A SIMPLE PROOF OF BROWN'S DIAGONALIZABILITY THEOREM

BENJAMIN STEINBERG

We present here a simple proof of Brown's diagonalizability theorem for certain elements of the algebra of a left regular band [1,2], including probability measures. Brown's theorem also provides a uniform explanation for the diagonalizability of certain elements of Solomon's descent algebra, since the descent algebra embeds in a left regular band algebra [1,2. Recall that a left regular band is a semigroup satisfying the identities $x^{2}=x$ and $x y x=x y$. In this paper all semigroups are assumed finite.

Let S be a left regular band with identity (there is no loss of generality in assuming this) and let L be the lattice of principal left ideals of S ordered by inclusion. We view L as a monoid via its meet, which is just intersection. There is a natural surjective homomorphism $\sigma: S \rightarrow L$, called the support map, given by $\sigma(s)=S s$. A key fact that we shall exploit is that $\sigma(s) \leq \sigma(t)$ if and only if $s t=s$, that is, $s \in S t$ if and only if $s t=s$. Indeed, let S act on the right of itself. Because t is an idempotent, it acts as the identity on its image; but this is just $S t$.

Let k be a field and let

$$
\begin{equation*}
w=\sum_{t \in S} w_{t} t \in k S . \tag{1}
\end{equation*}
$$

For $X \in L$, define

$$
\begin{equation*}
\lambda_{X}=\sum_{\sigma(t) \geq X} w_{t} . \tag{2}
\end{equation*}
$$

Brown [1,2] showed that $k[w]$ is split semisimple provided that $X>Y$ implies $\lambda_{X} \neq \lambda_{Y}$. We give a new proof of this by showing that if $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct elements of $\left\{\lambda_{X} \mid X \in L\right\}$, then

$$
\begin{equation*}
0=\prod_{i=1}^{k}\left(w-\lambda_{i}\right) . \tag{3}
\end{equation*}
$$

This immediately implies that the minimal polynomial of w has distinct roots and hence $k[w]$ is split semisimple.

Everything is based on the following formula for $s w$.

Date: October 10, 2009.
The author was supported in part by NSERC.
${ }^{1}$ Brown calls the dual of this lattice the support lattice.

Lemma 1. Let $s \in S$. Then

$$
s w=\lambda_{\sigma(s)} s+\sum_{\sigma(t) \nsubseteq \sigma(s)} w_{t} s t
$$

and moreover, $\sigma(s)>\sigma(s t)$ for all t with $\sigma(t) \nsupseteq \sigma(s)$.
Proof. Using that $\sigma(t) \geq \sigma(s)$ implies $s t=s$, we compute

$$
\begin{aligned}
s w & =\sum_{\sigma(t) \geq \sigma(s)} w_{t} s t+\sum_{\sigma(t) \nsubseteq \sigma(s)} w_{t} s t \\
& =\sum_{\sigma(t) \geq \sigma(s)} w_{t} s+\sum_{\sigma(t) \nsubseteq \sigma(s)} w_{t} s t \\
& =\lambda_{\sigma(s)} s+\sum_{\sigma(t) \nsubseteq \sigma(s)} w_{t} s t .
\end{aligned}
$$

It remains to observe that $\sigma(t) \nsupseteq \sigma(s)$ implies $\sigma(s t)=\sigma(s) \sigma(t)<\sigma(s)$.
The proof of (3) proceeds via an induction on the support. Let us write $\widehat{0}$ for the bottom of L and $\widehat{1}$ for the top. If $X \in L$, put

$$
\Lambda_{X}=\left\{\lambda_{Y} \mid Y \leq X\right\} \text { and } \Lambda_{X}^{\prime}=\left\{\lambda_{Y} \mid Y<X\right\}
$$

Our hypothesis says exactly that $\Lambda_{X}=\left\{\lambda_{X}\right\} \dot{\cup} \Lambda_{X}^{\prime}$ (disjoint union). Define polynomials $p_{X}(z)$ and $q_{X}(z)$, for $X \in L$, by

$$
\begin{aligned}
& p_{X}(z)=\prod_{\lambda_{i} \in \Lambda_{X}}\left(z-\lambda_{i}\right) \\
& q_{X}(z)=\prod_{\lambda_{i} \in \Lambda_{X}^{\prime}}\left(z-\lambda_{i}\right)=\frac{p_{X}(z)}{z-\lambda_{X}} .
\end{aligned}
$$

Notice that, for $X>Y$, we have $\Lambda_{Y} \subseteq \Lambda_{X}^{\prime}$, and hence $p_{Y}(z)$ divides $q_{X}(z)$, because $\lambda_{X} \notin \Lambda_{Y}$ by assumption. Also observe that

$$
p_{\widehat{1}}(z)=\prod_{i=1}^{k}\left(z-\lambda_{i}\right)
$$

and hence establishing (3) is equivalent to proving $p_{\hat{1}}(w)=0$.
Lemma 2. If $s \in S$, then $s \cdot p_{\sigma(s)}(w)=0$.
Proof. The proof is by induction on $\sigma(s)$ in the lattice L. Suppose first $\sigma(s)=\widehat{0}$; note that $p_{\widehat{0}}(z)=z-\lambda_{\widehat{0}}$. Then since $\sigma(t) \geq \sigma(s)$ for all $t \in S$, Lemma 1 immediately yields $s\left(w-\lambda_{\sigma(s)}\right)=0$. In general, assume the lemma holds for all $s^{\prime} \in S$ with $\sigma\left(s^{\prime}\right)<\sigma(s)$. Then by Lemma 1

$$
s \cdot p_{\sigma(s)}(w)=s \cdot\left(w-\lambda_{\sigma(s)}\right) \cdot q_{\sigma(s)}(w)=\sum_{\sigma(t) \nsupseteq \sigma(s)} w_{t} s t \cdot q_{\sigma(s)}(w)=0 .
$$

Here the last equality follows because $\sigma(t) \nsupseteq \sigma(s)$ implies $\sigma(s)>\sigma(s t)$ and so $p_{\sigma(s t)}(z)$ divides $q_{\sigma(s)}(z)$, whence induction yields $s t \cdot q_{\sigma(s)}(w)=0$.

Applying the lemma to the identity element of S yields $p_{\hat{1}}(w)=0$ and hence we have proved:

Theorem 3. Let w be as in (11) and let λ_{X} be as in (2) for $X \in L$. If $X>Y$ implies $\lambda_{X} \neq \lambda_{Y}$, then $k[w]$ is split semisimple.

If $k=\mathbb{R}$, and w is a probability measure, then $X>Y$ implies $\lambda_{X}>\lambda_{Y}$ provided the support of w generates S as a monoid. If this is not the case, then semisimplicity of $\mathbb{R}[w]$ follows by considering $\mathbb{R}[w] \subseteq \mathbb{R} T \subseteq \mathbb{R} S$ where T is the submonoid generated by the support of w.

References

[1] K. S. Brown. Semigroups, rings, and Markov chains. J. Theoret. Probab., 13(3):871938, 2000.
[2] K. S. Brown. Semigroup and ring theoretical methods in probability. In Representations of finite dimensional algebras and related topics in Lie theory and geometry, volume 40 of Fields Inst. Commun., pages 3-26. Amer. Math. Soc., Providence, RI, 2004.

School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada

E-mail address: bsteinbg@math.carleton.ca

