prum et al. (1995) for the first order Markov chain model,
and to Schbath (1995b) for higher order models and phased models. The con-
ditional expectation of the count is originally due to Cowan (1991).

The bound Theorem 6.4.4 on the distance to the normal distribution was
obtained by Huang (2002). This paper, and references therein, discusses also
the constant c which appears in the bound. The result in the independent case
was first presented in Reinert et al. (2000).

Poisson and compound Poisson approximations. When the sequence letters
are independent, Poisson and compound Poisson approximations for N(w) have
been widely studied in the literature (Chryssaphinou and Papastavridis (1988a),
Chryssaphinou and Papastavridis (1988b), Arratia et al. (1990), Godbole (1991),
Hirano and Aki (1993), Godbole and Schaffner (1993), Fu (1993)). Markovian
models under different conditions have then been considered (Rajarshi (1974),
Godbole (1991), Godbole and Schaffner (1993), Hirano and Aki (1993), Geske
et al. (1995), Schbath (1995a), Erhardsson (1997)), but few works concern gen-
eral periodic words and provide explicit parameters of the limiting distribution.
Our two basic references in this chapter are Arratia et al. (1990) and Schbath
(1995a).

Version June 23, 2004

Notes 325

For the compound Poisson and Poisson approximation error term due to
the estimation of the transition probabilities, refer to Schbath (1995b). Reinert
and Schbath (1998) showed that the end effects due to the finite sequence are
negligible for the count (Equation (6.4.11)) and the count of clumps.

The special case of runs of 1 in a random sequence of letters in the bi-
nary alphabet {0, 1} is extensively studied: Erdős and Rényi (1970) gave the
asymptotic behavior of the longest run in a sequence of Bernoulli trials, and
of the length of the longest segment that contains a proportion of 1 greater
than a predescribed level α. Their result was refined by Guibas and Odlyzko
(1980), Deheuvels et al. (1986), and Gordon et al. (1986). The compound Pois-
son approximation for counts of runs in the case where the sequence letters are
independent was considered by Eichelsbacher and Roos (1999), also employing
the Chen-Stein method using results by Barbour and Utev (1998) (the limiting
distribution is the same as the one given in (6.4.15), reduced to this special case).
Barbour and Xia (1999) obtained a more accurate limiting approximation for
the case of runs of length 2; this approximation is based on a perturbation of a
Poisson distribution.

Direct compound Poisson approximation. Theorem 6.4.9, which presents a direct
compound Poisson approximation of the count, is due to Barbour et al. (2001).
They give a more general form of the result, and also a bound for the Kolmogorov
distance. Using the approach by Erhardsson (1999), they also derive a slightly
less explicit but asymptotically better bound in terms of stopping times for a
Markov chain.

Indeed, in Erhardsson (1997), Erhardsson (1999) and Erhardsson (2000), a
different approach based on the direct compound Poisson approximation The-
orem 6.8.3 is developed. The idea is to express counts of events as numbers of
visits of a certain Markov chain to a rare set, and to use regeneration cycles for
suitable couplings. It results in bounds that are formulated in terms of stop-
ping times of Markov chains. Results of this type are less explicit, but they
have asymptotic order O(n−1) under the typical regime nµ(w) = O(1), see also
Barbour et al. (2001) and Gusto (2000), whereas the bounds in Theorem 6.4.9
and in Corollary 6.4.8 (which is from Schbath (1995a)) are of order O(n−1 log n)
under the same regime.
Numerical experiments in Barbour et al. (2001) display that the bound in The-
orem 6.4.9 and the bound from the Erhardsson (1997)-approach perform better
than the bound in Corollary 6.4.8 for the word acgacg in the bacteriophage
Lambda (n = 48, 502) under three different transition matrices. In contrast,
Gusto (2000) compared the result from Erhardsson (1999) to the one in Schbath
(1995a) and did not observe any marked improvement for all words of length 8
in the bacteriophage Lambda. This may illustrate that, whereas the compound
Poisson approximation via a Poisson process approximation works well in the
case of rare words, it does not yield the best bounds in the case of not so rare
words.

Approximation using a large deviation principle. Section 6.4.6 is inspired by

Version June 23, 2004

326 Statistics on Words with Applications to Biological Sequences

Schbath (1995b). Nuel (2001) obtained a better approximation using a large
deviation principle for the empirical distribution of the �-letter words. This
empirical distribution is defined as the random measure Ln,	 on A	 such that,
for w ∈ A	,

Ln,	(w) =
1

n− � + 1

n−	+1∑
i=1

Yi(w),

so that Ln,	(w) = N(w). However, the definition of the large deviation rate
funtion and its mathematical treatment are more involved than the one given
in Section 6.4.6.

Renewal count distribution. For a classical introduction to renewals, see Chap-
ter 13 in Feller (1968). Exact results for the distribution of Rn can be found in
Régnier (2000). When the letters X1, . . . , Xn are independent and identically
distributed, the asymptotic distribution of the renewal count was studied by
Breen et al. (1985) and Tanushev and Arratia (1997). The Central Limit The-
orem 6.5.1 in the Markovian case is due to Tanushev (1996). He also proved
a multivariate approximation. The theorem is much easier to prove in the
i.i.d. case, see Waterman (1995). The main technique being generating func-
tions, no bound on the rate of convergence is obtained.

The Poisson approximation for renewals based on the Poisson approximation
for the number of clumps is the idea behind the proof of Geske et al. (1995),
although Geske et al. (1995) prove the result only for words having at most
one principal period. Related results have been obtained by Chryssaphinou and
Papastavridis (1988b). Theorem 6.5.2 is due to Chryssaphinou et al. (2001);
they also derive the stated conditions under which convergence to a Poisson
distribution holds.

Occurrences of multiple patterns. The multivariate generating function of the
counts of multiple words can be found in Régnier (2000) and can be derived
from Robin and Daudin (2001). The methods used are extensions of the ones
presented in Subsection 6.4.1.

The covariance was also calculated in Lundstrom (1990), in a different form.
Theorem 6.6.1 is proven in Huang (2002); there it is also shown that Ln is
invertible as well as a discussion of the constant c; see also references therein.
As in Rinott and Rotar (1996), Huang (2002) considers more general classes of
test functions as well, but not as general as to cover total variation.

The Poisson and compound Poisson approximations for the joint distribution
of declumped counts and multiple word counts presented here are due to Reinert
and Schbath (1998). Recently, Chen and Xia (pear) obtained a much improved
bound for the independent model, in the Wasserstein metric (which is weaker
than the total variation metric), for the Poisson approximation of counts of
palindromes, assuming the four-letter alphabet A = {a, c, g, t} and that pa =
pt, pc = pg. Formula (6.6.6) is due to Chryssaphinou et al. (2001).

Version June 23, 2004

Notes 327

Tanushev (1996) studied non-overlapping occurrences in competitions with
each other, including the derivation of the mean for the number of competing re-
newal counts, and, most notably, the normal approximation Theorem 6.6.6. The
mean of the total number of competing renewals,

∑q
r=1 Rc

n(wr), has recently
been presented in a slightly simpler form by Chryssaphinou et al. (2001). Also
the alternative approach for a Poisson approximation for competing renewal
counts is given in Chryssaphinou et al. (2001).

Some applications to DNA sequences. The quality of the approximate p-values
was extensively studied in Robin and Schbath (2001); their results here are com-
bined with the approximate scores obtained with the large deviation approach
of Nuel (2001).

The details on the treatment of sequencing by hybridization as presented here
are given in Arratia et al. (1996). The characterization of unique recoverability
from the �-spectrum is due to Pevzner (1989); Ukkonen (1992) conjectured
and Pevzner (1995) proved that there are exactly three structures that prevent
unique recoverability. De Bruijn graphs are described in van Lint and Wilson
(1992). Theorem 6.7.2 is from Arratia et al. (1996), where more detailed versions
are also given. This bound is improved by Shamir and Tsur (2001). In Arratia
et al. (1996), a more general result is derived for general alphabets, and explicit
bounds are obtained. These bounds can be used to approximate the probability
of unique recoverability. Arratia et al. (2000) have obtained results on the
number of possible reconstructions for a given sequence (when the reconstruction
is not unique).

Some probabilistic and statistical tools. Stein’s method for the normal approx-
imation was first published by Stein (1972). Rinott and Rotar (1996) applied
it to obtain multivariate normal approximations with a bound on the error in
the distance of suprema over convex sets, which yields Theorem 6.8.1. Indeed,
Rinott and Rotar (1996) derive the result for more general classes of test func-
tions.

First published by Chen (1975) as the Poisson analog to Stein’s method for
normal approximations (Stein (1972)), the Chen-Stein method for Poisson ap-
proximation has found widespread application; word counts being just one of
them. A friendly exposition is found in Arratia et al. (1989) and a description
with many examples can be found in Arratia et al. (1990) and Barbour et al.
(1992). The key theorem for word counts in stationary Markov chains is Theo-
rem 1 in Arratia et al. (1990) with an improved bound by Barbour et al. (1992)
(Theorem 1.A and Theorem 10.A), giving Theorem 6.8.2.

Much of the subsection on direct compound Poisson approximation is based
on the overview of Barbour and Chryssaphinou (2001). This approach started
with Barbour et al. (1992); see also Roos (1993), Barbour and Utev (1998).
Recently much attention has been given to this problem, and the reader is
referred to the references in Barbour and Chryssaphinou (2001).

For δ3, in Barbour and Chryssaphinou (2001) there is an additional, alter-
native quantity given in terms of the Wasserstein distance between two dis-

Version June 23, 2004

328 Statistics on Words with Applications to Biological Sequences

tributions. Instead of Condition (6.8.5), improved bounds on H0 and H1 are
also available under the condition that m−1(m2 − m1) < 1/2, where m2 =∑

k≥1 k2νk, see Barbour and Chryssaphinou (2001). Barbour and Chryssaphi-
nou (2001) also obtain Theorem 6.8.3, which in their paper is also phrased in the
Kolmogorov distance, and slightly more general, and Theorem 6.8.4. Barbour
and Chryssaphinou (2001) also provide refined versions of this approach as well
as results in Kolmogorov distance. Barbour and Mansson (2002) give related
results in Wasserstein distance.

A short outline of moment-generating functions can be found e.g., in Rice
(1995). Theorem 6.8.5 on the delta method can be found for example on p.313
in Waterman (1995). The large deviation principle Theorem 6.8.6 for Markov
chains can be found on p.78 in Bucklew (1990). The martingale central limit
theorem 6.8.7 is in Dacunha-Castelle and Duflo (1983) p.80.

General tools. The autocorrelation polynomial was introduced by Guibas and
Odlyzko (1980); see also Li (1980), Biggins and Cannings (1987). The result
that two words commute if and only if they are powers of the same word can
be found in Lothaire (1997). The Perron–Frobenius Theorem used on page
255 is classical; see for example Karlin and Taylor (1975). The Chi-square test
for independence is textbook material in statistics; Rice (1995) gives a good
exposition. The case of general order Markov chains is reviewed in Billingsley
(1961). However, for higher order, a longer sequence of observations is required
(see Guthrie and Youssef (1970)). For an introduction to martingales, see, e.g.,
Chung (1974). The Law of Iterated Logarithm for Markov chains is due to
Senoussi (1990).

Genome analysis. The first analysis of the restriction sites in E. coli was car-
ried out by Churchill et al. (1990) while analyzing the distance between those
sites. Avoidance of restriction sites in E. coli was first presented by Karlin et al.
(1992). The Cross-over Hotspot Instigator sites are very important for several
bacteria (see Biaudet et al. (1998), Chedin et al. (1998), Sourice et al. (1998)).
Their significant abundances have been first showed in Schbath (1995b) for E.
coli and then in El Karoui et al. (1999) for other bacteria. Several papers aim
at identifying over- and under-represented words in a particular genome (for
instance, Leung et al. (1996), Rocha et al. (1998)). They usually use the maxi-
mal Markov model (see also Brendel et al. (1986)). The Poisson approximation
used in BLAST to approximate the p-value of a sequence alignment was first
proposed in Altschul et al. (1990), and proven in Karlin and Dembo (1992). The
variational composition of a genome have been studied with HMMs by Churchill
(1989), Muri (1998), Durbin et al. (1998).

Version June 23, 2004

329

CHAPTER 7

Analytic Approach to Pattern
Matching

7.0 Introduction . 329
7.1 Probabilistic models . 332
7.2 Exact string matching . 335

7.2.1 Languages representations 336
7.2.2 Generating functions . 339
7.2.3 Moments and limit laws 341
7.2.4 Waiting times . 348

7.3 Generalized string matching . 349
7.3.1 String matching over reduced set of patterns 350
7.3.2 Analysis of the generalized string matching 355
7.3.3 Forbidden words and (�, k) sequences 364

7.4 Subsequence pattern matching 366
7.4.1 Mean and variance analysis 368
7.4.2 Autocorrelation polynomial revisited 373
7.4.3 Central limit laws . 373
7.4.4 Limit laws for fully constrained pattern 376

7.5 Generalized subsequence problem 377
7.5.1 Generating operators for dynamic sources 378
7.5.2 Mean and variance . 381

7.6 Self-repetitive pattern matching 383
7.6.1 Formulation of the problem 383
7.6.2 Random tries resemble suffix tries 386
Problems . 394
Notes . 395

7.0. Introduction

Repeated patterns and related phenomena in words are known to play a central
role in many facets of computer science, telecommunications, coding, data com-
pression, and molecular biology. One of the most fundamental questions arising
in such studies is the frequency of pattern occurrences in another string known

Version June 23, 2004

330 Analytic Approach to Pattern Matching

as the text. Applications of these results include gene finding in biology, code
synchronization, user search in wireless communications, detecting signatures
of an attacker in intrusion detection, and discovering repeated strings in the
Lempel-Ziv schemes and other data compression algorithms.

The basic pattern matching is to find for a given (or random) pattern w or
a set of patterns W and text X how many times W occurs in the text and how
long it takes for W to occur in X for the first time. These two problems are
not unrelated as we have already seen in Chapter 6. Throughout this chapter
we allow patterns to overlap and we count overlapping occurrences separately.
For example, w = abab occurs three times in the text = bababababb.

We consider pattern matching problems in a probabilistic framework in
which the text is generated by a probabilistic source while the pattern is given.
In Chapter 1 various probabilistic sources were discussed. Here we succinctly
summarize assumptions adopted in this chapter. In addition, we introduce a
new general source known as a dynamic source recently proposed by Vallée. In
Chapter 2 algorithmic aspects of pattern matching and various efficient algo-
rithms for finding patterns were discussed. In this chapter, as in Chapter 6,
we focus on analysis. However, unlike Chapter 6, we apply here analytic tools
of combinatorics and analysis of algorithms to discover general laws of pattern
occurrences. An immediate consequence of our results is the possibility to set
thresholds at which a pattern in a text starts being (statistically) meaningful.

The approach we undertake to analyze pattern matching problems is through
a formal description by means of regular languages. Basically, such a descrip-
tion of contexts of one, two, or several occurrences gives access to expecta-
tion, variance, and higher moments, respectively. A systematic translation into
generating functions of a complex variable z is available by methods of ana-
lytic combinatorics deriving from the original Chomsky-Schützenberger theo-
rem. Then, the structure of the implied generating functions at a pole, usually
at z = 1, provides the necessary asymptotic information. In fact, there is
an important phenomenon of asymptotic simplification where the essentials of
combinatorial-probabilistic features are reflected by the singular forms of gener-
ating functions. For instance, variance coefficients come out naturally from this
approach together with a suitable notion of correlation. Perhaps the originality
of the present approach lies in such a joint use of combinatorial-enumerative
techniques and of analytic-probabilistic methods.

There are various pattern matching problems. In its simplest form, the pattern
W = w is a single string w and one searches for some/all occurrences of w as
a block of consecutive symbols in the text. This problem is known as the exact
string matching and its analysis is presented in Section 7.2 (cf. also Chapter 6).
We adopt a symbolic approach, and first describe a language that contains all
occurrences of w. Then we translate this language into a generating function
that will lead to precise evaluation of the mean and the variance of the number
of occurrences of the pattern. Finally, we prove the central and local limit laws,
and large deviations.

In the generalized string matching problem the pattern W is a set rather

Version June 23, 2004

7.0. Introduction 331

than a single pattern. In its most general formulation, the pattern is a pair
(W0,W) where W0 is the so called forbidden set. If W0 = ∅, then W appears in
the text whenever a word from W occurs as a string with overlapping allowed.
When W0 �= ∅ one studies the number of occurrences of strings in W under
the condition that there is no occurrence of a string from W0 in the text X .
This could be called a restricted string matching since one restricts the text
to those strings that do not contain strings from W0. Finally, setting W = ∅
(with W0 �= ∅) we search for the number of text strings that do not contain
any pattern from W0. In particular, for � ≤ k if W0 consists of runs of zeros of
length at least � and at most k, then we deal with the so called (�, k) sequences
that find application in magnetic recoding.

We shall present a complete analysis of the generalized string matching prob-
lem in Section 7.3. We first consider the so called reduced set of patterns in which
a string in W cannot be a substring of another string in W . We shall general-
ize our combinatorial language approach from Section 7.2 to derive the mean,
variance, central and local limit laws, and large deviations. Then we analyze
the generalized string pattern matching with W0 = ∅ and adopt a different
approach. We shall construct an automaton to recognize the pattern W that
turns out to be a de Bruijn graph. The generating function of the number of
occurrences will have a matrix form with the main matrix representing the tran-
sition matrix of the associated de Bruijn graph. Finally, we consider the (�, k)
sequences and enumerate them leading to the Shannon capacity.

In Section 7.4 we discuss a new pattern matching problem called the sub-
sequence pattern matching or the hidden pattern matching. In this case the
pattern W = a1a2 · · · am, where ai is a symbol of the underlying alphabet, is to
occur as a subsequence rather than a string (consecutive symbols) in a text. We
say that W is hidden in the text. For example, date occurs as a subsequence in
the text hidden pattern, in fact four times, but not even once as a string. The
gaps between occurrences of W may be bounded or unrestricted. The extreme
cases are: fully unconstrained problem where all gaps are unbounded; and the
fully constrained problem where all gaps are bounded. We analyze these and
mixed cases.

In Section 7.5 we generalized all of the above pattern matching problems
and analyze the generalized subsequence problem. In this case, the pattern is
W = (W1, . . . ,Wd) where Wi is a collection of strings (a language). We say
that the generalized pattern W occurs in the text X if X contains W as a sub-
sequence (w1, w2, . . . , wd) where wi ∈ Wi. Clearly, it includes all the problems
discussed so far. We shall analyze this generalized pattern matching for gen-
eral probabilistic dynamic sources (which include among others Markov sources
and mixing sources). The novelty of the analysis lies in translating probabili-
ties into composition of operators. Under a mild decomposability assumption,
these operators entertain spectral representations that allows us to derive precise
asymptotic behavior for quantities of interest.

Finally, in the last section we study a different pattern matching, namely the
one in which the pattern is part of the (random) text. We coin the term self-
repetitive pattern matching. More precisely, we look for the longest substring of

Version June 23, 2004

332 Analytic Approach to Pattern Matching

the text occurring at a given position that has another copy in the text. This
new quantity, when averaged over all possible positions of the text, is actually
the typical depth in a suffix trie (cf. Chapter 2) built over (randomly generated)
text. We analyze it using analytic techniques such as generating functions and
the Mellin transform. We reduce its analysis to the exact pattern matching;
thus we call the technique the string-ruler method. In fact, we prove that the
probability generating function of the depth in a suffix trie is asymptotically
close to the probability generating function of the depth in a trie that is built
over n independently generated texts. Such tries have been extensively studied in
the past and we have pretty good understanding of their probabilistic behaviors.
This allows us to conclude that the depth in a suffix trie is asymptotically
normal.

7.1. Probabilistic models

We study here pattern matching in a probabilistic framework in which the text
is generated randomly. Let us first introduce some general probabilistic models
of generating sequences. The reader is also referred to Chapter 1 for a brief
introduction to probabilistic models. For the convenience of the reader, we
repeat here some definitions.

Throughout we shall deal with sequences of discrete random variables. We
write (Xk)∞k=1 for a one-sided infinite sequence of random variables; however, we
often abbreviate it as X provided it is clear from the context that we are talking
about a sequence, not a single variable. We assume that the sequence (Xk)∞k=1

is defined over a finite alphabet A = {a1, . . . , aV } of size V . A partial sequence
is denoted as Xn

m = (Xm, . . . , Xn) for m < n. Finally, we shall always assume
that a probability measure exists, and we write P (xn

1) = P(Xk = xk, 1 ≤
k ≤ n, xk ∈ A) for the probability mass, where we use lowercase letters for a
realization of a stochastic process.

Sequences are generated by information sources, usually satisfying some con-
straints. We also call them probabilistic models. Throughout, we assume the
existence of a stationary probability distribution, that is, for any string w the
probability that the text X contains an occurrence of w at position k is equal
to P (w) independently of the position k. For P (w) > 0, we denote by P (u | w)
the conditional probability equals P (wu)/P (w).

The most elementary source is a memoryless source also known as the
Bernoulli source.

(B) Memoryless or Bernoulli Source

Symbols of the alphabet A = {a1, . . . , aV } occur independently of one an-
other; thus X = X1X2X3 . . . can be described as the outcome of an infinite
sequence of Bernoulli trials in which P(Xj = ai) = pi and

∑V
i=1 pi = 1.

Throughout, we assume that at least for one i we have 0 < pi < 1.

In many cases, assumption (B) is not very realistic. When this is the case,
assumption (B) may be replaced by:

Version June 23, 2004

7.1. Probabilistic models 333

(M) Markov Source of order one

There is a Markovian dependency between consecutive symbols in a string;
that is, the probability pij = P(Xk+1 = aj |Xk = ai) describes the condi-
tional probability of sampling symbol aj immediately after symbol ai. We
denote by P = {pij}V

i,j=1 the transition matrix, and by µ = (π1, . . . , πV)
the stationary vector satisfying µP = µ. (Throughout, we assume that the
Markov chain is irreducible and aperiodic.) A general Markov source of
order r is characterized by the transition matrix V r × V with coefficients
being P (j ∈ A | u) for u ∈ Ar.

In some situations more general sources must be considered (for which one
still can obtain reasonably precise analysis). Recently, Vallée introduced new
sources called dynamic sources that we briefly describe here and use in the
analysis of the generalized subsequence problem in Section 7.5. To introduce
such sources we start with a description of a dynamic system defined by:

• A topological partition of the unit interval I := (0, 1) into a disjoint set
of open intervals Ia, a ∈ A.

• An encoding mapping χ which is constant and equal to a ∈ A on each Ia.

• A shift mapping T : I → I whose restriction to Ia is a bijection of class
C2 from Ia to I. The local inverse of T restricted to Ia is denoted by ha.

Observe that such a dynamic system produces infinite words of A∞ through
the encoding χ. For an initial x ∈ I the source outputs a word, say w(x) =
(χx, χTx, . . .).

(DS) Probabilistic Dynamic Source

A source is called a probabilistic dynamic source, if the unit interval of a
dynamic system is endowed with a density f .

Example 7.1.1. A memoryless source associated with the probability distri-
bution {pi}V

i=1 (where V can be finite or infinite) is modeled by a dynamic source
in which the components wk(x) = χT kx are independent and the corresponding
topological partition of I is defined as

Im := (qm, qm+1], qm =
∑
j<m

pj.

In particular, a symmetric V -ary memoryless source can be described as

T (x) = {V x}, χ(x) = �V x�,

where �x� is the integer part of x and {x} = x − �x� is the fractional part of x
(cf. Figure 7.1(a)).

Version June 23, 2004

334 Analytic Approach to Pattern Matching

(a) (b)

Figure 7.1. Dynamic Sources discussed in Example 7.1.1: (a) memo-
ryless with the shift mapping Tm(x) = 〈(x − qm)/pm+1〉 (b) continued
fraction source with Tm(x) = 1/x − m = 〈1/x〉.

Here is another example of a source with memory related to continued frac-
tions. The alphabet A is the set of all natural numbers and the partition of I is
defined as Im = (1/(m + 1), 1/m). The restriction of T to Im is the decreasing
linear fractional transformation T (x) = 1/x−m, that is,

T (x) = {1/x}, χ(x) = �1/x�.

Observe that the inverse branches hm are defined as hm(x) = 1/(x + m) (cf.
Figure 7.1(b)).

Let us observe that a word of length k, say w = w1w2 · · ·wk is associated
with the mapping hw := hw1 ◦hw2 ◦· · ·◦hwk

which is an inverse branch of T k. In
fact, all words that begin with the same prefix w belong to the same fundamental
interval defined as Iw = (hw(0), hw(1)). Furthermore, for probabilistic dynamic
sources with the density f , one easily computes the probability of w as the
measure of the interval Iw.

The probability P (w) of a word w can be explicitly computed through the
special generating operator Gw define as follows

Gw[f](t) := |h′
w(t)|f ◦ hw(t). (7.1.1)

One recognizes in Gw[f](t) a density mapping, that is, Gw[f](t) is the density
of f mapped over hw(t). The probability of w can then be computed as

P (w) =

∣∣∣∣∣
∫ hw(1)

hw(0)

f(t)dt

∣∣∣∣∣ =
∫ 1

0

|h′
w(t)|f ◦ hw(t)dt =

∫ 1

0

Gw[f](t)dt. (7.1.2)

Version June 23, 2004

7.2. Exact string matching 335

Let us now consider a concatenation of two words w and u. For memory-
less sources P (w · u) = P (w)P (u). For Markov sources one still obtains the
product of conditional probabilities. Dynamic sources replaces the product of
probabilities by the product (composition) of generating operators. To see this,
we observe that

Gw·u = Gu ◦Gw, (7.1.3)

where we write Gw := Gw[f](t). Indeed, hwu = hw ◦ hu and Gw·u = h′
w ◦ hu ·

h′
u ·f ◦hw ◦hu while Gw = h′

w ·f ◦hw and then Gu◦Gw = hu ·h′
w ◦hu ·f ◦hw◦hu,

as desired.

7.2. Exact string matching

In the exact string matching problem the pattern w = w1w2 · · ·wm of length
m is given while the text X = Xn

1 = X1 . . .Xn of length n is generated by a
random source. Observe that since the pattern W is given, its length m will not
vary with n when n →∞ (asymptotic analysis).

There are several parameters of interest in the string matching, but two of
them stand out. Namely, the number of times w occurs in X which we denote
as Nn := Nn(w) and define formally by

Nn(w) = Card({i : X i
i−m+1 = w, m ≤ i ≤ n}).

We can write Nn(w) in an equivalent form as follows

Nn(w) = Im + Im+1 + · · ·+ In (7.2.1)

where Ii = 1 if w occurs at position i and Ii = 0 otherwise.
The second parameter is the waiting time Tw defined as the first time w

occurs in the text X , that is,

Tw := min{n : Xn
n−m+1 = w}.

One can also define Tj as the minimum length of the text in which the pattern
w occurs j times. Clearly, Tw = T1. These parameters are not independent
since

{Tw > n} = {Nn(w) = 0}. (7.2.2)

More generally,
{Tj ≤ n} = {Nn(w) ≥ j}. (7.2.3)

Relation (7.2.3) is called the duality principle in Chapter 6.
Our goal is to estimate the frequency of pattern occurrences Nn in a text

generated by a Markov source. We allow patterns to overlap when counting
occurrences (e.g., if w = abab, then it occurs twice in X = abababb when
overlapping is allowed; it occurs only once if overlapping is not allowed). We

Version June 23, 2004

336 Analytic Approach to Pattern Matching

study probabilistic behavior of Nn through two generating functions, namely:

Nr(z) =
∑
n≥0

P(Nn(w) = r)zn,

N(z, u) =
∞∑

r=1

Nr(z)ur =
∞∑

r=1

∞∑
n=0

P(Nn(w) = r)znur

that are defined for |z| ≤ 1 and |u| ≤ 1.
Throughout this section we adopt a combinatorial approach to string match-

ing, that is, we use combinatorial calculus to find combinatorial relationships
between sets of words satisfying certain properties (i.e., languages). Alterna-
tively, we could start with the representation (7.2.1) and use probabilistic tools
along the lines already discussed in Chapter 6.

7.2.1. Languages representations

We start our combinatorial analysis with some definitions. For any language L
we define its generating function L(z) as

L(z) =
∑
u∈L

P (u)z|u|,

where P (u) is the stationary probability of u occurrence, |u| is the length of u,
and we assume that P (ε) = 1. Notice that L(z) is defined for all complex z
such that |z| < 1. In addition, we define the w-conditional generating function
of L as

Lw(z) =
∑
u∈L

P (u|w)z|u| =
∑
u∈L

P (wu)
P (w)

z|u|,

Since we allow overlaps, the structure of the pattern has a profound impact
on the number of occurrences. To capture this, we introduce the autocorrelation
language and the autocorrelation polynomial. Given a string w, we define the
autocorrelation set S as:

S = {wm
k+1 : wk

1 = wm
m−k+1}. (7.2.4)

By P(w) we denote the set of positions k ≥ 1 satisfying wk
1 = wm

m−k+1. In other
words, if w = vu and w = ux for some words v, x and u, then x belongs to S
and |u| ∈ P(w). Notice that ε ∈ S. The generating function of the language S is
denoted as S(z) and we call it the autocorrelation polynomial. Its w-conditional
generating function is denoted Sw(z). In particular, for Markov sources (of
order one)

Sw(z) =
∑

k∈P(w)

P (wm
k+1 | wk

k)zm−k. (7.2.5)

Before we proceed, let us present a simple example illustrating the definitions
introduced so far.

Version June 23, 2004

7.2. Exact string matching 337

Example 7.2.1. Let us assume that w = aba over a binary alphabet A =
{a, b}. Observe that P(w) = {1, 3} and S = {ε, ba}, where ε is the empty word.
Thus, for the unbiased memoryless source we have S(z) = 1 + z2

4 , while for the
Markovian model of order one, we obtain Saba(z) = 1 + pabpbaz2.

Our goal is to estimate the number of pattern occurrences in a text. Alter-
natively, we can seek the generating function of a language that consists of all
words containing some occurrences of w. Given a pattern w, we introduce the
following languages:

(i) Tr as a set of words containing exactly r occurrences of w.

(ii) R as a set of words containing only one occurrence of w, located at the
right end.

(iii) U defined as
U = {u : w · u ∈ T1}, (7.2.6)

that is, a word u ∈ U if w · u has exactly one occurrence of w at the left
end of w · u.

(iv) M defined as

M = {v : w · v ∈ T2 and w occurs at the right end of w · v},

that is, M is a language such that any word in w · M has exactly two
occurrences of w at the left and right end.

Example 7.2.2. Let A = {a, b} and w = abab. Then r = aaabab ∈ R since
there is only one occurrence of w at the right end of r. Also, u = bbbb ∈ U
since wu has only one occurrence of w at the left end; but v = abbbb /∈ U
since wv = abababbbb has two occurrences of w. Furthermore, ab ∈ M since
wm = ababab ∈ T2 has two occurrences of w at the left and the right ends.
Finally, t = bbabababbbababbb ∈ T3 and one observes that t = rm1m2u where
r = bbabab ∈ R, m1 = ab ∈ M, m2 = bbabab ∈ M, and u = bb ∈ U .

We now describe languages T≥1 =
⋃

r≥1 Tr (set of words containing at least
once occurrence of w) and Tr in terms of R, M, and U . Recall that Mr denotes
the concatenation of r languagesM, and M0 = {ε}. Also, M+ = ∪r≥1M

r and
M∗ = ∪r≥0M

r.

Theorem 7.2.3. The languages Tr for r ≥ 1 and T≥1 satisfy the relations

Tr = R ·Mr−1 · U , (7.2.7)

and therefore
T≥1 = R ·M∗ · U . (7.2.8)

In addition, we have:
T0 · w = R · S. (7.2.9)

Version June 23, 2004

338 Analytic Approach to Pattern Matching

Proof. To prove (7.2.7), we obtain our decomposition of Tr as follows: The first
occurrence of w in a word belonging to Tr determines a prefix p ∈ Tr that is in
R. After concatenating a nonempty word v we create the second occurrence of
w provided v ∈ M. This process is repeated r − 1 times. Finally, after the last
w occurrence we add a suffix u that does not create a new occurrence of w, that
is, wu is such that u ∈ U . Clearly, a word belongs to T≥1 if for some 1 ≤ r < ∞
it is in Tr.

The derivation of (7.2.9) is left to the reader as Exercise 7.2.1.

Example 7.2.4. Let w = TAT . The following string belongs to T3:

R︷ ︸︸ ︷
CCTAT AT︸︷︷︸

M

GATAT︸ ︷︷ ︸
M

U︷ ︸︸ ︷
GGA .

We now prove the following result that summarizes relationships between
the languages R, M, and U .

Theorem 7.2.5. The languages M, R, and U satisfy

M∗ = A∗ · w + S, (7.2.10)
U · A = M+ U − {ε}, (7.2.11)

w(M− ε) = A · R −R. (7.2.12)

Proof. We first deal with (7.2.10). Clearly, A∗w contains at least one occurrence
of w on the right, hence A∗w ⊂ M∗. Furthermore, a word v in M∗ is not in
A∗ ·w if and only if its size |v| is smaller than |w| (e.g., think of v = ab ∈M for
w = abab). Then the second w occurrence in wv overlaps with w, which means
that v is in S.

Let us turn now to (7.2.11). When one adds a character a ∈ A right after a
word u from U , two cases may occur. Either wua still does not contain a second
occurrence of w (which means that ua is a nonempty word of U) or a new w
appears, clearly at the right end. Hence U ·A ⊆M+U −ε. Let now v ∈ M−ε,
then by definition wv ∈ T2 ⊆ UA− U which proves (7.2.11).

We now prove (7.2.12). Let now x = ar be a word in w · (M− ε) where
a ∈ A. As x contains exactly two occurrences of w located at its left and right
ends, r is in R and x is in A · R −R, hence w(M− ε) ⊆ A · R −R. To prove
A ·R−R ⊆ w(M− ε), we take a word arw from A ·R that is not in R. Then
arw contains a second w occurrence starting in ar. As rw is in R, the only
possible position is at the left end, and then x is in w(M− ε). This proves
(7.2.12).

Version June 23, 2004

7.2. Exact string matching 339

7.2.2. Generating functions

The next step is to translate the relationships between languages into the as-
sociated generating functions. Therefore, we must now select the probabilistic
model according to which the text is generated. We derive our results for a
Markov model of order one. We adopt the following notation: To extract a
particular element, say with index (i, j), from a matrix, say P, we shall write
[P]i,j = pi,j . We also recall that (I − P)−1 =

∑
k≥0 Pk provided ||P|| < 1 for a

matrix norm || · ||. We also write Π for the stationary matrix that consists of
V identical rows equal to µ. Finally, by Z we denote the fundamental matrix
Z = (I− (P−Π))−1 where I is the identity matrix.

The next lemma translates the relationships between languages (7.2.10)–
(7.2.12) into generating functions Mw(z), Uw(z) and R(z) of languages M, U
and R (we recall that the first two generating function are conditioned on w
appearing just before any word from M and U). We define a function F (z) by

F (z) =
1

µw1

[
∑
n≥0

(P−Π)n+1zn]wm,w1 =
1

µw1

[(P−Π)(I − (P−Π)z)−1]wm,w1

(7.2.13)
for |z| <‖ P−Π ‖−1, where µw1 is the stationary probability of the first symbol
w1 of w. For memoryless sources F (z) = 0.

Lemma 7.2.6. For Markov sources (of order one), the generating functions
associated with languages M,U , and R satisfy

1
1−Mw(z)

= Sw(z) + P (w)zm

(
1

1− z
+ F (z)

)
, (7.2.14)

Uw(z) =
Mw(z)− 1

z − 1
, (7.2.15)

R(z) = P (w)zm · Uw(z), (7.2.16)

provided the underlying Markov chain is aperiodic and ergodic.

Proof. We first prove (7.2.15). Let us consider language relationship (7.2.11)
from Theorem 7.2.5, which we rewrite as U · A − U = M− ε. Observe that∑

b∈A pabz = z. Hence, set U · A yields (conditioning on the left occurrence of
w) ∑

u∈U

∑
b∈A

P (ub|w)z|ub| =
∑
a∈A

∑
u∈U ,	(u)=a

P (u|w)z|u|
∑
b∈A

pabz = Uw(z) · z,

where �(u) denotes the last symbol of the word u. Of course, M− ε and U
translate into Mw(z)− 1 and Uw(z), and (7.2.15) is proved.

We now turn our attention to (7.2.16), and we use relationship (7.2.12)
wM− w = AR − R of Theorem 7.2.5. In order to compute the conditional
generating function of A · R we proceed as follows∑

ab∈A2

∑
bv∈R

P (abv)z|abv| = z2
∑
a∈A

∑
b∈A

µapab

∑
bv∈R

P (v|v−1 = b)z|v|.

Version June 23, 2004

340 Analytic Approach to Pattern Matching

But due to the stationarity of the underlying Markov chain
∑

a µapab = µb. As
µbP (v|v−1 = b) = P (bv), we get zR(z). Furthermore, w ·M−w translates into
P (w)zm · (Mw(z)− 1). By just proved (7.2.15), this is P (w)zm · Uw(z)(z − 1),
and after a simplification, we obtain (7.2.16).

Finally, we deal with (7.2.14), and prove it using (7.2.10) from Theorem 7.2.5.
The left-hand side of (7.2.10) involves language M, hence we must condition
on the left occurrence of w. In particular,

⋃
r≥1Mr + ε of (7.2.10) translates

into 1
1−Mw(z) . Now we deal with A∗ · w of the right-hand side of (7.2.10).

Conditioning on the left occurrence of w, the generating function Aw(z) of
A∗ · w is

Aw(z) =
∑
n≥0

∑
|u|=n

zn+mP (uw|u−1 = wm)

=
∑
n≥0

∑
|u|=n

znP (uw1|u−1 = wm)P (w2 . . . wm|w1)zm.

We have P (w2 . . . wm|w1)zm = 1
µw1

zmP (w), and for n ≥ 0:∑
|u|=n

P (uw1|u−1 = wm) = [Pn+1]wm,w1

where, we recall, wm is the last character of w. In summary, the language
A∗ ·w contributes P (w)zm

[
1

µw1

∑
n≥0 Pn+1zn

]
wm,w1

, while the language S−{ε}
introduces Sw(z)−1. Using the equality Pn+1−Π = (P−Π)n+1 (which follows
from a consecutive application of the identity ΠP = Π), and observing that for
any symbols a and b 1

µb

∑
n≥0

Πzn

ab

=
∑
n≥0

zn =
1

1− z
.

we finally obtain the sum in (7.2.14). This completes the proof of the theorem.

The lemma above together with Theorem 7.2.3 suffice to derive generating
functions Nr(z) and N(z, u) in an explicit form.

Theorem 7.2.7. Let w be a given pattern of size m, and X be a random text
of length n generated according to an ergodic and aperiodic Markov chain with
the transition probability matrix P. Define

Dw(z) = (1− z)Sw(z) + zmP (w)(1 + (1 − z)F (z)). (7.2.17)

Then

N0(z) =
1−R(z)

1− z
=

Sw(z)
Dw(z)

, (7.2.18)

Nr(z) = R(z)M r−1
w (z)Uw(z) , r ≥ 1, (7.2.19)

N(z, u) = R(z)
u

1− uMw(z)
Uw(z), (7.2.20)

Version June 23, 2004

7.2. Exact string matching 341

where

Mw(z) = 1 +
z − 1
Dw(z)

, (7.2.21)

Uw(z) =
1

Dw(z)
, (7.2.22)

R(z) = zmP (w)
1

Dw(z)
. (7.2.23)

We recall that for memoryless sources, F (z) = 0, and hence

D(z) = (1 − z)S(z) + zmP (w). (7.2.24)

Proof. We only comment on the derivation of N0(z) since the rest follows directly
from our previous results. Observe that

N0(z) =
∑
n≥0

P(Nn = 0)zn =
∑
n≥0

(1−P(Nn > 0))zn =
1

1− z
−

∞∑
r=1

Nr(z),

thus the first expression follows form (7.2.19). The second expression is a direct
translation of T0 ·w = R·A (cf. (7.2.9)) which reads N0(z)P (w)zm = R(z)Sw(z)
in terms of the appropriate generating functions.

7.2.3. Moments and limit laws

In the previous section we derived an explicit formula for the generating function
N(z, u) =

∑
n≥0 E(uNn)zn and Nr(z). These formulas can be used to obtain

explicit and asymptotic expressions for moments of Nn (cf. Theorem 7.2.8),
the central limit theorem (cf. Theorem 7.2.11), and large deviations (cf. Theo-
rem 7.2.12). We start with derivation of the mean and the variance of Nn.

Theorem 7.2.8. Under the assumptions of Theorem 7.2.7 and nP (w) → ∞,
one has, for n ≥ m:

E[Nn(w)] = P (w)(n−m + 1) , (7.2.25)

and
Var[Nn(w)] = nc1 + c2 + O(R−n), for R > 1 (7.2.26)

where

c1 = P (w)(2Sw(1)− 1− (2m− 1)P (w) + 2P (w)E1)), (7.2.27)
c2 = P (w)((m − 1)(3m− 1)P (w) − (m− 1)(2Sw(1)− 1)− 2S′

w(1))
− 2(2m− 1)P (w)2E1 + 2E2P (w)2, (7.2.28)

and the constants E1, E2 are

E1 =
1

µw1

[(P−Π)Z]wm,w1 , E2 =
1

µw1

[(P2 −Π)Z2]wm,w1 ,

Version June 23, 2004

342 Analytic Approach to Pattern Matching

Proof. Notice that first moment estimate can be derived directly from the
definition of the stationary probability of w. In order to grasp higher moments
we will use analytic tools applied to generating functions. We compute the first
two moments of Nn from N(z, u) since E(Nn) = [zn]Nu(z, 1) and E(Nn(Nn −
1)) = [zn]Nuu(z, 1) where Nu(z, 1) and Nuu(z, 1) are the first and the second
derivatives of N(z, u) with respect to variable u at (z, 1). By Theorem 7.2.7 we
find

Nu(z, 1) =
zmP (w)
(1− z)2

,

Nuu(z, 1) =
2zmP (w)Mw(z)Dw(z)

(1 − z)3
.

Now we observe that both expressions admit as a numerator a function that is
analytic beyond the unit circle. Furthermore, for a positive integer k > 0

[zn](1 − z)−k =
(

n + k − 1
k − 1

)
=

Γ(n + k)
Γ(k)Γ(n + 1)

, (7.2.29)

(where Γ(x) is the Euler gamma function), we find for n ≥ m

E(Nn) = [zn]Nu(z, 1) = P (w)[zn−m](1− z)−2 = (n−m + 1)P (w).

In order to estimate variance, we introduce

Φ(z) = 2zmP (w)Mw(z)Dw(z),

and observe that

Φ(z) = Φ(1) + (z − 1)Φ′(1) +
(z − 1)2

2
Φ′′(1) + (z − 1)3f(z),

where f(z) is the remainder of the Taylor expansion of Φ(z) up to order 3 at
z = 1. For memoryless sources, Φ(z) and thus f(z) are polynomials of degree
2m− 2 and [zn](z − 1)f(z) is 0 for n ≥ 2m− 1. Hence, by (7.2.29) we arrive at

E(Nn(Nn− 1)) = [zn]Nuu(z, 1) = Φ(1)
(n + 2)(n + 1)

2
−Φ′(1)(n + 1) +

1
2
Φ′′(1).

But Mw(z)Dw(z) = Dw(z) + (1 − z) and taking into account formula (7.2.24)
for D(z), we finally obtain (7.2.26).

For Markov sources, Dw(z) has an additional term, namely

[zn]
2(z2mP (w)2F (z))

(1− z)2
,

where F (z), defined in (7.2.13), is analytic beyond the unit circle for |z| ≤ R,
with R > 1. The Taylor expansion of F (z) is E1 + (1 − z)E2, and applying
(7.2.29) again yields the result.

Version June 23, 2004

7.2. Exact string matching 343

Recall that P = Π for memoryless sources, so E1 = E2 = 0 and (7.2.26)
reduces to an equality for n ≥ 2m− 1. Thus

Var[Nn(w)] = nc1 + c2 (7.2.30)

with

c1 = P (w)(2S(1)− 1− (2m− 1)P (w)),
c2 = P (w)((m − 1)(3m− 1)P (w)− (m− 1)(2S(1)− 1)− 2S′(1)).

In passing we should notice that from the generating function N(z, u) we
can compute all moments of Nn. Instead, however, we present some limit
laws for P(Nn = r) for different values of r: We consider r = O(1), r =
E(Nn) + x

√
Var(Nn) (central and local limit regime), and r = (1 + δ)E(Nn)

(large deviations). From the central limit theorem (cf. Theorem 7.2.11 below)
we conclude that the normalized random variable (Nn − E(Nn))/

√
Var(Nn)

converges also in moments to the moments of the standard normal distribution.
This follows from the fact that in the theorem below we prove the convergence
of the normalized generating function to an analytic function, namely eu2/2 for
u complex in the vicinity of zero. Since an analytic function has well defined
derivatives, convergence in moments follows. We shall leave a formal proof to
the reader (cf. Exercise 7.2.3).

Theorem 7.2.9. Under the assumptions of Theorem 7.2.8, let ρw be the root
of Dw(z) = 0 of the smallest modulus and multiplicity one. Then, ρw is real
such that ρw > 1, and there exists ρ > ρw such that for r = O(1)

P(Nn(w) = r) =
r+1∑
j=1

(−1)jaj

(
n

j − 1

)
ρ−(n+j)

w + O(ρ−n) , (7.2.31)

where

ar+1 =
ρm

w P (w) (ρw − 1)r−1

(D′
w(ρw))r+1 , (7.2.32)

and the remaining coefficients can be computed according to

aj =
1

(r + 1− j)!
lim

z→ρw

dr+1−j

dzr+1−j

(
Nr(z)(z − ρw)r+1

)
(7.2.33)

with j = 1, 2, . . . , r.

In order to prove Theorem 7.2.9, we need the following simple result.

Lemma 7.2.10. The equation Dw(z) = 0 has at least one root, and all its roots
are of modulus greater than 1.

Version June 23, 2004

344 Analytic Approach to Pattern Matching

Proof. Poles of Dw(z) = (1 − z)/(1−Mw(z)) are clearly poles of 1
1−Mw(z) . As

1
1−Mw(z) is the generating function of a language, it converges for |z| < 1 and has
no pole of modulus smaller than 1. Since Dw(1) �= 0, then z = 1 is a simple pole
of 1/(1 −Mw(z)). As all its coefficients are real and non negative, there is no
other pole of modulus |z| = 1. It follows that all roots of Dw(z) are of modulus
greater than 1. The existence of a root is guaranteed since Dw(z) is either a
polynomial (Bernoulli model) or a ratio of polynomials (Markov model).

Proof of Theorem 7.2.9. We first re-write the formula on Nr(z) as follows

Nr(z) =
zmP (w)(Dw(z) + z − 1)r−1

Dr+1
w (z)

. (7.2.34)

Observe that P(Nn(w) = r) is the coefficient at zn of Nr(z). By Hadamard’s
theorem, asymptotics of the coefficients of a generating function depend on the
singularities of the underlying generating function. In our case, the generating
function Nr(z) is a rational function, thus we can only expect poles (for which
the denominator Dw(z) vanishes). Lemma 7.2.10 above establishes the existence
and properties of such a pole. Therefore, the generating function Nr(z) can be
expanded around its root of smallest modulus, let ρw be this smallest modulus,
in Laurent’s series:

Nr(z) =
r+1∑
j=1

aj

(z − ρw)j
+ Ñr(z) (7.2.35)

where Ñr(z) is analytical in |z| < ρ′ and ρ′ is defined as ρ′ = inf{|ρ| : ρ >
ρw and Dw(ρ) = 0}. The constants aj satisfy (7.2.33). This formula simplifies
into (7.2.32) for the leading constant a−r−1. As a consequence of analyticity
we have for 1 < ρw < ρ < ρ′: [zn]Ñ (r)(z) = O(ρ−n). Hence, the term Ñr(z)
contributes only to the lower terms in the asymptotic expansion of Nr(z). After
some algebra, and noting that [zn]1/(1 − z)k+1 =

(
n+k

n

)
, we prove Theorem

7.2.9.

In the next theorem we establish the central limit theorem in its strong form
(i.e., local limit theorem).

Theorem 7.2.11. Under the same assumption as in Theorem 7.2.8 we have

P(Nn(w) ≤ E(Nn) + x
√

Var(Nn)) =
(

1 + O

(
1√
n

))
1√
2π

∫ x

−∞
e−t2/2dt.

(7.2.36)
If, in addition, pij > 0 for all i, j ∈ A, then for any bounded real interval B

sup
x∈B

∣∣∣∣∣P(Nn(w) = �E(Nn) + x
√

Var(Nn)�)− 1√
2πVar(Nn)

e−
1
2 x2

∣∣∣∣∣ = o

(
1√
n

)
(7.2.37)

as n →∞.

Version June 23, 2004

7.2. Exact string matching 345

Proof. Let r = �E(Nn)+x
√

Var(Nn)� with x = O(1). We compute P(Nn(w) ≤
r) (central limit theorem) and P(Nn(w) = r) (local limit theorem) for r =
E(Nn) + x

√
Var(Nn) when x = O(1). Let νn = E(Nn(w)) = (n−m + 1)P (w)

and σ2
n = Var(Nn(w)) = c1n+O(1). To establish normality of (Nn(w)−νn)/σn,

it suffices, according to Lévy’s continuity theorem, to prove the following

lim
n→∞

e−τνn/σnNn(eτ/σn) = eτ2/2 (7.2.38)

for complex τ (actually, τ = iv suffices). Again, by Cauchy’s theorem

Nn(u) =
1

2πi

∮
N(z, u)
zn+1

dz =
1

2πi

∮
uP (w)

D2
w(z)(1− uMw(z))zn+1−m

dz ,

where the integration is along a circle around the origin. The evaluation of this
integral is standard and it appeals to the Cauchy residue theorem. Namely, we
enlarge the circle of integration to a bigger one, say R > 1, such that the bigger
circle contains the dominant pole of the integrand function. Observe that the
Cauchy integral over the bigger circle is O(R−n). Let us now substitute u = et

and z = eρ. Then, the poles of the integrand are the roots of the equation

1− etMw(eρ) = 0. (7.2.39)

This equation implicitly defines in some neighborhood of t = 0 a unique C∞

function ρ(t), satisfying ρ(0) = 0. Notably, all other roots ρ satisfy inf |ρ| =
ρ′ > 0. Then, the residue theorem with eρ′

> R > eρ > 1 leads to

Nn(et) = C(t)e−(n+1−m)ρ(t) + O(R−n) (7.2.40)

where

C(t) =
P (w)

D2
w(ρ(t))M ′

w(ρ(t))
.

To study properties of ρ(t), we observe that the cumulant formula implies
E(Nn(w)) = [t] log Nn(et) and σ2

n = [t2] log Nn(et) where, we recall, [tr]f(t)
denotes the coefficient of f(t) at tr. In our case, νn ∼ −nρ′(0) as well as
σ2

n ∼ −nρ′′(0). Set now in (7.2.40) t = τ/σn → 0 for some complex τ . Since
uniformly in t we have ρ(t) = tρ′(0)+ ρ′′(0)t2/2+ O(t3) for t→ 0, our estimate
(7.2.40) leads to

e−τνn/σnNn(eτ/σn) = exp
(

τ2

2
+ O(nτ3/σ3

n)
)

= eτ2/2
(
1 + O(1/

√
n)
)
,

which proves (7.2.36) after applying the Berry-Essen inequality that allows to
derive the error term O(1/

√
n) for the probability distribution.

To establish the local limit theorem, we observe that if pij > 0 for all i, j ∈ A,
then ρ(t) > 0 for t �= 0 (cf. Exercise 7.2.4). We can obtain much more refined

Version June 23, 2004

346 Analytic Approach to Pattern Matching

local limit result. Indeed, we find for x = o(n1/6)

P(Nn = E(Nn) + x
√

nc1) =
1√

2πnc1
e−

1
2 x2

(
1− κ3

2c
3/2
1

√
n

(
x− x3

3

))
+ O(n−3/2) , (7.2.41)

where κ3 a constant (i.e., the third cumulant). This completes the proof of
Theorem 7.2.11.

Finally, we establish precise large deviations for Nn. Large deviations play
a central role in many applications, most notably in data mining and molec-
ular biology, since it allows to establish a threshold for overrepresented and
underrepresented patterns.

Theorem 7.2.12. Let r = aE[Nn] with a = (1 + δ)P (w) for δ �= 0. For
complex t, define ρ(t) to be the root of

1− etMw(eρ) = 0 , (7.2.42)

and define ωa and σa by

−ρ′(ωa) = a, −ρ′′(ωa) = σ2
a.

Then

P(Nn(w) = (1 + δ)E(Nn)) ∼ 1
σa

√
2π(n−m + 1)

e−(n−m+1)I(a)+θa (7.2.43)

where I(a) = aωa + ρ(ωa) and

θa = log
P (w)emρ(ωa)

Dw(eρ(ωa)) + (1 − eρ(ωa))D′
w(eρ(ωa))

, (7.2.44)

and Dw(z) is defined in (7.2.17).

Proof. From (7.2.40) we conclude that

lim
n→∞

log Nn(et)
n

= −ρ(t) .

By the Gärtner-Ellis theorem we find

lim
n→∞

logP(Nn > na)
n

= −I(a) ,

where
I(a) = aωa + ρ(ωa)

with ωa being a solution of −ρ′(t) = a, A stronger version of the above result
is possible and we derive it in the sequel. In fact, we use (7.2.41) and the “shift
of mean” technique.

Version June 23, 2004

7.2. Exact string matching 347

As in the local limit regime, we could use Cauchy’s formula to compute the
probability P(Nn = r) for r = E(Nn) + xO(

√
n). But, formula (7.2.41) is only

good for x = O(1) while we need x = O(
√

n) for the large deviations. To
expand its validity, we shift the mean of the generating function Nn(u) to a new
value, say m = an = (1 + δ)P (w)(n−m + 1), so we can again apply the central
limit formula (7.2.41) around the new mean. To accomplish this, let us re-write
(7.2.40) as for any R > 0

Nn(et) = C(t)[g(t)]n−m+1 + O(R−n)

where g(t) = e−ρ(t). (In the derivation below, for simplicity we dropped O(R−n)
term.) The above suggests that Nn(et) is the moment generating function of a
sum Sn of n−m + 1 “almost” independent random variables X1, . . . , Xn−m+1

having moment generating function equal to g(t) and Y whose moment gener-
ating function is C(t). Observe that E(Sn) = (n −m + 1)P (w) while we need
to estimate the tail of Sn around (1 + δ)(n −m + 1)P (w). To achieve it, we
introduce a new random variable X̃i whose moment generating function g̃(t) is

g̃(t) =
g(t + ω)

g(ω)

where ω will be chosen later. Then, the mean and the variance of the new
variable X̃ is

E(X̃) =
g′(ω)
g(ω)

= −ρ′(ω) ,

Var(X̃) =
g′′(ω)
g(ω)

−
(

g′(ω)
g(ω)

)2

= −ρ′′(ω) .

Let us now choose ωa such that

−ρ′(ωa) =
g′(ωa)
g(ωa)

= a = P (w)(1 + δ) .

Then, the new sum S̃n−Y = X̃1+. . .+X̃n−m+1 has a new mean (1+δ)P (w)(n−
m+1) = a(n−m+1), and hence we can apply to S̃n−Y the central limit result
(7.2.41). To translate from S̃n − Y to Sn we use the following simple formula

[etM] (gn(t)) =
gn(ω)
eωM

[etM]
(

gM (t + ω)
gM (ω)

)
(7.2.45)

where M = a(n−m+1) and [etn]g(t) denotes the coefficient of g(t) at zn = etn

(where z = et). Now, we can apply (7.2.41) to the right-hand side of the above
to obtain

[etM]
(

gM (t + ω)
gM (ω)

)
∼ 1

σa

√
2π(n−m + 1)

.

To obtain the final result we must take into account the effect of Y whose
moment generating function is C(t). This leads to replacing a = 1 + δ by a =

Version June 23, 2004

348 Analytic Approach to Pattern Matching

Table 7.1. Z score vs p-value of tandem repeats in A.thaliana.

Oligomer Obs. p-val Z-sc.
(large dev.)

AATTGGCGG 2 8.059× 10−4 48.71
TTTGTACCA 3 4.350× 10−5 22.96
ACGGTTCAC 3 2.265× 10−6 55.49
AAGACGGTT 3 2.186× 10−6 48.95
ACGACGCTT 4 1.604× 10−9 74.01
ACGCTTGG 4 5.374× 10−10 84.93

GAGAAGACG 5 0.687× 10−14 151.10

1+δ+C′(0)/n resulting the the correction term eθa = eC′(0)ωa . Theorem 7.2.12
is proved.

We illustrate the above results on an example taken from molecular biology.

Example 7.2.13. Biologists apply the so called Z-score and p-value to deter-
mine whether biological sequences such as DNA or protein contain a biological
signal, that is, an underrepresented or overrepresented patterns. These quanti-
ties are defined as

Z(w) =
E(Nn)−Nn(w)√

Var(Nn(w))
,

pval(r) = P (Nn(w) > r).

Z-score indicates by how many standard deviations the observed value Nn(w)
is away from the mean. Clearly, this score makes sense only if one can prove, as
we did in Theorem 7.2.11, that Z satisfies (at least asymptotically) the Central
Limit Theorem (CLT). On the other hand, p-value is used for rare occurrences,
far away from the mean where one needs to apply the large deviations as in
Theorem 7.2.12.

The range of validity of Z-score and p-value are important as illustrated
in Table 7.2.13 where results for 2008 nucleotides long fragments of A.thaliana
(a plant genome) are presented. In the table for each 9-mer the number of
observations is presented in the first column following by the large deviations
probability computed from Theorem 7.2.12 and Z-score. We observe that for
AATTGGCGG and AAGACGGTT the Z-scores are about 48 while p-values
differ by two order of magnitudes. In fact, occurrences of these 9-mers are very
rare, and therefore Z-score is not an adequate measure.

7.2.4. Waiting times

We shall now discuss the waiting times Tw and Tj, where Tw = T1 is the first
time w occurs in the text, while Tj is the minimum length of the text in which

Version June 23, 2004

7.3. Generalized string matching 349

w occurs j times. Fortunately, we do not need re-derive generating function of
Tj since, as we have already indicated in (7.2.3), the following duality principle
holds

{Nn ≥ j} = {Tj ≤ n},
and in particular, {Tw > n} = {Nn = 0}. Therefore, if

T (u, z) =
∑
n≥0

∑
j≥0

P(Tj = n)znuj ,

then by the duality principle we have

(1− u)T (u, z) + u(1− z)N(z, u) = 1,

and one obtains T (u, z) from Theorem 7.2.7. Waiting times were analyzed in
depth in Chapter 6.

Finally, observe that the above duality principle implies

E(Tw) =
∑
n≥0

P(Nn = 0) = N0(1).

In particular, for memoryless sources, from Theorem 7.2.7 we conclude that

N0(z) =
zmS(z)

(1− z)S(z) + zmP (w)
.

Hence

E(Tw) =
∑
n≥0

P(Nn(w) = 0) = N0(1) =
S(1)
P (w)

=
∑

k∈P(w)

1
P (wk

1)
=

1
P (w)

+
∑

k∈P(w)−{m}

1
P (wk

1)
(7.2.46)

7.3. Generalized string matching

In this section we consider generalized pattern matching in which a set of pat-
terns (rather than a single pattern) is given. We assume that the pattern is a
pair of sets of words (W0,W) where W =

⋃d
i=1Wi consists of sets Wi ⊂ Ami

(i.e., all words in Wi have a fixed length equal to mi). The set W0 is called
the forbidden set. For W0 = ∅ one is interested in the number of pattern oc-
currences, Nn(W), defined as the number of patterns from W occurring in the
text Xn

1 generated by a (random) source. Another parameter of interest may be
the number of positions in Xn

1 where a pattern from W appears (clearly, some
patterns may occur more than once at some positions). The latter quantity we
denote as Πn. If we define Π(i)

n as the number of positions where a word from
Wi occurs, then

Nn(W) = Π(1)
n + · · ·+ Π(d)

n .

Version June 23, 2004

350 Analytic Approach to Pattern Matching

Notice that at any given position of the text and for a given i only one word
from Wi can occur.

For W0 �= ∅ one studies the number of occurrences Nn(W) under the condi-
tion that Nn(W0) := Π(0)

n = 0, that is, there is no occurrence of a pattern from
W0 in the text Xn

1 . This could be called a restricted pattern matching since one
restricts the text to those strings that do not contain strings from W0.

Finally, we may set Wi = ∅ for i = 1, . . . , d with W0 �= ∅ and count the
number of text strings that do not contain any pattern fromW0. (Alternatively,
we can estimate the probability that a randomly selected text Xn

1 does not
contain any pattern from W0.) In particular, define for � ≤ k

W0 = {0 . . . 0︸ ︷︷ ︸
	

, . . . , 0 . . . 0︸ ︷︷ ︸
k

}, (7.3.1)

that is, W0 consists of runs of zeros of length at least � and at most k. A text
satisfying the property that no pattern from W0 defined in (7.3.1) occurs in it
is called a (�, k) sequence. Such sequences are used for magnetic coding.

In this section, we first present an analysis of the generalized pattern match-
ing with W0 = ∅ and d = 1 that we call the reduced pattern set (i.e., no pattern
is a substring of another pattern) followed by a detailed analysis of the gen-
eralized pattern matching. We describe two methods of analysis. First, we
generalize our language approach from the previous section, and then for the
general pattern matching case we apply de Bruijn’s automaton and spectral
analysis of matrices. Finally, we enumerate (�, k) sequences and compute the so
called Shannon capacity for such sequences.

Throughout this section we assume that the text is generated by a (non-de-
generate) memoryless source (B), as defined in Section 7.1.

7.3.1. String matching over reduced set of patterns

We analyze here a special case of the generalized pattern matching with W0 = ∅
and d = 1. In this case we shall write W1 := W = {w1, . . . , wK} where wi

(1 ≤ i ≤ K) are given patterns with fixed length |wi| = m. We shall generalize
the results from the exact pattern matching section, but we omit most of the
proofs or move them to exercises.

As before, let T≥1 be a language of words containing at least one occurrence
from the set W , and for any nonnegative integer r, let Tr be the language of
words containing exactly r occurrences from W . In order to characterize Tr we
introduce some additional languages for any 1 ≤ i, j ≤ K:

• Mij = {v : wiv ∈ T2 and wj occurs at the right end of v};

• Ri defined as the set of words containing only one occurrence of wi, located
at the right end;

• Ui = {u : wiu ∈ T1}, that is, a set of words u such that the only occurrence
of wi ∈ W in wiu is on the left.

Version June 23, 2004

7.3. Generalized string matching 351

We also need to generalize the autocorrelation set and the autocorrelation
polynomial to a set of patterns. For any given two strings w and u, let

Sw,u = {um
k+1 : wm

m−k+1 = uk
1}

be the correlation set. The set of positions k satisfying uk
1 = wm

m−k+1 is denoted
as P(w, u). If w = x · v and u = v · y for some words x, y, v, then y ∈ Sw,u and
|v| ∈ P(w, u). The correlation polynomial, Sw,u(z), of w and u is the associated
generating function of Sw,u, that is,

Sw,u(z) =
∑

k∈P(w,u)

P (um
k+1)z

m−k.

In particular, for wi, wj ∈ W we define Si,j := Swi,wj . The correlation matrix
of W is denoted as S(z) = {Swiwj (z)}i,j=1,K .

Example 7.3.1. Consider a DNA sequence over the alphabet A = {A, C,
G, T } generated by a memoryless source with P (A) = 1

5 , P (C) = 3
10 , P (G) = 3

10
and P (T) = 1

5 . Let w1 = ATT and w2 = TAT . Then the correlation matrix
S(z) is

S(z) =

(
1 1 + z2

25

1 + z
5 1 + z2

25

)
.

In order to analyze the number of occurrences Nn(W) and its generat-
ing functions we first generalize the language relationships discussed in The-
orem 7.2.3. Observe that

Tr =
∑

1≤i,j≤K

RiMr−1
ij Uj ,

T≥1 =
∑
r≥1

∑
1≤i,j≤K

RiMr−1
ij Uj ,

where
∑

denotes disjoint union of sets. As in Theorem 7.2.5, one finds the
following relationships between just introduced languages⋃

k≥1

Mk
i,j = A∗ · wj + Sij − ε 1 ≤ i, j ≤ K,

Ui · A =
⋃
j

Mij + Ui − ε, 1 ≤ i ≤ K,

A · Rj − (Rj − wj) =
⋃
i

wiMij , 1 ≤ j ≤ K,

T0 · wj = Rj +Ri(Sij − ε), 1 ≤ i, j ≤ K.

Let us now analyze Nn(W) in a probabilistic framework. To simplify our pre-
sentation, we assume that the text is generated by a memoryless source. Then
the above language relationships translate directly into generating functions, as
discussed the last section.

Version June 23, 2004

352 Analytic Approach to Pattern Matching

Before we proceed, we adopt the following notations. Lower-case letters
are reserved for vectors which are assumed to be column vectors (e.g., xt =
(x1, . . . , xK)) except for vectors of generating functions which we denote by
uppercase letters (e.g., Ut(z) = (U1(z), . . . , UK(z)) where Ui(z) is the generating
function of a language Uwi). In the above the upper index ”t“ denotes transpose.
We shall use upper-case letters for matrices (e.g., S(z) = {Swiwj (z)}i,j=1,K). In
particular, we write I for the identity matrix, and �1t = (1, . . . , 1) for the vector
of all ones.

Now we are ready to present exact formulas for the generating function
Nr(z) =

∑
n≥0 P(Nn(W) = r)zn and N(z, u) =

∑
k≥0 Nr(z)ur. The following

theorem is a direct consequences of our definitions and language relationships.

Theorem 7.3.2. Let W = {w1, . . . , wK} be a given set of reduced patterns
each of length m, and X be a random text of length n generated by a memoryless
source. The generating functions Nr(z) and N(z, u) can be computed as follows:

Nr(z) = Rt(z)Mr−1(z)U(z) (7.3.2)
N(z, u) = Rt(z)u(I− uM(z))−1U(z) , (7.3.3)

where, denoting wt = (P (w1), . . . , P (wK)) and �1t = (1, 1, . . . , 1), we have

M(z) = (D(z) + (z − 1)I)D(z)−1, (7.3.4)

(I−M(z))−1 = S(z) +
zm

1− z
�1 ·wt, (7.3.5)

U(z) =
1

1− z
(I−M(z)) ·�1, (7.3.6)

Rt(z) =
zm

1− z
wt · (I−M(z)), (7.3.7)

and
D(z) = (1 − z)S(z) + zm�1 ·wt.

Using these results and following footsteps of our analysis for the exact
pattern matching, we arrive at the following asymptotic results.

Theorem 7.3.3. Let the text X be generated by a memoryless source with
P (wi) > 0 for i = 1, . . . , K and P (W) =

∑
wi∈W P (wi) = wt ·�1.

(i) The following holds

E(Nn(W)) = (n−m + 1)P (W),

Var(Nn(W)) = (n−m + 1)
(
P (W) + P 2(W)− 2mP 2(W) + 2wt(S(1)− I)�1

)
+ m(m− 1)P 2(W)− 2wtṠ(1) ·�1 ,

where Ṡ(1) denotes the derivative of the matrix S(z) at z = 1.

Version June 23, 2004

7.3. Generalized string matching 353

(ii) Let ρW be the smallest root of multiplicity one of detD(z) = 0 outside the
unit circle |z| ≤ 1. There exists ρ > ρW such that for r = O(1)

P(Nn(W) = r) = (−1)r+1 ar+1

r!
(n)rρ

−(n−m+r+1)
W

+
r∑

j=1

(−1)jaj

(
n

j − 1

)
ρ
−(n+j)
W + O(ρ−n) ,

where ar are computable constants.

(iii) Let B be a bounded real interval and r = �E(Nn) + x
√

Var(Nn)�. Then

sup
x∈B

∣∣∣∣∣P(Nn(W) = r) − 1√
2πVar(Nn)

e−
1
2 x2

∣∣∣∣∣ = o

(
1√
n

)
,

as n→∞.

(iv) Let r = (1 + δ)E(Nn) with δ �= 0, and let a = (1 + δ)P (W). Define τ(t) to
be the root of

det(I− etM(eτ)) = 0 ,

and ωa and σa to be

−τ ′(ωa) = −a, −τ ′′(ωa) = σ2
a.

Then

P(Nn(W) = r) ∼ 1
σa

√
2π(n−m + 1)

e−(n−m+1)I(a)+θa

where I(a) = aωa + τ(ωa) and θa is a computable constant (cf. Exercise 7.3.3).

Proof. We only sketch the derivation of part (iii) but we present two proofs.
Our starting point is

N(z, u) = Rt(z)u(I− uM(z))−1U(z)

shown in Theorem 7.3.2 to hold for |z| < 1 and |u| < 1. We may proceed in two
different ways.

Method A: Determinant Approach.
Observe that

(I− uM(z))−1 =
B(z, u)

det(I− uM(z))

where B(z, u) is a complex matrix. Let

Q(z, u) := det(I− uM(z)),

and let z0 := ρ(u) be the smallest root of

Q(z, u) = det(I− uM(z)) = 0.

Version June 23, 2004

354 Analytic Approach to Pattern Matching

Observe that ρ(1) = 1 by (7.3.5).
For our central limit result, we restrict out interest to ρ(u) in a vicinity of

u = 1. Such a root exists and is unique since for real z the matrix M(z) has all
positive coefficients. The Perron–Frobenius theorem implies that all other roots
ρi(u) are of smaller modulus. Finally, one can analytically continue ρ(u) to a
complex neighborhood of u. Thus Cauchy’s formula yields for some A < 1

Nn(u) := [zn]N(z, u) =
1

2πi

∮
Rt(z)B(z, u)U(z)

Q(z, u)
dz

zn+1

= C(u)ρ−n(u)(1 + O(An))

where C(u) = −Rt(ρ(u))B(ρ(u), u)U(ρ(u))ρ−1(u)/Q′(ρ(u), u). As in the proof
of Theorem 7.2.11, we recognize a quasi-power form for Nn(u) that directly
leads to the central limit theorem. An application of a saddle point method
completes the proof of the local limit theorem.

Method B: Eigenvalue Approach

We apply now the Perron–Frobenius theorem for positive matrices together
with a matrix spectral representation to obtain even more precise asymptotics.
Our starting point is the following formula

[I− uM(z)]−1 =
∞∑

k=0

ukMk(z). (7.3.8)

Now, observe that M(z) for real z, say x, is a positive matrix since each element
Mij(x) is the generating function of the language Mij and for any v ∈ Mij we
have P (v) > 0 for memoryless sources. Let then λ1(x), λ2(x), . . . , λK(x) are
eigenvalues of M(x). By Perron–Frobenius result we know that λ1(x) is simple,
real and λ1(x) > |λi(x)| for i ≥ 2. (To simplify our further derivation, we also
assume that λi(x) are simple but this assumption will not have any significant
impact on our asymptotics, as we shall see below.) Let li and ri, i = 1, . . . , K are
left and right eigenvectors corresponding to λ1(x), λ2(x), . . . , λK(x) eigenvalues,
respectively. We set 〈l1, r1〉 = 1 where 〈x, y〉 is the scalar product of the vectors
x and y. Since ri is orthogonal to the left eigenvector rj for j �= i, we can write
for any vector x

x = 〈l1, x〉r1 +
K∑

i=2

〈li, x〉ri.

This yields

M(x)x = 〈l1, x〉λ1(x)r1 +
K∑

i=2

〈li, x〉λi(x)ri.

Since Mk(x) has eigenvalues λk
1(x), λk

2(x), . . . , λk
K(x), then — dropping even the

assumption about eigenvalues λ2, . . . , λK being simple — we arrive at

Mk(x)x = 〈l1, x〉r1λk
1(x) +

K′∑
i=2

qi(k)〈li, x〉riλ
k
i (x) (7.3.9)

Version June 23, 2004

7.3. Generalized string matching 355

where qi(k) is a polynomial in k (qi(k) ≡ 1 when the eigenvalues λ2, . . . , λK are
simple). Finally, we observe that we can analytically continue λ1(x) to complex
plane due to separation of λ1(x) form other eigenvalues leading to λ1(z).

Applying now (7.3.9) to (7.3.8) and using it in the formula for N(z, u) derived
in Theorem 7.3.2 we obtain

N(z, u) = Rt(z)u[I− uM(z)]−1U(z)

= uRt(z)

(∞∑
k=0

ukλk
1(z)〈l1(z), U(z)〉r1(z)

+
K′∑
i=2

ukλk
i (z)〈li(z), U(z)〉ri(z)

=

uC1(z)
1− uλ1(z)

+
K′∑
i=2

uCi(z)
1− uλi(z)

for some polynomials Ci(z). This representation entails to apply the Cauchy
formula yielding, as before, for A < 1 and a polynomial B(u)

Nn(u) := [zn]N(z, u) = B(u)ρ−n(u)(1 + O(An))

where ρ(u) is the smallest root of 1−uλ(z) = 0 which coincides with the smallest
root of det(I − uM(u)) = 0. In the above A < 1 since λ1(z) dominates all the
other eigenvalues. In the next section we return to this method and discuss it
in some more depth.

7.3.2. Analysis of the generalized string matching

In this section we deal with a general pattern matching problem where words
in W are not of the same length, that is, W =

⋃d
i=1Wi such that Wi is a

subset of Ami with all mi being different. We still keep W0 = ∅ (i.e., there
are no forbidden words). In the next section, we consider the case W0 �= ∅.
We present here a powerful method based on a finite automata (i.e., de Bruijn
graph). This approach is very versatile, but unfortunately is not as insightful
as the combinatorial approach discussed so far.

Our goal is to derive the probability generating function Nn(u) = E(uNn(W))
of the number of pattern W occurrences in the text. We start with building
an automaton that scans the text X1X2 · · ·Xn and recognizes occurrences of
patterns from the set W . As a matter of fact, our automaton is a de Bruijn
graph that we describe in the sequel: Let M = max{m1, . . . , md} − 1 and
B = AM . The de Bruijn automaton is built over the state space B. Let b ∈ B
and a ∈ A. Then a transition from a state b upon scanning symbol a of the text
is to b̂ ∈ B such that

b̂ = b2b3 · · · bMa,

that is, the leftmost symbol of b is erased and symbol a is appended on the
right. We shall denote such a transition as ba �→ b̂ or ba ∈ Ab̂ since the first

Version June 23, 2004

356 Analytic Approach to Pattern Matching

symbol of b has been deleted when scanning symbol a. When scanning a text
of length n −M one constructs an associated path of length n −M in the de
Bruijn automaton that begins at a state formed by the first M symbols of the
text, that is, b = X1X2 · · ·XM .

aa

ab

ba

bba

a

a

b

b

a

b

a

Figure 7.2. The de Bruijn graph for W = {ab, aab, aba}.

To record the number of pattern occurrences we equip the automaton with a
counter φ(b, a). When a transition occurs, we increment φ(b, a) by the number of
occurrences of patterns from W in the text ba. Since all occurrences of patterns
from W that end at a are contained in the text of the form ba, we realize that

φ(b, a) = NM+1(W , ba)−NM (W , b)

where Nk(W , x) is the number of pattern occurrences in the text x of length k.
Having built such an automaton, we construct a transition V M × V M matrix
T(u) as a function of a complex variable u and indexed by B × B such that

[T(u)]b,b̂ := P (a)uφ(b,a)[[ba ∈ Ab̂]]
= P (a)uNM+1(W,ba)−NM(W,b)[[b̂ = b2b3 · · · bMa]]

(7.3.10)

where Iverson’s bracket convention is used:

[[B]] =
{

1 if the property B holds,
0 otherwise.

Example 7.3.4. Let W = {ab, aab, aba}. Then M = 2, the de Bruijn graph
is presented in Figure 7.2, and the matrix T(u) is shown below

T(u) =

aa ab ba bb

aa
ab
ba
bb

P (a) P (b)u 0 0

0 0 P (a)u2 P (b)
P (a) P (b) 0 0

0 0 P (a) P (b)

 .

Next, we extend the above construction to scan a text of length k ≥ M .
By combinatorial properties of matrix products, the entry of index b, b̂ of the

Version June 23, 2004

7.3. Generalized string matching 357

power Tk(u) cumulates all terms corresponding to starting in state b, ending
in state b̂, and recording the total number of occurrences of patterns W found
upon scanning the last k letters of the text. Therefore,[

Tk(u)
]
b,b̂

=
∑

v∈Ak

P (v)uNM+k(W,bv)−NM (W,b). (7.3.11)

Define now a vector x(u) indexed by b as

[x(u)]b = P (b)uNM(W,b).

Then, the summation of all the entries of the row vector x(u)tTk(u) is achieved
by means of the vector �1 = (1, . . . , 1) so that the quantity x(u)tT(u)k�1 represents
the probability generating function of Nk+M (W) taken over all texts of length
M + k. By setting n = M + k we prove the following theorem.

Theorem 7.3.5. Consider a general pattern W = (W1, . . . ,Wd) with M =
max{m1, . . . , md} − 1. Let T(u) be the transition matrix defined as

[T(u)]b,b̂ := P (a)uNM+1(W,ba)−NM(W,b)[[b̂ = b2b3 · · · bMa]]

where b, b̂ ∈ AM and a ∈ A. Then

Nn(u) = E(uNn(W)) = bt(u)Tn(u)�1 (7.3.12)

where bt(u) = xt(u)T−M (u). Also,

N(z, u) =
∑
n≥0

Nn(z)zn = bt(u)(I− zT(u))−1�1 (7.3.13)

for |z| < 1.

Let us now return for a moment to the reduced pattern case discussed in
the previous section and compare expression (7.3.13) derived here with (7.3.3)
of Theorem 7.3.2 that we repeat below

N(z, u) = Rt(z)u(I− uM(z))−1U(z).

Although there is a striking resemblance of these formulas they are quite dif-
ferent. In (7.3.3) M(z) is a matrix of z representing generating functions of
languages Mij , while T(u) is a function of u and it is the transition matrix of
the associated de Bruijn graph. Nevertheless, the eigenvalue method discussed
in the proof of Theorem 7.3.3 can be directly applied to derive limit laws of
Nn(W) for general set of patterns W . We shall discuss it next.

To study asymptotics of Nn(W) we need to estimate the growth of T n(u)
which is governed by the growth of the largest eigenvalue, as we have already
seen in the previous sections. Here, however, the situation is a little more
complicated since the matrix T(u) is irreducible but not necessary primitive

Version June 23, 2004

358 Analytic Approach to Pattern Matching

(cf. Chapter 1 for in depth discussion). To be more precise, T(u) is irreducible
if its associated de Bruijn graph is strongly connected, while for primitivity of
T(u) we require that the greatest common divisor of the cycle weights of the de
Bruijn graph is equal to one.

Let us first verify irreducibility of T(u). As easy to check the matrix is
irreducible since for any g ≥ M and b, b̂ ∈ AM there are two words w, v ∈ Ag

such that bw = vb̂ (e.g., for g = M one can take w = b̂ and v = b). Thus
Tg(u) > 0 for u > 0 which is sufficient for irreducibility.

Let us now have a closer look at the primitivity of T(u). We start with a
precise definition. Let ψ(b, b̂) := φ(ba) where ba �→ b̂ be the counter value when
transitioned form b to b̂. Let also C be a cycle in the associated de Bruijn graph.
Define the total weight of the cycle C as

ψ(C) =
∑

b,b̂∈C

ψ(b, b̂).

Finally, we set ψW = gcd(ψ(C) : C cycle). If ψW = 1, then we say T(u) is
primitive.

Example 7.3.4 (continued). Consider again the matrix T(u) and its associ-
ated graph shown in Figure 7.2. There are six cycles of respective weights
0, 3, 2, 0, 0, 1, therefore ψW = 1 and T(u) is primitive.

Consider now another matrix

T(u) =
(

P (a) P (b)u4

P (a)u2 P (b)u3

)
.

This time there are three cycles of weights 0, 6 and 3 and ψW = 3. The matrix
is not primitive. Observe that the characteristic polynomial λ(u) of this matrix
is a polynomial in u3.

Observe that the diagonal elements of T(u)k (i.e., its trace) are polynomials
in u	 if and only if � divides ψW ; therefore, the characteristic polynomial det(zI−
T(u)) of T(u) is a polynomial in uψW . Indeed, it is known that for any matrix
A

det(I−A) = exp

∑
k≥0

−Tr[Ak]
k

where Tr[A] is the trace of A.

Asymptotic behavior of the generating function Nn(u) = E(uNn(W)), hence
Nn(W), depends on the growth of Tn(u). The next lemma summarizes some
useful properties of T(u) and its eigenvalues. For the matrix T(u) of dimension
|A|M ×|A|M we denote by λj(u) for j = 1, . . . , R = |AM | its eigenvalues and we
assume that |λ1(u)| ≥ |λ2(u)| ≥ · · · ≥ |λR(u)|. To simplify notation, we often
drop the index of the largest eigenvalue, that is, λ(u) := λ1(u). Observe that
�(u) = |λ(u)| is known as the spectral radius and it is equal to

�(u) = lim
n→∞

||T n(u)||1/n

Version June 23, 2004

7.3. Generalized string matching 359

where || · || is any matrix norm.

Lemma 7.3.6. Let GM (W) and T(u) denote, respectively, the de Bruijn graph
and its associated matrix defined in (7.3.10) for general pattern W . Assume
P (W) > 0.

(i) For u > 0 the matrix T(u) has a unique dominant eigenvalue λ(u) (> λj(u)
for j = 2, . . . , |A|M) that is strictly positive and a dominant eigenvector r(u)
whose all entries are strictly positive. Furthermore, there exists a complex
neighborhood of the real positive axis on which the mappings u → λ(u) and
u→ r(u) are well-defined and analytic.

(ii) Define Λ(s) := log λ(es) for s complex. For real s the function s → Λ(s) is
strictly increasing and strictly convex. In addition,

Λ(0) = 1, Λ′(0) = P (W) > 0, Λ′′(0) := σ2(W) > 0.

(iii) For any θ ∈ (0, 2π) and x real �(xeiθ) ≤ �(x).

(iv) For any θ ∈ (0, 2π), if ψW = 1, then for x real �(xeiθ) < �(x); otherwise
ψW = d > 1 and �(xeiθ) = �(x) if and only if θ = 2kπ/d.

Proof. We first prove (i). Take u > 0 real positive. Then the matrix T(u)
has positive entries, and for any exponent g ≥ M the gth power of T(u) has
strictly positive entries, as shown above (see irreducibility of T(u)). Therefore,
by the Perron–Frobenius theorem (cf. also Chapter 1) there exists an eigenvalue
λ(u) that dominates strictly all the others. Moreover, it is simple and strictly
positive. In other words, one has

λ(u) := λ1(u) > |λ2(u)| ≥ |λ3(u)| ≥ · · · .

Furthermore, the corresponding eigenvector r(u) has all its components strictly
positive. Since the dominant eigenvalue is separated from other eigenvalues, by
perturbation theory there exists a complex neighborhood of the real positive
axis where the functions u → λ(u) and u → r(u) are well-defined and ana-
lytic. Moreover, λ(u) is an algebraic function since it satisfies the characteristic
equation det(λI− T(u)) = 0.

We now prove part (ii). The increasing property for λ(u) (and thus for Λ(s))
is a consequence of the fact that if A and B are nonnegative irreducible matrices
such that Ai,j ≥ Bi,j for all (i, j), then the spectral radius of A is larger than
the spectral radius of B.

For convexity of Λ(s), it is sufficient to prove that for u, v > 0

λ(
√

uv) ≤
√

λ(u)
√

λ(v).

Since eigenvectors are defined up to a constant, one can always choose the
eigenvectors r(

√
uv), r(u), and r(v) such that

max
i

ri(
√

uv)√
ri(u) ri(v)

= 1.

Version June 23, 2004

360 Analytic Approach to Pattern Matching

Suppose that this maximum is attained at some index i. We denote by Pij the
coefficient at u in T(u), that is, Pij = [uψ][T(u)]ij . By the Cauchy-Schwarz
inequality we have

λ(
√

uv)ri(
√

uv) =
∑

j

Pij (
√

uv)ψ(i,j) rj(
√

uv)

≤
∑

j

Pij(
√

uv)ψ(i,j)
√

rj(u) rj(v)

≤

∑
j

Pij uψ(i,j) rj(u)

1/2 ∑
j

Pij vψ(i,j) rj(v)

1/2

=
√

λ(u)
√

λ(v)
√

ri(u) ri(v),

which implies convexity of Λ(s). To show that Λ(s) is strictly convex, we argue
as follows: Observe that for u = 1 the matrix T(u) is stochastic, hence λ(1) = 1
and Λ(0) = 0. As we shall see below, the mean and the variance of Nn(W)
are equal asymptotically to nΛ′(0) and nΛ′′(0), respectively. From the problem
formulation, we conclude that Λ′(0) = P (W) > 0 and Λ′′(0) = σ2(W) > 0.
Therefore, Λ′(s) and Λ′′(s) cannot be always 0 and (since they are analytic)
they cannot be zero on any interval. This implies that Λ(s) is strictly increasing
and strictly convex.

We now establish part (iii). For |u| = 1, and x real positive, consider two
matrices T(x) and T(xu). From (i) we know that for T(x) there exist a dominant
strictly positive eigenvalue λ := λ(x) and a dominant eigenvector r := r(x)
whose all entries rj are strictly positive. Consider an eigenvalue ν of T(xu) and
its corresponding eigenvector s := s(u). Denote by vj the ratio sj/rj . One can
always choose r and s such that max1≤j≤R |vj | = 1. Suppose that this maximum
is attained for some index i. Then

|νsi| = |
∑

j

Pij (xu)ψ(i,j) sj | ≤
∑

j

Pij xψ(i,j) rj = λri. (7.3.14)

We conclude that |ν| ≤ λ, and part (iii) is proven.

Finally we deal with part (iv). Suppose now that the equality |ν| = λ holds.
Then, all the previous inequalities in (7.3.14) become equalities. First, for all
indices � such that Pi,	 �= 0, we deduce that |s	| = r	, and v	 has modulus 1.
For these indices �, we have the same equalities in (7.3.14) as for i. Finally,
the transitivity of the de Bruijn graph entails that that each complex vj is of
modulus 1. Now, the converse of the triangular inequality shows that for every
edge (i, j) ∈ GM (W) we have

uψ(i,j)vj =
ν

λ
vi,

and for any cycle of length L we conclude that(ν

λ

)L

= uψ(C).

Version June 23, 2004

7.3. Generalized string matching 361

However, for any pattern W there exists a cycle C of length one with weight
ψ(C) = 0, as easy to see. This proves that ν = λ and that uψ(C) = 1 for any
cycle C. If ψW = gcd(ψ(C), C cycle) = 1, then u = 1 and �(xeiθ) < �(x) for
θ ∈ (0, 2π).

Suppose now that ψW = d > 1. Then, the characteristic polynomial and the
dominant eigenvalue λ(v) are functions of vd. The lemma is proved.

Lemma 7.3.6 provides the main technical support to prove the forthcoming
results; in particular, to establish asymptotic behavior of Tn(u) for large n. In-
deed, our starting point is (7.3.13) to which we apply the spectral decomposition
as in (7.3.9) to conclude that

N(z, u) =
c(u)

1− zλ(u)
+
∑
i≥2

ci(u)
(1− zλi(u))αi

.

where αi ≥ 1 are some integers. In the above, λ(u) is the dominant eigenvalue,
while λi(u) < λ(u) are other eigenvalues. The numerator has the expression
c(u) = bt(u)〈l(u),�1〉r(u) where l(u) and r(u) are the left and the right domi-
nant eigenvectors and bt(u) is defined after (7.3.12). Then Cauchy’s coefficient
formula implies

Nn(u) = c(u)λn(u)(1 + O(An)) (7.3.15)

for some A < 1. Equivalently, the moment generating function for Nn(W) is
given by the following uniform approximation in a neighborhood of s = 0

E(esNn(W)) = d(s)λn(es)(1 + O(An)) = d(s) exp (nΛ(s)) (1 + O(An)) (7.3.16)

where d(s) = c(es) and Λ(s) = log λ(es).
There is another, more general, derivation of (7.3.15). Observe that the

spectral decomposition of T(u) when u lies in a sufficiently small complex neigh-
borhood of any compact subinterval of (0, +∞) is of the form

T(u) = λ(u)Q(u) + R(u) (7.3.17)

where Q(u) is the projection under the dominant eigensubspace and R(u) a
matrix whose spectral radius equals |λ2(u)|. Therefore,

T(u)n = λ(u)nQ(u) + R(u)n,

entails the estimate (7.3.15). The next results follows immediately from (7.3.16).

Theorem 7.3.7. Let W = (W0,W1, . . . ,Wd) be a generalized pattern with
W0 = ∅ generated by a memoryless source. For large n

E(Nn(W)) = nΛ′(0) + O(1) = nP (W) + O(1), (7.3.18)
Var(Nn(W)) = nΛ′′(0) + O(1) = nσ2(W) + O(1) (7.3.19)

where Λ(s) = log λ(es) and λ(u) is the largest eigenvalue of T(u). Furthermore,

P(Nn(W) = 0) = Cλn(0)(1 + O(An))

where C > 0 is a constant and A < 1.

Version June 23, 2004

362 Analytic Approach to Pattern Matching

Now we establish limit laws, starting with the central limit law and its local
limit law.

Theorem 7.3.8. Under the same assumption as for Theorem 7.3.7, the fol-
lowing holds

sup
x∈B

∣∣∣∣P(Nn(W)− nP (W)
σ(W)

√
n

≤ x

)
− 1√

2π

∫ x

−∞
e−t2/2 dt

∣∣∣∣ = O

(
1√
n

)
(7.3.20)

where B is a bounded real interval.

Proof. The uniform asymptotic expansion (7.3.16) of a sequence of moment
generating functions is known as a “quasi-powers approximation”. Then an ap-
plication of the classical Levy continuity theorem leads to the Gaussian limit
law. An application of the Berry-Essen inequality provides the speed of conver-
gence which is O(1/

√
n). This proves the theorem.

Finally, we deal with the large deviations.

Theorem 7.3.9. Under the same assumption as before, Let ωa be a solution
of

ωλ′(ω) = aλ(ω)

for some a �= P (W), where λ(u) is the largest eigenvalue of T(u). Define

I(a) = a logωa − log λ(ωa). (7.3.21)

Then there exists a constant C > 0 such that I(a) > 0 for a �= P (W) and

lim
n→∞

1
n

logP (Nn(W) ≤ an) = −I(x) if 0 < x < P (W) (7.3.22)

lim
n→∞

1
n

logP (Nn(W) ≥ na) = −I(x) if P (W) < x < C. (7.3.23)

Proof. We consider now large deviations and establish (7.3.22). The variable
Nn(W) is by definition of at most linear growth, and there exists a a constant
C such that Nn(W) ≤ Cn + O(1). Let 0 < x < P (W). Cauchy’s coefficient
formula provides

P (Nn(W) ≤ k) =
1

2iπ

∫
|u|=r

Nn(u)
uk

du

u(1− u)
.

For ease of exposition, we first discuss the case of a primitive pattern. We
recall that a pattern is primitive if ψW = gcd(ψ(C), C cycle) = 1. The strict
domination property expressed in Lemma 7.3.6(iv) for primitive patterns implies
that the above integrand is strictly maximal at the intersection of the circle |u| =
r and the positive real axis. Near the positive real axis, where the contribution
of the integrand is concentrated, the following uniform approximation holds,
with k = na:

Nn(u)
uk

= exp (n (log λ(u)− a log u)) (1 + o(1)) (7.3.24)

Version June 23, 2004

7.3. Generalized string matching 363

The saddle point equation is then obtained by cancelling the first derivative
yielding

F (ω) :=
ωλ′(ω)
λ(ω)

= a. (7.3.25)

Note that the function F is exactly the derivative of Λ(s) at point s := log ω.
Since Λ(s) is strictly convex, the left side is an increasing function of its argument
as proved in Lemma 7.3.6(ii). Also, we know form this lemma that the value
F (0) = 0, F (1) = P (W) while we set F (∞) = C. Thus, for any real a in (0, C),
equation (7.3.25) always admits a unique positive solution that we denote by
ω ≡ ωa. Moreover, for a �= P (W), one has ωa �= 1. Since the function

u → − log
λ(u)
ua

admits a strict maximum at u = ωa, hence this maximum I(a) is strictly posi-
tive. Finally, the usual saddle point approximation applies and one finds

P
(

Nn(W)
n

≤ a

)
=
(

λ(ωa)
ωa

a

)n

Θ(n),

where Θ(n) is of the order of n−1/2. In summary, the large deviation rate is

I(a) = − log
λ(ωa)
ωa

a

with
ωaλ′(ωa)

λ(ωa)
= a.

as shown in the theorem.
In the general case when the pattern is not primitive, the strict inequality

of Lemma 7.3.6(iv) is not satisfied, and several saddle points may be present
on the circle |u| = r, which will lead to some oscillations. We must, in this
case, use the weaker inequality of Lemma 7.3.6, namely, �(xeiθ) ≤ �(x), which
replaces the strict inequality. However, the factor (1 − u)−1 present in the
integrand of (7.3.24) attains its maximum modulus on |u| = r solely at u = r.
Thus, the contribution of possible saddle points can only affect a fraction of the
contribution from u = r. Consequently, (7.3.22) and (7.3.21) continue to be
valid. A similar reasoning provides the right tail estimate, with I(a) still given
by (7.3.21). This completes the proof of (7.3.22).

We complete this analysis with a local limit law.

Theorem 7.3.10. If T(u) is primitive, then

sup
x∈B

∣∣∣∣∣P (Nn = nP (W) + xσ(W)
√

n
)
− 1

σ(W)
√

n

ex2/2

√
2π

∣∣∣∣∣ = o

(
1√
n

)
(7.3.26)

where B is a bounded real interval. Furthermore, under the above additional
assumption, one can find constants σa and δa such that

P(Nn(W) = aE(Nn)) ∼ 1
σa

√
2πn

e−nI(a)+θa (7.3.27)

where I(a) is defined in (7.3.21) above.

Version June 23, 2004

364 Analytic Approach to Pattern Matching

Proof Stronger “regularity conditions” are needed in order to obtain local limit
estimates. Roughly, one wants to exclude the possibility that the discrete dis-
tribution is of a lattice type, being supported by a nontrivial sublattice of the
integers. (For instance, we need to exclude the possibility for Nn(W) to be
always odd, or of the parity of n, and so on.) Observe first that positivity and
irreducibility of the matrix T(u) is not enough as shown in Example 7.3.4.

By Lemma 7.3.6, one can estimate the probability distribution of Nn(W) by
the classical saddle point method in the case when W is primitive. Again, one
starts from Cauchy’s coefficient integral,

P(Nn(W) = k) =
1

2iπ

∫
|u|=1

Nn(u)
du

uk+1
, (7.3.28)

where k is of the form k = nP (W)n+xσ(W)
√

n. Property (iv) of Lemma 7.3.6
grants us precisely the fact that any closed arc of the unit circle not containing
u = 1 brings an exponentially negligible contribution. A standard application of
the saddle point technique does the job. In this way, the proof of the local limit
law of Theorem 7.3.10 is completed. Finally, the precise large deviations follows
from the local limit result and an application of the method of shift discussed
in the proof of Theorem 7.2.12.

7.3.3. Forbidden words and (�, k) sequences

Finally, consider the general pattern W = (W0,W1, . . . ,Wd) with nonempty
forbidden setW0. In this case, we study the number of occurrences Nn(W|W0 =
0) of patterns W1, . . .Wd under the condition that there is no occurrence in the
text of any pattern from W0.

Fortunately, we can recover almost all results from our previous analysis after
re-defining the matrix T(u) and its de Bruijn graph. We now change (7.3.10) to

[T(u)]b,b̂ := P (a)uφ(b,a)[[ba ∈ Ab̂ and ba �⊂ W0]] (7.3.29)

where ba ⊂ W0 means that any subword of ba belongs to W0. In words, we
force the matrix T(u) to be zero at any position that leads to a word containing
patterns fromW0, that is, we eliminate from the de Bruijn graph any transition
that contains a forbidden word. Having matrix T(u) constructed, we can repeat
all previous results except that it is much harder to find explicit formulas even
for the mean and the variance (cf. Exercise 7.3.4)

Finally, we consider a degenerated general pattern in which Wi = ∅ for
all i = 1, . . . , d except nonempty W0. In this case, we count the number of
sequences that do not contain a pattern from W0. We only consider the special
case of this problem, that of (�, k) sequences for which W0 is defined in (7.3.1).
In particular, we compute the so called Shannon capacity C	,k defined as

C	,k = lim
n→∞

log(number of (�, k) sequence of length n)
n

.

Version June 23, 2004

7.3. Generalized string matching 365

We first compute the ordinary generating function T	,k(z) =
∑

w∈T�,k
z|w| of

all (�, k) words denoted as T	,k. To enumerate T	,k we define D	,k as the set of
all words consisting only of runs of 0’s whose length is between � and k. The
generating function D(z) is clearly equal to

D(z) = z	 + z	+1 + · · ·+ zk = z	 1− zk−	+1

1− z
.

We now observe that T	,k can be symbolically written as

T	,k = D	,k

(
{1} × ε + D̄	,k + D̄	,k × D̄	,k + · · ·+ D̄k

	,k + · · ·
)
, (7.3.30)

where D̄	,k = {1} × D	,k. Above basically says that the collection of (�, k)
sequences, T	,k, is a concatenation of {1} × D	,k. Thus (7.3.30) translates into
the generating functions T	,k(z) as follows

T	,k(z) = D(z)
1

1− zD(z)
=

z	(1 − zk+1−)
1− z − z	+1 + zk+2

=
z	 + z	+1 + · · ·+ zk

1− z	+1 − z	+2 − · · · − zk+1
. (7.3.31)

Then Shannon capacity C	,k is

C	,k = lim
n→∞

log[zn]T	,k(z)
n

.

If ρ is the smallest root in absolute value of 1 − z	+1 − z	+2 − · · · − zk+1 = 0,
then clearly

C	,k = − log ρ.

Example 7.3.11. In this example, we show that one can enumerate more
precisely (�, k) sequences. In fact, since the function T	,k(z) is rational we can
compute [zn]T	,k(z) exactly. Let us consider a particular case, namely, � = 1
and k = 3. Then the denumerator in (7.3.31) becomes 1− z2 − z3 − z4, and its
roots are

ρ−1 = −1, ρ0 = 0.682327 . . . , ρ1 = −0.341164 . . .+ i1.161541 . . . , ρ2 = ρ̄1.

Computing residues we obtain

[zn]T1,3(z) =
ρ0 + ρ2

0 + ρ3
0

(ρ1 + 1)(ρ0 − ρ1)(ρ0 − ρ̄1)
ρ−n−1
0

+(−1)n+1 1
(ρ0 + 1)(ρ1 + 1)(ρ̄1 + 1)

+ O(r−n),

where r ≈ 0.68. More specifically,

[zn]T1,3(z) = 0.594(1.465)n+1 + 0.189(−1)n+1 + O(0.68n).

for large n.

Version June 23, 2004

366 Analytic Approach to Pattern Matching

7.4. Subsequence pattern matching

In string matching problem, given a pattern W one searches for some/all oc-
currences of W as a block of consecutive symbols in a text. We analyzed var-
ious string matching problems in the previous sections. Here we concentrate
on subsequence pattern matching. In this case we search for a given pattern
W = w1w2 . . . wm in the text X = x1x2 . . . xn as a subsequence, that is, we look
for indices 1 ≤ i1 < i2 < · · · < im ≤ n such that xi1 = w1, xi2 = w2, · · ·,
xim = wm. We also say that the word W is “hidden” in the text; thus we call
this the hidden pattern problem. For example, date occurs as a subsequence in
the text hidden pattern, in fact four times, but not even once as a string.

More specifically, we allow the possibility of imposing an additional set of
constraints D on the indices i1, i2, . . . , im to record a valid subsequence occur-
rence. For a given family of integers dj (dj ≥ 1, possibly dj = ∞), one should
have (ij+1 − ij) ≤ dj . More formally, the hidden pattern specification is deter-
mined by a pair (W ,D) where W = w1 · · ·wm is a word of length m and the
constraint D = (d1, . . . , dm−1) is an element of (N+ ∪ {∞})m−1.

Example 7.4.1. With # representing a ‘don’t-care-symbol’ and the subscript
denoting a strict upper bound on the length of the associated gap, a typical
pattern may look like

ab#2r#ac#a#d#4a#br#a (7.4.1)

where # = #∞ and #1 is omitted; That is ‘ab’ should occur first contiguously,
followed by ‘r’ with a gap of < 2 symbols, followed anywhere later in the text
by ‘ac’, etc.

The case when all the dj ’s are infinite is called the (fully) unconstrained
problem. When all the dj ’s are finite, then we speak of the (fully) constrained
problem. In particular, the case where all dj are equal to one reduces to the
exact string matching problem. Furthermore, observe that when all dj < ∞
(fully constrained pattern), the problem can be treated as the generalized string
matching discussed in Section 7.3. In this case, the general pattern W is a set
consisting of all words satisfying the constraint D. However, if at least one dj

is infinite, then the techniques discussed so far are not well suited to handle
it. Therefore, in this section, we develop new methods that make the analysis
possible.

If an m-tuple I = (i1, i2, . . . , im) (1 ≤ i1 < i2 < · · · < im) satisfies the con-
straint D with ij+1− ij ≤ dj , then it is called a position tuple. Let Pn(D) be the
set of all positions subject to the separation constraint D, satisfying furthermore
im ≤ n. Let also P(D) =

⋃
n Pn(D). An occurrence of pattern W subject to

the constraint D is a pair (I, X) formed with a position I = (i1, i2, . . . , im) of
Pn(D) and a text X = x1x2 · · ·xn for which xi1 = w1, xi2 = w2, . . . , xim = wm.
Thus, what we call an occurrence is a text augmented with the distinguished
positions at which the pattern occurs. The number Ω of occurrences of pattern

Version June 23, 2004

7.4. Subsequence pattern matching 367

W in text X as a subsequence subject to the constraint D is then a sum of
characteristic variables

Ω(X) =
∑

I∈P|X|(D)

ZI(X), (7.4.2)

where ZI(X) := [[W occurs at position I in X]]. When the text X is of length
n, then we often write Ωn := Ω(X).

In order to proceed we need to introduce important notion of blocks and
aggregates. In the general case, we assume that the subset F of indices j for
which dj is finite (dj < ∞) has cardinality m − b with 1 ≤ b ≤ m. The two
extreme values of b, namely, b = m and b = 1, describe the (fully) unconstrained
and the (fully) constrained problem, respectively. Thus, the subset U of indices
j for which dj is unbounded (dj = ∞) has cardinality b − 1. It then separates
the pattern W into b independent subpatterns that are called the blocks and
are denoted by W1,W2, . . .Wb. All the possible dj “inside” any Wr are finite
and form the subconstraint Dr, so that a general hidden pattern specification
(W ,D) is equivalently described as a b-tuple of fully constrained hidden patterns
((W1,D1), (W2,D2), . . . , (Wb,Db)).

Example 7.4.1 (continued). Consider again

ab#2r#ac#a#d#4a#br#a,

in which one has b = 6, the six blocks being

W1 =a#1b#2r, W2 = a#1c, W3= a, W4= d#4a, W5=b#1r, W6= a.

In the same way, an occurrence position I = (i1, i2, . . . , im) of W subject to
constraint D gives rise to b suboccurrences, I [1], I [2], . . . I [b], the rth term I [r]

representing an occurrence of Wr subject to constraint Dr. The rth block B[r]

is the closed segment whose end points are the extremal elements of I [r], and
the aggregate of position I, denoted by α(I), is the collection of these b blocks.

Example 7.4.1 (continued). Taking the pattern of Example 7.4.1, the position
tuple

I = (6, 7, 9, 18, 19, 22, 30, 33, 50, 51, 60)

satisfies the constraint D and gives rise to six subpositions,

I[1]︷ ︸︸ ︷
(6, 7, 9),

I[2]︷ ︸︸ ︷
(18, 19),

I[3]︷︸︸︷
(22),

I[4]︷ ︸︸ ︷
(30, 33),

I[5]︷ ︸︸ ︷
(50, 51),

I[6]︷︸︸︷
(60) ;

accordingly, the resulting aggregate α(I),

B[1]︷︸︸︷
[6, 9],

B[2]︷ ︸︸ ︷
[18, 19],

B[3]︷︸︸︷
[22] ,

B[4]︷ ︸︸ ︷
[30, 33],

B[5]︷ ︸︸ ︷
[50, 51],

B[6]︷︸︸︷
[60] ,

is formed with six blocks.

Version June 23, 2004

368 Analytic Approach to Pattern Matching

7.4.1. Mean and variance analysis

Hereafter, we assume that W is given and the text X is generated by a (non-
degenerate) memoryless source. The first moment of the number of occurrences,
Ω(X), is easily obtained by describing the collection of all occurrences in terms
of formal languages, as already discussed in previous sections. We consider the
collection of position-text pairs

O := {(I, X) ; I ∈ P|X|(D)},

with the size of an element being by definition the length n of the text X . The
weight of an element of O is taken to be equal to ZI(X)P (X), where P (X) is
the probability of the text. In this way, O can also be regarded as the collection
of all occurrences weighted by probabilities of the text. The corresponding
generating function of O equipped with this weight is

O(z) =
∑

(I,X)∈O
ZI(X)P (X) z|X| =

∑
X

 ∑
I∈P|X|(D)

ZI(X)

 P (X)z|X|, (7.4.3)

and, with the definition of Ω,

O(z) =
∑
X

Ω(X)P (X) z|X| =
∑

n

E(Ωn)zn. (7.4.4)

As a consequence, one has [zn]O(z) = E(Ωn), so that O(z) serves as the gener-
ating function of the sequence of expectations E(Ωn).

On the other hand, each occurrence can be viewed as a “context” with an
initial string, then the first letter of the pattern, then a separating string, then
the second letter, etc. The collection O is therefore described combinatorially
by

O = A
×{w1}×A<d1 ×{w2}×A<d2 × . . .×{wm−1}×A<dm−1×{wm}×A
.
(7.4.5)

There, for d < ∞, A<d denotes the collection of all words of length strictly less
d, i.e., A<d :=

⋃
i<dAi, whereas, for d = ∞, A<∞ denotes the collection of

all finite words, i.e., A<∞ := A
 =
⋃

i<∞Ai. Since the source is memoryless,
the rules discussed at the end of the last section can be applied, and they give
access to O(z) from the description (7.4.5). The generating function functions
associated to A<d and A<∞ are

A<d(z) = 1+z+z2+· · ·+zd−1 =
1− zd

1− z
, A<∞(z) = 1+z+z2+· · · = 1

1− z
.

Thus, the description (7.4.5) of occurrences automatically translates into

O(z) ≡
∑
n≥0

E[Ωn] zn =
(

1
1− z

)b+1

×
(

m∏
i=1

pwiz

)
×
(∏

i∈F

1− zdi

1− z

)
. (7.4.6)

Version June 23, 2004

7.4. Subsequence pattern matching 369

One finally finds

E(Ωn) = [zn]O(z) =
nb

b!

(∏
i∈F

di

)
P (W)

(
1 + O

(
1
n

))
, (7.4.7)

and a complete asymptotic expansion could be easily obtained.
For the analysis of variance and especially of higher moments, it is essential

to work with a centered random variable Ξ defined, for each n, as

Ξn := Ωn −E(Ωn) =
∑

I∈Pn(D)

YI , (7.4.8)

where YI := ZI − E(ZI) = ZI − P (W). The second moment of the centered
variable Ξ equals the variance of Ωn and with the centered variables defined
above by (7.4.8), one has

E(Ξ2
n) =

∑
I,J∈Pn(D)

E(YIYJ). (7.4.9)

From this last equation, we need to analyze pairs of positions (I, X), (J, X) =
(I, J, X) relative to a common text X . We denote by O2 this set, that is,

O2 := {(I, J, X) ; I, J ∈ P|X|(D)},

and we weight each element (I, J, X) by YI(X)YJ(X)P (X). The corresponding
generating function, which enumerates pairs of occurrences, is

O2(z) :=
∑

(I,J,X)∈O2

YI(X)YJ(X)P (X) z|X|

=
∑
X

 ∑
I,J∈P|X|(D)

YI(X)YJ (X)

 P (X)z|X|

and, with (7.4.9),

O2(z) =
∑
n≥0

∑
I,J∈Pn(D)

E(YIYJ) zn =
∑
n≥0

E(Ξ2
n) zn.

The process entirely parallels the derivation of (7.4.3) and (7.4.4), and, one has
[zn]O2(z) = E(Ξ2

n), so that O2(z) serves as the generating function (in the usual
sense) of the sequence of moments E(Ξ2

n).
There are two kinds of pairs (I, J) depending whether they intersect or not.

When I and J do not intersect, the corresponding random variables YI and
YJ are independent, and the corresponding covariance E[YIYJ] reduces to 0.
As a consequence, one may restrict attention to pairs of occurrences I, J that
intersect at one place at least. Suppose that there exist two occurrences of
pattern W at positions I and J which intersect at � distinct places. We then

Version June 23, 2004

370 Analytic Approach to Pattern Matching

�� �� �� ��

Figure 7.3. A pair of position tuples I, J with b = 6 blocks each and the
joint aggregates; the number of degrees of freedom is here β(I, J) = 4.

denote by WI∩J the subpattern of W that occurs at position I ∩ J , and by
P (WI∩J) the probability of this subpattern. Since the expectation E(ZIZJ)
equals P (W)2/P (WI∩J) provided that W agrees on every position of I ∩J , the
expectation E(YIYJ) = P (W)2e(I, J) involves a correlation number e(I, J)

e(I, J) =
[[W agree I ∩ J]]

P (WI∩J)
− 1. (7.4.10)

Remark that this relation remains true even if the pair (I, J) is not intersecting,
since, in this case, one has P (WI∩J) = P (ε) = 1.

The asymptotic behavior of variance is driven by the overlapping of blocks
involved in I and J , rather than plainly by the cardinality of I ∩ J . In order to
formalize this, define first the (joint) aggregate α(I, J) to be the system of blocks
obtained by merging together all intersecting blocks of the two aggregates α(I)
and α(J). The number of blocks β(I, J) of α(I, J) plays a fundamental rôle
here, since it measures the degree of freedom of pairs; we also call β(I, J) the
degree of pair (I, J). Figure 7.3 illustrates graphically this notion.

Example 7.4.2. Consider the pattern W = a#3b#4r # a#4c composed of
two blocks. Then the text aarbarbccaracc contains several valid occurrences
of W including two at positions I = (2, 4, 6, 10, 13) and J = (5, 7, 11, 12, 13).
The individual aggregates are α(I) = {[2, 6], [10, 13]}, α(J) = {[5, 11], [12, 13]}
so that the joint quantities are: α(I, J) = [2, 13] and β(I, J) = 1. This pair has
exactly degree 1.

When I and J intersect, there exists at least one block of α(I) that intersects
a block of α(J), so that the degree β(I, J) is at most equal to 2b− 1. Next, we
partition O2 according to the value of β(I, J) and write

O[p]
2 := {(I, J, X) ∈ O2 ; β(I, J) = 2b− p}

for the collection of intersecting pairs (I, J, X) of occurrences for which the
degree of freedom equals 2b − p. From the preceding discussion, only p ≥ 1
needs to be considered and

O2(z) = O
[1]
2 (z) + O

[2]
2 (z) + O

[3]
2 (z) + · · · + O

[2b]
2 (z).

As we see next, it is only the first term of this sum that matters asymptotically.

Version June 23, 2004

7.4. Subsequence pattern matching 371

In order to conclude the discussion, we need the notion of full pairs: a pair
(I, J) of Pq(D) × Pq(D) is full if the joint aggregate α(I, J) completely covers
the interval [1, q]; see Figure 7.4. (Clearly, the possible values of length q are
finite, since q is at most equal to 2�, where � is the length of the constraint D.)

Example 7.4.3. Consider the pattern W = a#3b#4r#a#4c. The text -
aarbarbccaracc also contains two other occurrences of W , at positions I ′ =
(1, 4, 6, 12, 13) and J ′ = (5, 7, 11, 12, 14). Now, I ′ and J ′ are intersecting, and
the aggregates are α(I ′) = {[1, 6], [12, 13]}, α(J ′) = {[5, 11], [12, 14]} so that
α(I ′, J ′) = {[1, 11], [12, 14]. We have here an example of a full pair of occur-
rences with a number of blocks β(I ′, J ′) = 2.

There is a fundamental translation invariance due to the independence of
symbols in the Bernoulli model that entails a combinatorial isomorphism (∼=
represents combinatorial isomorphism)

O[p]
2
∼= (A
)2b−p+1 × B[p]

2 ,

where B[p]
2 is the subset of O2 formed of full p airs such that β(I, J) equals 2b−p.

In essence, the gaps can be all grouped together (their number is 2b−p+1, which
is translated by the prefactor (A
)2b−p+1), while what remains constitutes a full
occurrence. The generating function of O[p]

2 is accordingly

O
[p]
2 (z) =

(
1

1− z

)2b−p+1

×B
[p]
2 (z)

where B
[p]
2 (z) is the generating function of the collection B[p]

2 . From our earlier
discussion, it is a polynomial. Now, an easy dominant pole analysis entails
that [zn]O[p]

2 = O(n2b−p). This proves that the dominant contribution to the
variance is given by [zn]O[1]

2 , which is of order O(n2b−1).
The variance E(Ξ2

n) involves the constant B
[1]
2 (1) that is the total weight of

the collection B[1]
2 . Recall that this collection is formed of intersecting full pairs

of occurrences of degree 2b− 1. The polynomial B
[1]
2 (z) is itself the generating

function of the collection B[1]
2 , and it is conceptually an extension of Guibas and

Odlyzko’s autocorrelation polynomial. We shall later make precise the relation
between both polynomials.

We summarize our findings in the following theorem.

�� �� �� ��

Figure 7.4. A full pair of position tuples I, J with b = 6 blocks each.

Version June 23, 2004

372 Analytic Approach to Pattern Matching

Theorem 7.4.4. Consider a general constraint D with a number of blocks
equal to b. The mean and the variance of the number of occurrences Ωn of a
pattern W subject to constraint D satisfy

E(Ωn) =
P (W)

b!

(∏
j : dj<∞

dj

)
nb
(
1 + O(n−1)

)
,

Var(Ωn) = σ2(W)n2b−1
(
1 + O(n−1)

)
,

where the “variance coefficient” σ2(W) involves the autocorrelation κ(W)

σ2(W) =
P 2(W)
(2b− 1)!

κ2(W) with κ2(W) :=
∑

(I,J)∈B[1]
2

e(I, J) (7.4.11)

The set B[1]
2 is the collection of all pairs of position tuple (I, J) that satisfy three

conditions: (i) they are full; (ii) they are intersecting; (iii) there is a single pair
(r, s) with 1 ≤ r, s ≤ b for which the rth block B[r] of α(I) and the sth block
C [s] of α(J) intersect.

The computation of the autocorrelation κ(W) reduces to b2 computations
of correlations κ(Wr,Ws), relative to pairs (Wr,Ws) of blocks. Note that each
correlation of the form κ(Wr,Ws) involves a totally constrained problem and is
discussed below. Let D(D) :=

∏
i: di<∞ di. Then, one has

κ2(W) = D2(D)
∑

1≤r,s≤b

1
D(Dr)D(Ds)

(
r + s− 2

r − 1

)(
2b− r − s

b− r

)
κ(Wr,Ws),

(7.4.12)
where κ(Wr,Ws) is the sum of the e(I, J) taken over all full intersecting pairs
(I, J) formed with an position tuple I of block Wr subject to constraint Dr and
an position tuple J of block Ws subject to constraint Ds. Let us explain the
formula (7.4.12) in words: for a pair (I, J) of the set B[1]

2 , there is a single pair
(r, s) of indices with 1 ≤ r, s ≤ b for which the rth block B[r] of α(I) and the sth
block C [s] of α(J) intersect. Then, there exist r + s− 2 blocks before the block
α(B[r], C[s]) and 2b− r− s blocks after it. We then have three different degrees
of freedom: (i) the relative order of blocks B[i](i < r) and blocks C [j](j < s),
and similarly the relative order of blocks B[i](i > r) and blocks C [j](j > s); (ii)
the lengths of the blocks (there are Dj possible lengths for the jth block); (iii)
finally the relative positions of the blocks B[r] and C [s].

In particular, in the unconstrained case, the parameter b equals m, and each
blockWr is reduced to the symbol wr. Then the “correlation coefficient” κ2(W)
simplifies to

κ2(W) :=
∑

1≤r,s≤m

(
r + s− 2

r − 1

)(
2m− r − s

m− r

)
[[wr = ws]]

(
1

pwr

− 1
)

. (7.4.13)

In words, once you fix the position of the intersection, called pivot, then amongst
the r + s− 2 elements smaller than the pivot one assigns freely r− 1 to the first
occurrence and the remaining s − 1 to the second. One proceeds similarly for
the 2m− r − s elements larger than the pivot.

Version June 23, 2004

7.4. Subsequence pattern matching 373

7.4.2. Autocorrelation polynomial revisited

Finally, we compare the autocorrelation coefficient κ(W) with the autocorrela-
tion polynomial Sw(z) introduced in the last section for the exact string match-
ing problem. Let now w = w1w2 . . . wm be again a string of length m, and all
the symbols of w must occur at consecutive places, so that a valid position I is
an interval of length m. We recall that the autocorrelation set P(w) ⊂ [1..m]
involves all indices k such that the prefix wk

1 coincides with the suffix wm
m−k+1.

Here, an index k ∈ P(w) is relative to a intersecting pair of positions (I, J) and
one has wk

1 = wI∩J .
In the previous section, we introduced the autocorrelation polynomial Sw(z)

as
Sw(z) =

∑
k∈Pw

P (wm
k+1)z

m−k = P (w)
∑

k∈P(w)

1
P (wk

1)
zm−k.

We also define
Cw(z) =

∑
k∈P(w)

zm−k.

Since the polynomial B
[1]
2 involves coefficients e(I, J) this polynomial can be

written as function of the two autocorrelations polynomials Aw and Cw,

B
[1]
2 (z) = P (w)zm [Aw(z)− P (w)Cw(z)].

Put simply, the variance coefficient of the hidden pattern problem extends the
classical autocorrelation quantities associated with strings.

7.4.3. Central limit laws

Our goal is to prove that the sequence Ωn appropriately centered and scaled
tends to the normal distribution. We consider the following standardized ran-
dom variable Ξ̃n which is defined for each n by

Ξ̃n :=
Ξn

nb−1/2
=

Ωn −E(Ωn)
nb−1/2

, (7.4.14)

where b is the number of blocks of the constraint D. We shall show that Ξ̃n

behaves asymptotically as a normal variable with mean 0 and standard devia-
tion σ. By the classical moment convergence theorem this is established once
all moments of Ξ̃n are known to converge to the appropriate moments of the
standard normal distribution.

We remind the reader that if G is a standard normal variable (i.e., a Gaus-
sian distributed variable with mean 0 and standard deviation 1), then for any
integral s ≥ 0

E(G2s) = 1 · 3 · · · (2s− 1), E(G2s+1) = 0. (7.4.15)

Version June 23, 2004

374 Analytic Approach to Pattern Matching

We shall accordingly distinguish two cases based on the parity of r, r = 2s and
r = 2s + 1, and prove that

E[Ξ2s+1
n] = o(n(2s+1)(b−1/2)), E(Ξ2s

n) ∼ σ2s (1 · 3 · · · (2s− 1))n2sb−s,
(7.4.16)

which implies Gaussian convergence of Ξ̃n.

Theorem 7.4.5. The random variable Ωn over a random text of length n
generated by a memoryless source asymptotically obeys a Central Limit Law in
the sense that its distribution is asymptotically normal: for all x = O(1), one
has

lim
n→∞

P

(
Ωn −E(Ωn)√

Var(Ωn)
≤ x

)
=

1√
2π

∫ x

−∞
e−t2/2 dt. (7.4.17)

Proof. The proof below is combinatorial; it basically reduces to grouping and
enumerating adequately the various combinations of indices in the sum that
expresses E(Ξr

n). Once more, Pn(D) is formed of all the sets of positions in
[1, n] subject to the constraint D and we set P(D) :=

⋃
n Pn(D). Then totally

distributing the terms in Ξr yields

E(Ξr
n) =

∑
(I1,...,Ir)∈Pr

n(D)

E(YI1 · · ·YIr). (7.4.18)

An r-tuple of sets (I1, . . . , Ir) in Pr(D) is said to be friendly if each Ik intersects
at least one other I	, with � �= k and we let Q(r)(D) be the set of all friendly
collections in Pr(D). For Pr, Q(r), and their derivatives below, we add the
subscript n each time the situation is particularized to texts of length n. If
(I1, . . . , Ir) does not lie in Q(r)(D), then E(YI1 · · ·YIr) = 0, since at least one
of the YI ’s is independent of the other factors in the product and the YI ’s have
been centered, E(YI) = 0. One can thus restrict attention to friendly families
and get the basic formula

E(Ξr
n) =

∑
(I1,...,Ir)∈Q(r)

n (D)

E(YI1 · · ·YIr), (7.4.19)

where the expression involves fewer terms than in (7.4.18). From there, we
proceed in two stages. First, restrict attention to friendly families that give rise
to the dominant contribution and introduce a suitable subfamily Q(r)

 ⊂ Q(r);
in so doing, moments of odd order appear to be negligible. Next, for even
order r, the family Q(r)

 involves a symmetry and it suffices to consider another
smaller subfamily Q(r)

 ⊂ Q(r)

 that corresponds to a “standard” form of position

tuple intersection; this last reduction precisely gives rise to the even Gaussian
moments.

Odd moments. Given (I1, . . . , Ir) ∈ Q(r), the aggregate α(I1, I2, . . . , Ir) is
defined as the aggregation (in the sense of the variance calculation above) of
α(I1) ∪ · · · ∪ α(Ir). Next, the number of blocks of (I1, . . . , Ir) is the number

Version June 23, 2004

7.4. Subsequence pattern matching 375

of blocks of the aggregate α(I1, . . . , Ir); if p is the total number of intersecting
blocks of the aggregate α(I1, . . . , Ir), the aggregate α(I1, I2, . . . Ir) has rb − p

blocks. Like previously, we say that the family (I1, . . . , Ir) of Q(r)
q is full if the

aggregate α(I1, I2, . . . Ir) completely covers the interval [1, q]. In this case, the
length of the aggregate is at most rd(m − 1) + 1, and the generating function
of full families is a polynomial Pr(z) of degree at most rd(m − 1) + 1 with
d = maxj∈F dj . Then, the generating function of families of Q(r) whose block
number equals k is of the form(

1
1− z

)k+1

× Pr(z),

so that the number of families of Q(r)
n whose block number equals k is O(nk).

This observation proves that the dominant contribution to (7.4.19) arises from
friendly families with a maximal block number. It is clear that the minimum
number of intersecting blocks of any element of Q(r) equals %r/2&, since it co-
incides exactly with the minimum number of edges of a graph with r vertices
which contains no isolated vertex. Then the maximum block number of a f
friendly family equals rb − %r/2&. In view of this fact and the remarks above
regarding cardinalities, we immediately have

E
[
Ξ2s+1

n

]
= O

(
n(2s+1)b−s−1

)
= o
(
n(2s+1)(b−1/2)

)
which establishes the limit form of odd moments in (7.4.16).

Even Moments. We are thus left with estimating the even moments. The
dominant term is relative to friendly families of Q(2s) with an intersecting block
number equal to s, whose set we denote by Q(2s)

 . In such a family, each subset
Ik intersects one and only one other subset I	. Furthermore, if the blocks
of α(Ih) are denoted by B

[u]
h , 1 ≤ u ≤ b, there exists only one block B

[uk]
k

of α(Ik) and only one block B
[u�]
	 that contains the points of Ik ∩ I	. This

defines an involution τ such that τ(k) = � and τ(�) = k for all pairs of indices
(�, k) for which Ik and I	 intersect. Furthermore, given the symmetry relation
E(YI1 · · ·YI2s) = E(YIρ(1) · · ·YIρ(2s)) it suffices to restrict attention to friendly

families of Q(2s)

 for which the involution τ is the standard one with cycles (1, 2),

(3, 4), etc; for such “standard” families whose set is denoted by Q(2s)

 , the pairs

that intersect are thus (I1, I2), . . . , (I2s−1, I2s). Since the set K2s of involutions
of 2s elements has cardinality K2s = 1 · 3 · 5 · · · (2s− 1) , the equality∑

Q(2s)
�n

E(YI1 · · ·YI2s) = K2s

∑
Q(2s)

��n

E(YI1 · · ·YI2s), (7.4.20)

entails that we can work now solely with standard families.
The class of position tuples relative to standard families isA
×(A
)2sb−s−1×

B[s]
2s × A
; this class involves the collection B[s]

2s of all full friendly 2s-tuples of

Version June 23, 2004

376 Analytic Approach to Pattern Matching

position tuples with a number of blocks equal to s. Since B[s]
2s is exactly a shuffle

of s copies of B[1]
2 (as introduced in the study of the variance), the associated

generating function is(
1

1− z

)2sb−s+1

(2sb− s)!

(
B

[1]
2 (z)

(2b− 1)!

)s

,

where B
[1]
2 (z) is the already introduced autocorrelation polynomial. Upon tak-

ing coefficients, we obtain the estimate∑
Q(2s)

��n

E(YI1 · · ·YI2s) ∼ n(2b−1)sσ2s. (7.4.21)

In view of the formulæ (7.4.18), (7.4.19), (7.4.20), and (7.4.21) above, this yields
the estimate of even moments and leads to the second relation of (7.4.16). This
completes the proof of Theorem 7.4.5.

The even Gaussian moments eventually come out as the number of involu-
tions, which corresponds to a fundamental asymptotic symmetry present in the
problem. In this perspective the specialization of the proof to the fully uncon-
strained case is reminiscent of the derivation of the usual central limit theorem
(dealing with sums of independent variables) by moments methods.

7.4.4. Limit laws for fully constrained pattern

In this section, we strengthen our results for fully constrained pattern in which
all gaps dj are finite. We set D =

∏
j dj , and � =

∑
j dj . Observe that in this

case, we can reduced the subsequence problem to a generalized string matching
problem with the generalized pattern W consisting of all words that satisfy
(W ,D). Thus our previous results apply, in particular, Theorems 7.3.8 and
7.3.10. This leads to the following result.

Theorem 7.4.6. Consider a fully constrained pattern with mean and variance
found in Theorem 7.4.4 for b = 1.

(i) The random variable Ωn satisfies a Central Limit Law with speed of conver-
gence 1/

√
n:

sup
x

∣∣∣∣P(Ωn −DP (W)n
σ(W)

√
n

≤ x

)
− 1√

2π

∫ x

−∞
e−t2/2 dt

∣∣∣∣ = O

(
1√
n

)
. (7.4.22)

(ii) Large deviations from the mean value have exponentially small probability:
there exist a constant η > 0 and a nonnegative function I(x) defined throughout
(0, η) such that I(x) > 0 for x �= DP (W) and

lim
n→∞

1
n

logP
(

Ωn

n
≤ x

)
= −I(x) if 0 < x < DP (W)

lim
n→∞

1
n

logP
(

Ωn

n
≥ x

)
= −I(x) if DP (W) < x < η

, (7.4.23)

Version June 23, 2004

7.5. Generalized subsequence problem 377

except for at most a finite number of exceptional values of x. More precisely,

I(x) = − log
λ(ζ)
ζx

with ζ ≡ ζ(x) defined by
ζλ′(ζ)
λ(ζ)

= x (7.4.24)

where λ(u) is the largest eigenvalue of the matrix T(u) of the associate de
Bruijn graph constructed for W = {v : v = w1u1w2 · · ·wm−1um−1wm, where
ui ∈ Adi−1, 1 ≤ i ≤ m− 1}.
(iii) For primitive patterns (cf. Section 7.3.2) a Local Limit Law holds:

sup
k

∣∣∣∣∣P (Ωn = k)− 1
σ(W)

√
n

ex(k)2/2

√
2π

∣∣∣∣∣ = o

(
1√
n

)
, (7.4.25)

where

x(k) =
k −DP (W)n

σ(W)
√

n

for n →∞.

Example 7.4.7. We motivated our desire to study the subsequence problem
by an example form computer security. Indeed, if one wants to detect “suspi-
cious” activities (e.g., signatures viewed as subsequences in an audit file), it is
important to set up a threshold in order to avoid false alarms. This problem
can be rephrased as one of finding a threshold α0 = α0(W ; n, β) such that

P(Ωn > α0) ≤ β,

for small given β (say β = 10−5). Based on frequencies of letters and the
assumption that a memoryless model is (at least roughly) relevant, one can
estimate the mean value and the standard deviation coefficients P (W), σ(W)
as discussed above. The Gaussian limits granted by Theorems 7.4.5 and 7.3.8
then reduce the problem to solving an approximate system, which in the (fully)
constrained case reads

α0 = nP (W) + x0σ(W)
√

n, β =
1√
2π

∫ ∞

x0

e−t2/2 dt.

This system admits the approximate solution

α0 ≈ nπ(ω) + σ(W)
√

2n log(1/β). (7.4.26)

for small β.

7.5. Generalized subsequence problem

In the generalized subsequence problem the pattern is W = (W1, . . . ,Wd) where
Wi is a set of strings (a language). We say that the generalized pattern W

Version June 23, 2004

378 Analytic Approach to Pattern Matching

occurs in the text X if X contains W as a subsequence (w1, w2, . . . , wd) where
wi ∈ Wi. An occurrence of the pattern in X is a sequence

(u0, w1, u1, . . . , wd, ud)

such that X = u0w1u1 · · ·wdud. We shall study the associated language L that
can be described as

L = A∗ · W1 · A∗ · · ·Wd · A∗. (7.5.1)

More precisely, an occurrence of W is a sequence of d disjoint intervals
I = (I1, I2, . . . Id) such that Ij := [k1

j , k2
j] where 1 ≤ k1

j ≤ k2
j ≤ n is a portion of

text Xn
1 where wj ∈ Wj occurs. We denote by Pn := Pn(W) the set of all valid

occurrences I. The number of occurrences Ωn of W in the text X of size n is
then

Ωn =
∑

I∈Pn(L)

ZI , (7.5.2)

where ZI(X) := [[W occurs at position I in X]].
In passing, we observe that the generalized subsequence problem is the most

general pattern matching considered so far. It contains the exact string match-
ing (cf. Section 7.2), generalized string matching (cf. Section 7.3), and the
subsequence pattern matching known also as hidden patterns (cf. Section 7.4).
In this section we present an analysis of the first two moments of Ωn for the gen-
eralized subsequence pattern matching problem for dynamic sources discussed
in Section 7.1.

7.5.1. Generating operators for dynamic sources

In Section 7.1 we have introduced a general probabilistic source known as a
dynamic source. In this section we analyze the generalized subsequence model
for such sources.

We start with a brief description of the methodology of generating operators
that are used in the analysis of dynamic sources. We recall from Section 7.1
that the generating operator Gw is defined as Gw[f](t) := |h′

w(t)|f ◦ hw(t) for
a density function f and a word w. In particular, in (7.1.2) we proved that
P (w)

∫ 1

0 f(t)dt =
∫ 1

0 Gw[f](t)dt for any function f(t), which implies that P (w)
is an eigenvalue of the operator Gw. Furthermore, the generating operator for
w · u is Gw·u = Gu ◦Gw, where w and u are words (cf. (7.1.3)) and ◦ is the
composition of operators.

Consider now a language B ⊂ A∗. Its generating operator B(z) is then
defined as

B(z) :=
∑
w∈B

z|w| Gw.

We observe that the ordinary generating function of a language B is related to
the generating operators. Indeed,

B(z) :=
∑
w∈B

z|w|P (w) =
∑
w∈B

z|w|
∫ 1

0

Gw[f](t)dt =
∫ 1

0

B(z)[f](t)dt. (7.5.3)

Version June 23, 2004

7.5. Generalized subsequence problem 379

If B(z) is well defined at z = 1, then B(1) is called the normalized operator of
B. In particular, using (7.1.1) we can compute

P (B) =
∑
w∈B

P (w) =
∫ 1

0

B(1)dt.

Furthermore, the operator
G :=

∑
a∈A

Ga, (7.5.4)

is the normalized operator of the alphabet A and plays a fundamental role in
the analysis.

From the product formula (7.1.3) of the generating operators Gw we con-
clude that unions and Cartesian products of languages translates into sums and
compositions of the associated operators. For instance, the operator associated
with A
 is

(I − zG)−1 :=
∑
i≥0

ziGi.

where Gi = G ◦Gi−1.
In order to proceed, we must restrict our attention to a class of dynamic

sources called decomposable that satisfy two properties: (i) there exists a unique
positive dominant eigenvalue λ and a dominant eigenvector denoted as ϕ (which
is unique under the normalization

∫
ϕ(t)dt = 1); (ii) there is a spectral gap

between the dominant eignevalue and other eignevalues. These properties entail
the separation of the operator G into two parts

G = λP + N (7.5.5)

such that the operator P is the projection relative to the dominant eigenvalue
λ while N is the operator relative to the remainder of the spectrum (cf. Sec-
tion 7.3). Furthermore (cf. Exercise 7.5.1)

P ◦P = P, (7.5.6)
P ◦N = N ◦P = 0. (7.5.7)

The last property implies that for any i ≥ 1

Gi = λiP + Ni. (7.5.8)

In particular, for the density operator G the dominant eigenvalue λ =
P (A) = 1 and ϕ is the unique stationary distribution. The function 1 is the left
eigenvector. Then using (7.5.8) we arrive at

(I − zG)−1 =
1

1− z
P + R(z), (7.5.9)

where
R(z) := (I − zN)−1 −P =

∑
k≥0

zk(Gk −P). (7.5.10)

Version June 23, 2004

380 Analytic Approach to Pattern Matching

Observe that the first part of (7.5.9) has a pole at z = 1 and due to the spectral
gap the operator N has spectral radius ν < λ = 1. Furthermore, the operator
R(z) is analytic in |z| < (1/ν) and again thanks to the existence of the spectral
gap, the series R(1) is of geometric type. We shall point out below that the
speed of convergence of R(z) is closely related to the decay of the correlation
between two consecutive symbols. Finally, we list some additional properties of
just introduced operators (cf. Exercise 7.5.2) true for any function g(t) defined
between 0 and 1.

N[ϕ] = 0, P[g](t) = ϕ(t)
∫ 1

0

g(t′)dt′ (7.5.11)∫ 1

0

P[g](t)dt =
∫ 1

0

g(t)dt,

∫ 1

0

N[g](t)dt = 0, (7.5.12)

where ϕ is the stationary density.
Theory built so far allows us, among others, to define precisely the correlation

between languages in terms of the generating operators. From now on we restrict
our analysis to the so called nondense languages B for which the associated
generating operator B(z) is analytic in a disk |z| > 1. First, observe that for a
nondense language B, the normalized generating operator B satisfies∫ 1

0

P ◦B ◦P[g](t) = P (B)
(∫ 1

0

g(t)dt

)
. (7.5.13)

Let us now define the correlation coefficient between two languages, say B
with the generating operator B and C with generating operator C. Two types
of correlations may occur between such languages. If B and C do not overlap,
then B may be before C, or after C. We define the correlation coefficient c(B, C)
(and in an analogous way c(C,B)) as

P (B)P (C)c(B, C) :=
∑
k≥0

[
P (B ×Ak × C)− P (B)P (C)

]
(7.5.14)

=
∫ 1

0

C ◦R(1) ◦B[ϕ](t).

To see this we observe, using (7.5.5)–(7.5.13),∫ 1

0

C ◦R(1) ◦B[ϕ](t)dt =
∫ 1

0

C ◦

∑
k≥0

(Gk −P)

 ◦B[ϕ](t)dt

=
∑
k≥0

(∫ 1

0

C ◦Gk ◦B[ϕ](t)dt −
∫ 1

0

C ◦P ◦B[ϕ](t)
)

=
∑
k≥0

(
P (B ×Ak × B)− P (B)P (C)

)
.

We say that B and C overlap if there exist words b, u and c such that u �= ε
and (bu, uc) ∈ (B×C)∪ (C ×B). Then we denote by B ↑ C the set of words that

Version June 23, 2004

7.5. Generalized subsequence problem 381

be obtained by overlapping words from B and C. The correlation coefficient of
the overlapping languages B and C is defined as

d(B, C) :=
P (B ↑ C)
P (B)P (C) (7.5.15)

Finally, the total correlation coefficient m(B, C) between B and C is defined as

m(B, C) = c(B, C) + c(C,B) + d(B, C), (7.5.16)

that is,

P (B)P (C)m(B, C) = P (B ↑ C)
+
∑
k≥0

[
P (B × Ak × C) + P (C × Ak × B)− 2P (B)P (C)

]
.

We shall need these coefficients in the analysis of the generalized subsequence
problem for dynamic sources.

7.5.2. Mean and variance

In this section we shall derive the mean and the variance of the number of
occurrences Ωn(W) of the generalized pattern as a subsequence for a dynamic
source.

We first give a sketch of the forthcoming proof:
• We first describe the generating operators of the language L defined in

(7.5.1) that we repeat it here

L = A∗ ×W1 ×A∗ · · ·Wd ×A∗.

It turns out that the quasi-inverse (I−zG)−1 operator is involved in such
a generating operator.

• We then decompose the operator with the help of (7.5.9). We obtain
a term related to (1 − z)−1P that gives the main contribution to the
asymptotics, and another term coming from the operator R(z).

• We then compute the generating function of L using (7.5.3).
• Finally, we extract asymptotic behavior from the generating function.
The main finding of this section is summarized in the next theorem.

Theorem 7.5.1. Consider a decomposable dynamical source endowed in the
stationary density ϕ and let W = (W1,W2, . . . ,Wd) be a generalized nondense
pattern.
(i) The expectation E(Ωn) of the number of occurrences of the generalized
pattern W in a text of length n satisfies asymptotically

E(Ωn(W)) =
(

n + d

d

)
P (W) +

(
n + d− 1

d− 1

)
P (W) [C(W)− T (W)] + O(nd−2),

Version June 23, 2004

382 Analytic Approach to Pattern Matching

where

T (W) =
d∑

i=1

∑
w∈Wi

|w|P (w)
P (Wi)

(7.5.17)

is the average length, and the correlation coefficient C(W) is the sum of the
correlations c(Wi−1,Wi) between languagesWi andWi+1 as defined in (7.5.14).
(ii) The variance of Ωn is asymptotically equal to

Var(Ωn(W)) = σ2(W) n2d−1
(
1 + O(n−1)

)
, (7.5.18)

where the coefficient

σ2(W) = P 2(W)
[
d− 2T (W)
d!(d− 1)!

+
m(W)

(2d− 1)!

]
and the total correlation–coefficient m(W) can be computed as

m(W) :=
∑

1≤i,j≤d

(
i + j − 2

i− 1

)(
2d− i− j

d− i

)
m(Wi,Wj).

where m(Wi,Wi+1) are defined in (7.5.16).

Proof. We only prove part (i) leaving the proof of part (ii) as an exercise (cf.
Exercise 7.5.3). We shall start with the language representation L defined in
(7.5.1) that we recalled above. Its generating operator is

L(z) = (I − zG)−1 ◦ Lr(z) ◦ (I − zG)−1 ◦ · · · ◦ L1(z) ◦ (I − zG)−1. (7.5.19)

After applying the transformation (7.5.8) to L(z), we obtain an operator M1(z)

M1(z) =
(

1
1− z

)d+1

P ◦ Lr(z) ◦P ◦ · · · ◦P ◦ L1(z) ◦P

that has a pole of order r + 1 at z = 1. Near z = 1, each operator Li(z) is
analytic and admits the expansion

Li(z) = Li + (z − 1)L′
i(1) + O(z − 1)2.

Therefore, the leading term of the expansion is(
1

1− z

)d+1

P ◦ Lr ◦P ◦ · · · ◦P ◦ L1 ◦P. (7.5.20)

The second main term is a sum of r terms, each of them obtained by replac-
ing the operator Li(z) by its derivative L′

i(1) at z = 1. The corresponding
generating function M1(z) satisfies near z = 1

M1(z) =
(

1
1− z

)d+1

P (W)−
(

1
1− z

)d

P (W)T (W) + O

(
1

1− z

)d−1

.

(7.5.21)

Version June 23, 2004

7.6. Self-repetitive pattern matching 383

where the average length T (W) is defined in (7.5.17).
After applying (7.5.8) in L(z), we obtain an operator M2(z) that has a pole

of order r at z = 1. This is a sum of d+1 terms, each of the term containing an
occurrence of the operator R(z) between two generating operators of languages
Wi−1,Wi. The corresponding generating function M2(z) has also a pole of order
r at z = 1 and satisfies near z = 1

M2(z) =
(

1
1− z

)d

P (W)
d∑

i=2

c(Li−1,Li) + O

(
1

1− z

)d−1

.

Here, the correlation number c(B, C) between B and C is defined in (7.5.14). To
complete the proof we need only to extract the coefficients of P (z)/(1− z)d, as
already discussed in previous sections.

7.6. Self-repetitive pattern matching

In this last section of the chapter, we change the model. So far we postulated
the pattern w is given. Hereafter, we make the pattern part of the text, which
is still randomly generated. To simplify our presentation, we assume that the
text is emitted by a memoryless source. We should point out that the quantity
analyzed here is in fact the typical depth in a (compact) suffix trie built over
the suffixes of a randomly generated text.

7.6.1. Formulation of the problem

Let i be an arbitrary integer smaller than or equal to n. We define Dn(i) to
be the largest value of k ≤ n such that X i+k−1

i occurs at least twice in the
text Xn

1 of length n; in other words, such that Nn(X i+k−1
i) ≥ 2. We recall

that Nn(w) is the number of times pattern w occurs in the text Xn
1 . Clearly,

Nn(X i+k−1
i) ≥ 1. Our goal is to determine probabilistic behavior of a “typical”

Dn(i), that is, we define Dn to be equal to Dn(i) when i is randomly and
uniformly selected between 1 and n. More precisely,

P(Dn = �) =
1
n

n∑
i=1

P(Dn(i) = �)

for any 1 ≤ � ≤ n.
Let w ∈ Ak be an arbitrary word of size k. Observe that

P(Dn(i) ≥ k & X i+k−1
i = w) = P(Nn(w) ≥ 2 & X i+k−1

i = w),

and
n∑

i=1

P(Nn(w) = r & X i+k−1
i = w) = rP(Nn(w) = r).

Version June 23, 2004

384 Analytic Approach to Pattern Matching

Recall that Nn(u) = E(uNn(w)) =
∑

r≥0 P(Nn(w) = r)ur is the probability
generating function of Nn(w). We sometimes shall write Nn,w(u) to underline
the fact that the pattern w is given. From above we conclude that

P(Dn ≥ k) =
1
n

n∑
i=1

P(Dn(i) ≥ k)

=
∑

w∈Ak

1
n

n∑
i=1

P(Dn(i) ≥ k & X i+k−1
i = w)

=
1
n

∑
w∈Ak

∑
r≥2

rP(Nn(w) = r)

=
∑

w∈Ak

(
P(w) − 1

n
N ′

n,w(0)
)

= 1− 1
n

∑
w∈Ak

N ′
n,w(0),

where N ′
n,w(0) denotes the derivative of Nn(u) at u = 0

Let now Dn(u) = E(uDn) =
∑

k P(Dn = k)uk be the probability generating
function of Dn. Then above implies

Dn(u) =
1
n

(1− u)
u

∑
w∈A∗

u|w|N ′
n,w(0),

and the bivariate generating function D(z, u) =
∑

n nDn(u)zn becomes

D(z, u) =
1− u

u

∑
w∈A∗

u|w| ∂

∂u
Nw(z, 0) (7.6.1)

where Nw(z, u) =
∑∞

n=0

∑∞
r=0 P(Nn(w) = r)znur. In Section 7.2 we worked

with
∑∞

n=0

∑∞
r=1 P(Nn(w) = r)znur and in (7.2.20) of Theorem 7.2.7 we pro-

vided a formula for it. Adding the term N0(z) = Sw(z)/Dw(z) we finally arrive
at

Nw(z, u) =
z|w|P(w)
D2

w(z)
u

1− uMw(z)
+

Sw(z)
Dw(z)

,

where Mw(z) is defined in (7.2.21) and Dw(z) = (1 − z)Sw(z) + z|w|P(w) (cf.
7.2.24) with Sw(z) being the autocorrelation polynomial for w. Since

∂

∂u
Nw(z, 0) = z|w| P(w)

D2
w(z)

,

we finally arrive at the following lemma that is the starting point of the subse-
quent analysis.

Version June 23, 2004

7.6. Self-repetitive pattern matching 385

Lemma 7.6.1. The bivariate generating function for Dn is

D(z, u) =
1− u

u

∑
w∈A∗

(zu)|w| P(w)
((1− z)Sw(z) + z|w|P(w))2

(7.6.2)

for |u| < 1 and |z| < 1, where Sw(z) is the autocorrelation polynomial for w.

In this section, we prove the following result for a random text generated
by a memoryless source over a finite alphabet A of size V with pi being the
probability of emitting symbol i ∈ A. We denote by h = −

∑V
i=1 pi log pi the

entropy rate of the source, and h2 =
∑V

i=1 pi log2 pi. The reader is asked in
Exercise 7.6.1 to extend below theorem to Markov sources.

Theorem 7.6.2. (i) For a biased memoryless source (i.e., pi �= pj for some
i �= j) and any ε > 0

E(Dn) =
1
h

log n +
γ

h
+

h2

h2
+ P1(log n) + O(n−ε), (7.6.3)

Var(Dn) =
h2 − h2

h3
log n + O(1) (7.6.4)

where P1(·) is a periodic function with small amplitude in the case where the
tuple (log p1, . . . ,
log pV), is collinear with a rational tuple (i.e., log pj/ log p1 = r/s for some
integers r and s) and converges to zero otherwise.
Furthermore, (Dn−E(Dn))/Var(Dn) is asymptotically normal with mean zero
and variance one that is, for fixed x ∈ R

lim
n→∞

P{Dn ≤ E(Dn) + x
√

Var(Dn)} =
1√
2π

∫ x

−∞
e−t2/2dt ,

and for all integer m

lim
n→∞

E
[
Dn −E(Dn)√

VarDn

]m

=

{
0 when m is odd

m!
2m/2(m

2)!
when m is even.

(ii) For the unbiased source (i.e., p1 = · · · = pV = 1/V), h2 = h2, the expected
value E(Dn) is given by (7.6.3) above, and for any ε > 0

Var(Dn) =
π2

6 log2 V
+

1
12

+ P2(log n) + O(n−ε)

where P2(log n) is a periodic function with small amplitude The limiting distri-
bution of Dn does not exist, but one finds

lim
n→∞

sup
x
| P(Dn ≤ x)− exp(−nV −x) |= 0

for any fixed real x.

Version June 23, 2004

386 Analytic Approach to Pattern Matching

In passing we observe that the quantity Dn is also the depth of a randomly
selected suffix in a compact suffix trie. Such a trie is a compacted version of
suffix tries defined in Chapter 2. In a compact suffix trie one deletes all unary
nodes at the bottom of the non-compact suffix trie. Observe that in a compact
suffix trie, which we further call simply a suffix trie, the path from the root to
node i (representing the ith suffix) is the shortest suffix that distinguishes it
from all other suffixes. The quantity Dn(i) defined above represents the depth
of the i suffix in the associated suffix trie, while Dn is the typical depth, that is,
the depth of a randomly selected terminal node in the suffix trie. Theorem 7.6.2
tells us that the typical depth is normally distributed with the average depth
asymptotically equal to 1

h log n and variance Θ(log n) for biased memoryless
source. In the unbiased case variance is O(1) and the (asymptotic) distribution
is of the extreme distribution type. Interestingly, as proved below, the depth
in a suffix trie (built over one sequence generated by a memoryless source)
is asymptotically equivalent to the depth in a trie built over n independently
generated strings. Thus suffix tries resemble tries!

7.6.2. Random tries resemble suffix tries

The proof of Theorem 7.6.2 hinges on establishing asymptotic equivalence be-
tween Dn introduced above and a new random variable DT

n defined as follows:
First, for n independently generated texts (by the same memoryless source as for
Dn) we denote by DT

n (i) for an integer i ≤ n the length of the longest prefix of
the ith text that is also a prefix of another text, say the jth text, j �= i. Then the
random variable DT

n is defined by selecting integer i uniformly between 1 and n.
We also define DT

n (u) =
∑

k P(DT
n = k)uk and DT (z, u) =

∑
n nDT

n (u)zn. Ob-
serve that DT

n is in fact the typical depth in a trie built over these n independent
texts.

It is relatively easy to derive the generating function of DT
n , as shown below.

Lemma 7.6.3. For all n ≥ 1

DT
n (u) =

1− u

u

∑
w∈A∗

u|w|P(w)(1 −P(w))n−1,

DT (z, u) =
1− u

u

∑
w∈A∗

u|w| zP(w)
(1− z + P(w)z)2

for all |u| ≤ 1 and |z| < 1.

Proof. It suffices to observe that

P(DT
n (i) < k) =

∑
w∈Ak

P(w)(1 −P(w))n−1.

Indeed, DT
n (i) < k if there is a word w ∈ Ak such the a prefix of the ith string

is equal to w and none of the other text prefixes are equal to w.

Version June 23, 2004

7.6. Self-repetitive pattern matching 387

Our goal now is to prove that Dn(u) and DT
n (u) are asymptotically close as

n → ∞. This requires several preparatory steps outlined below that will lead
to

DT
n (u)−Dn(u) = (1 − u)O(n−ε) (7.6.5)

for some ε > 0 and all |u| < β for β > 1. Consequently,

|P(Dn ≤ k)−P(DT
n ≤ k)| = O(n−εβ−k)

for all positive integers k. In Lemma 7.6.11 we shall prove that DT
n is asymp-

totically normal, hence Dn is normal. This will prove Theorem 7.6.2.
We start with a lemma indicating that for most words w the autocorrelation

polynomial Sw(z) is very close to 1 for z non-negative. This lemma provides
information about analytical properties of the autocorrelation polynomial.

Lemma 7.6.4. There exist δ < 1, θ > 0 and ρ > 1 such that ρδ < 1 and∑
w∈Ak

[[|Sw(ρ)− 1| ≤ (ρδ)kθ]]P(w) ≥ 1− θδk. (7.6.6)

Proof. To simply notations, let Pk be the probability measure on Ak such
that Pk(A) =

∑
w∈Ak [[w ∈ A]]P(w). Thus we need to prove that Pk(Sw(ρ) ≤

1 + (ρδ)kθ) ≥ 1− θδk.
Let i be an integer smaller than k ∈ P(w), where P(w) is the autocorrelation

set for w. It is easy to see that (cf. Exercise 7.6.2)

Pk(k − i ∈ P(w)) =

 V∑
j=1

p
�k/i�+1
j

r V∑
j=1

p
�k/i�
j

i−r

(7.6.7)

where r = k − �k/i�i. Denoting p = maxi pi we have

Pk(k − i ∈ P(w)) ≤ pk−i.

Thus Pk(max(P(w) − {k}) ≥ k/2) ≤
∑�k/2�

i=1 Pk(i + 1 ∈ P(w)) ≤ pk/2

1−p . Now, if

the word w is such that max(P(w)−{k}) < k/2, then Sw(ρ) ≤
∑k

i>�k/2� ρipi ≤
ρk pk/2

1−p . Therefore, it suffices for (7.6.6) to select δ =
√

p, θ = (1 − p)−1 and
ρ > 1 such that ρδ < 1.

In the next lemma we show that D(z, u) can be analytically continued above
the unit disk, that is, for |u| > 1.

Lemma 7.6.5. The generating function D(z, u) can be analytically continued
for all |u| < δ−1 and |z| < 1 where δ < 1.

Version June 23, 2004

388 Analytic Approach to Pattern Matching

Proof. Let |u| < 1 and |z| < 1. Consider the following identity∑
w

(uz)|w| P(w)
(1− z)2

=
1

(1− uz)(1− z)2
.

Therefore, for |z| < 1

uD(z, u)− (1− u)
(1− uz)(1− z)2

= (1− u)
∑
w

(zu)|w|P(w)
(

1
D2

w(z)
− 1

(1− z)2

)
= (u− 1)

∑
w

(zu)|w|P(w)
1

D2
w(z)(1− z)2

(Dw(z)− (1− z))(Dw(z) + (1 − z)),

where we recall Dw(z)−(1−z) = (1−z)(Sw(z)−1)+P(w)z|w|. By Lemma 7.6.4

Pk(|Dw(z)− (1− z)| ≤ (|1− z|+ 1)δ|w|) ≥ 1−O(δ|w|)

for all w such that |w| = k. Moreover, for any bounded function f(w) such that
f(w) ≤ fmax for all w with |w| = k, we also have the following estimate for all
y: ∑

|w|=k

P(w)f(w) ≤ y + fmaxPk(f(w) > y) . (7.6.8)

In particular, we take f(w) = Dw(z)− (1 − z) and we have fmax = O(1) since
|Sw(z)| < (1 − p)−1 (p as defined as in proof of lemma 7.6.4). Now taking
y = (|1 − z|+ 1)δk, using the above we obtain

uD(z, u)− 1− u

(1 − uz)(1− z)2
= (u− 1)

∞∑
k=0

(zu)kO((|1 − z|+ 1)δk + δk)

for all w. In conclusion,

uD(z, u)− (1− u)
(1− uz)(1− z)2

= O

(
u− 1

1− δ|u|

)
for δ < 1 and |z| < 1, which completes the proof.

Before we proceed, we need two technical lemmas.

Lemma 7.6.6. There exists K, a constant ρ′ > 1 and α > 0 such that for all
w with |w| ≥ K we have

|Sw(z)| ≥ α

for |z| ≤ ρ′ with ρ′ > 1 such that pρ′ < 1.

Proof. Let � be an integer and ρ′ > 1 such that pρ′ + (pρ′)	 < 1. Let k > � and
let w such that |w| > k. Let i = max(P −{k}). If i ≤ �, then for all z such that
|z| ≤ ρ′ we have

|Sw(z)| ≥ 1− (pρ′)	

1− pρ′
.

Version June 23, 2004

7.6. Self-repetitive pattern matching 389

If i > �, let q = �k/i�, then w = uqv where u is the prefix of length i of word w,
and v is the suffix of length k − iq. Thus

Sw(z) =
1− (P(u)zi)q

1−P(u)zi
+ (P(u)zi)qSuv(z),

where Suv(z) is the autocorrelation polynomial of uv. This implies

|Sw(z)| ≥ 1− (pρ′)qi

1 + (pρ′)i
− (pρ′)iq − (pρ′)k

1− pρ′
.

But since i > �, we obtain

|Sw(z)| ≥ 1− (pρ′)− 3(pρ′)k−	

1 + pρ′
> 0,

which completes the proof.

Lemma 7.6.7. There exists an integer K ′ such that for |w| ≥ K ′ there is only
one root of Dw(z) in the disk |z| ≤ ρ′ for ρ′ > 1.

Proof. Let K1 be such that (pρ′)K1 < α(ρ′ − 1) holds for the α and ρ′ as in
Lemma 7.6.6. Denote K ′ = max{K, K1}, where K is defined above. Note also
that the above condition implies that for all w such that |w| = k > K ′ we have
P(w)(ρ′)k < α(ρ−1). Hence, for |w| > K ′ we have |P(w)zk| < |(z−1)Sw(z)| on
the circle |z| = ρ′ > 1. Therefore, by Rouché’s theorem the polynomial Dw(z)
has the same number of roots as (1 − z)Sw(z) in the disk |z| ≤ ρ′. But, the
polynomial (1−z)Sw(z) has only a single root in this disk since by Lemma 7.6.6
we have |Sw(z)| > 0 in |z| ≤ ρ′.

We just establish that there exists the smallest root of Dw(z) = 0 that we
denote as Aw. Let also Cw and Dw be the first and the second derivatives of
Dw(z) at z = Aw, respectively. Using bootstrapping, one easily obtains the
following expansions

Aw = 1 +
1

Sw(1)
P(w) + O(P(w)2),

Cw = −Sw(1) +
(

k − 2S′
w(1)

Sw(1)

)
P(w) + O(P(w)2),

Ew = −2S′
w(1) +

(
k(k − 1)− 3S′′

w(1)
Sw(1)

)
P(w) + O(P(w)2),

where S′
w(1) and S′′

w(1), respectively, denote the first and the second derivatives
of Sw(z) at z = 1.

Finally, we are ready to compare Dn(u) with DT
n (u) to conclude that they

do not differ too much as n → ∞. Let us define two new generating functions

Version June 23, 2004

390 Analytic Approach to Pattern Matching

Qn(u) and Q(z, u) that represent the difference between Dn(u) and DT
n (u), that

is,
Qn(u) =

u

1− u

(
Dn(u)−DT

n (u)
)
,

and

Q(z, u) =
∞∑

n=0

n Qn(u)zn =
u

1− u

(
D(z, u)−DT (z, u)

)
.

Then

Q(z, u) =
∑
w

u|w|P(w)
(

z|w|

Dw(z)2
− z

(1 − z + P(w)z)2

)
.

It is not difficult to establish asymptotics of Qn(u) by appealing to the Cauchy
theorem. This is done in the following lemma.

Lemma 7.6.8. There exists B > 1 such that for all |u| ≤ β the following
evaluation holds

Qn(u) =
1
n

∑
w

u|w|P(w)
(

A|w|−n−1
w

(
n + 1− |W|

C2
wAw

+
Ew

C3
w

)
− n(1−P(w))n−1

)
+ O(B−n)

for some β > 1.

Proof. By Cauchy’s formula

nQn(u) =
1

2iπ

∮
Q(z, u)

dz

zn+1
,

where the integration is along a loop contained in the unit disk that encircles the
origin. Let w be such that |w| ≥ K ′, where K ′ is defined in Lemma 7.6.7. From
the proof of Lemma 7.6.7 we conclude that Dw(z) and (1 − z + P(w)z) have
only one root in |z| ≤ ρ for some ρ > 1. Applying Cauchy’s residue theorem we
obtain

1
2iπ

∮
u|w|P(w)

dz

zn+1

(
z|w|

Dw(z)2
− z

(1 − z + P(w)z)2

)
=

= u|w|P(w)

(
A

|w|−n−1
w

u

(
n + 1− |w|

C2
wAw

+
Ew

C3
w

)
− n(1−P(w))n−1

)
+ Iw(ρ, u),

where

Iw(ρ, u) =
P(w)
2iπ

∫
|z|=ρ

u|w| dz

zn+1

(
z|w|

Dw(z)2
− z

(1− z + P(w)z)2

)
.

To establish a bound for Iw(ρ, u) we argue exactly in the same manner as in the
proof of Theorem 7.6.5. This leads for |w| > K ′ to∑

|w|=k

Iw(ρ, u) = O((δρu)kρ−n)

Version June 23, 2004

7.6. Self-repetitive pattern matching 391

since for all w we also have Sw(ρ) ≤ 1/(1−pρ) and Dw(z) = O(ρk) in the circle
|z| ≤ ρ. Set now β = (δρ)−1 > 1. Then, for |u| < β we have∑

{w: |w|>K′}
Iw(ρ, u) = O(

∑
w

P(w)ρ|w|−n) = O(ρ−n).

This proves our bound since the other terms (|w| < K ′) contribute only B−n

for some B > 1 due to the fact that all roots of Dw(z) have magnitudes greater
than 1.

In the next lemma we show that Qn(u)→ 0 as n →∞.

Lemma 7.6.9. For all 1 < β < δ−1, there exists ε > 0 such that Qn(u) =
(1− u)O(n−ε) uniformly for |u| ≤ β.

Proof. The expansion of Ew with respect to P(w), and Lemma 7.6.4 show that
as n → ∞ the following holds

∑
w u|w|P(w)A−n

w Ew/C3
w = O(1). Therefore, by

Lemma 7.6.8 we have

Qn(u) =
∑
w

u|w|P(w)

(
A

|w|−n−2
w

C2
w

− (1−P(w))n−1

)
+ O(1/n) .

Let now fw(x) be a function defined for x real by

fw(x) =
A

|w|−x−2
w

C2
w

− (1 −P(w))x−1.

By the same arguments as used in proving (7.6.8) in Theorem 7.6.5, we
note that

∑
w u|w|P(w)fw(x) is absolutely convergent for all x and u such that

|u| ≤ β. The function f̄w(x) = fw(x) − fw(0)e−x is exponentially decreasing
when x → +∞ and is O(x) when x → 0; therefore its Mellin transform defined
as

f̄∗
w(s) =

∫ ∞

0

f̄w(x)xs−1dx

is well defined for ((s) > −1. In this region we obtain

f̄∗
w(s) = Γ(s)

(
A|w|−1

w

(log Aw)−s − 1
AwC2

w

− (− log(1 −P(w))−s − 1
1−P(w)

)
,

where Γ(s) is the gamma function. Let g∗(s, u) be the Mellin transform of the
series

∑
w u|w|P(w)f̄w(x) which exists at least in the strip (−1, 0). Formally,

we have
g∗(s, u) =

∑
w

u|w|P(w)f̄∗
w(s) .

We can reverse the Mellin transform g∗(s, u) provided that the following holds.

Lemma 7.6.10. The function g∗(s, u) is analytical in ((s) ∈ (−1, c) for some
c > 0.

Version June 23, 2004

392 Analytic Approach to Pattern Matching

Assuming Lemma 7.6.10 is granted, we have

Qn(u) =
1

2iπ

∫ ε+i∞

ε−i∞
g∗(s, U)n−sds + O(1/n) +

∑
w

u|w|P(w)fw(0)e−n,

for some ε ∈ (0, c). Notice that the last term of the above contributes O(e−n),
and can be safely ignored. Furthermore, a simple majorization under the inte-
gral gives the evaluation Qn(u) = O(n−ε) which completes the proof.

Proof of Lemma 7.6.10: We establish the absolute convergence of g∗(s, u) for all
s such that ((s) ∈ (−1, c) and |u| ≤ β. Let us define h∗(s, u) = g∗(s,u)

Γ(s) . Note
that for any fixed s we have the following

(log Aw)−s =
(

P(w)
1 + Sw(1)

)−s

(1 + O(P(w))) ,

(− log(1−P(w)))−s = P(w)−s(1 + O(P(w))) .

Thus

(log Aw)−s − 1

A
2−|w|
w C2

w

− (− log(1−P(w)))−s − 1
1−P(w)

=

= P(w)−s [(1 + aw(1))s(1 + O(|w|P(w)) − (1 + O(P(w))] + O(|w|P(w)) .

By Lemma 7.6.4, Pk(Sw(1) ≤ 1 + θδk) ≥ 1−O(δk), and hence

h∗(s, u) =
∞∑

k=0

(
sup{p−�(s), q−�(s)}|u|δ

)k

O(1)

that absolutely converges for all values of s such that ((s) < c where c satisfies
sup{p−c, q−c} < (δβ)−1. Since h∗(0, u) = 0 by definition, the pole of Γ(s) at s =
0 is canceled in g∗(s, u), and therefore h∗(s, u) does not show any singularities
in the strip ((s) ∈ (−1, c).

To complete the proof of our main Theorem 7.6.2, we need an asymptotic
analysis of DT

n (u) which is presented next. We recall that DT
n represents also

the typical depth in a trie built from n independently generated strings.

Lemma 7.6.11. There exists ε > 0 such that

DT
n (u) = (1− u)nκ(u)(Γ(κ(u)) + P (log n, u))) + O(nε),

where

u

V∑
i=1

p
1−κ(u)
i = 1

and P (log n, u) is periodic function with small amplitude in the case where the
vector (log p1,
. . . , log pV) is collinear with a rational tuple, and converges to zero when n →∞
otherwise.

Version June 23, 2004

7.6. Self-repetitive pattern matching 393

Proof. We begin with the identity

DT
n (u) =

1− u

u

∑
w∈A∗

u|w|P(w)(1 −P(w))n−1.

We argue exactly in the same manner as in the proof of Lemma 7.6.8. We find
the Mellin transform T ∗(s, u) =

∫∞
0

xs−1dxu/(1− u)DT
x (u)dx to be

T ∗(s, u) =
∑

w∈A∗
u|w|P(w)(− log(1−P(w)))−sΓ(s).

Using the fact that for s bounded (− log(1−P(w)))−s = P(w)−s(1+O(sP(w))),
we conclude

T ∗(s, u) = Γ(s)

(
u
∑V

i=1 p1−s
i

1− u
∑V

i=1 p1−s
i

+ g(s, u)

)
,

where

g(s, u) = O

(
us
∑V

i=1 p
2−�(s)
i

1− |u|
∑V

i=1 p
2−�(s)
i

)
.

Let κ(u) be the main root of 1 = u
∑V

i=1 p1−s
i . The other roots of 1 =

u
∑V

i=1 p1−s
i , are countable and we denote them as κk(u) for k �= 0 integer.

For all integers k we have ((κk(u)) ≥ κ(u). Using the inverse Mellin we find

DT
n =

1− u

2iπu

∫ +i∞

−i∞
T ∗(s, u)n−sds.

We now consider |u| < δ−1 for δ < 1. Then there exists ε such that for ((s) ≤ ε
the function g(s, u) has no singularity. Moving the integration path to the left
of ((s) = ε, and applying the reside theorem we find the following estimate

DT
n (u) = (1− u)

Γ(κ(u))
h(u)

nκ(u) + (1− u)
∑

k

Γ(κk(u))
hk(u)

nκk(u) + O(n−ε) (7.6.9)

with h(u) = −
∑

i p
1−κ(u)
i log pi and hk(u) = −

∑
i p

1−κk(u)
i log pi. When log pi’s

are collinear with a rational vector, then there is subset of κk(u) that have the
same real part as κ(u) and also equally spaced on the vertical line ((s) =
((κ(u)). In this case their contribution to (7.6.9) is

nκ(u)
∑

k

Γ(κk(u))
h(u)

exp((κk(u)− κ(u))i log n).

When the log pi’s are not collinear with a rational vector the contribution of the
κk(u) divided by nκ(u) converges to zero when n →∞.

The last lemma completes the proof of Theorem 7.6.2. Indeed, it suffices to
observe that for t→ 0

κ(et) = c1t +
c2

2
t2 + O(t3) (7.6.10)

Version June 23, 2004

394 Analytic Approach to Pattern Matching

where c1 = 1/h and c2 = (h2− h2)/h3. We concentrate first on the asymmetric
case. From the expression of DT

n (u) we find immediately the first and the second
moments via the first and the second derivatives of DT

n (u) at u = 1 with the
appropriate asymptotic expansion in c1 log n and in c2 log n. In order to obtain
the limiting normal distribution we prove

e−tc1 log n/
√

c2 log nDT
n

(
et/

√
c2 log n

)
→ et2/2

using nκ(u) = exp(κ(u) log n) and referring to expansion (7.6.10).
For the symmetric case there is no normal limiting distribution since variance

is O(1). However, there are oscillation due to the fact that all κk(u) are aligned
on a vertical line. This completes the proof of Theorem 7.6.2.

Problems

Section 7.2

7.2.1 Prove (7.2.9).
7.2.2 In Theorem 7.2.8 we prove that for irreducible aperiodic Markov chain

the variance Var(Nn) = nc1 + c2 (cf. (7.2.26)). Prove that c1 > 0.
7.2.3 Prove that (Nn −E(Nn))/

√
Var(Nn) converges in moments to the ap-

propriate moments of the standard normal distribution.
7.2.4 Let ρ(t) be a root of 1− etMW(eρ) = 0. Observe that ρ(0) = 0. Prove

that ρ(t) > 0 for t �= 0 for pij > 0 for all i, j ∈ A.
7.2.5 Prove the expression (7.2.44) for θa of Theorem 7.2.12 (cf. Denise and

Régnier (2004)).

Section 7.3

7.3.1 Extend the analysis of Section 7.3 to multisets W , that is, a word wi

may occur several times in W .
7.3.2 Prove language relationships (7.3.2)–(7.3.2).
7.3.3 Derive explicit formulas for θa appearing in Theorem 7.3.3(iv).
7.3.4 Find explicit formulas for the values of the mean E(Nn(W)) and of the

variance Var(Nn(W)) for the generalized pattern matching discussed in
Section 7.3.2 for W0 = ∅ and W0 �= ∅.

7.3.5 Derive explicit formulas for σa and θa in (7.3.27) appearing in Theo-
rem 7.3.10.

7.3.6 Enumerate (�, k) sequences over a non binary alphabet (i.e., generalize
the analysis of Section 7.3.3).

Section 7.4

7.4.1 Find an explicit formula for the generating function B
[p]
2 (z) of the col-

lection B[p]
2 .

Version June 23, 2004

Notes 395

7.4.2 Design a dynamic programming algorithm to compute the correlation
algorithm, κ2(W).

7.4.3 Establish the rate of convergence for the Gaussian law from Theo-
rem 7.4.5.

7.4.4 For the fully unconstrained subsequence problem establish the large
deviations (cf. Janson (pear)).

7.4.5 Provide details of the proof for Theorem 7.4.6.
7.4.6 LetW = {w1, . . . , wd} be a set of patterns wi. The patternW occurs as

a subsequence in the text if any of wi occurs as a subsequence. Analyze
this generalization of the subsequence pattern matching.

7.4.7 Let w be a pattern. Set W to be a window size with |w| ≤ W ≤ n.
Consider the windowed subsequence pattern matching in which w must
appear as a subsequence within the window W . Analyze the number of
windows that has at least one occurrence of w as a subsequence within
the window (cf. Gwadera, Atallah, and Szpankowski 2003).

Section 7.5

7.5.1 Prove the generating operators identities (7.5.5)–(7.5.8).
7.5.2 Prove (7.5.11)–(7.5.13).
7.5.3 Prove the second part of Theorem 7.5.1, that is, derive formula (7.5.18)

for variance of Ωn(W).
7.5.4 Does the central limit theorem holds for the generalized subsequence

problem discussed in Section 7.5? What about large deviations?

Section 7.6

7.6.1 Extend Theorem 7.6.2 for Markov sources.
7.6.2 Prove (7.6.7) and extend it to Markov sources (cf. Apostolico and Sz-

pankowski 1992).

7.6.3 Let κ(u) be the main root of 1 = u
∑V

i=1 p1−s
i , and κk(u) for k �= 0

integer are other roots of 1 = u
∑V

i=1 p1−s
i . Prove that for all integers k

we have ((κk(u)) ≥ κ(u).

Notes

Algorithmic aspects of pattern matching are presented in numerous books. We
mention here Crochemore and Rytter (1994) and Gusfield (1997) (cf. also Apos-
tolico (1985)). Public domain utilities like agrep, grappe, webglimpse for find-
ing general patters were recently developed by Wu and Manber (1995), Kucherov
and Rusinowitch (1997), and others. Various data compression schemes are
studied in Wyner and Ziv (1989), Wyner (1997), Yang and Kieffer (1998),
Ziv and Lempel (1978), Ziv and Merhav (1993)). Prediction based on pattern

Version June 23, 2004

396 Analytic Approach to Pattern Matching

matching is discussed in Jacquet, Szpankowski, and Apostol (2002). Algorith-
mic aspect of pattern matching can also be found in Chapter 2 and Chapter 8
of this book.

In this chapter the emphasis is on analysis of pattern matching problems
by analytic methods in a probabilistic framework. Probabilistic models are dis-
cussed in Section 7.1 and Chapter 1. Markov models are presented in many
standard books (cf. Karlin and Ost (1987)). Dynamic sources were intro-
duced by Vallée (2001) (cf. also Clement, Flajolet, and Vallée (2001), Bourdon
and Vallée (2002)). General stationary ergodic sources are discussed in Shields
(1969).

In this chapter analytic tools are used to investigate combinatorial pattern
matching problems. The reader is referred to Alon and Spencer (1992), Sz-
pankowski (2001), Waterman (1995) (cf. also Arratia and Waterman (1989,
1994)) for in-depth discussion of probabilistic tools. Analytic techniques are
thoroughly explained in Sedgewick and Flajolet (1995) and Szpankowski (2001).
The reader may also consult Atallah, Jacquet, and Szpankowski (1993), Bender
(1973), Clement et al. (2001), Hwang (1996), Jacquet and Szpankowski (1994,
1998). The Perron–Frobenius theory and the spectral decomposition of matri-
ces can be found in Gantmacher (1959), Karlin and Taylor (1975), Kato (1980),
Szpankowski (2001). Operator theory is discussed in Kato (1980).

Exact string matching is presented in Section 7.2. There are numerous
references. Our approach is founded in the work of Guibas and Odlyzko (1981a)
and Guibas and Odlyzko (1981b). The presentation of this section follows very
closely recent work of Régnier and Szpankowski (1998a) and Régnier (2000).
More probabilistic approach is adopted in Chapter 2 and in Prum et al. (1995).
Example 7.2.13 is taken from Denise, Régnier, and Vandenbogaert (2001).

Generalized string matching problem discussed in Section 7.3 was introduced
in Bender and Kochman (1993). The analysis of string matching over reduced
set of patterns appears in Régnier and Szpankowski (1998b) (cf. also Guibas
and Odlyzko (1981b)). An automaton approach to motif finding was proposed
in Nicodème et al. (2002). The general string matching was first dealt with in
Bender and Kochman (1993), however, our presentation follows a different path
simplifying previous analyses. It is closely related to the subsequence pattern
matching analysis presented in Flajolet, Guivarc’h, Szpankowski, and Vallée
(2001). The (�, k) sequence analysis is taken from Szpankowski (2001).

The subsequence pattern matching or the hidden pattern matching discussed
in Section 7.4 is based on Flajolet et al. (2001). Proceeding along different
tracks, Janson (pear) has related this particular case to his treatment of U–
statistics via Gaussian Hilbert spaces; see Chapter XI of Janson’s book Janson
(1997) for the type of method employed. Example 7.4.7 was fully developed in
Gwadera et al. (2003).

The generalized subsequence pattern matching discussed in Section 7.5 is
taken from Bourdon and Vallée (2002). The operator generating function ap-
proach for dynamic sources was developed by Vallée (2001).

In Section 7.6 we present some results for the self-repetitive pattern match-
ing. Theorem 7.6.2 was proved in Jacquet and Szpankowski (1994), however, our

Version June 23, 2004

Notes 397

proof in this section is somewhat simplified. In particular, proof of the crucial
Lemma 7.6.1 is new and based on results presented in Section 7.2. Lemma 7.6.11
is due to Jacquet and Régnier (1986) (for an extension to Markov sources see
Jacquet and Szpankowski (1991)). Mellin transform is explained in depth in
Flajolet, Gourdon, and Dumas (1995), Szpankowski (2001). Tries are treated in
depth in Mahmoud (1992) and Szpankowski (2001). As mentioned, the quantity
Dn analyzed in the section is also the typical depth in a suffix tries introduced in
Chapter 2 (cf. also Apostolico (1985)). Probabilistic analysis of suffix tries can
be found in Apostolico and Szpankowski (1992), Devroye, Szpankowski, and
Rais (1992), Szpankowski (1993a, 1993b). As discussed in the section, suffix
tries are often appear in analysis of data compression schemes (cf. Wyner and
Ziv (1989), Wyner (1997), Yang and Kieffer (1998), Ziv and Lempel (1978), Ziv
and Merhav (1993)).

Version June 23, 2004

398 Analytic Approach to Pattern Matching

Version June 23, 2004

399

CHAPTER 8

Periodic Structures in Words

8.0 Introduction . 399
8.1 Definitions and preliminary results 400
8.2 Counting maximal repetitions 402

8.2.1 Counting squares: an upper bound 402
8.2.2 Repetitions in Fibonacci words 403
8.2.3 Counting maximal repetitions 407

8.3 Basic algorithmic tools . 408
8.3.1 Longest extension functions 408
8.3.2 s-factorization and Lempel-Ziv factorization 410

8.4 Finding all maximal repetitions in a word 411
8.5 Finding quasi-squares in two words 416
8.6 Finding repeats with a fixed gap 418

8.6.1 Algorithm for finding repeats with a fixed gap 418
8.6.2 Finding δ-repeats with fixed gap word 421

8.7 Computing local periods of a word 421
8.7.1 Computing internal minimal squares 422
8.7.2 Computing external minimal squares 426

8.8 Finding approximate repetitions 427
8.8.1 K-repetitions and K-runs 428
8.8.2 Finding K-repetitions 430
8.8.3 Finding K-runs . 434

8.9 Notes . 439

8.0. Introduction

Repetitions (periodicities) in words are important objects that play a funda-
mental role in combinatorial properties of words and their applications to string
processing, such as compression or biological sequence analysis. Using proper-
ties of repetitions allows one to speed up pattern matching algorithms.

The problem of efficiently identifying repetitions in a given word is one of
the classical pattern matching problems. Recently, searching for repetitions in
strings received a new motivation, due to the biosequence analysis. In DNA
sequences, successively repeated fragments often bear an important biological
information and their presence is characteristic for many genomic structures

Version June 23, 2004

400 Periodic Structures in Words

(such as telomer regions for example). From a practical viewpoint, satellites
and alu-repeats are involved in chromosome analysis and genotyping, and thus
are of major interest to genomic researchers. Thus, different biological studies
based on the analysis of tandem repeats have been done, and even databases of
tandem repeats in certain species have been compiled.

In this chapter, we present a general efficient approach to computing different
periodic structures in words. It is based on two main algorithmic techniques –
a special factorization of the word and so-called longest extension functions –
described in Section 8.3. Different applications of this method are described in
Sections 8.4, 8.5, 8.6, 8.7, and 8.8. These sections are preceded by section 8.2
devoted to a combinatorial enumerative properties of repetitions. Bounding the
maximal number of repetitions is necessary for proving complexity bounds of
corresponding search algorithms.

8.1. Definitions and preliminary results

Consider a word w = a1 · · · an. A position w is any integer � with 1 ≤ � ≤ n.
Any word x such that there exist i ≤ j with x = ai · · ·aj is called a factor of w.
If a specific pair of integers (i, j) with this property is meant, we speak about an
occurrence of the factor x. We say that this occurrence starts at position i and
ends at position j in w and denote it w[i..j]. We say that a factor occurrence
v = w[i..j] contains a position � of w, if i ≤ � ≤ j.

Recall (see Chapter 1) that an integer p is called a period of w if ai = ai+p,
for all i such that 1 ≤ i, i+p ≤ n. Equivalently, p is a period of w iff w[1..n−p] =
w[p + 1..n]. If p is a period of w, any factor u of w of length p is called a root
of w. In other words, u is a root of w iff w is a factor of un for some natural n.

Each word w has a minimal period that we will denote p(w). The roots u
of w such that |u| = p(w) are called cyclic roots. We also call the cyclic root
w[1..p(w)] the prefix cyclic root of w, and the cyclic root w[n− p(w) + 1..n] the
suffix cyclic root of w.

The rational number e(w) = |w|/p(w) is called the exponent of w. If e(w) ≥
2, then w is called a repetition (periodicity). If k = e(w) is an integer greater
than 1, w can be written as uk = uu · · ·u (k times) and is called an integer
power (k-power, or tandem array in biological literature). A word which is
not an integer power is called primitive. An integer power of even exponent is
commonly called a square (or a tandem repeat). These are words of the form uu
for some word u. An integer power of exponent 2 is called a primitively-rooted
square, as it corresponds to a square uu where u is primitive. In general, any
word w of minimal period p and exponent e can be written as ukv, where u is
a primitive word, |u| = p, v is a proper prefix of u and e = k + |v|

|u| .
The following proposition specifies some properties of repetitions.

Proposition 8.1.1. A word r of length m is a repetition of minimal period
p ≤ m/2 if and only if one of the following conditions holds:

(i) r[1..m− p] = r[p+1..m], and p is the minimal number with this property,

Version June 23, 2004

8.1. Definitions and preliminary results 401

(ii) any factor of r of length 2p is a square, and p is the minimal number with
this property.

From now on, we will be interested in repetitions occurring as factors of
some word, that is in factor occurrences r = w[i..j] with e(r) ≥ 2. A maximal
repetition in a word w, is a repetition r = w[i..j] such that

(i) if i > 1, then p(w[i− 1..j]) > p(w[i..j]), and
(ii) if j < n, then p(w[i..j + 1]) > p(w[i..j]).

In other words, a maximal repetition is a repetition r = w[i..j] such that no
factor of w that contains r as a proper factor has the same minimal period
as r. For example, the factor 10101 in the word w = 1011010110110 is a
maximal repetition (with period 2), while the factor 1010 is not. Other maximal
repetitions of w are prefix 10110101101 (period 5), suffix 10110110 (period 3),
prefix 101101 (period 3), and the three occurrences of 11 (period 1). (Note that
different repetitions can be equal words.)

Any repetition in a word can be extended to a unique maximal repetition,
that we will call the corresponding maximal repetition. For example, the repe-
tition 1010 in word w = 1011010110110 corresponds to the maximal repetition
10101 obtained by the extension by one letter to the right.

A basic result about periods is the Fine and Wilf’s theorem:

Theorem 8.1.2 (Fine and Wilf). If w has periods p1, p2, and |w| ≥ p1 + p2−
gcd(p1, p2), then gcd(p1, p2) is also a period of w.

Two factor occurrences w[i..j] and w[k..�] are said to overlap if their intervals
[i..j] and [k..�] have a non-empty intersection. The overlap of the two factors
is then the factor w[r..s] where [r..s] is the intersection of [i..j] and [k..�]. The
following lemma will be used in the sequel.

Lemma 8.1.3. Two distinct maximal repetitions with the same period p can-
not have an overlap of length greater than or equal to p.

Proof. From a case analysis of relative positions of two repetitions of period p,
it follows that if they intersect on at least p letters, at least one of them is not
maximal.

A repetition r occurring in a word w is said to have a root in some factor
occurrence of w, if r overlaps with this occurrence by at least p(r) letters. Also,
we say that a repetition r has a root on the right (respectively on the left) of a
position � of w with the meaning that r overlaps by at least p(r) letters with
the suffix w[� + 1..n] (respectively, the prefix w[1..�− 1]).

The following reformulation of Lemma 8.1.3 will be also useful.

Corollary 8.1.4. If two maximal repetitions of w contain a position � and
have a root on the right (on the left) of �, then either these maximal repetitions
have different minimal periods or they coincide.

Version June 23, 2004

402 Periodic Structures in Words

We will also use the following proposition which is again a consequence of
the Fine and Wilf theorem.

Proposition 8.1.5. If u is a primitive word, then u cannot be an internal
factor of uu (that is, a factor which is not a prefix or suffix).

Proof. If u is an internal factor of uu, then u = xy = yx, where x, y are
nonempty words. We show that x and y are powers of the same word, by
induction on the length of xy. The claim holds if |x| = |y|. Otherwise, assume
|x| > |y|. Then x = yz for some nonempty word z. It follows that zy = yz. By
induction, y and z are powers of the same word, and so are x and y. Thus, u is
not primitive.

8.2. Counting maximal repetitions

Before considering algorithmic issues related to repetitions, we briefly study in
this section the combinatorial question of the number of repetitions occurring
in a word. The main point here is to show that considering maximal repetitions
leads to a compact linear-space representation of all repetitions. This result
will motivate building an efficient algorithm for computing all maximal repeti-
tions, and, on the other hand, will be used to obtain bounds on its algorithmic
complexity.

8.2.1. Counting squares: an upper bound

We start with the question of how many square occurrences can a word contain.
Clearly, if all squares are counted, a word can contain a quadratic number of
those (e.g. 1n). If we restrict our attention to primitively-rooted squares, the
following result holds.

Theorem 8.2.1. The number of occurrences of primitively-rooted squares in
a word of length n is O(n log n).

The proof is based on the following “lemma of three squares”:

Lemma 8.2.2. Consider three squares x2, y2, z2 and assume that z2 is a prefix
of y2 and y2 is a prefix of x2. Assume that z is a primitive word. Then
|z| < |x|/2.

Proof. Denote w = x2. Assume that |z| ≥ |x|/2. Let p = |y| − |z| and
k = |z| − p = 2|z| − |y|. Observe that prefix w[1..k] of z is also a suffix of z,
and therefore w[1..k] = w[p + 1..k + p] = w[p + 1..|z|]. We show by induction
that for every i, k + 1 ≤ i ≤ k + p, we have w[i] = w[i + p]. We have w[i] =
w[i + |y|] = w[i + |y| − |x|], as i + |y| > 2|z| ≥ |x|. By induction, the latter is
equal to w[i + |y| − |x|+ p] = w[i + |y|+ p] = w[i + p]. We showed that z (and
even z2) occurs at position p + 1 in w. By Proposition 8.1.5, this contradicts
that z is primitive.

Version June 23, 2004

8.2. Counting maximal repetitions 403

Proof of Theorem 8.2.1 Lemma 8.2.2 implies that the number of primitively-
rooted squares occurring as prefixes of a word w is less than 2 log2 |w|. Indeed,
from Lemma 8.2.2, it follows that if w has as its prefixes i primitively-rooted
squares, then |w| > 2i/2. Theorem 8.2.1 follows.

8.2.2. Repetitions in Fibonacci words

Fibonacci words are words over the binary alphabet {0, 1} defined recursively
by f0 = 0, f1 = 1, fn = fn−1fn−2 for n ≥ 2. The length of fn, denoted
Fn, is the n-th Fibonacci number. Fibonacci words have numerous interesting
combinatorial properties and often provide a good example to test conjectures
and analyze algorithms on words.

The following lemma summarizes some properties of Fibonacci words that
we will need in this section.

Lemma 8.2.3. (i) For n ≥ 2, fn and the word fn−2fn−1 share a common
prefix of length Fn − 2.

(ii) For every n, fn is a primitive word.
(iii) Every repetition occurring in Fibonacci words has the minimal period Fk

for some k, and has a cyclic root fk.
(iv) Fibonacci words contain no repetition of exponent 4.

Proof. (i) is easily proved by induction. To prove (ii), observe that for n ≥ 2,
fn contains Fn−1 occurrences of 1, as can be easily proved by induction. If
fn is not primitive that is fn = wk for a non-empty word w and k ≥ 2, then
both Fn = |fn| and Fn−1 (the number of 1’s in fn) are divisible by k which is
a contradiction as Fn and Fn−1 are mutually prime, which can be again easily
proved by induction. Proving (iii) and (iv) is beyond the scope of this chapter
(see Notes).

We now prove that Fibonacci words realize the asymptotically largest num-
ber of square occurrences, according to Theorem 8.2.1. This shows, in particular,
that the O(n log n) bound of Theorem 8.2.1 is asymptotically tight.

Theorem 8.2.4. Fibonacci word fn contains Θ(Fn log Fn) occurrences of pri-
mitively-rooted squares.

Proof. Let Sn be the number of occurrences of primitively-rooted squares in fn.
By induction on n, we will show that Sn ≥ 1

6Fn log2 Fn, for n ≥ 5. For n = 5
and n = 6, the inequality is verified directly. Assume now that n ≥ 7. Consider
the decomposition fn = fn−1fn−2 and call the position between fn−1 and fn−2

the frontier. Clearly, all squares in fn are divided into those which lie entirely
in fn−1 or fn−2 and those which cross the frontier, i.e. overlap both with fn−1

and with fn−2. Therefore,

Sn+1 = Sn + Sn−1 + Ŝn+1,

Version June 23, 2004

404 Periodic Structures in Words

where Ŝn+1 is the number of primitively-rooted squares crossing the frontier.
By Lemma 8.2.3(i), the prefix of fn+1 of length (Fn+1 − 2) is also a prefix of
the word fn−1fn = fn−1fn−1fn−2. Since fn−2 is a prefix of fn−1, then fn+1

contains (Fn−2 − 1) squares of period Fn−1 that cross the frontier. Since fn−1

is a primitive word (Lemma 8.2.3(ii)), all those squares are primitively-rooted.
Since

fn+1 = fnfn−1 = fn−1fn−2fn−2fn−3

and fn−3 is a prefix of fn−2, then the suffix fn−2fn−2fn−3 of fn+1 contains
Fn−3+1 squares of period Fn−2 that cross the frontier. Since fn−2 is a primitive
word, all those squares are primitively-rooted too.

We obtain that Ŝn+1 ≥ (Fn−2 − 1) + (Fn−3 + 1) = Fn−1. Therefore,

Sn+1 ≥ Sn + Sn−1 + Fn−1 ≥
1
6
Fn log2 Fn +

1
6
Fn−1 log2 Fn−1 + Fn−1

=
Fn+1

6
[

Fn

Fn+1
(log2

Fn

Fn+1
+ log2 Fn+1) +

Fn−1

Fn+1
(log2

Fn−1

Fn+1
+ log2 Fn+1)

+
6Fn−1

Fn+1
] =

Fn+1

6
(log2 Fn+1 + ∆),

where
∆ =

Fn

Fn+1
log2

Fn

Fn+1
+

Fn−1

Fn+1
log2

Fn−1

Fn+1
+

6Fn−1

Fn+1
.

Both the first and the second term of the expression ∆ is greater than or equal
to min0<x<1(x log2 x) = − log2 e

e . The third term is greater than 3/2, since
Fi+1 < 2Fi for every i. We derive that

∆ > −2 log2 e

e
+

3
2

> −3
e

+
3
2

> 0.

We conclude that Sn+1 ≥ Fn+1
6 log2 Fn+1. The upper bound follows from The-

orem 8.2.1.

In view of Theorem 8.2.1, one might want to estimate the maximal number
of occurrences of primitively-rooted integer powers in a word, and conjecture
that this number is asymptotically smaller than the number of square occur-
rences, since each primitively-rooted integer power of exponent e represents
e − 1 primitively-rooted squares. In particular, one might want to count the
occurrences of non-extensible primitively-rooted integer powers, that is those
primitively-rooted integer powers uk, k ≥ 2, which are not followed or preceded
by another occurrence of u. Fibonacci words provide a counter-example to this
hypothesis, as by Lemma 8.2.3, all integer powers contained in them are of ex-
ponent two or three, and therefore the maximal number of their occurrences is
still Θ(Fn log Fn), as implied by Theorem 8.2.4.

What happens if we count maximal repetitions instead of occurrences of
integer powers or just squares? Note that a word can contain much less maximal
repetitions than integer powers: e.g. if v is a square-free word over a three-letter
alphabet, then word vvv contains |v|+ 1 non-extensible integer powers (here

Version June 23, 2004

8.2. Counting maximal repetitions 405

squares) but only one maximal repetition. What is the number of maximal
repetitions in Fibonacci words? The following theorem gives the exact answer.

Theorem 8.2.5. Let Rn be the number of maximal repetitions in fn. Then
for all n ≥ 4, Rn = 2Fn−2 − 3.

Proof. As in the proof of Theorem 8.2.4, we divide all maximal repetitions
in fn into those which lie entirely in fn−1 or fn−2 and those which cross the
frontier, i.e. overlap with fn−1 and with fn−2. We call such repetitions crossing
repetitions of fn. Overlaps of a crossing repetition with fn−1 and fn−2 are
called the left part and the right part respectively. Note first that the left part
and the right part of a maximal repetition cannot be both of exponent greater
than or equal to 2, since Fibonacci words don’t have factors of exponent 4
(Lemma 8.2.3(iv)). If either the left or the right part is of exponent at least 2,
then this repetition is an extension of a maximal repetition of respectively fn−1

or fn−2. This implies that the only new maximal repetitions of fn that should
be counted are crossing maximal repetitions with both right and left part of
exponent smaller than 2. We call those repetitions composed repetitions of fn.
Let c(n) be their number. The following lemma allows to compute c(n).

Lemma 8.2.6. Let Rn be the number of occurrences of maximal repetitions in
the Fibonacci word fn and set Rn = Rn−1 + Rn−2 + c(n). Then for all n ≥ 8,
c(n) = c(n− 2).

Proof. Consider the representation

fn = fn−1|fn−2 = fn−2fn−3|fn−3fn−4 = fn−2[fn−3|fn−4]fn−5fn−4 (8.2.1)

where | denotes the frontier, n ≥ 5, and square brackets delimit the occurrence
of fn−2 with the same frontier as for the whole word fn (we call it the central
occurrence of fn−2). By Lemma 8.2.3(iii), the minimal period of every repetition
in Fibonacci words is equal to Fk for some k. Since Fn−3 > Fn−4 > 2Fn−6, it
follows from (8.2.1) that if a composed repetition of fn has the minimal period
Fk for k ≤ n − 6, then it is also a composed repetition of fn−2 and therefore
is counted in c(n− 2). Vice versa, every composed repetition of fn−2 with the
period Fk for k ≤ n− 6, is also a composed repetition of fn. We now examine
crossing maximal repetitions of fn with minimal periods Fn−2, Fn−3, Fn−4,
Fn−5.

Crossing repetitions with the minimal period Fn−2. The last term of (8.2.1)
shows that square (fn−2)2 is a prefix of fn that crosses the frontier. As Fn−1 <
2Fn−2, the corresponding maximal repetition does not have a square in its left
or right part and therefore is composed for fn. Since Fn−2 > Fn/3, any two
maximal repetitions of fn with the period Fn−2 overlap by more than Fn−2

letters. By Lemma 8.1.3, fn has only one maximal repetition with the period
Fn−2. Trivially, the repetition under consideration is not a repetition for the
central occurrence of fn−2.

Version June 23, 2004

406 Periodic Structures in Words

Crossing repetitions with the minimal period Fn−3. From the decomposition
fn = fn−2fn−3|fn−3fn−4 (see (8.2.1)), there is a square (fn−3)2 of period Fn−3

crossing the frontier. The corresponding maximal repetition does not extend
to the left of the left occurrence of fn−3, as the last letters of fn−3 and fn−2

are different (the last letters of fi’s alternate). Therefore, this repetition does
not have a square in its left or right part, and thus is composed for fn. As
this maximal repetition has a root both on the left and on the right of the
frontier, it is the only repetition with the period Fn−3 crossing the frontier
(see Corollary 8.1.4). Again, from length considerations, it is not a maximal
repetition for the central occurrence of fn−2.

Crossing repetitions with the minimal period Fn−4. Since

fn = fn−1|fn−4fn−5fn−4 = fn−1|fn−4fn−5fn−5fn−6

= fn−1|fn−4fn−5fn−6fn−7fn−6 = fn−1|(fn−4)2fn−7fn−6,

there is a square (fn−4)2 on the right of the frontier. However, this maximal
repetition does not extend to the left (i.e. does not cross the frontier), since the
last letters of fn−4 and fn−1 are different.

On the other hand,

fn = fn−2[fn−3|fn−4]fn−5fn−4 = fn−3fn−4[fn−4fn−5|fn−5fn−6]fn−5fn−4

= fn−3fn−4[fn−4 fn−5|fn−6︸ ︷︷ ︸
fn−4

fn−7fn−6]fn−5fn−4, for n ≥ 6.

This reveals a maximal repetition with the period Fn−4 which crosses the fron-
tier. However, this is not a composed repetition of fn, as it has a square on the
left of the frontier. On the other hand, the restriction of this repetition to the
central occurrence of fn−2 is a composed repetition for fn−2.

There is no other repetition with the period Fn−4 crossing the frontier, since
such would overlap with one of the two above by more than one period, which
would contradict Lemma 8.1.3. In conclusion, there is one composed repetition
with the period Fn−4 in the central occurrence of fn−2 and no such repetition
in fn.

Crossing repetitions with the minimal period Fn−5. Rewrite

fn = fn−2[fn−4fn−5|fn−5fn−6]fn−5fn−4

which shows that there is a square of period Fn−5 crossing the frontier. Since the
frontier is the center of this square, the latter corresponds to the only crossing
repetition with the period Fn−5. However, this repetition is not a composed
repetition for fn, as it has a square in its right part, as shown by the following
transformation:

fn = fn−2[fn−4fn−5|fn−5fn−6]fn−6fn−7fn−4

= fn−2[fn−4fn−5|fn−5 fn−6]fn−7︸ ︷︷ ︸
fn−5

fn−8fn−7fn−4, for n ≥ 8.

Version June 23, 2004

8.2. Counting maximal repetitions 407

On the other hand, the restriction of this repetition to the central occurrence of
fn−2 is a composed repetition for fn−2. Thus, there is one composed maximal
repetition with the period Fn−5 in the central occurrence of fn−2 and no such
repetition in fn.

In conclusion, two new composed repetitions arise in fn in comparison to
fn−2, but two composed maximal repetitions of the central occurrence of fn−2

are no more composed in fn, as they extend in fn to form a square in its right
or left part. This shows that c(n) = c(n− 2) for n ≥ 8.

Proof of Theorem 8.2.5 (continued): A direct counting shows that R0 = 0, R1 =
0, R2 = 0, R3 = 0, R4 = 1, R5 = 3, R6 = 7, R7 = 13. Therefore, c(3) =
0, c(4) = 1, c(5) = 2, c(6) = 3, c(7) = 3. Since c(n) = c(n − 2) for all
n ≥ 8, then c(n) = 3 for all n ≥ 6. We then have the recurrence relation
Rn = Rn−1 + Rn−2 + 3 for n ≥ 6 with boundary conditions R4 = 1, R5 = 3.
Substituting Rn = 2R′

n−2−3, we get the relation R′
n = R′

n−1 +R′
n−2 for n ≥ 4,

where R′
2 = 2, R′

3 = 3. This defines exactly the Fibonacci numbers. Thus,
R′

n = Fn for n ≥ 2, and Rn = 2Fn−2 − 3 for n ≥ 4.

Note that by Lemma 8.2.3(iv), any maximal repetition in a Fibonacci word
has the exponent smaller than 4, and therefore not only the number of maximal
repetitions is linearly bounded, but also the sum of their exponents is linearly
bounded on the word length.

8.2.3. Counting maximal repetitions

The results on Fibonacci words suggest a conjecture that arbitrary words contain
only a linear number of maximal repetitions and moreover, that the sum of their
exponents is linearly-bounded too. In this section we confirm these conjectures.
Later in Section 8.4, this result will allows us to derive a linear-time algorithm
for identifying all maximal repetitions in a word.

Theorem 8.2.7. Let R(w) be the set of all maximal repetitions in a word w
of length n (over an arbitrary alphabet), and let E(w) =

∑
r∈R(w) e(r). Then

E(w) = O(n).

The existing proof of Theorem 8.2.7 is very technical and is done by a tedious
case analysis. We don’t include it here and refer the reader to Kolpakov and
Kucherov 2000b. Finding a simple proof of Theorem 8.2.7 remain an open
problem.

As a corollary of Theorem 8.2.7, we obtain that the number of maximal
repetitions in a word over an arbitrary alphabet is linearly-bounded in the length
of the word.

Theorem 8.2.8. Let R(w) be the set of all maximal repetitions in a word w
of length n. Then Card (R(w)) = O(n).

Together with the previous results of Section 8.2, this confirms that the set
of maximal repetitions is a more compact representation of all repetitions than

Version June 23, 2004

408 Periodic Structures in Words

v
i

v[i + �]
k

LPv(k)

�

v[� + 1]
v

v v[k + LPv(k)]

i− k + 1 LPv(i− k + 1)

Figure 8.1. Case LPv(i − k + 1) > �

the set of primitively-rooted squares or primitively-rooted non-extensible integer
powers.

8.3. Basic algorithmic tools

From now on, we will be interested in the algorithmic question: How to effi-
ciently compute different types of repetitions in a given word? In the following
sections, we present algorithms that allow to compute efficiently all maximal
repetitions, as well as other types of repetitions. All those algorithms are based
on a common general technique, and therefore a “secondary goal” of this chap-
ter is to demonstrate the power of this approach. The technique is based on
two main tools that we describe in this section.

8.3.1. Longest extension functions

The first tool is longest extension functions. Computing those functions (which
are basically arrays of integer values, indexed by word positions) is an important
component of the algorithms to be presented. Longest extension functions come
in different variants – here we present a basic formulation and we will refer to
it afterwards.

Consider a word v of length n. For each position i of v, we want to compute
the longest factor of v which starts at position i and is also a prefix of v.
Formally, we want to compute, for all i ∈ [1..n], the value LPv(i) defined as
maximal � > 0 such that v[1..�] = v[i..i + � − 1] and LPv(i) = 0 if no such
positive � exists. Note that LPv(1) = n and, by convention, we always set
LPv(n + 1) = 0. For example, for v = 101101011011, the values of LPv(i) for
i = 1, . . . , 13 are respectively 12, 0, 1, 3, 0, 6, 0, 1, 4, 0, 1, 1, 0.

We now describe an algorithm that computes LPv in O(n) time. The al-
gorithm processes v from left to right and computes LPv(i) for all positions i
successively. The computation is based on the following idea. Assume we have
computed LPv(j) for all j < i, and we are about to compute LPv(i). Assume
we have stored a position k < i that maximizes k + LPv(k), and assume that
k +LPv(k) > i. Set � = k +LPv(k)− i and consider the value LPv(i−k+1). If

Version June 23, 2004

8.3. Basic algorithmic tools 409

v
LPv(k)

�

v

v

k v[i + LPv(i− k + 1)]

v[i− k + 1 + LPv(i− k + 1)]

v[LPv(i− k + 1) + 1]

i− k + 1 LPv(i− k + 1)

i

Figure 8.2. Case LPv(i − k + 1) < �

LPv(i− k+1) > � (see Figure 8.1), then we claim that LPv(i) = �. Indeed, it is
easily seen that v[i..i+ �− 1] = v[1..�]. On the other hand, v[�+1] �= v[i+ �], as
v[i+�] = v[k+LPv(k)] �= v[LPv(k)+1], and v[LPv(k)+1] = v[�+1]. Therefore,
LPv(i) = �.

If LPv(i−k+1) < � (see Figure 8.2), then we show that LPv(i) = LPv(i−k+
1). Again, v[i..i+LPv(i−k+1)−1] = v[1..LPv(i−k+1)], but v[i+LPv(i−k+
1)] �= v[LPv(i−k+1)+1], since v[i+LPv(i−k+1)] = v[i−k+1+LPv(i−k+1)]
and v[i− k + 1 + LPv(i− k + 1)] �= v[LPv(i− k + 1) + 1].

Putting together the two cases above, if LPv(i− k + 1) �= �, then LPv(i) =
min{�, LPv(i − k + 1)}. The only case when LPv(i) cannot be computed im-
mediately is LPv(i − k + 1) = �. In this case, we keep on reading letters
v[i + �], v[i + � + 1], . . . while v[i + � + j] = v[� + j], and thus compute the value
LPv(i). Position i is then stored as the new value of k. The resulting linear-time
algorithm Longest-Prefix-Extension is shown below.

Function LPv can be generalized to compute, for all positions of v, the
longest factor that starts at this position and is a prefix of another fixed word.
Formally, for two words v[1..n] and w[1..m], we define LPv|w to be the function
associating with every position i ∈ [1..n] of v the maximal length of a factor of
word vw which starts at position i and is a prefix of w. Note that this factor
starts inside v but can overlap with w. All values of LPv|w can be computed in
time O(m + n).

Version June 23, 2004

410 Periodic Structures in Words

Longest-Prefix-Extension(v[1..n])
1 LP (1)← n
2 j ← 0
3 while j ≤ n− 2 and v[j + 1] = v[j + 2] do
4 j ← j + 1
5 LP (2)← j
6 k ← 2
7 for i ← 3 to n do
8 �← k + LP (k)− i
9 if LP (i− k + 1) �= � and � ≥ 0 then

10 LP (i)← min(�, LP (i− k + 1))
11 else j ← max(0, �)
12 while i + j ≤ n and v[i + j] = v[j + 1] do
13 j ← j + 1
14 LP (i)← j
15 k ← i
16 return LP

Symmetrical functions can be defined with respect to suffixes instead of
prefixes. For a word v[1..n], we define LSv(i) to be the length of the longest
factor of v that ends at position i and is a suffix of v. For v[1..n] and w[1..m],
LSw|v(i), i ∈ [1..n] is the maximal length of a factor of wv that ends at position
m + i in wv and is a suffix of w. Both these functions can be computed in
time linear in the involved words, using an algorithm similar to Longest-

Prefix-Extension. In particular, the function computing LSw|v will be called
Longest-Suffix-Extension(w, v) in the sequel.

8.3.2. s-factorization and Lempel-Ziv factorization

The second basic algorithmic tool is a special factorization of the word, that will
allow to speed up our repetition-finding algorithms. There are several variants
of this factorization that we will use in the following sections. The difference is
of technical nature and the choice of the definition will be basically guided by the
convenience in describing the algorithm. We distinguish two factorizations that
we call s-factorization and Lempel-Ziv factorization, following the terms under
which they have been introduced in the literature. Each of those factorizations
comes in two variants, thus yielding four different definitions.

Let w be an arbitrary word. The s-factorization of w (respectively, s-
factorization with non-overlapping copies) is the factorization w = f1f2 · · · fk,
where fi’s are defined inductively as follows:
• f1 = w[1], and if letter a occurring in w immediately after f1f2 · · · fi−1

does not occur in f1f2 · · · fi−1, then fi = a.
• otherwise, fi is the longest factor occurring in w immediately after

f1f2 · · · fi−1 that occurs in f1f2 · · · fi−1fi other than as a suffix (respec-
tively, that occurs in f1f2 · · · fi−1).

Version June 23, 2004

8.4. Finding all maximal repetitions in a word 411

The Lempel-Ziv factorization of w (respectively, Lempel-Ziv factorization
with non-overlapping copies) is the factorization w = f1f2 · · · fk, where fi’s are
defined inductively as follows:
• f1 = w[1],
• for i ≥ 2, fi is the shortest factor occurring in w immediately after

f1f2 · · · fi−1 that does not occur in f1f2 · · · fi−1fi other than as a suffix
(respectively, that does not occur in f1f2 · · · fi−1 at all).

In the s-factorization of the word w, we look for the longest factor fi starting
after f1f2 · · · fi−1 which has a copy on the left. In the s-factorization with non-
overlapping copies, this copy is required to be non-overlapping with fi. In the
Lempel-Ziv factorization, we look for the shortest word that does not have an
occurrence on the left. In other words, we extend by one letter the longest
word which does have a copy on the left. If the Lempel-Ziv factorization with
non-overlapping copies is considered, then the copy is required not to overlap
with fi.

As an example, consider the word w = 1100101010000. Its s-factorization
is 1|1|0|0|10|1010|000, and the s-factorization with non-overlapping copies of w
is 1|1|0|0|10|10|100|00. The Lempel-Ziv factorization of w is 1|10|01|010100|00
and the Lempel-Ziv factorization without copy overlap is 1|10|01|010|1000|0.

If w = f1f2 · · · fk is the s-factorization (respectively, Lempel-Ziv factoriza-
tion), we call each fi an s-factor (respectively, LZ-factor) of w.

A remarkable feature of all considered factorizations is that each of them
can be computed in a time linear in the length of the word. This can be
done in different ways, using a data structure like the suffix tree or the DAWG
(Directed Acyclic Word Graph). A possible algorithm consists in computing the
factorization along with constructing the data structure in an on-line fashion. A
factorization provides a very useful information about the structure of repeated
factors and the possibility to compute the factorization in linear time makes of
it a key algorithmic tool that we will use throughout the rest of this chapter.

8.4. Finding all maximal repetitions in a word

According to the results of Section 8.2, maximal repetitions are important struc-
tures, as they encode, in a most compact way, all repetitions occurring in the
word. If the set of maximal repetitions is known, repetitions of any other type
can be extracted from it: primitively- or non-primitively rooted squares, cubes,
etc.

In this section, we show that the set of all maximal repetitions can be com-
puted very efficiently, namely in a time linear in the length of the word. The
linear time bound is supported by Theorems 8.2.7, 8.2.8 that guarantee that
the output itself is of linear size (assuming that each maximal repetition is rep-
resented in constant space, e.g. by the start position, the period and the total
length).

We first consider the following auxiliary problem. Assume we are given two
words x = x[1..m], y = y[1..n], and consider their concatenation v = xy =

Version June 23, 2004

412 Periodic Structures in Words

p

x y
v

LPy(p + 1)
m

LSx|y(p)

Figure 8.3. Illustration to Theorem 8.4.1

v[1..m + n]. We want to find all maximal repetitions r = v[i..j] in the word
v that contain the frontier between x and y, i.e. such that i ≤ m + 1 and
j ≥ m. Every such repetition belongs (non-exclusively) to one of two classes:
the repetitions which have a root in y and those which have a root in x. Note
that by Corollary 8.1.4, for every p, 1 ≤ p ≤ n, there is at most one maximal
repetition with a period p that contains the frontier between x and y and has a
root in y. This shows, in particular, that the number of such repetitions is not
greater than n. Similarly, the number of repetitions that contain the frontier
and have a root in x is not greater than m, and thus, the number of maximal
repetitions in v = xy which contain the frontier between x and y is bounded by
(m + n).

Let us focus on maximal repetitions r which have a root in y, those which
have a root in x are found similarly. Consider longest extension functions LPy

and LSx|y (see Section 8.3). The following theorem holds.

Theorem 8.4.1. For 1 ≤ p ≤ n, there exists a maximal repetition with a
period p in v = xy that contains the frontier between x and y and has a root in
y iff

LSx|y(p) + LPy(p + 1) ≥ p. (8.4.1)

If the inequality holds, this maximal repetition is v[m− LSx|y(p) + 1..m + p +
LPy(p + 1)] (see Figure 8.3).

Proof. Assume there is a square s = v[�..�+2p−1] of period p that contains the
frontier between x and y, i.e. such that � ≤ m + 1 and � + 2p− 1 ≥ m. Assume
that s has a root in y, i.e. �+p > m. Observe that prefix y[1..�+p−m−1] of y
is equal to y[p+1..�+2p−m−1]. This implies that LPy(p+1) ≥ �+p−m−1.
On the other hand, suffix x[�..m] of x is equal to v[� + p..m + p], and then
LSx|y(p) ≥ m− � + 1. Inequality (8.4.1) follows.

On the other hand, if (8.4.1) holds, then any factor v[�..� + 2p − 1] with
m − LSx|y(p) + 1 ≤ � ≤ m + LPy(p + 1) − p + 1 is a square of period p.
Therefore, r = v[m − LSx|y(p) + 1..m + p + LPy(p + 1)] is a repetition. It
remains to see that r is maximal, i.e. extended to the right and left as far as
possible. This follows from the definition of the longest extension functions LS
and LP .

Version June 23, 2004

8.4. Finding all maximal repetitions in a word 413

Theorem 8.4.1 yields an algorithm for computing all maximal repetitions
which contain the frontier between x and y and have a root in y. The algorithm,
called Right-Repetitions, is shown below. It assumes that each repetition is
represented by a pair of its start and end positions.

Right-Repetitions(x, y)
1 LPy ← Longest-Prefix-Extension(y)
2 LSx|y ← Longest-Suffix-Extension(x, y)
3 R← ∅
4 for p ← 1 to |y| do
5 if LSx|y(p) + LPy(p + 1) ≥ p then
6 r ← (m− LSx|y(p) + 1, m + p + LPy(p + 1))
7 R← R∪ {r}
8 return R

The repetitions containing the frontier between x and y and having a root in
x are computed similarly (function Left-Repetitions hereafter). As the func-
tions Longest-Prefix-Extension(y) and Longest-Suffix-Extension(y)
run in time O(|y|) and O(|x|+|y|) respectively, all maximal repetitions in v = xy
which contain the frontier between x and y can be computed in time O(|v|).

Let us now come back to the problem of computing all maximal repetitions
in a word. The s-factorization is another useful tool for building a linear-time
algorithm for this problem, due to the following theorem.

Theorem 8.4.2. Let w = f1f2 · · · fk be the s-factorization of w. Let r be
a maximal repetition in w that contains the frontier between fi−1 and fi and
ends inside fi. Then the prefix of r which is a suffix of f1 · · · fi−1 is smaller than
|fi|+ 2|fi−1|.

Proof. Assume r = w[�..m] and denote bi the position of the last letter of fi, i.e.
bi = |f1f2 · · · fi|. The theorem asserts that if � ≤ bi−1+1 and bi−1+1 ≤ m ≤ bi,
then bi−1 + 1− � ≤ |fi|+ 2|fi−1|.

Consider the suffix cyclic root r′ = w[m− p(r) + 1..m] of r. Observe that r′

has a copy p(r) letters to the left. If r′ starts at a position before the start of
fi−1, i.e. m− p(r) ≤ bi−2, then it includes entirely the factor fi−1 and at least
the first letter of fi. This contradicts that fi−1 is the longest factor occurring on
the left, according to the definition of s-factorization. Therefore, m−p(r) > bi−2

and then p(r) = |r′| < |fi−1|+ |fi|.
On the other hand, r cannot extend to the left of bi−2 + 1 by p(r) letters or

more, as this would again contradict the definition of fi−1. Thus, the part of r
before the start of fi−1 is bounded by |fi−1|+ |fi|. The theorem follows.

For the simplicity of presentation, we assume that the last letter of w does
not occur elsewhere in w. Given the s-factorization w = f1f2 · · · fk, we consider,
for each s-factor fi, i ∈ [2..k], all maximal repetitions that end either at the last
position of fi−1, or at some position of fi except the last one. Formally, these

Version June 23, 2004

414 Periodic Structures in Words

are repetitions r = w[�..m] such that bi−1 ≤ m < bi, where bi = |f1f2 · · · fi|.
Cleary, each maximal repetition of w belongs to exactly one such class. Note
that since the last letter of w is unique, the last s-factor fk consists of one letter
and there is no maximal repetitions that occur as suffixes of w.

We further split all considered repetitions into two sets that we call repeti-
tions of type 1 and 2:

repetitions of type 1: maximal repetitions r that contain the frontier between
fi−1 and fi and end at a position strictly smaller than the end of fi,

repetitions of type 2: maximal repetitions r that occur properly inside fi.

Repetitions of type 1 are repetitions r = w[�..m] such that either m = bi−1,
or bi−1 + 1 ≤ m ≤ bi − 1 and � ≤ bi−1 + 1. By Theorem 8.4.2, the former
cannot extend by more than |fi−1| + 2|fi−2| to the left of fi−1, and therefore
its length is bounded by 2|fi−1|+2|fi−2|, and the latter cannot extend by more
than |fi| + 2|fi−1| to the left of fi. Joining both cases together, a repetition
of type 1 cannot extend by more than max{2|fi−1| + 2|fi−2|, |fi| + 2|fi−1|} =
2|fi−1|+ max{2|fi−2|, |fi|} to the left of fi.

Therefore, to find all repetitions of type 1, we consider the word tifi, where
ti is the suffix of f1 · · · fi−1 of length 2|fi−1|+max{2|fi−2|, |fi|} (ti is the whole
word f1 · · · fi−1 if its length is smaller than 2|fi−1|+max{2|fi−2|, |fi|}). We then
have to find in tifi all maximal repetitions that contain the frontier between
ti and fi and don’t include the last letter of fi. This can be done in time
O(|fi−2| + |fi−1| + |fi|) using longest extension functions, as described above.
Summing up over all s-factors, all repetitions of type 1 in w can be found in
time O(n).

Every repetition of type 2 occurs entirely inside some s-factor fi of the
s-factorization, and each fi has an earlier occurrence in w. Therefore, each
maximal repetition of type 2 has another occurrence on the left. This implies,
in particular, that finding all repetitions of type 1 guarantees finding all dis-
tinct maximal repetitions, and in particular all leftmost occurrences of distinct
maximal repetitions.

We are left with the problem of finding all repetitions of type 2. Here is how
this can be done.

During the computation of the s-factorization we store, for each s-factor fi,
a pointer to an earlier occurrence of fi in w. Computing such a pointer does
not affect the linear time complexity of s-factorization. Let vi be this earlier
occurrence of fi, and let ∆i be the difference between the position of fi and the
position of vi. Obviously, each repetition of type 2 occurring inside fi is a copy
of a maximal repetition occurring inside vi shifted by ∆i to the right.

We first sort, using bucket sort, all maximal repetitions of type 1, found
at the first stage, into n lists end[1], ..., end[n] such that list end[j] contains all
maximal repetitions with end position j. Then we process all lists end[j] in the
increasing order of j and sort the repetitions again, using bucket sort, into n lists
start[1], ..., start[n] according to their start position. After this double sorting,
the repetitions with the same start position j are sorted inside the list start[j]

Version June 23, 2004

8.4. Finding all maximal repetitions in a word 415

in the increasing order of their end positions. As there is a linear number of
repetitions of type 1, both sorting procedures take a linear time.

We will use the same lists start[j] to store maximal repetitions of type 2.
For each s-factor fi and for each internal position j inside fi, we have to find all
maximal repetitions starting at this position and ending strictly inside fi. We
then have to find all maximal repetitions from the list start[j −∆i] which end
inside vi, and then shift them by ∆i to the right. Note that these repetitions
may be either of type 1, or previously found repetitions of type 2. We look
through the list start[j−∆i] and retrieve its prefix consisting of those maximal
repetitions which end inside vi. Then we shift each of these maximal repetitions
by ∆i and append a modified copy of this prefix to the head of the list start[j].
Note that the data structure is preserved, as all appended repetitions must end
before any of repetitions of type 1 previously stored in the list start[j]. Since
we process fi’s from left to right, no maximal repetition can be missed. Thus,
we recover all repetitions of type 2 and after all fi’s have been processed, the
data structure contains all maximal repetitions of both types.

Note that when we retrieve a prefix of the list corresponding to some position
in vi, each repetition in this prefix results in a new maximal repetition of type
2 in fi. This shows that the time spent on processing the lists is proportional
to the number of newly found maximal repetitions. Theorem 8.2.7 states that
the number of all maximal repetitions is linear in the length of w. This proves
that the whole algorithm takes a linear time.

The whole algorithm for computing all maximal repetitions is summarized
below.

Maximal-Repetitions(w[1..n])
1 (f1, . . . , fk)← s-factorization of w
2 � first stage
3 R← ∅
4 for i ← 1 to k do
5 ti ← suffix of f1 · · · fi−1 of length 2|fi−1|+ max{2|fi−2|, |fi|}
6 R′

i ← Right-Repetitions(ti, fi)
7 R′′

i ← Left-Repetitions(ti, fi)
8 R ← R∪R′

i ∪R′′
i

9 � second stage
10 for each r = (j, �) ∈ R do
11 add r to list end[�]
12 for � ← 1 to n do
13 for each r = (j, �) from list end[�] do
14 add r to list start[j]
15 for i ← 1 to k do
16 for j ← bi−1 + 1 to bi do
17 for each r from list start[j −∆i] such that |r| < bi − j + 1 do
18 add repetition r′ = (j, j + |r| − 1) to list start[j]
19 R ← R∪ {r′}
20 return R

Version June 23, 2004

416 Periodic Structures in Words

The complexity of Maximal-Repetitions follows from the above discus-
sion:

Theorem 8.4.3. Maximal-Repetitions finds all maximal repetitions in a
word of length n in time O(n).

The set of all maximal repetitions provides an exhaustive information about
the repetition structure of the word. It allows to extract all repetitions of other
types, such as (primitively- or non-primitively-rooted) squares, cubes, or integer
powers. Thus, all these tasks can be done in time O(n+T) where T is the output
size.

As another application, the set of maximal repetitions allows to determine,
in linear time, the number dk(i) of primitively-rooted integer powers of a given
exponent k, starting at each position i of the word. Here is how this can be done.
For each position i ∈ [1..n] of the input word w, we create two counters b(i)
and c(i), initially set to 0. For each repetition r = w[�..m], we increment b(�)
and c(m− kp(r) + 1) by 1 ([�..m− kp(r) + 1] is the interval, where primitively-
rooted k-powers induced by repetition r start). By Theorem 8.2.8, the number
of updates is linear. To compute the numbers dk(i), we scan all positions from
left to right applying the following iterative procedure: dk(1) = b(1), dk(i+1) =
dk(i) + b(i) − c(i − 1), i = 2..|w|. Note that the algorithm can be extended to
all (not necessarily primitively-rooted) k-powers. In this case, we increment
b(�) by �e(r)/k�, and we increment by 1 each c(j), for j = m− kp(r) + 1, m−
2kp(r) + 1, . . . , m − �e(r)/k�kp(r) + 1. Here, Theorem 8.2.7 guarantees that
the number of updates is linear. Finally, note that the procedure can be easily
modified in order to count fractional repetitions of a given exponent, as well as
to repetitions ending (or centered) at each position.

8.5. Finding quasi-squares in two words

The linear-time algorithm for computing all maximal repetitions presented in
the previous section allows us to compute all squares in a word of length n in time
O(n + S), where S is the number of those squares. In this section we consider
a problem of finding quasi-squares that generalizes the problem of computing
usual squares. Besides that the problem of quasi-squares is interesting in its
own, it will be used later in Section 8.6.1.

Assume we are given two words u, v of equal length, |u| = |v| = n, n ≥ 2. We
say that words u, v contain a quasi-square iff for some 1 ≤ � ≤ n and p > 0, we
have u[�..�+p−1] = v[�+p..�+2p−1]. p is called the period of the quasi-square,
and words u[�..� + p− 1], v[� + p..� + 2p− 1] are called respectively its left root
and right root. Obviously, if u = v, then the quasi-squares are usual squares.

Denote QS(u, v) the set of all quasi-squares of words u, v. We show that
QS(u, v) can be computed in time O(n log n + S), where S = Card (QS(u, v)).
The algorithm we propose is based only on longest extension functions and is
similar to the algorithm based on Theorem 8.4.1 for finding maximal repetitions
containing a given position. An advantage of the proposed solution is that

Version June 23, 2004

8.5. Finding quasi-squares in two words 417

the output quasi-squares are naturally grouped into runs of quasi-squares of
the same period starting at successive positions in the word. This runs are
analogous to repetitions for usual non-gapped squares. We will use this feature
of the algorithm later in Section 8.6.

Assume n = 2m, and denote QSm(u, v) the subset of QS(u, v) consisting
of those quasi-squares (u[�..� + p − 1], v[� + p..� + 2p − 1]) which contain the
frontier in the middle of u and of v, more precisely such that � ≤ m + 1 and
�+2p−1 ≥ m. QSm(u, v) is the union of two subsets QS l

m(u, v) and QSr
m(u, v)

consisting of quasi-squares containing the middle frontier in their left root or
right root respectively. Consider the set QS l

m(u, v) (QSr
m(u, v) is treated simi-

larly). QSl
m(u, v) consists of quasi-squares (u[�..� + p− 1], v[� + p..� + 2p− 1])

verifying m + 1− p ≤ � ≤ m + 1.
Consider the following longest extension functions defined on all positions

i ∈ [1..m] of v[m + 1..n]:

L̂P (i) = min{LPv[m+1..n]|u[m+1..n](i), m− i + 1}
L̂S(i) = min{LSu[1..m]|v[m+1..n](i), i}

In words, L̂P (i) is the length of the longest common prefix of v[m + i..n] and
u[m+1..n], and L̂S(i) is the length of the longest common suffix of u[1..m] and
v[m + 1..m + i].

Let u[�..�+ p− 1], v[�+ p..�+2p− 1] be a quasi-square of period p belonging
to QSl

m(u, v). By an argument similar to Theorem 8.4.1, we have

L̂S(p) + L̂P (p + 1) ≥ p. (8.5.1)

Vice versa, if for some p ∈ [1..m], inequality (8.5.1) holds, then there exists a
quasi-square of period p from QSl

m(u, v). More precisely, the following lemma
holds.

Lemma 8.5.1. For p ∈ [1..m], there exists a quasi-square of QSl
m(u, v) of

period p iff inequality (8.5.1) holds. When (8.5.1) holds, there is a family of
quasi-squares of period p from QSl

m(u, v), with the left roots starting at each
position of the interval

[m + 1− L̂S(p) .. m + 1 + min{L̂P (p + 1)− p, 0}]. (8.5.2)

To use Lemma 8.5.1 as an algorithm for computing QSl
m(u, v), we have to

compute the values L̂P (i), L̂S(i) for i ∈ [1..m]. All these values can be computed
in time O(m), as explained in Section 8.3.1.

We conclude that all quasi-squares of QSl
m(u, v) can be computed in time

O(m + Card
(
QS l

m(u, v)
)
). Similarly, all quasi-squares of QSr

m(u, v) can be
computed in time O(m + |QSr

m(u, v)|), and thus all quasi-squares of QSm(u, v)
are computed in time O(m + Card (QSm(u, v))). A straightforward divide-
and-conquer algorithm gives the running time O(n log n + Card (QS(u, v))) for
finding all quasi-squares in u, v.

Version June 23, 2004

418 Periodic Structures in Words

Theorem 8.5.2. The set QS(u, v) of all quasi-squares in words u, v of length
n can be found in time O(n log n + Card (QS(u, v))).

8.6. Finding repeats with a fixed gap

In this section, we are interested in the problem of computing all factors of a
given word repeated within a specified distance, rather then contiguously. In
other words, we want to find all factor occurrences uvu, where the size of v,
called the gap, is equal to a pre-specified constant δ. We will show that using
the algorithm of the previous sections, all such occurrences can be found in time
O(n log δ+S), where S is the number of them. Thus, if δ is considered constant,
we obtain an O(n + S) time bound.

8.6.1. Algorithm for finding repeats with a fixed gap

Let δ > 0 be an integer, called the gap. An occurrence in w of a factor r = uvu,
where |u| > 0 and |v| = δ, is called a δ-gapped repeat (for short, δ-repeat) in w.
The left occurrence of u is called the left copy of r, and the right one the right
copy. For a δ-repeat r, the length |u| is called the copy length. The problem is
to find all δ-repeats in a given word.

Let w = a1 · · · an be a word of length n. Without loss of generality, we
assume that an does not occur elsewhere in w. In this section, we use the
Lempel-Ziv factorization (see Section 8.3.2). Let w = f1 · · · fk be the Lempel-
Ziv factorization of w.

To describe the algorithm, we need some notation. Let b0, b1, . . . , bk−1, bk

be the end positions of fi’s, that is b0 = 0, and bi = |f1 · · · fi| for 1 ≤ i ≤ k. We
also denote �i = |fi|, i = 1, . . . , k. For every i = 1, . . . , k − 1, if �i > δ, then we
decompose fi = f ′

if
′′
i , where |f ′

i | = δ.
Let us split the set GR of all δ-repeats into the set GR′ of those δ-repeats

which contain a frontier between LZ-factors and the set GR′′ of the δ-repeats
located properly inside LZ-factors. We now concentrate on the δ-repeats of GR′,
and further split GR′ into (disjoint) subsets GR′

i, i = 1, . . . , k − 1, where GR′
i

consists of those δ-repeats which contain the frontier between fi and fi+1 but
don’t contain the frontier between fi+1 and fi+2. Furthermore, each GR′

i is
split into the following subsets:

(a) r ∈ GRlrt
i iff the left copy of r contains the frontier between fi and fi+1,

(b) r ∈ GRrrt
i iff the right copy of r contains the frontier between fi and fi+1,

(c) r ∈ GRmrt
i iff �i+1 > δ and the right copy of r contains the frontier between

f ′
i+1 and f ′′

i+1 but does not contain the frontier between fi and fi+1,
(d) r ∈ GRmid

i iff the right copy of r contains neither the frontier between fi

and fi+1, nor, if �i+1 > δ, the frontier between f ′
i+1 and f ′′

i+1.
Cases (a) and (b) cover the situation when the frontier between fi and fi+1 is
contained respectively in the left and right copy of r. Otherwise, this frontier is
contained in the gap between the copies. Cases (c) and (d) distinguish whether
the right copy contains the frontier between f ′

i+1 and f ′′
i+1 or not, provided that

�i+1 > δ.

Version June 23, 2004

8.6. Finding repeats with a fixed gap 419

We now consider each of cases (a)-(d) separately and show how to find the
corresponding set of δ-repeats.

(a) Finding δ-repeats of GRlrt
i . Let r ∈ GRlrt

i be a δ-repeat with copy
length p. Since r does not contain the frontier between fi+1 and fi+2, then
δ + p < �i+1, and therefore p ≤ �i+1 − 1 − δ. In particular, GRlrt

i is empty
whenever �i+1 ≤ δ + 1. Assume now that �i+1 > δ + 1.

Let ti be the suffix of f1 · · · fi of length �i+1− 1− δ. We define the following
longest extension functions on all positions i ∈ [1..�i+1 − 1] of fi+1:

L̂P (i) = LPfi+1[1..	i+1−1](i)

L̂S(i) = LSti|fi+1[1..	i+1−1](i)

Similarly to Theorem 8.4.1, an occurrence of a δ-repeat r ∈ GRlrt
i implies

L̂S(δ + p) + L̂P (δ + p + 1) ≥ p. (8.6.1)

Conversely, if for some p ∈ [1..�i+1− 1− δ], inequation (8.6.1) holds, then there
exists a δ-repeat of GRlrt

i with copy length p. To summarize, the following
lemma holds.

Lemma 8.6.1. For p ∈ [1..�i+1 − 1 − δ], there exists a δ-repeat of GRlrt
i with

copy length p iff inequality (8.6.1) holds. When (8.6.1) holds, there is a family
of δ-repeats of GRlrt

i with copy length p, starting at each position of the interval

[bi + 1−min{L̂S(δ + p), p} .. bi + 1 + min{L̂P (δ + p + 1)− p, 0}]. (8.6.2)

Lemma 8.6.1 gives a method of computing GRlrt
i . Compute the longest exten-

sion functions L̂S and L̂P . According to Section 8.3.1, this computation can
be done in linear time in the length of involved words, that is in time O(�i+1).
Then, all δ-repeats of GRlrt

i can be computed in time O(�i+1 + Card
(
GRlrt

i

)
).

(b) Finding δ-repeats of GRrrt
i . Consider a δ-repeat r ∈ GRrrt

i with copy
length p. From the definition of Lempel-Ziv factorization, it follows that the
right copy of r starts strictly after the start of fi. On the other hand, from
the definition of GRrrt

i , it ends strictly before the end of fi+1. Therefore, p ≤
�i + �i+1 − 2.

We then proceed similarly to case (a). Using appropriate longest extension
functions computed in time O(�i + �i+1), all δ-repeats of GRrrt

i can be reported
in time O(�i + �i+1 + Card

(
GRrrt

i

)
).

(c) Finding δ-repeats of GRmrt
i . Note that this case is defined only when

�i+1 > δ. Consider a δ-repeat r ∈ GRmrt
i with copy length p. The right copy of

r occurs inside w[bi + 2..bi + �i+1 − 1], and therefore p ≤ �i+1 − 2.
Again, using appropriate longest extension functions, all δ-repeats of GRmrt

i

can be reported in time O(�i+1 + Card
(
GRmrt

i

)
).

Version June 23, 2004

420 Periodic Structures in Words

(d) Finding δ-repeats of GRmid
i . Consider now a δ-repeat r ∈ GRmid

i with
copy length p. Denote mi = min{δ, �i+1}. The right copy of r occurs inside
fi+1[2..mi − 1], and therefore p ≤ mi − 2.

This case differs from cases (a)-(c) in that we cannot a priori select a position
contained in the right or left copy of r. Therefore, we cannot apply directly the
technique of longest extension functions. We reduce this case to the problem of
finding quasi-squares, considered in Section 8.5.

Since the start position of the right copy belongs the interval [bi + 2..bi +
mi − 1], the end position of the left copy belongs to the interval w[bi + 1 −
δ..bi + mi − 2− δ]. Since p ≤ mi − 2, the left copy of r is contained in the word
w[bi − δ −mi + 4..bi + mi − 2− δ].

Consider the word w′ = w[bi − δ − mi + 4..bi + mi − 1 − δ]. The length
of w′ is (2mi − 4). Let # be another fresh letter. Denote by w′′ the word
#mi−2w[bi + 2..bi + mi − 1].

Lemma 8.6.2. There exists a δ-repeat r ∈ GRmid
i iff there exists a quasi-square

in words w′, w′′. Each such quasi-square corresponds to a δ-repeat r ∈ GRmid
i .

Proof. Consider a δ-repeat r ∈ GRmid
i with the left copy w[�..� + p− 1] and the

right copy w[�+ δ + p..�+ δ+2p− 1]. The right copy is a factor of w[bi +2..bi +
mi − 1], and therefore starts at position (� + δ + p − bi + mi − 3) in w′′. The
left copy starts at position �− (bi − δ −mi + 4) + 1 = � + δ − bi + mi − 3 in w′

and therefore this forms a quasi-square of period p in w′ and w′′.
Inversly, assume there is a quasi-square w′[j..j+p−1] = w′′[j+p..j+2p−1].

We must have [j + p..j + 2p− 1] ⊆ [mi − 1..2mi − 4]. This implies that w[bi −
δ−mi + j + 3..bi − δ−mi + j + p + 2] = w[bi −mi + j + 3..bi−mi + j + p + 2],
and hence a δ-repeat starting at position (bi − δ −mi + 3 + j) in w.

In view of Theorem 8.5.2, all quasi-squares in w′, w′′ can be found in time
O(mi log mi). We conclude that all δ-repeats of GRmid

i can be reported in time
O(mi log mi + Card

(
GRmid

i

)
). Using mi = min{δ, �i+1}, rewrite this bound as

O(�i+1 log δ + Card
(
GRmid

i

)
).

Putting together cases (a)-(d), all δ-repeats of GR′
i can be found in time

O(�i)+O(�i+1 log δ)+O(Card
(
GR′

i

)
). Summing up over all i = 1..k, we obtain

that all δ-repeats of GR′ can be found in time O(n log δ + Card
(
GR′)).

Finding δ-repeats of GR′′ can be done using a technique similar to the second
stage of Maximal-Repetitions from Section 8.4. The key observation here is
that each δ-repeat of GR′′ occurs inside some factor fi (i.e. does not contain
positions bi +1 and bi+1). By definition of the factorization, each such δ-repeat
is a copy of another δ-repeat occurring to the left. When constructing the
Lempel-Ziv factorization, we store, for each factor fi = va, a reference to an
earlier occurrence of v. δ-repeats occurring in fi are located inside v, and are
retrieved from its copy by the method used in the second stage of Maximal-

Repetitions. The running time of this stage is O(n + Card
(
GR′′)).

Version June 23, 2004

8.7. Computing local periods of a word 421

We conclude with the final result of this section.

Theorem 8.6.3. The set GR of all δ-repeats in a word of length n can be
found in time O(n log δ + Card (GR)).

8.6.2. Finding δ-repeats with fixed gap word

The algorithm of Section 8.6.1 can be modified in order to find all δ-repeats
with a fixed word between the two copies. Assume v is a fixed word of length δ.
Denote by GRv the set of δ-repeats of the form uvu, where |u| ≥ 1. We show
that all those repeats can be found in time O(n log δ+Card (GRv)). To do that,
we first find, using any linear-time string matching algorithm (for example, the
Knuth-Morris-Pratt algorithm) all start occurrences of v in w. For each position
i of v, we compute the position next(i), defined as the closest start position of
v to the right of i.

From the algorithm of Section 8.6.1 for finding the set GR′, it should be
clear that all the δ-repeats of GR′ can be represented by O(n log δ) families
each consisting of δ-repeats with a given copy length and starting at all positions
from a given interval. In other words, each family can be specified by an interval
[i..j] and a number p, and encodes all δ-repeats with copy length p starting at
positions from [i..j].

From this description, using function next(i), we can easily extract all δ-
repeats of GRv in time proportional to the number of those. For that, we first
assume that each family is specified by the interval of start positions of the gap
between the left and right copies (as the copy length p is known for each family,
the translation can be trivially computed by just adding p to the interval of start
positions). Then we process all the families and extract from each interval those
positions which are start positions of an occurrence of v. Using function next,
this can be easily done in time proportional to the number of such positions.

After processing all families, we have found all δ-repeats from the set GR′
v =

GRv∩GR′ in time O(n log δ+Card
(
GR′

v

)
). Then, using a procedure for finding

δ-repeats from GR′′, described in Section 8.6.1, we find all δ-repeats from GR′′
v =

GRv ∩ GR′′ in time O(n + Card
(
GR′′

v

)
). As GRv = GR′

v ∪ GR′′
v , all δ-repeats

from GRv are found in time O(n log δ + Card (GRv)).

8.7. Computing local periods of a word

In this section we focuse on the important notion of local periods, that charac-
terize a local periodic structure at each location of the word. The local period
at a given position is the root size of the smallest square centered at this posi-
tion. An importance of local periods is evidenced by the fundamental Critical
Factorization Theorem that asserts that there exists a position in the word (and
a corresponding factorization), for which the local period is equal to the global
period of the word.

Consider a word w = a1 · · · an over a finite alphabet. Let w = uv be a
factorization of w such that |u| = i. We say that a non-empty square xx is

Version June 23, 2004

422 Periodic Structures in Words

centered at position i of w (or matches w at central position i) iff the following
conditions hold:

(i) x is a suffix of u, or u is a suffix of x,
(ii) x is a prefix of v, or v is a prefix of x.

In the case when x is a suffix of u and x is a prefix of v, we have a square
occurring inside w. We call it an internal square. If v is a proper prefix of
x (respectively, u is a proper suffix of x), the square is called right-external
(respectively, left-external).

The smallest square centered at a position i of w is called the minimal local
square (hereafter simply minimal, for shortness). The local period at position
i of w, denoted MLPw(i), is the period of the minimal square centered at this
position1.

Note that for each position i of w, MLPw(i) is well-defined, and 1 ≤
MLPw(i) ≤ |w|. The relation between local periods and the (global) period
of the word is established by the fundamental Critical Factorization Theorem.

Theorem 8.7.1 (Critical Factorization Theorem). For each word w, there ex-
ists a position i (and the corresponding factorization w = uv, |u| = i) such that
MLPw(i) = p(w). Moreover, such a position exists among any p(w) consecutive
positions of w.

In this section, we show how the techniques of the previous sections can be
used to compute all local periods in a word in time O(n), assuming a constant-
size alphabet. The method consists of two parts. We first show, in Section 8.7.1,
how to compute all internal minimal squares. Then, in Section 8.7.2 we show
how to compute left- and right-external minimal squares, in particular for those
positions for which no internal square has been found. Both computations will
be shown to be linear-time, and therefore computing all local periods can be
done within linear time too.

8.7.1. Computing internal minimal squares

Finding internal minimal squares amounts to compute, for each position of the
word, the smallest square that is centered at this position and occurs entirely
inside the word, provided that such a square exists. Thus, throughout this
section we will be considering only squares occurring inside the word and, for
the sake of brevity, omit the adjective “internal”.

The general approach is to use the algorithm for computing maximal repe-
titions from Section 8.4 in order to retrieve squares which are minimal for some
position. One modification of Maximal-Repetitions we make here is that we
use the s-factorization with non-overlapping copies (see Section 8.3.2) instead
of the regular s-factorization, used in Section 8.4. This modification, however,
does not affect any properties of Maximal-Repetitions, including its linear
time bound.

1Note that the period of a square xx is |x| and not the minimal period of word xx which
can be smaller.

Version June 23, 2004

8.7. Computing local periods of a word 423

Let us now focus on the first stage of Maximal-Repetitions. At this step,
we find, for each s-factor fj = w[bj−1 +1..bj], all maximal repetitions that start
before bj−1 and end inside fj. According to Corollary 8.1.4, for each possible
period p, there can be at most two such repetitions. Each maximal repetition is
a run of squares occurring at successive positions in the word. For our purpose
here, it will be convenient for us to think of a repetition as an interval of center
positions of squares it contains.

In this section, we will need to compute, for a maximal repetition, a subrun
of squares it contains, that is a subinterval of the corresponding interval of center
positions. To illustrate this, consider Theorem 8.4.1. The maximal repetition
found according to the theorem corresponds to squares centered at positions
[m + p − LSx|y(p) .. m + LPy(p + 1)]. If we want to compute only squares
centered at positions greater than or equal to m and starting at positions less
than or equal to m (as it will be the case below), the interval of centers should
be restricted to [m + max{p − LSx|y(p), 0} .. m + min{LPy(p + 1), p}]. A
similar interval restriction has been done in the previous section for computing
δ-repeats.

We present now a linear-time algorithm for computing all internal minimal
squares in a given word w. The general description of the algorithm is as follows.
First, we compute, in linear time, the s-factorization of w with non-overlapping
copies and keep, for each factor fj , a reference to its non-overlapping left copy.
Then we process all factors from left to right and compute, for each factor fj ,
all minimal squares ending in this factor. For each computed minimal square,
centered at position i, the corresponding value MLPw(i) is set. After the whole
word has been processed, positions i for which values MLPw(i) have not been
assigned are those for which no internal square centered at i exists. For those
positions, minimal squares are external, and they will be computed at the second
stage, presented in Section 8.7.2.

Let fj = w[bj−1 + 1..bj] be the current factor, �j = bj − bj−1, and let
w[bj−1 + 1 − ∆j .. bj − ∆j] be its non-overlapping left copy (i.e. ∆j ≥ �j).
If for some position bj−1 + i, 1 ≤ i < �j , the minimal square centered at
bj−1 + i occurs entirely inside fj , that is MLPw(bj−1 + i) ≤ min{i, �j − i}, then
MLPw(bj−1 + i) = MLPw(bj−1 + i−∆j). Note that MLPw(bj−1 + i−∆j) has
been computed before, as the minimal square centered at bj−1 + i ends before
the beginning of fj . Based on this observation, we retrieve, in time O(|fj |), all
values MLPw(bj−1 + i) which correspond to squares occurring entirely inside
fj. Therefore, it remains to find those values MLPw(bj−1 + i) which correspond
to minimal squares that end in fj and extend to the left beyond the frontier
between fj and fj−1.

To do this, we use the technique of computing runs of squares from Sec-
tion 8.4. The idea is to compute all candidate squares and test which of them
are minimal. However, this should be done carefully as this can break down the
linear time bound, due to a possible super-linear number of all squares. The
main trick is to keep squares in runs and to show that there is only a linear
number of individual squares which need to be tested for minimality.

We are interested in squares starting at positions less than or equal to bj−1

Version June 23, 2004

424 Periodic Structures in Words

and ending inside fj . All these squares are divided into those which are centered
inside fj and those centered to the left of fj. Two cases are symmetrical and
therefore we concentrate on squares centered at positions [bj−1..bj−1+�j−1]. We
compute all such squares in the increasing order of periods. For each p ∈ [1..�j]
we compute the run of all squares of period p centered at positions belonging
to the interval [bj−1..bj−1 + �j − 1], starting at a position less than or equal
to bj−1, and ending inside fj, as explained above. Assume we have computed
a run of such squares of period p, and assume that q < p is the maximal
period value for which squares have been previously found. If p ≥ 2q, then we
check each square of the run whether it is minimal or not by checking the value
MLPw(bj−1 + i). If this square is not minimal, then MLPw(bj−1 + i) has been
already assigned a positive value before. Indeed, if a smaller square centered at
bj−1+i exists, it has necessarily been already computed by the algorithm (recall
that squares are computed in the increasing order of periods). If no positive
value MLPw(bj−1 + i) has yet been set, then we have found the minimal square
centered at bj−1 + i. Since there is at most p considered squares of period p
(their centers belong to the interval [bj−1..bj−1 + p − 1]), checking all of them
takes at most 2(p− q) individual checks (as q ≤ p/2 and p− q ≥ p/2).

Now assume p < 2q. Consider a square sq = w[cq − q + 1..cq + q] of period
q and center cq, which has been previously found by the algorithm (square of
period q in Figure 8.4). We now prove that we need to check for minimality
only those squares sp of period p which have their center cp verifying one of the
following inequalities :

|cp − cq| ≤ p− q, or (8.7.1)
cp ≥ cq + q (8.7.2)

In words, cp is located either within distance p− q from cq, or beyond the end
of square sq.

Lemma 8.7.2. Let sp = w[cp − p + 1..cp + p] be the minimal square centered
at some position cp. Let sq = w[cq − q +1..cq + q] be another square with q < p.
Then one of inequations (8.7.1),(8.7.2) holds.

Proof. By contradiction, assume that neither of them holds. Consider the case
cp > cq, case cp < cq is symmetric. The situation with cp > cq is shown in
Figure 8.4. Now observe that word w[cq + 1..cp] has a copy w[cq − q + 1..cp −
q] (shown with empty strip in Figure 8.4) and that its length is (cp − cq).
Furthermore, since cp − cq > p − q (as inequation (8.7.1) does not hold), this
copy overlaps by p − q letters with the left root of sp. Consider this overlap
w[cp− p + 1..cp− q] (shadowed strip in Figure 8.4). It has a copy w[cp +1..cp +
(p− q)] and another copy w[cp− (p− q)+1..cp] (see Figure 8.4). We thus have a
smaller square centered at cp, which proves that square sp is not minimal.

By Lemma 8.7.2, we need to check for minimality only those squares sp

which verify, with respect to sq, one of inequations (8.7.1),(8.7.2). Note that
there are at most 2(p− q) squares sp verifying (8.7.1), and at most p− q squares

Version June 23, 2004

8.7. Computing local periods of a word 425

p p

q q

cq cpcq−q cq+q cp+pcp−qcp−p

bj−1

Figure 8.4. Case where neither of inequations (8.7.1),(8.7.2) holds (sub-
case cp > cq)

sp verifying (8.7.2), the latter because sp must start before the current factor,
i.e. cp ≤ bj−1 +p. We conclude that there are at most 3(p−q) squares of period
p to check for minimality, among all squares found for period p. Summing up
the number of all individual checks results in a telescoping sum, and we obtain
that processing all squares centered in the current factor can be done in time
O(|fj |).

The Right-Local-Squares algorithm for computing minimal squares cen-
tered inside fj is given below. It is based on algorithms Right-Repetitions

and Maximal-Repetitions from Section 8.4. In particular, ti is defined as in
the Maximal-Repetitions algorithm.

A similar algorithm applies to the squares centered on the left of fj . Note
that after processing fj, all minimal squares ending in fj have been computed.

To summarize, we need to check for minimality only O(|fj−1|+ |fj |) squares,
among those containing the frontier between fj and fj−1, each check taking a
constant time. We also need O(|fj |) time to compute minimal squares occurring
inside fj. Processing fj takes then time O(|fj−1|+ |fj |) overall, and processing
the whole word takes time O(n).

Theorem 8.7.3. All internal minimal squares in a word of length n can be
computed in time O(n).

Version June 23, 2004

426 Periodic Structures in Words

Right-Local-Squares(fi)
1 � computing minimal squares centered inside fi

2 LSti|fi
← Longest-Suffix-Extension(ti, fi)

3 LPfi ← Longest-Prefix-Extension(fi)
4 q ← 0
5 for p ← 1 to �i do
6 ti ← suffix of f1 · · · fi−1 of length (2|fi−1|+ max{2|fi−2|, |fi|})
7 L̂S(p)← min{LSti|fi

(p), p}
8 L̂P (p + 1)← min{LPfi(p + 1), p}
9 if L̂S(p) + L̂P (p + 1) ≥ p then

10 I ← [p− L̂S(p)..L̂P (p + 1)] � interval of square centers
11 if p < 2q then
12 c′q ← cq − bj−1

13 I ← I ∩ ([c′q − (p− q)..c′q + (p− q)] ∪ [c′q + q..�j − 1])
14 for each i ∈ I do
15 if MLPw(bj−1 + i) is undefined then
16 MLPw(bj−1 + i)← p
17 q ← p

18 cq ← bj−1 + p− L̂S(p)

8.7.2. Computing external minimal squares

The algorithm of the previous section allows to compute all internal minimal
squares of a word. Here we show how to compute external minimal squares for
those positions which don’t have internal squares centered at them.

Consider a word w of length n. We first consider squares which are right-
external but not left-external. Those squares are centered at positions in the
right half of the word. The case of squares which are left-external but not
right-external is symmetrical.

For each position i in the right half of w, we compute a value RS(i) equal to
the period of the smallest right-external and not left-external square centered at
i, provided such a square exists. We show that all values RS(i) can be computed
in linear time using longest extension functions (Section 8.3.1).

Consider a right-external square of period p centered at some position i ∈
[%n/2&..n−1], where n− i < p ≤ i. Observe that w[i−p+1..n−p] = w[i+1..n].
This implies that LSw(n − p) ≥ n − i. Conversly, if for some p ∈ [1..n − 1],
LSw(n − p) > 0, then there exists a family of squares of period p centered at
positions i ∈ [n−LSw(n−p)..n−1]. For i > n−p, the square is right-external,
otherwise it is internal.

This implies the following algorithm for computing minimal right-external
squares. Compute LSw for all positions of w. For each j ∈ [1..n], set LNSw(j) =
LSw(j) if LSw(j) < n − j, and LNSw(j) = n − j − 1 otherwise. For each
center position i ∈ [%n/2&..n− 1], we need to compute the minimal p such that
LNSw(n− p) ≥ n− i.

Consider all pairs (j, LNSw(j)) for j ∈ [1..n]. If for some pair (j, LNSw(j)),

Version June 23, 2004

8.8. Finding approximate repetitions 427

there exists a pair (j′, LNSw(j′)) such that LNSw(j′) ≥ LNSw(j) and j′ > j,
then (j, LNSw(j)) carries no useful information for computing minimal right-
external squares. We then delete all such pairs (j, LNSw(j)) from consideration
by looping through all j from n to 1 and deleting those for which the value
LNSw(j) is smaller than or equal to maxj′>j{LNSw(j′)}. We then sort the
remaining pairs (j, LNSw(j)) in the decreasing order of LNSw(j). Using bucket
sort, this can be done in O(n) time and space.

We now set the values RS(i) as follows. For the first element (j0, LNSw(j0))
of the list, we set RS(i) = 0 for all i ∈ [%n/2&..n − LNSw(j0) − 1]. We then
scan through the ordered list of pairs and for each element (j, LNSw(j)), look
at the next element (j′, LNSw(j′)), LNSw(j) > LNSw(j′). For all i ∈ [n −
LNSw(j)..n− LNSw(j′)− 1], set RS(i) = n− j. We then have the following

Lemma 8.7.4. For each i ∈ [%n/2&..n − 1], RS(i) is the smallest period of
a right-external square centered at i if such a square exists, and RS(i) = 0
otherwise.

We now turn to squares that are both right-external and left-external. Con-
sider such a square of period p, centered at some position i. Observe that
w[1..n−p] = w[p+1..n]. Therefore, there exists a border of w of size n−p < n/2.
The largest border corresponds to smallest square. On the other hand, the pe-
riod of this square is equal to the minimal period p(w) of w. Note that, in
general, each local period cannot be greater than p(w), and all minimal squares
which are both right-external and left-external have the period equal to p(w).

It is well known that p(w) can be easily computed in linear time (see Chap-
ter 1). We then obtain an O(n) algorithm for computing all minimal squares:
first, using Theorem 8.7.3 we compute all minimal internal squares; then, using
Lemma 8.7.4 and the above remark, we compute the minimal external squares
for those positions for which no internal square has been found at the first stage.
This proves the main result.

Theorem 8.7.5. For a word of length n, all local periods MLPw(i) can be
computed in time O(n).

8.8. Finding approximate repetitions

In many practical applications, such as DNA sequence analysis, considered repe-
titions admit a certain variation between copies of the repeated pattern. In other
words, repetitions under interest are approximate repetitions and not necessarily
exact repetitions only. Computing approximate repetitions is the subject of this
section.

The simplest notion of approximate repetition is an approximate square. An
approximate square in a word is a factor uv, where u and v are within a given
distance k and the distance measure could be one of those usually used in prac-
tical applications, such as Hamming distance or Levenshtein (or edit) distance.
Here we focus on the Hamming distance, when the variation between repeated

Version June 23, 2004

428 Periodic Structures in Words

copies can be only letter replacements. An important motivation here is to de-
fine structures encoding families of approximate squares, analogous to maximal
repetitions in the exact case. In Section 8.8.1, we define two basic structures that
we call K-repetitions and K-runs, where K the number of allowed errors. In Sec-
tion 8.8.2, we show that all K-repetitions can be found in time O(nK log K+S),
where S is their number. In Section 8.8.3 we show that the same bound holds
for K-runs: all of them can be found in time O(nK log K +R), where R is their
number. The latter result implies, in particular, that all approximate squares
can be found in time O(nK log K + T) (T their number). All those algorithms
require only O(n) of working space.

8.8.1. K-repetitions and K-runs

Let h(·, ·) be the Hamming distance between two words of equal length, that is
h(u, v) is the number of mismatches (letter differences at corresponding posi-
tions) between u and v. For example, h(baaacb, bcabcb) = 2.

A word s = uv, such that |u| = |v|, is called a K-square iff h(u, v) ≤ K.
Reusing the terminology of the exact case, we call p = |u| = |v| the period of s,
and words u, v the left and right root of s respectively.

We now want to define a more global structure which would be able to
capture “long approximate repetitions”, generalizing repetitions of arbitrary
exponent in the exact case. As opposed to the exact case, Conditions (i)-(ii)
of Proposition 8.1.1 generalize to different notions of approximate repetition.
Condition (i) gives rise to the strongest of them: A word r[1..n] is called a
K-repetition of period p, p ≤ n/2, iff h(r[1..n− p], r[p + 1..n]) ≤ K.

Equivalently, a word r[1..n] is a K-repetition of period p, if the number of
i such that r[i] �= r[i + p] is at most K. For example, abaa abba cbba cb is a 2-
repetition of period 4. abc abc abc abd abd abd abd abd is a 1-repetition of period
3 but abc abc abc abb abc abc abc abb is not.

Another point of view, expressed by Condition (ii) of Proposition 8.1.1,
considers a repetition as an encoding of squares it contains. Projecting this
to the approximate case, we come up with the notion of run of approximate
squares: A word r[1..n] is called a run of K-squares, or a K-run, of period p,
p ≤ n/2, iff for every i ∈ [1..n − 2p + 1], the factor s = r[i..i + 2p − 1] is a
K-square of period p.

Similarly to the exact case, when we are looking for approximate repetitions
occurring in a word, it is natural to consider maximal approximate repetitions.
Those are repetitions extended to the right and left as much as possible pro-
vided that the corresponding definition is still verified. Note that the notion of
maximality applies both to K-repetitions and to K-runs: in both cases we can
extend each repetition to the right and left as long as it verifies the corresponding
definition. We will always be interested in maximal K-repetitions and K-runs,
without mentioning it explicitly. Note that for both definitions, the maximality
requirement implies that if r = w[i..j] is an approximate repetition of period p
in w[1..n], then w[j+1] �= w[j+1−p] (provided j < n) and w[i−1] �= w[i−1+p]
(provided i > 1). Furthermore, if w[i..j] is a maximal K-repetition, it contains

Version June 23, 2004

8.8. Finding approximate repetitions 429

.

≥ 2p

a0 b0 a1 b1 aK bK aK+1

p p p p

aj �= bj

bK+1

j = 0, 1, . . . , K + 1

Figure 8.5. Maximal K-repetition

ba

p p

u u′ v v′ w w′

d(u, u′) > K d(v, v′) ≤ K d(w, w′) > K

Figure 8.6. Maximal K-run

exactly K mismatches w[�] �= w[� + p], i ≤ �, � + p ≤ j, unless the whole word w
contains less than K mismatches (to simplify the presentation, we exclude this
latter case from consideration).

Figure 8.5 illustrates the definition of (maximal) K-repetitions and Fig-
ure 8.6 that of (maximal) K-run.

Example 8.8.1. The following Fibonacci word contains three 3-runs of of pe-
riod 6. They are shown in regular font, in positions aligned with their occur-
rences. Two of them are identical, and contain each four 3-repetitions, shown
in italic for the first run only. The third run is a 3-repetition in itself.

010010 100100 101001 010010 010100 1001

10010 100100 101001
10010 100100 10
0010 100100 101

10 100100 10100
0 100100 101001

1001 010010 010100 1
10 010100 1001

In general, each K-repetition is a factor of a K-run of the same period. On

Version June 23, 2004

430 Periodic Structures in Words

the other hand, a K-run in a word is the union of all K-repetitions it contains.
Observe that a K-run can contain as many as a linear number of K-repetitions
with the same period. For example, the word (000 100)n of length 6n is a 1-run
of period 3, which contains (2n− 1) 1-repetitions.

In general, the following lemma holds.

Lemma 8.8.2. Let w[1..n] be a K-run of period p and let s be the number
of mismatches w[i] �= w[i + p], 1 ≤ i, i + p ≤ n (equivalently, s = h(w[1..n −
p], w[p + 1..n])). Then w contains (s−K + 1) K-repetitions of period p.

K-runs and K-repetitions provide respectively the weekest and strongest no-
tions of repetitions with K mismatches, and therefore “embrace” all practically
relevant repetitions.

8.8.2. Finding K-repetitions

In this subsection we describe how to find, in a given word w, all maximal
K-repetitions occurring in w (K is a given constant).

We assume we fixed a minimal bound p0 for the period of repetitions we are
looking for. For example, p0 can be taken to be K + 1 having in mind that if
a period p ≤ K is allowed, then any factor of length 2p would be a K-square.
This assumption, however, is pragmatic and does not affect the method nor the
complexity bounds.

From a general point of view, we are going to apply the same approach as
the one used in Sections 8.4-8.7. However, the case of approximate repetitions
is more complex and requires a number of modifications.

We start with describing the modification of the basic problem of finding rep-
etitions containing a given position of the word (Theorem 8.4.1 of Section 8.4).
Recall that a factor w[i..j] of w is said to contain a position � of w iff i ≤ � ≤ j.
A factor w[i..j] is said to touch a position � of w iff i − 1 ≤ � ≤ j + 1. Here,
it will be convenient for us to specify the problem as follows: Given a word
w[1..n] and a distinguished position � ∈ [2..n − 1], find all K-repetitions in w
that touch �. Similar to Section 8.4, we distinguish two (non-disjoint) classes of
K-repetitions according to whether they have a root on the right or on the left
of position �. We focus on K-repetitions of the first class, those of the second
class are found similarly.

To apply a method similar to the one of Theorem 8.4.1, we need a general-
isation of longest extension functions (Section 8.3.1) that compares factors up
to a given Hamming distance. Formally, given a word w and a position �, for
every k = 0, . . . , K, we compute the following functions on p ∈ [p0..n− �]:

LP
(k)
w,	(p) = max{j | h(w[� + p..� + p + j − 1], w[� + 1..� + j]) ≤ k},(8.8.1)

LS
(k)
w,	(p) = max{j | h(w[� + p− j + 1..� + p], w[�− j + 1..�]) ≤ k}.(8.8.2)

LP
(k)
w,	(p) is the length of the longest factor of w starting at position � + p and

equal, within k mismatches, to the factor of the same length starting at � + 1.

Version June 23, 2004

8.8. Finding approximate repetitions 431

LS
(k)
w,	(p) is the length of the longest factor ending at position � + p and equal,

within k mismatches, to the factor ending at position �. These functions are
generalizations of longest extension functions considered in Section 8.3.1 and
can be computed in time O(nK) using suffix trees combined with the lowest
common ancestor computation in a tree (see Gusfield 1997).

Consider now a K-repetition r of period p that has a root on the right of a
position �. Note that position �+p of w is contained in r, and that r is uniquely
defined by the number of mismatches w[i + p] �= w[i], i ≥ � + 1, occurring
in r. Let k be the number of those mismatches. The following theorem is a
generalization of Theorem 8.4.1.

Theorem 8.8.3. Let w be a word of length n and let �, 1 < � < n, be a
distinguished position of w. There exists a K-repetition of period p which
touches position �, and has a root on the right of �, iff for some k ∈ [0..K],

LS
(K−k)
w,	 (p) + LP

(k)
w,	(p + 1) ≥ p. (8.8.3)

When (8.8.3) holds, this repetition starts at position
(
�− LS

(K−k)
w,	 (p) + 1

)
and

ends at position
(
� + p + LP

(k)
w,	(p)

)
.

Theorem 8.8.3 provides an O(nK) algorithm for finding all considered
K-repetitions: compute longest extension functions (8.8.1), (8.8.2) (this takes
time O(nK)) and then check inequation (8.8.3), for each k = 0, . . . , K and all
p ∈ [p0..�−1] (this takes time O(nK) too). Every time the inequation is verified,
a K-repetition is identified. The computation is summarized in the following
algorithm:

Mismatch-Right-Repetitions(w, �)
1 � Find K-repetitions of w which have a root on the right of position �
2 for all k = 0, . . . , K do
3 � compute longest extension functions (8.8.1), (8.8.2)
4 LP

(k)
w,	 ← Mismatch-Prefix-Extension(w, �, k)

5 LP
(k)
w,	 ← Mismatch-Suffix-Extension(w, �, k)

6 R← ∅
7 for p ← p0 to min{n− � + 1, n/2} do
8 for k ← 0 to K do
9 if LP

(k)
w,	(p + 1) + LS

(k)
w,	(p) ≥ p then

10 r ← (�− LS
(K−k)
w,	 (p) + 1, � + p + LP

(k)
w,	(p))

11 R ← R∪ {r}
12 return R

Finding repetitions having a root on the left of position � is a symmetric
problem that can be solved within the same time bound (hereafter referred to
as algorithm Mismatch-Left-Repetitions).

Version June 23, 2004

432 Periodic Structures in Words

We are now ready to describe an extension of the algorithm Maximal-

Repetitions from Section 8.4 to compute all K-repetitions in a word w. Con-
sider the Lempel-Ziv factorization w = f1f2 · · · fm (Section 8.3.2). The last
position of an LZ-factor fi will be called the head of fi. The algorithm consists
of three stages. The first stage is based on the following two lemmas.

Lemma 8.8.4. The suffix of length p of a K-repetition of period p cannot
contain K + 1 consecutive LZ-factors.

Proof. Each LZ-factor contained in the suffix of length p of a K-repetition
must contain at least one mismatch with the letter located p positions to the
left. Indeed, if it does not contain a mismatch, it has an exact copy occurring
earlier, which contradicts the definition of the Lempel-Ziv factorization. All
those mismatches belong to the repetition and there are at most K of them.
Therefore, the suffix of length p contains at most K LZ-factors.

Divide w into consecutive blocks of (K + 2) LZ-factors. Let w = B1 · · ·Bm′

be the partition of w into such blocks. The last letter of block Bi will be called
the head of this block. At the first stage, we find, for each block Bi, those
K-repetitions which touch the head of Bi−1 but do not touch that of Bi. The
following lemma is analogous to Theorem 8.4.2.

Lemma 8.8.5. Assume that a K-repetition r touches the head of Bi−1 but not
that of Bi. Then the length of the prefix of r which is a suffix of B1 · · ·Bi−1 is
bounded by |Bi|+ 2|Bi−1|.

Proof. Lemma 8.8.4 implies that the suffix of r of period length cannot start
before the first letter of Bi−1. Therefore, the period of r is bounded by |Bi−1Bi|.
On the other hand, by an argument similar to Lemma 8.8.4, r cannot extend
by more than one period to the left of Bi−1. This is because otherwise each
of the LZ-factors of Bi−1, except possibly the last one, would correspond to a
mismatch in r, and thus r would contain at least (K + 1) mismatches which
is a contradiction. Therefore, the length of the prefix of r which is a suffix of
B1 · · ·Bi−2 is at most |Bi−1|+ |Bi|.

Based on Lemma 8.8.5, we apply Mismatch-Right-Repetitions and Mis-

match-Left-Repetitions algorithms: Consider the word wi = viBi, where vi

is the suffix of B1 · · ·Bi−1 of length (2|Bi−1|+ |Bi|). Then find, by Mismatch-

Right-Repetitions and Mismatch-Left-Repetitions, all K-repetitions in
wi touching the head of Bi−1 and discard those which touch the head of Bi.
The resulting complexity is O(K(|Bi−1|+ |Bi|)).

After processing all blocks, we find all repetitions touching block heads.
Observe that repetitions resulting from processing different blocks are distinct.
Summing up over all blocks, the resulting complexity of the first stage is O(nK).
The repetitions which remain to be found are those which lie entirely within a
block – this is done at the next two stages.

At the second stage we find all K-repetitions inside each block Bi which
touch factor heads other than the block head (i.e. the head of the last LZ-factor

Version June 23, 2004

8.8. Finding approximate repetitions 433

of the block). For each Bi, we proceed by the following divide-and-conquer
procedure:

Process-Block(B)
1 � Compute K-repetitions which touch factor heads inside a block B
2 R← ∅
3 divide B = fifi+1 · · · fi+s into two sub-blocks

B′ = fi · · · f�s/2� and B′′ = f�s/2�+1 · · · fi+s

4 � compute K-repetitions which touch the head of B′

5 h ← position of the head of B′

6 R1 ←Mismatch-Right-Repetitions(B, h)
7 R2 ←Mismatch-Left-Repetitions(B, h)
8 R← R∪R1 ∪R2

9 � process recursively B′ and B′′

10 R′ ← Process-Block(B′)
11 R′′ ← Process-Block(B′′)
12 R← R∪R′ ∪R′′

13 return R

The algorithm Process-Block has %log2 K& levels of recursion, and since
at each step the word is split into disjoint sub-blocks, the whole complexity of
the second stage is O(nK log K).

Finally, at the third stage, it remains to compute the K-repetitions which
occur entirely inside each Lempel-Ziv factor, i.e. don’t contain its first position
and don’t touch its head. By definition of Lempel-Ziv factorization, each LZ-
factor without its head has a (possibly overlapping) copy on the left. Therefore,
each of these K-repetitions has another occurrence in that copy. Using this
observation, these K-repetitions can be found using the same technique as at
the second stage of Maximal-Repetitions: during the construction of the
Lempel-Ziv factorization we keep, for each LZ-factor wa, a pointer to a copy
of w on the left. Then process all LZ-factors from left to right and recover
repetitions occurring inside each LZ-factor from its left copy in the same way
that it was done at the second stage of Maximal-Repetitions. The complexity
of this stage is O(n + S), where S is the number of repetitions found.

The following theorem summarizes this section.

Theorem 8.8.6. All K-repetitions in a word of length n can be found in time
O(nK log K + S) where S is the number of K-repetitions found.

The algorithm K-Repetitions given below summarizes the three stages of
the computation of K-repetitions.

Version June 23, 2004

434 Periodic Structures in Words

K-Repetitions(w)
1 (f1, · · · , fm) ← Lempel-Ziv factorization of w
2 partition f1, · · · , fm into blocks B1 · · ·Bm′ of K + 2 consecutive factors
3 � first stage
4 R← ∅
5 for i← 2 to m′ do
6 vi ← suffix of B1 · · ·Bi−1 of length (2|Bi−1|+ |Bi|)
7 � ← |vi|
8 R′

i ←Mismatch-Right-Repetitions(viBi, �)
9 R′′

i ←Mismatch-Left-Repetitions(viBi, �)
10 R ← R∪R′

i ∪R′′
i

11 � second stage
12 for i← 1 to m′ do
13 Ri ← Process-Block(Bi)
14 R ← R∪Ri

15 � third stage
16 for each factor fj do
17 retrieve all K-repetitions which occur entirely inside fj using a pro-

cedure similar to the second stage of Maximal-Repetitions

8.8.3. Finding K-runs

We now describe an algorithm for finding all K-runs in a word. The general
structure of this algorithm is the same as algorithm K-Repetitions – it has
three stages playing similar roles. However, the case of K-runs will require a
considerable modification and additional algorithmic techniques, especially at
the third stage.

At the first and second stages, the key difference is the type of objects we are
looking for: instead of computing K-repetitions we now compute subruns of K-
squares. Formally, a K-subrun is a family of K-squares occurring at successive
positions. In other words, a K-subrun is a K-run which is not necessarily
maximal. In this section, we identify a subrun with the interval of end positions
of the squares it contains (note that a different convention has been adopted in
Section 8.7.1 where we identified a subrun with the interval of central positions
of its squares).

At each point of the first and the second stages when we search for repetitions
touching some head position �, we now compute subruns containing those K-
squares which touch �, i.e. K-subruns belonging to the interval [�− 1..� + 2p].
As in the case of K-repetitions, we split those squares into those having a root
on the left of � (belonging to the interval [� − 1..� + p − 1]) and those having
a root on the right of � (belonging to the interval [� + p..� + 2p]). Note that
here, however, these two cases are disjoint. The modification of the Mismatch-

Right-Repetitions algorithm is the algorithm Mismatch-Right-Subruns

below. It computes the subruns of K-squares touching w[�] and having a root
on the right of it.

Version June 23, 2004

8.8. Finding approximate repetitions 435

Mismatch-Right-Subruns(w, �)
1 � Find subruns of K-squares touching position � in w

� and having the right root on the right of �
2 for all k = 0, . . . , K do
3 � compute longest extension functions defined by (8.8.1), (8.8.2)
4 LP

(k)
w,	 ← Mismatch-Prefix-Extension(w, �, k)

5 LP
(k)
w,	 ← Mismatch-Suffix-Extension(w, �, k)

6 L ← empty list
7 for p ← p0 to min{n− � + 1, n/2} do
8 for k ← 0 to K do
9 if LP

(k)
w,	(p + 1) + LS

(k)
w,	(p) ≥ p then

10 lbound(p, k)← max{� + 2p− LS
(k)
w,	(p), � + p}

11 rbound(p, k)← min{� + p + LP
(k)
w,	(p), � + 2p}

12 r ← subrun (lbound(p, k), rbound(p, k)) of period p
13 if rbound(p, k − 1) is defined and

lbound(p, k) ≤ rbound(p, k − 1) + 1 then
14 merge r with the subrun computed for k − 1
15 else add r to L
16 else rbound(p, k)← undefined
17 return L

A major additional difficulty in computing K-runs is that we have to assem-
ble them from subruns. To perform the assembling, we need to store subruns in
an additional data structure that allows to maintain links between subruns and
to merge adjacent subruns into bigger runs. Finally, we have to ensure that the
number of subruns we come up with and the work spent on processing them do
not increase the resulting complexity bound.

The assembling occurs already in the function Mismatch-Right-Subruns,
as intervals (subruns) found for different values of k (for-loop at line 8) may
overlap or immediately follow each other, in which case we join them into a
bigger subrun (lines 13-14). Moreover, those intervals can be disjoint, in which
case we organize them in a linked list. A more formal description of the data
structure will be given later.

The list of subruns of K-squares that touch w[l] and have a root on the left
of it is computed similarly. Once computed, it has to be concatenated with
the list computed by Mismatch-Right-Subruns and the rightmost subrun of
left-rooted squares has to be merged with the leftmost subrun of right-rooted
squares, if those subruns are adjacent.

We now describe the three stages of the algorithm in more details. Given
an input word w, we compute the Lempel-Ziv factorization w = f1 · · · fk. Un-
like the case of K-repetitions, we use here the Lempel-Ziv factorization with
non-overlapping copies (see Section 8.3.2). We then divide the factorisation
into blocks B1, . . . , Bm′ , each containing (K + 2) consecutive LZ-factors. At
the first stage, we compute subruns of those K-squares which touch the
heads of all blocks B1, . . . , Bm′ . For each block Bi, we find the subruns of

Version June 23, 2004

436 Periodic Structures in Words

K-squares which touch the head of Bi but not that of Bi+1. This is done
using algorithm Mismatch-Right-Subruns and its couterpart for the left-
rooted squares, together with Lemma 8.8.5. Let b̂i be the head position of Bi.
Then for each period p, K-subruns of period p found at this step belong to
the interval [̂bi − 1.. min{b̂i + 2p, b̂i+1 − 2}] . We call this interval the explored
interval for b̂i and p. For each p, K-subruns found at this step can be seen
as non-intersecting subintervals of this explored interval. These K-subruns are
stored into a double-linked list, say L(i, p), in the increasing order of positions.
(We leave it to the reader to check that such a list can be easily computed by
the algorithm Mismatch-Right-Subruns by making at each step a constant
amount of extra work.) For p > (̂bi − b̂i−1)/2− 1, the explored interval for b̂i−1

has to be joined with the explored interval for b̂i, thus forming a bigger explored
interval. Accordingly, lists L(i−1, p) and L(i, p) are joined. Note that if the last
subrun of L(i− 1, p) turns out to be adjacent to the first subrun of L(i, p), then
those two subruns are merged into a single one. All additional operations take
a constant time, and the resulting complexity of the first stage is still O(nK).

The second stage is modified in a similar way. Let bi denote the head po-
sition of factor fi. Recall that at each call of Process-Block we are searching
for K-squares occurring between some factor head bj′ and another factor head
bj′′ , and touching some factor head bi (j′ < i < j′′). Moreover, no factor head
between bj′ and bj′′ has been processed yet. In this case, the explored interval
is [max{bj′ + 2p + 1, bi − 1}.. min{bi + 2p, bj′′ − 2}], and we may have to merge
it either with the previous explored interval, or with the next one, or both.

After the first and the second stages, we have computed lists of subruns of
K-squares that touch all factor heads. Each list stores subruns of K-squares
of some fixed period p touching heads of some successive factors fi, fi+1, ..., fj .
Note that for each factor and each period, the corresponding list exists but can
be empty. Each such list is accessed through two pointers, associated with the
corresponding leftmost (fi) and rightmost (fj) factors. We denote these pointers
left i(p) and right j(p) respectively. These pointers are needed, in particular, for
merging explored intervals at the second stage. An important remark is that
at each moment there are only O(n) pointers that need to be stored. The key
observation is that for each factor head bi, pointer left i(p) should be defined
only for periods p ≤ (bi − bi′)/2 − 1, where bi′ is the closest head on the left
of bi that has been processed before. Similarly, pointer right i(p) is defined only
for periods p ≤ (bi′′ − bi)/2− 1, where bi′′ is the closest head to the right of bi

that has been processed before. On the other hand, all pointer manipulations
add only a constant amount of work to each step of the second stage, and then
the time complexity of the second stage stays O(nK log K).

At the third stage, we have to find those K-subruns which lie entirely
inside LZ-factors. For each period, potential occurrences of these K-subruns
correspond precisely to the gaps between explored intervals. Thus, the third
stage can be also seen as closing up, for each period, the gaps between explored
intervals. The goal of the third stage is to construct, for each period p, a single
list L[p] of all K-subruns of period p occurring in the word. In the beginning of

Version June 23, 2004

8.8. Finding approximate repetitions 437

the third stage, L[p] is initialized to left1(p).
As before, the key observation here is the fact that each LZ-factor without

its head has a copy on the left (here required to be non-overlapping), and the
idea is again to process w from left to right and to retrieve the K-subruns
occurring inside each LZ-factor from its copy. However, the situation here is
different in comparison to the previous section. One difference is that here
subruns have to be “copied forward” when we process a factor copy, rather than
to be retrieved at the time of processing the factor itself, as done at the second
stage of Maximal-Repetitions. Moreover, we may have to “cut out”, from a
longer list, a sublist of K-subruns belonging to a factor copy and then to “fit”
it into the gap between two explored intervals. The “cutting out” may entail
splitting K-subruns which span over the borders of the factor copy, and “fitting
into” may entail merging those K-subruns with K-subruns from the neighboring
explored intervals. Below we describe the algorithm for the third stage, which
copes with these difficulties. The algorithm Runs-Third-Stage given below
provides a detailed description of the third stage.

During the computation of the Lempel-Ziv factorization, for each LZ-factor
fi = va we choose a copy of v occurring earlier and point from the end position
of this copy to the head position of fi. It may happen that one position has
to have several pointers, in which case we organize them in a list. We traverse
w from left to right and maintain the rightmost K-run, of each period, which
starts before the current position. This K-run is called the active run and is
denoted A[p] in the Runs-Third-Stage algorithm. To this purpose, we also
maintain the following invariant: at the moment we arrive at a position i, we
have the list, denoted S[i], of all K-subruns which start at this position. The
lists S[i] are maintained according to the following general rule: for each K-
subrun starting at the current position, we assign the start position of the next
K-subrun in the list provided that this K-subrun exists (instructions 16-19 of
Runs-Third-Stage). If the next subrun does not exist, we set a special flag
islast in order to do it later.

When we arrive at the end position of a copy of a LZ-factor, we have to
copy “into the factor” all the K-subruns which this copy contains. Therefore,
we scan backwards the K-subruns contained in the copy and copy them into
the factor (instructions 24-29). After copying these K-subruns, we bridged two
explored intervals into one interval, and linked together the two corresponding
lists of K-subruns, possibly inserting a new list of K-runs in between (line 30).
Copying K-subruns in the backward direction is important for the correction
of the algorithm – this guarantees that no K-subruns are missed. It is also for
this reason that we need the copy to be non-overlapping with the factor.

The final part of the algorithm (lines 31-40) treats the situation when before
executing line 30, rights−1(p) actually refers to the current list L[p]. If, in
addition, L[p] was empty before but became non-empty after the execution of
line 30, we have to add the first subrun of L[p] to the corresponding list S[i′]
(lines 31-35). If the active run A[p] was the last run in L[p] before the execution
of line 30 but is not the last one after this execution, we have to update the list
S[i′] for the start position i′ of the next subrun (instructions 36-40).

Version June 23, 2004

438 Periodic Structures in Words

Runs-Third-Stage()
1 � A[p] is maintained to be the last considered run of period p
2 � S[i] is maintained to be the list of runs starting at i
3 for each period p do
4 L[p]← left1(p)
5 islast [p]← false
6 if L[p] is not empty then
7 r ← first run of L[p]
8 i ← start position of r
9 add r to S[i]

10 isempty [p]← false
11 else isempty [p]← true
12 for each position i ∈ [1..n] do
13 for each run r ∈ S[i] do
14 p ← period of r
15 A[p]← r
16 if r is not the last run in L[p] then
17 r′ ← run next to r in L[p]
18 i′ ← first position of r′

19 add r′ to S[i′]
20 else islast [p]← true
21 for each factor copy v ending at position i do
22 s ← index of the factor corresponding to v
23 for each period p ≤ |v|/2 do
24 r ← A[p]
25 while r is defined and r contains K-squares inside v do
26 r′ ← subrun of all these K-squares
27 r′′ ← copy of r′ in fs

28 add/merge r′′ to/with the head of list lefts(p)
29 r ← predecessor of r in L[p]
30 link/merge rights−1(p) to/with lefts(p)
31 if isempty [p] and L[p] is no more empty then
32 r′ ← first run of L[p]
33 i′ ← start position of r′

34 add r′ to S[i′]
35 isempty [p]← false
36 if islast [p] and A[p] is no more the last run in L[p] then
37 r′ ← run next to A[p] in L[p]
38 i′ ← start position of r′

39 add r′ to S[i′]
40 islast [p]← false

After the whole word has been traversed, no more gaps between explored
intervals exist anymore. This means that for each period p, L[p] is the list of all
K-subruns of period p occurring in the word, which are actually the searched
runs.

Version June 23, 2004

8.9. Notes 439

The complexity of the third stage is O(n + S), where S is the number of
resulting K-runs. We show this by an amortized analysis of the Runs-Third-

Stage algorithm. Specifically, we show that the total number of iterations of
each loop in Runs-Third-Stage is either O(n) or O(S). Each iteration of the
for-loop at line 13 processes a new K-run starting at position i. Therefore there
are O(S) iterations of this loop during the whole execution. Each iteration of the
for-loop at line 21 treats a copy of a distinct Lempel-Ziv factor. Furthermore,
the number of iterations of the nested for-loop at line 23 is the half of the
length of the corresponding factor. Therefore, the total number of iterations of
both for-loops is O(n). On the other hand, the while-loop at line 25 iterates
O(n + S) times, as at each iteration, except possibly the first and the last one,
it computes a new K-subrun, which becomes a completed K-run at that point.
Thus, the overall time spent by all internal loops is O(n+S). The main for-loop
(line 3) makes obviously O(n) iterations, and this completes the proof that the
whole complexity of the third stage is indeed O(n + S).

Putting together the three stages, we obtain the main result of this section.

Theorem 8.8.7. All K-runs can be found in time O(nK log K + S) where n
is the word length and S is the number of K-runs found.

Once all K-runs have been found, we can easily output all K-squares. We
then have the following result.

Corollary 8.8.8. All K-squares can be found in time O(nK log K+S) where
n is the word length and S is the number of K-squares found.

8.9. Notes

Section 8.0. We refer to Storer 1988 for applications of repetitions to compres-
sion techniques. Galil and Seiferas 1983, Crochemore and Rytter 1995, Cole
and Hariharan 1998 illustrate how repetitions are used in pattern matching.
Kolpakov et al. 2003 discusses the role of repetitions in DNA sequences. More
on biological origin and function of repeated sequences in genome sequences can
be learnt, e.g., in Brown 1999.

Section 8.1. Basic definitions and results of word combinatorics, including
Proposition 8.1.1 and Theorem 8.1.2 and Proposition 8.1.5, can be found in
Lothaire 1997. The exponent is called the order in Chapter 8 of Lothaire 2002.
Maximal repetitions were called maximal periodicities in Main 1989 and runs in
Iliopoulos et al. 1997.

Section 8.2. The proof of Lemma 8.2.2 is attributed to D. Hickerson and was
communicated to us by M. Crochemore and D. Gusfield. The lemma is a weaker
and easier-to-prove version of a result from Crochemore and Rytter 1995 assert-
ing that under conditions of Lemma 8.2.2, the stronger inequality |y|+ |z| ≤ |x|

Version June 23, 2004

440 Periodic Structures in Words

holds. The latter implies that the number of primitively-rooted squares occur-
ring as prefixes of a word w is less than logϕ |w| (ϕ is the golden ratio), which
is a better bound than log√2 |w| implied by Lemma 8.2.2 (cf Theorem 8.2.1).
Moreover, the bound logϕ |w| is asymptotically tight, as realized by Fibonacci
words.

Lemma 8.2.3(i) is a “folklore result” (see e.g. Pirillo 1997), together with
the fact that the common prefix of fn−1fn−2 and fn−2fn−1 of length Fn−2 is a
palindrome. Lemma 8.2.3(ii) appeared in De Luca 1981. The proof given here
was communicated to us by J. Berstel. Theorem 8.2.4 was proved in Crochemore
1981.

Lemma 8.2.3(iii) was proved in the PhD thesis of P. Séébold (1985). Lemma
8.2.3(iv) appeared in Karhumäki 1983. Later, repetitions in Fibonacci words
have been extensively studied in Mignosi and Pirillo 1992, Pirillo 1997 where it
was proved, in particular, that they contain no repetition of exponent greater
than 2+ϕ = 3.618.. but do contain repetitions of exponent greater than 2+ϕ−ε
for every ε > 0.

An exact formula for the number of squares Fibonacci word fn was obtained
in Fraenkel and Simpson 1999. It implies that this number is asymptotically
2
5 (3− ϕ)nFn + O(Fn) ≈ 0.7962 · Fn log2 Fn + O(Fn).

It is interesting to note that if we count distinct squares rather than square
occurrences, their maximal number is asymptotically linearly bounded on the
word length. In Fraenkel and Simpson 1999, it has been shown that Fibonacci
word fn contains 2(Fn−2−1) = 2(2−ϕ)Fn +O(1) distinct squares. In Fraenkel
and Simpson 1998, it has been proved that the number of distinct squares in
general words of length n is bounded by 2n (for an arbitrary alphabet). It is
conjectured that this number is actually smaller than n. Thus, in contrast to
square occurrences, the maximal number of distinct squares is linear.

A linear bound on the number of maximal repetitions in Fibonacci words was
first obtained in Iliopoulos et al. 1997 by presenting a linear-time algorithm enu-
merating all of those. The direct formula given here was obtained in Kolpakov
and Kucherov 2000b. Since Fibonacci words don’t contain exponents greater
than (2+ϕ), Theorem 8.2.5 implies that the sum of exponents of all maximal rep-
etitions in fn is no greater than (2+ϕ)(2Fn−2−3) = 2(2−ϕ)(2+ϕ)Fn+O(1) =
2(3−ϕ)Fn +O(1) ≈ 2.764 ·Fn. While an exact formula for the sum of exponents
is not known, a more precise estimate was obtained in Kolpakov and Kucherov
2000b, where it was shown that the sum of exponents of all maximal repetitions
in Fibonacci word fn is (C · Fn + o(Fn)), where 1.922 ≤ C ≤ 1.926.

A complete proof of Theorem 8.2.7 can be found in Kolpakov and Kucherov
2000b.

On a different but related topic, several studies have been done on the min-
imal, rather than maximal, number of repetitions in words. In particular, it is
well-known (Lothaire 1997) that an arbitrary long word with no squares (and
therefore no repetitions at all) can be constructed on a three-letter alphabet.
In Fraenkel and Simpson 1995 it was shown that for the binary alphabet, there
exists an infinite word containing three distinct squares (e.g. 00, 11, 0101) and
three is the minimal bound. Complementary, in Kucherov et al. 2003 it was

Version June 23, 2004

8.9. Notes 441

shown that the minimal number of square occurrences in an infinite binary word
is, in the limit, a constant fraction of the word length, and that this constant is
0.55080....

Section 8.3. Longest extension functions have been introduced in Main and
Lorentz 1984; a closely related idea was used independently in Crochemore
1983. The algorithm presented here for computing longest extension functions
is a refinement of the algorithm of Main and Lorentz 1984.

Using s-factorization (called f -factorization in Crochemore and Rytter 1994)
for finding repetitions was first proposed in Crochemore 1983. The Lempel-Ziv
factorization is directly related to the Lempel-Ziv compression algorithm (Ziv
and Lempel 1977) and to the underlying definition of complexity of a string
(Lempel and Ziv 1976). A discussion on two types of factorization can be found
in Gusfield 1997. The linear-time computation of Lempel-Ziv factorization was
used in Rodeh et al. 1981. Linear-time construction algorithms for the suffix
tree are described in McCreight 1976, Ukkonen 1995 and for the DAWG in
Blumer et al. 1985, Crochemore 1986.

Section 8.4. First papers on finding repetitions in words are Crochemore 1981,
Slisenko 1983. Crochemore 1981 proposed an O(n log n) algorithm for finding all
occurrences of non-extensible primitively-rooted integer powers in a word. Using
a suffix tree technique, Apostolico and Preparata 1983 described an O(n log n)
algorithm for finding all right-maximal repetitions, which are repetitions that
cannot be extended to the right without increasing the period. Main and Lorentz
1984 proposed another algorithm that finds all maximal repetitions in O(n log n)
time. They also pointed out the optimality of this bound under the assumption
of unbounded alphabet and under the restriction that the algorithm is based
only on letter comparisons.

Crochemore 1983 described a simple and elegant linear-time algorithm for
finding a square in a word (and thus checking if a word is repetition-free). An-
other linear algorithm checking whether a word contains a square was proposed
in Main and Lorentz 1985.

Using s-factorization, Main 1989 proposed a linear-time algorithm which
finds all leftmost occurrences of distinct maximal repetitions in a word. This
algorithm basically corresponds to the first stage of Maximal-Repetitions.
In particular, Theorems 8.4.2 and 8.4.1 are from Main 1989. The linear-time
algorithm presented here is from Kolpakov and Kucherov 1999.

As far as other related works are concerned, Kosaraju 1994 described an
O(n) algorithm which, given a word, finds for each position the shortest square
starting at this position. Stoye and Gusfield 1998 proposed several algorithms
that are based on a unified suffix tree framework. Their results are based on an
algorithm which finds in time O(n log n) all branching tandem repeats.

Section 8.5, 8.6. The results of those sections are from Kolpakov and Kucherov
2000a. A more general problem has been considered in Brodal et al. 2000:
find all gapped repeats with a gap size belonging to a specified interval. The

Version June 23, 2004

442 Periodic Structures in Words

proposed algorithm has the time complexity O(n log n + S), where S is the size
of the output.

Section 8.7. We refer to Duval 1998, Duval et al. 2001 for studies of properties
of local periods. The Critical Factorization Theorem is presented in Lothaire
1997, Choffrut and Karhumäki 1997, Lothaire 2002. For recent developments
of the Critical Factorization Theorem see Mignosi et al. 1995.

The results of Section 8.7 are based on Duval et al. 2003.

Section 8.8. The problem of finding approximate squares for both Hamming and
edit distances has been first studied in Landau and Schmidt 1993. Computing
generalized longest extension functions in time O(nK) can be done by a method
based on the suffix tree and the computation of the nearest common ancestor
described in Gusfield 1997.

The results presented in the section are from Kolpakov and Kucherov 2003.
Algorithms of Sections 8.4 and 8.8 have been implemented in the mreps

software for finding tandem repeats in DNA sequences. For more information
about the software and experimental results obtained with it, we refer to the
Web-site http://www.loria.fr/mreps/ and the publication Kolpakov et al.
2003.

Version June 23, 2004

443

CHAPTER 9

Counting, Coding and Sampling
with Words

9.0 Introduction . 443
9.1 Counting: walks in sectors of the plane 445

9.1.1 Unconstrained walks and rational series 445
9.1.2 Walks on a half line and Catalan’s factorization 447
9.1.3 Walks on a half plane and algebraic series 449
9.1.4 Walks on the slitplane and the cycle lemma 453

9.2 Sampling: polygons, animals and polyominoes 456
9.2.1 Generalities on sampling 457
9.2.2 Parallelogram polyominoes and the cycle lemma 458
9.2.3 Directed convex polyominoes and Catalan’s factorization 460
9.2.4 Convex polyominoes and rejection sampling 461
9.2.5 Directed animals . 463

9.3 Coding: trees and maps . 466
9.3.1 Plane trees and generalities on coding 467
9.3.2 Conjugacy classes of trees 469
9.3.3 The closure of a plane tree 471
9.3.4 The opening of a 4-valent map 473
9.3.5 A code for planar maps 476
Problems . 477
Notes . 478

9.0. Introduction

This chapter illustrates the use of words to derive enumeration results and
algorithms for sampling and coding.

Given a family C of combinatorial structures, endowed with a size such that
the subset Cn of objects of size n is finite, we consider three problems:

– Counting: determine for all n ≥ 0, the cardinal Card(Cn) of the set Cn of
objects with size n.

– Sampling: design an algorithm RandC that, for any n, produces a random
object uniformly chosen in Cn: in other terms, the algorithm must satisfy,

Version June 23, 2004

444 Counting, Coding and Sampling with Words

for any object O ∈ Cn, P(RandC(n) = O) = 1/ Card(Cn).
– Optimal coding: construct a function ϕ that maps injectively objects of C

on words of {0, 1}∗ in such a way that an object O of size n is coded by
a word ϕ(O) of length roughly bounded by log2 Card(Cn).

These three problems have in common an enumerative flavour, in the sense
that they are immediately solved if a list of all objects of size n is available.
However, since in general there is an exponential number of objects of size n
in the families we are interested in, this solution is by no way satisfying. For
a wide class of so-called decomposable combinatorial structures, including non
ambiguous algebraic languages, algorithms with polynomial complexity can be
derived from the rather systematic recursive method. Our aim is to explore
classes of structures for which an even tighter link exists between counting,
sampling and coding.

For a number of natural families of combinatorial structures, the counting
problem has indeed a “nice” solution: by nice could be intended that there
is a simple formula for Card(Cn), that the generating series

∑
n≥0 Card(Cn)xn

is an algebraic function, etc. The rationale of this chapter is that these nice
enumerative properties are the visible “traces” of deeper structural properties,
and that making the latters explicit is a way to solve simultaneously and simply
the three problems above.

The enumeration of walks on lattices (Section 9.1) is an inextinguishable
source of nice counting formulas. These formulas can often be given simple
interpretations by viewing walks as words on an alphabet of steps, and using
ingredients of the combinatorics of words. In particular we shall consider some
rational and algebraic languages, shuffles and the cycle lemma.

Convex or directed polyominoes (Section 9.2) illustrate the idea that nice
combinatorial properties help for sampling. Since enumeration and random gen-
eration of general polyominoes appear intractable, it was proposed in statistical
physics to study subclasses like convex or directed polyominoes, that display
better enumerative properties. These objects can be described in terms of sim-
ple languages, often algebraic, and this leads to efficient random generators.

The family of planar maps (Section 9.3) is a further example of class with
unexpectedly nice enumerative properties. Maps are the natural combinatorial
abstraction for embeddings of graphs in the plane and for polygonal meshes
in computational geometry, and maps were also largely studied in theoretical
physics. Toy models of statistical physics, like percolation or the Ising model,
are often studied on regular lattices, but also on random maps. The uniform
distribution indeed appears to give, at the discrete level, the right notion of dis-
tribution of probability on possible universes as prescribed by quantum gravity.
In these various contexts, results have been obtained independently on counting,
sampling and coding problems. Again we rely on a combinatorial explanation
of the enumerative properties of planar maps to approach these three problems.

Most of the time, we state and prove results for some particularly simple
structures, while they are valid for more generic families (e.g. walks with more
general steps, polyominoes on other lattices, maps with constraints). We made
this choice to maintain the chapter relatively short, but also because on these

Version June 23, 2004

9.1. Counting: walks in sectors of the plane 445

simple structures the “traces” are more visible, and the underlying combina-
torics appears more explicitly.

All the objects that are considered in this chapter have nice geometric in-
terpretations in the plane. We have chosen to rely on the geometric intuition of
the reader to support these interpretations, and concentrate the proofs on the
combinatorial aspects.

9.1. Counting: walks in sectors of the plane

A (nearest neighbor) walk on the square lattice Z2 is a finite sequence of vertices
w = (w0, w1, . . . , wn) in Z2 such that each step wi−wi−1, for 1 ≤ i ≤ n, belongs
to the set S = {(0, 1), (0,−1), (−1, 0), (1, 0)}. The number of steps n is the length
of w; w0 and wn are respectively its startpoint and endpoint. The reverse walk
of w is the walk w̄ = (wn, wn−1, . . . , w1, w0). A loop is a walk with identical
startpoint and endpoint.

Elements of S are also denoted u, d, l, r – standing for up, down, left and
right. Unless explicitly specified, we consider walks up to translation, or equiv-
alently, we assume that they start from the origin (0, 0). A walk can thus be
seen as a word on the alphabet S = {u, d, l, r} and we identify the set of walks
with the language {u, d, l, r}∗, making no distinction between both of them.

In the rest of this section, we study families of walks with various boundary
constraints: on a line, a half line, a half plane, a quarter plane, and finally, on
the slitplane. This is the occasion to introduce enumerative tools that will be
of use in later sections.

9.1.1. Unconstrained walks and rational series

Let us first consider walks that use only vertical steps (i.e. u or d), and hence
stay on the axis (x = 0). These walks are sometimes called one-dimensional
simple symmetric walks, and are often considered in their “time stretched” ver-
sion: each step u or d is replaced by a (1, 1) or (1,−1) step, in order to give an
unambiguous representation in the plane, as illustrated by Figure 9.1. Up to
a π/4-rotation, these walks are in one-to-one correspondence with walks with
steps in {u, r} and as such, are sometimes called staircase walks, or directed
two-dimensional walks.

Counting these walks with respect to their length � amounts to counting
words on {u, d} of length �, and there are 2	 of those. Restricting them to end
at ordinate j, with � = 2n+ |j| for some nonnegative n, is hardly more difficult:
for j ≥ 0, the corresponding words are arbitrary shuffles of n + j letters u and
n letters d, and similarly for j ≤ 0, they are shuffles of n letters u and n − j
letters d. Hence the number of walks of length 2n + |j| ending at ordinate j is(

2n + |j|
n

)
.

It will be convenient to express enumerative results in terms of languages
and generating functions. In this case, the language V of walks on the vertical

Version June 23, 2004

446 Counting, Coding and Sampling with Words

�

�

(a) On an axis,

�

�

�

�

�

�

�

(b) stretched,

� �

�

�

� �

�

(c) and rotated.

Figure 9.1. Three representations of the one-dimensional walk duuudu.

axis is just {u, d}∗. Equivalently, in the algebra Q〈〈u, d 〉〉 of formal power series
in non commuting variables, the language V (viewed as the formal sum of its
words) is uniquely defined by the linear equation:

V = ε + (u + d)V , (9.1.1)

which corresponds to the non ambiguous decomposition: “a walk is either the
empty walk or made of a step u or d followed by a walk”.

Define now δ(w) = |w|u−|w|d for any word w on S, so that δ(w) is the final
ordinate of the walk w. The generating function of the language V with respect
to the length (variable t) and the final ordinate (variable y) is

V (t; y) =
∑
w∈V

t|w|yδ(w),

which is an element of the algebra Q(y)[[t]] of formal power series in the variable
t with coefficients that are rational functions in y.

Observe that |.| and δ are morphisms of monöıds (S∗, ·) → (Z, +), so that
V (t; y) can be viewed as the commutative image of V by the morphism of algebra
w �→ t|w|yδ(w) from Q〈〈u, d 〉〉 to Q(y)[[t]]. Taking the commutative image of
Equation 9.1.1, the generating function V (t; y) satisfies:

V (t; y) = 1 + (ty + ty−1)V (t; y).

An explicit expression of V (t; y) follows, and its expansion of course agrees with
the previous direct enumeration:

V (t; y) =
1

1− (y + y−1)t
=

+∞∑
m=0

m∑
k=0

(
m

k

)
tmym−2k.

The commutative image mechanism produces a priori a formal power series
of Q(y)[[t]], but, as in the present example, it retains properties of the initial
language: the series V (t; y) of the rational language {u, d}∗ is a rational function
of t and y, i.e. belongs to Q(t, y). Walks with more general steps are dealt with
in a similar way: for instance the language W associated to walks in Z2 is S∗

Version June 23, 2004

9.1. Counting: walks in sectors of the plane 447

�

�

�

�

�

�

�

�

�

�

�

�

�

(a) a Dyck word,

�

�

�

�

�

�

�

�

�

�

�

�

�

(b) a Dyck prefix.

Figure 9.2. The family of Dyck words (stretched representations).

and the generating function of these walks with respect to the length and the
coordinates of the endpoint is:

W (t; x, y) =
1

1− (x + x−1 + y + y−1)t
.

Another illustration is given by the family of walks that never immediately undo
a step they have just done. Their language is the set of words avoiding the factors
{ud, du, lr, rl} which is well known to be rational. Accordingly their generating
function with respect to the length and the coordinate of the endpoints belongs
to Q(t, x, y). Conversely, when the generating function of a set of objects is
rational, it is natural to try to encode them by words of a rational language.

9.1.2. Walks on a half line and Catalan’s factorization

We shall now consider walks that stay on the upper half axis (x = 0, y ≥ 0).
More precisely let the depth of w be the absolute value of the minimal ordinate
δ(v) for all prefixes v of w. Walks that stay on the upper half axis are exactly
the walks with depth zero, and this condition is called the nonnegative prefix
condition. Loops satisfying the nonnegative prefix condition are often called
Dyck words on the alphabet {u, d}. In turn, walks satisfying the nonnegative
prefix condition are sometimes referred to as Dyck prefixes, since any of them
can be completed into a Dyck word. See Figure 9.2 for examples. Let D denote
the language of Dyck words and Dn the set of Dyck words of length 2n. The
following lemma gives a central role to Dyck words.

Lemma 9.1.1 (Catalan’s factorization). The language {u, d}∗ of one-dimen-
sional walks admits the following non ambiguous decomposition:

{u, d}∗ = (Dd)∗D(uD)∗.

More precisely, the language of walks with depth � and ending at ordinate j is

(Dd)	D(uD)j+	

Proof. For any word w on the alphabet {u, d} with depth � and final ordinate
j, such a factorization is obtained at first passages from ordinate i + 1 to i for

Version June 23, 2004

448 Counting, Coding and Sampling with Words

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

w1 w2 w4 w5 w7 w8 w9

Figure 9.3. Catalan’s factorization of a walk in (Dd)3D(uD)5.

i = −1, . . . ,−� and last passages from ordinate i to i + 1 for i = −�, . . . , j − 1.
The uniqueness of the decomposition follows from the fact that any strict prefix
v of a word in Dd satisfies δ(v) ≥ 0 by definition of D, and hence does not
belong to Dd.

Catalan’s factorization immediately allows us to derive the total number of
walks on the half line.

Proposition 9.1.2. The number of Dyck prefixes of length m is(
m⌊
m
2

⌋).

Proof. A Dyck prefix of even length is a walk with depth zero and even final
ordinate 2j for some integer j ≥ 0. According to Lemma 9.1.1, the language of
these words is D(uD)2j . Upon changing the j first factors u in factors d, words
of length 2n in this language are in bijection with words of length 2n in the
language (Dd)jD(uD)j , i.e. with words of the language of loops with depth j.
Hence Dyck prefixes of length 2n are in bijection with loops of the same length,
and their number is

(
2n
n

)
.

Similarly, a Dyck prefix of odd length ends at ordinate 2j+1, for some j ≥ 0.
But words of equal length in the languages D(uD)2j+1 and (Dd)jD(uD)j+1 are
in bijection. The union of the last languages for all j ≥ 0 is the set of words w
with δ(w) = 1,

(
2n+1

n

)
of which have length 2n + 1.

The previous proof can be summarized as follows: find a factorization into
Dyck factors separated by some specific steps (typically first or last passages),
and then reorganize the factorization without modifying the Dyck factors. We
shall apply this principle again to give a bijective enumeration of Dyck words.

Proposition 9.1.3. The number of loops of length 2n that stay on the half
axis (x = 0, y ≥ 0) is the n-th Catalan number:

Cn =
1

n + 1

(
2n

n

)
.

Version June 23, 2004

9.1. Counting: walks in sectors of the plane 449

Proof (as a corollary of Proposition 9.1.2). Removing the last step of a Dyck
prefix of length 2n + 1 yields a prefix of length 2n. In this way every Dyck
prefix of length 2n is obtained twice, except for Dyck paths that are obtained
only once. Hence

(
2n+1

n

)
= 2
(
2n
n

)
− CardDn, and the formula follows.

Proof (direct bijection). We prove the relation (n+1)CardDn =
(
2n
n

)
by giving

a bijection between the set of pairs (v, v′) with vv′ ∈ Dn and v empty or ending
with a letter u, and the set of loops of length 2n. To do that we first state two
factorizations that follow from Lemma 9.1.1:

– the set of pairs (v, v′) as above with δ(v) = � is (Du)	 ×D(dD)	;
– the set of loops with depth � is (Dd)	D(uD)	.

Exchanging u and d factors in these decompositions leads to the announced
bijection.

The same idea allows to refine the enumeration of Dyck prefixes.

Proposition 9.1.4. The number of Dyck prefixes of length 2n + j and final
ordinate j ≥ 0 is

j + 1
n + j + 1

(
2n + j

n

)
.

Proof. We prove the formula by giving a bijection between pairs (w, i) where w
is a walk with δ(w) = j and i ∈ {0, . . . , j}, and pairs (w′, k) where w′ is a Dyck
prefix with δ(w′) = j and k ∈ {0, . . . , n + j}:

– to any pair (w, i) as above, associate (wi, . . . , wj , w0, . . . , wi−1) where w0 is
the loop and the other w	 are the Dyck paths such that w = w0uw1 · · ·uwj

(this is the decomposition at the last passages at level 0, . . . , j).
– to any pair (w′, k) as above, associate (w′

0, . . . , ŵ
′
i, . . . , w

′
j), where the w′

	

are the Dyck words such that w′ = w′
0uw′

1 · · ·uw′
j , i is the index of the w′

i

containing or following the kth letter u in the word uw′, and ŵ′
i = (v, v′)

is the factorization of w′
i after this letter.

The bijection in the second proof of Proposition 9.1.3 allows to transform the
pair ŵ′

i = (v, v′) in a loop, so that both sets are associated to the same set of
sequences of j + 1 walks.

9.1.3. Walks on a half plane and algebraic series

Walks in the half plane (y ≥ 0) are hardly more complicated to enumerate than
walks on the half line. Indeed, as words on the alphabet S, these walks are
completely characterized by the fact that all their prefixes v contain at least as
many letters u as letters d. Hence the associated language is the set of shuffles
of vertical Dyck prefixes with sequences of horizontal steps. Various formulas
can be derived from this characterization: for instance, the number of loops of
length 2n that stay in the half plane (y ≥ 0) is

n∑
k=0

(
2n

2k

)(
2k

k

)
Cn−k.

Version June 23, 2004

450 Counting, Coding and Sampling with Words

��

�

� �

�����

�

� � � � � �

��

�

� �

� � � �

��

�

�� �

Figure 9.4. An excursion in the half plane.

Rather than going further in this direction, we shall observe that the set of
these walks is an algebraic language and return to generating functions. Con-
sider the alphabet Ak = {u, d, x1, . . . , xk}, and the monöıd morphism δ defined
as previously by δ(w) = |w|u − |w|d. The language M(k) of k-colored Motzkin
words is the set of words w on the alphabet Ak satisfying δ(w) = 0 and the
nonnegative prefix property. For k = 0 this is the Dyck language. For k = 2,
upon setting x1 = l, x2 = r, bicolored Motzkin words are excursions in the half
plane, i.e. walks in the half plane (y ≥ 0) that finish on the axis (y = 0).

The language of k-colored Motzkin words admits an algebraic description:

M(k) = ε + (x1 + . . . + xk)M(k) + uM(k)dM(k), (9.1.2)

which derives immediately from the non ambiguous decomposition of any non
empty Motzkin word at its smallest non empty prefix v such that δ(v) = 0.
Taking the commutative image, the generating function M (k)(t) =

∑
w∈M(k) t|w|

of the Motzkin language with respect to the length satisfies the equation:

M (k)(t) = 1 + ktM (k)(t) + t2M (k)(t)2. (9.1.3)

Observe that this equation completely determines M (k)(t), since it has a unique
solution in the space of formal power series in the variable t (as can be checked
by induction, extracting the coefficient of tn on both sides).

Any additive parameter can be taken into consideration in the commutative
image. For instance the previous algebraic decomposition yields the following
proposition in the case of bicolored Motzkin words.

Proposition 9.1.5. The generating function for walks in the half plane re-
turning to the axis (y = 0), with respect to their length, abscissa of the endpoint
and number of vertical steps, is:

M (2)(t; x, z) =
1− t(x + 1

x)−
√

[1− t(x + 1
x + 2z)][1− t(x + 1

x − 2z)]

2t2z2
.

Proof. Taking the commutative image with the map w → t|w|x|w|r−|w|lz|w|u+|w|d

yields the equation

M (2)(t; x, z) = 1 + t(x +
1
x

)M (2)(t; x, z) + t2z2M (2)(t; x, z)2.

Version June 23, 2004

9.1. Counting: walks in sectors of the plane 451

The discriminant of this equation is

∆(t; x, z) = [t(x +
1
x

)− 1]2 − 4t2z2,

and among the two roots of the quadratic equation, only the one of the propo-
sition is a formal power series in t.

Equation (9.1.3) shows that the series M (k)(t) satisfies a relation of the form
P (M (k)(t), t) = 0 with P a polynomial, which means that it is an algebraic
formal power series. This illustrates the fact that algebraic languages that
admit a non ambiguous algebraic description naturally have algebraic generating
functions with respect to additive parameters. Conversely, when the generating
function of a set of objects is algebraic, one would like to obtain it from an
algebraic description of the objects (or more formally from an encoding of the
objects by the words of an algebraic language with a non ambiguous description).
In this sense, Equation (9.1.2) is more satisfying than Catalan’s factorization,
even though the commutative image of the latter also induces an algebraic
equation.

Expanding the generating function M (2)(t, 1, 1) = (1− 2t−
√

1− 4t)/2t2 in
powers of t, one observe the following amusing result (cf. Problem 9.1.5).

Corollary 9.1.6. The number of bicolored Motzkin words of length n is
given by the Catalan number Cn+1.

Loops in the up diagonal quadrant (x+y ≥ 0, y ≥ x) are simple to describe:
let w be such a loop of length 2n, and consider the projections of the walk on
the two diagonals (x = y) and (x = −y). Let {a, b} be the elementary steps on
these two axes, with a corresponding to up steps and b to down steps. Steps in
Z2 have the following projections:

u −→ (a, a) d −→ (b, b) l −→ (b, a) r −→ (a, b)

and the projections of w on the diagonals are Dyck words of length 2n on
{a, b}; reciprocally any pair of Dyck words of same length over this alphabet
corresponds to a loop in the up diagonal quadrant. Hence:

Proposition 9.1.7. The number of loops of length 2n that stay in the diag-
onal quadrant (x + y ≥ 0, y ≥ x) is given by:

C2
n.

More generally, any walk of length 2n + |i|+ j and endpoint (i, j) in the up
diagonal quadrant is described by its projections on the two diagonal axes; these
projections are decoupled Dyck prefixes of length 2n + |i| + j with respective
ordinate of the endpoint i + j and j − i. Hence:

Version June 23, 2004

452 Counting, Coding and Sampling with Words

�

��

�

� �

� �

� � �

�

��

����

��

�

��

��

�

�

(a) A walk in the diagonal up quadrant.

�

� � �

��

�

� �

� � �

� �

� � �

�

���

��

��

��

�

�

��

����

(b) A loop in the first quadrant.

Figure 9.5. Walks in quadrants.

Proposition 9.1.8. The number of walks of length 2n + |i|+ j and endpoint
(i, j) that stay in the diagonal quadrant (x + y ≥ 0, y ≥ x) is given by:

(j + i + 1)(j − i + 1)
(n + j + |i|+ 1)(n + j + 1)

(
2n + |i|+ j

n + |i|

)(
2n + |i|+ j

n

)
,

and the total number of walks of length n that stay in the diagonal quadrant
(x + y ≥ 0, y ≥ x) is given by (

n⌊
n
2

⌋)2

.

The case of loops in the first quadrant (x ≥ 0, y ≥ 0) is quite similar. These
loops are words w on S such that both restrictions of w to {u, d} and to {l, r}
are Dyck words; hence the language of loops in the first quadrant is the shuffle
of the Dyck languages on {u, d} and {l, r}.

Proposition 9.1.9. The number of loops of length 2n that stay in the quad-
rant (x ≥ 0, y ≥ 0) is given by:

n∑
k=0

(
2n

2k

)
CkCn−k =

1
(2n + 1)(2n + 2)

(
2n + 2
n + 1

)2

.

The general case of walks with given length and endpoint or with given
length is similar to the case of the diagonal quadrant and left to the reader.

A remarkable consequence of these formulas is that the languages of walks
in the diagonal (or in the standard quadrant) cannot be an algebraic language:
on the one hand the asymptotic number of walks of length n in the diagonal
quadrant,

(
n

�n/2�
)2, grows like 4n/n when n goes to infinity; on the other hand,

the possible asymptotic behaviors of the Taylor coefficients of an algebraic series
are classified, and do not include the form ρnn−i for i a positive integer; therefore
the generating function of walks in the diagonal quadrant is not algebraic, and
the associated language cannot be algebraic either.

Version June 23, 2004

9.1. Counting: walks in sectors of the plane 453

��

�

�

�

��

�

� �

����

�

�

�

��

���

���

�

���

��

�

� �� �

�

��

� �

� �

� �

� � � �

� � �

�

�

�

(a) A walk on the slitplane.

��

�

�

�

��

�

� �

����

�

�

�

��

��

��

�

�

� �

���

�

���

��

�

� �� �

�

��

� �

� �

� �

� � � �

� � �

�

�

�

�

�

�

(b) The factorization of a walk.

Figure 9.6. On the slitplane.

9.1.4. Walks on the slitplane and the cycle lemma

We call slitplane the complement of the half axis (x = 0, y ≤ 0) in the square
lattice Z2. Walks on the slitplane are defined as walks that do not touch this half
axis except maybe at their startpoint or endpoint, as shown in Figure 9.6(a).

The tool we shall use to enumerate walks on the slitplane is the so-called
cycle lemma. For any alphabet A endowed with a morphism δ : (A, ·) → (Z, +),
a word w in A∗ is said to have the �Lukasiewicz property if every strict prefix v
of w satisfies δ(v) > δ(w).

Lemma 9.1.10 (Cycle lemma). Let A be an alphabet endowed with a mor-
phism δ : (A, ·) → (Z, +). Then a word w in A∗ such that δ(w) = −1 ad-
mits a unique factorization w1w2 with w1 non empty such that w2w1 has the
�Lukasiewicz property.

Proof. Let w1 be the shortest prefix of w with δ(w1) equal to the depth of w.
Then w2w1 has the Lukasiewicz property. Moreover, let us verify that there is
no other such factorization. First assume that w′

1 is a prefix of w shorter than
w1. Then the prefix w′′ of w′

2 of length |w1| − |w′
1| satisfies δ(w′′) < 0 and is

also a strict prefix of w′
2w

′
1. Hence w′

2w
′
1 has not the Lukasiewicz property. It

remains to consider the case of a prefix w′
1 of w longer than w1. The suffix w′′

of w′
1 of length |w′

1| − |w1| satisfies δ(w) ≥ 0 and is also a suffix of w′
2w

′
1. Since

moreover δ(w′
2w

′
1) = −1, w′

2w
′
1 has not the Lukasiewicz property.

Corollary 9.1.11. Consider the alphabet A = {a1, a2, . . . , ak}, endowed
with a morphism δ, and let n1, n2, . . . , nk be nonnegative integers such that,

k∑
i=1

niδ(ai) = −1.

Then the number of words with ni letters ai for any 1 ≤ i ≤ k that have the

Version June 23, 2004

454 Counting, Coding and Sampling with Words

�Lukasiewicz property is equal to:

1
n1 + . . . + nk

(
n1 + . . . + nk

n1, . . . , nk

)
.

Proof. For any word w as above, δ(w) = −1, so that the conjugacy class of w
contains |w| different words. According to the cycle lemma exactly one of thesecrossref to chapter 1 ?
n1 + · · ·+ nk words has the Lukasiewicz property. The formula follows.

For A = {u, d} with δ(u) = 1, δ(d) = −1, the set of words enumerated
by the previous corollary is the Dyck-Lukasiewicz language Dd, and we recover
Proposition 9.1.3.

Corollary 9.1.12. Let C be a code for a set of words on the alphabet A.def of code needed?
Then the generating function (with respect to the length) for �Lukasiewicz words
w in C∗ such that δ(w) = −1 is equal to

[y−1] log
1

1− C(t; y)
,

where C(t; y) is the generating function of the code C with respect to the length
(variable t) and to δ (variable y).

Proof. The generating function of words on the alphabet A with k factors in C is
C(t; y)k. Restricting the generating function to words w with δ(w) = −1 is done
by taking the coefficients of y−1 in the series. The fraction of these words that
have the Lukasiewicz property is then 1/k, so that their generating function is∑

k≥1

1
k

[y−1]C(t; y)k = [y−1] log
1

1− C(t; y)
.

To study walks on the slitplane, it is natural to decompose them at points
where they touch the vertical axis (x = 0), as shown in Figure 9.6: any walk
w on the plane that finishes on the vertical axis can be uniquely factored into
vertical steps on this axis and primitive excursions in the left or right half plane;
in other terms, the language of these walks is

(u + d + lM(l)r + rM(r)l)∗

where M(l) and M(r) respectively denote the set of excursions in the left half
plane (x < 0) and in the right one (x > 0). Hence the set {u, d}∪lM(l)r∪rM(r)l
forms a code C for walks on the plane ending on the vertical axis: these walks
can thus be viewed as walks on the axis (x = 0) with the infinite set of steps C.

To apply the cycle lemma to walks on the slitplane, we consider again the
morphism δ(w) = |w|u−|w|d. Let us single out the class of walks on the slitplane
that start at position (0, 1) and end on the half axis at position (0, 0): these
walks are exactly the Lukasiewicz words w in C∗ such that δ(w) = −1.

Version June 23, 2004

9.1. Counting: walks in sectors of the plane 455

���

�

�

�

��

�

��

�

�

�

��

�

� �

���

�

���

��

�

� �� �

�

��

� �

� �

� �

� � � �

� � �

�

�

�

�

�

(a) A walk w on the slitplane.

� �

�

�

�

� �

�

��

� � �

�

� � �

� �

�

����

�

� �

��

��

��

����

���

�

��

�

�

�

��

��

� �

(b) The half plane excursion ϕ(w).

Figure 9.7. On the slitplane.

Proposition 9.1.13. The number of walks on the slitplane with startpoint
(0, 0), endpoint (0, 1) and length 2n + 1 is:

C2n+1 =
1

2n + 2

(
4n + 2
2n + 1

)
.

Proof. Let C(t; y) be the commutative image of C, so that 1/(1− C(t; y)) is
the generating function of words on the code C. Observe that a π/2- (respec-
tively −π/2-) rotation maps bijectively words of length n in M(l) (resp. M(r))
on words of length n in the bicolored Motzkin language M(2), hence Proposi-
tion 9.1.5 yields:

log
1

1− C(t; y)
=

1
2

(
log

1
1− t(y + 1

y + 2)
+ log

1
1− t(y + 1

y − 2)

)

=
1
2

∑
n≥1

tn

n

(
(y + 1

y + 2)n + (y + 1
y − 2)n

)
.

The formula follows by extracting the coefficient of y−1 and resumming.

The above proof does not yield an interpretation of the occurrence of Catalan
numbers in Proposition 9.1.13. We conclude this section with a more direct
derivation.

Proof of Proposition 9.1.13 (bis). We are interested in walks w such that
– |w|l = |w|r , and |w|d = |w|u + 1,
– and for any strict prefix v of w, either |v|l �= |v|r, or |v|u ≥ |v|d.

The first condition accounts for the displacement between the startpoint and
endpoint, while the second one ensures that the walks stay in the slitplane. Let
us describe a one-to-one correspondence ϕ between these walks and excursions
of even length in the half plane (bicolored Motzkin words). The result then
follows from Corollary 9.1.6.

Let w be a walk as in the proposition. Since |w|d = |w|u + 1, Lemma 9.1.10
yields a unique factorization of w in w1dw2 such that each proper prefix v of

Version June 23, 2004

456 Counting, Coding and Sampling with Words

�

� �

� �

� �

� � �

� �

��

� �� � �

���

��

����

�

��

��

�

(a) A polygon,

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(b) an animal,

�
�

�
��

�
�
�
�
�

�
�

�

�
�
�
�

�

�
��

(c) and a polyomino.

Figure 9.8. Three related classes of objects.

w2w1d satisfies |v|u ≥ |v|d: this is the factorization at the first arrival to the
lowest level. Let w̄2 be the walk that is symmetric to w2 with respect to the
vertical axis (x = 0), and ϕ(w) be equal to w̄2w1. Then ϕ(w) is a bicolored
Motzkin word, corresponding to an excursion in the half plane (y ≥ 0) of length
2n. Moreover the factorization w̄2w1 of ϕ(w) is the factorization at the first
passage on the lowest point on the vertical line of equidistance between the
startpoint and endpoint of ϕ(w).

Conversely, given a bicolored Motzkin word w′, let w′
1w

′
2 be its factorization

at the first passage on the lowest point on the vertical line of equidistance
between its startpoint and endpoint. Let ψ(w′) = w′

2dw̄′
1. The walk ψ(w′) is

clearly a walk in the slitplane from (0, 1) to (0, 0), and ϕ(ψ(w′)) = w′. Moreover,
ψ(ϕ(w)) = w for any walk w as in the proposition, and this concludes the proof.

As discussed in Section 9.1.3, the language of bicolored Motzkin words has
a very natural algebraic decomposition. However this decomposition does not
carry very well through the bijection.

9.2. Sampling: polygons, animals and polyominoes

A walk on the square lattice Z2 is called a self-avoiding walk, or a path, if it
visits at most once each vertex of the lattice. A self-avoiding polygon, or simply
in this text, a polygon, is a self-avoiding loop.

An animal is a set A of vertices of the lattice such that any two vertices of
A are connected by a path visiting only vertices of A. Animals are considered
up to translations of the lattice. Placing a unit square centered on each vertex
of A, we obtain a polyomino. The latter are however more naturally defined as
edge-connected sets of squares of the lattice. These definitions are illustrated
by Figure 9.8. Each polygon is the contour (or the boundary) of a simply-
connected polyomino, and in the plane this is a one-to-one correspondence (see
Figures 9.10, 9.11 and 9.12). In particular the length of a polygon corresponds
to the perimeter of the polyomino. A polygon has moreover dimension (p, q)
if the smallest rectangle in which it can be inscribed has horizontal width p

Version June 23, 2004

9.2. Sampling: polygons, animals and polyominoes 457

��
�
�
�

�
�
�
�
�
�
�
�
�
�
��

(a) A convex polyomino.

���
�
�
�
�

�

�
�

�
�
���

�
�
�
��

(b) A directed polyomino.

Figure 9.9. Subclasses of polyominoes.

and vertical width q. Finally the area of a polyomino is its number of cells,
corresponding for animals to the number of vertices.

Little can be said from the enumerative point of view on animals, polygons
or polyominoes in general. Two ideas have however been particularly successful
for defining subclasses amenable to mathematical study and still of interest:
restriction to convex or to directed objects. A polygon of dimension (p, q) is
convex if its length is 2p+2q. This definition stresses the fact that convex poly-
gons are in some sense the most extended polygons, and do not make meanders.
An equivalent, but maybe more appealing interpretation is in terms of polyomi-
noes: a polyomino is convex if its intersection with any horizontal or vertical
line is connected. A polyomino (respectively an animal) is directed if there is
a cell (resp. a vertex) from which every cell (resp. vertex) can be reached by
a path going up or right inside the object. These definitions are illustrated by
Figure 9.9.

9.2.1. Generalities on sampling

Together with the enumerative questions, much interest has been given to the
properties of random animals, polyominoes and polygons. By random is meant
here the uniform distribution: objects of equal size are given equal probability
to appear. We illustrate this trend by concentrating on the derivation of random
generators. In order to describe these algorithms, we assume that we have at
our disposal a perfect random number generator Rand(m, n) that outputs an
integer of the interval [m, n] chosen with uniform probability: for all m ≤ i ≤ n,

P(Rand(m, n) = i) = 1/(n−m + 1).

We assume unit cost for arithmetic operations and for calls to the generator
Rand(). These randomness and complexity models are justified by the fact
that our algorithms only sample and compute on integers that are polynomially
bounded in the size of the objects generated.

We shall need a random sampler for elements of S(w), the set of permu-
tations of the letters of a fixed word w. The following algorithm does this by
applying a random permutation to the letters of w.

Version June 23, 2004

458 Counting, Coding and Sampling with Words

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
��
�
�
��

�

� �

� �

�

� � � �

� � �

� � �

� �

� �

�

� � �

� �

3

�

�

�

�

�

�

Figure 9.10. A parallelogram polyomino and its contour.

RandPerm(w)
1 for i ← 2 to |w| do
2 Swap(w[i], w[Rand(1, i)])
3 return w

Lemma 9.2.1. RandPerm(w) returns in linear time a random element of
S(w) under the uniform distribution: for all w′ ∈ S(w),

P(RandPerm(w) = w′) =
1

Card(S(w))
.

Proof. A permutation σ on the set {1, . . . , n} has a unique decomposition as a
product σ = τn . . . τ2 of transpositions of the form τi = (ji, i) with 1 ≤ ji ≤ i,
and conversely any such decomposition provides a permutation. Therefore,
the call RandPerm(w) on a word w with distinct letters generates a uniform
random permutation of the letters. Upon labelling identical letters by their
initial place, we conclude that uniformity is also preserved in the general case.

In the rest of this part, we describe random sampling algorithms for convex
polygons and directed animals.

9.2.2. Parallelogram polyominoes and the cycle lemma

A convex polyomino P is a parallelogram polyomino if its contour contains the
bottom left and top right corners of its bounding box. Equivalently, its contour
must be a staircase polygon, i.e. a polygon made of two up-right directed paths,
meeting only at their extremities. These upper and lower paths, being directed,
can be coded with two letters. For later purpose, it will be convenient to code
them on the alphabet {h, v}, with h standing for a horizontal step and v standing
for a vertical step. Starting from the bottom left corner, let vw1h be the word
coding the upper path, and hw2v be the word coding the lower path (there
is no choice for first and last letters). If P has dimension (p + 1, q + 1) then
|w1|h = |w2|h = p and |w1|v = |w2|v = q. The reduced code of a staircase
polygon w is the word on the alphabet A =

{(
v
h

)
,
(
v
v

)
,
(
h
h

)
,
(
h
v

)}
obtained by

stacking the two words w1 and w2. In the example of Figure 9.10, the two paths
are respectively vw1h = v ·vhvhvvhhhvhh ·h and hw2v = h ·hhvhvhvvhhvh ·v.

Version June 23, 2004

9.2. Sampling: polygons, animals and polyominoes 459

Words on A that code for staircase polygons are characterized by the facts
that they have an equal number of letters h in both rows, and that their prefixes
contain at least as many letters

(
v
h

)
as letters

(
h
v

)
: indeed, the morphism δ

induced by {δ
(

v
h

)
= 1, δ

(
h
v

)
= −1, δ

(
h
h

)
= δ
(
v
v

)
= 0} measures the distance

between the upper and lower paths along diagonals, and the positive prefix
property expresses the condition that the upper and lower paths do not meet
before their endpoint. Codes of staircase polygons are thus essentially bicolored
Motzkin words.

This characterization suggests to construct staircase polygons by applying
the cycle lemma to words of the set S(p, q) of words of length p + q + 1 on A
with p + 1 letters h and q letters v in the first row, and p letters h and q + 1
letters v in the second row:

Staircase(p, q)

1 w′
1 ← RandPerm(hp+1vq) � generate w′ =

(w′
1

w′
2

)
∈ S(p, q)

2 w′
2 ← RandPerm(hpvq+1)

3 (m, δm)← (0, 0) � seek the position m of the
4 δ ← 0 � leftmost minimum w.r.t δ
5 for i← 1 to p + q + 1 do
6 if (w′

1[i], w
′
2[i]) = (v, h) then

7 δ ← δ + 1
8 elseif (w′

1[i], w
′
2[i]) = (h, v) then

9 δ ← δ − 1
10 if δ < δm then
11 (m, δm)← (i, δ)
12 (w1h, w2v) ← Shift((w′

1, w
′
2), m) � get the conjugate at position m

13 return (vw1h, hw2v)

Proposition 9.2.2. Staircase(p, q) produces the code of a random uniform
staircase polygon with dimension (p + 1, q + 1) in linear time.

Proof. Let us first use the cycle lemma to derive the number of staircase poly-
gons. The number of words in S(p, q) is Card(S(p, q)) =

(
p+q+1

q

)(
p+q+1

p

)
. Then

among the p + q + 1 cyclic shifts of any word w′ ∈ S(p, q), exactly one is of
the form w

(
h
v

)
with w having the positive prefix property. Hence the number of

staircase polygons with dimension (p + 1, q + 1) is 1
p+q+1

(
p+q+1

q

)(
p+q+1

p

)
.

The algorithm Staircase() generates a word uniformly at random in the
set S(p, q), and computes its unique cyclic shift coding for a staircase polygon.
The probability to get the code of a given polygon P is thus the sum of the
probability to get each of its cyclic shifts. But the code of P admits p + q + 1
distinct cyclic shifts, and each of these word has probability 1/ Card(S(p, q)) to
be obtained. Thus the probability to get P is (p + q + 1)/ Card(S(p, q)), i.e.
depends only on the dimension of P : uniformity is preserved through the cycle
lemma.

Version June 23, 2004

460 Counting, Coding and Sampling with Words

��
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

� �

� �

�

� �

� �

� � �

�

�

� � � �

� �

� � � �

��

��

�

�

�

�

�

�

�

�

Figure 9.11. A directed convex polyomino and its contour.

9.2.3. Directed convex polyominoes and Catalan’s factorization

Directed convex polyominoes are characterized among convex polyominoes by
the property that their contour contains the bottom left corner of their bounding
box. In other terms contours of directed convex polyominoes are unimodal
polygons, i.e. shuffles of a word of the language u∗d∗ and a word of the language
r∗l∗. Let us consider an unimodal polygon with dimension (p + 1, q + 1), and
decompose it into an upper path and a lower path both starting from the bottom
left corner and of length p + q + 2, and respectively obtained in clockwise and
counterclockwise direction. Let w′

1 and w′
2 be the codes of these two paths on the

alphabet {h, v}. In the example of Figure 9.11, the two paths are respectively
w′

1 = vhvhvvhvhvhhvv and w′
2 = hhhhvhvhhhvhvh. The following properties

of w′
1 are immediate consequences of the definition of unimodal polygons:

1. the word w′
1 starts with a letter v;

2. it contains at least q + 1 letters v;
3. the first q + 1 letters v code up steps, the other ones down steps;
4. the (q + 1)th letter v is followed by a letter h.

The last property accounts for the right turn that the path has to make when
reaching the upper boundary. Define the reduced code w1 as obtained from
w′

1 by deleting the two redundant letters given by Properties 1 and 4 above.
Similarly the reduced code w2 is obtained by deleting from w′

2 the first letter
(that is a letter h) and the letter following the (p+1)th letter h (that is a letter
v). Let w be the word on A obtained by stacking w1 and w2. Then again all
prefixes of w contain at least as many letters

(
v
h

)
as letters

(
h
v

)
. It turns out that

this condition is sufficient for w to code an unimodal polygon: this is expressed
by the following lemma, the proof of which is left to the reader.

Lemma 9.2.3. A word w on A is the stacked reduced code of an unimodal
polygon with dimension (p + 1, q + 1) if and only if all its prefixes contain at
least as many letters

(
v
h

)
as letters

(
h
v

)
, and, viewed as a pair of words on {h, v},

it contains 2p letters h and 2q letters v.

In terms of the morphism δ of the previous section, Lemma 9.2.3 implies
that a word of A∗ is the code of an unimodal polygon if and only if it is a prefix
of Motzkin word on (A, δ). These prefixes are similar to prefixes of Dyck words
with δ even, and the proof of Proposition 9.1.2 suggests the following algorithm.

Version June 23, 2004

9.2. Sampling: polygons, animals and polyominoes 461

�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
� k

� �

� �

� � � �

� � �

�

��

���

��

���

��

��

�

�� �

� �

�

�

��

�

�

Figure 9.12. A convex polyomino and its contour.

Unimodal(p, q)
1 w1 ← RandPerm(hpvq) � generate w =

(
w1
w2

)
with δ(w) = 0

2 w2 ← RandPerm(hpvq)
3 δ ← 0
4 δm ← 0
5 for i ← 1 to p + q do
6 if (w1[i], w2[i]) = (v, h) then
7 δ ← δ + 1
8 elseif (w1[i], w2[i]) = (h, v) then
9 δ ← δ − 1

10 if δ < δm then � leftmost minimum found
11 (δm, w1[i], w2[i])← (δ, v, h) � down step to up step
12 return (w1, w2)

Proposition 9.2.4. Unimodal(p, q) produces the reduced code of a random
uniform unimodal polygon with dimension (p + 1, q + 1) in linear time.

Proof. Lines 1, 2 of the algorithm construct a word
(
w1
w2

)
satisfying δ

(
w1
w2

)
= 0.

A straightforward adaptation of the bijection used for Proposition 9.1.2 shows
that these words are in one-to-one correspondence with prefixes of Motzkin
words: for the current δ, steps

(
v
h

)
play the role of up steps, steps

(
h
v

)
that down

steps, and Motzkin factors replace Dyck factors. The algorithm implements the
inverse bijection, replacing leftmost down steps at negative levels by up steps.

Since the word
(
w1
w2

)
is taken uniformly in the set of words with p letters h

and q letters v in both lines, its image is uniform in the set of bicolored Motzkin
prefixes with 2p letters h and 2q letters v.

As a corollary of the previous proof, we also see that the number of unimodal
polygons of dimension (p + 1, q + 1) is

(
p+q

p

)2
.

9.2.4. Convex polyominoes and rejection sampling

The contour of a convex polyomino with dimension (p + 1, q + 1) can be coded
as follows by a pair (w′, k): start from the upper point of the contour on the left
boundary, and code the path in clockwise direction by a word w′ with letters h
and v as previously; let moreover k be the distance of the startpoint to the top

Version June 23, 2004

462 Counting, Coding and Sampling with Words

border of the bounding box (see Figure 9.12). From the geometry, the following
properties of the word w′ are immediate:

1. there are 2p + 2 letters h and 2q + 2 letters v; moreover 0 ≤ k ≤ q;
2. the first p + 1 letters h code right steps, the other p + 1 left steps;
3. the first k letters v code up steps, the next q +1 down steps, and the final

q + 1− k up steps again;
4. the first letter is a letter h;
5. if k > 0 then the kth letter v is followed by a letter h;
6. the (p + 1)th letter h is followed by a letter v;
7. the (k + q + 1)th letter v is followed by a letter h;
8. the (2p + 2)th letter h is followed by a letter v;
9. the letters singled out in 4, 5, 6, 7, and 8 above appear in this order.

These properties do not completely characterize the codes of convex polygons,
but this is almost the case, as the reader will verify:

Lemma 9.2.5. A pair (w′, k) satisfying the nine properties above is the code
of a convex polygon if and only if the corresponding walk is a polygon, that is,
if it does not visit twice the same point. This property can be checked in linear
time by the following algorithm.

CheckSimple(w′, k)
1 (i1, δ1, ε1) ← (1, q + 1− k, +1) � traversal of w′ from the left
2 (i2, δ2, ε2) ← (2p + 2q + 3, q − k,−1) � traversal of w′ from the right
3 for � ← 1 to p + 1 do � � counts horizontal steps
4 while w′[i1] = v do � vertical move on top
5 (i1, δ1) ← (i1 + 1, δ1 + ε1)
6 while w′[i2] = v do � vertical move on bottom
7 (i2, δ2) ← (i2 − 1, δ2 + ε2)
8 if δ1 ≤ δ2 then � self-intersection detected
9 return false

10 if δ1 = q + 1 then � top reached
11 ε1 ← −1
12 if δ2 = 0 then � bottom reached
13 ε2 ← +1
14 (i1, i2)← (i1 + 1, i2 − 1) � next column
15 return true

The reduced code (w, k) of a convex polygon is obtained by deleting the
redundant letters given by Properties 4, 6, 7, 8, and if k > 0 by Property 5.
The reduced word w has thus, if k = 0, 2p letters h and 2q letters v, or, if k > 0,
2p−1 letter h and 2q letters v. Given the reduced word w and the index k there
is an immediate algorithm InsertRedundantLetters(w, k) that reconstructs
w′ by inserting the missing letters from left to right.

The following generator is based on the rejection principle: words of a su-
perset of the set of codes are generated uniformly at random until a proper code
is obtained.

Version June 23, 2004

9.2. Sampling: polygons, animals and polyominoes 463

�

�

�

�

�

�

�

� �

�

�

�

�

�

� �

�

�

Figure 9.13. A directed animal and the equivalent strict pyramid.

Convex(p, q)
1 do k ← Rand(0, q)
2 w ← RandPerm(h2pv2q)
3 if k = 0 or w[2p + 2q] = h then
4 w′ ← InsertRedundantLetters(w, k)
5 if CheckSimple(w′, k) = true then
6 return (w′, k)
7 while true

Proposition 9.2.6. Convex(p, q) produces the code of a random uniform
convex polygon with dimension (p + 1, q + 1).

Proof. The fact that the output is uniform follows from the following standard
rejection argument: when the algorithm stops, the probability to output a given
code is proportional to the probability to get this code as an element of the
superset; but elements of the superset are sampled uniformly, i.e. have the
same probability to be generated.

The expected complexity of the algorithm Convex() depends on the com-
parison between the size (q + 1)

(
2p+2q

2p

)
of the superset Sp,q in which k and w

are sampled, and the size of the set Pp,q of convex polygons with dimension
(p + 1, q + 1). More precisely, each loop takes linear time, the probability of
success of a loop is sp,q = Card(Pp,q)/ Card(Sp,q), and the number of loops is a
geometric random variable with expectation 1/sp,q. The explicit computation
of Card(Pp,q) shows that this last value is bounded by a constant, but we do
not include the details here (see Problem 9.2.2).

Proposition 9.2.7. The call Convex(p, q) has expected linear complexity.

9.2.5. Directed animals

Upon rotating the lattice counterclockwise by π/4, directed animals can be
given an elegant interpretation in terms of heaps of bricks : cells are viewed
as bricks exposed to the gravity law with the bottom brick lying on the floor;
the condition that animals are directed, i.e. that there always exists a path

Version June 23, 2004

464 Counting, Coding and Sampling with Words

downward to the bottom cell, is equivalent to the fact that every brick leans on
one brick below and cannot fall.

To be more precise, let us give a definition of heaps of bricks. The alphabet
of bricks is B = {(i, i + 1), i ∈ Z}. Two bricks b, b′ of B commute if and only
if, as subsets of Z, b ∩ b′ = ∅. Two words are equivalent, w ≡ w′, if one can be
obtained from the other by a sequence of commutations of adjacent commuting
bricks. A heap of bricks is an element of the associated partially commutative
monöıd, i.e. an equivalence class for the relation ≡. The set of minimal bricks
of a heap w is the set min(w) = {b | ∃w′, w ≡ bw′}. A pyramid at abscissa i is
a heap such that min(w) = {(i, i + 1)}.

The canonical geometric representation of a heap induced by the gravity law
corresponds to the standard Cartier-Foata normal form of the heap: reading
a heap from left to right in lines from bottom to top yields a word w of the
form w1 · · ·wk with each block wi made of commuting letters and such that for
each letter b of wi+1 there is a letter b′ of wi with b∩ b′ �= ∅. A heap is strict if
moreover no two consecutive blocks of the normal form have a brick in common:
in other terms in a strict heap a brick (i, i + 1) always lean on a brick (i− 1, i)
or (i + 1, i + 2), not on another brick (i, i + 1).

From the geometric interpretation of pyramids of bricks and the initial dis-
cussion of this paragraph, the following lemma is immediate.

Lemma 9.2.8. Directed animals “are” strict pyramids of bricks.

This interpretation of directed animals in terms of pyramids of bricks allows to
perform decompositions that would otherwise be very difficult to explain. First
define a semi-pyramid to be a pyramid without bricks on the left hand side
of the bottom brick. Then the following two decompositions are obtained by
pushing upward a brick and all the bricks that lay above it, or indirectly lean
on it:

– a strict pyramid of bricks is either a strict semi-pyramid, or can be fac-
tored, by pushing upward the lowest brick with abscissa −1, into a strict
pyramid at abscissa −1 stacked over a strict semi-pyramid;

– a strict semi-pyramid is reduced to a brick, or to a strict semi-pyramid
at abscissa 1 over a brick, or can be factored, by pushing upward the
second lowest brick with abscissa 0, into a strict semi-pyramid at abscissa
0 stacked over a strict semi-pyramid at abscissa 1 over a brick.

This joint decomposition is isomorphic to the joint decomposition of prefixes of
words and of words of the Motzkin language on the alphabet {a, b, x1}:

– a prefix of Motzkin word is either a Motzkin word or can be decomposed
as uav with u a Motzkin word and v a prefix of Motzkin word.

– a Motzkin word is reduced to the empty word ε, or is of the form x1u
with u a Motzkin word, or can be decomposed as aubv with u and v two
Motzkin words.

These isomorphic decompositions induce a bijection between strict pyramids of
n bricks and prefixes of Motzkin words of length n− 1.

Version June 23, 2004

9.2. Sampling: polygons, animals and polyominoes 465

(a) Factorization of a pyramid into a
pyramid and a semi-pyramid.

(b) Factorization of a semi-pyramid
into a brick and two semi-pyramids.

Figure 9.14. Decomposition of pyramids.

Corollary 9.2.9. Prefixes of Motzkin words can be bijectively transformed
into strict pyramids of bricks in linear time.

The Motzkin language being algebraic, uniform random generation could be
done using a recursive approach. We describe instead another application of
the rejection principle which is both more elegant and more efficient for this
specific problem. Let us consider again the alphabet Ak = {u, d, x1, . . . , xk}
and the associated k-colored Motzkin words of Section 9.1.3. A naive algorithm
to generate uniform random prefixes of k-colored Motzkin words of length n
consists in generating uniform random words of (Ak)n and rejecting. However
a simple calculation shows that the probability of success is of order O(n−1/2)
thus giving an algorithm with expected complexity O(n3/2). A slight refinement
on this idea is to observe that rejection can be decided on the fly. This turns
out to be surprisingly efficient.

FlorentineRejection(n, k)
1 do w ← ε
2 for i ← 1 to n do � generate from left to right
3 w[i]← Rand(1, k + 2)
4 if w[i] = k + 1 then
5 δ ← δ + 1
6 w[i] ← u
7 elseif w[i] = k + 2 then
8 δ ← δ − 1
9 w[i] ← d

10 if δ < 0 then � if a negative prefix is detected
11 break � restart from scratch
12 while i �= n + 1 � until w is a valid n letters word
13 return w

This algorithm obviously produces a prefix of k-colored Motzkin word.

Version June 23, 2004

466 Counting, Coding and Sampling with Words

Lemma 9.2.10. The function FlorentineRejection(n, k) generates a ran-
dom uniform prefix of k-Motzkin word of length n in expected linear time.

Proof. For simplicity the analysis is presented in the case k = 0 but the same
strategy of analysis applies to the general case (using generating functions in-
stead of elementary counting). It will be convenient to consider that when the
construction fails at the ith step of the inner loop, we finish the loop and gener-
ate n−i more letters at no cost. This modification of the algorithm do not affect
the final result or the cost, but allow us to think at each iteration as produc-
ing a uniform random word of (Ak)n. From this point of view, the Florentine
rejection behaves like standard rejection and therefore it is uniform on prefixes.

The probability of success of the inner loop is pn =
(
2n
n

)
2−2n = pn, and the

number of aborted loops is a geometric random variable with expected value
1/pn = O(n1/2). Let us now compute the expected cost of a failure: a failure
with cost 2i+1 is obtained for a word w of the form ubv with u a Dyck word of
length 2i and v in {a, b}2n−2i−1. Hence the cumulated cost for all these 22n−

(
2n
n

)
words is

∑n−1
i=0 (2i+1)Ci22n−2i−1 = 22n−1

∑n−1
i=0

(
2i+1

i

)
2−2i = O(22nn1/2). With

O(n1/2) aborted loops with cost O(n1/2) each, and one successful loop with cost
n, the total expected cost is linear as announced.

Florentine rejection thus uses on average a linear number of random bits.
As opposed to this a call to RandPerm(w) for a word w of length n uses about
n log n bits, and this is in general suboptimal from a theoretical point of view.
For instance for w = anbn, log

(
2n
n

)
∼ 2n bits should suffice. In this case an

optimal solution (on average) is obtained using FlorentineRejection(n, 0)
to get a prefix of Dyck words and Catalan’s factorization (Proposition 9.1.2) to
transform it into a word of S(anbn). As opposed to this, it is an open problem
in general to sample in linear time from S(w) using O(log Card(S(w))) random
bits.

9.3. Coding: trees and maps

A planar map1 is a proper embedding of a connected graph in the plane. Mul-
tiple edges and loops are allowed, and proper means that edges are smooth
simple arcs which meet only at their endpoints. The faces of a planar map are
the connected components of the complement of the graph in the plane: apart
from one infinite face, all faces are bounded and homeomorphic to disks. All
the planar maps we consider are rooted : they have an oriented edge, called the
root, which is incident to the infinite face on its right-hand side. Examples of
rooted maps are presented in Figure 9.15.

From now on we shall consider that two planar maps are the same if one
can be mapped onto the other (including roots) by an homeomorphism of the
plane. However there are still many more planar maps than planar graphs, as
illustrated by Figure 9.15. Indeed homeomorphisms of the plane respect the

1The word map is intended here in its geographic sense, like in road-map.

Version June 23, 2004

9.3. Coding: trees and maps 467

Figure 9.15. Two rooted planar maps with the same underlying graph.

neighborhood of each vertex, so that the circular order of edges around vertices
is fixed.

From a combinatorial point of view, a planar map can in fact entirely be
specified as follows: label half-edges (or darts) and for each half-edge give the
names of the opposite half-edge, and of the next half-edge around its origin in
counterclockwise direction. As a consequence the number of planar maps with
n edges is finite. Moreover these labeled maps capture exactly the level at which
algorithms on maps are implemented in computational geometry, using darts
as elementary data structures. Carrying on with labeled maps, one could also
reach a purely combinatorial setting and eliminate the geometry (at least at
the formal level of proofs). However for the sake of conciseness it appears more
efficient to keep higher level geometric arguments.

Examples of specific families of planar maps are numerous. A triangulation
of a k-gon is a planar map without multiple edges such that all bounded faces
have degree 3 and the infinite face has degree k (the degree of a face is the
number of sides of edges to which it is incident). A k-valent map is a planar
map such that all vertices have degree k (the degree of a vertex is the number
of half-edges to which it is incident).

9.3.1. Plane trees and generalities on coding

A rooted plane tree, or hereafter simply a plane tree is a planar map with one
face. A planted plane tree is a plane tree such that the root vertex has degree 1.
A binary tree is a planted plane tree with vertices of degree 3 and 1 only, respec-
tively called nodes and leaves. These definitions agree with classical recursive
definitions of plane trees: for instance a plane tree can be decomposed as an
ordered sequence of subtrees attached to the root.

The contour traversal of a planar map is the walk on the vertices and edges
of the map that starts from (the right-hand side of) the root edge, and turns
around the map in counterclockwise direction so as to visit the boundary of
the infinite face. (The reader is encouraged to imagine an ant walking around
the map.) The contour traversal of a plane tree visits in particular twice every
edge: the first time away from the root vertex, and the second time toward the
root vertex. The preorder on the vertices of a planted plane tree is defined by
ordering vertices according to the first passage of the contour traversal.

The Dyck code of a planted plane tree with n+1 edges is the word of length
2n on the alphabet {u, d} obtained during a contour traversal of the tree by

Version June 23, 2004

468 Counting, Coding and Sampling with Words

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 9.16. A planted plane tree and its Dyck code.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 9.17. A planted binary tree and its prefix code.

writing a letter u each time a non-root edge is visited for the first time (away
from the root vertex), and a letter d each time a non-root edge is visited for the
second time (toward the root vertex). The reader should convince himself that
the Dyck code of a tree characterizes it.

Lemma 9.3.1. Dyck encoding is a bijection between planted plane trees with
n + 1 edges and Dyck words of length 2n. In particular the number of planted
plane trees with n + 1 edges is the nth Catalan number.

The prefix or �Lukasiewicz code of a planted plane tree with n edges is the
word of length n on the alphabet {xi, i ≥ 0} obtained during a contour traversal
of the tree by writing a letter xi each time a non-root vertex with degree i+1 is
visited for the first time. Let us define the morphism δ by δ(xi) = i− 1. Then
the prefix code w of a planted plane tree has the Lukasiewicz property (i.e. for
each strict prefix v of w, δ(v) > δ(w)). In particular, upon setting x2 = u and
x0 = d, we obtain the following lemma for the case of binary trees:

Lemma 9.3.2. Prefix encoding is a bijection between binary trees with n no-
des, (and thus n + 2 leaves and 2n + 1 edges) and words of length 2n + 1 of the
Dyck-�Lukasiewicz language Dd. In particular the number of binary trees with
n nodes is the nth Catalan number.

Recall that the optimal coding problem for a family C of combinatorial struc-
tures consists in finding a function ϕ that maps injectively objects of C on words

Version June 23, 2004

9.3. Coding: trees and maps 469

of {0, 1}∗ in such a way that an object O of size n is coded by a word ϕ(O) of
length roughly bounded by log2 Card(Cn), with Cn the set of objects of size n.
Since the nth Catalan number satisfies log Cn ∼ 2n as n goes to infinity, Dyck
codes and prefix codes respectively solve the optimal coding problem for plane
trees and for binary trees. On the other hand, the Dyck code of a binary tree
with n nodes has length 4n+2, so that Dyck codes are far from optimality with
respect to the family of binary trees: the optimality of a code is relative to the
entropy log Cn of the set Cn under consideration.

More generally, consider the set of planted plane trees with di nodes of
degree i (and thus � = 1+

∑
(i−2)di non-root leaves). Prefix encoding defines a

bijection between this set of trees and the subset of words of S(x	
0x

d1
1 . . . xdk

k) that
have the Lukasiewicz property. But according to the cycle lemma, the fraction
of such words of length n among words of same length in S(x	

0x
d1
1 . . . xdk

k) is 1/n.
Now words on a finite alphabet with fixed proportion of letters can be encoded
optimally by the so-called entropy coder. Hence prefix encoding combined with
entropy encoding yields optimal coding for plane trees with a fixed proportion
of nodes of each degree.

9.3.2. Conjugacy classes of trees

From now on, we consider planted plane trees with two types of vertices of
degree 1, respectively called buds and leaves. Vertices of higher degree are
called nodes. In particular, a blossoming tree is a planted plane tree such that
each node has degree 4 and is adjacent to exactly one bud; a blossoming tree
with n nodes has thus n + 2 leaves and n buds. Examples of blossoming trees
are given in Figure 9.18.

Lemma 9.3.3. The number of blossoming trees that are planted on a leaf and
have n nodes is 3n

n+1

(
2n
n

)
. The number of blossoming trees that are planted on

a bud and have n nodes is 3n

n+2

(
2n

n−1

)
.

Proof. Let B′
n and B′′

n denote these two sets of blossoming trees. A blossoming
tree of the first type can be uniquely obtained from a binary tree with n nodes
by attaching a bud to each node in one of the three possible ways. Together
with Lemma 9.3.2, this proves the first formula.

Now let us consider the set of doubly planted blossoming trees, one root being
a leaf and the second one a bud. Such a tree with n nodes can be considered
either as a blossoming tree in B′

n with a marked bud, or as a blossoming tree
in B′′

n with a marked leaf. Hence doubly planted blossoming trees with n nodes
are either counted by n Card(B′

n) or by (n + 2)Card(B′′
n). As a consequence,

Card(B′′
n) = n

n+2 ·
3n

n+1

(
2n
n

)
, which proves the second formula.

Let T be a planted plane tree with n nodes. During a contour traversal of
T , its buds and leaves are visited in a sequence (by convention the root vertex is
visited at the end of the traversal). Accordingly the border word is the word with
letters {b, �} obtained along the contour traversal by writing a letter b each time
a bud is visited and a letter � each time a leaf is visited. For example, the border

Version June 23, 2004

470 Counting, Coding and Sampling with Words

(a) A blossoming tree, (b) and a balanced one.

Figure 9.18. Two conjugate blossoming trees.

words of the blossoming trees of Figure 9.18 are respectively ��b�b��bb�b��b�bb�
and b�b��bb�b��b�bb���.

Two planted plane trees T and T ′ are conjugate if one is obtained from the
other by re-rooting. In other terms, two planted plane trees are in the same
conjugacy class of trees if they share the same underlying unrooted plane tree.
This terminology is motivated by the remark that conjugate planted plane trees
have conjugate border words. Taking δ(b) = +1 and δ(�) = −1, the cycle lemma
suggests the following definition: a planted plane tree is balanced if its border
word has the Lukasiewicz property. With this definition, and remembering that
blossoming trees have two more leaves than buds, the cycle lemma for those
trees reads: a blossoming tree has exactly two canonical leaves such that the
conjugate trees rooted at these leaves are balanced.

Lemma 9.3.4. There are 2
n+2

3n

n+1

(
2n
n

)
balanced blossoming trees with n nodes.

Proof. The first proof is again based on a double counting argument. Let B∗
n

be the set of balanced blossoming trees with n nodes. The number of balanced
blossoming trees with a secondary root leaf is (n+2)Card(B∗

n). Upon exchanging
the role of the two roots, these trees are also blossoming trees with a secondary
root leaf taken among the two canonical leaves: their number is thus 2 · 3n

n+1

(
2n
n

)
.

The result follows.

Proof (bis). An alternative proof is based on the following remark: the number
of balanced re-rootings of any blossoming tree is equal to the difference between
its numbers of leaves and buds, so that, in each conjugacy class of trees, the
number of balanced trees is exactly the difference between the number of trees
rooted on a leaf and the number of trees rooted on a bud. Hence the number of
balanced blossoming trees with n nodes is the difference 3n

n+1

(
2n
n

)
− 3n

n+2

(
2n

n−1

)
.

Version June 23, 2004

9.3. Coding: trees and maps 471

(a) A fusion,

�
�
�

�
�
�

(b) the partial closure (c) and the complete
closure.

Figure 9.19. The closure of the balanced blossoming tree of Figure 9.18(b).

9.3.3. The closure of a plane tree

The closure of a planted plane tree with two more leaves than buds is obtained
by repeating the following construction until only two leaves remain: perform a
contour traversal, and each time a leaf follows a bud in the sequence of vertices of
degree 1 met by the walk, match them, i.e. fuse the two corresponding dangling
edges in the unique way that creates a bounded face with no vertex of degree 1
inside (see Figure 9.19(a)).

Lemma 9.3.5. The closure of a plane tree with n nodes and two more leaves
than buds terminates and produces a planar map with the same n nodes and
two leaves, which are both incident to the infinite face. In particular the closure
of a blossoming tree has n vertices of degree four, plus two of degree one in the
infinite face.

If moreover the tree is balanced, then its root vertex is one of the two re-
maining leaves.

Proof. At each iteration all factors b� of the border word are detected, and
deleted since the corresponding pairs of bud and leaf are matched. In particular
at least one pair is matched at each iteration, so that the construction termi-
nates. Vertices of degree at least two remain unchanged while all buds and
leaves are eliminated but the two canonical roots.

As described above the closure could require a quadratic number of opera-
tions. The following algorithm takes a planted plane tree with two more leaves
than buds and computes its closure in linear time. It uses the following items:

– a local stack with functions PutInStack(), PopFromStack() and Is-

StackEmpty(),
– a function NextFreeVertex(vertex) that starts a contour traversal after

the vertex of degree 1 vertex and returns the first vertex of degree 1 found,
– a function Type(vertex) that tells whether vertex is a bud or a leaf,
– a function FuseIntoEdge(bud , leaf) that realizes the fusion of a bud bud

and a leaf leaf into an edge.

Version June 23, 2004

472 Counting, Coding and Sampling with Words

Closure(T)
1 n ← NumberOfLeaves(T)
2 vertex ← RootOf(T)
3 (�1, �2)← (vertex , vertex)
4 while n > 2 do
5 vertex ← NextFreeVertex(vertex)
6 if Type(vertex) = bud then
7 PutInStack(vertex)
8 elseif IsStackEmpty() then
9 (�1, �2)← (�2, vertex)

10 else bud ← PopFromStack()
11 FuseIntoEdge(bud , vertex)
12 n ← n− 1
13 if �1 = �2 then
14 �2 ← NextFreeVertex(vertex)
15 return (T, �1, �2)

Remark 9.3.6. Lines 13 and 14 only treat the special case of a balanced blos-
soming tree in which the second free leaf is the last one of the border word.

The complete closure of a balanced blossoming tree is obtained from its
closure by fusing the two remaining vertices of degree 1 and the incident dangling
edges into a root edge. Lemma 9.3.5 implies that the complete closure of a
blossoming tree with n nodes is a 4-valent map with n vertices. The following
more precise theorem will be proved in the next section.

Theorem 9.3.7. The complete closure is one-to-one between balanced blos-
soming trees with n nodes and 4-valent maps with n vertices. In particular the
number of these maps is 2

n+2
3n

n+1

(
2n
n

)
.

As a corollary we already have the complete description of a random sam-
pling algorithm for 4-valent maps with n vertices. Apart from the function
Closure(), it uses the random generator FlorentineRejection() defined in
Section 9.2 and the following items:

– a function PrefixDecode(w) that constructs the binary tree encoded by
a Dyck-Lukasiewicz word w,

– a function AddBud(n, i) that adds a bud to a node n in one of the three
possible manners,

– a function AddRoot(M, �1, �2) that roots the map M by fusing its two
leaves �1 and �2 into an oriented edge.

Version June 23, 2004

9.3. Coding: trees and maps 473

RandMap(n)
1 w ← FlorentineRejection(n, 0)
2 T ← PrefixDecode(wd)
3 for node ∈ T do
4 AddBud(node,Rand(1, 3))
5 (M, �1, �2)← Closure(T)
6 if Rand(1, 2) = 1 then
7 AddRoot(M, �1, �2)
8 else AddRoot(M, �2, �1)
9 return M

Corollary 9.3.8. RandMap(n) outputs a uniform random 4-valent map
with n vertices in linear time.

9.3.4. The opening of a 4-valent map

The dual of a planar map M is the planar map M∗ defined as follows: in each
face of M put a vertex, and join these new vertices by edges dual to the edges
of M . By construction the vertices, edges and faces of M∗ are respectively in
bijection with faces, edges and vertices of M . This construction is illustrated by
Figure 9.20(a). The proof of the following property of duality in planar maps is
left to the reader.

Lemma 9.3.9. Let (E1, E2) be a partition of the set of edges of a planar map
M . Then E1 is a spanning tree of M if and only if E∗

2 is a spanning tree of M∗.
When this case we call (E1, E2) a spanning tree decomposition of M .

From now on, let M be a planar map, and (E1, E2) be a spanning tree
decomposition of M . For e an edge of E2, opening e with respect to (E1, E2)
will mean: orienting e so that the cycle it induces with the tree E1 is counter-
clockwise, and then replacing e by two dangling edges, the one attached to the
origin of e holding a bud b(e), the other one holding a leaf �(e). We shall always
assume moreover that the root r of M belongs to E2. Then, the opening of M
with respect to (E1, E2) is the tree T defined as follows: (see Figure 9.20(c))

– open each edge e ∈ E2 with respect to (E1, E2),
– replace the bud b(r) by a leaf and plant the tree on it.

The tree T thus consists of the edges of the spanning tree E1 together with
pairs of dangling edges associated to edges of E2. More precisely, these edges
contribute to one bud and one leaf except for the root which contributes to two
leaves. By construction, the opening T of a 4-valent planar map M with n
vertices has n nodes of degree 4, n buds and n + 2 leaves.

Lemma 9.3.10. The complete closure of the opening of a planar map M with
respect to any spanning tree decomposition is the planar map M itself.

Proof. The opening of an edge merges the two faces incident to it. Since E∗
2

forms a spanning tree of M∗, the openings can be performed sequentially so that

Version June 23, 2004

474 Counting, Coding and Sampling with Words

(a) A map and its dual, (b) a spanning tree de-
composition,

(c) and the correspond-
ing opening.

Figure 9.20. An opening of the map of Figure 9.19(c).

one of the two merged faces is always the infinite face. It is then immediate
at each step that the pair of bud and leaf created by the opening of an edge
corresponds to a matched pair in the closure.

There are in general many spanning tree decompositions of M , and the right
one must be chosen to invert the closure. To explain how this is done we need
to introduce the distance in the dual map M∗: two faces of M are adjacent if
they share a common edge, and the distance between two faces f and f ′ is the
length k of the shortest path (f0, . . . , fk) where f0 = f , fk = f ′ and for all i, the
two faces fi and fi−1 are adjacent. Observe that the dual M∗ of a 4-valent map
has only faces with even degrees (in fact degree 4), so that it does not contain
any cycle of odd length, and the distances of a face f to two adjacent faces f ′

and f ′′ always differ by 1.
To each face f of M , associate the face r(f) incident to the root edge r and

closest to f for the distance in M∗. The set P(f) of paths of minimal length
from r(f) to f forms a bundle of paths bounded by two paths P0(f) and P1(f),
with P0(f) having the bundle on its right hand side. We shall call P0(f) the
leftmost minimal path from the root to f . The union of r∗ and of the edges of
the paths P0(f) for all faces f of M forms a spanning tree of M∗: the existence
of a cycle would prevent one of the paths from being leftmost. This tree is called
the leftmost breadth first search tree of M∗ starting from r∗, because it is also
given by a breadth first search traversal with the left hand rule. As stated in
the following proposition, it is the spanning tree we are looking for.

Proposition 9.3.11. Let M be a 4-valent map with root edge r and (E1, E2)
be a spanning tree decomposition such that r ∈ E2. Then the opening of M
with respect to (E1, E2) is a blossoming tree if and only if E∗

2 is the leftmost
breadth first search tree of M∗ starting from r∗.

The proof of this proposition is based on two lemmas. The first one is a
characterization of blossoming trees.

Version June 23, 2004

9.3. Coding: trees and maps 475

Lemma 9.3.12. A tree T with n buds, n + 2 leaves and n nodes of degree 4 is
a blossoming tree if and only if, for every inner edge e, the two components of
T \ e both contain one more leave than buds.

Proof. The characterization is trivial for n = 1, and remains true when a further
node with two leaves and a bud is attached in place of a leaf. The lemma thus
follows by induction since every tree can be obtained by adding new nodes
incrementally.

For the second lemma it is useful to view the spanning tree E∗
2 as rooted on

r∗, with the convention that the infinite face of M is the origin of the root.

Lemma 9.3.13. Let e be an edge of E1 separating two faces f , f ′, with f
before f ′ in the leftmost depth first order on the tree E∗

2 . Consider the paths
P and P ′ from f and f ′ to their common ancestor in E∗

2 , which define with e∗

a cycle separating a bounded region B of the plane from an unbounded one U .
Then,

– the opening of an edge of P with respect to (E1, E2) creates a leaf in B
and a bud in U ,

– and the opening of an edge of P ′ with respect to (E1, E2) creates a bud
in B and a leaf in U .

Proof. The result is immediate upon comparing the orientation used in the
definition of the opening of an edge and the orientation of the cycle going from
e∗ up the path P and down the path P ′.

Proof of Proposition 9.3.11. First assume that E∗
2 is the leftmost breadth first

search tree of M∗ starting from r∗, and let T be the opening of M with respect
to E∗

2 . According to Lemma 9.3.12, it suffices to check that for any edge e of E1,
both components of T \ e contain one more leaves than buds. Let us consider
the paths P and P ′ of Lemma 9.3.13. The breadth first search condition on E∗

2

implies that the length of these two paths differ at most by 1, hence exactly by
1, in view of the discussion of distances in M∗. The leftmost condition on E∗

2

moreover implies that the shortest path of the two must be P ′. Finally observe
that two components of T \ e are separated by the dual cycle of Lemma 9.3.13,
so that this lemma can be used to count buds and leaves in the two regions.
This can be done easily upon distinguishing whether r∗ is on P or not.

Let now E∗
2 be a spanning tree of M∗ different from the leftmost breadth

first search tree E′∗
2 . Then there are leftmost minimal paths that do not appear

in E∗
2 . Among the shortest of them let P0(f) be the leftmost one, connecting the

root to a face f . Since P0(f) is minimal, all its edges but the last one e belong
to E∗

2 . Moreover, by definition of P0(f), this path is to the left and no longer
than the path P (f) connecting the root to f in E∗

2 . Applying Lemma 9.3.13
to e, P ⊂ P0(f) and P ′ ⊂ P (f) and comparing the length of these two paths
shows that P ′ is longer than P , so that the two components of T \ e have not
the expected number of buds and leaves.

The opening of M with respect to (E1, E2) with E∗
2 the leftmost breadth

first search tree of M∗ at r∗ will be called simply the opening of M . In view

Version June 23, 2004

476 Counting, Coding and Sampling with Words

(a) Bicoloration of faces. (b) Corresponding map.

Figure 9.21. Inverse of the edge-map construction.

of Lemma 9.3.10, Proposition 9.3.11 completes the proof of Theorem 9.3.7: the
opening is the inverse of the closure. Moreover it induces a linear time algorithm
Opening(M) that recovers the unique balanced blossoming tree T such that
Closure(T)= M :

Opening(M)
1 Perform a leftmost bfs traversal of the dual map M∗ starting from r∗.
2 Open the edges of the resulting tree to create buds and leaves.
3 Return the resulting balanced blossom tree.

9.3.5. A code for planar maps

Theorem 9.3.7 deals with a specific family of planar maps, namely 4-valent ones.
It turns out however that 4-valent maps play for planar maps the role that edge-
graph play for graphs. More precisely, define the edge-map of a planar map M
as the 4-valent map Mϕ having as vertex set the set of edges of M and having
an edge cϕ for each corner c of the map M .

Proposition 9.3.14. The edge-map construction is a bijection between pla-
nar maps with n edges and 4-valent maps with n vertices. In particular the
number of planar maps with n edges is 2

n+2
3n

n+1

(
2n
n

)
.

Proof. The inverse construction follows from the remark that the faces of a
4-valent map F can be colored in two colors, black and white, so that adjacent
faces have different colors. The planar map M is obtained by putting a vertex
into each black face of F and joining these vertices by an edge across each vertex
of F .

The edge-map construction thus allows us to deduce from Theorem 9.3.7 a
code for the family of planar map.

Version June 23, 2004

Problems 477

EncodeMap(M)
1 F ← EdgeMap(M)
2 T ← Opening(F)
3 for node ∈ T do
4 w′[node]← PositionOfBud(node)
5 T ← RemoveBud(T)
6 w ← BinaryCode(T)
7 return (w, w′)

Theorem 9.3.15. The algorithm EncodeMap() encodes a planar map with
n edges by a pair of words respectively in {a, b}2n and {0, 1, 2}n. In view of the
number of planar maps, this code is optimal.

Problems

Section 9.1

9.1.1 Show that the generating function of a rational language with respect
to the length is rational.

9.1.2 Compute the generating function with respect to the length of walks
that never immediately undo a step they have just done.

9.1.3 Define the area under a Dyck word as the number of integer points
between the horizontal axis and the associated walk. Use Catalan’s
factorization to show that the sum of the area under all Dyck words of
length 2n is 4n.

(Chottin and Cori 1982)
9.1.4 Show that an algebraic language that can be generated by a non am-

biguous context free grammar has an algebraic generating function with
respect to the length.

9.1.5 Give a bijective proof of the fact that the number of bicolored Motzkin
words of length n is equal to the number of Dyck words of length 2n+2.

9.1.6 Give a bijective proof of the right hand side formula in Proposition 9.1.9
for the number of loops of length 2n that stay in the quadrant (x ≥
0, y ≥ 0).

(Guy et al. 1992)

Section 9.2

9.2.1 What is the number of staircase and unimodal polygons with semi-
perimeter n?

∗
9.2.2 Show bijectively that the number of convex polyominoes with bounding

box (p, q) is(
2p + 2q

2p

)
+ q

(
2p + 2q − 1

2p− 1

)
− 2(p + q)

(
p + q − 1

q

)(
p + q − 1

p

)
.

Version June 23, 2004

478 Counting, Coding and Sampling with Words

What is the number of convex polyominoes with semi-perimeter n?
(Bousquet-Mélou and Guttmann 1997,Gessel 2000)

9.2.3 An animal on the square lattice has compact source if there exists k
such that every vertex of the animal can be reached from one of the
vertices (i, k − i) with 0 ≤ i ≤ k by a path going north or east inside
the animal. In particular directed animals are exactly the animals with
compact source for k = 0.
Prove that there are 3n−1 animals of size n with compact source.

(Gouyou-Beauchamps and Viennot 1988)
∗
9.2.4 Give a bijection between bilateral Dyck paths of length n and (non

necessarily strict) pyramids of n bricks such that the number of pairs of
steps connecting levels i and i + 1 is mapped onto the number of bricks
in position (i, i + 1).

(Viennot 1986)
∗∗

9.2.5 Give a uniform random sampling algorithm of expected linear complex-
ity for the set of words of length n on an arbitrary fixed finite alphabet
that have the Lukasiewicz property.

Section 9.3

9.3.1 Give a direct bijection between plane trees with n edges and binary
trees with n nodes.

∗
9.3.2 What is the number of rooted planar maps with di vertices of degree 2i

for all i ≥ 0 and no odd degree vertex?
(Schaeffer 1997)

∗∗
9.3.3 Compute the generating function of rooted planar maps according to

the distribution of degrees.
(Bouttier et al. 2002)

∗∗
9.3.4 Show that planted plane trees with two leaves per inner vertices are

in one-to-one correspondence with rooted triangulations with a marked
face.

(Poulalhon and Schaeffer 2003)

Notes

Although this chapter can be read independently, it is intended as a companion
to Chapter 11, Words and trees, in Lothaire 1997. Systematic approaches to
enumeration, in particular using generating functions, are described in the books
Goulden and Jackson 1983, Bergeron et al. 1998 and in the more recent Stanley
1999, Flajolet and Sedgewick 2002. In particular the relevance of rational,
algebraic and D-finite series to enumeration is emphasized in the last two ones.

The enumeration of walks in the plane, in the half plane and in the quar-
ter plane has become part of the combinatorial folklore, as well as Dyck walks
and Catalan’s factorization. The cycle lemma is attributed in the combinatorial

Version June 23, 2004

Notes 479

literature to Dvoretzky and Motzkin 1947, where it is used to derive Proposi-
tion 9.1.4. As first shown by Raney 1960 (see also Chapter 11 of Lothaire 1997),
the cycle lemma is a combinatorial version of the Lagrange inversion formula,
which has numerous applications in enumerative combinatorics. More detailed
historical accounts can be found in Pitman 1998 and Stanley 1999.

The classification of the possible asymptotic behaviors of the Taylor coef-
ficients of an algebraic series can be found in Flajolet 1987. The generating
function of walks on the slitplane according to the length and the coordinates of
the extremities was first shown algebraic and computed in Bousquet-Mélou and
Schaeffer 2002. This is one in a series of results obtained recently by writing
and solving linear equations with catalytic variables, see Banderier and Flajolet
2002, Bousquet-Mélou 2002 (these references are also good entry points to the
literature on counting walks on lattices). The first proof we present illustrates
a very general approach developed in Bousquet-Mélou 2001. The second proof
is taken from Barcucci et al. 2001.

The foundation of combinatorial random generation was laid in Nijenhuis
and Wilf 1978 with the recursive method. As shown in Flajolet et al. 1994,
this approach leads systematically to polynomial algorithms for decomposable
combinatorial structures. The (much more specialized) application of the cy-
cle lemma to random generation is discussed in Dershowitz and Zaks 1990 and
Alonso et al. 1997. The Florentine rejection algorithm is taken from Barcucci
et al. 1995. A systematic utilisation of mixed probabilistic/combinatorial argu-
ments for sampling was recently proposed in Duchon et al. 2002.

General references on polyominoes are Klarner 1997, van Rensburg 2000.
Exact enumerative results are surveyed in Bousquet-Mélou 1996. The algo-
rithms to sample convex and directed convex polyominoes are adapted from
Hochstättler et al. 1996 and Del Lungo et al. 2001. From the enumeration point
of view, these results are encompassed by Bousquet-Mélou and Guttmann 1997,
which deals with convex polygons in any dimension. Our treatment of directed
animals and heaps of bricks is adapted from Bétréma and Penaud 1993. These
results built on the combinatorial intepretation of the commutation monöıd of
Cartier and Foata 1969 in terms of heaps of pieces due to Viennot 1986.

Starting from the seminal work of Tutte 1962, the literature on combinatorial
maps has grown almost independently in combinatorics and in physics. Some
surveys are Cori and Mach̀ı 1992 (combinatorial point of view), Ambjørn et al.
1997 (physical point of view) and Di Francesco 2001 (mixed points of view).

A more detailed description of codes for plane trees appear in Chapter 11
of Lothaire 1997. The idea to use algebraic languages to encode maps already
appeared in Cori 1975, and plane trees are explicitly used in Cori and Vauquelin
1981. Conjugacy classes of trees were introduced in Schaeffer 1997, as well as
the bijection between balanced trees and planar maps. Applications to coding
and sampling are discussed in Poulalhon and Schaeffer 2003.

Version June 23, 2004

480 Counting, Coding and Sampling with Words

Version June 23, 2004

481

CHAPTER 10

Words in Number Theory

10.0 Introduction . 482
10.1 Morphic and automatic sequences: definitions and generalities . 483

10.1.1 Topology and distance on the set of finite and infinite
words . 483

10.1.2 Morphisms and uniform morphisms 483
10.1.3 Fixed points of morphisms, morphic sequences and au-

tomatic sequences . 483
10.1.4 Examples of morphic and automatic sequences 485

10.2 d-Kernels and properties of automatic sequences 487
10.2.1 d-Kernels . 487
10.2.2 Combinatorial characterization of automatic sequences . 488
10.2.3 Examples of kernels of automatic sequences 489
10.2.4 Properties of automatic sequences 490
10.2.5 A density property for “automatic” sets of integers . . . 495

10.3 Christol’s algebraic characterization of automatic sequences . . . 496
10.3.1 Formal power series . 496
10.3.2 A simple example . 497
10.3.3 Christol’s theorem . 498

10.4 An application to transcendence in positive characteristic 502
10.5 An application to transcendental power series over the rationals 503
10.6 An application to transcendence of real numbers 504
10.7 The Tribonacci word . 506

10.7.1 Definitions and notation 506
10.7.2 Numeration in Tribonacci base 507
10.7.3 Density properties: statistics on letters 510

10.8 The Rauzy fractal . 511
10.8.1 A discrete approximation of the line 511
10.8.2 Arithmetic expression 513
10.8.3 An exchange of pieces 514
10.8.4 Some topological properties 516
10.8.5 Tiling and Tribonacci translation 519
10.8.6 A cut and project scheme 521

10.9 An application to simultaneous approximation 522

Version June 23, 2004

482 Words in Number Theory

Problems . 525
Notes . 531

10.0. Introduction

This chapter shows some examples of applications of combinatorics on words
to number theory with a brief incursion into physics. These examples have a
common feature: the notion of morphism of the free monoid. Such morphisms
have been widely studied in combinatorics on words; they generate infinite words
which can be considered as highly ordered, and which occur in an ubiquitous
way in mathematics, theoretical computer science, and theoretical physics.

The first part of this chapter is devoted to the notion of automatic sequences
and uniform morphisms, in connection with transcendence of formal power series
with coefficients in a finite field. Namely it is possible to characterize algebraicity
of these series in a simple way: a formal power series is algebraic if and only if
the sequence of its coefficients is automatic, i.e., if it is the image by a letter-
to-letter map of a fixed point of a uniform morphism. This criterion is known
as Christol’s theorem. A central tool in the study of automatic sequences is
the notion of kernel of an infinite word (sequence) over a finite alphabet: this
is the set of subsequences obtained by certain decimations. A rephrasing of
Christol’s theorem is that transcendence of a formal power series over a finite
field is equivalent to infiniteness of the kernel of the sequence of its coefficients:
this will be illustrated in this chapter.

Examples of applications of the properties of automatic sequences to tran-
scendence results for power series over the rationals, and for real numbers whose
base b-expansion is automatic are also given.

Then, in a second part, this chapter uses a famous infinite word, the Tri-
bonacci word as a guideline to introduce various applications in Diophantine
approximation and in simultaneous approximation. The Tribonacci word was
introduced as a generalization of the celebrated Fibonacci word. It is defined
as the fixed point of a non-uniform primitive morphism, called the Tribonacci
morphism. We first associate in a natural way a numeration system with this
morphism, that leads us to the definition of a compact subset of the plane with
fractal boundary, called the Rauzy fractal. By closely studying its topological
properties, we show that this compact set can be considered as a fundamental
domain for a lattice of the plane, and that a particular geometric transforma-
tion, namely an exchange of pieces, can be performed on it. This transformation
can furthermore be factored as a translation on the two-dimensional torus. The
goal of this chapter is then to show how to deduce arithmetic properties of this
translation from combinatorial properties of the Tribonacci word. In particular,
it is shown how to associate with some prefixes of this infinite word best approx-
imations for a given norm of the corresponding vector of translation. Relations
to tilings and quasicrystals via the cut and project method are also mentioned.

Version June 23, 2004

10.1. Morphic and automatic sequences: definitions and generalities 483

10.1. Morphic and automatic sequences: definitions and
generalities

In this section we define morphisms, uniform morphisms, morphic sequences
and automatic sequences.

10.1.1. Topology and distance on the set of finite and infinite words

LetA be a finite alphabet. The setA is equipped with the discrete topology (i.e.,
every subset is open), and the set Aω of infinite words (that we also call here
infinite sequences) on A is equipped with the corresponding product topology.
It is well-known and not hard to prove that the product topology can also be
defined by the following distance:

d((un)n≥0, (vn)n≥0) := 2−min{j∈N, uj �=vj}.

The topology on Aω can be extended to the set A∗∪Aω of all finite and infinite
words on A as follows: let � be a symbol not in A. The set A∪ {�} is equipped
with the discrete topology and the set (A∪ {�})ω is equipped with the product
topology. Finally the set A∗ is naturally embedded in (A∪{�})ω by identifying
the word u0u1 · · ·ud in A∗ and the infinite word u0u1 · · ·ud(�)ω in (A ∪ {�})ω

(where (�)ω stands for the infinite word whose terms are all equal to �).

Remark 10.1.1. Note that the distance defined above can be informally de-
scribed by saying that two words are close to each other if they coincide on their
first letters. Also note that the set Aω is a compact set.

10.1.2. Morphisms and uniform morphisms

Let A and B be two alphabets. Let us recall that a morphism h : A∗ → B∗ is a
map from A∗ to B∗ such that for all u, v ∈ A∗, the relation h(uv) = h(u)h(v)
holds. (In other words h is a homomorphism of monoids.)

Remark 10.1.2.

• A morphism h : A∗ → B∗ is defined by its values on the elements of A.
• The iterates of a morphism h : A∗ → A∗ are denoted hj , j ≥ 0, and

defined by h0(a) = a for all a ∈ A and hj+1 := h ◦ hj.

The morphism h : A∗ → B∗ is called uniform if all the words h(a), a ∈ A,
have the same length. Let d be this common length, the morphism is called a
morphism of length d or a d-uniform morphism or a d-morphism.

10.1.3. Fixed points of morphisms, morphic sequences and auto-
matic sequences

Proposition 10.1.3. Let A be an alphabet. Let h : A∗ → A∗ be a morphism
such that there exists a ∈ A and x ∈ A∗ with the properties:

Version June 23, 2004

484 Words in Number Theory

(i) h(a) = ax,
(ii) ∀j ≥ 0, hj(x) �= ε.

Then, the sequence of words a, h(a), h2(a), . . . , hn(a), . . . converges to an
infinite word denoted hω(a). This infinite word is a fixed point of the extension
of h by continuity to infinite words.

Proof. The hypotheses easily imply that hj+1(a) = axh(x)h2(x) · · · hj(x), for
j ≥ 0. Hence the word hj(a) is a nontrivial prefix of the word hj+1(a), which
gives the convergence of the sequence of words hj(a) to an infinite word hω(a).
Since hj+1(a) = h(hj(a)), letting j go to infinity establishes the claim.

Remark 10.1.4. In the sequel we will say that an infinite word u on the al-
phabet A is a fixed point of a morphism h : A∗ → A∗ if and only if it can be
obtained as in Proposition 10.1.3 above. One thus has h(u) = u.

The fixed points (in the sense of Remark 10.1.4) of a uniform morphism have
a simple property that we give now.

Proposition 10.1.5. An infinite word (un)n≥0 on the alphabet A is a fixed
point of the d-morphism h : A∗ → A∗ (in the sense of Remark 10.1.4) if and
only if there exist d maps hr : A → A, r ∈ [0, d− 1], such that

∀n ≥ 0, ∀r ∈ [0, d− 1], udn+r = hr(un).

Proof. Suppose that the infinite word (un)n≥0 is a fixed point of the d-morphism
h : A∗ → A∗, i.e., the limit when j goes to infinity of the sequence of words a,
h(a), h2(a), ..., hk(a) ..., with a ∈ A and h(a) = ax, with x ∈ A∗ and hj(x) �= ε
for all j ≥ 0. Since h is d-uniform, for each letter e ∈ A, the word h(e) can
be written as h(e) = αe,0αe,1 · · ·αe,d−1. We define the maps hr : A → A,
r ∈ [0, d− 1], by: for each e ∈ A, hr(e) := αe,r. Now, for each k ≥ 0, the length
of the word hk(a) is equal to dk hence

hk(a) = u0u1 · · ·udk−1.

We thus have

u0u1 · · ·udk+1−1 = hk+1(a) = h(hk(a))
= h(u0u1 · · ·udk−1)
= h(u0)h(u1) · · ·h(udk−1).

This thus gives:

∀n ∈ [0, dk − 1], ∀r ∈ [0, d− 1], udn+r = hr(un).

Since this holds for all k ≥ 0, we thus have

∀n ≥ 0, ∀r ∈ [0, d− 1], udn+r = hr(un).

Version June 23, 2004

10.1. Morphic and automatic sequences: definitions and generalities 485

Conversely suppose that there exist d maps hr : A → A, r ∈ [0, d− 1], such
that

∀n ≥ 0, ∀r ∈ [0, d− 1], udn+r = hr(un).

Taking n = r = 0, we get u0 = h0(u0). Define the morphism h : A∗ → A∗, by

∀e ∈ A, h(e) := h0(e)h1(e) · · ·hd−1(e).

Furthermore let a := u0. The morphism h is clearly uniform. We have

h(a) = h(u0) = h0(u0)h1(u0) · · ·hd−1(u0) = u0h1(u0) · · ·hd−1(u0) = ax,

where x := h1(u0) · · ·hd−1(u0). For all j ≥ 0 we clearly have |hj(x)| = dj(d−1),
hence hj(x) �= ε. Thus Conditions (i) and (ii) of Proposition 10.1.3 are satisfied.
It is then easy to check that hω(a) is precisely the word (un)n≥0.

A word (un)n≥0 on the alphabet A is called a morphic sequence (or substi-
tutive sequence) if there exists an alphabet C, a word (vn)n≥0 on C, a morphism
h : C∗ → C∗, and a map ϕ : C → A such that

(i) word (vn)n≥0 is a fixed point of the morphism h (see Remark 10.1.4),
(ii) for all n ≥ 0, one has un = ϕ(vn).

A word (un)n≥0 on the alphabet A is called an automatic sequence if there
exists an alphabet C, a word (vn)n≥0 on C, a uniform morphism h : C∗ → C∗,
and a map ϕ : C → A such that

(i) the word (vn)n≥0 is a fixed point of the uniform morphism h (see Re-
mark 10.1.4),

(ii) for all n ≥ 0, one has un = ϕ(vn).
If the morphism h has length d, the word (un)n≥0 is called d-automatic.

Remark 10.1.6. An automatic sequence is in particular morphic. The de-
nomination “automatic” comes from the fact that such an infinite word can be
generated by a finite automaton.

10.1.4. Examples of morphic and automatic sequences

10.1.4.1. The Fibonacci word

The (binary) Fibonacci word is defined as the fixed point (in the sense of Re-
mark 10.1.4) of the morphism 0 → 01, 1 → 0, on the alphabet {0, 1}. The first
few terms of this word are

0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 · · ·

The name of this word comes from the fact that iterating the morphism start-
ing from 0 gives words whose lengths are equal to the Fibonacci numbers

Version June 23, 2004

486 Words in Number Theory

1, 2, 3, 5, 8, · · ·:
0
0 1
0 1 0
0 1 0 0 1
0 1 0 0 1 0 1 0
. . .

It can be shown that this word is a Sturmian word, i.e., that the number of
blocks of consecutive letters of length n occurring in the word is equal to n + 1
for each n ≥ 1 (see Problem 10.7.1).

10.1.4.2. The Tribonacci word

The Tribonacci word is defined as the fixed point (in the sense of Remark 10.1.4)
of the morphism 1→ 12, 2→ 13, 3 → 1 on the alphabet {1, 2, 3}. The first few
terms of this word are

1 2 1 3 1 2 1 1 2 1 3 1 2 1 2 1 · · ·

Both words share many properties and the Tribonacci word can be considered
as a generalization of the Fibonacci word, hence the terminology. We study in
more details the Tribonacci word in Section 10.7–10.9.

10.1.4.3. The Thue–Morse word

Let us recall (see Example 1.8.4) that the (Prouhet)-Thue–Morse word is defined
as the fixed point (in the sense of Remark 10.1.4) beginning with 0 of the
morphism 0 → 01, 1 → 10. The first few terms of this word are

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 · · ·

The n-th term (starting from index 0) of this word is 0 if the sum of the binary
digits of n is even, and 1 if this sum is odd. This property can easily been
deduced from the results of Section 10.2.3.

10.1.4.4. The Rudin-Shapiro word

We consider on the alphabet {a, b, c, d} the morphism

a → ab
b → ac
c → db
d → dc

Iterating this morphism starting from a gives the following fixed point

a b a c a b d b a b a c d c · · ·

Version June 23, 2004

10.2. d-Kernels and properties of automatic sequences 487

The image of this infinite word by the map a → 1, b → 1, c → −1, d → −1, is
called the Rudin-Shapiro word. This word begins as follows

+1 + 1 + 1 − 1 + 1 + 1 − 1 + 1 + 1 + 1 + 1 − 1 − 1 − 1 . . .

Denoting by a(n) the number of (possibly overlapping) blocks 11 in the binary
expansion of n, it can be shown that the n-th term of the Rudin-Shapiro word
is equal to (−1)a(n). Here again, this property can easily been deduced from
the results of Section 10.2.3.

10.1.4.5. The regular paperfolding word

We consider on the alphabet {a, b, c, d} the morphism

a → ab
b → cb
c → ad
d → cd

Iterating this morphism starting from a gives the following fixed point

a b c b a d c b a b c d a d c b . . .

The image of this infinite word by the map a → 0, b → 0, c → 1, d → 1, is
called the (regular) paperfolding word. This word begins as follows

0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 · · ·

Denoting this word by (zn)n≥0, it is easy to show that

z4n = 0, z4n+2 = 1, z2n+1 = zn

(which gives an alternative definition of the paperfolding word).
The proof of the following property of the paperfolding word is left to

the reader. For any word w on the alphabet {0, 1}, define the word wR as
the word obtained by reading w backwards (in other words (w0w1 · · ·w)R :=
w	w	−1 · · ·w0). Also define the word w as the word obtaining from w by replac-
ing 0’s by 1’s and 1’s by 0’s (in other words w := (1− w0)(1 − w1) · · · (1− w).
Define the map P on {0, 1}∗ by P (w) := w0wR. (The map P is called perturbed
symmetry.) Then the paperfolding word is equal to limj→∞ P j(0).

10.2. d-Kernels and properties of automatic sequences

10.2.1. d-Kernels

Let (un)n≥0 be an infinite word defined on the alphabet A. Let d ≥ 2 be an
integer. The d-kernel of the word (un)n≥0, denoted K(d, (un)n), is the set of
subsequences of the word (un)n≥0 defined by

K(d, (un)n) := {(udkn+r)n≥0, k ≥ 0, r ∈ [0, dk − 1]}.

Version June 23, 2004

488 Words in Number Theory

Remark 10.2.1. It is easy to prove that the d-kernel of an infite sequence
(un)n≥0 is stable under the maps Dj , j ∈ [0, d − 1], defined on the set of
sequences on A by

∀(zn)n≥0 ∈ Aω , Dj((zn)n≥0) := (zdn+j)n≥0.

Furthermore K(d, (un)n) is the smallest set that contains the sequence (un)n≥0

and is stable by the maps Dj, j ∈ [0, d− 1].

10.2.2. Combinatorial characterization of automatic sequences

The notion of d-kernel permits to give a simple combinatorial characterization
of automatic sequences.

Proposition 10.2.2. Let (un)n≥0 be an infinite sequence defined on the al-
phabet A. Let d ≥ 2 be an integer. Then, the following properties are equiva-
lent:

(i) the sequence (un)n≥0 is d-automatic,

(ii) the d-kernel K(d, (un)n) is a finite set,

(iii) there exists a finite set of sequences F that contains the sequence (un)n≥0

and such that, if the sequence (vn)n≥0 belongs to F then, for every j ∈
[0, d− 1], the sequence Dj((vn)n≥0) := (vdn+j)n≥0 belongs to F .

Proof. (i) ⇒ (ii). We suppose that the sequence (un)n≥0 is d-automatic. Then
there exists an alphabet C, a sequence (vn)n≥0 on C, a uniform morphism h :
C∗ → C∗, and a map ϕ : C → A such that the sequence (vn)n≥0 is a fixed point
of the uniform morphism h and for all n ≥ 0, one has un = ϕ(vn).
In order to prove that the set K(d, (un)n) is finite, it thus suffices to prove that
K(d, (vn)n) is finite. We know from Proposition 10.1.5 that there exist d maps
hr : A → A, r ∈ [0, d− 1], such that

∀n ≥ 0, ∀r ∈ [0, d− 1], vdn+r = hr(vn).

An easy induction on k shows the following: let t ∈ [0, dk − 1]; write its base d
expansion (possibly with leading zeros) as tk−1 . . . t0; then

∀n ≥ 0, vdkn+t = ht0((ht1 . . . (htk−1(vn))) . . .).

In other words there exists a map ft from A into itself such that ∀n ≥ 0, we
have vdkn+t = ft(vn). The set A is finite, hence the set of maps from A to
itself is also finite. This implies that there are only finitely many sequences
(vdkn+t)n≥0, with k ≥ 0, t ∈ [0, dk − 1].

(ii) ⇒ (iii). This is an easy consequence of Remark 10.2.1.

Version June 23, 2004

10.2. d-Kernels and properties of automatic sequences 489

(iii) ⇒ (i). Let F = {(u(1)
n)n≥0, (u

(2)
n)n≥0, · · · , (u(t)

n)n≥0} be a finite set of
sequences, with (u(1)

n)n≥0 = (un)n≥0 such that F is stable by the maps Dj , for
j ∈ [0, d− 1]. Define the vector V (n) by

V (n) :=

u

(1)
n

u
(2)
n

...
u

(t)
n

Let C ⊂ At be the (finite) set of values of V (n). The fact that the set F is
stable under the maps Dj for j ∈ [0, d − 1] implies that for each j ∈ [0, d − 1]
there exists a matrix Θj of 0’s and 1’s, having exactly one 1 on each row, such
that

∀n ≥ 0, V (dn + j) = ΘjV (n).

Using Proposition 10.1.5 we see that the sequence (V (n))n≥0 is a fixed point of
the d-morphism h of A∗ defined by

∀α ∈ C∗, h(α) := (Θ1α) (Θ2α) ... (Θtα).

Now the sequence (un)n≥0 = (u(1)
n)n≥0 is the (point wise) image of the sequence

(V (n))n≥0 by the restriction to C of the first projection At → A.

Remark 10.2.3. We have spoken in the proof of Proposition 10.2.2 (iii) above
of vectors and matrices, although there is no vector space (nor module): the
reader will be easily convinced that this is only a practical terminology (recall
the special form of the matrices Θj).

10.2.3. Examples of kernels of automatic sequences

The Thue–Morse word, the Rudin-Shapiro word, and the paperfolding word are
2-automatic (see their definitions in Section 10.1.4). Namely their 2-kernels are
finite:

– the definition of the Thue–Morse word (un)n≥0 shows that u2n = un and
u2n+1 = 1 + un for every n ≥ 0; hence the 2-kernel of the Thue–Morse word is

K(2, (un)n) = {(un)n≥0, (1 + un)n≥0};

one deduces that the n-th term (starting from index 0) of the Thue–Morse word
is 0 if the sum of the binary digits of n is even, and 1 if this sum is odd;

– the property of the Rudin-Shapiro word (vn)n≥0 that vn = (−1)a(n), where
a(n) counts the number of possibly overlapping blocks 11 in the binary expansion
of the integer n, shows that v2n = vn, v4n+1 = vn, v4n+3 = −v2n+1, for every
n ≥ 0; hence the 2-kernel of the Rudin-Shapiro word is

K(2, (vn)n) = {(vn)n≥0, (v2n+1)n≥0, (−vn)n≥0, (−v2n+1)n≥0};

Version June 23, 2004

490 Words in Number Theory

denoting by a(n) the number of (possibly overlapping) blocks 11 in the binary
expansion of n, one deduces that the n-th term of the Rudin-Shapiro word is
equal to (−1)a(n);

– since the regular paperfolding word (zn)n≥0 satisfies z4n = 0, z4n+2 = 1,
z2n+1 = zn for every n ≥ 0, its 2-kernel is

K(2, (zn)n) = {0, 1, (zn)n≥0, (z2n)n≥0}.

10.2.4. Properties of automatic sequences

We give below some properties, in particular closure properties, of automatic
sequences.

Proposition 10.2.4. Let d ≥ 2 be an integer. Let (un)n≥0 be a d-automatic
sequence on the alphabet A. Then the sequences (uqn)n≥0 and (uqn−1)n≥0 are
periodic from some point on.

Proof. We prove only the second assertion, the first one is proved analogously.
Since the d-kernel of the sequence (un)n≥0 is finite (Proposition 10.2.2), the set of
subsequences {(uqkn+qk−1)n≥0, k ≥ 0}, is finite. In particular there exist k ≥ 0
and j ≥ 1 such that the sequences (uqkn+qk−1)n≥0 and (uqk+jn+qk+j−1)n≥0

are equal. In other words, the sequences (uqkn−1)n≥1 and (uqk+jn−1)n≥1 are
equal. Replacing n by qjn, q2jn, ..., shows that the sequences (uqkn−1)n≥1 and
(uqk+αjn−1)n≥1 are equal for all α ≥ 0. Taking n = 1 concludes the proof.

Proposition 10.2.5.

Let d ≥ 2 be an integer. Let (un)n≥0 and (vn)n≥0 be two d-automatic
sequences defined respectively on the alphabets A and B. Then the sequence
(un, vn)n≥0 defined on the alphabet A× B is d-automatic.

Let d ≥ 2 be an integer. Let (un)n≥0 be a d-automatic sequence defined on
the alphabet A. Let B be an alphabet and f be a map f : A → B. Then the
sequence (f(un))n≥0 is d-automatic.

Proof. The proofs of both assertions are straightforward using the characteriza-
tion of automatic sequences given in Proposition 10.2.2.

Proposition 10.2.6. Let (un)n≥0 be a sequence on the alphabet A that is
ultimately periodic (i.e., periodic from some point on). Then, the sequence
(un)n≥0 is d-automatic for every d ≥ 1.

Proof. Since the sequence (un)n≥0 is ultimately periodic, there exist two integers
n0 ≥ 0 and T > 1, such that ∀n ≥ n0, un+T = un. Now, for d ≥ 2, take a
sequence in the d-kernel of (un)n≥0, say (udkn+)n≥0, with k ≥ 0 and � ∈
[0, dk − 1]. We have for all n ≥ n0

udk(n+T)+	 = udkn+	+dkT = udkn+	.

Version June 23, 2004

10.2. d-Kernels and properties of automatic sequences 491

In other words all sequences (vn)n≥0 in K(d, (un)n) satisfy ∀n ≥ n0, vn+T = vn.
Hence the d-kernel of (un)n≥0 is finite with at most (CardA)n0+T elements.

Proposition 10.2.7. Let (un)n≥0 be a d-automatic sequence defined on the
alphabet A. Then

(i) for all a, b ∈ N, the sequence (uan+b)n≥0 is d-automatic;
(ii) the sequence (vn)n≥0 defined by v0 = a ∈ A and vn = un−1 for all n ≥ 1,

is d-automatic.

Proof. (i) We may assume, from Proposition 10.2.6, that a ≥ 1. The d-kernel
K(d, (un)n) of the sequence (un)n≥0 is finite. Let

K(d, (un)n) := {(u(1)
n)n≥0, (u(2)

n)n≥0, . . . , (u(t)
n)n≥0},

with (u(1)
n)n≥0 = (un)n≥0. Let us then define the set L of sequences by

L := {(u(i)
an+b′)n≥0, i ∈ [1, t], b′ ∈ [0, a + b− 1]}.

The set L is clearly finite with at most t(a + b) elements. It thus suffices
to prove that the d-kernel of the sequence (uan+b)n≥0 is a subset of L. Let
(ua(dkn+)+b)n≥0 be a sequence in the d-kernel of (uan+b)n≥0, where k ≥ 0 and
� ∈ [0, dk − 1]. We write a� + b = xdk + y, with y ∈ [0, dk − 1]. Thus,

ua(dkn+)+b = udk(an+x)+y = u
(i)
an+x

for some i that does not depend on n. Furthermore we have

xdk ≤ xdk + y = a� + b ≤ a(dk − 1) + b < adk + b ≤ (a + b)dk.

Hence x < a + b, and the sequence (ua(dkn+)+b)n≥0 belongs to L.

(ii) Let us write, as above, the (finite) d-kernel of the sequence (un)n≥0 as

K(d, (un)n) := {(u(1)
n)n≥0, (u(2)

n)n≥0, . . . , (u(t)
n)n≥0},

with (u(1)
n)n≥0 = (un)n≥0. Let us then define t sequences (v(i)

n)n≥0, i ∈ [1, t], by:
v
(i)
0 := a and v

(i)
n := u

(i)
n−1 for n ≥ 1. Note that (v(1)

n)n≥0 = (vn)n≥0. Consider
the (finite) set M defined by

M := {(u(1)
n)n≥0, (u(2)

n)n≥0, . . . , (u(t)
n)n≥0, (v(1)

n)n≥0, (v(2)
n)n≥0, . . . , (v(t)

n)n≥0}.

It suffices to prove that K(d, (vn)n) ⊂ M. Let (vdkn+)n≥0 with k ≥ 0 and
� ∈ [0, dk − 1] be an element of K(d, (vn)n).

• If � ≥ 1, then, vdkn+	 = udkn+(−1). Since (�−1) ∈ [0, dk−1], the sequence
(udkn+(−1))n≥0 is equal to (u(i)

n)n≥0 for some i ∈ [1, t] hence it belongs to M.

Version June 23, 2004

492 Words in Number Theory

• If � = 0, then (vdkn+)n≥0 = (vdkn)n≥0. If n ≥ 1, let m = n− 1 ≥ 0. We
have:

vdkn = udkn−1 = udkm+dk−1 = u(i)
m = u

(i)
n−1

for some i that does not depend on n. Hence

vdkn =
{

a if n = 0
u

(i)
n−1 if n ≥ 1

}
= v(i)

n .

Remark 10.2.8. This proposition implies in particular, using (i), that shifting
a d-automatic sequence gives a d-automatic sequence. Using this remark and
(ii) shows that finite modifications of a d-automatic sequence give a d-automatic
sequence.

Proposition 10.2.9. Let d ≥ 2 be an integer. Let (un)n≥0 be a sequence on
an alphabet A, such that there exists a ∈ N \ {0} for which all subsequences
(uan+b)n≥0 are d-automatic, for b ∈ [0, a − 1]. Then the sequence (un)n≥0 is
d-automatic.

Proof. In order to prove that the d-kernel of the sequence (un)n≥0 is finite, it
suffices to prove that the set of sequences of the form (udk(an+b)+)n≥0 for k ≥ 0,
� ∈ [0, dk − 1] and b ∈ [0, a − 1] is finite: namely interspersing these sequences
produces the sequences (udkn+)n≥0 for k ≥ 0, � ∈ [0, dk − 1].

Now, for k ≥ 0, � ∈ [0, dk − 1], and b ∈ [0, a− 1], let dkb + � = ar + s with
s ∈ [0, a− 1]. This implies

ar ≤ ar + s = dkb + � ≤ dkb + dk − 1 < dk(b + 1) ≤ dka

hence r ∈ [0, dk − 1]. Then, for n ≥ 0,

udk(an+b)+	 = ua(dkn+r)+s.

This shows that the sequence (udk(an+b)+)n≥0 belongs to the d-kernel of the
sequence (uan+s)n≥0, hence to the (finite) set⋃

s∈[0,a−1]

K(d, (uan+s)n).

Corollary 10.2.10. Let (un)n≥0 be a sequence defined on the alphabet A.
Let d ≥ 2 be an integer. Then the following properties are equivalent:

(i) the sequence (un)n≥0 is d-automatic;

(ii) there exists an integer α ≥ 1 such that the sequence (un)n≥0 is dα-
automatic;

(iii) for every integer α ≥ 1 the sequence (un)n≥0 is dα-automatic.

Version June 23, 2004

10.2. d-Kernels and properties of automatic sequences 493

Proof. The implication (iii) ⇒ (ii) is trivial. Furthermore, we clearly have, for
any integer α ≥ 1, the inclusion K(dα, (un)n) ⊂ K(d, (un)n), which shows that
(i) ⇒ (iii).

It remains to prove that (ii) ⇒ (i). Suppose that the sequence (un)n≥0 is
dα-automatic, for some α ≥ 1. If α = 1 we are done. Hence we can suppose
that α ≥ 2. Define d′ := dα−1. Fix j ∈ [0, d′ − 1], and define the sequence
(vn)n≥0 by: vn := ud′n+j . This sequence (vn)n≥0 is d-automatic: namely for
each i ∈ [0, d−1] we have vdn+i = ud′dn+d′i+j = udαn+d′i+j , hence the sequence
(vdn+i)n≥0 belongs to the finite set K(dα, (un)n) (note that d′i + j ≤ dα − 1).
Applying now Proposition 10.2.9 with a = d′ − 1 ends the proof.

Corollary 10.2.11. Let d ≥ 2 be an integer. Let (un)n≥0 be a d-automatic
sequence defined on the alphabet A. Let B be an alphabet and let h be a
uniform morphism h : A∗ → B∗. Then the sequence (h(un))n≥0 is d-automatic.

Proof. We recall that the morphism h is extended by continuity to infinite
sequences. Let suppose that the length of the morphism h is d′. Hence, for each
letter e ∈ A, the word h(e) can be written as h(e) = αe,0αe,1 · · ·αe,d′−1. We
define the maps hi : A → A, i ∈ [0, d′ − 1], by: for each e ∈ A, hi(e) := αe,i.

We thus can write the sequence (h(un))n≥0 as

h0(u0)h1(u0) . . . hd′(u0)h0(u1)h1(u1) . . . hd′(u1) . . .

In other words we have, for all n ≥ 0 and for all i ∈ [0, d′ − 1],

ud′n+i = hi(un).

But the sequences (hi(un))n≥0, for i ∈ [0, d′−1] are d-automatic, from Proposi-
tion 10.2.5, hence the sequence (un)n≥0 is d-automatic from Proposition 10.2.9.

Proposition 10.2.12. Let d ≥ 2 be an integer. Let (un)n≥0 and (vn)n≥0 be
two d-automatic sequences defined on the alphabet A.

(i) If A is a module over a commutative ring R, then the sequences ((u +
v)n)n≥0 := (un + vn)n≥0 and ((xu)n)n≥0 := (xun)n≥0, where x ∈ R, are d-
automatic.

(ii) If A is a finite commutative ring, then the (ordinary) product of the
sequences (un)n≥0 and (vn)n≥0, i.e., the sequence ((uv)n)n≥0 := (unvn)n≥0 is
d-automatic.

(iii) If A is a finite commutative ring, then the Cauchy product of the
sequences (un)n≥0 and (vn)n≥0, i.e., the sequence (

∑
0≤j≤n ujvn−j)n≥0, is d-

automatic.

Version June 23, 2004

494 Words in Number Theory

Proof. Assertions in (i) and (ii) are easy consequences of Propositions 10.2.5 and
10.2.6. Let us prove assertion (iii). Let k ≥ 0 and � ∈ [0, dk − 1]. We first note
that, for n ≥ 1, writing any i ∈ [0, dkn + �] as i = dkm + j, with j ∈ [0, dk − 1],
we have

dkm ≤ dkm + j = i ≤ dkn + � ≤ dkn + dk − 1 < dk(n + 1).

This implies m < n + 1, hence m ≤ n. Hence the inclusion

[0, dkn + �] ⊂ {dkm + j, m ≤ n− 1, 0 ≤ j ≤ dk − 1} ∪ {dkn + j, j ∈ [0, �]}.

The reverse inclusion is clear, hence

[0, dkn + �] = {dkm + j, m ≤ n− 1, 0 ≤ j ≤ dk − 1} ∪ {dkn + j, j ∈ [0, �]}.

This equality clearly implies

[0, dkn+�] = {dkm+j, m ≤ n−1, � ≤ j ≤ dk−1}∪{dkm+j, m ≤ n, j ∈ [0, �]}.

Now let us consider our two d-automatic sequences and let us take an element
in the d-kernel of the sequence (

∑
0≤i≤n uivn−j)n≥0, i.e., let k ≥ 0 and � ∈

[0, dk − 1], then ∑
0≤i≤dkn+	

uivdkn+	−i = S1(n) + S2(n)

where

S1(n) :=
∑

	<j≤dk−1

 ∑
0≤m≤n−1

udkm+jvdkn+	−dkm−j

and

S2(n) :=
∑

0≤j≤	

 ∑
0≤m≤n

udkm+jvdkn+	−dkm−j

 .

Writing S1(n), for n ≥ 1, as

S1(n) :=
∑

	<j≤dk−1

 ∑
0≤m≤n−1

udkm+jvdk(n−1−m)+dk+	−j

we see that, for n ≥ 1, S1(n) is a finite sum of sequences of the type∑

0≤m≤n−1

u(r)
m v

(s)
n−1−m

where the sequence (u(r)
n)n≥0 (resp. (v(s)

n)n≥0) belongs to the d-kernel of the
sequence (un)n≥0 (resp. to the d-kernel of the sequence (vn)n≥0).

Version June 23, 2004

10.2. d-Kernels and properties of automatic sequences 495

We also see that S2(n) is a finite sum of sequences of the type∑
0≤m≤n

u(r)
m v

(s)
n−m

where the sequence (u(r)
n)n≥0 (resp. (v(s)

n)n≥0) belongs to the d-kernel of the
sequence (un)n≥0 (resp. to the d-kernel of the sequence (vn)n≥0).

Hence the sequence (S1(n) + S2(n))n≥1 belongs to a finite set of sequences.
Since S1(0) + S2(0) can take only finitely many values, we are done.

10.2.5. A density property for “automatic” sets of integers

This section is devoted to proving a density property of sets of integers defined
by automatic sequences. Before stating it we need two definitions and a lemma.

A subset M of the integers is said to have a density if the limit

lim
x→∞

1
x

Card{n ≤ x, n ∈ M}

exists. The value of this limit is called the density of the set M.
A factor w of an infinite word x is said to have a density if the set of indices

of occurrence of this factor in x admits a density, that is, if the limit of the
number of occurrences of this factor in the first k terms of the word divided by
k exists. The value of this limit, that we denote by π(w), is called the probability
(or the frequency) of occurrence of the factor w in x.

The following lemma is a direct consequence of the Perron–Frobenius theo-
rem (for more details, see Section 1.7.2).

Lemma 10.2.13. Let M be a positive stochastic matrix, i.e., such that all its
entries are nonnegative and all the entries in any column sum up to 1. Then the
sequence of matrices Mn converges and all the entries in the limit are rational
numbers.

Let h be a morphism on the alphabet C := {c1, c2, · · · ct}. The incidence
matrix (also called the transition matrix or substitution matrix) of h is the
t× t-matrix M = (Mij)i,j defined by

Mij = |h(cj)|ci := number of occurrences of ci in h(cj).

Remark 10.2.14. The incidence matrix is the transpose of the matrix intro-
duced in Section 1.8.6. If the incidence matrix of h is M , it is easy to see that
the incidence matrix for hn is Mn. If h is a d-morphism, it is clear that the
entries in any column of its incidence matrix M sum up to d. We introduce
this matrix also in this chapter in order to deduce probabilities of occurrence of
letters.

Version June 23, 2004

496 Words in Number Theory

Proposition 10.2.15. Let d ≥ 2 be an integer. Let (un)n≥0 be a d-automatic
sequence on the set A. Let a belongs to A. If the set {n ≥ 0, un = a} has a
density, this density (which is the probability π(a) of occurrence of the letter a)
must be a rational number.

Proof. Since the sequence (un)n≥0 is d-automatic, there exists an alphabet C,
a sequence (vn)n≥0 on C, a d-morphism h : C∗ → C∗, and a map ϕ : C → A
such that: the sequence (vn)n≥0 is a fixed point of the d-morphism h, and for
all n ≥ 0, one has un = ϕ(vn).

We first note that, for each letter c ∈ C the limit

lim
n→∞

1
dn

Card{m ≤ dn − 1, vm = c}

exists. Namely, let M = (Mij)i,j be the incidence matrix of the d-morphism h,
and let Mn = (M (n)

ij)i,j . Then

1
dn

Card{m ≤ dn − 1, vn = c} =
1
dn
|hn(v0)|c =

M
(n)
ij

dn
for some i, j.

Since the matrix M/d is clearly positive and stochastic, Proposition 10.2.15

shows that limn→∞
M

(n)
ij

dn exists and is rational. Hence, if C′ = ϕ−1(a) is the
subset of C consisting of the elements of C whose image by ϕ is equal to a, the
limit

lim
n→∞

1
dn

Card{m ≤ dn − 1, um = a}

is the sum over C′ of rational numbers, hence a rational number itself. Since
the density of the set {m, um = a} exists, it must be equal to the previous
quantity, hence rational.

10.3. Christol’s algebraic characterization of automatic se-
quences

10.3.1. Formal power series

We recall that the ring K[[X]] of formal power series with coefficients in a field
K is defined by

K[[X]] :=

∑
n≥0

unXn, un ∈ K

 ,

where addition and multiplication of the series F :=
∑

n≥0 unXn and G :=∑
n≥0 bnXn are defined by

F + G :=
∑
n≥0

(un + bn)Xn, FG :=
∑
n≥0

 ∑
i+j=n

uibj

Xn.

Version June 23, 2004

10.3. Christol’s algebraic characterization of automatic sequences 497

The ring K[[X]] is a subring of the field K((X)) of formal Laurent series

K((X)) :=

 ∑
n≥−n0

unXn, n0 ∈ Z, un ∈ K

 ,

where addition and multiplication are defined analogously.

Note that the field of rational functions K(X) is a subfield of K((X)). Hence
we can define algebraicity over K(X) for an element belonging to K((X)).

The formal power series F = F (X) =
∑

n≥−n0
unXn is said to be algebraic

(over the field K(X)), if there exist an integer d ≥ 1 and polynomials A0(X),
A1(X), . . ., Ad(X), with coefficients in K and not all zero, such that

A0 + A1F + A2F
2 + · · ·+ AdF

d = 0.

Remark 10.3.1.

• Any element of K(X) is algebraic over K(X).

• The sum and product of algebraic elements are algebraic.

• Let F =
∑

n≥−n0
unXn be an algebraic power series. Its derivative F ′ :=∑

n≥−n0
nunXn−1 is also algebraic. Namely take an equation as above

with minimal degree d.

A0 + A1F + A2F
2 + · · ·+ AdF

d = 0.

Taking the derivative gives

A′
0 + A′

1F + A′
2F

2 + · · ·+ A′
dF

d + F ′(A1 + 2A2F + · · ·+ dAdF
d−1).

The coefficient of F ′ cannot be zero (d is minimal and the Aj ’s are not
all zero). Hence F ′ is the quotient of two elements that are algebraic over
K(X), thus it is algebraic over K(X).

10.3.2. A simple example

Let F (X) :=
∑

n≥0 unXn where (un)n≥0 is the Thue–Morse sequence. We have

F (X) =
∑
n≥0

u2nX2n +
∑
n≥0

u2n+1X
2n+1 =

∑
n≥0

unX2n + X
∑
n≥0

(un + 1)X2n

= F (X2) + XF (X2) + X
1

1−X2
.

Hence we have, over the two-element field F2,

(1 + X)3F (X)2 + (1 + X)2F (X) + X = 0.

In other words the series F (X) is algebraic (actually quadratic) over the field
F2(X).

Version June 23, 2004

498 Words in Number Theory

10.3.3. Christol’s theorem

The example given in Section 10.3.2 above is actually a particular case of a
general property of algebraic formal power series over a finite field Fq(X), which
is a characterization of these series. We begin with a definition and a lemma.

Let q = pt be a positive power of a prime integer p. Let Fq be the finite
field of cardinality q (the characteristic of Fq is p). For 0 ≤ r < q, we define the
linear map λr on Fq[[X]] by

if F = F (X) =
∑
i≥0

uiX
i, then λr(F) :=

∑
i≥0

uqi+rX
i.

Lemma 10.3.2. Let A = A(X) and B = B(X) be two formal power series in

Fq[[X]]. Then A =
∑

0≤r<q

Xrλr(A)q, and λr(AqB) = Aλr(B).

Proof. The proof is left to the reader who might want to remember that we
have in Fq[[X]] the equality

(
∑
n≥0

unXn)q =
∑
n≥0

unXqn.

We will also need a proposition proving that, in positive characteristic, any
algebraic formal power series satisfies a “special” algebraic equation.

Proposition 10.3.3. Let p be a prime number, let α ≥ 1 be an integer, and
q := pt. Let F (X) be a formal power series with coefficients in Fq. Then F is
algebraic over Fq(X) if and only if there exist polynomials B0(X), . . . , Bt(X) in
Fq[X] not all equal to zero, such that

B0F + B1F
q + B2F

q2
+ · · ·+ BtF

qt

= 0.

Furthermore we can suppose that B0 �= 0.

Proof. If the formal power series F (X) satisfies

B0F + B1F
q + B2F

q2
+ · · ·+ BtF

qt

= 0,

where the polynomials Bj(X) are not all equal to zero, then F is clearly algebraic
over Fq(X). Now, if F is algebraic, the series F , F q, F q2

, . . ., cannot be all
linearly independent. Hence there exists a nontrivial linear relation

B0F + B1F
q + B2F

q2
+ · · ·+ BtF

qt

= 0.

Let us prove that there exists such a relation with B0 �= 0. Suppose that

B0F + B1F
q + B2F

q2
+ · · ·+ BtF

qt

= 0

Version June 23, 2004

10.3. Christol’s algebraic characterization of automatic sequences 499

with t minimal, and let j be the smallest non-negative integer such that Bj �= 0.
We will prove that j = 0. Since

Bj =
∑

0≤r<q

Xr(λr(Bj))q

by Lemma 10.3.2, it follows that there exists r with λr(Bj) �= 0. Now, since∑
j≤i≤t BiF (X)qi

= 0, we have∑
j≤i≤t

λr(BiF
qi

) = 0

and, using (10.3.2), we see that, if j �= 0, then∑
j≤i≤t

λr(Bi)F qi−1
= 0,

which gives a new relation with the coefficient of F qj−1 �= 0, a contradiction,
hence j = 0. We thus have the relation∑

0≤i≤t

BiF
qi

= 0,

with B0 �= 0.

We now state Christol’s theorem.

Theorem 10.3.4. Let A be a non-empty alphabet, and let (un)n≥0 be a se-
quence of elements of A. Let p be a prime number. Then the sequence (un)n≥0

is p-automatic if and only if there exists an integer α ≥ 1 and an injective map
ι : A → Fpα such that the formal power series

∑
n≥0 ι(un)Xn is algebraic over

Fpα(X).

Proof. Let us first suppose that the sequence (un)n≥0 is p-automatic. Choose
α such that |A| ≤ pα, and choose an injective map ι : A → Fpα . Up to
notations we may suppose that A ⊂ Fpα and that ι is the identity map. We
thus want to prove that the formal power series

∑
n≥0 unXn is algebraic over

Fpα [X]. Since the sequence (un)n≥0 is p-automatic, it is also pα-automatic from
Corollary 10.2.10. Hence K(pα, (un)n) is finite, say

K(pα, (un)n) = {(u(1)
n)n≥0, (u(2)

n)n≥0, · · · , (u(t)
n)n≥0}

with (u(1)
n)n≥0 = (un)n≥0. Let us define

Fj(X) :=
∑
n≥0

u(j)
n Xn for j in [1, t].

Version June 23, 2004

500 Words in Number Theory

Then, for j such that 1 ≤ j ≤ t, we have

Fj(X) =
∑

0≤r≤pα−1

∑
m≥0

u
(j)
pαm+rX

pαm+r

 =
∑

0≤r≤pα−1

Xr
∑
m≥0

u
(j)
pαm+rX

pαm.

But the sequence (u(j)
pαm+r)m≥0 is one of the sequences (u(i)(m))m≥0, hence

Fj(X) is a linear combination, with coefficients in the field Fpα(X), of the
power series Fi(Xpα

). In other words, for all j ∈ [1, t], the formal power series
Fj(X) belongs to the Fpα(X)-vector space generated by the t series Fi(Xpα

),
i ∈ [1, t]:

Fj(X) ∈ 〈F1(Xpα

), F2(Xpα

), . . . , Ft(Xpα

)〉.
This implies that for all j ∈ [1, t]

Fj(Xpα

) ∈ 〈F1(Xp2α

), F2(Xp2α

), . . . , Ft(Xp2α

)〉,

and thus that for all j ∈ [1, t]

Fj(X) ∈ 〈F1(Xp2α

), F2(Xp2α

), . . . , Ft(Xp2α

)〉.

Hence, for all j ∈ [1, t],

Fj(X) and Fj(Xpα

) ∈ 〈F1(Xp2α

), F2(Xp2α

), . . . , Ft(Xp2α

)〉.

This implies that, for all j ∈ [1, t],

Fj(Xpα

) and Fj(Xp2α

) ∈ 〈F1(Xp3α

), F2(Xp3α

), . . . , Ft(Xp3α

)〉.

Hence, for all j ∈ [1, t],

Fj(X), Fj(Xpα

) and Fj(Xp2α

) ∈ 〈F1(Xp3α

), F2(Xp3α

), . . . , Ft(Xp3α

)〉.

Iterating, we have, for all j ∈ [1, t] and for all k ∈ [0, t],

Fj(Xpkα

) ∈ 〈F1(Xp(t+1)α
), F2(Xp(t+1)α

), . . . , Ft(Xp(t+1)α
)〉.

But the dimension of a finitely generated vector space is at most the number of
its generators. Hence the dimension of the Fpα(X)-vector space

〈F1(Xp(t+1)α
), F2(Xp(t+1)α

), . . . , Ft(Xp(t+1)α
)〉

is at most t. Hence for any j ∈ [1, t], there must exist a nontrivial linear relation
between the formal power series

Fj(X), Fj(Xpα

), . . . , Fj(Xptα

)

over Fpα(X). Taking j = 1, and remembering that Fj(Xpkα

) = F pkα

j (X) (the

ground field is Fpα) this gives that F (X) = F1(X) =
∑

n≥0 u
(1)
n Xn is algebraic

over Fpα(X).

Version June 23, 2004

10.3. Christol’s algebraic characterization of automatic sequences 501

Let us now suppose that there exist an integer α ≥ 1 and an injective map
ι : A → Fpα such that the formal power series

∑
n≥0 ι(un)Xn is algebraic

over Fpα(X). The sequence (un)n≥0 is p-automatic if and only if the sequence
(ι(un))n≥0 is p-automatic. Up to renaming we can suppose that A ⊂ Fpα and
that the formal power series F :=

∑
n≥0 unXn is algebraic over Fpα(X). Then,

from Proposition 10.3.3, there exist polynomials B0(X), . . . , Bt(X) with B0 �= 0
such that ∑

0≤i≤t

Bi(X)F (X)qi

= 0.

Define G = G(X) := F (X)
B0(X) . Then∑

0≤i≤t

Bi(X)B0(X)qi

G(X)qi

= 0,

i.e.,

G(X) =
∑

1≤i≤t

Ci(X)G(X)qi

where Ci(X) := −Bi(X)Bqi−2
0 (X).

Now let N = max(deg B0, max{deg Ci}), and define H by

H :=

H ∈ Fpα [[X]], H =
∑

0≤i≤t

DiG
qi

with Di ∈ Fpα [X] and deg Di ≤ N

 .

It is clear that H is a finite set and that F = B0G belongs to H. We now prove
that H is mapped into itself by λr. Let H ∈ H. Then

λr(H) = λr

D0G +
∑

1≤i≤t

DiG
qi

 = λr

 ∑
1≤i≤t

(D0Ci + Di)Gqi

=
∑

1≤i≤t

λr(D0Ci + Di)Gqi−1
.

Since deg D0, deg Di, deg Ci ≤ N , we have deg(D0Ci + Di) ≤ 2N , and hence

deg(λr(D0Ci + Di)) ≤
2N

q
≤ N.

Hence H is a finite set that contains F and that is stable under the maps
λr for r ∈ [0, pα − 1]. This clearly implies that the pα-kernel of the sequence
(un)n≥0 is finite. The sequence (un)n≥0 is thus pα-automatic, hence p-automatic
(Corollary 10.2.10).

Version June 23, 2004

502 Words in Number Theory

10.4. An application to transcendence in positive charac-
teristic

The Christol theorem is a combinatorial criterion that can be used as a tool to
prove the transcendence of formal power series over a finite field. We give here
an automata-based proof of transcendence for the Carlitz formal power series
Π.

Let p be a prime number. Let α be an integer ≥ 1 and let q := pα. The
Carlitz formal power series Πq is defined by

Πq :=
∏
k≥1

(
1− Xqk −X

Xqk+1 −X

)
.

Remark 10.4.1. Note that Πq belongs to Fq((X−1)).

Theorem 10.4.2. The formal power series Πq is transcendental over the field
Fq(X).

Proof. We first compute Π′
q/Πq, where Π′

q is the derivative of Πq (with respect
to X). It is easy to obtain:

Π′
q

Πq
=

∑
k≥1

1
Xqk −X

− 1
Xq −X

.

If Πq were algebraic over Fq(X), then Π′
q would also be algebraic in view of

Remark 10.3.1. Hence Π′
q/Πq would be algebraic. Since 1/(Xq−X) is rational,

this would imply that
∑

k≥1
1

Xqk−X
would be algebraic over Fq(X). We then

write

∑
k≥1

1
Xqk −X

=
1
X

∑
k≥1

1
Xqk−1

∑
n≥0

(
1
X

)n(qk−1)

=
1
X

∑
k≥1
n≥0

(
1
X

)(n+1)(qk−1)

=
1
X

∑
k≥1
n≥1

(
1
X

)n(qk−1)

=
1
X

∑
m≥1

(
1
X

)m

c(m),

where
c(m) :=

∑
k,n≥1

n(qk−1)=m

1 =
∑
k≥1

qk−1|m

1 =
∑
k≥1

qk−1|m

1.

We then note that Fq(X) = Fq(X−1). Hence, replacing X by X−1 in Christol’s
theorem, we see that the algebraicity of Πq would imply the q-automaticity of
the sequence (c(m))m≥1.

Version June 23, 2004

10.5. An application to transcendental power series over the rationals 503

Now, if the sequence (c(m))m≥1 were q-automatic, then the subsequence
(c(qn − 1))n≥0 would be ultimately periodic by Proposition 10.2.4. But

c(qn − 1) =
∑
k≥1

qk−1|qn−1

1 =
∑
k≥1
k|n

1 = d(n)

by Problem 10.4.1, where d(n) is the number of positive integral divisors of n.
Since q = pk for some k ≥ 1, where p is a prime, we would have that

(d(n) mod p)n≥1 is ultimately periodic. Hence there would exist integers t ≥
1, n0 ≥ 0 such that, for all n ≥ n0 and k ≥ 1,

d(n + kt) ≡ d(n) (mod p).

Take k = nk′. Then

d(n(1 + k′t)) ≡ d(n) (mod p)

for all k′ ≥ 1. Now by Dirichlet’s theorem we can find k′ ≥ 1 such that
p′ = 1 + k′t is a prime. Take n = p′. We get

d(p′2) ≡ d(p′) (mod p)

and hence 3 ≡ 2 (mod p), hence the desired contradiction.

10.5. An application to transcendental power series over
the rationals

We recall the following definition.
A word w on the alphabet A is called primitive if it cannot be written as

w = vα for some word v in A and some integer α ≥ 2.

Proposition 10.5.1. Let ψk(n) be the number of primitive words of length
n over the alphabet A with CardA = k ≥ 2. Then the formal power series
R(X) =

∑
k≥1 ψk(n)Xn is transcendental over Q(X).

Proof. We recall that ψk(n) =
∑

d|n µ(d)kn/d, where µ is the Möbius function
(see Problem 10.5.1). If the series R(X) =

∑
k≥1 ψk(n)Xn were algebraic over

Q(X), then the series R̃(X) :=
∑

n≥1
ψk(n)

k Xn would also be algebraic over

Q(X). Thus (note that the number ψk(n)
k is an integer for every n ≥ 1) for any

prime number p the series

R̃p(X) =
∑
n≥1

(
ψk(n)

k
mod p)Xn

Version June 23, 2004

504 Words in Number Theory

would be algebraic over the field Fp(X) from Problem 10.5.2. Take any prime
number p dividing k (recall that k ≥ 2). We see that ψk(n)/k ≡ µ(n) mod p.
Hence the series ∑

n≥1

(µ(n) mod p)Xn

would be algebraic over Fp(X). It follows, using Theorem 10.3.4. that the
sequence (µ(n) mod p)n≥0 would be p-automatic. From Proposition 10.2.15
this implies that, if the set

{n ≥ 1, µ(n) ≡ 0 mod p} = {n ≥ 1, µ(n) = 0}

has a density, this density would be rational. But this set has a density equal
to 1− 6/π2 (see Problem 10.5.1), which gives the desired contradiction.

Remark 10.5.2. Proposition 10.5.1 and the Chomsky-Schützenberger theo-
rem imply the following result: if the language of primitive words over an al-
phabet of size ≥ 2 is context-free, it must be inherently ambiguous.

10.6. An application to transcendence of real numbers

We will prove in this section a theorem of transcendence (over the rationals) of
real numbers whose base b-expansion is the fixed point of a morphism satisfying
some extra hypotheses. This theorem is a consequence of a combinatorial version
of a theorem of Ridout. We first give Ridout’s theorem without proof.

Theorem 10.6.1. Let ξ �= 0 be a real algebraic number. Let ρ, c1, c2, c3

be positive constants, and let λ and µ satisfy 0 ≤ λ, µ ≤ 1. Let r′, r′′ ≥ 0
be integers, and suppose ω1, ω2, . . . , ωr′+r′′ are finitely many distinct primes.
Assume there exist infinitely many fractions pn/qn such that∣∣∣∣pn

qn
− ξ

∣∣∣∣ ≤ c1 |qn|−ρ
.

Furthermore, suppose that pn and qn are not zero and can be written in the
form

pn = p′n

r′∏
j=1

ω
ej

j , qn = q′n

r′+r′′∏
j=r′+1

ω
ej

j ,

where the ei are non-negative integers that may depend on n, and the (p′n)’s
and (q′n)’s are positive integers that may depend on n. Finally, suppose that

0 < |p′n| ≤ c2 |pn|λ , 0 < |q′n| ≤ c3 |qn|µ .

for all n ≥ 0. Then
ρ ≤ λ + µ.

Version June 23, 2004

10.6. An application to transcendence of real numbers 505

Corollary 10.6.2. Let ξ be an irrational number. Suppose that, for every
integer n ≥ 0, the base-k expansion of ξ begins by 0.UnVnVnV ′

n, where Un

belongs to {0, 1, · · · , k − 1}∗, Vn belongs to {0, 1, · · · , k − 1}+, and the word V ′
n

is a prefix of Vn. Furthermore suppose that limn→∞ |Vn| = ∞, and that there
exist real numbers 0 ≤ α < ∞ and β > 0 such that for all n ≥ 0 we have
|Un| ≤ α|Vn| and |V ′

n| ≥ β|Vn|. Then ξ is a transcendental number.

Proof. Let rn = |Un|, sn = |Vn|, and s′n = |V ′
n|, so, for all n ≥ 0, we have

rn ≤ αsn and s′n ≥ βsn. Define tn to be the rational number whose base-k
expansion is tn = 0.UnVnVnVn · · ·. Hence tn =

pn

krn(ksn − 1)
, for some integer

pn. Note that

|ξ − tn| <
1

krn+2sn+s′
n
.

Now,
sn

rn + sn
≥ 1

1 + α

and
rn + 2sn + s′n

rn + sn
≥ 1 +

1 + β

1 + α
.

Hence there exist two positive real numbers µ, ρ such that

1 +
sn

rn + sn
< 1 + µ < ρ <

rn + 2sn + s′n
rn + sn

for infinitely many n. With this choice of µ and ρ, let us take p′n = pn, λ = 1,
c2 = 1, q′n = ksn − 1. Let us choose the primes ωr′+1, · · · , ωr′+r′′ to be the
prime divisors of k. Finally, defining er′+1, · · · , er′+r′′ by krn =

∏r′+r′′

i=r′+1 ω
ej

j ,
we can apply Ridout’s theorem if ξ were algebraic irrational, and deduce that
ρ ≤ λ + µ, which gives a contradiction. Hence ξ is transcendental. (Note that
the tn’s are not necessarily in their irreducible forms, but there is an infinite
number of them, since the sequence (tn)n converges to ξ, which is irrational
from the hypothesis.)

We deduce a theorem on transcendence of certain “automatic” real numbers.
By abuse of notation with respect to Section 1.2.2, we define here an overlap
as a word of the form wwa where a is the first letter of w (in other words an
overlap is the beginning of a cube just longer than a square).

Theorem 10.6.3. If the expansion of the real number ξ ∈ (0, 1) in some in-
teger base b ≥ 2 is a non-ultimately periodic fixed point of a d-morphism h for
some d ≥ 2, and if furthermore this expansion contains an overlap, then the
number ξ is transcendental.

Proof. We write the base-k expansion of ξ as ξ = 0.UV V a · · ·, where U and
V are finite words, and a is the first letter of V . Since the expansion of ξ

Version June 23, 2004

506 Words in Number Theory

is a fixed point of the d-morphism h, then this expansion also begins with
hn(U)hn(V)hn(V)hn(a) for every n ≥ 1. We can apply the previous corollary
with Un = hn(U), Vn = hn(V), and V ′

n = hn(a): namely |hn(U)| = dn|U |,
|hn(V)| = dn|V |, and |hn(a)| = dn.

10.7. The Tribonacci word

The aim of this section is to use the Tribonacci word as a guideline to intro-
duce various applications of combinatorics on words and symbolic dynamics to
arithmetics.

10.7.1. Definitions and notation

Let us recall that the Tribonacci word is defined as the fixed point (in the sense
of Remark 10.1.4) of the Tribonacci morphism σ : {1, 2, 3}∗ → {1, 2, 3}∗ defined
on the letters of the alphabet {1, 2, 3} as follows: σ : 1 �→ 12, 2 �→ 13, 3 �→ 1.
Let us observe that the Tribonacci morphism admits a unique one-sided fixed
point u in {1, 2, 3}ω.

The incidence matrix of the Tribonacci morphism σ is Mσ =

 1 1 1
1 0 0
0 1 0

. This

matrix is easily seen to be primitive. Hence the Perron–Frobenius theorem
applies (for more details, see Section 1.7.2).

Indeed the characteristic polynomial of Mσ is X3−X2−X−1; this polyno-
mial admits one positive root β > 1 (the dominant eigenvalue) and two complex
conjugates α and α, with |α| < 1; in particular, one has 1/β = αα. Hence β is
a Pisot number, that is, an algebraic integer with all Galois conjugates having
modulus less than 1.

In particular, the incidence matrix Mσ admits as eigenspaces in R3 one
expanding eigenline (generated by the eigenvector with positive coordinates vβ =
(1/β, 1/β2, 1/β3) associated with the eigenvalue β) and a contracting eigenplane
P ; we denote by vα and vα the eigenvectors in C3 associated with α and α,
normalized in such a way that the sum of their coordinates equals 1.

One associates with the Tribonacci word u = (un)n≥0 a broken line starting
from 0 in Z3 and approximating the expanding line vβ as follows. Let us first
introduce the abelianization map f of the free monoid {1, 2, 3}∗ defined by

f : {1, 2, 3}∗ → Z3, f(w) = |w|1e1 + |w|2e2 + |w|3e3,

where |w|i denotes the number of occurrences of the letter i in the word w, and
(e1, e2, e3) denotes the canonical basis of R3. Note that for every finite word w,
we have

f(σ(w)) = Mσf(w).

The Tribonacci broken line is defined as the broken line which joins with seg-
ments of length 1 the points f(u0u1 · · ·uN−1), N ∈ N (see Figure 10.1). In

Version June 23, 2004

10.7. The Tribonacci word 507

other words we describe this broken line by starting from the origin, and then
by reading successively the letters of the Tribonacci word u, going one step in
direction ei if one reads the letter i.

We will see in Section 10.7.3 that the vectors f(u0u1 . . . uN), N ∈ N, stay
within bounded distance of the expanding line, which is exactly the direction
given by the vector of probabilities of occurrence (π(1), π(2), π(3)) of the letters
1, 2, 3 in u. It is then natural to try to represent these points by projecting them
along the expanding direction onto a transverse plane, that we chose here to be
the plane x+y+z = 0. The closure of the set of projected vertices of the broken
line is called the Rauzy fractal and is represented on Figure 10.2. We detail this
construction in Section 10.8.1. We then study the arithmetic and topological
properties of the Rauzy fractal in Section 10.8.2 and 10.8.4, respectively, which
leads to the proof of the main theorem of this section: Theorem 10.8.16 states
that the Tribonacci word codes the orbit of the point 0 under the action of
the toral translation in T2: x �→ x + (1

β , 1
β2). We discuss in Section 10.9 some

applications of this theorem to simultaneous approximations: it is proved that
the points of the broken line corresponding to σn(1), n ∈ N, produce best
approximations for the vector (1

β , 1
β2) for a given norm associated with the

matrix Mσ.

Figure 10.1. The Rauzy broken line.

10.7.2. Numeration in Tribonacci base

We now introduce two numeration systems which will be used to expand here
either natural integers or finite factors of the Tribonacci word.

The sequence of lengths T = (Tn)n≥0 of the words σn(1) is called the se-
quence of Tribonacci numbers. One has T0 = 1, T1 = 2, T2 = 4 and for all
n ∈ N, Tn+3 = Tn+2 + Tn+1 + Tn. Indeed, one has for n ∈ N

σn+3(1) = σn+2(12) = σn+2(1)σn+1(13) = σn+2(1)σn+1(1)σn(1).

Let us observe that this sequence is increasing, and thus tends to infinity.

Version June 23, 2004

508 Words in Number Theory

Figure 10.2. The Rauzy fractal.

A greedy or normal representation in the system T of a nonnegative integer N
is a finite sequence of digits (εi)0≤i≤k where for all i, εi ∈ {0, 1} and εi+2εi+1εi =
0, εk �= 0 such that

N =
k∑

i=0

εiTi.

Lemma 10.7.1. Every nonnegative integer admits a unique normal T -repre-
sentation.

Proof. Let us first prove the existence of the decomposition by induction. We
consider the following induction property: for any integer 0 ≤ N < Tk (with
k ≥ 1), there exists a decomposition N =

∑k−1
i=0 εiTi, where for all i, εi ∈ {0, 1}

and εi+2εi+1εi = 0. This property holds for k = 1, 2.
Suppose that the induction hypothesis holds for the integer k ≥ 2. Let

Tk ≤ N < Tk+1 = Tk + Tk−1 + Tk−2; we have N − Tk < Tk and by hypothesis,
N−Tk =

∑k−1
i=0 εiTi , hence N = Tk +

∑k−1
i=0 εiTi. Assume that εk−1 = 1. Since

N < Tk+1 = Tk +Tk−1 +Tk−2, then εk−2 = 0, and the property holds for k +1.
The unicity of a normal T -expansion is a direct consequence of the follow-

ing observation: one has
∑k

i=0 εiTi < Tk+1, where for all i, εi ∈ {0, 1} and
εi+2εi+1εi = 0.

This can be easily be proved by induction. Indeed if εk = εk−1 = 1, then
εk−2 = 0 and

∑k
i=0 εiTi = Tk + Tk−1 +

∑k−3
i=0 εiTi. By induction hypothesis,∑k−2

i=0 εiTi < Tk−2 , hence we get that
∑k

i=0 εiTi < Tk + Tk−1 + Tk−2 = Tk+1.

Lemma 10.7.2. Every prefix w of the Tribonacci word u can be uniquely ex-
panded as

w = σn(pn)σn−1(pn−1) · · · p0,

where the finite words pi are either equal to the empty word ε or to the letter 1,
pn �= ε, and if pi = pi−1 = 1, then pi−2 = ε; furthermore, |w| admits as normal

Version June 23, 2004

10.7. The Tribonacci word 509

T -representation |w| =
∑k

i=0 εiTi, with εi = 1 if pi = 1, and εi = 0, otherwise.
Conversely every finite word that can be decomposed under this form is a prefix
of the Tribonacci word.

Such a representation is called normal Tribonacci representation.

Proof. The proof works exactly in the same way as the proof of Lemma 10.7.1.
Let us prove by induction on n ≥ 1 that every prefix w of length |w| < |σn(1)|
can be decomposed as

w = σn−1(pn−1)σn−2(pn−2) · · · p0,

where the finite words pi are either equal to the empty word ε or to the letter
1, pn−1 �= ε, and if pi = pi−1 = 1, then pi−2 = 0. The induction property holds
for n = 1, 2.

Let w be a prefix of length at least 4 of the Tribonacci word. Then there
exists a positive integer n ≥ 2 such that |σn(1)| ≤ |w| < |σn+1(1)|. One
has σn+1(1) = σn(1)σn−1(1)σn−2(1). Put pn = 1; put pn−1 = 1, if |w| ≥
|σn(1)|+ |σn−1(1)|, and pn−1 = ε, otherwise.

Let v be such that w = σn(pn)σn−1(pn−1)v (v may be equal to the empty
word); v is a prefix either of σn−1(1) or of σn−2(1). If pn−1 = 1, then |v| <
|σn−2(1)|. We conclude by applying the induction hypothesis on v.

The unicity of such an expansion, as well as the corresponding normal T -
representation for |w|, is a direct consequence of the fact that |σn(1)| = Tn and
of the unicity of normal T -representations (Lemma 10.7.1).

Let us prove by induction on n that every finite word of the form

σn−1(pn−1)σn−2(pn−2) · · · p0,

where the finite words pi are either equal to the empty word ε or to the letter
1, pn �= ε, and if pi = pi−1 = 1, then pi−2 = 0, is a prefix of the word σn+1(1).
This property holds for n = 0, 1. Assume that the hypothesis holds for every
integer k ≤ n− 1. Let w = σn(pn)σn−1(pn−1) · · · p0, with the above mentioned
conditions on the “digits” pi (and in particular pn = 1).

One has

σn+1(1) = σn(1)σn(2) = σn(1)σn−1(1)σn−1(3)
= σn(1)σn−1(1)σn−2(1).

Assume pn−1 = 1, then one has pn−2 = ε. By induction hypothesis the
word σn−3(pn−3) · · · p0 is a prefix of σn−2(1), which implies that w is a prefix
of σn(1)σn−1(1)σn−2(1) and thus of σn+1(1).

Assume now pn−1 = ε. Then σn−2(pn−2) · · · p0 is a prefix of σn−1(1), and
w is a prefix of σn+1(1), which ends the proof.

Remark 10.7.3. Such a numeration system on finite factors of the Tribonacci
word can similarly be introduced for fixed points of morphisms in the sense of
Remark 10.1.4 (see Problem 10.7.3).

Version June 23, 2004

510 Words in Number Theory

10.7.3. Density properties: statistics on letters

Since the Tribonacci morphism is primitive, we know from Section 1.7.2 and
1.8.6 that, by applying the Perron–Frobenius theorem, the letters admit densi-
ties in the Tribonacci word and the vector of probabilities of occurrence of letters
is equal to the normalized positive (right) eigenvector vβ = (1/β, 1/β2, 1/β3)
associated with the dominant eigenvalue β (let us recall that the incidence ma-
trix is the transpose of the matrix introduced in Section 1.8.6). We give below
a direct proof of this result and prove even a stronger result of convergence
towards the probabilities of letters.

Proposition 10.7.4. Each of the letters 1, 2, 3 admits a density in the Tri-
bonacci word. The probabilities of letters are positive. More precisely, the vector
of probabilities (π(1), π(2), π(3)) is equal to the normalized positive eigenvector
vβ = (1/β, 1/β2, 1/β3) associated with the dominant eigenvalue β of the inci-
dence matrice of the Tribonacci morphism. Furthermore, there exists C > 0
such that

∀N, | |u0u1 · · ·uN−1|i − π(i)N | ≤ C.

Proof. Let u0u1 · · ·uN−1 be a prefix of the Tribonacci word; according to Lemma
10.7.2, let us decompose it as

u0 · · ·uN−1 = σn(pn)σn−1(pn−1) · · · p0,

where the finite words pi are either equal to the empty word ε or to the letter
1, pn �= ε, and if pk = pk−1 = 1, then pk−2 = 0. Then for i = 1, 2, 3

|u0 · · ·uN−1|i =< f(u0 · · ·uN−1), ei >,

where < > denotes the Hermitian scalar product in C3.
Let us write e1 = aβvβ + aαvα + aαvα, where aβ, aα, aα ∈ C. We have

f(σk(1)) = Mk
σe1 = aββkvβ + aααkvα + aααkvα.

Furthermore,

f(u0 · · ·uN−1) =
n∑

k=0

f(σk(pk)),

which implies for i = 1, 2, 3

|u0 · · ·uN−1|i = aβ(
∑n

k=0 |pn|βk) < vβ , ei > +aα(
∑n

k=0 |pn|αk) < vα, ei > +
+aα(

∑n
k=0 |pn|αk) < vα, ei > .

Let us recall that |α| < 1. We have proved that the vectors f(σk(1)) converge
exponentially fast to the expanding line, whereas the vectors f(u0 · · ·uN−1) stay
within bounded distance of this line (Figure 10.1).

One has

N =
∑

i=1,2,3 |u0 · · ·uN−1|i
= aβ

∑n
k=0 |pn|βk + aα

∑n
k=0 |pn|αk + aα

∑n
k=0 |pn|αk,

Version June 23, 2004

10.8. The Rauzy fractal 511

since < vβ , e1 + e2 + e3 >=< vα, e1 + e2 + e3 >=< vα, e1 + e2 + e3 >= 1,
according to our conventions of normalization.

Hence there exists C > 0 such that

∀i = 1, 2, 3, | < f(u0 · · ·uN−1), ei > −N < vβ , ei > | ≤ C,

which implies in particular that < vβ , ei >= π(i) = 1/βi, i = 1, 2, 3.

Remark 10.7.5. Proposition 10.7.4 holds more generally for Pisot morphisms
(Problem 10.7.4) and is strongly connected to the balance properties of their
fixed points (Problem 10.7.5). Let us observe that the statement in Proposition
10.7.4 is stronger than Assertion 5 of the Perron–Frobenius theorem.

10.8. The Rauzy fractal

10.8.1. A discrete approximation of the line

The Tribonacci broken line stays within a bounded distance of the expanding line
(Proposition 10.7.4 and Figure 10.1). Let us project its vertices f(u0 · · ·uN−1)
along the expanding direction vβ , in order to obtain in particular some infor-
mation on the quality of approximation of the expanding line by the points
f(σk(1)), k ∈ N. We thus choose here to project onto the plane x + y + z = 0;
this allows us to express the coordinates of the projected points in the basis
(e3 − e1, e2 − e1) of the plane x + y + z = 0 in terms of the convergence to-
wards the probabilities of occurrence of the letters, as explained below (Equation
(10.8.1)).

Let π0 denote the projection in R3 onto the plane P0 of equation x+y+z = 0
along the expanding line generated by the vector vβ . One has

∀P = (x, y, z) ∈ R3, π0(P) = (x, y, z)− < (x, y, z), (1, 1, 1) > vβ ,

that is,

π0(P) = (
1
β

(x + y + z)− x)(e3 − e1) + (
1
β2

(x + y + z)− y)(e3 − e2).

In particular, if P = f(u0 · · ·uN−1), for some N ∈ N, then

π0(P) = (
N

β
−|u0 · · ·uN−1|1)(e3−e1)+(

N

β2
−|u0 · · ·uN−1|2)(e3−e2). (10.8.1)

We define the set R as the closure of the projections of the vertices of the
Tribonacci broken line:

R := {π0(f(u0 . . . uN−1)); N ∈ N},

where u0 . . . uN−1 stands for the empty word when N = 0. The set R is called
the Rauzy fractal associated with the Tribonacci morphism σ (see Figure 10.2).

We now introduce a lattice in the plane P0 which will play a key rôle in the
following. Let L0 := Z3 ∩P0; L0 is equal to the lattice Z(e3 − e1) + Z(e3 − e2).

Version June 23, 2004

512 Words in Number Theory

Proposition 10.8.1. The set R is compact. The translates of the Rauzy
fractal by the vectors of the lattice L0 cover the contracting plane P0, that is,

∪γ∈L0(R+ γ) = P0. (10.8.2)

The interior of R is not empty.

Proof. We first deduce from (10.8.1) and Proposition 10.7.4 that the Rauzy
fractal is bounded, and hence compact.

We then need the following lemma to prove that one has a covering of the
plane P0 by the translates of the Rauzy fractal.

Lemma 10.8.2. The translates along the lattice L0 of the vertices of the broken
line f(u0u1 . . . uN−1), N ∈ N, cover the following upper half space:

{f(u0u1 . . . uN−1) + γ; N ∈ N, γ ∈ L0} = {(x, y, z) ∈ Z3; x + y + z ≥ 0}.

Let (x, y, z) ∈ Z3 with x + y + z ≥ 0; let N = x + y + z; one has N =
|u0u1 . . . uN−1|1 + |u0u1 . . . uN−1|2 + |u0u1 . . . uN−1|3. Let

γ = (x− |u0u1 . . . uN−1|1, y − |u0u1 . . . uN−1|2, z − |u0u1 . . . uN−1|3);

then γ ∈ Z(e1 − e3) + Z(e2 − e3) = L0.

Let us end the proof of Proposition 10.8.1. We need the following theorem
known as Kronecker’s theorem that we recall here without a proof (a proof of
this theorem can be found for instance in Cassels 1957).

Theorem 10.8.3 (Kronecker’s theorem). Let r ≥ 1 and let α1, · · · , αr be r
real numbers such that 1, α1, · · · , αr are rationally independent. For every η > 0
and for every (x1, · · · , xr) ∈ Rr, there exist N ∈ N, (p1, · · · , pr) ∈ Zr such that

∀i = 1, · · · , r, |Nαi − pi − xi| < η.

Let us apply Kronecker’s theorem to 1, 1
β , 1

β2 (which are rationally independent).
Let us fix η > 0 and let P be given in P0 with coordinates (x, y) say, in the
basis (e3 − e1, e3 − e2). There exist p, q ∈ Z, N ∈ N such that |N 1

β − p− x| < η

and |N 1
β2 − q− y| < η. Take r = N − (p+ q). Then the coordinates in the basis

(e3 − e1, e3 − e2) of π0(p, q, r) and P differ by at most η. We thus have proved
that π0({(p, q, r) ∈ Z3, p + q + r ≥ 0}) is dense in P0. Consequently, given any
point P of P0, there exists a sequence of points (π0(f(u0u1 . . . uNk−1)) + γk)k

with γk in the lattice L0 which converges to P in P0. Since R is bounded,
there are infinitely many k for which the points γk of the lattice L0 take the
same value, say γ; we thus get P ∈ R + γ, which implies (10.8.2). Since L0 is
countable, we deduce from Baire’s theorem that the interior of R is not empty.

Version June 23, 2004

10.8. The Rauzy fractal 513

Remark 10.8.4. In fact, we have more than a covering by translates of the
Rauzy fractal. We have in fact a periodic tiling of the plane up to sets of zero
Lebesgue measure, that is, the union in (10.8.2) is disjoint up to sets of zero
measure, as illustrated in Figure 10.8.3. We prove it in Section 10.8.5.

10.8.2. Arithmetic expression

In order to study more carefully the topological properties of the Rauzy fractal,
which is the aim of Section 10.8.4, we introduce some more notation to express
the coordinates of the vectors f(u0 · · ·uN−1) in the basis (e3 − e1, e3 − e2) of
the plane P0.

Let δ : N → R2, N �→ δ(N), where δ(N) denotes the vector of coordinates
of π0(f(u0u1 · · ·uN−1)) in the basis (e3− e1, e3− e2) of the plane x+ y + z = 0.
One has according to (10.8.1), for N ∈ N,

δ(N) = N · (1/β, 1/β2)− (|u0u1 · · ·uN−1|1, |u0u1 · · ·uN−1|2). (10.8.3)

Let B =
[
−1/β −1/β
1− (1/β)2 −(1/β)2

]
. One easily checks that for every word w ∈

{1, 2, 3}∗, then the vector of coordinates of π0(f(σ(w))) in the basis (e3−e1, e3−
e2) is equal to the matrix B applied to the vector of coordinates of π0(f(w))
in the same basis. We thus get that if N has for normal T -representation,

N =
n∑

i=0

εiTi, that is, u0 · · ·uN−1 = σn(pn)σn−1(pn−1) · · · p0, with |pi| = εi,

then

δ(N) =
k∑

i=0

εiB
iz, where we set z = δ(1) = (1/β − 1, 1/β2).

The eigenvalues of the matrix B are of modulus smaller than 1, hence the
series

∑∞
i=0 εiB

iz are convergent in R2. The following proposition is thus an
immediate consequence of this:

Proposition 10.8.5. The Rauzy fractal is the set of points of the plane P0

with coordinates in the basis (e3 − e1, e3 − e2) in

R := {
∞∑

i=0

εiB
iz; (εi)i≥0 ∈ {0, 1}ω, ∀i εiεi+1εi+2 = 0}.

Remark 10.8.6. We will mostly study the set R to deduce topological prop-
erties of the Rauzy fractal R; indeed both sets are by definition in one-to-one
correspondence, this bijection being the restriction of a topological isomorphism.
Let us observe that similarly, the Rauzy fractal and

{
∞∑

i=0

εiα
i ∈ C; (εi)i≥0 ∈ {0, 1}ω, ∀i εiεi+1εi+2 = 0}

Version June 23, 2004

514 Words in Number Theory

are also easily seen to be in one-to-one correspondence. Indeed the matrix B
admits as characteristic polynomial (X − α)(X − α), and it is thus similar in

C2 to the matrix
[

α 0
0 α

]
.

10.8.3. An exchange of pieces

Let us introduce the following division of the Rauzy fractal into three sets ac-
cording to which letter was lastly read before projecting. For i ∈ {1, 2, 3} let

Ri = {π0(f(u0 . . . uN−1)); N ∈ N, uN = i}.

We similarly define the subsets Ri of R2, i = 1, 2, 3, as, respectively, the sets of
coordinates of elements of Ri (in the basis (e3 − e1, e3 − e2)).

Lemma 10.8.7. One has

R1 =
{∑

i≥0 εiB
iz; ∀i, εi ∈ {0, 1}; εiεi+1εi+2 = 0; ε0 = 0

}
,

R2 =
{∑

i≥0 εiB
iz; ∀i, εi ∈ {0, 1}; εiεi+1εi+2 = 0; ε0ε1 = 10

}
,

R3 =
{∑

i≥0 εiB
iz; ∀i, εi ∈ {0, 1}; εiεi+1εi+2 = 0; ε0ε1 = 11

}
,

and
R1 = BR, R2 = z + B2R, R3 = z + Bz + B3R,

that is,

R1 = B(R1 + R2 + R3), R2 = z + BR1, R3 = z + BR2.

Proof. It is sufficient to check that if u0 · · ·uN−1 admits for normal Tribonacci
representation σn(pn) · · ·σ0(p0), then p0 = ε implies uN = 1,

p0 = 1, p1 = ε implies uN = 2,
p0 = 1, p1 = 1 implies uN = 3.

• Assume that p0 = ε. Then u0 · · ·uN−1 = σn(pn) · · ·σ(p1), and u0 · · ·uN =
σn(pn) · · ·σ(p1)uN . Hence uN needs to be equal to 1, since the images of
letters under σ begin with 1, and u is fixed under σ.

• Assume that p0 = 1 and p1 = ε. One has u0 · · ·uN−1 = σn(pn) · · ·σ2(p2)1.
The word σn(pn) · · ·σ2(p2)σ(1) has length N +1. If either p2 or p3 equals
ε, then this expansion is a normal Tribonacci representation, and thus a
prefix of the Tribonacci word (according to Lemma 10.7.2), which gives
uN = 2. Otherwise it can also be represented as σn(pn) · · ·σ2(1) =
σn(pn) · · ·σ4(1). One shows by induction that the last term of the nor-
mal Tribonacci representation of this expansion is of the form σ3k+1(1),
which admits as last letter 2.

Version June 23, 2004

10.8. The Rauzy fractal 515

• Assume that p0 = 1 and p1 = 1, and thus p2 = ε. Then u0 · · ·uN−1 =
σn(pn) · · ·σ3(p3)σ(1)1. The word σn(pn) · · ·σ2(1) has length N + 1. If
either p3 or p4 equals ε, then this expansion is a normal Tribonacci repre-
sentation, and thus a prefix of the Tribonacci word (according to Lemma
10.7.2), which gives uN = 3. Otherwise it can also be represented as
σn(pn) · · ·σ2(1) = σn(pn) · · ·σ5(1). One shows by induction that the last
term of the normal Tribonacci representation of this expansion is of the
form σ3k+2(1), which admits as last letter 3.

The sets Ri, i = 1, 2, 3 are represented in Figure 10.2. Figure 10.8.3 illus-
trates Lemma 10.8.8 below, that is, one can reorganize the division of R into
these three pieces up to translations.

Lemma 10.8.8. The following exchange of pieces E is well-defined

E : Int R1 ∪ Int R2 ∪ Int R3 →R, x �→ x + π0(ei), when x ∈ Int Ri.

Figure 10.3. The exchange map E.

Figure 10.4. A piece of a periodic tiling by the Rauzy fractal.

Proof. Let us first prove that the sets Ri, for i = 1, 2, 3, are two-by-two disjoint
in measure, and hence that their interiors Int Ri are two-by-two disjoint.

Version June 23, 2004

516 Words in Number Theory

Since R is compact, then it is measurable for the Lebesgue measure and
its Lebesgue measure µ(R) is finite and nonzero since its interior is not empty
according to Proposition 10.8.1.

One has µ(R) ≤
∑3

i=1 µ(Ri). Since the determinant of the matrix B equals
1/β, then according to Lemma 10.8.7

µ(R1) = 1/β µ(R), µ(R2) = (1/β)2µ(R), µ(R3) = (1/β)3µ(R).

Hence one gets µ(R) =
∑3

i=1 µ(Ri). This implies in particular that µ(Ri∩Rj) =
0 for i �= j. The same holds for their interiors Int Ri, that is, µ(Int Ri ∩
Int Rj) = 0 for i �= j, which implies that they are two-by-two disjoint.

One easily sees that for i = 1, 2, 3, Ri + π0(ei) = {π(f(u0 . . . uN)); uN = i},
which implies Ri +π0(ei) ⊂ R. We thus deduce that the map E is well-defined.

Remark 10.8.9. The sets Ri, i = 1, 2, 3 are not disjoint. Indeed a vector with
coordinates in the basis (e3−e1, e3−e2) having several expansions as

∑∞
i=0 εiB

iz,
(with (εi)i≥0 ∈ {0, 1}ω and ∀i, εiεi+1εi+2 = 0) can belong simultaneously to
several of these sets. This is the case in particular of the vector with coordinates∑∞

i=1 B3iz. Since B3 = B2 +B +1, then
∑∞

i=1 B3iz =
∑∞

i=0 Biz, and it admits
the following three admissible expansions

∞∑
i=1

B3iz = z +
∞∑

i=0

B3i+1z = Z + Bz +
∞∑

i=0

B3i+2z.

10.8.4. Some topological properties

We need now to introduce a suitable norm on R2 associated with the matrix
B that will be crucial for the statement of the first topological properties of
the Rauzy fractal, from which the arithmetic properties of Section 10.9 will be
deduced.

Let us recall that the matrix B is similar in C2 to the matrix
[

α 0
0 α

]
. Let

M =
[

α + 1/β 1/β
−(α + 1/β) −1/β

]
.

One easily checks that MBM−1 =
[

α 0
0 α

]
.

The Rauzy norm || || is defined for x ∈ R2 as the Euclidean norm of Mx.
Hence, for every x ∈ R2

||Bx|| = |α|||x|| =
√

1/β||x||.

We denote by ||| ||| the distance to the nearest point with integer coordinates.
One checks that

||z|| = ||δ(1)| = |α|4 = 1/β2 and ||δ(Tn)|| = |α|n||z|| = |α|n+4.

Version June 23, 2004

10.8. The Rauzy fractal 517

We will mainly work in this section with the set of coordinates R, rather
than with R itself. The following lemma states that if one takes an element in
R of sufficiently small norm which is equal modulo Z2 to the coordinates δ(N) of
π0(f(u0 · · ·uN−1)), then it has to be exactly equal to δ(N). The proof is based
on the fact that the set R is contained in the square {(x, y) ∈ R2; |x|, |y| < 1}
located at the origin. In particular, 0 is the only element with integer coordinates
contained in R. This lemma is fundamental and is a first step toward the fact
that if two points of R differ by a vector with integer coordinates, then these
two points do coincide.

Lemma 10.8.10. There exists C > 0 such that

∀N ≥ 1, ∀v ∈ Z2, ||N · (1/β, 1/β2)− v|| < C =⇒ v = N · (1/β, 1/β2)− δ(N).

Remark 10.8.11. This lemma implies in particular that if the norm of δ(N)
is smaller than C, then (|u0 · · ·uN−1|1, u0 · · ·uN−1|2) is the nearest point with
integer coordinates to N · (1/β, 1/β2). For instance, for n large enough,

|||Tn · (1/β, 1/β2)||| = ||δ(Tn)||,

since ||δ(Tn)|| = |α|n+4 < C. In other words, the projections of the points
f(σn(1)) approximate very well the points with coordinates Tn · (1/β, 1/β2).

Proof. Let N ≥ 1 with normal T -representation N =
∑k

i=0 εiTi. One can write
δ(N) =

∑k
i=0 εiB

iz as δ(N) =
∑

i≥0 ε3iB
3iyi, where yi belongs to the following

set F :
F := {0, z, Bz, B2z, z + Bz, z + B2z, Bz + B2z}.

Hence
||δ(N)|| ≤

∑
i≥0

|α|3i max
y∈F

||y||.

One checks that maxy∈F ||y|| = ||z|| = 1/β2. We thus get

||δ(N)|| ≤ 1
β2(1 − |α3|) < 1/2. (10.8.4)

One also checks that the set of points x ∈ R2 such that ||x|| < 0, 53 is a domain
delimited by an ellipse strictly included in the square {(x, y) ∈ R2; |x|, |y| < 1}.
Hence R is also included in this square, following (10.8.4).

Let v ∈ Z2. Take C = 0, 03 for instance. Let N ≥ 1 such that

||N · (1/β, 1/β2)− v|| < C.

Hence according to (10.8.3)

||(|u0 · · ·uN−1|0, |u0 · · ·uN−1|1)− v|| ≤ ||δ(N)||+ ||N · (1/β, 1/β2)− v|| < 0, 53,

which implies that (|u0 · · ·uN−1|0, |u0 · · ·uN−1|1) − v belongs to the square
{(x, y) ∈ R2; |x|, |y| < 1} and thus v = (|u0 · · ·uN−1|0, |u0 · · ·uN−1|1), since
both vectors have integer coordinates.

Version June 23, 2004

518 Words in Number Theory

Proposition 10.8.12. The point 0 belongs to the interior of the Rauzy fractal
R. Furthermore, for all N ∈ N, δ(N) belongs to the interior of RuN . Conse-
quently, the Rauzy fractal is the closure of its interior.

Proof. Let us prove that 0 is an interior point of the set R. Let C be the constant
of Lemma 10.8.13. The sequence (N · (1/β, 1/β2))N≥0 is dense in R2 modulo
Z2 by Kronecker’s theorem (Theorem 10.8.3), since 1, 1/β, 1/β2 are linearly
independent over Q. In particular, it is dense in the set {x ∈ R2; ||x|| < C}.
This implies, according to Lemma 10.8.10, that the points δ(N) are also dense
in this same set. Hence {x ∈ R2; ||x|| < C} is included in the closure R of
{δ(N); N ∈ N}. This proves that 0 is an interior point.

One easily deduces that for every N ∈ N, δ(N) belongs to the interior of
RuN . Indeed let us consider a given N with normal T -representation

∑k
i=0 εiTi;

by definition, δ(N) ∈ RuN ; for any (εi)i≥k+2 ∈ {0, 1}ω, with the admissibility
condition that no three consecutive 1’s occur in this sequence, then δ(N) +∑

i≥k+2 εlTl ∈ RuN , which implies that δ(N) + Bk+2R is still included in RuN ,
and thus δ(N) belongs to the interior of RuN , since 0 belongs to the interior of
R. This easily implies that R is the closure of its interior.

One can even get more information on the first coefficients of N in its nor-
mal T -representation if the distance between N · (1/β, 1/β2) and Z2 is small
enough; this provides some knowledge on the repartition of the sequence (N ·
(1/β, 1/β2))N≥0.

Lemma 10.8.13. Let N ≥ 1 with normal T -representation N =
∑

i≥0 εiTi.
Then

∀v ∈ Z2, ∀m ∈ N,
(
||N · (1/β, 1/β2)− v|| < Cβ−m/2 ⇒ ∀i < m, εi = 0

)
.

Proof. Let N ≥ 1 with normal T -representation N =
∑

i≥0 εiTi and let v ∈ Z2

such that there exists m ≥ 1 with ||N · (1/β, 1/β2) − v|| < Cβ−m/2. Since
||N · (1/β, 1/β2) − v|| < C, and according to Lemma 10.8.10, then δ(N) =
N · (1/β, 1/β2)−v. Furthermore one has B−mδ(N) ∈ R; indeed ||B−mδ(N)|| =
βm/2||δ(N)|| < C, and we have seen in the proof of Proposition 10.8.12 that
{x; ||x|| < C} is included in R.

It remains to prove that if N satisfies δ(N) ∈ BmR, then its normal T -
representation verifies N =

∑
i≥m εi. For that purpose, we introduce the fol-

lowing notation in order to refine the partition of R into the three pieces Ri,
i = 1, 2, 3. Let us consider the three following three maps ψi : R2 → R2,
i = 1, 2, 3, as follows (recall that z = δ(1)):

ψ1 : v �→ Bv, ψ2 : v �→ z + B2v, ψ3 : v �→ z + Bz + B3v.

For a1 · · · ar ∈ {1, 2, 3}r, let Ra1···ar = ψa0 ◦ · · · ◦ ψar (R). Let us observe that
Ra1···ar ⊂ R.

One proves by induction that for all N , and for all r, there exists a1 · · · ar

such that δ(N) belongs to Ra1···ar . Indeed, let v =
∑k

i=0 εiB
iz ∈ R; if v ∈ Ri,

Version June 23, 2004

10.8. The Rauzy fractal 519

then there exists w ∈ R such that v = ψi(w). Furthermore, the same argument
as in the proof of Proposition 10.8.12 implies that δ(N) belongs to the interior
of Ra1···ar .

Let us prove by induction on r that the interiors of the sets Ra1···ar are two-
by-two disjoint. The induction property holds for r = 1 according to Lemma
10.8.8. Assume it is true for k ≤ r, with r ≥ 1. Let a1 · · · ar ∈ {1, 2, 3}r. One
has µ(Ra1···ari) = (1/β)iµ(Ra1···ar), which implies similarly as in the proof of
Lemma 10.8.8 that the interiors of the sets Ra1···ari, i = 1, 2, 3, are two-by-two
disjoint in measure, as well as the interiors of the sets Ra1···ari, for i = 1, 2, 3,
and a1 · · · ar ∈ {1, 2, 3}r.

Hence for every N , and for every r, there exists a unique a1 · · · ar such
that δ(N) belongs to the interior of Ra1···ar . Furthermore it is easily seen
that if there exists k such that ak �= 1, then there exists a coefficient εi equal
to 1, with i < r, in the normal T -representation of N . This implies that if
δ(N) ∈ BmR = ψm

1 (R), then all the coefficients εi for i < m are equal to 0 in
its normal T -representation.

10.8.5. Tiling and Tribonacci translation

We are now able to prove that the covering of the plane P0 stated in Proposition
10.8.1, that is, ∪γ∈L0R+γ, is in fact a periodic tiling (up to sets of zero measure).

Lemma 10.8.14. The sets Int R+ γ, for γ ∈ L0, are disjoint, that is,

if x, y ∈ Int R, with x− y ∈ Z2, then x = y.

Proof. Let x, y ∈ Int R with x− y ∈ Z2. By density of the sequence (δ(N))N≥0,
there exists a point δ(M) close enough to x so that δ(M)+y−x is close enough
to y, and thus, still belongs to R.

Let us choose an integer m large enough so that the coefficients εi in the nor-
mal T -representation of M are equal to 0 for i ≥ m. One gets M =

∑m
i=0 εiTi.

By density of the sequence (δ(N))N , there exists N > M such that

||δ(N)− (δ(M) + y − x)|| < C

(
1
β

)(m+2)/2

.

There exists h ∈ Z2 such that δ(N)−(δ(M)+y−x) = (N−M) ·(1/β, 1/β2)−h.
We thus can apply Lemma 10.8.13, and get that the normal T -representation∑k

i=0 ε′iTi of N −M satisfies ε′i = 0 for i ≤ m + 1. This implies that N admits
as normal T -representation

∑m
i=0 εiTi +

∑
i≥m+2

ε′iTi, and hence δ(N)− δ(M) =

δ(N −M). Since ||(N −M) · (1/β, 1/β2)− h|| < C
(

1
β

)(m+2)/2

< C, it follows
from Lemma 10.8.10 that

δ(N −M) = (N −M) · (1/β, 1/β2)− h = δ(N)− δ(M) = δ(N)− δ(M) + x− y,

which implies y = x.

Version June 23, 2004

520 Words in Number Theory

Remark 10.8.15. The domain R is thus a fundamental domain of the torus
T2 = R2/Z2, that is,

R2 = ∪v∈Z2R + v, P0 = ∪γ∈Z2R+ γ,

both unions being disjoint up to sets of zero measure.

This tiling property has the following arithmetic formulation: the translation
by (1/β, 1/β2) in R2/Z2 = T2, which is the quotient map of the exchange map
E defined in Lemma 10.8.8 with respect to the lattice L0, is coded by the
Tribonacci word:

Theorem 10.8.16. The Tribonacci word codes the orbit of the point 0 under
the action of the translation

Rβ : T2 → T2, x �→ x + (1/β, 1/β2)

with respect to the partition of the fundamental domain R of T2 by the sets
(R1, R2, R3), that is,

∀N ∈ N, ∀i = 1, 2, 3, uN = i ⇐⇒ RN
β (0) ∈ Ri.

Proof. According to Proposition 10.8.12, for every N , there exists i = 1, 2, 3
such that δ(N) belongs to the interior of Ri; hence RN

β (0) (which is congruent
modulo Z2 to δ(N)) also belongs modulo Z2 to Ri. Furthermore, such an integer
i is unique according to Lemma 10.8.14. This implies that the coding of the
orbit of 0 under Rβ is well-defined.

Let E be the exchange of pieces introduced in Lemma 10.8.8. Let us prove
by induction on N that EN (0) = π0(f(u0 · · ·uN−1)). The induction property
holds for N = 0. Suppose that the induction property holds for N . One has
π0(f(u0 · · ·uN−1)) ∈ Int RuN . Hence EN+1(0) = E(π0(f(u0 · · ·uN−1))) =
π0(f(u0 · · ·uN−1)) + π0(euN) = π0(f(u0 · · ·uN)), which ends the induction
proof.

One thus deduces that for all N ∈ N, for all i = 1, 2, 3, EN (0) = π0(f(u0

· · ·uN−1)) ∈ Ri if and only if uN = i. In other words, we have proved that the
Tribonacci word codes the orbit of 0 under the action of the map E with respect
to the partition (R1,R2,R3), that is,

∀N ∈ N, ∀i = 1, 2, 3, uN = i⇐⇒ EN (0) = i.

It remains to check that for all N ∈ N, for all i = 1, 2, 3, EN (0) ∈ Ri if
and only if RN

β (0) ∈ Ri. By definition, the coordinates of EN (0) in the basis
(e3 − e1, e3 − e2) are equal to δ(N), which is congruent to RN

β (0) modulo Z2,
which ends the proof.

Version June 23, 2004

10.8. The Rauzy fractal 521

10.8.6. A cut and project scheme

The aim of this section is to reformulate the previous reults in terms of “cut
and project scheme”: Theorem 10.8.18 below states that the vertices of the
broken line are exactly the points of Z3 selected by shifting the Rauzy fractal
(considered as an “acceptance window”), along the eigendirection vβ .

A cut and project scheme consists of a direct product Rk ×H , k ≥ 1, where
H is a locally compact Abelian group, and a lattice D in Rk×H , such that with
respect to the natural projections p0 : Rk ×H → H and p1 : Rk ×H → Rk:

1. p0(D) is dense in H ;

2. p1 restricted to D is one-to-one onto its image p1(D).

This cut and project scheme is denoted (Rk ×H, D).
A subset Γ of Rk is a model set if there exists a cut and project scheme

(Rk × H, D) and a relatively compact set (i.e., a set such that its closure is
compact) Ω of H with nonempty interior such that

Γ = {p1(P); P ∈ D, p0(P) ∈ Ω}.

The set Γ is called the acceptance window of the cut and project scheme.
A Meyer set S is a subset of some model set of Rk, for some k ≥ 1, which

is relatively dense, that is, there exists R > 0 such that for all P ∈ Rk, there
exists M ∈ S such that the ball of radius R located at P contains M .

Remark 10.8.17. The locally abelian compact group which usually occur in
the previous definition are either Euclidean or p-adic spaces.

Let π1 denote the projection in R3 on the expanding line generated by vβ along
the plane P0. Let us recall that π0 denotes the projection on the plane P0 along
the expanding line.

Theorem 10.8.18. The subset π1({f(u0 · · ·uN−1); N ∈ N}) of the expanding
eigenline obtained by projecting under π1 the vertices of the Tribonacci broken
line is a Meyer set associated with the cut and project scheme (R × R2, Z3),
with acceptance window the interior of the set R of coordinates of the Rauzy
fractal. In other words,

{f(u0 · · ·uN−1); N ∈ N} = {P = (x, y, z) ∈ Z3; x + y + z ≥ 0; π0(P) ∈ IntR}.
(10.8.5)

Proof. Let H = R2, D = Z3, k = 1. The set H = R2 is in one-to-one correspon-
dence with the plane P0, whereas R is in one-to-one correspondence with the
expanding eigenline. Up to these two bijections, the natural projections become
respectively π0 and π1 and are easily seen to satisfy the required conditions (the
density has been proved in the proof of Proposition 10.8.1). It remains to prove
(10.8.5) to conclude.

Version June 23, 2004

522 Words in Number Theory

According to Lemma 10.8.12, for every N , π0(f(u0 · · ·uN−1)) ∈ Int R.
Conversely, let P = (x, y, z) ∈ Z3 with x + y + z ≥ 0 such that π0(P) ∈ Int R.
Let N = x + y + z. According to Lemma 10.8.2, there exists γ ∈ L0 such
that P = f(u0 · · ·uN−1) + γ. Since π0(P) = π0(f(u0 · · ·uN−1)) + π0(γ) =
π0(f(u0 · · ·uN−1)) + γ, one gets P = f(u0 · · ·uN−1), following Lemma 10.8.14.

Remark 10.8.19. Cut and project schemes are used to modelize quasicrystals
and to generate aperiodic tilings, as illustrated in Problem 10.8.6.

10.9. An application to simultaneous approximation

We end this chapter with a section devoted to the study of some Diophantine
approximation properties of the vector of translation (1/β, 1/β2) of the Tri-
bonacci translation. In particular, the sequence of Tribonacci numbers is shown
to be the sequence of best approximations of this vector for the Rauzy norm.
Indeed, the vertices of the broken line of the form f(σn(1)), n ∈ N, provide (af-
ter projection) very good approximations of the vector (1/β, 1/β2), and even,
the best approximations for the Rauzy norm.

Let v be vector and || ||0 a norm in R2. The increasing sequence of positive
integers (qn) is said to be the sequence of best approximations of the vector v
for the norm || ||0 if there exists a sequence of vectors (vn) such that for each
integer n and for every w ∈ Z2

||qn+1v − vn+1||0 < ||qnv − w||0,

and for every q < qn+1, q �= qn, and for every w ∈ Z2 then

||qnv − vn||0 < ||qv − w||0.

Theorem 10.9.1. 1. The vector (1/β, 1/β2) is badly approximable by the
rational numbers, that is, there exists K > 0 such that for every positive
integer N , then √

N |||N · (1/β, 1/β2)||| ≥ K.

2. For every norm, the sequence (qn+1
qn

) is bounded, where (qn) denotes the

sequence of best approximations of the vector (1/β, 1/β2).

3. The Tribonacci sequence (Tn) is the sequence of best approximations of
the vector (1/β, 1/β2) for the Rauzy norm.

4. Furthermore

lim
n→∞

√
Tn |||Tn · (1/β, 1/β2)||| = 1√

β2 + 2β + 3
.

Proof.

Version June 23, 2004

10.9. An application to simultaneous approximation 523

1. Let n ≥ 1 and let m ≥ 1 such that Tm−1 ≤ N < Tm. Hence the normal T -
representation of N =

∑
i≥0 εiTi satisfies εm−1 = 1. According to Lemma

10.8.13, then |||N · (1/β, 1/β2)||| ≥ C(1/β)m/2. There exist two constants
C1, C2 such that the Tribonacci sequence satisfies: ∀N ∈ N, C1β

n ≤ Tn ≤
C2β

n. Hence

|||N · (1/β, 1/β2)||| ≥ C

√
C1

Tm
≥ CC1√

C2βN
,

which ends the proof of the first assertion. Let us observe that such a
statement (up to the choice of the positive constant K) also holds for
every norm, by equivalence of the norms.

2. Let || ||0 be a norm in R2 and let (qn) be the sequence of best approxima-
tions of (1/β, 1/β2) associated with this norm.

Let n and m such that Tm ≤ qn < Tm+1. For all q < qn+1, one has by
definition |||q · (1/β, 1/β2)|||0 ≥ |||qn · (1/β, 1/β2)|||0, where ||| |||0 denotes
the distance to the nearest integer for the norm ||| |||0. We just have seen
(proof of Assertion 1) that |||qn · (1/β, 1/β2)||| ≥ Kq

−1/2
n . Hence

|||qn · (1/β, 1/β2)||| > KT
−1/2
m+1 .

On the other hand, one has for l large enough, according to Lemma 10.8.10,
that |||Tm+1+l · (1/β, 1/β2)||| = ||δ(Tm+1+l)||. Since the norms || ||0 and
|| || are equivalent, then |||Tm+1+l · (1/β, 1/β2)|||0 = ||δ(Tm+1+l)||0 also
holds for l large enough, still following Lemma 10.8.10. By equivalence of
the norms, there exists a constant C3 such that for l large enough

|||Tm+1+l · (1/β, 1/β2)|||0 = ||δ(Tm+1+l)||0 ≤ C3||δ(Tm+1+l)||
= C3|α|m+l+5 ≤ C3

√
C2|α|l+4T

−1/2
m+1 .

Hence there exists l0 large enough such that

|||Tm+1+l0 · (1/β, 1/β2)|||0 < |||qn · (1/β, 1/β2)|||0,

which implies that Tm+1+l0 ≥ qn+1. Hence one has

qn+1

qn
≤ Tm + 1 + l0

Tm
≤ C2/C1β

l0+1.

3. The sequence (δ(Tn))n which satisfies δ(Tn) = |α|n+4 is a decreasing se-
quence. Furthermore, for n ≥ 8, ||δ(Tn)|| ≤ |α|12 < C, which implies that
|||Tn · (1/β, 1/β2)||| = ||δ(Tn)||. One checks by considering a finite number
of cases that when n < T8, then the properties of good approximation
hold for the Tribonacci sequence.

Let us assume from now on that N ≥ T8. We want to prove that if
N < Tn+1 and N �= Tn, then for every v ∈ Z2

||δ(Tn)|| < ||N · (1/β, 1/β2)− v||.

Version June 23, 2004

524 Words in Number Theory

Since ||N · (1/β, 1/β2)− v|| < C implies that N · (1/β, 1/β2)− v = δ(N),
it is sufficient to check that ||δ(Tn)|| < ||δ(N)||.
Let n ∈ N and let N < Tn+1, N �= Tn, with normal T -representation
N =

∑
0≤i≤k εiTi. Let i0 = min{i| εi �= 0} (i0 �= n since N �= Tn); hence

N =
∑

i0≤n εiTi. One has

||δ(N)|| = ||
∑

i0≤i≤n

εiB
iz|| ≥ ||Bi0z + εi0+1B

i0+1z|| − ||
∑

i0+2≤i≤n

εiB
iz||.

Let us prove that ||Bi0z + εi0+1B
i0+1z||− ||

∑
i0+2≤i≤n εiB

iz|| > |α|12+i0 .

• Assume first that εi0+1 = 0. Then

||
n∑

i≥i0+2

εiB
iz|| ≤ ||Bi0+2

∑
i≥0

εi0+2+iB
iz|| ≤ |α|i0+2||z||

1− |α|3 =
|α|i0+6

1− |α|3 .

Hence ||δ(N)|| ≥ |α|i0+4
(

1−|α|2−|α|3
1−|α3|

)
> 0.

• Assume now that εi0+1 = 1, and thus εi0+2 = 0. One has

||δ(N)|| ≥ |α|i0(||z + Bz|| − |α|7
1− |α|3).

It remains to check that |α|4
(

1−|α|2−|α|3
1−|α3|

)
, ||z+Bz||− |α|7

1−|α|3 > |α|12

to conclude.

If n− i0 ≥ 8, then δ(N) > |α|i0+12 ≥ |α|n+4 = ||δ(Tn)||.
In the case where n− i0 ≤ 7, one checks by considering a finite number of
cases that ||

∑m
i=0 εiB

iz|| > |α|m+4, for 0 ≤ m ≤ 7, which implies

δ(N) = |α|i0 ||
n−i0∑
i=0

εiB
iz|| > |α|i0 |α|n−i0+4 ≥ ||δ(Tn)||.

4. Let K0 be defined as the smallest real number such that there exist in-
finitely many integers N satisfying

√
N |||N · (1/β, 1/β2)||| < K0.

¿From Assertion 1, one deduces that K0 is finite. In fact, K0 is the smallest
real number such that there exist infinitely many integers N satisfying√

Tn ||δ(Tn)|| < K0, since (Tn) is the sequence of best approximations of
(1/β, 1/β2). The following limit exists and equals:

lim
n→+∞

√
Tn ||δ(Tn)|| = 1√

β2 + 2β + 3
,

hence the result.

Version June 23, 2004

Problems 525

Problems

Section 10.4

10.4.1 (gcd). Let q ≥ 2 be an integer. Prove that for all integers m, n ≥ 1

gcd(qm − 1, qn − 1) = gcd(m, n).

(Hint. If m ≥ n and m = αn + β with β ∈ [0, n − 1], prove that an
integer divides both qm−1 and qn−1 if and only if it divides both qm−1
and qβ − 1. Then use the Euclidean algorithm to compute gcd’s).
Deduce that qm − 1 divides qn − 1 if and only if m divides n.

Section 10.5

10.5.1 (Möbius function). Define the Möbius function µ on the integers ≥ 1
by

µ(n) :=

 1 if n = 1,
0 if there exists k ≥ 2 such that k2 divides n,
(−1)r if n = p1p2 · · · pr, where the p′is are distinct primes.

a. Prove that, for every n ≥ 1,∑
d|n

µ(d) =
{

1 if n = 1,
0 if n ≥ 2.

(Hint. Note that, if n =
∏

1≤j≤r p
αj

j is the decomposition of n ≥ 2
into primes, then∑

d|n
µ(d) =

∑
d|p1···pr

µ(d) =
∑

0≤j≤r

(
r

j

)
(−1)j = (1− 1)r = 0.)

b. Prove the Möbius inversion formula: if f and g are two maps
defined on the positive integers, then

∀n ≥ 1, g(n) =
∑
d|n

f(d) ⇒ ∀n ≥ 1, f(n) =
∑
d|n

µ(d)g(n/d).

c. Prove that, if F and G are two maps defined on the real numbers,
then (summing over n ≤ x means that the summation is over the
integers n such that n ≤ x)

∀x ≥ 0, G(x) =
∑
n≤x

F (n)⇒ ∀x ≥ 0, F (x) =
∑
n≤x

µ(n)G(
x

n
).

Version June 23, 2004

526 Words in Number Theory

d. Define a square-free number as an integer that is not divisible by
any square of an integer ≥ 2. Prove that for each integer n ≥ 1
there exists a unique square-free number q and a unique integer a
such that n = a2q.

e. Let �x� be the integral part of the real x. Let Q(x) be the number
of square-free numbers smaller than x. Prove that, for each real
number x ≥ 0,

Q(x) =
∑

n≤
√

x

µ(n)� x

n2
�.

(Hint. Start from

�x� =
∑
n≤x

1 =
∑

a2q≤x
a≥1

q squarefree

1 =
∑

a≤
√

x

Q(
x

a2
).

Deduce that

�x2� =
∑
n≤x

Q(
x2

n2
)

and use Part b. above.)
f. Prove that the density of the square-free numbers exists and is

equal to
∑

n≥1 µ(n)/n2.
(Hint. Write

Q(x) =
∑

n≤
√

x µ(n)� x
n2 � = x

∑
n≤

√
x

µ(n)
n2 + O(

√
x)

= x
∑

n≥1
µ(n)
n2 + O(

√
x).)

g. Prove that
∑

n≥1 µ(n)/n2 = 6/π2.
(Hint. Write ∑

m≥1

µ(m)
m2

∑
n≥1

1
n2

=
∑
	≥1

1
�2

∑
m|	

µ(m)

and use that
∑

n≥1 1/n2 = π2/6.)
h. Let ψk(n) denote the number of primitive words of length n over

an alphabet of size k. Prove that

kn =
∑
d|n

ψk(d).

(Hint. Every word w can be written in a unique way as w = vd,
where v is a primitive word, and d is an integer ≥ 1. Of course d
must divide the length of w.)
Using the inversion formula b. above deduce that

ψk(n) =
∑
d|n

µ(d)kn/d.

Version June 23, 2004

Problems 527

10.5.2 (Algebraicity). Prove that, if the formal power series
∑

anXn has in-
tegral coefficients and is algebraic over the field Q(X), then the formal
power series

∑
(an mod p)Xn is algebraic over Fp(X).

Section 10.7

10.7.1 (Complexity function of the Tribonacci word). First observe that the
letters 2 and 3 are only followed or preceded by the letter 1 in the
Tribonacci word u. Second, prove that every factor w distinct from
the empty word ε of the Tribonacci word u can be uniquely written as
follows: w = r1σ(v)r2, where v is a factor of u, r1 ∈ {ε, 2, 3}, and r2 = 1
if the last letter of w is 1, and r2 is the empty word, otherwise. Deduce
from this the following combinatorial properties:
a. Prove that the Tribonacci word u is not ultimately periodic, that

is, periodic from some rank on.
b. A factor w of a word x is said right special if there exist two distinct

letters a and b such that both wa and wb are factors of x. Prove
that the Tribonacci word admits exactly one right special factor of
each length.

c. The complexity function of an infinite word s is defined as the
function P (s, n) which counts the number of distinct factors of
length n of s. Deduce that the complexity function P (u, n) of the
Tribonacci word satisfies: ∀n ∈ N, P (u, n) = 2n + 1.

d. Prove that the Tribonacci word is uniformly recurrent, i.e., every
factor appears infinitely often with bounded gaps.

e. Use the same method to prove that the Fibonacci word (defined
in Section 10.1.4) admits exactly n + 1 factors of length n.

f. Prove that the topological entropy (as defined in Section 1.8.3) of
the set of factors of the Tribonacci word as well as the topological
entropy of the set of factors of the Fibonacci word are equal to 0.

10.7.2 Prove that the Tribonacci word is not an automatic sequence, by consid-
ering the probabilities of occurrence of the letters. Deduce from Problem
1.8.1 and Section 1.8.6 the values of the probabilities of occurrence of
the factors of length 2 of the Tribonacci word.

10.7.3 (Dumont-Thomas numeration system on words). The aim of this prob-
lem is to extend the statement of Lemma 10.7.2 to more general mor-
phisms following Dumont and Thomas 1989, 1993, and Rauzy 1990.
Let τ be a morphism on the alphabet A satisfying the assumptions of
Proposition 10.1.3. The prefix automaton of τ is defined as follows: its
edges are the letters of A; there is an edge from a to b labeled by p ∈ A∗

if τ(a) = pas, where s ∈ A∗. For instance the prefix automaton of the
Fibonacci morphism : 0→ 01, b → 0 is the Golden mean automaton as
defined in Example 1.3.5, where the label a has to be replaced by 1 and
b by 0. Let v be the fixed point of τ having a as first letter, in the sense
of Remark 10.1.4. Prove that every finite prefix of v can be uniquely

Version June 23, 2004

528 Words in Number Theory

expanded as
τn(pn)τn−1(pn−1) · · · p0,

where pn �= ε, and pn · · · p0 is the sequence of labels of a path in the
prefix automaton starting from the letter a. Conversely, prove that any
such sequence of labels generates a finite prefix of v.

10.7.4 (Statistics on letters for Pisot morphisms). A morphism τ : A∗ → A∗

is said of Pisot type if first it satisfies the assumptions of Proposition
10.1.3, and second, the eigenvalues of its incidence matrix satisfy the
following: there exists a dominant eigenvalue α such that for every other
eigenvalue λ, one gets α > 1 > |λ| > 0. Deduce from Problem 10.7.3
that the results of Proposition 10.7.4 hold for any fixed point of a Pisot
type morphism.

10.7.5 (Uniform balance). An infinite word v ∈ Aω is said uniformly balanced
if there exists C > 0 such that for any two factors w, w′ of the same
length of v, and for any letter i ∈ A, then

| |w|i − |w′|i| ≤ C.

An infinite word v ∈ Aω is said to have bounded remainder letters if
first, for every letter i, its probability of occurrence π(i) in v exists, and
second, there exists C′ such that

∀N, | |v0v1 · · · vN−1|i − π(i)N | ≤ C′.

Prove that a sequence is uniformly balanced if and only if it has bounded
remainder letters. Deduce from Problem 10.7.4 that a fixed point of a
Pisot morphism is uniformly balanced.
For more results on the balance properties of fixed points of morphisms,
see Adamczewski 2003.

Section 10.8

10.8.1 (Bounded remainder sets). A measurable set X with respect to the
Lebesgue measure µ() in T2 is said to be a bounded remainder set for
the translation Rβ if there exists C > 0 such that

∀N, |Card{i; 0 ≤ i ≤ N, Rn
β(0) ∈ X} − µ(X)| ≤ C.

Deduce from Proposition 10.7.4 and Theorem 10.8.16 that the sets Ri,
i = 1, 2, 3, are bounded remainder sets.
Bounded remainder sets have been widely studied, see for instance Fer-
enczi 1992.

10.8.2 (Generalized Rauzy fractal and self-similarity). Let τ be a primitive
morphism of Pisot type over the alphabet {1, · · · , d}. Define similarly
as in Section 10.8.1 a generalized Rauzy fractal R(τ) as well as its

Version June 23, 2004

Problems 529

division into the pieces Ri(τ), i = 1, · · · , d. Prove that the statement of
Proposition 10.8.1 still holds.
Prove that for i = 1, · · · , d, that

M−1
τ (Ri(τ)) = ∪1≤j≤d ∪pis, τ(j)=pis (Rj(τ) + M−1

τ (π0 ◦ f(p))).

(Hint. Apply Mσ to this equality.) This equality means that the pieces
Ri(τ) of the Rauzy fractal are self-similar (and more precisely self-
affine), that is, they can be inflated under the expanding action of M−1

τ ,
the image of each piece Ri(τ), i = 1, · · · , d being redivided into trans-
lates of the sets Rj(τ). This result is a generalization of the statement
of Lemma 10.8.7. This self-similarity property is considered for instance
in Holton and Zamboni 1998, Arnoux and Ito 2001, Sirvent and Wang
2002.

10.8.3 Deduce from the proof of Proposition 10.8.1 an upper bound on the
diameter of the Rauzy fractal R.

10.8.4 (β-numeration). Prove that every positive real number can be expanded
as

x =
+∞∑

i=−d

εiβ
−i, where d ∈ Z, ∀i, εi ∈ {0, 1}, εiεi+1εi+2 = 0,

(10.10.1)
by introducing the β- transformation map Tβ : [0, 1[→ [0, 1[, x �→ {βx};
such an expansion (with the above admissibility conditions (10.10.1)) is
called a β-expansion; is there unicity of such an expansion? For more
details on the β-numeration, see for instance Lothaire 2002.

10.8.5 (F-property). The aim of this problem is to prove that the set Fin(β) of
positive real numbers having a finite β-expansion (see Problem 10.8.4)
coincides with the set (Z[β−1])+ of positive polynomials in 1/β with
integer coefficients. This property is called the F -property and has been
introduced in Frougny and Solomyak 1992, see also Akiyama 1999.
a. Let Z+[β−1] denote the set of polynomials in 1/β with non-negative

integer coefficients. Prove that Fin(β) is included in Z+[β−1]. (Use
the fact that 1 = β3 + β2 + β.)

b. The aim of this question is to prove that Z+[β−1] = (Z[β−1])+. Let
x ∈ (Z[β−1])+. Prove that there exists s ∈ N and (x0, x1, x2) ∈ Z3

such that

x =
1
βs

(x0 + x1β
−1 + x2β

−2) =
1

βs+1
< (x0, x1, x2), vβ >,

(we consider here the Euclidean scalar product in R3). Deduce
that for all n ∈ N, x = 1

βs+n <tMn
σ (x0, x1, x2), vβ > . Apply the

Perron Frobenius theorem to conclude.
c. The aim of this question is to prove that Z+[β−1]∩[0, 1[is included

in Fin(β). For that purpose we introduce an algorithm consisting in

Version June 23, 2004

530 Words in Number Theory

the repetition of the action of two steps A1 and A2, that transforms
a finite β-representation of x (with digits not necessarily satisfying
the admissible conditions (10.10.1)) into the β-expansion of x.
Let x =

∑d
i=1 xiβ

−i ∈ Z+[β−1] ∩ [0, 1[, where ∀i, xi ∈ N.

Step A1. Assume that there exists an integer k ≥ 1 such that
xk+1 ≥ 1, xk+2 ≥ 1, and xk+3 ≥ 1. Let A1 be the algorithm which
maps (xi)i≥1 (where we set xi = 0 for i > d) to

(x′
i) = x1 · · · (xk + 1)(xk+1 − 1)(xk+2 − 1)(xk+3 − 1)xk+4 · · ·

Prove that
∑

i x′
i <
∑

i xi and that
∑

i xiβ
−i =

∑
i x′

iβ
−i.

Step A2. Assume that there exists an index k such that xk ≥ 2.
Prove that k ≥ 2. Let l be the smallest integer such that xl ≥ 2.
Let A2 be the algorithm which sends (xi)i≥1 to

(x′
i) = x1 · · · (xl − 1)(xl+1 + 1)(xl+2 + 1)(xl+3 + 1) · · ·

Let k ≥ 1 be the largest integer such that k ≤ l and x′
k+1 ≥ 1,

x′
k+2 ≥ 1, x′

k+3 ≥ 1. Then, the algorithm A2 sends (x′
i) to

(x′′
i) = x′

1 · · · (x′
k + 1)(x′

k+1 − 1)(x′
k+2 − 1)(x′

k+3 − 1).

The sequence (x′′
i) is the image of (xi) under the action of A2.

Prove that
∑

i x′′
i =

∑
i xi and that

∑
i xiβ

−i =
∑

i x′′
i β−i.

We now apply repeatedly steps A1 and A2 to x, defining a sequence
(x(j)) such that for all j, x(j) takes finitely but all zero values. If for
some value j0, x(j0) satisfies the admissibility conditions (10.10.1),
then we set x(j) = x(j0), for j ≥ j0, and we apply no step anymore.
Prove that for j large enough, step A1 cannot be performed any
more.
Let us assume that A2 can be applied indefinitely. Let J be such
that for j > J , step A1 cannot be performed any more. Let lj

denote, for j > J , the smallest index l such that x
(j)
l ≥ 2. Prove

that (lj) tends to infinity and that the sequence (x(j)) is convergent.
Find a contradiction.

d. Conclude.
We have followed here the proof of Frougny and Solomyak 1992.

10.8.6 (A tiling of the line). We have seen that π1({f(u0 · · ·uN−1; N ∈ N}))
is a Meyer set in Section 10.8.6. We associate here in a natural way to
this set of points a tiling of the line.
Prove that π1({f(u0 · · ·uN−1; N ∈ N})) defines a tiling T of the half-
line generated by vβ in the positive octant {(x, y, z); x, y, z > 0} by seg-
ments of three distinct lengths, say l1, l2, l3, In other words, prove that
the distance between two successive points of π1({f(u0 · · ·uN−1; N ∈
N})) (with respect to the orientation on the half-line provided by vβ)
equals either l1, l2 or l3.

Version June 23, 2004

Notes 531

Prove that under a suitable choice of a unit vector on the half-line, then
π1({f(u0 · · ·uN−1; N ∈ N})) is in one-to-one correspondence with the
set of β-integers

Z+
β = {

d∑
i=0

εiβ
i; d ∈ N, ∀i, εi ∈ {0, 1}, εiεi+1εi+2 = 0}.

Let (tn)n≥0 denote the set of elements of π1({f(u0 · · ·uN−1; N ∈ N}))
ordered in increasing order (still with respect to the orientation on the
half-line provided by vβ). One can code the tiling T as follows: for
n ≥ 0, for i = 1, 2, 3, then vn = i if and only if tn+1 − tn = li. Prove
that (vn)n≥0 is equal to the Tribonacci word.

Notes

For general references on substitutive sequences and substitutive dynamical sys-
tems, see for instance Queffélec 1987 and Fogg 2002.

The examples in Section 10.1.4 are famous. For more on Sturmian words, one
can read for example Lothaire 2002 and Fogg 2002. For more on the Thue–Morse
word, its history, and its many occurrences in the literature, see for example
Allouche and Shallit 1999. The Rudin-Shapiro word was first introduced in
Shapiro 1952. For all these words and for the paperfolding word one can read
the notes of Allouche and Shallit 2003.

In Section 10.2.5, Lemma 10.2.13 is a classical result in Perron–Frobenius
theory (see for example Gantmacher 1959). The main theorem of Section 10.2.5
(Theorem 10.2.15) is due to Cobham 1972.

The main theorem of Section 10.3.3 (Theorem 10.3.4) was proved in Chris-
tol 1979, see also Christol, Kamae, Mendès France, and Rauzy 1980. More
generally, it is also possible to give a simple combinatorial characterization of
primitive substitutive sequences (see Durand 1998, Holton and Zamboni 1999).

The first proof of Theorem 10.4.2 in Section 10.4 is due to Wade 1941. The
proof we give here is adapted from a proof given in Allouche 1990.

The proof of Proposition 10.5.1 that we give in Section 10.5 comes from Al-
louche 1997. The first proof was given in Petersen 1994 and Petersen 1996.
For a proof of the theorem of Chomsky-Schützenberger, see Chomsky and
Schützenberger 1963.

The theorem of Ridout given without proof in Section 10.6 was given in
Ridout 1957. Corollary 10.6.2 is due to Ferenczi and Mauduit 1997. Theo-
rem 10.6.3 is also due to Ferenczi and Mauduit 1997 under a more general form.
A slightly more precise result in the case of binary alphabets is given in Allouche
and Zamboni 1998. For more results on the transcendence of “automatic” real
numbers, see for example Allouche and Shallit 2003.

We do not claim here for exhaustivity in our choice of applications of the
Rauzy fractal in number theory. We have chosen the more representative prop-
erties which also motivated G. Rauzy in its study of the Tribonacci word in

Version June 23, 2004

532 Words in Number Theory

Rauzy 1982. All the results of Section 10.8 follow carefully the approach of
the seminal paper Rauzy 1982, from which come the proofs of Theorem 10.8.16,
Lemma 10.8.10 and 10.8.13, as well as the introduction of the matrix B, whereas
the proof of Theorem 10.9.1 is due to Chekhova, Hubert, and Messaoudi 2001.
The fact that the vector (1/β, 1/β2) is badly approximable by the rationals (As-
sertion 1 of Theorem 10.9.1) is a classical statement for elements of a totally
real field number (see for instance Cassels 1957).

Arnoux–Rauzy words. The Tribonacci translation first occurred in Arnoux 1988,
where the Tribonacci morphism was used to model an interval exchange map of 6
intervals and to build explicitly a continuous and surjective conjugacy between
this interval exchange map and the Rauzy translation (see also Arnoux and
Yoccoz 1981); these results have led to the introduction of the family of Arnoux–
Rauzy words in Arnoux and Rauzy 1991, to which the Tribonacci word belongs,
as a generalization of the family of Sturmian words.

Arnoux–Rauzy words are defined as the one-sided words x with complexity
P (x, n) = 2n+1 for all n which are recurrent and which have for every length a
unique right special factor and a unique left special factor, each of these special
factors being extendable in three different ways. Let us note that they can be
similarly defined over any alphabet of larger size, say d; one thus obtains infinite
words of complexity (d−1)n+1. Contrary to the Sturmian case, these words are
not characterized by their complexity function any more. For instance, codings
of non-degenerated three-interval exchanges have also complexity 2n+1. Let us
observe that Arnoux–Rauzy words can be described as exchanges of six intervals
of the unit circle (Arnoux and Rauzy 1991).

The combinatorial properties of the Arnoux–Rauzy words are well-under-
stood and are perfectly described by a two-dimensional continued fraction algo-
rithm defined over a subset of zero measure of the simplex introduced in Arnoux
and Rauzy 1991, Risley and Zamboni 2000, Zamboni 1998 and in Chekhova
2000. By using this algorithm, one can express in an explicit way the probabil-
ities of occurrence of factors of given length (Wozny and Zamboni 2001), one
can count the number of all the factors of the Arnoux–Rauzy words (Mignosi
and Zamboni 2002), or prove that the associated dynamical system has always
simple spectrum (Chekhova 2000). See also Castelli, Mignosi, and Restivo 1999,
and Justin 2000 for the connections with a generalization of the Fine and Wilf’s
theorem for three periods. The family of Arnoux–Rauzy words has been itself
extended to the family of episturmian words (Justin and Pirillo 2002b, 2002a).

Rauzy fractal. The study of the topological properties of the Rauzy fractal is
mainly due to Rauzy 1982, 1988, where the Rauzy fractal R is shown to be
connected with simply connected interior (and so do the three pieces of the
Rauzy fractal Ri, i = 1, 2, 3). See also Messaoudi 1998 and Messaoudi 2000a
for a parametrisation of its boundary, the points which have several expansions
being studied in details (see also Remark 10.8.9). For a study of its fractal
boundary, see Ito and Kimura 1991, where it is proved to be a Jordan curve

Version June 23, 2004

Notes 533

generated by Dekking’s fractal generation method (Dekking 1982), from which
a computation of its Hausdorff dimension is deduced.

Theorem 10.8.16 states that the translation v �→ v+(1/β, 1/β2) on T2 can be
coded using the Tribonacci morphism. In dynamical terms, this theorem extends
to the fact that the symbolic dynamical system generated by the Tribonacci
word is measure-theoretically isomorphic to a translation of the torus T2, the
isomorphism being a continuous onto map. Furthermore it is also possible to
construct a Markov partition for the toral automorphism of T3 of matrix given
by the incidence matrix of the Tribonacci morphism, this construction being
based on the Rauzy fractal.

More generally, it is possible to associate a generalized Rauzy fractal to any
Pisot unimodular morphism (see Problem 10.8.2). (A morphism is said unimod-
ular if the determinant of its incidence matrix equals ±1.) There are several
definitions associated with several methods of construction for such Rauzy frac-
tals. We have given here a definition based on formal power series inspired by
the seminal paper Rauzy 1982, by Messaoudi 1998, 2000a, and by Canterini
and Siegel 2001a, 2001b. A different approach via iterated function systems
and generalized substitutions has been developed following ideas from Ito and
Kimura 1991, and Arnoux and Ito 2001, Sano, Arnoux, and Ito 2001. Indeed,
Rauzy fractals can be described as the attractor of some graph iterated function
system (IFS), as in Holton and Zamboni 1998 where one can find a study of
the Hausdorff dimension of various sets related to Rauzy fractals, and as in Sir-
vent 2000a, 2000b, Sirvent and Wang 2002 with special focus on the self-similar
properties of Rauzy fractals (see Lemma 10.8.7 and Problem 10.8.2). For more
details on both approaches, see Chap. 7 and 8 of Fogg 2002. Both methods
apply to unimodular morphisms of Pisot type.

More generally, for any unimodular morphism of Pisot type the measure-
theoretical isomorphism with a translation on the torus (or equivalently the
existence of a periodic tiling of the plane by the Rauzy fractal) is conjectured
to hold. A large literature is devoted to this question, which is surveyed in Fogg
2002, Chap.7. Inspired by Bedford 1986, Ito and Ohtsuki 1993 extends Rauzy’s
approach in order to produce Markov partitions for toral automorphisms pro-
duced by the modified Jacobi-Perron algorithm. See also Praggastis 1999.

In particular, Arnoux–Rauzy words which are fixed points of primitive mor-
phisms (which are thus unimodular and of Pisot type following Arnoux and Ito
2001) also generate symbolic dynamical systems which are measure-theoretically
isomorphic to toral translations. It was believed that all Arnoux–Rauzy words
originated from toral translations, and more precisely, that they were natural
codings of translations over T2. This conjecture was disproved in Cassaigne,
Ferenczi, and Zamboni 2000.

Tribonacci numeration system. The Tribonacci numeration system is the canon-
ical numeration system associated with the positive root β of X3 = X2 +X +1.
More generally, for a given β > 1, one can expand real numbers in [0, 1[as
powers of the number β using the greedy algorithm: x =

∑∞
k=1 bkβ−k, with

some conditions on the nonnegative integers bk (see also Problem 10.8.4); such

Version June 23, 2004

534 Words in Number Theory

expansions are called β-expansions and are generated by the β-transformation
x �→ βx − [βx] which also generates as a dynamical system the β-shift (for
more details, see for instance Lothaire 2002). One can also represent natural
integers in a base given by an infinite sequence of integers (which generalizes
Lemma 10.7.1) canonically associated with the β-numeration: the set of fac-
tors of greedy representations of natural integers in this base and the factors
of the β-shift are the same. Similar compact sets with fractal boundary are
considered as geometrical representations of the β-shift when β is a Pisot unit,
in Thurston 1989, in Akiyama 1999 and in Praggastis 1999, where topological
or tiling properties such as Proposition 10.8.12 or Lemma 10.8.14 are studied
in connection with the so-called F -property (Frougny and Solomyak 1992) (see
also Problem 10.8.5). Generalized Rauzy fractals issued from the β-numeration
are also closely related to canonical number systems (see for instance Akiyama
and Pethö 2002).

There are also some close connections between the dynamical properties of
the Rauzy fractal and the extension of the Fibonacci multiplication (introduced
in Knuth 1988) to the Tribonacci recurrence relation, as studied for instance in
Arnoux 1989 and Messaoudi 2000b, 2002.

Rauzy fractals can be used to characterize the numbers that have a purely
periodic β-expansion, producing a kind of generalized Galois’ theorem on clas-
sical continuous fractions. It is known following Schmidt 1980 and Bertrand
1977 that elements of Q(β) have a ultimately periodic expansion when β is a
Pisot number. A characterization of those points having an immediately peri-
odic expansion is given in Sano 2002, see also Ito and Sano 2001, by introducing
a realization of the natural extension of the β-transformation acting on the as-
sociated generalized Rauzy fractal for β being a Pisot unit which is a simple
β-number. See also Ito 2000 (and more generally Gambaudo et al. 2000) for
closely related results for elements of cubic fields. Let us observe furthermore
that the results of Section 10.9 can be extended following the same ideas to
other cubic numbers (Ito 1996, Ito, Fujii, and Yasutomi 2003). Such results can
also be proved using algebraic geometry following Adams 1969.

Rauzy tilings have also been studied in theoretical physics and quasycristal
theory in Vidal and Mosseri 2000, 2001 as outlined in Section 10.8.6, where we
have followed the terminology of Moody 1997. For more on mathematical qua-
sicrystals, see for instance Baake and Moody 2000. See also Burd́ık et al. 1998,
2000, Verger Gaugry and Gazeau 2004 for connected results in the framework
of beta-numeration.

Version June 23, 2004

References 535

References

Adamczewski, B. (2003). Balances for fixed points of primitive substitutions, Theoret. Com-
put. Sci., 307, 47–75.

Adams, W. W. (1969). Simultaneous asymptotic diophantine approximations to a basis of a
real cubic number field, J. Number Theory, 1, 179–194.

Adebiyi, E. F., Jiang, T., and Kaufmann, M. (2001). An efficient algorithm for finding
short approximate non-tandem repeats, In Intelligent Systems for Molecular Biology
(ISMB), pp. 5–12.

Adebiyi, E. F. and Kaufmann, M. (2002). Extracting common motifs under the Levenshtein
measure: Theory and experimentation, In Guigó, R. and Gusfield, D. (Eds.), Al-
gorithms in Bioinformatics (WABI 2002), Vol. 2452 of Lect. Notes Comp. Sci., pp.
140–156. Springer-Verlag.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1975). The Design and Analysis of Computer
Algorithms. Addison-Wesley.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1983). Data Structures and Algorithms.
Addison-Wesley.

Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques and
Tools. Addison-Wesley.

Akiyama, S. (1999). Self affine tiling and Pisot numeration system, In Number Theory and
its Applications (Kyoto, 1997), Vol. 2 of Dev. Math., pp. 7–17. Kluwer.

Akiyama, S. and Pethö, A. (2002). On canonical number systems, Theoret. Comput. Sci., 70,
921–933.

Allauzen, C. and Mohri, M. (2003). Efficient algorithms for testing the twins property, J.
Autom. Lang. Comb., 8 (2), 117–144.

Allauzen, C., Mohri, M., and Riley, M. (2004). Statistical modeling for unit selection in speech
synthesis, In 42nd Meeting Assoc. Computational Linguistics (ACL 2004), Barcelona,
Spain.

Allouche, J.-P. (1990). Sur la transcendance de la série formelle π, Sém. Théor. Nombres
Bordeaux, 2, 103–117.

Allouche, J.-P. (1997). Note on the transcendence of a generating function, In Laurincikas,
A., Manstavicius, E., and Stakenas, V. (Eds.), Proc. Palanga Conference, Vol. 4 of
New Trends in Probability and Statistics, pp. 461–465. VSP Science.

Allouche, J.-P. and Shallit, J. (1999). The ubiquitous Prouhet-Thue-Morse sequence, In
Ding, C., Helleseth, T., and Niederreiter, H. (Eds.), Sequences and Their Applications,
Proceedings of SETA ’98, pp. 1–16. Springer-Verlag.

Allouche, J.-P. and Shallit, J. (2003). Automatic Sequences. Cambridge University Press.

Allouche, J.-P. and Zamboni, L. Q. (1998). Algebraic irrational binary numbers cannot be
fixed points of non-trivial constant-length or primitive morphisms, J. Number Theory,
69, 119–124.

Version June 23, 2004

536 References

Alon, N. and Spencer, J. (1992). The Probabilistic Method. J. Wiley and Sons.

Alonso, L., Rémy, J. L., and Schott, R. (1997). A linear-time algorithm for the generation of
trees, Algorithmica, 17 (2), 162–182.

Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990). Basic local alignment
search tool, J. Mol. Biol., 215, 403–410.

Ambjørn, J., Durhuus, B., and Jonsson, T. (1997). Quantum Geometry. Cambridge Mono-
graphs on Mathematical Physics. Cambridge University Press.

Angluin, D. (1982). Inference of reversible languages, J. Assoc. Comput. Mach., 29 (3),
741–765.

Angluin, D. (1987). Learning regular sets from queries and counterexamples, Inform. Comput.,
75 (2), 87–106.

Apostolico, A. (1985). The myriad virtues of suffix trees, In Apostolico, A. and Galil, Z. (Eds.),
Combinatorial Algorithms on Words, Vol. 12 of NATO Advanced Science Institutes,
Series F, pp. 85–96. Springer-Verlag.

Apostolico, A., Bock, M., and Xuyan, X. (1998). Annotated statistical indices for sequence
analysis, In Compression and Complexity of Sequences 97, pp. 215–229. IEEE Com-
puter Society Press.

Apostolico, A. and Crochemore, M. (1991). Optimal canonization of all substrings of a string,
Inform. Comput., 95 (1), 76–95.

Apostolico, A. and Preparata, F. (1983). Optimal off-line detection of repetitions in a string,
Theoret. Comput. Sci., 22 (3), 297–315.

Apostolico, A. and Szpankowski, W. (1992). Self-alignments in words and their applications,
J. Algorithms, 13, 446–467.

Arnoux, P. (1988). Un exemple de semi-conjugaison entre un échange d’intervalles et une
translation sur le tore, Bull. Soc. Math. France, 116 (4), 489–500.

Arnoux, P. (1989). Some remarks about Fibonacci multiplication, Appl. Math. Lett., 2 (4),
319–320.

Arnoux, P. and Ito, S. (2001). Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc.
Simon Stevin, 8 (2), 181–207.

Arnoux, P. and Rauzy, G. (1991). Représentation géométrique de suites de complexité 2n+1,
Bull. Soc. Math. France, 119 (2), 199–215.

Arnoux, P. and Yoccoz, J.-C. (1981). Construction de difféomorphismes pseudo-Anosov, C.
R. Acad. Sci. Paris Sér. I Math., 292 (1), 75–78.

Arratia, R., Bollobas, B., Coppersmith, D., and Sorkin, G. (2000). Euler circuits and DNA
sequencing by hybridization, Discr. Appl. Math., 104, 63–69.

Arratia, R., Goldstein, L., and Gordon, L. (1989). Two moments suffice for Poisson approxi-
mations : the Chen-Stein method, Ann. Probab., 17, 9–25.

Arratia, R., Goldstein, L., and Gordon, L. (1990). Poisson approximation and the Chen-Stein
method, Statist. Sci., 5, 403–434.

Arratia, R., Martin, D., Reinert, G., and Waterman, M. S. (1996). Poisson approximation for
long repeats in a random sequence with application to sequencing by hybridization, J.
Comput. Biol., 3, 425–463.

Arratia, R., Morris, P., and Waterman, M. S. (1988). Stochastic Scrabble: large deviations
for sequences with scores, J. Appl. Probab., 25, 106–119.

Arratia, R. and Waterman, M. (1994). A phase transition for the score in matching random
sequences allowing deletions, Ann. Appl. Probab., 4, 200–225.

Arratia, R. and Waterman, M. S. (1989). The Erdös-Rényi strong law for pattern matching
with a given proportion of mismatches, Ann. Probab., 17, 1152–1169.

Version June 23, 2004

References 537

Ash, R. B. (1990). Information Theory. Dover. Corrected reprint of the 1965 original edition.

Atallah, M., Jacquet, P., and Szpankowski, W. (1993). A probabilistic analysis of a pattern
matching problem, Random Structures & Algorithms, 4, 191–213.

Baake, M. and Moody, R. V. (Eds.) (2000). Directions in Mathematical Quasicrystals, Vol. 13
of CRM Monograph Series. Amer. Math. Soc.

Baeza-Yates, R. and Ribero-Neto, B. (1999). Modern Information Retrieval. Addison-Wesley.

Bahl, L. R., Jelinek, F., and Mercer, R. (1983). A maximum likelihood approach to continuous
speech recognition, IEEE Trans. Pattern Anal. Machine Intell., 5 (2), 179–190.

Baldi, P. and Brunak, S. (1998). Bioinformatics. The Machine Learning Approach. The MIT
Press.

Banderier, C. and Flajolet, P. (2002). Basic analytic combinatorics of directed lattice paths,
Theoret. Comput. Sci., 281 (1-2), 37–80.

Barbour, A. D., Chen, L., and Loh, W.-L. (1992). Compound Poisson approximation for
nonnegative random variables via Stein’s method, Ann. Probab., 20, 1843–1866.

Barbour, A. D. and Chryssaphinou, O. (2001). Compound Poisson approximation: a user’s
guide, Ann. in Appl. Probab., 11, 964–1002.

Barbour, A. D., Chryssaphinou, O., and Vaggelatou, E. (2001). Applications of compound
Poisson approximation, In Charalambides, C. A., Koutras, M. V., and Balakrishnan,
N. (Eds.), Probability and Statistical Models with Applications, pp. 41–62. Chapman
and Hall.

Barbour, A. D., Holst, L., and Janson, S. (1992). Poisson Approximation. Oxford University
Press.

Barbour, A. D. and Mansson, M. (2002). Compound Poisson process approximation, Ann.
Probab., 30, 1492–1537.

Barbour, A. D. and Utev, S. (1998). Solving the Stein equation in compound Poisson approx-
imation, Adv. in Appl. Probab., 30, 449–475.

Barbour, A. D. and Xia, A. (1999). Poisson perturbations, ESAIM Probab. Statist., 3, 131–
150.

Barcucci, E., Pergola, E., Pinzani, R., and Rinaldi, S. (2001). A bijection for some paths on
the slit plane, Adv. in Appl. Math., 26 (2), 89–96.

Barcucci, E., Pinzani, R., and Sprugnoli, R. (1995). The random generation of underdiagonal
walks, Discrete Math., 139 (1-3), 3–18.

Béal, M.-P. and Carton, O. (2001). Computing the prefix of an automaton, Theoret. Inform.
Appl., 34 (6), 503–515.

Béal, M.-P. and Carton, O. (2002). Determinization of transducers over finite and infinite
words, Theoret. Comput. Sci., 289 (1), 225–251.

Bedford, T. (1986). Generating special Markov partitions for hyperbolic toral automorphisms
using fractals, Ergodic Theory Dynam. Systems, 6 (3), 325–333.

Bell, T. C., Cleary, J. G., and Witten, I. H. (1990). Text Compression. Prentice Hall.

Bender, E. (1973). Central and local limit theorems applied to asymptotic enumeration, J.
Combin. Th. A, 15, 91–111.

Bender, E. and Kochman, F. (1993). The distribution of subword counts is usually normal,
European J. Combin., 14, 265–275.

Bergeron, F., Labelle, G., and Leroux, P. (1998). Combinatorial Species and Tree-like Struc-
tures, Vol. 67 of Encyclopedia of Mathematics and its Applications. Cambridge Uni-
versity Press.

Berry, G. and Sethi, R. (1986). From regular expressions to deterministic automata, Theoret.
Comput. Sci., 48, 117–126.

Version June 23, 2004

538 References

Berstel, J. (1979). Transductions and Context-Free Languages. Teubner.

Berstel, J. and Reutenauer, C. (1984). Rational Series and Their Languages. Springer-Verlag.

Bertrand, A. (1977). Développements en base de Pisot et répartition modulo 1, C. R. Acad.
Sci. Paris, Sér. A, 285, 419–421.

Bétréma, J. and Penaud, J.-G. (1993). Modèles avec particules dures, animaux dirigés et
séries en variables partiellement commutatives, available at arXiv:math.CO/0106210.

Biaudet, V., El Karoui, M., and Gruss, A. (1998). Codon usage can explain GT-rich islands
surrounding Chi sites on the Escherichia coli genome, Mol. Microbiol., 29, 666–669.

Bieganski, P., Riedl, J., Carlis, J. V., and Retzel, E. (1994). Generalized suffix trees for
biological sequence data: applications and implementations, In 27th Hawai Int. Conf.
on Systems Science, pp. 35–44. IEEE Computer Society Press.

Biggins, J. and Cannings, C. (1987). Markov renewal processes, counters and repeated se-
quences in Markov chains, Ann. in Appl. Probab., 19, 521–545.

Billingsley, P. (1961). Statistical methods in Markov chains, Ann. Math. Statist., 2, 12–40.

Blanchette, M. (2001). Algorithms for phylogenetic footprinting, In 5th Research in Compu-
tational Molecular Biology (RECOMB), pp. 49–58. ACM Press.

Blanchette, M., Schwikowski, B., and Tompa, M. (2000). An exact algorithm to identify motifs
in orthologous sequences from multiple species, In Intelligent Systems for Molecular
Biology (ISMB), pp. 37–45.

Blanchette, M., Schwikowski, B., and Tompa, M. (2002). Algorithms for phylogenetic foot-
printing, J. Comput. Biol., 9 (2), 211–223.

Blanchette, M. and Tompa, M. (2002). Discovery of regulatory elements by a computational
method for phylogenetic footprinting, Genome Research, 12, 739–748.

Blom, G. and Thorburn, D. (1982). How many random digits are required until given sequences
are obtained?, J. Appl. Probab., 19, 518–531.

Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D., and McConnel, R. (1983). Linear size
finite automata for the set of all subwords of a word: an outline of results, Bull. Eur.
Assoc. Theoret. Comput. Sci., 21, 12–20.

Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M. T., and Seiferas, J. (1985).
The smallest automaton recognizing the subwords of a text, Theoret. Comput. Sci.,
40 (1), 31–55.

Blumer, A., Ehrenfeucht, A., and Haussler, D. (1989). Average size of suffix trees and DAWGS,
Discr. Appl. Math., 24, 37–45.

Booth, K. S. (1980). Lexicographically least circular substrings, Inform. Proc. Letters, 10 (4-
5), 240–242.

Bourdon, J. and Vallée, B. (2002). Generalized pattern matching statistics, In Mathematics
and Computer Science II (Versailles, 2002), Trends. Math., pp. 249–265. Birkhäuser.

Bousquet-Mélou, M. (1996). Habilitation à diriger des recherches. Université Bordeaux I,
available at http://www.labri.fr/~bousquet/.

Bousquet-Mélou, M. (2001). Walks on the slit plane: other approaches, Adv. in Appl. Math.,
27 (2-3), 243–288.

Bousquet-Mélou, M. (2002). Counting walks in the quarter plane, In Mathematics and
Computer Science II (Versailles, 2002), Trends Math., pp. 49–67. Birkhäuser.

Bousquet-Mélou, M. and Guttmann, A. J. (1997). Three-dimensional self-avoiding convex
polygons, Phys. Rev. E (3), 55 (6, part A), R6323–R6326.

Bousquet-Mélou, M. and Schaeffer, G. (2002). Walks on the slit plane, Probab. Theory Related
Fields, 124 (3), 305–344.

Bouttier, J., Di Francesco, P., and Guitter, E. (2002). Census of planar maps: from the one-
matrix model solution to a combinatorial proof, Nuclear Phys. B, 645 (3), 477–499.

Version June 23, 2004

References 539

Brazma, A., Jonassen, I., Eidhammer, I., and Gilbert, D. (1998a). Approaches to the auto-
matic discovery of patterns in biosequences, J. Comput. Biol., 5 (2), 277–304.

Brazma, A., Jonassen, I., Vilo, J., and Ukkonen, E. (1998b). Pattern discovery in biosequences,
In Honavar, V. and Slutzki, G. (Eds.), Grammatical Inference (ICGI-98), Vol. 1433 of
Lect. Notes Comp. Sci., pp. 255–270. Springer-Verlag.

Brazma, A., Jonassen, I., Vilo, J., and Ukkonen, E. (1998c). Predicting gene regulatory
elements in silico on a genomic scale, Genome Research, 8 (11), 1202–1215.

Breen, S., Waterman, M. S., and Zhang, N. (1985). Renewal theory for several patterns, J.
Appl. Probab., 22, 228–234.

Brendel, V., Beckmann, J. S., and Trifonov, E. N. (1986). Linguistics of nucleotide sequences:
Morphology and comparison of vocabularies, J. Biomol. Struct. Dynamics, 4, 11–21.

Breslauer, D. (1998). The suffix tree of a tree and minimizing sequential transducers, Theoret.
Comput. Sci., 191 (1-2), 131–144.

Brodal, G., Lyngsø, R., Pedersen, C., and Stoye, J. (2000). Finding maximal pairs with
bounded gap, J. Discrete Algorithms, 1 (1), 77–104.

Brown, T. A. (1999). Genomes. BIOS Scientific Publishers.

Bucklew, J. A. (1990). Large Deviation Techniques in Decision, Simulation, and Estimation.
J. Wiley and Sons.

Buhler, J. and Tompa, M. (2001). Finding motifs using random projections, In 5th Research
in Computational Molecular Biology (RECOMB), pp. 69–76. ACM Press.

Burd́ık, Č., Frougny, C., Gazeau, J. P., and Krejcar, R. (1998). Beta-integers as natural
counting systems for quasicrystals, J. Phys. A, 31 (30), 6449–6472.

Burd́ık, Č., Frougny, C., Gazeau, J.-P., and Krejcar, R. (2000). Beta-integers as a group, In
Gambaudo, J.-M., Hubert, P., Tisseur, P., and Vaienti, S. (Eds.), Dynamical Systems
(Luminy-Marseille, 1998), pp. 125–136. World Scientific.

Canterini, V. and Siegel, A. (2001a). Automate des préfixes-suffixes associé à une substitution
primitive, J. Théor. Nombres Bordeaux, 13 (2), 353–369.

Canterini, V. and Siegel, A. (2001b). Geometric representation of substitutions of Pisot type,
Trans. Amer. Math. Soc., 353 (12), 5121–5144.

Cartier, P. and Foata, D. (1969). Problèmes combinatoires de commutation et réarrangements,
Vol. 85 of Lect. Notes Math. Springer-Verlag.

Cassaigne, J., Ferenczi, S., and Zamboni, L. Q. (2000). Imbalances in Arnoux-Rauzy se-
quences, Ann. Inst. Fourier (Grenoble), 50 (4), 1265–1276.

Cassels, J. W. S. (1957). An Introduction to Diophantine Approximation. Cambridge Uni-
versity Press.

Castelli, M. G., Mignosi, F., and Restivo, A. (1999). Fine and Wilf’s theorem for three periods
and a genereralization of Sturmian words, Theoret. Comput. Sci., 218, 83–94.

Chedin, F., Noirot, P., Biaudet, V., and Ehrlich, S. (1998). A five-nucleotide sequence protects
DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of Bacillus
subtilis, Mol. Microbiol., 31, 1369–1377.

Chekhova, N. (2000). Covering numbers of rotations, Theoret. Comput. Sci., 230 (1-2), 97–
116.

Chekhova, N., Hubert, P., and Messaoudi, A. (2001). Propriétés combinatoires, ergodiques et
arithmétiques de la substitution de Tribonacci, J. Théor. Nombres Bordeaux, 13 (2),
371–394.

Chen, L. H. Y. (1975). Poisson approximation for dependent trials, Ann. Probab., 3, 534–545.

Chen, L. H. Y. and Xia, A. (to appear). Stein’s method, Palm theory and Poisson process
approximation, Ann. Probab.

Version June 23, 2004

540 References

Choffrut, C. (1977). Une caractérisation des fonctions séquentielles et des fonctions sous-
séquentielles en tant que relations rationnelles, Theoret. Comput. Sci., 5 (3), 325–337.

Choffrut, C. (1979). A generalization of Ginsburg and Rose’s characterization of G-S-M map-
pings, In Maurer, H. A. (Ed.), 6th Automata, Languages and Programming (ICALP),
Vol. 71 of Lect. Notes Comp. Sci., pp. 88–103. Springer-Verlag.

Choffrut, C. (2003). Minimizing subsequential transducers: a survey, Theoret. Comput. Sci.,
292 (1), 131–143.

Choffrut, C. and Karhumäki, J. (1997). Combinatorics of words, In Rozenberg, G. and
Salomaa, A. (Eds.), Handbook of Formal Languages, Vol. I, pp. 329–438. Springer-
Verlag.

Chomsky, N. (1956). Three models for the description of language, IRE Trans. Inform.
Theory, 2 (3), 113–124.

Chomsky, N. (1957). Syntactic Structures. Mouton, The Hague.

Chomsky, N. and Schützenberger, M. P. (1963). The algebraic theory of context-free languages,
In Braffort, P. and Hirschberg, D. (Eds.), Computer Programming and Formal Systems,
pp. 118–161. North Holland, Amsterdam.

Chottin, L. and Cori, R. (1982). Une preuve combinatoire de la rationalité d’une série
génératrice associée aux arbres, RAIRO Inform. théor., 16 (2), 113–128.

Christol, G. (1979). Ensembles presque périodiques k-reconnaissables, Theoret. Comput. Sci.,
9, 141–145.

Christol, G., Kamae, T., Mendès France, M., and Rauzy, G. (1980). Suites algébriques,
automates et substitutions, Bull. Soc. Math. France, 108, 401–419.

Chryssaphinou, O. and Papastavridis, S. (1988a). A limit theorem for the number of non-
overlapping occurrences of a pattern in a sequence of independent trials, J. Appl.
Probab., 25, 428–431.

Chryssaphinou, O. and Papastavridis, S. (1988b). A limit theorem on the number of over-
lapping appearances of a pattern in a sequence of independent trials, Probab. Theory
Related Fields, 79, 129–143.

Chryssaphinou, O., Papastavridis, S., and Vaggelatou, E. (2001). Poisson approximation for
the non-overlapping appearances of several words in Markov chains, Combin. Probab.
Comput., 10, 293–308.

Chung, K. L. (1974). A Course in Probability Theory. Academic Press. 2nd edition.

Churchill, G. A. (1989). Stochastic models for heterogeneous DNA sequences, Bull. Math.
Biol., 51, 79–94.

Churchill, G. A., Daniels, D. L., and Waterman, M. S. (1990). The distribution of restriction
enzyme sites in Escheria coli, Nucl. Acids Res., 18, 589–597.

Clement, J., Flajolet, P., and Vallée, B. (2001). Dynamic sources in information theory: a
general analysis of trie structures, Algorithmica, 29, 307–369.

Cobham, A. (1972). Uniform tag sequences, Math. Systems Theory, 6, 164–192.

Cole, R. and Hariharan, R. (1998). Approximate String Matching: A Simpler Faster Algo-
rithm, In 9th SIAM Symposium on Discrete Algorithms (SODA), pp. 463–472.

Cori, R. (1975). Un code pour les graphes planaires et ses applications. Société Mathématique
de France. Astérisque, No. 27.

Cori, R. and Mach̀ı, A. (1992). Maps, hypermaps and their automorphisms: a survey. I, II,
III, Exposition. Math., 10 (5), 403–427, 429–447, 449–467.

Cori, R. and Vauquelin, B. (1981). Planar maps are well labeled trees, Canad. J. Math.,
33 (5), 1023–1042.

Cowan, R. (1991). Expected frequencies of DNA patterns using Whittle’s formula, J. Appl.
Probab., 28, 886–892.

Version June 23, 2004

References 541

Crochemore, M. (1981). An optimal algorithm for computing the repetitions in a word,
Inform. Proc. Letters, 12, 244–250.

Crochemore, M. (1983). Recherche linéaire d’un carré dans un mot, Comptes Rendus Acad.
Sci. Paris Sér. I Math., 296, 781–784.

Crochemore, M. (1986). Transducers and repetitions, Theoret. Comput. Sci., 45 (1), 63–86.

Crochemore, M. (1987). Longest common factor of two words, In Ehrig, H., Kowalski, R.,
Levi, G., and Montanari, U. (Eds.), 2nd Theory and Practice of Software Development
(TAPSOFT), Pisa, Italy, Vol. 249 of Lect. Notes Comp. Sci., pp. 26–36. Springer-
Verlag.

Crochemore, M., Hancart, C., and Lecroq, T. (2001). Algorithmique du texte. Vuibert.

Crochemore, M., Mignosi, F., Restivo, A., and Salemi, S. (2000). Data compression using
antidictonaries, Proceedings of the IEEE, 88 (11), 1756–1768. Special issue Lossless
data compression edited by J. Storer.

Crochemore, M. and Rytter, W. (1994). Text Algorithms. The Clarendon Press Oxford
University Press.

Crochemore, M. and Rytter, W. (1995). Squares, cubes, and time-space efficient string search-
ing, Algorithmica, 13, 405–425.

Crochemore, M. and Vérin, R. (1997). On compact directed acyclic word graphs, In Mycielski,
J., Rozenberg, G., and Salomaa, A. (Eds.), Structures in Logic and Computer Science,
Vol. 1261 of Lect. Notes Comp. Sci., pp. 192–211. Springer-Verlag.

Culik II, K. and Kari, J. (1997). Digital Images and Formal Languages, In Rozenberg, G.
and Salomaa, A. (Eds.), Handbook of Formal Languages, Vol. 3, pp. 599–616. Springer-
Verlag.

Dacunha-Castelle, D. and Duflo, M. (1983). Probabilités et statistiques 2.Problèmes à temps
mobile. Masson.

De Luca, A. (1981). A combinatorial property of the Fibonacci words, Inform. Proc. Letters,
12 (4), 193–195.

Deheuvels, P., Devroye, L., and Lynch, J. (1986). Exact convergence rate in the limit theorems
of Erdös-Rényi and Shepp, Ann. Probab., 14, 209–223.

Dekking, F. M. (1982). Recurrent sets, Adv. in Math., 44 (1), 78–104.

Del Lungo, A., Mirolli, M., Pinzani, R., and Rinaldi, S. (2001). A bijection for directed-convex
polyominoes, In Cori, R., Mazoyer, J., Morvan, M., and Mosseri, R. (Eds.), Discrete
Models: Combinatorics, Computation, and Geometry, DM-CCG 2001, Vol. AA of
DMTCS Proceedings, pp. 133–144.

Dembo, A. and Karlin, S. (1992). Poisson approximations for r-scan processes, Ann. Appl.
Probab., 2, 329–357.

Denise, A. and Régnier, M. (2004). Rare events and conditional events on random strings,
Discrete Math. Theor. Comput. Sci., 6, 191–214.

Denise, A., Régnier, M., and Vandenbogaert, M. (2001). Assessing the statistical significance
of overrepresented oligonucleotides, In Gascuel, O. and Moret, B. M. E. (Eds.), Al-
gorithms in Bioinformatics (WABI 2001), Vol. 2149 of Lect. Notes Comp. Sci., pp.
85–97. Springer-Verlag.

Dershowitz, N. and Zaks, S. (1990). The cycle lemma and some applications, European J.
Combin., 11, 35–40.

Devroye, L., Szpankowski, W., and Rais, B. (1992). A note of the height of suffix trees, SIAM
J. Comput., 21, 48–53.

Di Francesco, P. (2001). Matrix model combinatorics: applications to folding and coloring, In
Random Matrix Models and Their Applications, Vol. 40 of Math. Sci. Res. Inst. Publ.,
pp. 111–170. Cambridge University Press.

Version June 23, 2004

542 References

Duchon, P., Flajolet, P., Louchard, G., and Schaeffer, G. (2002). Random sampling from
Boltzmann principles, In Widmayer, P., Triguero, F., Morales, R., Hennessy, M.,
Eidenbenz, S., and Conejo, R. (Eds.), 29th Automata, Languages and Programming
(ICALP ’02), Vol. 2380 of Lect. Notes Comp. Sci., pp. 501–513. Springer-Verlag.

Dumont, J.-M. and Thomas, A. (1989). Systèmes de numération et fonctions fractales relatifs
aux substitutions, Theoret. Comput. Sci., 65 (2), 153–169.

Dumont, J.-M. and Thomas, A. (1993). Digital sum moments and substitutions, Acta Arith.,
64, 205–225.

Durand, F. (1998). A characterization of substitutive sequences using return words, Discrete
Math., 179 (1-3), 89–101.

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis.
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press.

Duval, J.-P. (1983). Factorizing words over an ordered alphabet, J. Algorithms, 4 (4), 363–381.

Duval, J.-P. (1998). Périodes locales et propagation de périodes dans un mot, Theoret.
Comput. Sci., 204 (1-2), 87–98.

Duval, J.-P., Kolpakov, R., Kucherov, G., Lecroq, T., and Lefebvre, A. (2003). Linear-time
computation of local periods, In Rovan, B. and Vojtas, P. (Eds.), 28th Mathematical
Foundations of Computer Science (MFCS 2003), Vol. 2747 of Lect. Notes Comp. Sci.,
pp. 388–397. Springer-Verlag.

Duval, J.-P., Mignosi, F., and Restivo, A. (2001). Recurrence and periodicity in infinite words
from local periods, Theoret. Comput. Sci., 262 (1), 269–284.

Dvoretzky, A. and Motzkin, T. (1947). A problem of arrangements, Duke Math. J., 14,
305–313.

Dyck, W. (1882). Gruppentheoretische Studien, Math. Ann., 20, 1–44.

Eichelsbacher, P. and Roos, M. (1999). Compound Poisson approximation for dissociated
random variables via Stein’s method, Combin. Probab. Comput., 8, 335–346.

Eilenberg, S. (1974). Automata, Languages, and Machines. Vol A. Academic Press.

El Karoui, M., Biaudet, V., Schbath, S., and Gruss, A. (1999). Characteristics of Chi distri-
bution on several bacterial genomes, Res. Microbiol., 150, 579–587.

Erdős, P. and Rényi, A. (1970). On a new law of large numbers, J. Anal. Math., 23, 103–111.

Erhardsson, T. (1997). Compound Poisson approximation for Markov chains. Ph.D. thesis,
Royal Institute of Technology, Stockholm.

Erhardsson, T. (1999). Compound Poisson approximation for Markov chains using Stein’s
method, Ann. Probab., 27, 565–596.

Erhardsson, T. (2000). Compound Poisson approximation for counts of rare patterns in
Markov chains and extreme sojourns in birth-death chains, Ann. in Appl. Probab., 10,
573–591.

Eskin, E., Gelfand, M. S., and Pevzner, P. A. (2003). Genome-wide analysis of bacterial
promoter regions, In Pacific Symposium on Biocomputing (PSB), pp. 29–40.

Eskin, E. and Pevzner, P. A. (2002). Finding composite regulatory patterns in DNA sequences,
In Intelligent Systems for Molecular Biology (ISMB), pp. 354–363.

Farach, M. (1997). Optimal suffix tree construction with large alphabets, In 38th Foundations
of Computer Science (FOCS), pp. 137–143, Miami Beach, FL.

Feller, W. (1968). An Introduction to Probability Theory and its Applications, Vol. I. J. Wiley
and Sons. Third edition.

Feller, W. (1971). An Introduction to Probability Theory and its Applications, Vol. II. J.
Wiley and Sons. Second edition.

Version June 23, 2004

References 543

Fellows, M. R., Gramm, J., and Niedermeier, R. (2002). On the parameterized intractability
of CLOSEST SUBSTRING and related problems, In Alt, H. and Ferreira, A. (Eds.),
Theoretical Aspects of Computer Science (STACS ’02), Vol. 2285 of Lect. Notes Comp.
Sci., pp. 262–273. Springer-Verlag.

Ferenczi, S. (1992). Bounded remainder sets, Acta Arith., 61, 319–326.

Ferenczi, S. and Mauduit, C. (1997). Transcendence of numbers with a low complexity ex-
pansion, J. Number Theory, 67, 146–161.

Fitch, W. (1975). Toward defining the course of evolution: minimum change for a specified
tree topology, Systematic Zoology, 20, 406–416.

Flajolet, P. (1987). Analytic models and ambiguity of context-free languages, Theoret. Com-
put. Sci., 49 (2-3), 283–309.

Flajolet, P., Gourdon, X., and Dumas, P. (1995). Mellin transforms and asymptotics: har-
monic sums, Theoret. Comput. Sci., 144, 3–58.

Flajolet, P., Guivarc’h, Y., Szpankowski, W., and Vallée, B. (2001). Hidden pattern statis-
tics, In Oreijas, F., Spirakis, P., and Leeuwen, J. van (Eds.), Automata, Languages
and Programming (ICALP 2001), Vol. 2076 of Lect. Notes Comp. Sci., pp. 152–165.
Springer-Verlag.

Flajolet, P. and Sedgewick, R. (2002). Analytic Combinatorics – Symbolic Combinatorics.
Technical report, INRIA.

Flajolet, P., Zimmerman, P., and Van Cutsem, B. (1994). A calculus for the random generation
of labelled combinatorial structures, Theoret. Comput. Sci., 132 (1-2), 1–35.

Fogg, N. P. (2002). Substitutions in Dynamics, Arithmetics and Combinatorics, Vol. 1794 of
Lect. Notes Math. Springer-Verlag. Edited by V. Berthé, S. Ferenczi, C. Mauduit and
A. Siegel.

Fraenkel, A. and Simpson, J. (1995). How many squares must a binary sequence contain?,
Electronic J. Comb., 2 (R2), 9pp.

Fraenkel, A. and Simpson, J. (1998). How many squares can a string contain?, J. Combin.
Th. A, 82, 112–120.

Fraenkel, A. and Simpson, J. (1999). The exact number of squares in Fibonacci words, Theoret.
Comput. Sci., 218 (1), 83–94.

Fredricksen, H. and Maiorana, J. (1978). Necklaces of beads in k colors and k-ary de Bruijn
sequences, Discrete Math., 23 (3), 207–210.

Frougny, C. and Solomyak, B. (1992). Finite beta-expansions, Ergodic Theory Dynam. Sys-
tems, 12 (4), 713–723.

Fu, J. C. (1993). Poisson convergence in reliability of a large linearly connected system as
related to coin tossing, Statist. Sinica, 3, 261–275.

Galil, Z. and Seiferas, J. (1983). Time-space optimal string matching, J. Comput. System
Sci., 26 (3), 280–294.

Gambaudo, J.-M., Hubert, P., Tisseur, P., and Vaienti, S. (Eds.) (2000). Dynamical Systems
(Luminy-Marseille, 1998). World Scientific.

Gantmacher, F. R. (1959). The Theory of Matrices Vols 1, 2. Chelsea. Translated from the
Russian original.

Gardner, M. (1966). New Mathematical Diversions from Scientific American. Simon and
Schuster.

Gentleman, J. (1994). The distribution of the frequency of subsequences in alphabetic se-
quences, as exemplified by deoxyribonucleic acid, Appl. Statist., 43, 404–414.

Gentleman, J. and Mullin, R. (1989). The distribution of the frequency of occurrence of
nucleotide subsequences, based on their overlap capability, Biometrics, 45, 35–52.

Version June 23, 2004

544 References

Geske, M. X., Godbole, A. P., Schaffner, A. A., Skolnick, A. M., and Wallstrom, G. L. (1995).
Compound Poisson approximations for word patterns under Markovian hypotheses, J.
Appl. Probab., 32, 877–892.

Gessel, I. M. (2000). On the number of convex polyominoes, Ann. Sci. Math. Québec, 24 (1),
63–66.

Giegerich, R., Kurtz, S., and Stoye, J. (1999). Efficient implementation of lazy suffix trees, In
3rd Workshop on Algorithmic Engineering (WAE99), Vol. 1668 of Lect. Notes Comp.
Sci., pp. 30–42. Springer-Verlag.

Glaz, J., Naus, J., and Wallenstein, S. (2001). Scan Statistics. Springer-Verlag.

Godbole, A. P. (1991). Poisson approximations for runs and patterns of rare events, Adv. in
Appl. Probab., 23, 851–865.

Godbole, A. P. and Schaffner, A. A. (1993). Improved Poisson approximations for word
patterns, Adv. in Appl. Probab., 25, 334–347.

Gold, E. M. (1967). Language identification in the limit, Inform. and Control, 10 (5), 447–474.

Good, I. (1953). The population frequencies of species and the estimation of population
parameters, Biometrica, 40, 237–264.

Gordon, L., Schilling, M., and Waterman, M. (1986). An extreme value theory for long head
runs, Probab. Theory Related Fields, 72, 279–287.

Goulden, I. P. and Jackson, D. M. (1983). Combinatorial Enumeration. J. Wiley and Sons.

Gouyou-Beauchamps, D. and Viennot, G. (1988). Equivalence of the two-dimensional directed
animal problem to a one-dimensional path problem, Adv. in Appl. Math., 9 (3), 334–
357.

Gross, M. (1975). Méthodes en syntaxe. Hermann, Paris.

Gross, M. (1979). On the failure of generative grammar, Language, 55 (4), 859–885.

Gross, M. (1989). The use of finite automata in the lexical representation of natural language,
In Gross, M. and Perrin, D. (Eds.), Electronic Dictionaries and Automata in Compu-
tational Linguistics, Vol. 377 of Lect. Notes Comp. Sci., pp. 34–50. Springer-Verlag.

Gross, M. (1995). Representation of finite utterances and the automatic parsing of texts,
Language Research, 31 (2), 291–307. Seoul National University.

Gross, M. and Lentin, A. (1967). Notions sur les grammaires formelles. Gauthier-Villars,
Paris. 2nd edition: 1970.

Guibas, L. and Odlyzko, A. (1980). Long repetitive patterns in random sequences, Z. Wahrsch.
Verw. Gebiete, 53, 241–262.

Guibas, L. and Odlyzko, A. (1981a). Periods in strings, J. Combin. Th. A, 30, 19–43.

Guibas, L. and Odlyzko, A. (1981b). String overlaps, pattern matching, and nontransitive
games, J. Combin. Th. A, 30, 183–208.

Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences. Cambridge University
Press.

Gusto, G. (2000). Approximation par une loi de Poisson composée de la loi du comptage d’un
mot rare dans une châıne de Markov, Master’s thesis, DEA Modélisation Stochastique
et Statistique, Université Paris XI, Orsay.

Guthrie, D. and Youssef, M. (1970). Empirical evaluation of some chi-square tests for the
order of a Markov chain, J. Amer. Statist. Soc., 65, 631–634.

Guy, R. K., Krattenthaler, C., and Sagan, B. E. (1992). Lattice paths, reflections, &
dimension-changing bijections, Ars Combin., 34, 3–15.

Gwadera, R., Atallah, M., and Szpankowski, W. (2003). Reliable detection of episodes in
event sequences, In 3rd IEEE Conf. on Data Mining, pp. 67–74. IEEE Computer Soc.

Harris, Z. S. (1952). Discourse analysis, Language, 28, 1–30.

Version June 23, 2004

References 545

Harris, Z. S. (1970). Papers in Structural and Transformational Linguistics. D. Reidel,
Dordrecht/Holland.

Hirano, K. and Aki, S. (1993). On number of occurrences of success runs of specified length
in a two-state Markov chain, Statist. Sinica, 3, 313–320.

Hirschberg, D. S. (1977). Algorithms for the longest common subsequence problem, J. Assoc.
Comput. Mach., 24 (4), 664–675.

Hochstättler, W., Loebl, M., and Moll, C. (1996). Generating convex polyominoes at random,
Discrete Math., 153, 165–176.

Holton, C. and Zamboni, L. Q. (1998). Geometric realizations of substitutions, Bull. Soc.
Math. France, 126 (2), 149–179.

Holton, C. and Zamboni, L. Q. (1999). Descendants of primitive substitutions, Theory
Comput. Syst., 32 (2), 133–157.

Hopcroft, J. (1971). An n log n algorithm for minimizing states in a finite automaton, In
Theory of Machines and Computations, pp. 189–196. Academic Press.

Huang, H. (2002). Error bounds on multivariate normal approximations for word count statis-
tics, Adv. in Appl. Probab., 34, 559–587.

Hui, L. (1992). Color set size problem with applications to string matching, In Combinatorial
Pattern Matching, Vol. 644 of Lect. Notes Comp. Sci., pp. 230–243. Springer-Verlag.

Hunt, J. W. and Szymanski, T. G. (1977). A fast algorithm for computing longest common
subsequences, Comm. Assoc. Comput. Mach., 20, 350–353.

Hwang, H.-K. (1996). Large deviations for combinatorial distributions I: Central limit theo-
rems, Ann. in Appl. Probab., 6, 297–319.

Iliopoulos, C., Moore, D., and Smyth, W. (1997). A characterization of the squares in a
Fibonacci string, Theoret. Comput. Sci., 172, 281–291.

Inenaga, S., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S., Mauri, G., and Pavesi, G.
(2001). On-line construction of compact directed acyclic word graphs, In Amir, A. and
Landau, G. M. (Eds.), 12th Combinatorial Pattern Matching, Jerusalem, Vol. 2089 of
Lect. Notes Comp. Sci., pp. 169–180. Springer-Verlag.

Ito, S. (1996). Simultaneous approximations and dynamical systems (on the simultaneous
approximation of (α, α2) satisfying α3 +kα−1 = 0), Sūrikaisekikenkyūsho Kōkyūroku,
958, 59–61. Analytic number theory (Japanese) (Kyoto, 1994).

Ito, S. (2000). On periodic expansions of cubic numbers and Rauzy fractals, In Gambaudo,
J.-M., Hubert, P., Tisseur, P., and Vaienti, S. (Eds.), Dynamical Systems (Luminy-
Marseille, 1998), pp. 144–164. World Scientific.

Ito, S., Fujii, J.and Higashino, H., and Yasutomi, S.-i. (2003). On simultaneous approximation
to (α, α2) with α3 + kα − 1 = 0, J. Number Theory, 99 (2), 255–283.

Ito, S. and Kimura, M. (1991). On Rauzy fractal, Japan J. Indust. Appl. Math., 8 (3), 461–486.

Ito, S. and Ohtsuki, M. (1993). Modified Jacobi-Perron algorithm and generating Markov
partitions for special hyperbolic toral automorphisms, Tokyo J. Math., 16 (2), 441–
472.

Ito, S. and Sano, Y. (2001). On periodic β-expansions of Pisot numbers and Rauzy fractals,
Osaka J. Math., 38 (2), 349–368.

Jacquet, P. and Régnier, M. (1986). Trie partitioning process: limiting distributions, In CAAP
’86 (Nice, 1986), Vol. 214 of Lect. Notes Comp. Sci., pp. 196–210. Springer-Verlag.

Jacquet, P. and Szpankowski, W. (1991). Analysis of digital tries with Markovian dependency,
IEEE Trans. Inform. Theory, 37, 1470–1475.

Jacquet, P. and Szpankowski, W. (1994). Autocorrelation on words and its applications:
analysis of suffix trees by string-ruler approach, J. Combin. Th. A, 66, 237–269.

Version June 23, 2004

546 References

Jacquet, P. and Szpankowski, W. (1998). Analytical de-Poissonization and its applications,
Theoret. Comput. Sci., 201, 1–62.

Jacquet, P., Szpankowski, W., and Apostol, I. (2002). A universal predictor based on pattern
matching, IEEE Trans. Inform. Theory, 48, 1462–1472.

Janson, S. (1997). Gaussian Hilbert Spaces. Cambridge University Press.

Janson, S. (to appear). Large deviations for sums of partially dependent random variables,
Random Structures & Algorithms.

Johnson, C. D. (1972). Formal Aspects of Phonological Description. Mouton, The Hague.

Jonassen, I., Collins, J. F., and Higgins, D. (1995). Finding flexible patterns in unaligned
protein sequences, Protein Science, 4 (8), 1587–1595.

Jurafsky, D. and Martin, J. H. (2000). Speech and Language Processing. An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice-Hall.

Justin, J. (2000). On a paper by M. Castelli, F. Mignosi, A. Restivo, Theor. Inform. Appl.,
34 (5), 373–377.

Justin, J. and Pirillo, G. (2002a). Episturmian words and episturmian morphisms, Theoret.
Comput. Sci., 276 (1-2), 281–313.

Justin, J. and Pirillo, G. (2002b). On a characteristic property of Arnoux-Rauzy sequences,
Theor. Inform. Appl., 36 (4), 385–388 (2003).

Karhumäki, J. (1983). On cube-free ω-words generated by binary morphisms, Discr. Appl.
Math., 5 (3), 279–297.

Kärkkäinen, J. and Sanders, P. (2003). Simple linear work suffix array constructio, In Baeten,
J. C. M., Lenstra, J. K., Parrow, J., and Woeginger, G. J. (Eds.), 30th Automata,
Languages and Programming (ICALP ’03), Vol. 2719 of Lect. Notes Comp. Sci., pp.
943–955. Springer-Verlag.

Karlin, S., Burge, C., and Campbell, A. M. (1992). Statistical analyses of counts and distri-
butions of restriction sites in DNA sequences, Nucl. Acids Res., 20, 1363–1370.

Karlin, S. and Dembo, A. (1992). Limit distributions of maximal segmental score among
Markov dependent partial sums, Adv. in Appl. Probab., 24, 113–140.

Karlin, S. and Macken, C. (1991). Assessment of inhomogeneities in an E. coli physical map,
Nucl. Acids Res., 19, 4241–4246.

Karlin, S. and Ost, F. (1987). Counts of long aligned word matches among random letter
sequences, Adv. in Appl. Probab., 19, 293–351.

Karlin, S. and Taylor, H. (1975). A First Course in Stochastic Processes (Second edition).
Academic Press.

Kato, T. (1980). Perturbation Theory for Linear Operators. Springer-Verlag.

Katz, S. (1987). Estimation of probabilities from sparse data for the language model compo-
nent of a speech recognizer, IEEE Trans. Acoust. Speech Signal Process., 35, 400–401.

Kim, D. K., Sim, J. S., Park, H., and Park, K. (2003). Linear-time construction of suffix
arrays, In Baeza-Yates, R., Chávez, E., and Crochemore, M. (Eds.), Combinatorial
Pattern Matching (CPM 2003), Vol. 2676 of Lect. Notes Comp. Sci., pp. 186–199.
Springer-Verlag.

Klarner, D. A. (1997). Polyominoes, In Handbook of Discrete and Computational Geometry,
CRC Press Ser. Discrete Math. Appl., pp. 225–240. CRC.

Kleffe, J. and Borodovsky, M. (1992). First and second moment of counts of words in random
texts generated by Markov chains, Comput. Appl. Biosci., 8, 433–441.

Kleffe, J. and Langbecker, U. (1990). Exact computation of pattern probabilities in random
sequences generated by Markov chains, Comput. Appl. Biosci., 6, 347–353.

Version June 23, 2004

References 547

Knuth, D. E. (1965). On the translation of languages from left to right, Inform. and Control,
8, 607–639.

Knuth, D. E. (1988). Fibonacci multiplication, Appl. Math. Lett., 1 (1), 57–60.

Knuth, D. E., Morris, J. H., and Pratt, V. R. (1977). Fast pattern matching in strings, SIAM
J. Comput., 6, 323–350.

Ko, P. and Aluru, S. (2003). Space-efficient linear-time construction of suffix arrays, In Baeza-
Yates, R., Chávez, E., and Crochemore, M. (Eds.), Combinatorial Pattern Matching
(CPM 2003), Vol. 2676 of Lect. Notes Comp. Sci., pp. 200–210. Springer-Verlag.

Kolpakov, R., Bana, G., and Kucherov, G. (2003). mreps: efficient and flexible detection of
tandem repeats in DNA, Nucl. Acids Res., 31 (13), 3672–3678.

Kolpakov, R. and Kucherov, G. (1999). Finding maximal repetitions in a word in linear
time, In 40th Symp. Foundations of Computer Science (FOCS), pp. 596–604. IEEE
Computer Society Press.

Kolpakov, R. and Kucherov, G. (2000a). Finding repeats with fixed gap, In 7th Symp. String
Processing and Information Retrieval (SPIRE), pp. 162–168. IEEE Computer Society
Press.

Kolpakov, R. and Kucherov, G. (2000b). On maximal repetitions in words, J. Discrete
Algorithms, 1 (1), 159–186.

Kolpakov, R. and Kucherov, G. (2003). Finding approximate repetitions under Hamming
distance, Theoret. Comput. Sci., 33 (1), 135–156.

Kosaraju, S. (1994). Computation of squares in string, In Crochemore, M. and Gusfield, D.
(Eds.), 5th Combinatorial Pattern Matching, Vol. 807 of Lect. Notes Comp. Sci., pp.
146–150. Springer-Verlag.

Koskenniemi, K. (1983). Two-level Morphology: A General Computational Model for Word-
Form Recognition and Production. University of Helsinki, Department of General Lin-
guistics. Publications, no. 11.

Kucherov, G., Ochem, P., and Rao, M. (2003). How many square occurrences must a binary
sequence contain, Electronic J. Comb., 10 (1), 11pp.

Kucherov, G. and Rusinowitch, M. (1997). Matching a set of strings with variable length
don’t cares, Theoret. Comput. Sci., 178, 129–154.

Kuich, W. and Salomaa, A. (1986). Semirings, Automata, Languages. Springer-Verlag.

Landau, G. and Schmidt, J. (1993). An algorithm for approximate tandem repeats, In
Apostolico, A., Crochemore, M., Galil, Z., and Manber, U. (Eds.), 4th Combinatorial
Pattern Matching (Padova), Vol. 684 of Lect. Notes Comp. Sci., pp. 120–133. Springer-
Verlag, Padova, Italy.

Laporte, E. (1997). Rational transductions for phonetic conversion and phonology, In Roche,
E. and Schabès, Y. (Eds.), Finite-state Language Processing, Language, Speech, and
Communication Series, chap. 14, pp. 407–428. MIT Press.

Lee, K.-F. (1990). Context dependent phonetic hidden Markov models for continuous speech
recognition, IEEE Trans. Acoust. Speech Signal Process., 38 (4), 599–609.

Lempel, A. and Ziv, J. (1976). On the complexity of finite sequences, IEEE Trans. Inform.
Theory, IT-22, 75–81.

Leung, M. Y., Marsh, G. M., and Speed, T. P. (1996). Over and underrepresentation of short
DNA words in Herpesvirus genomes, J. Comput. Biol., 3, 345–360.

Levenshtein, V. I. (1965). Binary codes capable of correcting deletions, insertions, and rever-
sals, Soviet Physics Dokl., 10, 707–710.

Li, S.-Y. (1980). A martingale approach to the study of occurrence of sequence patterns in
repeated experiments, Ann. Probab., 8, 1171–1176.

Lind, D. and Marcus, B. (1996). An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press.

Version June 23, 2004

548 References

Lint, J. H. van and Wilson, R. M. (1992). A Course in Combinatorics. Cambridge University
Press.

Lonardi, S. (2001). Global detectors of unusual words design, implementation and applications
to pattern discovery in biosequences. Ph.D. thesis, Purdue University, West Lafayette,
Indiana.

Lothaire, M. (1997). Combinatorics on Words. Cambridge Mathematical Library. Cambridge
University Press. Reprint with corrections of the 1983 original edition.

Lothaire, M. (2002). Algebraic Combinatorics on Words, Vol. 90 of Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press.

Lundstrom, R. (1990). Stochastic models and statistical methods for DNA sequence data.
Ph.D. thesis, University of Utah.

Mahmoud, H. (1992). Evolution of Random Search Trees. J. Wiley and Sons.

Main, M. (1989). Detecting leftmost maximal periodicities, Discr. Appl. Math., 25, 145–153.

Main, M. and Lorentz, R. (1984). An O(n log n) algorithm for finding all repetitions in a
string, J. Algorithms, 5 (3), 422–432.

Main, M. and Lorentz, R. (1985). Linear time recognition of square free strings, In Apos-
tolico, A. and Galil, Z. (Eds.), Combinatorial Algorithms on Words, Vol. 12 of NATO
Advanced Science Institutes, Series F, pp. 272–278. Springer-Verlag.

Manber, U. and Myers, G. (1993). Suffix arrays: a new method for on-line string searches,
SIAM J. Comput., 22 (5), 935–948.

Manzini, G. (2001). An analysis of the Burrows-Wheeler transform, J. Assoc. Comput. Mach.,
48 (3), 407–430.

Marsan, L. and Sagot, M.-F. (2000a). Algorithms for extracting structured motifs using a
suffix tree with an application to promoter and regulatory site consensus identification,
J. Comput. Biol., 7, 345–362.

Marsan, L. and Sagot, M.-F. (2000b). Extracting structured motifs using a suffix tree. Algo-
rithms and application to consensus identification, In 4th Research in Computational
Molecular Biology (RECOMB), pp. 210–219. ACM Press.

Marsan, L. and Sagot, M.-F. (2001). Algorithms for extracting structured motifs using a suffix
tree with application to promoter and regulatory consensus identification, J. Comput.
Biol., 7, 345–360.

McCluer, C. R. (2000). The many proofs and applications of Perron’s theorem, SIAM Review,
42, 487–498.

McCreight, E. M. (1976). A space-economical suffix tree construction algorithm, J. Assoc.
Comput. Mach., 23 (2), 262–272.

McEliece, R. J. (2002). The Theory of Information and Coding (2nd edition)., Vol. 86 of
Encyclopedia of Mathematics and its Applications. Cambridge University Press.

Mehldau, G. and Myers, E. (1993). A system for pattern matching applications on biose-
quences, Computer Applied Bioscience (CABIOS), 9 (3), 299–314.

Messaoudi, A. (1998). Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Théor.
Nombres Bordeaux, 10 (1), 135–162.

Messaoudi, A. (2000a). Frontière du fractal de Rauzy et système de numération complexe,
Acta Arith., 95 (3), 195–224.

Messaoudi, A. (2000b). Généralisation de la multiplication de Fibonacci, Math. Slovaca,
50 (2), 135–148.

Messaoudi, A. (2002). Tribonacci multiplication, Appl. Math. Lett., 15 (8), 981–985.

Mignosi, F. and Pirillo, G. (1992). Repetitions in the Fibonacci infinite word, Theoret. Inform.
Appl., 26 (3), 199–204.

Version June 23, 2004

References 549

Mignosi, F., Restivo, A., and Salemi, S. (1995). A periodicity theorem on words and appli-
cations, In 20th Mathematical Foundations of Computer Science (MFCS), Vol. 969 of
Lect. Notes Comp. Sci., pp. 337–348. Springer-Verlag.

Mignosi, F. and Zamboni, L. Q. (2002). On the number of Arnoux-Rauzy words, Acta Arith.,
101 (2), 121–129.

Miller, G. A. and Chomsky, N. (1963). Finitary models of language users, In Luce, R. D.,
Bush, R. R., and Galanter, E. (Eds.), Handbook of Mathematical Psychology, Vol. 2,
chap. 13, pp. 419–491. Wiley, New York.

Mohri, M. (1994). Minimization of sequential transducers, In Crochemore, M. and Gusfield,
D. (Eds.), Combinatorial Pattern Matching 94, Vol. 807 of Lect. Notes Comp. Sci.,
pp. 151–163. Springer-Verlag.

Mohri, M. (1997). Finite-state transducers in language and speech processing, Comput.
Linguistics, 23 (2), 269–311.

Mohri, M. (2002). Semiring frameworks and algorithms for shortest-distance problems, J.
Autom. Lang. Comb., 7 (3), 321–350.

Mohri, M., Pereira, F., and Riley, M. (2000). The design principles of a weighted finite-state
transducer library, Theoret. Comput. Sci., 231 (1), 17–32.

Mohri, M., Pereira, F. C. N., and Riley, M. (1996). Weighted automata in text and speech
processing, In 12th European Conf. Artificial Intelligence (ECAI 1996), Workshop on
Extended finite state models of language, Budapest, Hungary. J. Wiley and Sons.

Mohri, M., Pereira, F. C. N., and Riley, M. (2002). Weighted finite-state transducers in
speech recognition, Computer Speech and Language, 16 (1), 69–88. Available at
http://www.research.att.com/~mohri/postscript/csl01.ps.

Moody, R. V. (1997). Meyer sets and their duals, In Moody, R. V. (Ed.), The Mathematics of
Long-Range Aperiodic Order, Vol. 13 of CRM Monograph Series, pp. 403–441. Kluwer.

Moore, E. F. (1956). Gedanken-experiments on sequential machines, In Automata Studies,
Vol. 34 of Annals of Mathematics Studies, pp. 129–153. Princeton University Press.

Muri, F. (1998). Modelling Bacterial Genomes using Hidden Markov Models, In Payne, R.
and Green, P. (Eds.), Compstat’98, pp. 89–100. Physica-Verlag.

Nicodème, P., Salvy, B., and Flajolet, P. (2002). Motif statistics, Theoret. Comput. Sci.,
287 (2), 593–617. Algorithms (Prague, 1999).

Nijenhuis, A. and Wilf, H. S. (1978). Combinatorial Algorithms (2nd edition). Academic
Press.

Nuel, G. (2001). Grandes déviations et châınes de Markov pour l’étude des mots exceptionnels
dans les séquences biologiques. Ph.D. thesis, Université d’Evry Val d’Essonne.

Parida, L., Rigoutsos, I., Floratos, A., Platt, D., and Gao, Y. (2000). Pattern discovery on
character sets and real-valued data: Linear bound on irredundant motifs and efficient
polynomial time algorithm, In 11th SIAM Symposium on Discrete Algorithms (SODA),
pp. 297–308. ACM Press.

Parida, L., Rigoutsos, I., and Platt, D. (2001). An output-sensitive flexible pattern discovery
algorithm, In Amir, A. and Landau, G. (Eds.), 12th Combinatorial Pattern Matching,
Vol. 2089 of Lect. Notes Comp. Sci., pp. 131–142. Springer-Verlag.

Paumier, S. (2001). Some remarks on the application of a lexicon-grammar, Lingvisticae
Investigationes, 24 (2), 245–256.

Pavesi, G., Mauri, G., and Pesole, G. (2001a). An algorithm for finding signals of unknown
length in DNA sequences, Bioinformatics, 17 (Suppl. 1), 207–214.

Pavesi, G., Mauri, G., and Pesole, G. (2001b). Methods for pattern discovery in unaligned
biological sequences, Briefings in Bioinformatics, 2 (4), 417–430.

Paz, A. (1971). Introduction to Probabilistic Automata. Academic Press.

Version June 23, 2004

550 References

Pereira, F. C. N. and Riley, M. D. (1997). Speech recognition by composition of weighted
finite automata, In Finite-State Language Processing, pp. 431–453. MIT Press.

Petersen, H. (1994). The ambiguity of primitive words, In Enjalbert, P., Mayr, E. W., and
Wagner, K. W. (Eds.), Theoretical Aspects of Computer Science (STACS ’94), Vol.
775 of Lect. Notes Comp. Sci., pp. 679–690. Springer-Verlag.

Petersen, H. (1996). On the language of primitive words, Theoret. Comput. Sci., 161, 141–156.

Pevzner, P. A. (1989). l-tuple DNA sequencing: computer analysis, J. Biomol. Struct.
Dynamics, 7, 63–73.

Pevzner, P. A. (1995). DNA physical mapping and alternating Eulerian cycles in colored
graphs, Algorithmica, 13, 77–105.

Pevzner, P. A. (2000). Computational Molecular Biology. An Algorithmic Approach. The
MIT Press.

Pevzner, P. A. and Sze, S.-H. (2000). Combinatorial approaches to finding subtle signals in
DNA sequences, In Intelligent Systems for Molecular Biology (ISMB), pp. 269–278.

Pin, J.-E. (1986). Varieties of Formal Languages. North Oxford.

Pirillo, G. (1997). Fibonacci numbers and words, Discrete Math., 173 (1-3), 197–207.

Pisanti, N., Crochemore, M., Grossi, R., and Sagot, M.-F. (2003). A basis of tiling motifs for
generating repeated patterns and its complexity for higher quorum, In Rovan, B. and
Vojtás, P. (Eds.), Mathematical Foundations of Computer Science (MFCS 2003), Vol.
2747 of Lect. Notes Comp. Sci., pp. 622–631. Springer-Verlag.

Pitman, J. (1998). Enumerations of trees and forests related to branching processes and ran-
dom walks, In Aldous, D. and Propp, J. (Eds.), Microsurveys in Discrete Probability,
Vol. 41 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci. Amer. Math. Soc.

Poulalhon, D. and Schaeffer, G. (2003). Optimal coding and sampling of triangulations,
In Baeten, J. C. M., Lenstra, J. K., Parrow, J., and Woeginger, G. J. (Eds.), 30th
Automata, Languages and Programming (ICALP ’03), Vol. 2719 of Lect. Notes Comp.
Sci., pp. 1080–1094. Springer-Verlag.

Praggastis, B. (1999). Numeration systems and Markov partitions from self-similar tilings,
Trans. Amer. Math. Soc., 351 (8), 3315–3349.

Prum, B., Rodolphe, F., and Turckheim, É. (1995). Finding words with unexpected frequencies
in deoxyribonucleic acid sequences, J. Roy. Statist. Soc. Ser. B, 57, 205–220.

Queffélec, M. (1987). Substitution Dynamical Systems–Spectral Analysis, Vol. 1294 of Lect.
Notes Math. Springer-Verlag.

Rabiner, L. (1989). A tutorial on hidden Markov models, Proceedings of the IEEE, 77 (2),
257–286.

Raffinot, M. (1997). Asymptotic estimation of the average number of terminal states in
DAWGs, In Baeza-Yates, R. (Ed.), 4th South American Workshop on String Process-
ing, pp. 140–148. Carleton University Press, Valparaiso, Chile.

Rajarshi, M. B. (1974). Success runs in a two-state Markov chain, J. Appl. Probab., 11,
190–192.

Raney, G. N. (1960). Functional composition patterns and power series reversion, Trans.
Amer. Math. Soc., 94, 441–451.

Rauzy, G. (1982). Nombres algébriques et substitutions, Bull. Soc. Math. France, 110 (2),
147–178.

Rauzy, G. (1988). Rotations sur les groupes, nombres algébriques, et substitutions, In Sém.
Théor. Nombres (Talence, 1987–1988). Univ. Bordeaux I. Exp. No. 21.

Rauzy, G. (1990). Sequences defined by iterated morphisms, In Sequences (Naples/Positano,
1988), pp. 275–286. Springer, New York.

Version June 23, 2004

References 551

Régnier, M. (2000). A unified approach to word occurrence probabilities, Discr. Appl. Math.,
104, 259–280.

Régnier, M. and Szpankowski, W. (1998a). On pattern frequency occurrences in a Markovian
sequence, Algorithmica, 22, 631–649.

Régnier, M. and Szpankowski, W. (1998b). On the approximate pattern occurrences in a
text, In Compression and Complexity of Sequences 97, pp. 253–264. IEEE Computer
Society Press.

Reinert, G. and Schbath, S. (1998). Compound Poisson and Poisson process approximations
for occurrences of multiple words in Markov chains, J. Comput. Biol., 5, 223–253.

Reinert, G., Schbath, S., and Waterman, M. (2000). Probabilistic and statistical properties
of words: an overview, J. Comput. Biol., 7, 1–46.

Rensburg, E. J. J. van (2000). The Statistical Mechanics of Interacting Walks, Polygons,
Animals and Vesicles, Vol. 18 of Oxford Lecture Series in Mathematics and its Appli-
cations. Oxford University Press.

Reutenauer, C. (1990). Subsequential functions: characterizations, minimization, examples,
In Dassow, J. and Kelemen, J. (Eds.), 6th International Meeting of Young Computer
Scientists, Vol. 464 of Lect. Notes Comp. Sci., pp. 62–79. Springer-Verlag.

Revuz, D. (1992). Minimisation of acyclic deterministic automata in linear time, Theoret.
Comput. Sci., 92 (1), 181–189.

Rice, J. (1995). Mathematical Statistics and Data Analysis. Duxbury Press.

Ridout, D. (1957). Rational approximations to algebraic numbers, Mathematika, 4, 125–131.

Rinott, Y. and Rotar, V. (1996). On coupling constructions and rates in the CLT for depen-
dent summands with applications to the antivoter model and weighted U -statistics, J.
Multivariate Anal., 56, 333–350.

Risley, R. N. and Zamboni, L. Q. (2000). A generalization of Sturmian sequences: combina-
torial structure and transcendence, Acta Arith., 95 (2), 167–184.

Robin, S. (2002). A compound Poisson model for words occurrences in DNA sequences, J.
Roy. Statist. Soc. Ser. C, 51, 437–451.

Robin, S. and Daudin, J.-J. (1999). Exact distribution of word occurrences in a random
sequence of letters, J. Appl. Probab., 36, 179–193.

Robin, S. and Daudin, J.-J. (2001). Exact distribution of the distances between any occur-
rences of a set of words, Ann. Inst. Statist. Math., 36 (4), 895–905.

Robin, S., Daudin, J.-J., Richard, H., Sagot, M.-F., and Schbath, S. (2002). Occurrence
probability of structured motifs in random sequences, J. Comput. Biol., 9, 761–773.

Robin, S. and Schbath, S. (2001). Numerical comparison of several approximations of the
word count distribution in random sequences, J. Comput. Biol., 8, 349–359.

Rocha, E., Viari, A., and Danchin, A. (1998). Oligonucleotide bias in Bacillus subtilis: general
trends and taxonomic comparisons, Nucl. Acids Res., 26, 2971–2980.

Roche, E. (1997). Compact factorization of finite-state transducers and finite-state automata,
Nordic J. Comput., 4 (2), 187–216.

Rodeh, M., Pratt, V. R., and Even, S. (1981). Linear algorithm for data compression via
string matching, J. Assoc. Comput. Mach., 28 (1), 16–24.

Roos, M. (1993). Stein-Chen method for compound Poisson approximation. Ph.D. thesis,
University of Zurich.

Rudander, J. (1996). On the first occurrence of a given pattern in a semi-Markov process.
Ph.D. thesis, Uppsala, Sweden.

Sagot, M.-F. (1996). Ressemblance lexicale et structurale entre macromolécules – Formalisa-
tion et approches combinatoires. Ph.D. thesis, Université de Marne-la-Vallée, Noisy le
Grand, France. Thèse de doctorat.

Version June 23, 2004

552 References

Sagot, M.-F. (1998). Spelling approximate repeated or common motifs using a suffix tree, In
Lucchesi, C. and Moura, A. (Eds.), LATIN’98: Theoretical Informatics: Third Latin
American Symposium, Vol. 1380 of Lect. Notes Comp. Sci., pp. 111–127. Springer-
Verlag.

Sagot, M.-F. and Myers, E. (1998). Identifying satellites and periodic repetitions in biological
sequences, J. Comput. Biol., 5 (3), 539–554.

Sagot, M.-F., Soldano, H., and Viari, A. (1995). A distance-based block searching algorithm,
In Intelligent Systems for Molecular Biology (ISMB), pp. 322–331.

Sagot, M.-F. and Viari, A. (1996). A double combinatorial approach to discovering patterns
in biological sequences, In Hirschberg, D. and Myers, G. (Eds.), 7th Combinatorial
Pattern Matching, Vol. 1075 of Lect. Notes Comp. Sci., pp. 186–208. Springer-Verlag.

Sagot, M.-F., Viari, A., Pothier, J., and Soldano, H. (1995). Finding flexible patterns in a text
- an application to 3D molecular matching, Computer Applied Bioscience (CABIOS),
11 (1), 59–70.

Sagot, M.-F., Viari, A., and Soldano, H. (1997). Multiple sequence comparison - A peptide
matching approach, Theoret. Comput. Sci., 180 (1-2), 115–137.

Sakarovich, J. (2004). Éléments de théorie des automates. Vuibert.

Salomaa, A. and Soittola, M. (1978). Automata-Theoretic Aspects of Formal Power Series.
Springer-Verlag.

Salton, G. (1989). Automatic Text Processing. Addison-Wesley.

Sankoff, D. and Kruskal, J. B. (Eds.) (1983). Time Warps, String Edits, and Macromolecules:
the Theory and Practice of Sequence Comparison. Addison-Wesley.

Sano, Y. (2002). On purely periodic β-expansions of Pisot numbers, Nagoya Math. J., 166,
183–207.

Sano, Y., Arnoux, P., and Ito, S. (2001). Higher dimensional extensions of substitutions and
their dual maps, J. Anal. Math., 83, 183–206.

Sapir, E. (1921). Language: An Introduction to the Study of Speech. Harcourt, Brace and
World.

Schaeffer, G. (1997). Bijective census and random generation of Eulerian planar maps with
prescribed vertex degrees, Electronic J. Comb., 4 (1), Research Paper 20, 14 pp.

Schbath, S. (1995a). Compound Poisson approximation of word counts in DNA sequences,
ESAIM Probab. Statist., 1, 1–16. (http://www.emath.fr/ps/).

Schbath, S. (1995b). Étude asymptotique du nombre d’occurrences d’un mot dans une châıne
de Markov et application à la recherche de mots de fréquence exceptionnelle dans les
séquences d’ADN. Ph.D. thesis, Université René Descartes, Paris V.

Schmidt, K. (1980). On periodic expansions of Pisot numbers and Salem numbers, Bull.
London Math. Soc., 12, 269–278.

Schützenberger, M.-P. (1961). A remark on finite transducers, Inform. and Control, 4, 185–
196.

Schützenberger, M.-P. (1964). On the synchronizing properties of certain prefix codes, Inform.
and Control, 7, 23–36.

Schützenberger, M.-P. (1977). Sur une variante des fonctions séquentielles, Theoret. Comput.
Sci., 4 (1), 47–57.

Schützenberger, M.-P. and Chomsky, N. (1963). The algebraic theory of context-free lan-
guages, In Computer Programming and Formal Systems, pp. 118–161. North Holland.

Sedgewick, R. (1983). Algorithms. Addison-Wesley.

Sedgewick, R. and Flajolet, P. (1995). An Introduction to the Analysis of Algorithms. Addison-
Wesley.

Version June 23, 2004

References 553

Senellart, J. (1998). Reconnaissance automatique des entrées du lexique-grammaire des
phrases figées, Travaux de linguistique, 37, 109–125.

Senellart, J. (1999). Outils de reconnaissance d’expressions linguistiques complexes dans de
grands corpus. Ph.D. thesis, LADL, University of Paris 7.

Senoussi, R. (1990). Statistique asymptotique presque-sûre de modèles statistiques convexes,
Ann. Inst. Henri Poincaré, 26, 19–44.

Shamir, R. and Tsur, D. (2001). Large scale sequencing by hybridization, In 5th Research in
Computational Molecular Biology (RECOMB), pp. 269–277. ACM Press.

Shannon, C. E. (1948). A mathematical theory of communication, Bell System Tech. J., 27,
379–423, 623–656.

Shannon, C. E. (1951). Prediction and entropy of printed English, Bell System Tech. J., 30,
50–64.

Shapiro, H. S. (1952). Extremal problems for polynomials and power series, Master’s thesis,
MIT.

Shields, P. C. (1969). The Ergodic Theory of Discrete Sample Paths. Amer. Math. Soc.

Shiloach, Y. (1981). Fast canonization of circular strings, J. Algorithms, 2 (2), 107–121.

Silberztein, M. (1994). INTEX: a corpus processing system, In 15th Conf. Com-
put. Linguistics (COLING’94), Vol. 1, pp. 579–583, Kyoto, Japan. Available at
http://acl.ldc.upenn.edu/C/C94/C94-1095.pdf.

Sirvent, V. F. (2000a). The common dynamics of the Tribonacci substitutions, Bull. Belg.
Math. Soc. Simon Stevin, 7 (4), 571–582.

Sirvent, V. F. (2000b). Geodesic laminations as geometric realizations of Pisot substitutions,
Ergodic Theory Dynam. Systems, 20 (4), 1253–1266.

Sirvent, V. F. and Wang, Y. (2002). Self-affine tiling via substitution dynamical systems and
Rauzy fractals, Pacific J. Math., 206 (2), 465–485.

Slisenko, A. (1983). Detection of periodicities and string matching in real time, J. Soviet
Math., 22, 1316–1386. translation from the Russian ordiginal.

Soldano, H., Viari, A., and Champesme, M. (1995). Searching for flexible repeated patterns
using a non transitive similarity relation, Pattern Recognition Letters, 16 (3), 233–246.

Sourice, S., Biaudet, V., El Karoui, M., Ehrlich, S., and Gruss, A. (1998). Identification of
the Chi site of Haemophilus influenzae as several sequences related to the Escherichia
coli Chi site, Mol. Microbiol., 27, 1021–1029.

Sproat, R. (1997). Multilingual text analysis for text-to-speech synthesis, J. Natural Language
Engineering, 2 (4), 369–380.

Stanley, R. P. (1999). Enumerative Combinatorics. Vol. II, Vol. 62 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press.

Stefanov, V. (2003). The intersite distances between pattern occurrences in strings generated
by general discrete - and continuous- time models: an algorithmic approach, J. Appl.
Probab., 40.

Stein, C. (1972). A bound for the error in the normal approximation to the distribution of
a sum of dependent random variables, In Proc. Sixth Berkeley Symp. Math. Statist.
Probab., Vol. 2, pp. 583–602. Univ. California Press, Berkeley.

Storer, J. A. (1988). Data Compression: Methods and Theory. Computer Science Press.

Stoye, J. and Gusfield, D. (1998). Simple and flexible detection of contiguous repeats using a
suffix tree, In Farach-Colton, M. (Ed.), 9th Combinatorial Pattern Matching, No. 1448
in Lect. Notes Comp. Sci., pp. 140–152. Springer-Verlag.

Szpankowski, W. (1993a). Asymptotic properties of data compression and suffix trees, IEEE
Trans. Inform. Theory, 39, 1647–1659.

Version June 23, 2004

554 References

Szpankowski, W. (1993b). A generalized suffix tree and its (un)expected asymptotic behaviors,
SIAM J. Comput., 22, 1176–1198.

Szpankowski, W. (2001). Average Case Analysis of Algorithms on Sequences. J. Wiley and
Sons.

Tanushev, M. S. (1996). Central limit theorem for several patterns in a Markov chain sequence
of letters,. Preprint.

Tanushev, M. S. and Arratia, R. (1997). Central limit theorem for renewal theory for several
patterns, J. Comput. Biol., 4, 35–44.

Thompson, K. (1968). Regular expression search algorithm, Comm. Assoc. Comput. Mach.,
11, 419–422.

Thurston, W. P. (1989). Groups, tilings and finite state automata, Lectures notes distributed
in conjunction with the Colloquium Series, in AMS Colloquium lectures.

Tutte, W. T. (1962). A census of planar triangulations, Canad. J. Math., 14, 21–38.

Ukkonen, E. (1992). Approximate string-matching with q-grams and maximal matches, The-
oret. Comput. Sci., 92, 191–211.

Ukkonen, E. (1995). On-line construction of suffix trees, Algorithmica, 14 (3), 249–260.

Valiant, L. G. (1984). A theory of the learnable, Comm. Assoc. Comput. Mach., 27 (11),
1134–1142.

Vallée, B. (2001). Dynamical sources in information theory: fundamental intervals and word
prefixes, Algorithmica, 29, 262–306.

Vanet, A., Marsan, L., and Sagot, M.-F. (1999). Promoter sequences and algorithmical meth-
ods for identifying them, Res. Microbiol., 150 (1), 1–21.

Verger Gaugry, J.-L. and Gazeau, J.-P. (2004). Geometric study of the beta-integers for
a Perron number and mathematical quasicrystals, to appear in J. Théor. Nombres
Bordeaux.

Vidal, J. and Mosseri, R. (2000). Generalized Rauzy tilings: construction and electronic
properties, Materials Science and Engineering A, 294–296, 572–575.

Vidal, J. and Mosseri, R. (2001). Generalized quasiperiodic Rauzy tilings, J. Phys. A, 34 (18),
3927–3938.

Viennot, G. X. (1986). Heaps of pieces. I. Basic definitions and combinatorial lemmas, In
Combinatoire énumérative (Montréal, 1985), Vol. 1234 of Lect. Notes Math., pp. 321–
350. Springer-Verlag.

Wade, L. I. (1941). Certain quantities transcendental over GF (pn, x), Duke Math. J., 8,
701–720.

Waterman, M. S. (1995). Introduction to Computational Biology. Maps, Sequences and
Genomes. Chapman and Hall.

Weber, A. and Klemm, R. (1995). Economy of description for single-valued transducers,
Inform. and Comput., 118 (2), 327–340.

Weiner, P. (1973). Linear pattern matching algorithm, In 14th IEEE Symposium on Switching
and Automata Theory (SWAT), pp. 1–11, Washington, DC.

Welsh, D. (1988). Codes and Cryptography. The Clarendon Press Oxford University Press.

Wharton, R. M. (1974). Approximate language identification, Inform. and Control, 26, 236–
255.

Wozny, N. and Zamboni, L. Q. (2001). Frequencies of factors in Arnoux-Rauzy sequences,
Acta Arith., 96 (3), 261–278.

Wu, S. and Manber, U. (1995). Fast text searching allowing errors, Comm. Assoc. Comput.
Mach., 35, 983–991.

Version June 23, 2004

References 555

Wyner, A. and Ziv, J. (1989). Some asymptotic properties of the entropy of a stationary
ergodic dat a source with applications to data compression, IEEE Trans. Inform.
Theory, 35, 1250–1258.

Wyner, A. J. (1997). The redundancy and distribution of the phrase lengths of the fixed-da
tabase Lempel-Ziv algorithm, IEEE Trans. Inform. Theory, 43, 1439–1465.

Yang, E. and Kieffer, J. (1998). On the performance of data compression algorithms based
upon string matching, IEEE Trans. Inform. Theory, 44, 47–65.

Zamboni, L. Q. (1998). Une généralisation du théorème de Lagrange sur le développement en
fraction continue, C. R. Acad. Sci. Paris, Série I, 327, 527–530.

Zipf, G. K. (1935). Psycho-Biology of Languages. Houghton-Mifflin. Republished by MIT
Press, 1965.

Ziv, J. and Lempel, A. (1977). A universal algorithm for sequential data compression, IEEE
Trans. Inform. Theory, IT-23, 337–343.

Ziv, J. and Lempel, A. (1978). Compression of individual sequences via variable-rate coding,
IEEE Trans. Inform. Theory, 24, 530–536.

Ziv, J. and Merhav, N. (1993). A measure of relative entropy between individual sequences
with application to universal classification, IEEE Trans. Inform. Theory, 39, 1270–
1279.

Version June 23, 2004

556 General Index

General Index

A
acceptance window521
acoustic model 219
adjacency list 104
agglutinative language 166
algebraic power series 497
algorithm

AcyclicMinimization . . . 33
AddToTrie 17
AutomataProduct 37
AutomataUnion 37
AutomatonLetter 37
AutomatonStar 38
Border .9
BorderSharp 92
CheckSimple 462
CircularMin 14
Clone 127
Closure472
ComposeTransducers . . 43
Convex 463
DominantEigenvalue . . . 70
EncodeMap477
Entropy 86
Epsilon 56
EvalExp 54
EvalFact 55
EvalTerm55
Extension 127
FastFind 113
First . 57
FlorentineRejection . .465
Follow58
Footprinter238
ForbiddenWords 145
HopcroftMinimization . 30
IsAccepted 22

IsInTrie 16
IsSubword 11
K-Repetitions 434
Lcp . 47
Lcs . 13
LcsLengthArray12
LengthsOfFactors 148
LLTable60
Longest-Prefix-Extension

410
LongestCommonPrefix . . 7
LongestCommonPrefixAr-

ray . 50
LongestPrefixInTrie . . .17
LRParse 64
LyndonFactorization . . .15
Maximal-Repetitions . .415
Mismatch-Right-

Repetitions 431
Mismatch-Right-Subruns

435
MooreMinimization 28
NaiveStringMatching . . 10
Next 21, 22, 46
NFAtoDFA 23
NormalizeTransducer . 50
Opening476
Process-Block 433
RandMap 473
RandPerm 458
RemoveFromTrie 18
Right-Local-Squares . 426
Right-Repetitions 413
Runs-Third-Stage 438
SearchFactor 11
SlowFind 105
SlowFind-bis 106

Version June 23, 2004

General Index 557

SlowFindC 112
Smile . 242
Speller 236
Staircase 459
SuffixAutomaton126
SuffixTree 112
SuffixTrie105
SuffixTrie-bis 107
ToSequentialTransducer

47
Unimodal 461
Viterbi93
Weighted-Composition 202
Weighted-

Determinization 206
ZLdecoding83
ZLencoding82

alignment . 178
alphabet . 3

DNA alphabet 254
alphabetic order5
ambiguity

lexical . 163
amino acid . 255
animal . 456
approximate eigenvector70
approximate repetition 427
approximate square 427
Arnoux–Rauzy word 532
asymptotic equirepartition property

81
autocorrelation

polynomial . 88, 260, 291, 336,
373, 384
set . 336

automatic sequence 485
automaton . 18

complete 20
deterministic 20
finite . 21
literal . 20
minimal 26
of analyses 186
path .19
state . 18
trim . 19

unambiguous 19
weighted 201

B
basis 244, 245, 250
beam search 221

synchronous 221
Bernoulli distribution 71
Bernoulli source332
best approximations 522
beta

expansion 529, 534
integers 531
transformation 529, 534

bimachine 97, 181
bounded remainder

letter . 528
set . 528

C
capacity

(l, k) sequences 365
Carlitz formal power series 502
cascade transduction 175
Catalan number 67, 448
central limit theorem see Gaussian

approximation
exact string matching 344
generalized pattern matching
362
reduced string matching . . 352
self-similar pattern matching
385
subsequence pattern matching
373

cepstra . 219
delta . 219
delta-delta 219

cepstral coefficients 219
cepstrum . 219
character

encoding 156
Chen-Stein method 316
chi-square

statistic 259
test . 258

Version June 23, 2004

558 General Index

Christol’s theorem 499
clump . 260, 261

k-clump 260, 262
mixed . 301
size of . 260

codon . 255
Combi 230, 237, 244, 245, 249
compact suffix automaton 132
compaction of trie 108
complexity function 527
composition

filter . 204
of weighted transducers . . 201,
221

compound Poisson approximation
283, 298, 318

compound words 163
confidence interval 287, 317
conjugate words 5, 150
constant length morphism483
constituent 192
context-dependency

model . 218
n-phonic model 218
transduction 218

context-free grammar 192, 193
correlation

matrix 351
number 370
polynomial 302, 351
set . 351

count
of clumps see declumped
count
of overlapping occurrences see
word count
of renewals . see renewal count

critical factorization theorem . .422
cut and project scheme 521

D
DAWG . 164
de Bruijn graph 217, 313, 355
declumped count 261, 279

Poisson approximation . . . 279,
283, 299

decoder . 221
delimiter . 159
delta method275, 321
density . 495
depth . 386
deterministic

weighted automata 206
determinizable

weighted automata 207
determinization 170

weighted automata 206
weighted transducers 206, 222

dictionary .162
discrete topology483
distance . 6

edit7, 229, 246–248, 250
Hamming 6, 229, 231, 249
subword . 6

distance between occurrences . 264
distribution 265
expectation266
moment-generating function
266
scan . 268
variance 266

don’t care symbol 228, 230,
243–245

Dyck language 52
dynamic source 333, 378

E
edge label representation 109
encoding

character 156
end position 116
error

lexical . 166
exact pattern matching 335
exceptional word 306
exponent .400

F
factor . 4

proper . 4
failure function147, 150
family of words . 294, 298, 301, 302

Version June 23, 2004

General Index 559

reduced set 295
Fibonacci numbers 21, 485
Fibonacci word 485
Fibonacci words 403
Fine and Wilf’s theorem 401
fixed point 484, 485
Footprinter . 231, 237, 238, 248,

249
forbidden word144
fork . 103, 132
formal Laurent series497
formal power series 496
Fourier transform 219

G
Gamma function Γ(z) 342
Gaussian approximation . 271, 292,

295, 303, 315
generalized index 136
generalized pattern matching . .349
generating operator 334, 378
Gilbreath’s card trick 25
Golden mean automaton . . 21, 527
grammar

statistical 215
weighted 215

graph . 168, 189

H
hapax .161
head . 103
Hidden Markov model219, 222
hidden patterns 331, 366
homography 163
Hopcroft’s algorithm 28

I
implementation of transition . . 104
incidence matrix 495, 506
index . 136
index membership 137
inflection . 162
initial prefix .44
integer power 400
intersection

weighted automata 204

irreducibility 358
iterates of a morphism 483

K
kernel . 487, 488
KMRC 232, 250
Kolmogorov theorem 75

L
lacuna

lexical . 166
language . 337
language model 215

Katz back-off 216, 222
large deviation principle . .289, 322
large deviations

exact string matching 346
generalized pattern matching
362
reduced string matching . . 352
subsequence pattern matching
376

lattice . 186
lemma . 162
lexical

ambiguity 163
analysis 156
error . 166
lacuna .166
tagging 162

lexicographic order 5
ligature 156, 158
likelihood . 256
literal

alignment 178
literal automaton 20
local grammar 189
local limit theorem

exact string matching 344
generalized pattern matching
363
subsequence pattern matching
376

local period 422
longest common

factor . 150

Version June 23, 2004

560 General Index

prefix .4
subword . 4

longest context138
longest extension functions 408
loop . 445

M
Markov chain 72, 187, 252, 254

aperiodic 72
embedding technique 256, 288
irreducible 72
maximal order272
order 254, 258, 307
parameters see transition
matrix
phase . 255
reversed chain 256
stationnary distribution . . 254

Markov source 332, 341
martingale 272, 322
matrix

aperiodic 68
irreducible 68
nonnegative 68
positive 68, 495
primitive 68
stochastic 495

maximal repetition401
memoryless source 332

biased . 332
unbiased 332

Meyer set . 521
minimal

weighted automata 211
minimal automaton 26
minimal forbidden word 144
minimization

weighted automata 211
weighted transducers 222

Mitra-count . 230, 237, 239, 247,
249, 250

Mitra-dyad241, 242, 250
Mitra-graph . 232, 239–241, 248,

250
model see probabilistic model
model set . 521

Möbius . 525
moment-generating function . . 266,

320
moments

exact string matching 341
generalized subsequence prob-
lem . 381
subsequence pattern matching
371

Moore’s algorithm 27
morphic . 485
morphism . 483

of constant length 483
of Pisot type 528, 533
uniform 483, 485
unimodular533

N
network expression 227–250

basis244, 245, 250
simple 228–240
tandem 245–247
with spacers 228, 240–244

NewAutomaton 104
NewState 104
normal approximation see

Gaussian approximation
number of factors 140

O
occurrence 260, 261

distance .see distance between
occurrences
overlap see period
phased 277
probability 261
waiting time323

output of state 104
overlap . 505
overlapping occurrences 260

clump see clump

P
paperfolding word 487, 489
path . 19, 456

successful19

Version June 23, 2004

General Index 561

period . 5, 260
minimal . 5
principal 260, 262

Perron–Frobenius theorem 68, 354,
359, 495

perturbed symmetry 487
phase . 277, 309
phone . 214, 217

context-dependent 218
phoneme . 217
Pisot number 506
Poisson approximation . . .269, 278,

292, 298, 304, 314, 316
Poivre . . . 230, 232, 237, 244, 245,

247, 249, 250
Poivre . 233
polygon . 456
polyomino . 456
position tree 107
Pratt 230, 243, 244, 249, 250
prefix . 4

proper . 4
prefix automaton 527
prefix distance 7
prefix order . 5
primitive pattern358
primitive word 5, 503
primitively-rooted square 400
primitivity . 358
probabilistic model254

hidden Markov model 253
Markov model see Markov
chain

probability measure 74
probability of occurrence 495
pronunciation model 217, 222
Prouhet-Thue–Morse word 486
p-value 290, 306, 348
pyramid . 464

Q
quasi-square 416
quorum . . . 230, 232, 233, 235, 236,

238–240, 242, 244, 246, 248,
249

R
radix order . 5
rare word assumption 279
rational

function 40, 93, 97
nonnegative 93

relation .40
Rauzy

fractal .511
norm . 516

recognizable set 19
recognized set 19
recursive transition network . . . 191
reduced pattern matching 350
redundancy 165
regular set . 19
relation . 39

composition 39
rational 40

relatively dense 521
renewal 261, 263
renewal count 263, 291

competing 302
expectation291
Gaussian approximation . . 292
Poisson approximation . . . 292

repeat with fixed gap 418
repeat with fixed gap word 421
repetition . 400
right context 116
right position 116
root . 260

principal 260
rotation of a word 150
RTN . 191

parameterized 193
Rudin-Shapiro word 486, 489

S
Satellite 245–247, 250
score . 275, 306
self-similar pattern matching . . 383
semi-pyramid 464
semiring . 200

Boolean 200
log 200, 224

Version June 23, 2004

562 General Index

probability 200
tropical 200

sequence
DNA sequence254, 306

sequential
function 44
transducer43

set
recognizable 21

shortest context139
shuffle . 24
sibling

states . 208
σ-additive .74
σ-algebra . 74
simultaneous combination 177
slitplane . 453
Smile 230, 242–244, 248–250
solid . 124
source

memoryless332
spacer 228, 240–244, 248, 250
spectral decomposition 361
spectrum . 313
speech 184, 213
speech recognition 213

statistical formulation 214
Speller 230, 235–237, 239,

242–244, 247–250
square . 400
square-free number526
state . 18

initial . 18
terminal 18

state diagram 19
statistical

grammar 215
statistical grammar

Katz back-off 216
n-gram model 215

Stein’s method 315, 318
step .445
stochastic matrix 495
string matching

exact 330, 335
generalized 330, 349, 355

reduced 350
self-similar 383

structured motif 323
Sturmian word 486
subsequence pattern matching 331,

366
generalized 331, 377

subsequentiable
weighted automata 207

subsequential
weighted automata 206

substitution matrix 495
substitutive 485
subword .4
suffix .4

proper . 4
suffix array 154
suffix automaton 116, 121
suffix function 118
suffix link 106, 124
suffix link function 105
suffix paths 125
suffix tree . . 108, 234–236, 243, 250
suffix trie 102, 386
syntactic

table . 193
syntactic congruence 116
syntactic equivalence 116

T
table

syntactic 193
tag . 161
tail . 103
TargetState 104
terminal

function 44
Thue–Morse word 73, 486, 489
token . 159
topological entropy78
topology . 483
total variation distance 316
transducer . 40

p-sequential 163
alignment 178
ambiguous163, 169

Version June 23, 2004

General Index 563

finite . 157
generalized sequential 171
literal40, 157
sequential 43, 157
subsequential 97
synchronous 40, 157
weighted 201

transduction 157
cascade175

transition matrix 254, 495
eigenvalue 255
estimation256

transliteration
ambiguous 158
unambiguous 157

Tribonacci
morphism 506
normal representation 508
sequence 507
word 486, 506

trie . 386, 392
twinning property 45
twins

property 207
states . 208

two-level morphology 180

U
uniform balance528
uniform morphism 483, 485
unique ergodicity83

V
vector

nonnegative 68
positive 68

Viterbi
algorithm 221
approximation . . 200, 220, 221

Viterbi algorithm 92

W
waiting time 335, 348
walk . 445

reverse 445
length of a 445

self-avoiding 456
Weeder232, 250
weight pushing 209, 222

weighted automata 209
weighted automata

deterministic 206
determinizable 207
intersection204
minimal 211
minimization 211
subsequentiable 207
subsequential 206
weight pushing 209

weighted transducers
composition 201, 221
determinization 206
minimization 211

Wielandt function69
Winnower 232, 233, 238–240,

248, 249
word

conjugate 5
Dyck . 447
linguistic 163
Motzkin 450
palindrome 4
period . 5
primitive 5
reversal . 4

word bag model187
word count 261

asymptotic variance 275
compound Poisson approxima-
tion 283, 286, 287,
300
distribution 270
expectation271
Gaussian approximation . 271,
295
variance 271

Z
Z-score . 348
Ziv–Lempel encoding82
Ziv–Lempel factorization 82

Version June 23, 2004

