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Definition (LRB)

A left-regular band is a semigroup B satisfying the identities:

• x2 = x (B is a “band”)
• xyx = xy (“left-regularity”)

Remarks

• Informally: identities say ignore “repetitions”.

• We consider only finite monoids here.
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Free LRB and the Tsetlin library

The free LRB F (A) on a set A consists of all repetition-free
words over the alphabet A. Product: concatenate and remove
repetitions.

Example: In F ({1, 2, 3, 4, 5}):

3 · 14532 = 3145�32 = 31452

Tsetlin Library: shelf of books
“use a book, then put it at the front”

• ordering of the books ↔ word containing every letter

• move book to the front ↔ left-multiplication by generator

• long-term behaviour: favourite books move to the front
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{
the face first encountered after a small
movement along a line from x toward y

xy
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b
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Example: Braid Arrangement

hyperplanes: Hi,j = {~v ∈ R
n : vi = vj}

faces: ordered set partitions of {1, . . . , n}

examples:
[
{2, 3}, {4}, {1, 5}

]

6=
[
{4}, {1, 5}, {2, 3}

]

chambers: compositions into singleton blocks

example:
[
{2}, {3}, {4}, {1}, {5}

]
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A step in the random walk:

starting from an element c,

pick an element x at random,

and move to the new element xc.

(Inverse) Riffle Shuffle:

[{2, 5}{1, 3, 4, 6}][4, 1,5, 6, 3, 2] = [5, 2, 4, 1, 6, 3]

Tsetlin Library:

[{3}{1, 2, 4, 5}][1, 4, 5, 3, 2] = [3, 1, 4, 5, 2]
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Random walks on hyperplane arrangements

Bidigare–Hanlon–Rockmore (1995):

◦ showed eigenvalues admit a simple description

◦ present a unified approach to several Markov chains

Brown–Diaconis (1998):

◦ described stationary distribution

◦ proved diagonalizability of transition matrices

Brown (2000):

◦ extended results to LRBs (and later to bands)

◦ proved diagonalizability for LRBs using algebraic
techniques and representation theory of LRBs

Others:

Björner, Athanasiadis-Diaconis, Chung-Graham, . . .



Free Partitially-Commutative LRB

The free partially-commutative LRB F (G) on a graph
G = (V,E) is the LRB with presentation:

F (G) =
〈
V

∣∣∣ xy = yx for all edges {x, y} ∈ E
〉



Free Partitially-Commutative LRB

The free partially-commutative LRB F (G) on a graph
G = (V,E) is the LRB with presentation:

F (G) =
〈
V

∣∣∣ xy = yx for all edges {x, y} ∈ E
〉

Examples

• If E = ∅, then F (G) = free LRB on V .



Free Partitially-Commutative LRB

The free partially-commutative LRB F (G) on a graph
G = (V,E) is the LRB with presentation:

F (G) =
〈
V

∣∣∣ xy = yx for all edges {x, y} ∈ E
〉

Examples

• If E = ∅, then F (G) = free LRB on V .

• F (Kn) = free commutative LRB on n generators.



Free Partitially-Commutative LRB

The free partially-commutative LRB F (G) on a graph
G = (V,E) is the LRB with presentation:

F (G) =
〈
V

∣∣∣ xy = yx for all edges {x, y} ∈ E
〉

Examples

• If E = ∅, then F (G) = free LRB on V .

• F (Kn) = free commutative LRB on n generators.

• LRB-version of the Cartier-Foata free

partially-commutative monoid (aka trace monoids).



Acyclic orientations

Elements of F (G) correspond to acyclic orientations of
induced subgraphs of the complement G.

Example

G =
a b

d c
G =

a b

d c

Acyclic orientation on induced subgraph on vertices {a, d, c}:

a

d c

In F (G): cad = cda = dca (c comes before a since c → a)
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Random walk on F (G)

States: acyclic orientations of the complement G

a b

d c

Step: left-multiplication by a generator (vertex) reorients all
the edges incident to the vertex away from it

Athanasiadis-Diaconis (2010): studied this chain using a
different LRB (graphical arrangement of G)
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LRBs from acyclic quivers

• Let Q = (Q0, Q1) be a finite acyclic quiver.

• Fix a total order on Q0 extending Q1: x → y =⇒ x < y

• For a path v0 → · · · → vl of Q, define

ℓ(v0 → · · · → vl) =
∑

u≤v0

εu +
l∑

i=1

(
v0 → · · · → vi

)

Theorem (Steinberg)

BQ := {ℓ(p) : p is a path of Q} is a LRB and KBQ
∼= KQ.
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Idempotent derivations

Theorem (Lawvere)

If A is an algebra over a field K with char(K) 6= 2,

{a ∈ A : a2 = a and [a,−] is idempotent}

is a left-regular band.

• Lawvere calls them “graphic monoids”; the identity
xyx = xy is called the “Schützenberger-Kimura” identity.

• “graphic topos”: a topos which is generated by objects
whose endomorphism monoid is a finite LRB.
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Simple KB-modules

Let Λ(B) denote the lattice of principal left ideals of B,
ordered by inclusion:

Λ(B) = {Bb : b ∈ B} Ba ∩Bb = B(ab)

Monoid surjection:
σ : B → Λ(B)

b 7→ Bb

ker(σ) = rad(KB)

So the simple KB-modules SX are indexed by X ∈ Λ(B).



Poset of a LRB

B is a partially-ordered set via

a ≤ b ⇔ ba = a

Example: F ({a, b, c})

abcacbbacbcacabcba

abacbabccacb

abc

1



Certain subposets of a LRB
For Ba ⊆ Bb, consider the subposet of B:
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{
x ∈ B : x < b and Ba ≤ Bx

}

Example: B(abc) ⊆ Bb

abcacbbacbcacabcba

abacbabccacb

abc

1



Certain subposets of a LRB
For Ba ⊆ Bb, consider the subposet of B:

B[Ba,Bb) =
{
x ∈ B : x < b and Ba ≤ Bx

}

Example: B(abc) ⊆ Bb

abcacbbacbcacabcba

abacbabccacb

abc

1

B[Babc,Bb) = {bc, ba, bca, bac}
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Computation of Ext

Theorem (Margolis-S-Steinberg)

Let B be an LRB and X, Y ∈ Λ(B). Then

Extn
KB(SX , SY )

=






K if X = Y and n = 0

H̃n−1
(
∆B[X,Y ),K

)
if X < Y and n > 0

0 otherwise

where ∆B[X,Y ) is the order complex of the subposet B[X,Y ).



Poset and Λ(B) for B = F ({a, b, c})

abcacbbacbcacabcba

abacbabccacb

abc

1

Babc

BbcBacBab

BcBbBa

B
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Quiver of KB

Corollary. The quiver of KB has vertex set Λ(B). The number
of arrows X → Y is 0 if X 6< Y ; otherwise, it is one less than
the number of connected components of ∆B[X,Y ).

Proof. For X < Y :

Ext1
KB(SX , SY ) = H̃0

(
∆B[X,Y ),K

)
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Global dimension and Leray numbers

gl. dimKB = sup
{
n : H̃n−1

(
∆B[X,Y ),K

)
6= 0 for all X < Y

}

For a simplicial complex C with vertex set V ,

Leray
K
(C) = min

{
d : H̃d(C[W ],K) = 0 for all W ⊆ V

}

Consequently:

1. gl. dimKB ≤ Leray
K
(∆(B))

2. gl. dimKF (G) = Leray
K
(Cliq(G))

3. KF (G) is hereditary iff G is chordal

4. For G triangle-free and not a forest: gl. dimKF (G) = 2





Outline of Proof

An Eckmann-Shapiro–type lemma reduces to the case:

Extn
KB(S0̂, S1̂)

= Hn(B, S1̂) (monoid cohomology)

= Hn−1(B,K
B[0̂,1̂)) (dimension shift)

= Hn−1(B ⋉ B[0̂,1̂),K) (Eckmann-Shapiro)

= Hn−1(|B ⋉ B[0̂,1̂)|,K) (classifying space)

= Hn−1(∆(B[0̂,1̂)),K) (Quillen’s Theorem A)


