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A SIMPLE PROOF OF BROWN’S DIAGONALIZABILITY

THEOREM

BENJAMIN STEINBERG

We present here a simple proof of Brown’s diagonalizability theorem for
certain elements of the algebra of a left regular band [1, 2], including prob-
ability measures. Brown’s theorem also provides a uniform explanation for
the diagonalizability of certain elements of Solomon’s descent algebra, since
the descent algebra embeds in a left regular band algebra [1, 2]. Recall
that a left regular band is a semigroup satisfying the identities x2 = x and
xyx = xy. In this paper all semigroups are assumed finite.

Let S be a left regular band with identity (there is no loss of generality in
assuming this) and let L be the lattice of principal left ideals of S ordered by
inclusion1. We view L as a monoid via its meet, which is just intersection.
There is a natural surjective homomorphism σ : S → L, called the support

map, given by σ(s) = Ss. A key fact that we shall exploit is that σ(s) ≤ σ(t)
if and only if st = s, that is, s ∈ St if and only if st = s. Indeed, let S act
on the right of itself. Because t is an idempotent, it acts as the identity on
its image; but this is just St.

Let k be a field and let

w =
∑

t∈S

wtt ∈ kS. (1)

For X ∈ L, define

λX =
∑

σ(t)≥X

wt. (2)

Brown [1, 2] showed that k[w] is split semisimple provided that X > Y
implies λX 6= λY . We give a new proof of this by showing that if λ1, . . . , λk

are the distinct elements of {λX | X ∈ L}, then

0 =
k∏

i=1

(w − λi). (3)

This immediately implies that the minimal polynomial of w has distinct
roots and hence k[w] is split semisimple.

Everything is based on the following formula for sw.
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Lemma 1. Let s ∈ S. Then

sw = λσ(s)s+
∑

σ(t)�σ(s)

wtst

and moreover, σ(s) > σ(st) for all t with σ(t) � σ(s).

Proof. Using that σ(t) ≥ σ(s) implies st = s, we compute

sw =
∑

σ(t)≥σ(s)

wtst+
∑

σ(t)�σ(s)

wtst

=
∑

σ(t)≥σ(s)

wts+
∑

σ(t)�σ(s)

wtst

= λσ(s)s+
∑

σ(t)�σ(s)

wtst.

It remains to observe that σ(t) � σ(s) implies σ(st) = σ(s)σ(t) < σ(s). �

The proof of (3) proceeds via an induction on the support. Let us write

0̂ for the bottom of L and 1̂ for the top. If X ∈ L, put

ΛX = {λY | Y ≤ X} and Λ′
X = {λY | Y < X}.

Our hypothesis says exactly that ΛX = {λX} ∪̇ Λ′
X

(disjoint union). Define
polynomials pX(z) and qX(z), for X ∈ L, by

pX(z) =
∏

λi∈ΛX

(z − λi)

qX(z) =
∏

λi∈Λ′

X

(z − λi) =
pX(z)

z − λX

.

Notice that, for X > Y , we have ΛY ⊆ Λ′
X
, and hence pY (z) divides qX(z),

because λX /∈ ΛY by assumption. Also observe that

p1̂(z) =

k∏

i=1

(z − λi)

and hence establishing (3) is equivalent to proving p1̂(w) = 0.

Lemma 2. If s ∈ S, then s · pσ(s)(w) = 0.

Proof. The proof is by induction on σ(s) in the lattice L. Suppose first

σ(s) = 0̂; note that p0̂(z) = z − λ0̂. Then since σ(t) ≥ σ(s) for all t ∈ S,
Lemma 1 immediately yields s(w−λσ(s)) = 0. In general, assume the lemma
holds for all s′ ∈ S with σ(s′) < σ(s). Then by Lemma 1

s · pσ(s)(w) = s · (w − λσ(s)) · qσ(s)(w) =
∑

σ(t)�σ(s)

wtst · qσ(s)(w) = 0.

Here the last equality follows because σ(t) � σ(s) implies σ(s) > σ(st) and
so pσ(st)(z) divides qσ(s)(z), whence induction yields st · qσ(s)(w) = 0. �
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Applying the lemma to the identity element of S yields p1̂(w) = 0 and
hence we have proved:

Theorem 3. Let w be as in (1) and let λX be as in (2) for X ∈ L. If

X > Y implies λX 6= λY , then k[w] is split semisimple.

If k = R, and w is a probability measure, then X > Y implies λX > λY

provided the support of w generates S as a monoid. If this is not the case,
then semisimplicity of R[w] follows by considering R[w] ⊆ RT ⊆ RS where
T is the submonoid generated by the support of w.
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