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Definition (LRB)
A left-regular band is a semigroup B satisfying the identities:

ex’=zx (B is a “band”)

* TYTr = TY ( “left-regularity”)

Remarks

o Informally: identities say ignore “repetitions”.
e We consider only finite monoids here.



Free LRB and the Tsetlin library

The free LRB F'(A) on a set A consists of all repetition-free
words over the alphabet A. Product: concatenate and remove
repetitions.



Free LRB and the Tsetlin library

The free LRB F'(A) on a set A consists of all repetition-free
words over the alphabet A. Product: concatenate and remove

repetitions.

Example: In F'({1,2,3,4,5}):

314532 = 314532 = 31452



Free LRB and the Tsetlin library

The free LRB F'(A) on a set A consists of all repetition-free
words over the alphabet A. Product: concatenate and remove

repetitions.

Example: In F'({1,2,3,4,5}):

314532 = 314532 = 31452

Tsetlin Library: shelf of books
“use a book, then put it at the front”



Free LRB and the Tsetlin library

The free LRB F'(A) on a set A consists of all repetition-free

words over the alphabet A. Product: concatenate and remove
repetitions.

Example: In F'({1,2,3,4,5}):

314532 = 314532 = 31452

Tsetlin Library: shelf of books
“use a book, then put it at the front”

e ordering of the books <> word containing every letter



Free LRB and the Tsetlin library

The free LRB F'(A) on a set A consists of all repetition-free

words over the alphabet A. Product: concatenate and remove
repetitions.

Example: In F'({1,2,3,4,5}):

314532 = 314532 = 31452

Tsetlin Library: shelf of books
“use a book, then put it at the front”

e ordering of the books <> word containing every letter
e move book to the front <> left-multiplication by generator



Free LRB and the Tsetlin library

The free LRB F'(A) on a set A consists of all repetition-free

words over the alphabet A. Product: concatenate and remove
repetitions.

Example: In F'({1,2,3,4,5}):

314532 = 314532 = 31452

Tsetlin Library: shelf of books
“use a book, then put it at the front”

e ordering of the books <> word containing every letter
e move book to the front <> left-multiplication by generator
e long-term behaviour: favourite books move to the front
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Example: Braid Arrangement

hyperplanes: H; ; = {7 € R" : v; = v;}
faces: ordered set partitions of {1,...,n}

examples: [{2,3}, {4}, {1,5}]
# [{4}.{1,5},{2,3}]

chambers: compositions into singleton blocks

example: [{2}, {3}, {4}, {1}, {5}]
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Product of set compositions

12,5}{1,3,4,6}|- {4H{1H{BHO}3}2}]
— [{5H2HAH1IHOH3)
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Random walks on hyperplane arrangements

A step in the random walk:

starting from an element c,
pick an element x at random,
and move to the new element xc.

(Inverse) Riffle Shuffle:
{2,5}{1,3,4,6}][4,1,5,6,3,2] = [5,2,4,1,6, 3]
Tsetlin Library:
[{3}{1,2,4,5}][1,4,5,3,2] = [3,1,4,5, 2]
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Random walks on hyperplane arrangements

Bidigare-Hanlon—Rockmore (1995):
o showed eigenvalues admit a simple description
o present a unified approach to several Markov chains

Brown-Diaconis (1998):
o described stationary distribution
o proved diagonalizability of transition matrices

Brown (2000):
o extended results to LRBs (and later to bands)

o proved diagonalizability for LRBs using algebraic
techniques and representation theory of LRBs

Others:
Bjorner, Athanasiadis-Diaconis, Chung-Graham, ...
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Free Partitially-Commutative LRB

The free partially-commutative LRB F(G) on a graph
G = (V, E) is the LRB with presentation:

F(G) = <V ’ xy = yx for all edges {x,y} € E>

Examples

o If E =g, then F(G) = free LRB on V.
e F(K,) = free commutative LRB on n generators.

o LRB-version of the Cartier-Foata free
partially-commutative monoid (aka trace monoids).



Acyclic orientations

Elements of F'(G) correspond to acyclic orientations of
induced subgraphs of the complement G.

BCSORMEOYC
(@) (@) )
Acyclic orientation on induced subgraph on vertices {a, d, c}:

()
@ ©

In F(G): cad = cda = dca (c comes before a since ¢ — a)

Example
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Random walk on F/(G)

States: acyclic orientations of the complement G

Step: left-multiplication by a generator (vertex) reorients all
the edges incident to the vertex away from it

Athanasiadis-Diaconis (2010): studied this chain using a
different LRB (graphical arrangement of G3)
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LRBs from acyclic quivers

o Let @ = (Qo, Q1) be a finite acyclic quiver.
e Fix a total order on @)y extending Q1: x -y — x <y
e For a path vy — - -+ — v; of (), define

lvg = -+ = u) = Zeu+z<vo—> )

u<vg

Theorem (Steinberg)
Bg :={l(p) : p is a path of Q} is a LRB and KB, = KQ.
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Idempotent derivations

Theorem (Lawvere)
If A'is an algebra over a field K with char(K) # 2,

{a € A:d®=a and [a, -] is idempotent}
is a left-regular band.

e Lawvere calls them “graphic monoids”; the identity
xyx = xy is called the “Schitzenberger-Kimura” identity.

e “graphic topos”: a topos which is generated by objects
whose endomorphism monoid is a finite LRB.
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Simple KB-modules

Let A(B) denote the lattice of principal left ideals of B,
ordered by inclusion:

A(B)={Bb:b e B} Ba N Bb = B(ab)
Monoid surjection:
c:B — A(B)
b — Bb

ker(o) = rad(KB)

So the simple KB-modules Sx are indexed by X € A(B).



Poset of a LRB
B is a partially-ordered set via

a<b & ba=ua

Example: F'({a,b,c})

NN

ac ab

cba cab beca bac acb abc



Certain subposets of a LRB
For Ba C Bb, consider the subposet of B:

Bia,By) = {3: € B:x<band Ba < B:c}

Example: B(abc) C Bb
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Certain subposets of a LRB
For Ba C Bb, consider the subposet of B:

Bia,By) = {x € B:x<band Ba < B:c}

Example: B(abc) C Bb

/\
/\/\

cba cab @ @ acb abe

B{Babe,5y) = 1b¢, ba, bea, bac}



Computation of Ext

Theorem (Margolis-S-Steinberg)
Let B be an LRB and X,Y € A(B). Then



Computation of Ext

Theorem (Margolis-S-Steinberg)
Let B be an LRB and X,Y € A(B). Then

EXt%B(Sx, Sy)



Computation of Ext

Theorem (Margolis-S-Steinberg)
Let B be an LRB and X,Y € A(B). Then

EXt%B(Sx, Sy)

fX=Yandn=0
= f X<Yandn>0
otherwise

where AB|x y) is the order complex of the subposet Bx y).



Computation of Ext

Theorem (Margolis-S-Steinberg)
Let B be an LRB and X,Y € A(B). Then

EXt%B(Sx, Sy)

fX=Yandn=0
= f X<Yandn>0
0 otherwise

where AB|x y) is the order complex of the subposet Bx y).



Computation of Ext

Theorem (Margolis-S-Steinberg)
Let B be an LRB and X,Y € A(B). Then

EXt%B(Sx, Sy)

K fX=Yandn=0
= f X<Yandn>0
0 otherwise

where AB|x y) is the order complex of the subposet Bx y).



Computation of Ext

Theorem (Margolis-S-Steinberg)
Let B be an LRB and X,Y € A(B). Then

EXt%B(Sx, Sy)

K f X=Yandn=0
= § H" ' (ABixy),K) if X <Y andn>0
0 otherwise

where AB|x y) is the order complex of the subposet Bx y).



Poset and A(B) for B = F({a,b,c})

/1\ Ba/BBb\Bc
A AN A

ca be ba ac Bab Bac Bbce

N

cba cab bca bac acb abc Babe
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Quiver of KB

Corollary. The quiver of KB has vertex set A(B). The number
of arrows X — Y is 0 if X £ Y’; otherwise, it is one less than
the number of connected components of ABx y.

Proof. For X < Y:
EXt]%gB(Sx, Sy) = ﬁO (AB[X’y),K)
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Computing the quiver of B = F'({a, b, c})

1 B

I

\ca bc/ \ba ac/\ Bab  Bac

@ cab bca bac acb  abe

Ba Bb Be




Computing the quiver of B = F'({a, b, c})

Bab  Bac
cba



Quiver of B = F'({a,b,c})

1

ANANYAY <

ca be ba ac ac ‘Bbc

cba cab beca bac acb  abe Babe
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Global dimension and Leray numbers

gl.dim KB = sup {n c H ! (AB[ny),K) # 0 for all X < Y}
For a simplicial complex C with vertex set V,
Lerayg(C) = min {d : HYC[W],K) = 0 for all W C V}

Consequently:
1. gl. dimKB < Lerayg (A(B))
2. gl. dim KF(G) = Lerayg (Cliq(G))
3. KF(QG) is hereditary iff G is chordal
4. For G triangle-free and not a forest: gl. dim KF'(G) = 2






Outline of Proof

An Eckmann-Shapiro—type lemma reduces to the case:
Exty 5(55, 51)
= H"(B,S;) (monoid cohomology)
= H”_l(B KP61) (dimension shift)
(B % Bg1), K) (Eckmann-Shapiro)
= H"Y(|Bx Bg)l. K) (classifying space)
= H"'(A(Bg1),K)  (Quillen’s Theorem A)



