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Introduction

In this paper, we will study a family of random walks presented
by Bidigare, Hanlon, and Rockmore [4]. The walk is studied fur-
ther by Brown, and Diaconis [2] and Brown, Billera, and Diaconis [3].
Brown [1] regards the walk as a walk on semigroup under some restric-
tion. His work gives a method for calculating the stationary distribu-
tion and the rate of convergence of the walk. We will implement this
method to the calculation for the hyperplane chamber walk.

1. Background

1.1. Hyperplane Arrangement. Let Hi be a hyperplane in Rd. The
complement of Hi in Rd is a pair of disjoint connected spaces. We pick
one of these spaces and define H+

i to be its union with Hi. We define
H−

i to be the union of Hi with the other space.

Example 1.1.1. One of the two ways to define H+
i , H

−
i for Hi = {0} as

a hyperplane in R is
H+

i = [0,∞), H−
i = (−∞, 0].

Regardless of prior intuition we may have, we call H+
i the positive

side of Hi and H
−
i the negative side of Hi.

A set A of hyperplanes in Rd is called a hyperplane arrangement in
Rd. An arrangement of hyperplanes passing through the origin is called
central. Although one might successfully develop a similar theory on
arbitrary arrangements, we will consider only central arrangements in
this paper.

1.2. Faces, vertices, and chambers. Intersections of collection of
H+

i ’s and H−
i ’s are connected subspaces of Rd. We called these sub-

spaces faces. More precisely, we define

F =

{

n
⋂

i=1

Hσi

i : σi ∈ {+,−, 0}

}

to be the set of all faces in A. Since A is central, the above intersection
is never empty. Note that the dimensions of faces of an arrangement
A in Rd range from 0 to d. We call 1 dimensional faces vertices and 2
dimensional faces edges. The maximal faces, those of dimension d, are

1
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Figure 1. A visualization of an arrangement of 3 planes

called chambers. These notations come from the following geometric
representation of the arrangement.
To help visualizing, we intersect the arrangement with a unit sphere

in Rd centered at origin. Figure 1 shows an intersection of 3 planes with
the sphere. This is a view of the northern hemisphere with the circle
representing an intersection of the sphere with a plane while the arcs
are the great circles which are the intersection of other planes with the
sphere. The geometric property of great circles ensures that the view
from southern hemisphere will look similar. In this picture, vertices
are the intersections of 2 arcs, and edges are the arcs connecting two
vertices. Chambers are the connected areas bounded by edges.

1.3. Product of sign sequence. From the definition of face, note
that we have a unique sign sequence σ1σ2 . . . σn associates to each face
F =

⋂n

i=1 H
σi

i . The sign sequence helps to locate the face by telling
which side of each Hi the face is in. We define a product of sign
sequences by

σi(FG) =

{

σi(F ) if σi(F ) 6= 0
σi(G) otherwise,

where σi(K) is the sign sequence of face K at i-th position.

Example 1.3.1. Consider an arrangement of 4 planes as shown in Figure
2. Let F = +0− 0 and G = ++++. Then FG = ++−+ which is a
chamber adjacent to F closest to G in the sense that one can go from
G to FG by crossing the least number of planes.

This product gives a semigroup structure on F . Since the origin
{0} = 00 . . . 0 acts as an identity under the product of sign sequence, F
always contains an identity. The associativity of this product follows
immediately from the definition. To see that F is closed under the
product consider the following. If a face F contains no zero in its sign
sequence, then FG = F ∈ F for any face G ∈ F . So, assume that
σi(F ) = 0 for some i. Then F lies on the hyperplane Hi. Hence,
there are two faces, F+ and F−, adjacent to F with all the same sign
sequence as F except at the i-th position. These faces are the two
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Figure 2. An arrangement of 4 planes with cells encoding
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Figure 3. Changing zero at i-th position gives either
F+ or F−.

faces separated by Hi at F and are indeed faces in F (see Figure 3).
By changing the 0 in i-th position in the sign sequence of F , we have
either F+ or F− as a resulting face. Any change of other zeroes in the
sign sequence of F would have a similar result. Since a product FG is
a change of a set of zeroes in the sign sequences of F , the product FG
is a face for all F,G ∈ F . Thus, the product of sign sequence is closed
in F .

1.4. The random walk. The product of sign sequence gives rise to a
random walk on the set F of all faces of an arrangement. We start by
giving weight to each face. Then we pick the starting face F0 ∈ F . Let
Fj be the position of the walk at j-th step. We inductively define

Fj = FFj−1

where F ∈ F is chosen according to the weight {wF}F∈F .
From the definition of the product, we know that for any face F and

G the number of zeroes in the sign sequence of FG cannot exceed that
of G. It follows that, for large k, Fk should have no zero in its sign
sequence as long as the weight does not concentrate on a hyperplane.
This is amount to say that if there is no hyperplane containing all faces
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of nonzero weight, the stationary distribution of the walk is a linear
combination of chambers.

Example 1.4.1. On an arrangement of 3 planes, let w++0 =
1
2
= w−−0.

Observe that the weights concentrate on the plane corresponding to
the last coordinate of the sign sequence. Suppose that the walk starts
at F0 = σ1σ2σ3. Since

(+ + 0) · (∗ ∗ ∗) = + + ∗

and (−− 0) · (∗ ∗ ∗) = −− ∗, ∗ ∈ {+,−, 0} ,

it is clear that after a large number of steps we can expect that the
walk will be at + + σ3 or −− σ3 with the same probability. Thus,

stationary distribution(π) =
1

2
(+ + σ3) +

1

2
(−− σ3).

Since σ3 can be zero, π may involve terms of non-chamber faces as
implied by the concentration of weights.

In order to analyze the walk further, we introduce the matrix of
transition. Each row and column of the matrix represents each face.
For simplicity, we use the order in such a way that the i-th row and
the i-th column represent the same face. We define K(F, F ′) to be
the probability of the walk moving from F to F ′ in one step. This is
exactly the sum of the weight of all faces G such that GF = F ′. Hence,
we have

K(F, F ′) =
∑

GF=F ′

wG.

The transition matrix K is define by Kij = K(F, F ′) where F is repre-
sented by i-th column and F ′ is represented by j-th row. Since there
is no possible confusion, we will refer to the entries of matrix K by the
representation K(F, F ′).

Example 1.4.2. Let A be an arrangement of two lines with uniform
weight on the set of all vertices. That is each vertex has weight

1
#ofvertices

= 1
4
. We have the following matrix of transition.

++ +− −+ −− +0 −0 0+ 0− 00
++ 1

2
1
4

1
4

0 1
4

0 1
4

0 0
+− 1

4
1
2

0 1
4

1
4

0 0 1
4

0
−+ 1

4
0 1

2
1
4

0 1
4

1
4

0 0
−− 0 1

4
1
4

1
2

0 1
4

0 1
4

0
+0 0 0 0 0 1

4
1
4

0 0 1
4

−0 0 0 0 0 1
4

1
4

0 0 1
4

0+ 0 0 0 0 0 0 1
4

1
4

1
4

0− 0 0 0 0 0 0 1
4

1
4

1
4

00 0 0 0 0 0 0 0 0 0
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Let ~F be the column vector representing the face F . Then the prob-
ability distribution of the next step of the walk is the column vector
K ~F . More generally, the walk starting at F has K ` ~F as the probabil-
ity distribution of the walk after ` steps. It follows that the stationary
distribution of the walk starting at F is

πF = lim
`→∞

K` ~F .

A fundamental theorem of Markov chain theory implies that the sta-
tionary distribution is independent of the starting face. Thus,

π = lim
`→∞

K` ~F , F ∈ F .

Example 1.4.3. A computer computation shows that

lim
`→∞

K` =



























1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



























It follows that π = ( 1
4
, 1

4
, 1

4
, 1

4
, 0, 0, 0, 0, 0). This means that after a

large number of steps the walk is equally likely to be in one of the four
chambers.

A natural question that one may ask is how large should ` be in order
to be sure that the walk starting at F0 is “close” to π after ` steps. To
be more precise, we introduce a distance function. Let ~u = (u0, . . . , un)
and ~v = (v0, . . . , vn) be two vectors. Define the distance between ~u and
~v by

‖~u− ~v‖ = max
0≤i≤n

|ui − vi| .

We call the distance ‖K` ~F−π‖ the convergence rate of the walk starting
at F . So, the question is equivalent to how large should ` be in order
for the convergence rate to be smaller than some constant.
With enough effort, one can compute the convergence rate and the

stationary distribution directly from the definition. However, most of
the arrangements that we will encounter have large face sets which
make the matrix multiplication too tedious. In this paper, we will
develop a technique for computing the convergence rate and the sta-
tionary distribution of the walk.
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2. Random walks on left regular bands

In studying the hyperplane chamber walk, it is useful to consider a
structure called “left regular band”. We will show that the hyperplane
chamber walk is a walk on left regular bands. The walk on left regular
bands admits properties that will be helpful in determining the station-
ary distribution and the convergence rate of the hyperplane chamber
walk.

2.1. Left regular band. A semigroup F is called a left regular band

(LRB) if it satisfies the following conditions

F 2 = F and FGF = FG, ∀F,G ∈ F .

We call these conditions the “deletion properties”. Intuitively, the reap-
pearance of an element of F in the product is irrelevant to the overall
outcome of the product. Since the set of all faces F of a hyperplane
arrangement is a semigroup, we only need to check that F satisfies the
deletion properties. To see this, recall that the product FG is just a
change of a set of zeroes in the sign sequence of F to the corresponding
sign of G. It is obvious that F 2 = F . Notice also that σi(FG) = 0
implies σi(F ) = 0. So, right multiplication by F does not effect the
overall product FGF . Therefore, F is a LRB. As we have seen earlier
that F is always finite with identity, from now on we will only take our
LRB to be finite and contains an identity.

2.2. An action on RF . Consider vector space RF of all linear com-
bination

∑

F∈F aFF where aF ∈ R. The product of sign sequence on
F extends to RF . This gives a ring structure on RF .

Example 2.2.1. Let ~a =
∑

F∈F aFF and
~b =

∑

F∈F bFF be elements of
RF . The product on F extends to the following product

~a~b =
∑

F∈F

aFF
∑

F∈F

bFF =
∑

F∈F

(
∑

GG′=F

aGbG′)F

This is just a vector multiplication with the usual multiplication re-
placed by the product of sign sequence.

The weight distribution w =
∑

F∈F wFF is also an element of this
ring. It should be clear that each power w` is contained in this ring.
In fact, R[w] is a subalgebra of RF generated by the weight w.
We take the element ~F = 1 ·F ∈ RF to be the representation of the

face F ∈ F . Consider the product

w~F =
∑

F ′=GF

wGF
′

which is exactly the column vector of the transition matrix K repre-
sented by the face F . Since this is true for each F ∈ F , we have
w~F = K ~F . That is, for each F ∈ F the right multiplication by w
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acting on ~F ∈ RF is equivalent to the right multiplication by K acting
on the column vector ~F . More generally, we have

w` ~F = K` ~F .

By taking `→∞, we obtain a formula for the stationary distribution
in term of w.

2.3. Split semisimplicity. An R-algebraR is said to be split semisim-

ple if it is isomorphic to RI where I is a finite index set. This is equiv-
alent to saying that R has an orthogonal basis {ei}i∈I consisting of
idempotents of R. We call ei a primitive idempotent of R.
Let w be the generator of R. Consider the generating function

(2.3.1) f(t) =
∞
∑

`=0

w`t` =
1

1− wt

where the last equality follows from the formula for the sum of infinite
power series. Let

(2.3.2) g(z) =
1

z
f(1/z) =

1

z − w
.

Proposition 2.3.1. An R-algebra R is split semisimple if and only if

the function g(z) has the form

(2.3.3) g(z) =
∑

i∈I

ei
z − λi

where ei is a primitive idempotent and λi ∈ R. In this case, we have

w =
∑

i∈I λiei.

Proof. Suppose R is split semisimple with basis {ei}i∈I consisting of
primitive idempotents. Since w ∈ R, we have a representation w =
∑

i∈I λiei where λ ∈ R. From the properties of primitive idempotents,
we have that eiej = 0 when i 6= j and eiei = ei. It follows that
w` =

∑

i∈I λ
`
iei. Substitute this to the equation 2.3.1, we have

f(t) =
∑

i∈I

(
∞
∑

`=0

λ`it
`)ei =

∑

i∈I

ei
1− λit

where the last equality follows from the power series formula. Substi-
tute this in equation 2.3.2 to obtain equation 2.3.3.
Conversely, suppose R is not split semisimple. Assume that the

minimal polynomial p for w split into linear factor in R[x]. Let p(x) =
∏

i∈I(x−λi)
ri where λi are distinct. By the Chinese remainder theorem,

we have

R ∼=
∏

i∈I

R[x]/(x− λi)
ri .
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Then some ri > 1 because R is not split semisimple. Assume that
R = R[x]/(x − λ)r for some λ, where r > 1. Then w = λ + b where
br = 0 with br−1 6= 0. Hence,

g(z) =
1

z − w

=
1

(z − λ)− b

=
1

z − λ
·

1

1− (z − λ)−1b

=
r−1
∑

j=0

bj

(z − λ)j+1

Thus, g(z) has a pole of order r > 1 at z = λ. So, g(z) does not have
the form 2.3.3.
If p does not split into linear factors, extend scalars to a splitting

field R′ of p and apply the results above to R′ = R′ ⊗R R ∼= R′[x]/(p).
Then g(z) has poles at the roots of p, at least one of which is not in R.
Thus, g(z) does not have the form 2.3.3. ¤

3. The primitive idempotents

In this section, we will calculate the primitive idempotents using
proposition 2.3.1. We will do this by showing that g(z) has the form
2.3.3. The proposition then gives us the primitive idempotents of the
walk.

3.1. Reduced words. For simplicity in calculation, we admit some
lost of generality and will consider only hyperplane arrangements in
general position. An arrangement A of hyperplanes in Rd is said to
be in general position if for each set of d distinct hyperplanes {Hi}

i=d

i=1,
⋂d

i=1 Hi = {0}. Intuitively, if we form a central arrangement by choos-
ing n hyperplanes at random from the set of all hyperplanes passing
through the origin, the arrangement is more likely to be in general po-
sition. It follows from the definition that each vertex is an intersection
of d− 1 hyperplanes. In other words, each vertex of an arrangement in
Rd lies on exactly d − 1 hyperplanes, thus has d − 1 zeroes in its sign
sequence.
Product F1F2 · · ·F` of ` faces with nonzero weight gives a word of

length `. We will use the representation ~x = (x1, x2, . . . , x`) for the
word x1x2 · · · x`. The deletion property on F suggest that some of the
faces Fi may be removed without changing the outcome of the product.
A word can be reduced by repeatedly perform the above process until
such a removal is impossible. From the point of view of sign sequences,
each face in a reduce word is nonzero and contains at least one nonzero
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sign at the position in which all the sign of the faces to its left are
zeroes.

Example 3.1.1. Consider a reduced word of length 3

~x = (0 + 0)(−+ 0)(00+).

Observe that the second face has a nonzero sign at the first position
while the first face has a zero sign. And the third face has a nonzero
sign at the third position while the first and the second faces have zero
signs. This makes ~x a reduced word.

Consider an arrangement A in Rd of n ≥ d hyperplanes. Recall that
the vertices are nonzero faces with lowest dimension. So, a reduced
word with maximal length are those consisting of vertices. Since A
is in general position, each vertex has exactly d − 1 zeroes in its sign
sequence. It follows that the maximal length for a reduced word in
A is d. Clearly, each reduced word of length d is a chamber, which
has no zero in its sign sequence. Note that the terms in the stationary
distribution of the walk should be the words of infinite length. This
should leave no zero in the sign sequences of such words. We should
then expect that the stationary distribution will involve only chambers.
One might expect that the stationary distribution involves only the
reduced word of length d. However, this is not the case since some
chambers can be represented by reduced words of length less than d.

3.2. Computation in R2. Let uF =
∑

FG=F wG. This is to say uF is
the sum of the weights of faces G with FG = F . Consider an arrange-
ment A of n ≥ 2 lines in general position. Let w =

∑

F∈F wFF be the
weight distribution of the walk on the face semigroup F of A. We will
compute w` in terms of the coefficients of each face. In what follows,
we will abbreviate the notation by letting wi = wxi

and ui = uxi
and

ui,j = uxixj
.

Coefficients of w`:

• xi = reduced word of length 1

coeffw`(xi) = wi(ui)
`−1

Note that w` = ww · · ·w. To obtain xi from this product,
we must first pick wixi from the first w. This gives us the wi

in the above formula. And for the rest of the w’s, we can pick
any face F with xiF = xi. Since the sum of the weight on these
faces is ui and we have to pick exactly one face from each w,
we have the above formula.

• xixj = reduced word of length 2

coeffw`(xixj) = wiwj

∑

r,s≥0, r+s+2=`

uriu
s
i,j
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As in the previous case, we have to pick wixi from the first w.
Then we can pick any face F with xiF = xi for r of the following
w before picking wixj. This accounts for u

r
i . And for the rest

of the w, where there are s = `− r−2 of them left, we can pick
any face F with xixjF = xixj. This gives us the above formula.

Since A is in general position, the maximal length of reduced word
is 2. We do not have to compute further. The computation for w`

when A is not in general position is the same as above but we have to
compute up to the reduced word of length ` because w` may contain
a factor of such reduced word. In further computation, it is useful to
note that w` cannot produce a reduced word of length greater than `.
Using the result above, we proceed to the formula for g(z).

Coefficients of g(z) =
∑

`≥0 w
`z−`−1:

• xi = reduced words of length 1

coeffg(xi) =
∑

`≥1

wiu
`−1
i z−`−1

=
wi

z(z − ui)

=
−wi/ui

z
+
wi/ui
z

• xixj = reduced word of length 2

coeffg(xixj) =
∑

`≥2

{wiwj

∑

r,s≥0, r+s+2=`

uriu
s
i,j}

= wiwj

∑

r≥0

uri
∑

s≥0

usi,jz
−r−1z−s−1z−1

= wiwj

1

z − ui

1

z − ui,j

1

z

=
1

z
(
wiwj

uiui,j
) +

1

z − ui
(

−wiwj

ui(ui,j − ui)
)

+
1

z − ui,j
(

wiwj

ui,j(ui,j − ui)
)

Observe that from the coefficients of g(z) each pole of g(z) has order
1. Hence, g(z) has the form 2.3.3. By proposition 2.3.1, the algebra
R[w] is split semisimple with primitive idempotents {ei}. Using the
equation 2.3.3, we obtain formula for primitive idempotent ei by lump-
ing up all the coefficients of 1/(z − λi) in g(z). Let Ci be the set of all
reduced words of length i. We have the following:
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• λ = 0,

e0 = 1−
∑

xi∈C1

wixi
ui

+
∑

xixj∈C2

wiwjxixj
uiui,j

• λ 6= 0,

eλ =
∑

ui=λ

(
wixi
ui

−
wiwjxixj

ui(ui,j − ui)
) +

∑

ui,j=λ

wiwjxixj
ui,j(ui,j − ui)

3.3. Generalization to Rd. For an arrangement in general position
in Rd, the maximal length for reduced word becomes d. So, to obtain
the formula for the primitive idempotents in Rd, we have to compute
the coefficients of reduced words of lengths up to d. Fortunately, the
technique used to derived the primitive idempotent in R2 in previous
section works equally well in higher dimension. In fact, if the formula
for the primitive idempotents of the walk in Rd−1 is known, we only
need to compute the coefficients of reduced word of length d to obtain
the formula for primitive idempotents of the walk in Rd. On the other
hand, if the formula for the primitive idempotents of the walk in Rd

is known, we can easily delete the terms involving reduced words of
length d to obtain the formula for the primitive idempotents of the
walk in Rd−1.

4. Stationary distribution and the rate of convergence

Recall that the properties of primitive idempotents gives the identity

w` =
∑

i∈I

λ`iei.

Taking the limit as `→∞ all the terms in the right vanish except for
λ = 1. Thus, the formula for the stationary distribution is simply the
primitive idempotent corresponding to λ = 1, i.e., π = e1. Hence,

w` = π +
∑

λ6=1

λ`eλ.

By definition of π, we have π ~F = ~F . Then
∥

∥

∥
K` ~F − π

∥

∥

∥
=
∥

∥

∥
w` ~F − π

∥

∥

∥

=

∥

∥

∥

∥

∥

π ~F +
∑

λ6=1

λ`eλ ~F − π

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∑

λ6=1

λ`eλ ~F

∥

∥

∥

∥

∥

,

which is the formula of the rate of convergence.
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