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Abstract. This paper is a first attempt to apply the techniques of rep-
resentation theory to synchronizing automata and the Černý conjecture.
In particular, we obtain a new proof of Pin’s theorem and generaliza-
tions.

1. Introduction

Černý conjectured that every sychronizing automaton with n states has
a synchronizing word of length at most (n− 1)2 [2]. This problem has been
open now for over forty years. One of the first breakthroughs was Pin’s
proof of the Černý conjecture for circular automata with a prime number of
states; an automaton is said to be circular if there is an input that cyclically
permutes the states. Pin’s proof makes use of linear algebra and the irre-
ducibility of the cyclotomic polynomial to prove the result. Since then, linear
algebra has played an ever increasing role in the literature. For instance,
Dubuc’s solution of the Černý conjecture for circular automata [4] in general
and Kari’s solution for the case of Eulerian automata [5] both make heavy
use of linear algebraic techniques. The right context for such an approach,
it seems to us, is via representation theory [7]. In this paper, derived from
the first author’s Master’s Thesis [1], we show how representation theory
can be used to obtain a simple (and we believe elegant) proof of a more
general version of Pin’s result. Furthermore, it sheds light on why Pin’s
proof works: namely, it is shown that the irreducibility of the cyclotomic
polynomial corresponds to the irreducibility of a certain representation and
it is this that is needed to obtain the synchronizing word of the appropriate
size.

We believe that by using representation theoretic means, it should even-
tually be possible to prove the Černý conjecture for synchronizing automata
such that the group of units of the transition monoid contains a regular
permutation group. Dubuc handled the case of a cyclic group (with one ele-
ment generating set) essentially by using the representation theory of cyclic
groups, but in the language of minimal polynomials. It seems likely that ex-
plicit use of representation theory will at least lead to a solution for regular
Abelian permutation groups.
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2. Synchronizing Automata

For us, an automaton A = (Q,A) over an alphabet A consists of a finite
set of states Q and an action of A∗ on Q by total functions (which we leave
out of the notation). If q ∈ Q and w ∈ A∗, then qw denotes the state
reached when w acts on q. The transition monoid M(A) is the quotient of
A∗ that identifies two words if they act the same on all states of Q. It is a
finite monoid of functions acting on Q. So we are considering deterministic
automata without initial or final states. An element a ∈ A will be called
a permutation if the map q 7→ qa is a permutation; otherwise, it will be
called a non-permutation. An automaton (Q,A) is said to be synchronizing
if there is a word w such that qw = q′w for all q, q′ ∈ Q, i.e. q 7→ qw is a
constant map. Such a word w is called a synchronizing (or reset) word for
(Q,A).

For w ∈ A∗ and S ⊆ Q, we set

Sw−1 = {q′ | q′w ∈ S}.
Our strategy for finding synchronizing words will then be to show that, given
∅ 6= S ⊂ Q, we can find a word u ∈ A∗ such that |Su−1| > |S|. Then we will
be able to find a synchronizing word by starting with a one element set and
expanding repeatedly. If u can always be chosen to have size at most k, then
we can construct a synchronizing word of size at most 1 + (n− 2)k. Indeed,
we can expand a one element set with a single letter and then we have to
expand n− 2 more times using our bound k. In particular, if k = n = |Q|,
then we get 1 + (n− 2)n = (n− 1)2. We now state Černý’s conjecture.

Conjecture 1 (Černý’s conjecture [2]). Every synchronizing automaton
with n states has a synchronizing word with length at most (n− 1)2.

3. Linearization of the problem

Let M be a monoid. Then a representation of M (over the rationals)
of degree n is a (monoid) homomorphism ϕ : M → Mn(Q), where Mn(Q)
denotes the monoid of n× n matrices with entries in the field Q of rational
numbers. All vector spaces considered in this paper are over the field Q.
The vector space V = Qn is called the representation space of ϕ. Sometimes
we say that V carries the representation ϕ. A subspace W ⊆ V is said to be
M -invariant, if WMϕ ⊆ W . The representation ϕ is said to be irreducible
if the only M -invariant subspaces of V are {0} and V itself.

If G is a finite group, then Maschke’s theorem [7] shows that any repre-
sentation of G splits into a direct sum of G-invariant subspaces such that
the representation carried by each summand is irreducible. Moreover, this
decomposition is essentially unique [7]. The trivial representation of G is
the homomorphism ϕ : G → Q given by gϕ = 1 for all g ∈ G. This is an
irreducible representation of degree 1. For a representation ϕ : G→Mn(Q),
the trivial component is the subspace V G of the representation space V
consisting of those vectors fixed by Gϕ. It is the direct sum of the copies
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of the trivial representation in the aforementioned decomposition of ϕ into
irreducible constituents. The projection of V onto V G associated to this
decomposition is given by 1

|G|
∑

g∈G gϕ [7].

We fix for the rest of the section an automaton A = (Q,A). Set n = |Q|.
Then we define the standard representation of M(A) as follows. We consider
the vector space V with basis

B = {eq | q ∈ Q}. (3.1)

We define a homomorphism M : A∗ →Mn(Q) by w 7→Mw where

eqMw = eqw

for w ∈ A∗, q ∈ Q. It is clear that Mu = Mw if and only if qu = qw
for all q ∈ Q, if and only if u = w in M(A). Hence M induces a faithful
representation of M(A). We abuse notation and do not distinguish this
representation of M(A) from that of A∗. When convenient we assume Q =
{1, . . . , n} and identify B with the standard basis for Qn.

More concretely, for any a ∈ A, we define Ma to be the incidence matrix
of the graph consisting of only the edges of A labelled by a. That is,

(Ma)ij =

{
1, if i

a−→ j;
0, else.

The map M is extended to A∗ in the natural way. The following obser-
vation is key to what follows.

(M t
w)xy =

{
1, if y

w−→x;
0, else.

So it is reasonable to define Mw−1 = M t
w.

If M is a finite monoid, its regular representation is the standard repre-
sentation associated to the action of M on the right of itself (viewed as an
automaton with generators M). For example if M = Zp, this representa-
tion has basis e0, . . . , ep−1 and the generator acts by the cyclic permutation
matrix.

We also associate to each S ⊆ Q its characteristic vector [S] given by:

[S]i =

{
1, if i ∈ S;
0, else.

In particular, [Q] = [1, . . . , 1].
With this notation we have the following proposition.

Proposition 3.1. If S ⊆ Q and w ∈ A∗, then

[Sw−1] = [S]Mw−1 = [S]M t
w.
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Proof. First observe

([S]Mw−1)i = ([S]M t
w)i

=
n∑

k=1

[S]k(M
t
w)ki

=
n∑

k=1

[S]k(Mw)ik

= [S]i·w

since

(Mw)ik =

{
1, if i

w−→ k;
0, else.

Hence,

([S]Mw−1)i =

{
1, if i · w ∈ S;
0, else.

=

{
1, if i ∈ Sw−1;
0, else.

Thus, [S]Mw−1 = [Sw−1]. �

Recall that our strategy for obtaining a synchronizing word is to find, for
any non-empty, proper subset S ⊂ Q, a word u ∈ A∗ such that |Su−1| > |S|.
We wish to reformulate this in terms of the standard representation. Let V
be the representation space of the standard representation. We equip it with
the usual inner product 〈·, ·〉 that makes the basis B (3.1) an orthonormal
basis. We then have

|S| =
n∑

i=1

[S]i = 〈[S], [Q]〉.

Thus,

|Su−1| = 〈[S]Mu−1 , [Q]〉 = 〈[S]M t
u, [Q]〉 = 〈[S], [Q]Mu〉.

Definition 3.2. Define, for a word w ∈ A∗ and a subset S ⊆ Q,

αS(w) = |Sw−1| − |S|.
We aim to compute αS(w). First a lemma.

Lemma 3.3. [Q](Mw − I) ⊥ [Q].

Proof. To prove this lemma, we must show that 〈[Q], [Q](Mw − I)〉 = 0.
Indeed,

〈[Q], [Q](Mw − I)〉 = 〈[Q]M t
w, [Q]〉 − 〈[Q], [Q]〉. (3.2)

But, [Q]M t
w = [Qw−1] = [Q]. Therefore, the right hand side of (3.2) is equal

to zero. �
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Set V1 = Span{[Q]}; this is the the space of constant vectors. The sub-
script 1 is used because in some sense V1 is a trivial subspace for us; this will
be made more precise below. In representation theory [7], the orthogonal
complement of V1 plays a key role. So set

V0 = V ⊥1 = {v = [c1, . . . , cn] ∈ Q | c1 + . . .+ cn = 0}.

Notice that dim(V0) = n − 1. Indeed, if we take Q = {1, . . . , n}, then
{e1 − e2, . . . , en−1 − en} is a basis for V0. The fact that this dimension is
n− 1 was used by Kari [5] to obtain good bounds for synchronizing words.

The following proposition appears in some form in [4, 5].

Proposition 3.4. Let w ∈ A∗ and S ⊆ Q. Also, let [S] = S ′ + U , where
S′ ∈ V0 and U ∈ V1, be the orthogonal decomposition. Then

αS(w) = 〈S′M t
w, [Q]〉

= 〈S′, [Q]Mw〉
= 〈S′, [Q](Mw − I)〉
= 〈S′(M t

w − I), [Q]〉.

Proof. We begin by calculating

αS(w) = |Sw−1| − |S|
= 〈[S]M t

w, [Q]〉 − 〈[S], [Q]〉
= 〈[S](M t

w − I), [Q]〉
= 〈[S], [Q](Mw − I)〉
= 〈S′ + U, [Q](Mw − I)〉
= 〈S′, [Q](Mw − I)〉+ 〈U, [Q](Mw − I)〉
= 〈S′, [Q](Mw − I)〉

by Lemma 3.3 since U ∈ V1 and [Q](Mw − I) ∈ V0 = V ⊥1 .
Thus we have shown that αS(w) = 〈S′, [Q](Mw − I)〉. Since S′ ∈ [Q]⊥,

we may finish the proof as follows:

αS(w) = 〈S′, [Q](Mw − I)〉
= 〈S′, [Q]Mw〉 − 〈S′, [Q]〉
= 〈S′, [Q]Mw〉.

This completes the proof. �

We now wish to show that V0 is an M(A)-invariant subspace.

Proposition 3.5. V0 is an M(A)-invariant subspace. That is, if v ∈ V0,
then vMw ∈ V0 for all w ∈ A∗.
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Proof. Let v0 ∈ V0. Then,

〈v0Mw, [Q]〉 = 〈v0, [Q]M t
w〉

= 〈v0, [Qw
−1]〉

= 〈v0, [Q]〉 = 0

So, v0Mw ∈ V0 = V ⊥1 . �

4. Synchronizing words and irreducible representations

We want to use representation theoretic techniques to prove Pin’s theo-
rem [6] that the Černý conjecture holds for circular automata with a prime
number of states. We prove a more general result. Namely, we prove the
following theorem.

Theorem 4.1. Let A = (Q,A) be an automaton and V be the represen-
tation space of the standard representation of M(A). Suppose that there
is a subgroup G of the group of units of M(A) such that the orthogonal
complement V0 of the space of constant vectors in V carries a G-irreducible
representation. Then if M(A) is not a group, the automaton (Q,A) is syn-
chronizing. Moreover, if each element of G can be represented by a word of
length at most m, then a synchronizing word for A can be found of length
at most 1 + (n− 2)(m+ 1).

Before proving this theorem, we show that it applies to the situation of
circular automata with a prime number of states. So, suppose that A =
(Q,A) where Q = {0, . . . , q − 1} with q prime and A contains the cyclic
permutation p of Q. Take G = 〈p〉 ⊆ M(A). Let V be the representation
space for the standard representation of M(A), V1 be the space of constant
vectors and V0 = V ⊥1 . The G-irreducibility of V1 (over Q) is standard
representation theory; we include a proof for completeness. The space V0

has basis f0, . . . , fq−2 where fi = ei − ei+1. The action of Mp is given by

fiMp =

{
fi+1 i 6= q − 2∑q−2

i=0 −fi i = q − 2.
(4.1)

On the other hand, let ω be a primitive qth root of unity and consider the
action of ω on the cyclotomic field Q[ω] by right multiplication. Since q is
prime, ω has minimal polynomial 1 + x + x2 + · · · + xq−1 over Q and Q[ω]
has Q-basis {1, ω, ω2, . . . , ωq−2}. Thus

ωq−1 =

q−2∑

i=0

−ωi. (4.2)

Viewing G and 〈ω〉 as isomorphic copies of the cyclic group Zq, we see by
comparing (4.1) and (4.2) that the map V → Q[ω] given by fi 7→ ωi is
an isomorphism of representations of the group Zq. Now a Zq-invariant
subspace of Q[ω] is the same thing as an additive subgroup of Q[ω] closed
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under right multiplication by elements of Q and by ω; in other words, it is
the same thing as an ideal in Q[ω]. But Q[ω] is a field, so its only ideals are
{0} and Q[ω]. Thus the representation of G on V0 is irreducible.

Hence we have the following corollary to Theorem 4.1.

Corollary 4.2 (Pin [6]). Let (Q,A) be a circular automaton on q states
with q prime. Suppose A contains a non-permutation. Then (Q,A) is syn-
chronizing and has a synchronizing word of length at most (q − 1)2.

Proof. Take p ∈ A to be the cyclic permutation and G = 〈p〉. We just saw
that V0 carries an irreducible representation of G. Since

G = {1, p, . . . , pq−1},
we may take m = q − 1 in Theorem 4.1, thereby obtaining a synchronizing
word of length at most 1 + (q − 2)q = (q − 1)2. �

If A = (Q,A) is an automaton and G is a subgroup of the group of
units of M(A), then a sufficient condition for V0 to carry an irreducible
representation of G is that the action of G on Q is 2-transitive. In fact, this
latter condition is equivalent to V0 being irreducible over the complex field
[7]; however, the conclusion of Theorem 4.1 can be obtained in this case by
combinatorial means. But there are examples of permutation groups (Q,G)
for which V0 is G-irreducible, but which are neither 2-transitive nor regular
representations of cyclic groups of prime order. These are partially classified
by Dixon [3], where they are called QI-groups.

The remainder of this section is dedicated to proving Theorem 4.1. We
fix an automaton A = (Q,A) satisfying the hypotheses of Theorem 4.1. We
carry over the notation from the theorem statement and the notation from
the previous section. Since M(A) is assumed not to be a group, A contains
at least one non-permutation.

Suppose first that G is trivial. Then, since V0 is G-irreducible, it must be
one-dimensional, in which case |Q| = 2. Assuming that M(A) is not a group,
we see that any non-permutation letter synchronizes A. Thus the theorem
is proved in this case. So from now on we assume that G is non-trivial.

We’re going to show that (Q,A) is synchronizing and estimate the length
of a synchronizing word using the strategy of Section 2. So let ∅ 6= S ⊂ Q.
We want to find a word w ∈ A∗ of length at most m such that |Sw−1| > |S|.
Recall from Definition 3.2 that αS(w) = |Sw−1|−|S|. We can naturally view
αS as defined on M(A) and we abuse notation accordingly. As before, let
[S] = S′ +U be the orthogonal decomposition with S ′ ∈ V0, and U ∈ V1, as
in Proposition 3.4. Since ∅ 6= S ⊂ Q, [S] /∈ V1 and so we have S′ 6= 0.

Lemma 4.3. Let ∅ 6= S ⊂ Q. Suppose a ∈ A is any non-permutation. Then
there exists g ∈ G such that αS(ag) 6= 0.

Proof. First, we remark that [Q](Ma − I) 6= 0. Indeed, if [Q](Ma − I) = 0,
then [Q]Ma = [Q] and hence, a is a permutation. But, this contradicts our
choice of a.
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Now, set

W = Span{[Q](Ma − I)Mg | g ∈ G}.
Note that W 6= {0} since [Q](Ma−I) ∈W . By definition, W is G-invariant.
Hence, since V0 is G-irreducible, W = V0. Thus S′ ∈ V0 = W and so, since
0 6= S′, we have S′ /∈ W⊥. Since W is spanned by [Q](Ma − I)Mg, g ∈ G,
there exists g ∈ G such that

0 6= 〈S′, [Q](Ma − I)Mg〉 (4.3)

= 〈S′, [Q]MaMg〉 − 〈S′, [Q]Mg〉 (4.4)

= αS(ag)− 〈S′, [Q]〉 (4.5)

= αS(ag) (4.6)

where the passage from (4.4) to (4.5) follows from Proposition 3.4 and the
fact that Mg is a permutation matrix, while the last equality follows since
S′ ⊥ [Q]. �

Notice that V1 carries the trivial representation of G since [Q]Mh = [Q]
for any permutation matrix Mh. Since

V = V0 ⊕ V1 (4.7)

and V0 is G-irreducible, (4.7) is the decomposition of V into irreducible
representations. Hence we have V G = V1, where V G is the fixed subspace
of V under the action of G. As we mentioned in the previous section,∑

h∈HMh is the projection to V G and hence must annihilate V0. This leads
to the following lemma.

Lemma 4.4. Suppose v ∈ V0. Then v(
∑

h∈GMh) = 0. �

Proof of Theorem 4.1. In Lemma 4.3, we found some g ∈ G such that
αS(ag) 6= 0. We calculate

∑
h∈G αS(ah) as follows,

∑

h∈G
αS(ah) =

∑

h∈G
〈S′, [Q]MaMh〉

= 〈S′, [Q]Ma(
∑

h∈G
Mh)〉

= 〈S′, [Q](Ma − I)(
∑

h∈G
Mh)〉

(4.8)

The last equality holds because

〈S′, [Q](Ma − I)(
∑

h∈G
Mh)〉 = 〈S′, [Q]Ma(

∑

h∈G
Mh)〉 − 〈S′, [Q](

∑

h∈G
Mh)〉.

But, [Q]Mh = [Q] for all h ∈ G, since Mh is a permutation matrix. Thus,

〈S′, [Q]
∑

h∈G
Mh〉 = 〈S′, |G|[Q]〉 = 0

since S′ ⊥ [Q].
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Since [Q](Ma − I) ∈ V0 by Lemma 3.3, we have by Lemma 4.4 that

[Q](Ma − I)(
∑

h∈G
Mh) = 0

Thus, by (4.8), ∑

h∈G
αS(ah) = 0. (4.9)

But, we already found some g ∈ G such that αS(ag) 6= 0. Therefore, in
order for (4.9) to hold, not all the αS(ah) can be negative and so there
exists g′ ∈ G such that αS(ag′) > 0. This implies that

|S(ag′)−1| − |S| > 0.

Thus, if u ∈ A∗ represents ag′, then |Su−1| > |S|. We conclude, since S was
arbitrary, that there must be a synchronizing word for (Q,A), as per the
strategy of Section 2.

To bound the size of a synchronizing word, according to the aforemen-
tioned strategy, we must bound the length of u. For each g ∈ G, choose Ug ∈
A∗ to be a minimal length word representing g. Let m = max{|Ug| | g ∈ G}.
Then ag′ can be represented by aUg′ , which has length at most m+ 1. The
strategy in Section 2 then shows that (Q,A) has a synchronizing word of
length at most 1 + (n− 2)(m+ 1). This completes the proof. �
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