Global dimensions of left-regular bands

Stuart Margolis, Bar-Ilan University

Franco Saliola, Université du Québec à Montréal
Benjamin Steinberg, City College of New York

XXIII ${ }^{e}$ Rencontre de Théorie des Représentations des Algèbres 17 September 2011

Left-regular bands (LRBs)

Definition (LRB)
A left-regular band is a semigroup B satisfying the identities:

- $x^{2}=x$
- $x y x=x y$

Left-regular bands (LRBs)

Definition (LRB)

A left-regular band is a semigroup B satisfying the identities:

> - $x^{2}=x$
> - $x y x=x y$
(B is a "band")
("left-regularity")

Left-regular bands (LRBs)

Definition (LRB)

A left-regular band is a semigroup B satisfying the identities:

- $x^{2}=x$
- $x y x=x y$
(B is a "band")
("left-regularity")

Remarks

- Informally: identities say ignore "repetitions".
- We consider only finite monoids here.

Free LRB and the Tsetlin library

The free $\operatorname{LRB} F(A)$ on a set A consists of all repetition-free words over the alphabet A. Product: concatenate and remove repetitions.

Free LRB and the Tsetlin library

The free $\operatorname{LRB} F(A)$ on a set A consists of all repetition-free words over the alphabet A. Product: concatenate and remove repetitions.

Example: $\ln F(\{1,2,3,4,5\})$:

$$
3 \cdot 14532=3145 \not 22=31452
$$

Free LRB and the Tsetlin library

The free $\operatorname{LRB} F(A)$ on a set A consists of all repetition-free words over the alphabet A. Product: concatenate and remove repetitions.

Example: In $F(\{1,2,3,4,5\})$:

$$
3 \cdot 14532=3145 \not 222=31452
$$

Tsetlin Library: shelf of books
"use a book, then put it at the front"

Free LRB and the Tsetlin library

The free $\operatorname{LRB} F(A)$ on a set A consists of all repetition-free words over the alphabet A. Product: concatenate and remove repetitions.

Example: In $F(\{1,2,3,4,5\})$:

$$
3 \cdot 14532=3145 \not 222=31452
$$

Tsetlin Library: shelf of books
"use a book, then put it at the front"

- ordering of the books \leftrightarrow word containing every letter

Free LRB and the Tsetlin library

The free $\operatorname{LRB} F(A)$ on a set A consists of all repetition-free words over the alphabet A. Product: concatenate and remove repetitions.

Example: $\ln F(\{1,2,3,4,5\})$:

$$
3 \cdot 14532=3145 \not 222=31452
$$

Tsetlin Library: shelf of books
"use a book, then put it at the front"

- ordering of the books \leftrightarrow word containing every letter
- move book to the front \leftrightarrow left-multiplication by generator

Free LRB and the Tsetlin library

The free $\operatorname{LRB} F(A)$ on a set A consists of all repetition-free words over the alphabet A. Product: concatenate and remove repetitions.

Example: $\ln F(\{1,2,3,4,5\})$:

$$
3 \cdot 14532=3145 \not 222=31452
$$

Tsetlin Library: shelf of books
"use a book, then put it at the front"

- ordering of the books \leftrightarrow word containing every letter
- move book to the front \leftrightarrow left-multiplication by generator
- long-term behaviour: favourite books move to the front

Faces of a hyperplane arrangement

 a set of hyperplanes partitions \mathbb{R}^{n} into faces:
Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:
the origin

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Faces of a hyperplane arrangement

a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

Product of faces

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

Product of faces

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

Product of faces

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

Product of faces

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

Example: Braid Arrangement

hyperplanes: $H_{i, j}=\left\{\vec{v} \in \mathbb{R}^{n}: v_{i}=v_{j}\right\}$
faces: ordered set partitions of $\{1, \ldots, n\}$
examples: $[\{2,3\},\{4\},\{1,5\}]$

$$
\neq[\{4\},\{1,5\},\{2,3\}]
$$

chambers: compositions into singleton blocks
example: $[\{2\},\{3\},\{4\},\{1\},\{5\}]$

Product of set compositions

Product of set compositions

$$
[\{2,5\}\{1,3,4,6\}] \cdot[\{4\}\{1\}\{5\}\{6\}\{3\}\{2\}]
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\frac{\downarrow}{\underline{\{2,5\}}}\{1,3,4,6\}\right] \cdot\left[\frac{\downarrow}{\{4\}}\{1\}\{5\}\{6\}\{3\}\{2\}\right]} \\
& =[\{2,5\} \cap\{4\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\frac{\downarrow}{\underline{\{2,5\}}}\{1,3,4,6\}\right] \cdot\left[\frac{\downarrow}{\{\underline{\{4\}}}\{1\}\{5\}\{6\}\{3\}\{2\}\right]} \\
& =[\emptyset
\end{aligned}
$$

Product of set compositions

$$
\left[\frac{\Downarrow}{\underline{\{2,5\}}}\{1,3,4,6\}\right] \cdot\left[\frac{\downarrow}{\underline{\{4\}}}\{1\}\{5\}\{6\}\{3\}\{2\}\right]
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\frac{\downarrow}{\underline{\{2,5\}}}\{1,3,4,6\}\right] \cdot[\{4\} \underline{\underline{\Downarrow} \underline{\{1\}}}\{5\}\{6\}\{3\}\{2\}]} \\
& =[\{2,5\} \cap\{1\}
\end{aligned}
$$

Product of set compositions

$$
\left[\frac{\Downarrow}{\{2,5\}}\{1,3,4,6\}\right] \cdot[\{4\} \underline{\underline{\Downarrow 1\}}}\{5\}\{6\}\{3\}\{2\}]
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\frac{\downarrow}{\{2,5\}}\{1,3,4,6\}\right] \cdot[\{4\}\{1\} \underline{\underline{\Downarrow} \underline{\{5}}\{6\}\{3\}\{2\}]} \\
& =[\{2,5\} \cap\{5\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\frac{\downarrow}{\{\underline{\{2,5\}}}\{1,3,4,6\}\right] \cdot[\{4\}\{1\} \underline{\underline{\{5\}}}\{6\}\{3\}\{2\}]} \\
& =[\{5\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\frac{\downarrow}{\{\underline{\{2,5\}}}\{1,3,4,6\}\right] \cdot[\{4\}\{1\} \underline{\underline{\{5\}}}\{6\}\{3\}\{2\}]} \\
& =[\{5\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\frac{\downarrow}{\underline{\{2,5\}}}\{1,3,4,6\}\right] \cdot\left[\{4\}\{1\}\{5\} \underline{\frac{\downarrow}{\{6\}}}\{3\}\{2\}\right]} \\
& =[\{5\}\{2,5\} \cap\{6\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\frac{\downarrow}{\underline{\{2,5\}}}\{1,3,4,6\}\right] \cdot\left[\{4\}\{1\}\{5\} \underline{\frac{\downarrow}{\{6\}}}\{3\}\{2\}\right]} \\
& =[\{5\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\frac{\downarrow}{\underline{\{2,5\}}}\{1,3,4,6\}\right] \cdot[\{4\}\{1\}\{5\}\{6\} \underline{\underline{\{3\}}}\{2\}]} \\
& =[\{5\}\{2,5\} \cap\{3\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\frac{\downarrow}{\underline{\{2,5\}}}\{1,3,4,6\}\right] \cdot\left[\{4\}\{1\}\{5\}\{6\}\{3\} \underline{\frac{\downarrow}{\{2\}}}\right]} \\
& =[\{5\}\{2,5\} \cap\{2\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\frac{\downarrow}{\underline{\{2,5\}}}\{1,3,4,6\}\right] \cdot\left[\{4\}\{1\}\{5\}\{6\}\{3\} \underline{\frac{\downarrow}{\{2\}}}\right]} \\
& =[\{5\}\{2\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {[\{2,5\} \underline{\Downarrow} \underline{\{1,3,4,6\}}] \cdot\left[\frac{\downarrow}{\{4\}}\{1\}\{5\}\{6\}\{3\}\{2\}\right]} \\
& =[\{5\}\{2\}\{1,3,4,6\} \cap\{4\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\{2,5\} \frac{\Downarrow}{\{1,3,4,6\}}\right] \cdot[\underline{\Downarrow} \cdot \underline{\{4\}}\{1\}\{5\}\{6\}\{3\}\{2\}]} \\
& =[\{5\}\{2\}\{4\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {[\{2,5\} \underline{\Downarrow} \underline{\{1,3,4,6\}}] \cdot[\{4\} \underline{\underline{\Downarrow 1\}}}\{5\}\{6\}\{3\}\{2\}]} \\
& =[\{5\}\{2\}\{4\}\{1,3,4,6\} \cap\{1\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {\left[\{2,5\} \frac{\Downarrow}{\{1,3,4,6\}}\right] \cdot[\{4\} \underline{\Downarrow} \underline{\{1\}}\{5\}\{6\}\{3\}\{2\}]} \\
& =[\{5\}\{2\}\{4\}\{1\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {[\{2,5\} \underline{\Downarrow} \underline{\{1,3,4,6\}}] \cdot[\{4\}\{1\} \underline{\underline{\Downarrow}} \underline{\underline{\{5}}\{6\}\{3\}\{2\}]} \\
& =[\{5\}\{2\}\{4\}\{1\}\{1,3,4,6\} \cap\{5\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {[\{2,5\} \underline{\nsucceq 1,3,4,6\}}] \cdot\left[\{4\}\{1\}\{5\} \underline{\frac{\Downarrow}{\{6\}}}\{3\}\{2\}\right]} \\
& =[\{5\}\{2\}\{4\}\{1\}\{1,3,4,6\} \cap\{6\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {[\{2,5\} \underline{\Downarrow 1,3,4,6\}}] \cdot\left[\{4\}\{1\}\{5\} \underline{\frac{\Downarrow}{\{6\}}}\{3\}\{2\}\right]} \\
& =[\{5\}\{2\}\{4\}\{1\}\{6\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {[\{2,5\} \underline{\Downarrow 1,3,4,6\}}] \cdot[\{4\}\{1\}\{5\}\{6\} \underline{\underline{\{3\}}}\{2\}]} \\
& =[\{5\}\{2\}\{4\}\{1\}\{6\}\{1,3,4,6\} \cap\{3\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {[\{2,5\} \underline{\Downarrow 1,3,4,6\}}] \cdot\left[\{4\}\{1\}\{5\}\{6\} \underline{\frac{\Downarrow}{\{3\}}}\{2\}\right]} \\
& =[\{5\}\{2\}\{4\}\{1\}\{6\}\{3\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {[\{2,5\} \underline{\Downarrow} \underline{\{1,3,4,6\}}] \cdot[\{4\}\{1\}\{5\}\{6\}\{3\} \underline{\underline{\Downarrow 2\}}}]} \\
& =[\{5\}\{2\}\{4\}\{1\}\{6\}\{3\}\{1,3,4,6\} \cap\{2\}
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {[\{2,5\}\{1,3,4,6\}] \cdot[\{4\}\{1\}\{5\}\{6\}\{3\}\{2\}]} \\
& =[\{5\}\{2\}\{4\}\{1\}\{6\}\{3\}]
\end{aligned}
$$

Product of set compositions

$$
\begin{aligned}
& {[\{\mathbf{2}, \mathbf{5}\}\{1,3,4,6\}] \cdot[\{4\}\{1\}\{\mathbf{5}\}\{6\}\{3\}\{\mathbf{2}\}]} \\
& =[\{\mathbf{5}\}\{\mathbf{2}\}\{4\}\{1\}\{6\}\{3\}]
\end{aligned}
$$

Random walks on hyperplane arrangements

A step in the random walk:
starting from an element c, pick an element x at random, and move to the new element x c.

Random walks on hyperplane arrangements

A step in the random walk:
starting from an element c, pick an element x at random, and move to the new element xc.
(Inverse) Riffle Shuffle:

$$
[\{\mathbf{2}, \mathbf{5}\}\{1,3,4,6\}][4,1, \mathbf{5}, 6,3, \mathbf{2}]=[\mathbf{5}, \mathbf{2}, 4,1,6,3]
$$

Random walks on hyperplane arrangements

A step in the random walk:
starting from an element c, pick an element x at random, and move to the new element x c.
(Inverse) Riffle Shuffle:
$[\{\mathbf{2}, \mathbf{5}\}\{1,3,4,6\}][4,1, \mathbf{5}, 6,3, \mathbf{2}]=[\mathbf{5}, \mathbf{2}, 4,1,6,3]$
Tsetlin Library:

$$
[\{\mathbf{3}\}\{1,2,4,5\}][1,4,5, \mathbf{3}, 2]=[\mathbf{3}, 1,4,5,2]
$$

Random walks on hyperplane arrangements

Bidigare-Hanlon-Rockmore (1995):

- showed eigenvalues admit a simple description
- present a unified approach to several Markov chains

Random walks on hyperplane arrangements

Bidigare-Hanlon-Rockmore (1995):

- showed eigenvalues admit a simple description
- present a unified approach to several Markov chains

Brown-Diaconis (1998):

- described stationary distribution
- proved diagonalizability of transition matrices

Random walks on hyperplane arrangements

Bidigare-Hanlon-Rockmore (1995):

- showed eigenvalues admit a simple description
- present a unified approach to several Markov chains

Brown-Diaconis (1998):

- described stationary distribution
- proved diagonalizability of transition matrices

Brown (2000):

- extended results to LRBs (and later to bands)
- proved diagonalizability for LRBs using algebraic techniques and representation theory of LRBs

Random walks on hyperplane arrangements

Bidigare-Hanlon-Rockmore (1995):

- showed eigenvalues admit a simple description
- present a unified approach to several Markov chains

Brown-Diaconis (1998):

- described stationary distribution
- proved diagonalizability of transition matrices

Brown (2000):

- extended results to LRBs (and later to bands)
- proved diagonalizability for LRBs using algebraic techniques and representation theory of LRBs

Others:
Björner, Athanasiadis-Diaconis, Chung-Graham, ...

Free Partitially-Commutative LRB

The free partially-commutative $\operatorname{LRB} F(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
F(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

Free Partitially-Commutative LRB

The free partially-commutative $\operatorname{LRB} F(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
F(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

Examples

- If $E=\varnothing$, then $F(G)=$ free LRB on V.

Free Partitially-Commutative LRB

The free partially-commutative $\operatorname{LRB} F(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
F(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

Examples

- If $E=\varnothing$, then $F(G)=$ free LRB on V.
- $F\left(K_{n}\right)=$ free commutative LRB on n generators.

Free Partitially-Commutative LRB

The free partially-commutative $\operatorname{LRB} F(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
F(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

Examples

- If $E=\varnothing$, then $F(G)=$ free LRB on V.
- $F\left(K_{n}\right)=$ free commutative LRB on n generators.
- LRB-version of the Cartier-Foata free partially-commutative monoid (aka trace monoids).

Acyclic orientations

Elements of $F(G)$ correspond to acyclic orientations of induced subgraphs of the complement \bar{G}.
Example

Acyclic orientation on induced subgraph on vertices $\{a, d, c\}$:

In $F(G): c a d=c d a=d c a(c$ comes before a since $c \rightarrow a)$

Random walk on $F(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Random walk on $F(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Random walk on $F(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Random walk on $F(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Athanasiadis-Diaconis (2010): studied this chain using a different LRB (graphical arrangement of G)

LRBs from acyclic quivers

- Let $Q=\left(Q_{0}, Q_{1}\right)$ be a finite acyclic quiver.

LRBs from acyclic quivers

- Let $Q=\left(Q_{0}, Q_{1}\right)$ be a finite acyclic quiver.
- Fix a total order on Q_{0} extending $Q_{1}: x \rightarrow y \Longrightarrow x<y$

LRBs from acyclic quivers

- Let $Q=\left(Q_{0}, Q_{1}\right)$ be a finite acyclic quiver.
- Fix a total order on Q_{0} extending $Q_{1}: x \rightarrow y \Longrightarrow x<y$
- For a path $v_{0} \rightarrow \cdots \rightarrow v_{l}$ of Q, define

$$
\ell\left(v_{0} \rightarrow \cdots \rightarrow v_{l}\right)=\sum_{u \leq v_{0}} \varepsilon_{u}+\sum_{i=1}^{l}\left(v_{0} \rightarrow \cdots \rightarrow v_{i}\right)
$$

LRBs from acyclic quivers

- Let $Q=\left(Q_{0}, Q_{1}\right)$ be a finite acyclic quiver.
- Fix a total order on Q_{0} extending $Q_{1}: x \rightarrow y \Longrightarrow x<y$
- For a path $v_{0} \rightarrow \cdots \rightarrow v_{l}$ of Q, define

$$
\ell\left(v_{0} \rightarrow \cdots \rightarrow v_{l}\right)=\sum_{u \leq v_{0}} \varepsilon_{u}+\sum_{i=1}^{l}\left(v_{0} \rightarrow \cdots \rightarrow v_{i}\right)
$$

Theorem (Steinberg)
$B_{Q}:=\{\ell(p): p$ is a path of $Q\}$ is a $L R B$ and $\mathbb{K} B_{Q} \cong \mathbb{K} Q$.

Idempotent derivations

Theorem (Lawvere)
If A is an algebra over a field \mathbb{K} with $\operatorname{char}(\mathbb{K}) \neq 2$,

$$
\left\{a \in A: a^{2}=a \text { and }[a,-] \text { is idempotent }\right\}
$$

is a left-regular band.

Idempotent derivations

Theorem (Lawvere)
If A is an algebra over a field \mathbb{K} with $\operatorname{char}(\mathbb{K}) \neq 2$,

$$
\left\{a \in A: a^{2}=a \text { and }[a,-] \text { is idempotent }\right\}
$$

is a left-regular band.

- Lawvere calls them "graphic monoids"; the identity $x y x=x y$ is called the "Schützenberger-Kimura" identity.
- "graphic topos": a topos which is generated by objects whose endomorphism monoid is a finite LRB.

Simple $\mathbb{K} B$-modules

Let $\Lambda(B)$ denote the lattice of principal left ideals of B, ordered by inclusion:

$$
\Lambda(B)=\{B b: b \in B\} \quad B a \cap B b=B(a b)
$$

Monoid surjection:

$$
\begin{aligned}
\sigma: B & \rightarrow \Lambda(B) \\
b & \mapsto B b
\end{aligned}
$$

Simple $\mathbb{K} B$-modules

Let $\Lambda(B)$ denote the lattice of principal left ideals of B, ordered by inclusion:

$$
\Lambda(B)=\{B b: b \in B\} \quad B a \cap B b=B(a b)
$$

Monoid surjection:

$$
\begin{aligned}
\sigma: B & \rightarrow \Lambda(B) \\
b & \mapsto B b \\
\operatorname{ker}(\sigma) & =\operatorname{rad}(\mathbb{K} B)
\end{aligned}
$$

So the simple $\mathbb{K} B$-modules S_{X} are indexed by $X \in \Lambda(B)$.

Poset of a LRB

B is a partially-ordered set via

$$
a \leq b \quad \Leftrightarrow \quad b a=a
$$

Example: $F(\{a, b, c\})$

Certain subposets of a LRB

For $B a \subseteq B b$, consider the subposet of B :

$$
B_{[B a, B b)}=\{x \in B: x<b \text { and } B a \leq B x\}
$$

Example: $B(a b c) \subseteq B b$

Certain subposets of a LRB

For $B a \subseteq B b$, consider the subposet of B :

$$
B_{[B a, B b)}=\{x \in B: x<b \text { and } B a \leq B x\}
$$

Example: $B(a b c) \subseteq B b$

Computation of Ext

Theorem (Margolis-S-Steinberg)
Let B be an LRB and $X, Y \in \Lambda(B)$. Then

Computation of Ext

Theorem (Margolis-S-Steinberg)
Let B be an LRB and $X, Y \in \Lambda(B)$. Then

$$
\operatorname{Ext}_{\mathbb{K} B}^{n}\left(S_{X}, S_{Y}\right)
$$

Computation of Ext

Theorem (Margolis-S-Steinberg) Let B be an LRB and $X, Y \in \Lambda(B)$. Then

$$
\begin{gathered}
\operatorname{Ext}_{\mathbb{K} B}^{n}\left(S_{X}, S_{Y}\right) \\
=\{ \\
=\{
\end{gathered}
$$

$$
\begin{aligned}
& \text { if } X=Y \text { and } n=0 \\
& \text { if } X<Y \text { and } n>0 \\
& \text { otherwise }
\end{aligned}
$$

where $\Delta B_{[X, Y)}$ is the order complex of the subposet $B_{[X, Y)}$.

Computation of Ext

Theorem (Margolis-S-Steinberg) Let B be an LRB and $X, Y \in \Lambda(B)$. Then

$$
\begin{gathered}
\operatorname{Ext}_{\mathbb{K} B}^{n}\left(S_{X}, S_{Y}\right) \\
=\left\{\begin{array}{l}
\\
0
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& \text { if } X=Y \text { and } n=0 \\
& \text { if } X<Y \text { and } n>0 \\
& \text { otherwise }
\end{aligned}
$$

where $\Delta B_{[X, Y)}$ is the order complex of the subposet $B_{[X, Y)}$.

Computation of Ext

Theorem (Margolis-S-Steinberg) Let B be an LRB and $X, Y \in \Lambda(B)$. Then

$$
\begin{aligned}
& \operatorname{Ext}_{\mathbb{K} B}^{n}\left(S_{X}, S_{Y}\right) \\
& \quad= \begin{cases}\mathbb{K} & \text { if } X=Y \text { and } n=0 \\
0 & \text { if } X<Y \text { and } n>0\end{cases} \\
& 0
\end{aligned}
$$

where $\Delta B_{[X, Y)}$ is the order complex of the subposet $B_{[X, Y)}$.

Computation of Ext

Theorem (Margolis-S-Steinberg)
Let B be an LRB and $X, Y \in \Lambda(B)$. Then

$$
\begin{aligned}
& \operatorname{Ext}_{\mathbb{K} B}^{n}\left(S_{X}, S_{Y}\right) \\
& \quad= \begin{cases}\mathbb{K} & \text { if } X=Y \text { and } n=0 \\
\widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) & \text { if } X<Y \text { and } n>0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

where $\Delta B_{[X, Y)}$ is the order complex of the subposet $B_{[X, Y)}$.

Poset and $\Lambda(B)$ for $B=F(\{a, b, c\})$

Quiver of $\mathbb{K} B$

Corollary. The quiver of $\mathbb{K} B$ has vertex set $\Lambda(B)$. The number of arrows $X \rightarrow Y$ is 0 if $X \nless Y$; otherwise, it is one less than the number of connected components of $\Delta B_{[X, Y)}$.

Quiver of $\mathbb{K} B$

Corollary. The quiver of $\mathbb{K} B$ has vertex set $\Lambda(B)$. The number of arrows $X \rightarrow Y$ is 0 if $X \nless Y$; otherwise, it is one less than the number of connected components of $\Delta B_{[X, Y)}$.

Proof. For $X<Y$:

$$
\operatorname{Ext}_{\mathbb{K} B}^{1}\left(S_{X}, S_{Y}\right)=\widetilde{H}^{0}\left(\Delta B_{[X, Y)}, \mathbb{K}\right)
$$

Computing the quiver of $B=F(\{a, b, c\})$

Quiver of $B=F(\{a, b, c\})$

Global dimension and Leray numbers

$$
\text { gl. } \operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0 \text { for all } X<Y\right\}
$$

Global dimension and Leray numbers

$$
\text { gl. } \operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0 \text { for all } X<Y\right\}
$$

For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Global dimension and Leray numbers

gl. $\operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0\right.$ for all $\left.X<Y\right\}$
For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Consequently:

1. gl. $\operatorname{dim} \mathbb{K} B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$

Global dimension and Leray numbers

gl. $\operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0\right.$ for all $\left.X<Y\right\}$
For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Consequently:

1. gl. $\operatorname{dim} \mathbb{K} B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$
2. gl. $\operatorname{dim} \mathbb{K} F(G)=\operatorname{Leray}_{\mathbb{K}}(\operatorname{Cliq}(G))$

Global dimension and Leray numbers

gl. $\operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0\right.$ for all $\left.X<Y\right\}$
For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Consequently:

1. gl. $\operatorname{dim} \mathbb{K} B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$
2. gl. $\operatorname{dim} \mathbb{K} F(G)=\operatorname{Leray}_{\mathbb{K}}(\operatorname{Cliq}(G))$
3. $\mathbb{K} F(G)$ is hereditary iff G is chordal

Global dimension and Leray numbers

gl. $\operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0\right.$ for all $\left.X<Y\right\}$
For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Consequently:

1. gl. $\operatorname{dim} \mathbb{K} B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$
2. gl. $\operatorname{dim} \mathbb{K} F(G)=\operatorname{Leray}_{\mathbb{K}}(\operatorname{Cliq}(G))$
3. $\mathbb{K} F(G)$ is hereditary iff G is chordal
4. For G triangle-free and not a forest: gl. $\operatorname{dim} \mathbb{K} F(G)=2$

Outline of Proof

An Eckmann-Shapiro-type lemma reduces to the case:

$$
\begin{array}{rlr}
& \operatorname{Ext}_{\mathbb{K} B}^{n}\left(S_{\widehat{0}}, S_{\widehat{1}}\right) \\
= & H^{n}\left(B, S_{\widehat{1}}\right) & \text { (monoid cohomology) } \\
= & H^{n-1}\left(B, \mathbb{K}^{B_{[0,1}}\right) & \text { (dimension shift) } \\
= & H^{n-1}\left(B \ltimes B_{\overparen{[0,1} 1}, \mathbb{K}\right) & \text { (Eckmann-Shapiro) } \\
= & H^{n-1}\left(\left|B \ltimes B_{[\widehat{0}, \hat{1}}\right|, \mathbb{K}\right) & \text { (classifying space) } \\
= & H^{n-1}\left(\Delta\left(B_{[\widehat{0}, \widehat{1})}\right), \mathbb{K}\right) & \text { (Quillen's Theorem A) }
\end{array}
$$

