Representations of the q-rook monoid

Tom Halverson ${ }^{1}$
Department of Mathematics and Computer Science, Macalester College, Saint Paul, MN 55105, USA
Communicated by Peter Littelmann

Abstract

The q-rook monoid $\mathcal{I}_{n}(q)$ is a semisimple algebra over $\mathbb{C}(q)$ that specializes when $q \rightarrow 1$ to $\mathbb{C}\left[R_{n}\right]$, where R_{n} is the monoid of $n \times n$ matrices with entries from $\{0,1\}$ and at most one nonzero entry in each row and column. When q is specialized to a prime power, $\mathcal{I}_{n}(q)$ is isomorphic to the Iwahori algebra $\mathcal{H}_{\mathbb{C}}(M, B)$, where $M=\mathbf{M}_{n}\left(\mathbb{F}_{q}\right)$ is the monoid of $n \times n$ matrices with entries from a finite field having q-elements and $B \subseteq M$ is the Borel subgroup of invertible upper triangular matrices. In this paper, we (i) give a new presentation for $\mathcal{I}_{n}(q)$ on generators and relations and determine a set of standard words which form a basis; (ii) explicitly construct a complete set of "seminormal" irreducible representations of $\mathcal{I}_{n}(q)$; and (iii) show that $\mathcal{I}_{n}(q)$ is the centralizer of the quantum general linear group $U_{q} \mathfrak{g l}(r)$ acting on the tensor product $(W \oplus V)^{\otimes n}$, where V is the fundamental $U_{q} \mathfrak{g l}(r)$ module and W is the trivial $U_{q} \mathfrak{g l}(r)$ module. © 2004 Elsevier Inc. All rights reserved.

Keywords: Quantum group; Iwahori Hecke algebra; Rook monoid; Representation

0. Introduction

N . Iwahori [8] discovered the marvelous structure in the "Hecke algebra" $\mathcal{H}_{\mathbb{C}}(G, B)$, where $G=\mathbf{G L} \mathbf{L}_{n}\left(\mathbb{F}_{q}\right)$ is the general linear group of invertible $n \times n$ matrices over the field \mathbb{F}_{q} with q elements and B is the Borel subgroup of upper triangular matrices. He proved that $\mathcal{H}_{\mathbb{C}}(G, B) \cong \mathbb{C}\left[S_{n}\right]$, where $\mathbb{C}\left[S_{n}\right]$ is the group algebra of the symmetric group S_{n}, and he showed that $\mathcal{H}_{\mathbb{C}}(G, B)$ has a presentation given on generators $T_{1}, T_{2}, \ldots, T_{n-1}$ and relations

[^0](I1) $\quad T_{i}^{2}=q \cdot 1+(q-1) T_{i}, \quad$ for $1 \leqslant i \leqslant n-1$,
(I2) $\quad T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \quad$ for $1 \leqslant i \leqslant n-2$,
(I3) $\quad T_{i} T_{j}=T_{j} T_{i}, \quad$ when $|i-j| \geqslant 2$.

At $q=1$ this becomes the well-known presentation of S_{n} due to E.H. Moore [12] in 1897. The generators T_{i} specialize to the simple transpositions $s_{i}=(i, i+1)$ in S_{n}.

Now let q be an indeterminate, and let $\mathcal{H}_{n}(q)$ be the associative $\mathbb{C}(q)$-algebra generated by $1, T_{1}, T_{2}, \ldots, T_{n-1}$ subject to (I1)-(I3). We refer to $\mathcal{H}_{n}(q)$ and $\mathcal{H}_{\mathbb{C}}(G, B)$ as Iwahori algebras (see the historical remarks in [19]).
L. Solomon [19] studied the Iwahori algebra $\mathcal{H}_{\mathbb{C}}(M, B)$, where now $M=\mathbf{M}_{n}\left(\mathbb{F}_{q}\right)$ is the monoid of $n \times n$ matrices over \mathbb{F}_{q} and B is again the group of invertible upper triangular matrices. He showed that $\mathcal{H}_{\mathbb{C}}(G, B) \cong \mathbb{C}\left[R_{n}\right]$, where R_{n} is the rook monoid consisting of $n \times n$ matrices with entries from $\{0,1\}$ and at most one nonzero entry in each row and column. The symmetric group S_{n} lives inside the rook monoid R_{n} as the rank n matrices. In [21], Solomon defines a $\mathbb{C}(q)$-algebra presented on generators $1, T_{1}, T_{2}, \ldots, T_{n-1}, N$ and relations (I1)-(I3), and
(I4) $\quad T_{i} N=N T_{i+1}, \quad$ for $1 \leqslant i \leqslant n-2$,
(I5) $T_{i} N^{k}=q N^{k}, \quad$ when $i>n-k$,
(I6) $\quad N^{k} T_{i}=q N^{k}, \quad$ when $i<k$,
(I7) $\quad N\left(T_{1} T_{2} \cdots T_{n-1}\right) N=q^{n-1} N$.

When q is a prime power, $\mathcal{I}_{n}(q)$ specializes to $\mathcal{H}_{\mathbb{C}}(M, B)$. At $q=1,(0.2)$ is the presentation of R_{n} found by Solomon in [20]. The T_{i} specialize to s_{i} and the new generator N specializes to $v=E_{1,2}+E_{2,3}+\cdots+E_{n-1, n}$, where $E_{i, j}$ is a matrix unit with a 1 in row i and column j.

In this paper we study the representation theory of $\mathcal{I}_{n}(q)$. The main results are as follows:
(1) We find a new presentation of $\mathcal{I}_{n}(q)$ on generators $T_{1}, \ldots, T_{n-1}, P_{1}, \ldots, P_{n}$ and relations given in (2.1). When $q \rightarrow 1$, the idempotent P_{i} specializes to $\varepsilon_{i}=E_{i+1, i+1}+$ $E_{i+2, i+2}+\cdots+E_{n, n} \in R_{n}$ for $1 \leqslant i \leqslant n-1$ (and P_{n} specializes to the zero matrix). This presentation has several advantages:
(a) The action of P_{i} is simple and natural in the representations that we define in Sections 3 and 4 .
(b) It is a close generalization of the presentation of the rook monoid given by Lipscomb [10], who uses generators $s_{1}, s_{2}, \ldots, s_{n-1}$, and ε_{1}.
(c) The idempotents P_{i} allow us to define a "basic construction" for $\mathcal{I}_{n}(q)$ in [4] that is analogous to a Jones basic construction. We use this construction in [4] to define a set of elements in $\mathcal{I}_{n}(q)$ on which it is sufficient to determine irreducible characters (i.e., analogs of conjugacy class representatives).
(d) The idempotents P_{i} appear in the general theory of reductive monoids. The set $\Lambda=\left\{1, P_{1}, \ldots, P_{n}\right\}$ is (up to scalar multiples) the set of cross-sectional idempotents used by Putcha [16] to naturally represent G-orbits in $G \backslash M / G$. However, Solomon's generators $\mathcal{N}=\left\{1, N, N^{2}, \ldots, N^{n}\right\}$ also index the these orbits. Furthermore, \mathcal{N}, and not Λ, behaves well with respect to the length function on R_{n} (see [18]), and N arises naturally in Solomon's definition of $\mathcal{H}_{\mathbb{C}}(M, B)$ (see (1.7)).

Note that a presentation using elements that specialize at $q \rightarrow 1$ to $\pi_{i}=I_{n}-E_{i, i}$ appears difficult. See Remark 4.4 and the comments in [20].
(2) For each partition λ with $0 \leqslant|\lambda| \leqslant n$ we define, in Section 3, a vector space V^{λ}. The dimension of V^{λ} is $\binom{n}{|\lambda|} f_{\lambda}$, where f_{λ} is the dimension of the irreducible $S_{|\lambda|}$ module indexed by λ. We define a basis of V^{λ} indexed by standard tableaux of shape λ and give explicit actions of the generators T_{i}, P_{j} on the basis. We show that these V^{λ} form a complete set of irreducible, pairwise non-isomorphic $\mathcal{I}_{n}(q)$-modules. These are generalizations of Young's [22] seminormal representations of S_{n} and Hoefsmit's [7] seminormal representations of $\mathcal{H}_{n}(q)$, and we explicitly realize the decomposition of V^{λ} into irreducibles for the subalgebra $\mathcal{I}_{n-1}(q) \subseteq \mathcal{I}_{n}(q)$. We also produce elements $X_{i}, 1 \leqslant i \leqslant n$, which are analogs of Jucys-Murphy elements and which act diagonally on these representations.
When $q=1$ we obtain seminormal representations of R_{n}. The representation theory of R_{n} was originally determined by Munn [13,14] and furthered by Solomon [20]. An analog Young's natural representation for R_{n}, using rook-monoid analogues of Young symmetrizers, is computed by Grood [5].
(3) Solomon [21] defined an action of $\mathcal{I}_{n}(q)$ on tensor space. In Section 4, we use this action to determine a Schur-Weyl duality between $\mathcal{I}_{n}(q)$ and the quantum general linear group $U_{q} \mathfrak{g l}(r)$. Let W and V be the trivial and fundamental representation of $U_{q} \mathfrak{g l}(r)$, respectively, and let $C_{n}=\operatorname{End}_{U_{q} \mathfrak{g l}(r)}\left((W \oplus V)^{\otimes n}\right)$ be the centralizer of tensor powers of these representations. We compute R-matrices \check{R}_{i} and \check{E}_{j} in C_{n} and show that these are images of T_{i} and P_{j}, respectively. We show that when $r \geqslant n$, this is an isomorphism and $\mathcal{I}_{n}(q) \cong C_{n}$.
This duality is a generalization of the original Schur-Weyl duality between S_{n} and the general linear group $G L(r, \mathbb{C})$ on tensor space and of Jimbo's duality between $\mathcal{H}_{n}(q)$ and $U_{q} \mathfrak{g l}(r)$ on $V^{\otimes n}$. When $q \rightarrow 1$, this specializes to Solomon's [20] duality between $G L(r, \mathbb{C})$ and R_{n} on tensor space. In [4] we use the duality between $\mathcal{I}_{n}(q)$ and $U_{q} \mathfrak{g l}(r)$ to compute a Frobenius formula and a Murnaghan-Nakayama rule for the irreducible characters of $\mathcal{I}_{n}(q)$.
(4) We can define $\mathcal{I}_{n}(q)$ with parameter $q \in \mathbb{C}^{*}$. In [6], Halverson and Ram prove that $\mathcal{I}_{n}(q)$ is semisimple whenever $[n]!\neq 0$, where $[n]!=[n][n-1] \cdots[1]$ and $[k]=$ $q^{k-1}+q^{k-2}+\cdots+1$. The results in this paper work equally well for $\mathcal{I}_{n}(q)$ with $q \in \mathbb{C}^{*}$ and $[n]!\neq 0$.

Remark. The results of this paper inspired the work of Halverson and Ram [6], where we show that $R_{n}(q)$ is a quotient of the Iwahori Hecke algebra $H_{n}\left(u_{1}, u_{2} ; q\right)$ of type B_{n} and that many of the results in this paper come from $H_{n}\left(u_{1}, u_{2} ; q\right)$.

1. The Iwahori algebra $\mathcal{H}_{\mathbb{C}}(M, B)$ and the q-rook monoid $\mathcal{I}_{\boldsymbol{n}}(q)$

1.1. The rook monoid

The symmetric group S_{n} of permutations of $\{1,2, \ldots, n\}$ can be identified with the group of $n \times n$ matrices with entries from $\{0,1\}$ and precisely one nonzero entry in each row and in each column. The rook monoid R_{n} is the monoid (semigroup with identity) of $n \times n$ matrices with entries from $\{0,1\}$ and at most one nonzero entry in each row and in each column. There are $\binom{n}{k}^{2} k$! matrices in R_{n} having rank k, and thus

$$
\begin{equation*}
\left|R_{n}\right|=\sum_{k=0}^{n}\binom{n}{k}^{2} k! \tag{1.1}
\end{equation*}
$$

The rook monoid gets its name from the fact that the elements in R_{n} are in one-to-one correspondence with placements of non-attacking rooks on an $n \times n$ chessboard. The rook monoid is isomorphic to the monoid consisting of all one-to-one functions σ whose domain and range are subsets of $\{1,2, \ldots, n\}$. The bijection is given by assigning $\sigma(i)=j$ if the corresponding matrix has a 1 in the (i, j)-position. This monoid is commonly called the symmetric inverse semigroup.

Let $s_{i} \in S_{n}$ denote the transposition that exchanges i and $i+1$. In R_{n}, the identity 1 is the $n \times n$ identity matrix and $E_{i, j}$ is the matrix unit with a 1 in the (i, j) position and 0 s elsewhere. Let

$$
\begin{equation*}
v=E_{1,2}+E_{2,3}+\cdots+E_{n-1, n} \tag{1.2}
\end{equation*}
$$

If $0 \leqslant r \leqslant n$, then

$$
\begin{equation*}
v_{r}=v^{n-r}=E_{1, n-r+1}+E_{2, n-r+2}+\cdots+E_{r, n} \tag{1.3}
\end{equation*}
$$

has rank r. Let

$$
\begin{align*}
& \varepsilon_{i}=E_{i+1, i+1}+E_{i+2, i+2}+\cdots+E_{n, n}, \quad \text { for } 0 \leqslant i \leqslant n-1, \\
& \pi_{i}=I_{n}-E_{i, i}, \quad \text { for } 1 \leqslant i \leqslant n \tag{1.4}
\end{align*}
$$

then ε_{i} has rank $n-i$ and π_{i} has rank $n-1$. We agree that ε_{n} is the zero matrix, and we have $\pi_{1}=\varepsilon_{1}$.

A reduced word for $w \in S_{n}$ is an expression $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ with k minimal. The length of w is $\ell(w)=k$ and is independent of the choice of reduced word. Solomon [19] defined a length function for the rook monoid: if $\sigma \in R_{n}$ with $\operatorname{rank}(\sigma)=r$, then

$$
\begin{equation*}
\ell(\sigma)=\min \left\{\ell(w)+\ell\left(w^{\prime}\right) \mid w, w^{\prime} \in S_{n} \text { and } \sigma=w v_{r} w^{\prime}\right\} \tag{1.5}
\end{equation*}
$$

1.2. The Iwahori algebra $\mathcal{H}_{\mathbb{C}}(M, B)$

Let q be a prime power and let $M=\mathbf{M}_{n}\left(\mathbb{F}_{q}\right)$ be the monoid of all $n \times n$ matrices over \mathbb{F}_{q}. Let $G=\mathbf{G} \mathbf{L}_{n}\left(\mathbb{F}_{q}\right) \subseteq M$ be the general linear group of invertible matrices, and let $B \subseteq G$ be the Borel subgroup of upper triangular matrices. Renner [18] proves that there is a disjoint union

$$
M=\bigsqcup_{\sigma \in R_{n}} B \sigma B,
$$

and that $B \sigma B=B \sigma^{\prime} B$ implies that $\sigma=\sigma^{\prime}$.
Define the idempotent

$$
\varepsilon=\frac{1}{|B|} \sum_{b \in B} b \in \mathbb{C}[M]
$$

Following [19], define the Iwahori algebra

$$
\mathcal{H}=\mathcal{H}_{\mathbb{C}}(M, B)=\varepsilon \mathbb{C}[M] \varepsilon
$$

If we consider $\mathbb{C}[M]$ acting on the left ideal $\mathbb{C}[M] \varepsilon$ by left multiplication, then \mathcal{H} is the centralizer of this action; it acts by right multiplication on $\mathbb{C}[M] \varepsilon$. Okniński and Putcha [15] proved that $\mathbb{C}[M]$ is semisimple, and so it follows from general doublecentralizer results that \mathcal{H} is semisimple.

The elements

$$
T_{\sigma}=q^{\ell(\sigma)} \varepsilon \sigma \varepsilon, \quad \sigma \in R_{n}
$$

form a basis for \mathcal{H}. Solomon [19] proved that the elements $T_{s_{1}}, \ldots, T_{s_{n-1}}, T_{\nu}$ generate \mathcal{H} and

$$
\begin{align*}
& T_{s_{i}} T_{\sigma}= \begin{cases}q T_{\sigma}, & \text { if } \ell\left(s_{i} \sigma\right)=\ell(\sigma), \\
T_{s_{i} \sigma}, & \text { if } \ell\left(s_{i} \sigma\right)=\ell(\sigma)+1, \\
q T_{s_{i} \sigma}+(q-1) T_{\sigma}, & \text { if } \ell\left(s_{i} \sigma\right)=\ell(\sigma)-1,\end{cases} \\
& T_{\sigma} T_{s_{i}}= \begin{cases}q T_{\sigma}, & \text { if } \ell\left(\sigma s_{i}\right)=\ell(\sigma), \\
T_{\sigma s_{i}}, & \text { if } \ell\left(\sigma s_{i}\right)=\ell(\sigma)+1, \\
q T_{\sigma s_{i}}+(q-1) T_{\sigma}, & \text { if } \ell\left(\sigma s_{i}\right)=\ell(\sigma)-1,\end{cases} \tag{1.6}
\end{align*}
$$

and

$$
\begin{equation*}
T_{\nu} T_{\sigma}=q^{\ell(\sigma)-\ell(\nu \sigma)} T_{\nu \sigma}, \quad T_{\sigma} T_{\nu}=q^{\ell(\sigma)-\ell(\sigma \nu)} T_{\sigma \nu} \tag{1.7}
\end{equation*}
$$

for all $\sigma \in R_{n}$.
Using (1.6), it is easy to verify the following lemma.

Lemma 1.1 (Iwahori [8]).
(1) $T_{s_{i}}^{2}=(q-1) T_{s_{i}}+q \cdot 1,1 \leqslant i \leqslant n-1$,
(2) $T_{s_{i}} T_{s_{i+1}} T_{s_{i}}=T_{s_{i+1}} T_{s_{i}} T_{s_{i+1}}, 1 \leqslant i \leqslant n-2$,
(3) $T_{s_{i}} T_{s_{j}}=T_{s_{i}} T_{s_{j}},|i-j|>1$.

In [21], Solomon proves that $T_{s_{1}}, T_{S_{2}}, \ldots, T_{s_{n-1}}, T_{\nu}$ generate $\mathcal{H}_{\mathbb{C}}(M, B)$ and in [19] he extended Iwahori's relations to describe the interaction between $T_{s_{i}}$ and T_{ν} :

Lemma 1.2 (Solomon [19]).
(1) $T_{s_{i}} T_{\nu}=T_{\nu} T_{s_{i+1}}, 1 \leqslant i \leqslant n-2$,
(2) $T_{S_{i}} T_{\nu}^{k}=q T_{v}^{k}, i>n-k$,
(3) $T_{v}^{k} T_{s_{i}}=q T_{v}^{k}, i<k$,
(4) $T_{\nu}\left(T_{s_{1}} T_{S_{2}} \cdots T_{S_{n-1}}\right) T_{\nu}=q^{n-1} T_{\nu},|i-j|>1$.
1.3. The q-rook monoid

Let q be an indeterminate. For integers $n \geqslant 2$, define $\mathcal{I}_{n}(q)$ to be the associative $\mathbb{C}(q)$ algebra with 1 generated by T_{1}, \ldots, T_{n-1} and N subject to the relations
(I1) $T_{i}^{2}=q \cdot 1+(q-1) T_{i}, \quad$ for $1 \leqslant i \leqslant n-1$,
(I2) $\quad T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \quad$ for $1 \leqslant i \leqslant n-2$,
(I3) $\quad T_{i} T_{j}=T_{j} T_{i}, \quad$ when $|i-j| \geqslant 2$.
(I4) $\quad T_{i} N=N T_{i+1}, \quad$ for $1 \leqslant i \leqslant n-2$,
(I5) $T_{i} N^{k}=q N^{k}, \quad$ for $i>n-k$,
(I6) $\quad N^{k} T_{i}=q N^{k}, \quad$ when $i<k$,
(I7) $\quad N\left(T_{1} T_{2} \cdots T_{n-1}\right) N=q^{n-1} N$.
Let $\mathcal{I}_{0}(q)=\mathbb{C}(q)$, and let $\mathcal{I}_{1}(q)$ be the $\mathbb{C}(q)$-span of 1 and N subject to $N^{2}=N$. We see from Lemmas 1.1 and 1.2 that, when q is specialized to a prime power, we have a surjection, $\mathcal{I}_{n}(q) \rightarrow \mathcal{H}_{\mathbb{C}}(M, B)$ given by $T_{i} \rightarrow T_{s_{i}}$ and $N \rightarrow T_{v}$. In [21], Solomon finds a set of $\left|R_{n}\right|$ words in the generators of $\mathcal{I}_{n}(q)$ which span $\mathcal{I}_{n}(q)$. Thus,

Theorem 1.3 (Solomon [21]). The $\mathbb{C}(q)$-algebra $\mathcal{I}_{n}(q)$ is semisimple of dimension $\left|R_{n}\right|$, and when q is specialized to a prime power, we have $\mathcal{I}_{n}(q) \cong \mathcal{H}_{\mathbb{C}}(M, B)$.

Now, working in $\mathcal{I}_{n}(q)$, we define

$$
\begin{equation*}
T_{\gamma_{n}}=T_{1} T_{2} \cdots T_{n-1}, \quad P_{j}=\left(q^{1-n}\right)^{j} T_{\gamma_{n}}^{j} N^{j}, \quad \text { for } 1 \leqslant j \leqslant n . \tag{1.9}
\end{equation*}
$$

Using (I2) one can easily verify the well-known fact that

$$
\begin{equation*}
T_{\gamma_{n}} T_{i}=T_{i+1} T_{\gamma_{n}}, \quad 1 \leqslant i \leqslant n-2 . \tag{1.10}
\end{equation*}
$$

Furthermore, $N=q^{n-1} T_{\gamma_{n}}^{-1} P_{1}$, so T_{1}, \ldots, T_{n-1} and P_{1} generate $\mathcal{I}_{n}(q)$, and we have the following lemma.

Lemma 1.4.

(1) $T_{i} P_{j}=P_{j} T_{i}=q P_{j}, 1 \leqslant i<j \leqslant n$,
(2) $T_{i} P_{j}=P_{j} T_{i}, 1 \leqslant j<i \leqslant n$,
(3) $P_{j}^{2}=P_{j}, 1 \leqslant i \leqslant n$,
(4) $P_{j+1}=q P_{j} T_{i}^{-1} P_{j}, 2 \leqslant i \leqslant n$.

Proof. Let $x=q^{1-n}$. For part (1), assume that $1 \leqslant i<j \leqslant n$. We use Lemma 1.1(1) to expand T_{1}^{2} in the following calculation:

$$
\begin{aligned}
T_{i} P_{j} & =x^{j} T_{i} T_{\gamma_{n}}^{j} N^{j} \\
& =x^{j} T_{\gamma_{n}}^{i-1} T_{1} T_{\gamma_{n}}^{j-(i-1)} N^{j} \quad \text { by (1.8) } \\
& =x^{j} T_{\gamma_{n}}^{i-1}\left(T_{1}^{2} T_{2} \cdots T_{n-1}\right) T_{\gamma_{n}}^{j-i} N^{j} \\
& =(q-1) x^{j} T_{\gamma_{n}}^{i-1}\left(T_{1} \cdots T_{n-1}\right) T_{\gamma_{n}}^{j-i} N^{j}+q x^{j} T_{\gamma_{n}}^{i-1}\left(T_{2} \cdots T_{n-1}\right) T_{\gamma_{n}}^{j-i} N^{j} \\
& =(q-1) P_{j}+q x^{j} T_{\gamma_{n}}^{i}\left(T_{1} \cdots T_{n-2}\right) T_{\gamma_{n}}^{j-i-1} N^{j} \quad \text { by }(1.8) \\
& =(q-1) P_{j}+x^{j} T_{\gamma_{n}}^{i}\left(T_{1} \cdots T_{n-2}\right) T_{\gamma_{n}}^{j-i-1} T_{n-j+i} N^{j} \quad \text { by Lemma 1.2(2) } \\
& =(q-1) P_{j}+x^{j} T_{\gamma_{n}}^{i}\left(T_{1} \cdots T_{n-2} T_{n-1}\right) T_{\gamma_{n}}^{j-i-1} N^{j} \quad \text { by (1.8) } \\
& =(q-1) P_{j}+P_{j} \\
& =q P_{j} .
\end{aligned}
$$

On the other hand, by Lemma 1.2(1) and 1.2(2), we have

$$
P_{j} T_{i}=x^{j} T_{\gamma_{n}}^{j} N^{j} T_{i}=x^{j} T_{\gamma_{n}}^{j} N^{j-(i-1)} T_{1} N^{i-1}=q x^{j} T_{\gamma_{n}}^{j} N^{j-(i-1)} N^{i-1}=q P_{j}
$$

For part (2), if $j<i$, then using Lemma 1.2(1) and (1.8), we have

$$
P_{j} T_{i}=x^{j} T_{\gamma_{n}}^{j} N^{j} T_{i}=x^{j} T_{\gamma_{n}}^{j} T_{i-j} N^{j}=x^{j} T_{i} T_{\gamma_{n}}^{j} N^{j}=T_{i} P_{j}
$$

Part (3) follows from Lemma 1.2(4):

$$
P_{i}^{2}=x^{2 i} T_{\gamma_{n}}^{i}\left(N^{i} T_{\gamma_{n}}^{i} N^{i}\right)=x^{i} T_{\gamma_{n}}^{i} N^{i}=P_{i}
$$

For (4), we have

$$
\begin{aligned}
q P_{i} T_{i}^{-1} P_{i} & =q^{i} P_{i}\left(T_{i}^{-1} T_{i-1}^{-1} \cdots T_{1}^{-1}\right) P_{i} \quad \text { by part (1) } \\
& =q^{i} x^{2 i} T_{\gamma_{n}}^{i} N^{i}\left(T_{i}^{-1} T_{i-1}^{-1} \cdots T_{1}^{-1}\right) T_{\gamma_{n}}^{i} N^{i} \\
& =q^{i} x^{2 i} T_{\gamma_{n}}^{i} N^{i}\left(T_{i+1} T_{i+2} \cdots T_{n-1}\right) T_{\gamma_{n}}^{i-1} N^{i} \\
& =q^{i} x^{2 i} T_{\gamma_{n}}^{i}\left(T_{1} T_{2} \cdots T_{n-1-i}\right) N^{i} T_{\gamma_{n}}^{i-1} N^{i} \quad \text { by Lemma 1.2(1) } \\
& =q^{i} x^{i+1} T_{\gamma_{n}}^{i}\left(T_{1} T_{2} \cdots T_{n-1-i}\right) N^{i+1} \quad \text { by Lemma 1.2(4) } \\
& =x^{i+1} T_{\gamma_{n}}^{i+1} N^{i+1}=P_{i+1} \quad \text { by part (1). }
\end{aligned}
$$

Lemma 1.5. Let q be a prime power. Under the isomorphism $\mathcal{I}_{n}(q) \rightarrow \mathcal{H}_{\mathbb{C}}(M, B)$ given by $T_{i} \rightarrow T_{s_{i}}$ and $N \rightarrow T_{v}$, we have $P_{i} \rightarrow q^{j(j-n)} T_{\varepsilon_{i}}$.

Proof. We use induction to prove the following equivalent condition (see (1.9)):

$$
T_{\gamma_{n}}^{j} T_{v}^{j}=q^{j(j-1)} T_{\varepsilon_{j}}
$$

Note that $\gamma_{n} v=1, \ell\left(\gamma_{n}\right)=n-1$, and $\ell\left(\varepsilon_{j}\right)=j(n-j)$. Then the case $j=1$ follows immediately from (1.7): $T_{\gamma_{n}} T_{\nu}=q^{\ell\left(\gamma_{n}\right)-\ell\left(\varepsilon_{1}\right)} T_{\varepsilon_{1}}=T_{\varepsilon_{1}}$.

Now let $j>1$, and define

$$
\sigma=\left(s_{j} s_{j+1} \cdots s_{n-1}\right) \varepsilon_{j}=\varepsilon_{j}\left(s_{j} s_{j+1} \cdots s_{n-1}\right),
$$

so that $\sigma \nu=\varepsilon_{j}$ and $\ell(\sigma)=\ell\left(\varepsilon_{j-1}\right)+n-j=j(n-j)+j-1$. Thus, by induction,

$$
\begin{aligned}
T_{\gamma_{n}}^{j} T_{\nu}^{j} & =q^{(j-1)(j-2)} T_{\gamma_{n}} T_{\varepsilon_{j-1}} T_{\nu}=q^{(j-1)(j-2)}\left(T_{s_{1}} \cdots T_{s_{j-1}}\right)\left(T_{s_{j}} \cdots T_{s_{n-1}}\right) T_{\varepsilon_{j-1}} T_{\nu} \\
& =q^{(j-1)(j-2)+\ell(\sigma)-\ell\left(\varepsilon_{j}\right)}\left(T_{s_{1}} \cdots T_{s_{j-1}}\right) T_{\varepsilon_{j}} T_{\nu} \\
& =q^{(j-1)^{2}}\left(T_{s_{1}} \cdots T_{s_{j-1}}\right) T_{\varepsilon_{j}} T_{\nu} .
\end{aligned}
$$

Now by (1.6), $T_{s_{i}} T_{\varepsilon_{j}}=q T_{\varepsilon_{j}}$ for $i<j$, and the result follows.

2. A new presentation for the \boldsymbol{q}-rook monoid

Let q be an indeterminate. For integers $n \geqslant 2$, define $A_{n}(q)$ to be the associative $\mathbb{C}(q)$ algebra with 1 generated by T_{1}, \ldots, T_{n-1} and P_{1}, \ldots, P_{n} subject to the relations
(A1) $T_{i}^{2}=q \cdot 1+(q-1) T_{i}, \quad$ for $1 \leqslant i \leqslant n-1$,
(A2) $\quad T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \quad$ for $1 \leqslant i \leqslant n-2$,
(A3) $\quad T_{i} T_{j}=T_{j} T_{i}, \quad$ when $|i-j| \geqslant 2$,
(A4) $\quad T_{i} P_{j}=P_{j} T_{i}=q P_{j}, \quad$ for $1 \leqslant i<j \leqslant n$,
(A5) $\quad T_{i} P_{j}=P_{j} T_{i}, \quad$ for $1 \leqslant j<i \leqslant n-1$,
(A6) $\quad P_{i}^{2}=P_{i}, \quad$ for $1 \leqslant i \leqslant n$,
(A7) $\quad P_{i+1}=q P_{i} T_{i}^{-1} P_{i}, \quad$ for $2 \leqslant i \leqslant n$.
Let $A_{0}(q)=\mathbb{C}(q)$, and let $A_{1}(q)$ be the $\mathbb{C}(q)$-span of 1 and P_{1} subject to $P_{1}^{2}=P_{1}$. From (A1) we have

$$
\begin{equation*}
T_{i}^{-1}=\left(q^{-1}-1\right) \cdot 1+q^{-1} T_{i} . \tag{2.2}
\end{equation*}
$$

It follows that (A7) is equivalent to

$$
\begin{equation*}
P_{i+1}=P_{i} T_{i} P_{i}-(q-1) P_{i} . \tag{2.3}
\end{equation*}
$$

From Lemmas 1.1 and 1.4 , we see that the T_{i} and the P_{i} satisfy the same relations in both $\mathcal{I}_{n}(q)$ and $A_{n}(q)$. Furthermore, T_{1}, \ldots, T_{n-1} and P_{1} generate $A_{n}(q)$, so there is a surjection from $A_{n}(q)$ to $\mathcal{I}_{n}(q)$. In this section, we will show that they have the same dimension and are isomorphic. For this reason, we choose to use the same notation T_{i} and P_{i} in both algebras.

For $w \in S_{n}$ with reduced expression $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ define $T_{w}=T_{i_{1}} T_{i_{2}} \cdots T_{i_{\ell}}$. Since the T_{i} satisfy the braid relations (A2) and (A3), T_{w} is independent of the choice of reduced word for w. Furthermore, the T_{i} satisfy the same relations as they do in $\mathcal{H}_{n}(q)$, so the subalgebra spanned by T_{1}, \ldots, T_{n-1} is a homomorphic image of $\mathcal{H}_{n}(q)$ and the $T_{w}, w \in S_{n}$ span this subalgebra. In Section 3 we will show that this subalgebra is isomorphic to $\mathcal{H}_{n}(q)$.

If $K \subseteq\{1,2, \ldots, n\}$ define the subgroup $S_{K} \subseteq S_{n}$ to be the group of permutations on the elements of K. For $1 \leqslant i \leqslant n$, define $T_{i, i}=1$, and define

$$
T_{i, j}=T_{j-1} T_{j-2} \cdots T_{i}, \quad \text { for } 1 \leqslant i<j \leqslant n
$$

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq\{1,2, \ldots, n\}$, and assume that $a_{1}<a_{2}<\cdots<a_{k}$. Define

$$
\begin{equation*}
T_{A}=T_{1, a_{1}} T_{2, a_{2}} \cdots T_{k, a_{k}} . \tag{2.4}
\end{equation*}
$$

Now for $0 \leqslant k \leqslant n$, let Ω_{k} be the following set of triples,

$$
\Omega_{k}=\left\{\begin{array}{l|l}
(A, B, w) & \begin{array}{l}
A, B \subseteq\{1,2, \ldots, n\} \\
|A|=|B|=k \\
w \in S_{\{k+1, \ldots, n\}}
\end{array} \tag{2.5}
\end{array}\right\}
$$

and let

$$
\begin{equation*}
\Omega=\bigcup_{k=0}^{n} \Omega_{k} \tag{2.6}
\end{equation*}
$$

Define the following standard words

$$
\begin{equation*}
T_{(A, B, w)}=T_{A} T_{w} P_{k} T_{B}^{-1}, \quad(A, B, w) \in \Omega_{k} \tag{2.7}
\end{equation*}
$$

Note that $T_{w} P_{k}=P_{k} T_{w}$ by (A5). Furthermore, there are $\binom{n}{k}^{2}$ ways to choose A and B, so

$$
\begin{equation*}
\left|\Omega_{k}\right|=\binom{n}{k}^{2}(n-k)!\quad \text { and } \quad|\Omega|=\sum_{k=0}^{n}\binom{n}{k}^{2}(n-k)!=\left|R_{n}\right| \tag{2.8}
\end{equation*}
$$

Theorem 2.1. The standard words $\left\{T_{(A, B, w)} \mid(A, B, w) \in \Omega\right\}$ span $A_{n}(q)$. In particular, $\operatorname{dim}\left(A_{n}(q)\right) \leqslant\left|R_{n}\right|$.

Proof. From (A7) we know that $T_{i}, 1 \leqslant i \leqslant n-1$, and P_{1} generate $A_{n}(q)$. Furthermore, T_{i} and P_{1} are standard words. It suffices to show that for all $(A, B, w) \in \Omega$, we can write $T_{(A, B, w)} T_{i}$ and $T_{(A, B, w)} P_{1}$ as a linear combination of standard words. Since $T_{i}=$ $q T_{i}^{-1}+(q-1) \cdot 1$, it is equivalent to show that $T_{(A, B, w)} T_{i}^{-1}$ and $T_{(A, B, w)} P_{1}$ can be written as linear combinations of standard words.

Case 1. $T_{(A, B, w)} T_{i}^{-1}$ is a linear combination of standard words.
Suppose $i, i+1 \in B$. We use (A2) and (A3) to verify that

$$
\left(T_{j+1, i+1}^{-1} T_{j, i}^{-1}\right) T_{i}^{-1}=T_{j}^{-1}\left(T_{j+1, i+1}^{-1} T_{j, i}^{-1}\right)
$$

Then since $i, i+1 \in B$, we can write $T_{B}^{-1}=X T_{j+1, i+1}^{-1} T_{j, i}^{-1} Y$ so that X commutes with T_{j}^{-1} and Y commutes with T_{i}^{-1}. Thus,

$$
P_{k} T_{B}^{-1}=P_{k} X T_{j+1, i+1}^{-1} T_{j, i}^{-1} T_{i}^{-1} Y=P_{k} X T_{j}^{-1} T_{j+1, i+1}^{-1} T_{j, i}^{-1} Y=P_{k} T_{j}^{-1} T_{B}^{-1}=q^{-1} P_{k} T_{B}^{-1}
$$

proving the result in this case.
Now suppose $i, i+1 \in B^{c}$. In this case $T_{B}=X Y$ where Y consists of elements of the form $T_{\ell, j}^{-1}$ with $j<i$ and X consists of elements of the form $T_{\ell, j}^{-1}$ with $j>i$. It follows that T_{i}^{-1} commutes with Y, and $X=T_{t, j_{t}}^{-1} T_{t-1, j_{t-1}}^{-1} \cdots T_{\ell, j_{1}}^{-1}$ with $i<j_{1}<j_{2}<\cdots<j_{t}$ and $i \geqslant \ell$. If $\ell \leqslant i<j-2$, then $T_{k, j}^{-1} T_{i}^{-1}=T_{i+1}^{-1} T_{k, j}^{-1}$. Thus $T_{w} T_{B}^{-1} T_{i}^{-1}=T_{w} T_{j}^{-1} T_{B}^{-1}$ with $j>k$. We now can express $T_{w} T_{j}^{-1}$ as a linear combination of $T_{w^{\prime}}$ with $w^{\prime} \in S_{\{k+1, \ldots, n\}}$.

Now suppose $i \in B, i+1 \in B^{c}$. We write $T_{B}=X T_{\ell, i}^{-1} Y$ where Y consists of elements of the form $T_{s, j}^{-1}$ with $j<i$ and X consists of elements of the form $T_{t, j}^{-1}$ with $j>i$. It follows that

$$
T_{B} T_{i}^{-1}=X T_{\ell, i}^{-1} T_{i}^{-1} Y=X T_{\ell, i+1}^{-1} Y=T_{B^{\prime}}^{-1}
$$

where B^{\prime} is the same set as B except with i replaced by $i+1$.
Finally, let $i \in B, i+1 \in B^{c}$. We write $T_{B}=X T_{\ell, i+1}^{-1} Y$ where where Y consists of elements of the form $T_{s, j}^{-1}$ with $j<i$ and X consists of elements of the form $T_{t, j}^{-1}$ with $j>i$. It follows that

$$
\begin{aligned}
T_{B} T_{i}^{-1} & =X T_{\ell, i+1}^{-1} T_{i}^{-1} Y=\left(q^{-1}-1\right) X T_{\ell, i+1}^{-1} Y+q^{-1} X T_{\ell, i}^{-1} Y \\
& =\left(q^{-1}-1\right) T_{B}^{-1}+q^{-1} T_{B^{\prime}}^{-1},
\end{aligned}
$$

where B^{\prime} is the same set as B except with $i+1$ replaced by i.
Case 2. $T_{(A, B, w)} P_{1}$ is a linear combination of standard words.
Suppose $1 \in B$. In this case T_{B}^{-1} contains only T_{i}^{-1} with $i>1$, so by (A5), T_{B}^{-1} commutes with P_{1}. Thus, $P_{k} T_{B}^{-1} P_{1}=P_{k} P_{1} T_{B}^{-1}=P_{k} T_{B}^{-1}$.

Now suppose $1 \in B^{c}$ and $B \neq \emptyset$. We have

$$
\begin{equation*}
P_{i} T_{i, b}^{-1} P_{i}=P_{i}\left(T_{i}^{-1} \cdots T_{b-1}^{-1}\right) P_{i}=P_{i} T_{i}^{-1} P_{i}\left(T_{i+1}^{-1} \cdots T_{b-1}^{-1}\right)=q^{-1} P_{i+1} T_{i+1, b}^{-1} \tag{*}
\end{equation*}
$$

In the following calculation, we use $(*)$ and fact that $P_{k}=P_{k} P_{i}$ for $i \leqslant k$ (see (A6) and (A7)):

$$
\begin{aligned}
P_{k} T_{B}^{-1} P_{1} & =P_{k} P_{1} T_{B}^{-1} P_{1}=P_{k}\left(T_{k, b_{k}}^{-1} \cdots T_{2, b_{2}}^{-1}\right)\left(P_{1} T_{1, b_{1}}^{-1} P_{1}\right) \\
& =q^{-1} P_{k}\left(T_{k, b_{k}}^{-1} \cdots T_{2, b_{2}}^{-1}\right) P_{2} T_{2, b_{1}}^{-1}=q^{-1} P_{k} P_{2}\left(T_{k, b_{k}}^{-1} \cdots T_{2, b_{2}}^{-1}\right) P_{2} T_{2, b_{1}}^{-1} \\
& =q^{-1} P_{k}\left(T_{k, b_{k}}^{-1} \cdots T_{3, b_{3}}^{-1}\right)\left(P_{2} T_{2, b_{2}}^{-1} P_{2}\right) T_{2, b_{1}}^{-1} \\
& =q^{-2} P_{k}\left(T_{k, b_{k}}^{-1} \cdots T_{3, b_{3}}^{-1}\right) P_{3} T_{3, b_{2}}^{-1} T_{2, b_{1}}^{-1} \\
& \vdots \\
& =q^{-k} P_{k+1}\left(T_{k+1, b_{k}}^{-1} \cdots T_{3, b_{2}}^{-1} T_{2, b_{1}}^{-1}\right)=q^{-k} P_{k+1} T_{B^{\prime}}^{-1},
\end{aligned}
$$

where $B^{\prime}=\left\{1, b_{1}, \ldots, b_{k}\right\}$.
Finally, suppose $B=\emptyset$. We prove that

$$
\begin{equation*}
T_{w} P_{1}=\left(T_{k} T_{k-1} \cdots T_{1}\right) P_{1} T_{w^{\prime}}, \quad \text { with } w^{\prime} \in S_{\{2, \ldots, n\}} \tag{**}
\end{equation*}
$$

This finishes the proof since $T_{w} P_{1}$ is a standard word with $A=\{k+1\}$ and $B=\{1\}$.
We prove $(* *)$ by induction on $\ell(w)$. If $\ell(w)=1$, then $T_{i} P_{1}$ is a standard word. If $i=1$ then $T_{1} P_{1}=T_{A} P_{1} T_{B}^{-1}$ where $A=\{2\}$ and $B=\{1\}$. If $i>1$, then $T_{i} P_{1}=T_{A} P_{1} T_{w} T_{B}$ with $T_{w}=T_{i}, A=\{1\}$, and $B=\{1\}$.

If $\ell(w)=t>1$, then let $T_{w}=T_{i_{1}} T_{i_{2}} \cdots T_{i_{t}}$. Suppose $i_{t}>1$. Then we can apply induction

$$
T_{w} P_{1}=\left(T_{i_{1}} \cdots T_{i_{t-1}}\right) P_{1} T_{i_{t}}=\left(T_{k} T_{k-1} \cdots T_{1}\right) P_{1} T_{w} T_{i_{t}}
$$

We then re-express $T_{w} T_{i_{t}}$ as a linear combination of $T_{w^{\prime}}$ with $w^{\prime} \in S_{\{2, \ldots, n\}}$.
If $i_{t}=1$, then there exists an $r \geqslant 1$ so that $T_{w} P_{1}=T_{i_{1}} \cdots T_{j} T_{r} T_{r-1} \cdots T_{1} P_{1}$ and $j \neq r+1$. We know that $j \neq r$, or w is not minimal. If $j>r+1$, then T_{j} commutes
with all the elements to its right, and we can apply induction as in the previous case. If $j<r+1$, then

$$
T_{j} T_{r} T_{r-1} \cdots T_{1} P_{1}=T_{r} T_{r-1} \cdots T_{1} P_{1} T_{j+1}
$$

and we can apply induction.
We have a surjection from $A_{n}(q)$ to $\mathcal{I}_{n}(q)$ and we have a set of $\left|R_{n}\right|$ words which span $A_{n}(q)$, so $\operatorname{dim}\left(\mathcal{I}_{n}(q)\right) \leqslant \operatorname{dim}\left(A_{n}(q)\right) \leqslant\left|R_{n}\right|$. Solomon [21] has proved the lower bound $\operatorname{dim}\left(\mathcal{I}_{n}(q)\right)=\left|R_{n}\right|$. We also will obtain this lower bound in the next section by producing sufficiently many irreducible representations. Thus,

Corollary 2.2. $A_{n}(q) \cong \mathcal{I}_{n}(q)$.

3. Irreducible representations for $\boldsymbol{I}_{\boldsymbol{n}}(\boldsymbol{q})$

We use the notation for partitions and tableaux found in [11]. In particular, we let $\lambda \vdash k$ denote the fact that λ is a partition of the nonnegative integer k, and we write $|\lambda|=k$. The length $\ell(\lambda)$ of λ is the number of nonzero parts of λ. We identify λ with its Young diagram. Thus,

$$
\lambda=(5,5,3,1)=\square, \quad \ell(\lambda)=4, \quad \text { and } \quad|\lambda|=14 .
$$

For integers $n \geqslant 0$ define

$$
\begin{equation*}
\Lambda_{n}=\{\lambda \vdash k \mid 0 \leqslant k \leqslant n\} . \tag{3.1}
\end{equation*}
$$

For $\lambda \in \Lambda_{n}$, an n-standard tableau of shape λ is a filling of the diagram of λ with numbers from $\{1,2, \ldots, n\}$ such that
(1) each number appears at most 1 time,
(2) the entries in each column strictly increase from top to bottom, and
(3) the entries in each row strictly increase from left to right.

We let $\mathcal{T}_{n}^{\lambda}$ denote the set of standard tableaux of shape λ. If $\lambda \vdash k$, the number of k-standard tableaux of shape λ is given by

$$
\begin{equation*}
f_{\lambda}=\frac{n!}{\prod_{b \in \lambda} h_{b}} \tag{3.2}
\end{equation*}
$$

where the product is over all the boxes b in λ, and h_{b} is the hook length of b given by $h_{b}=\lambda_{i}+\lambda_{j}^{\prime}-i-j+1$ if b is in position (i, j) and λ^{\prime} is the conjugate (transposed) partition. If $\lambda \vdash k$ and $n \geqslant k$ then there are $\binom{n}{k}$ ways to choose the entries of a tableau of shape λ so the number of n-standard tableaux of shape λ is $\binom{n}{k} f_{\lambda}$.

The symmetric group S_{n} acts on tableaux by permuting their entries. If $L \in \mathcal{T}_{n}^{\lambda}$, then $s_{i} L$ is the tableau that is obtained from L by replacing i (if $i \in L$) by $i+1$ and replacing $i+1$ (if $i+1 \in L$) by i. Note that $s_{i} L$ may be non-standard, since condition (2) or (3) may fail, and $s_{i} L=L$ if and only if $i, i+1 \notin L$.

Let $v_{L}, L \in \mathcal{T}_{n}^{\lambda}$, denote a set of vectors indexed by the n-standard tableaux of shape λ. Let

$$
\begin{equation*}
V^{\lambda}=\mathbb{C}\left(q^{1 / 2}\right)-\operatorname{span}\left\{v_{L} \mid L \in \mathcal{T}_{n}^{\lambda}\right\} \tag{3.3}
\end{equation*}
$$

In this way the symbols $v_{L}, L \in \mathcal{T}_{n}^{\lambda}$ are a basis of the vector space V^{λ}. It follows that if $\lambda \vdash k$, then

$$
\begin{equation*}
\operatorname{dim}\left(V^{\lambda}\right)=\#(n \text {-standard tableaux of shape } \lambda)=\binom{n}{k} f_{\lambda} \tag{3.4}
\end{equation*}
$$

If b is a box in position (i, j) of λ, then the content of b is

$$
\begin{equation*}
\operatorname{ct}(b)=j-i \tag{3.5}
\end{equation*}
$$

Let $L \in \mathcal{T}_{n}^{\lambda}$. If $i, i+1 \in L$, then let $L(i)$ and $L(i+1)$ denote the box in L containing i and $i+1$, respectively. Define

$$
\begin{equation*}
a_{L}(i)=\frac{q-1}{1-q^{\operatorname{ct}(L(i))-\operatorname{ct}(L(i+1))}} . \tag{3.6}
\end{equation*}
$$

Define an action of $T_{i}, 1 \leqslant i \leqslant n-1$, on V^{λ} as follows:

$$
T_{i} v_{L}= \begin{cases}a_{L}(i) v_{L}+\left(1+a_{L}(i)\right) v_{L^{\prime}}, & \text { if } i, i+1 \in L \tag{3.7}\\ (q-1) v_{L}+q^{1 / 2} v_{s_{i} L}, & \text { if } i \notin L, i+1 \in L \\ q^{1 / 2} v_{s_{i} L}, & \text { if } i \in L, i+1 \notin L \\ q v_{L}, & \text { if } i, i+1 \notin L\end{cases}
$$

where

$$
v_{L^{\prime}}= \begin{cases}v_{s_{i} L}, & \text { if } s_{i} L \text { is } n \text {-standard } \\ 0, & \text { otherwise }\end{cases}
$$

Define an action of $P_{i}, 1 \leqslant i \leqslant n$, on V^{λ} by

$$
P_{i} v_{L}= \begin{cases}v_{L}, & \text { if } 1,2, \ldots, i \notin L \tag{3.8}\\ 0, & \text { otherwise }\end{cases}
$$

Remark 3.1. If $i, i+1 \in L$ then the action of T_{i} on v_{L} is the same as the action in Hoefsmit's [7] seminormal representation of $\mathcal{H}_{n}(q)$.

Theorem 3.2. For each $\lambda \in \Lambda_{n}$, the actions of the generators of $\mathcal{I}_{n}(q)$ on the vector space V^{λ} afford an irreducible representation of $\mathcal{I}_{n}(q)$. Moreover, the set $V^{\lambda}, \lambda \in \Lambda_{n}$, is a complete set of irreducible, pairwise non-isomorphic $\mathcal{I}_{n}(q)$-modules.

Proof. First we check relations (A1)-(A7) in the presentation (2.1).
(A1) Let L be a standard tableaux. Then T_{i} acts on the subspace spanned by v_{L} and $v_{L^{\prime}}$. Let M be the matrix of T_{i} with respect to $\left\{v_{L}, v_{L^{\prime}}\right\}$. If $i, i+1 \in L$, then this is the same matrix as in the seminormal action of $\mathcal{H}_{n}(q)$, so we know from [7] that $M^{2}=(q-1) M+q I_{2}$, where I_{2} is the 2×2 identity matrix. If $i \notin L$ and $i+1 \in L$, then

$$
M=\left(\begin{array}{cc}
q-1 & q^{1 / 2} \\
q^{1 / 2} & 0
\end{array}\right) .
$$

Since $\operatorname{det}(M)=-q$ and $\operatorname{trace}(M)=q-1$, we have $M^{2}=(q-1) M+q I_{2}$. The case $i \in L, i+1 \notin L$ is proved by exchanging the rows and columns of M in the previous case. If $i, i+1 \notin L$, then $M=\operatorname{diag}(q, q)$ which trivially satisfies $M^{2}=(q-1) M+q I_{2}$.
(A3) We see from $T_{i} v_{L}=a v_{L}+b v_{s_{i} L}$ that the action of T_{i} affects only positions i and $i+1$ in L. Since $|i-j|>1$, the sets $\{i, i+1\}$ and $\{j, j+1\}$ are disjoint and thus the actions of T_{i} and T_{j} commute.
(A4)-(A5) If $i \neq j$, then $1, \ldots, j \notin L$ if and only if $1, \ldots, j \notin s_{i} L$. Thus, $i \neq j$ and $1, \ldots, j \notin L$ imply that $T_{i} P_{j} v_{L}$ and $P_{j} T_{i} v_{L}$ are both equal to $T_{i} v_{L}$. If $i \neq j$ and it is not the case that $1, \ldots, j \notin L$, then $T_{i} P_{j} v_{L}=0$ and $P_{j} T_{i} v_{L}=0$. If $i<j$, and $1, \ldots, j \notin L$, then $T_{i} v_{L}=q v_{L}$, so $T_{i} P_{j}$ acts the same as $q P_{j}$.
(A6) is immediate from (3.8).
(A7) We verify the equivalent condition (2.3): $P_{j+1}=P_{j} T_{j} P_{j}+(1-q) P_{j}$. If it is not the case that $1, \ldots, j \notin L$, then both $P_{j} v_{L}=0$ and $P_{j+1} v_{L}=0$, and the result holds.

If $1, \ldots, j+1 \notin L$, then $P_{j} v_{L}=P_{j+1} v_{L}=v_{L}$, and $T_{j} v_{L}=q v_{L}$. Thus,

$$
P_{j} T_{j} P_{j} v_{L}+(1-q) P_{j} v_{L}=q v_{L}+(1-q) v_{L}=v_{L}=P_{j+1} v_{L} .
$$

If $1, \ldots, j \notin L$ and $j+1 \in L$, then $P_{j} v_{L}=v_{L}, P_{j} v_{s_{j} L}=0, P_{j+1} v_{L}=0$, and $T_{j} v_{L}=$ $(q-1) v_{L}+q^{1 / 2} v_{s_{j} L}$. Thus,

$$
P_{j} T_{j} P_{j} v_{L}+(1-q) P_{j} v_{L}=(q-1) v_{L}+(1-q) v_{L}=0=P_{j+1} v_{L}
$$

(A2) depends on the positions of $i, i+1$, and $i+2$. When $i, i+1, i+2 \in L$, we know that the relation holds, since the action is exactly the same as $\mathcal{H}_{n}(q)$ (see [7]). If $i, i+1, i+2 \notin L$, then both T_{i} and T_{i+1} act by multiplication by q, and (A2) holds. We then consider, separately, the cases when one of $i, i+1, i+2$ is in T and when two of $i, i+1, i+2$ are in T.

Let L_{i} be an n-standard tableau with $i \in L_{i}$ and $i+1, i+2 \notin L_{i}$. Let $L_{i+1}=s_{i} L_{i}$ and $L_{i+2}=s_{i+1} L_{i+1}$. Note that L_{i+1} contains $i+1$ and not i or $i+2$ and L_{i+2} contains $i+2$
and not i or $i+1$. For $k=i, i+1$ let M_{k} denote the matrix of T_{k} acting on $\left\{L_{i}, L_{i+1}, L_{i+2}\right\}$. Then

$$
M_{i}=\left(\begin{array}{ccc}
0 & q^{1 / 2} & 0 \\
q^{1 / 2} & q-1 & 0 \\
0 & 0 & q
\end{array}\right), \quad M_{i+1}=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & 0 & q^{1 / 2} \\
0 & q^{1 / 2} & q-1
\end{array}\right)
$$

It is a straight-forward calculation to check that $M_{i} M_{i+1} M_{i}=M_{i+1} M_{i} M_{i+1}$.
Suppose that $i, i+1$ are in the same row (or column) in an n-standard tableau L_{a} and that $i+2 \notin L_{a}$. Let $L_{b}=s_{i+1} L_{a}$ and $T_{c}=s_{i} L_{b}$. Note that $i, i+2$ are in the same row (column) in L_{b} and $i+1, i+2$ are in the same row (column) in T_{c}. For $k=i, i+1$ let M_{k} denote the matrix of T_{k} acting on $\left\{L_{a}, L_{b}, L_{c}\right\}$. Then

$$
M_{i}=\left(\begin{array}{ccc}
x & 0 & 0 \\
0 & 0 & q^{1 / 2} \\
0 & q^{1 / 2} & q-1
\end{array}\right), \quad M_{i+1}=\left(\begin{array}{ccc}
0 & q^{1 / 2} & 0 \\
q^{1 / 2} & q-1 & 0 \\
0 & 0 & x
\end{array}\right),
$$

where $x=q$ if $i, i+1$ are in the same row of T_{a} and $x=-1$ if $i, i+1$ are in the same column of L_{a}. Again it is straight-forward to check that $M_{i} M_{i+1} M_{i}=M_{i+1} M_{i} M_{i+1}$.

Finally, let $i, i+1 \in L_{a}$ with $i, i+1$ not adjacent, and let $L_{b}=s_{i} L_{a}, L_{c}=s_{i+1} L_{b}$, $L_{d}=s_{i} L_{c}, L_{e}=s_{i+1} L_{a}$, and $L_{f}=s_{i} L_{e}$. Then if α is the box containing i in L_{a} and β is the box containing $i+1$ in L_{b}, we have

$$
\begin{array}{ll}
L_{a} \text { has } i \text { in } \alpha \text { and } i+1 \text { in } \beta, & L_{b} \text { has } i+1 \text { in } \alpha \text { and } i \text { in } \beta, \\
L_{c} \text { has } i+2 \text { in } \alpha \text { and } i \text { in } \beta, & L_{d} \text { has } i+2 \text { in } \alpha \text { and } i+1 \text { in } \beta, \\
L_{e} \text { has } i \text { in } \alpha \text { and } i+2 \text { in } \beta, & L_{f} \text { has } i+1 \text { in } \alpha \text { and } i+2 \text { in } \beta .
\end{array}
$$

For $k=i, i+1$ let M_{k} denote the matrix of T_{k} acting on $\left\{L_{a}, L_{b}, L_{c}, L_{d}, L_{e}, L_{f}\right\}$. Then

$$
M_{i}=\left(\begin{array}{cccccc}
\delta(k) & 1+\delta(k) & 0 & 0 & 0 & 0 \\
1+\delta(-k) & \delta(-k) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & q^{1 / 2} & 0 & 0 \\
0 & 0 & q^{1 / 2} & q-1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & q^{1 / 2} \\
0 & 0 & 0 & 0 & q^{1 / 2} & q-1
\end{array}\right)
$$

and

$$
M_{i+1}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & q^{1 / 2} & 0 \\
0 & 0 & q^{1 / 2} & 0 & 0 & 0 \\
0 & q^{1 / 2} & q-1 & 0 & 0 & 0 \\
0 & 0 & 0 & \delta(-k) & 0 & 1+\delta(-k) \\
q^{1 / 2} & 0 & 0 & 0 & q-1 & 0 \\
0 & 0 & 0 & 1+\delta(k) & 0 & \delta(k)
\end{array}\right)
$$

where $k=\operatorname{ct}(\alpha)-\operatorname{ct}(\beta)$ and $\delta(k)=(q-1) /\left(1-q^{k}\right)$. After multiplying out $M_{i} M_{i+1} M_{i}$ and $M_{i+1} M_{i} M_{i+1}$, the only non-trivial relations to check are
(1) $\delta(k)+\delta(-k)=q-1$, and
(2) $q+(q-1) \delta(k)=\delta(k)^{2}+[1+\delta(k)][1+\delta(-k)]$.

They both follow quite easily from the relation $\delta(-k)=-q^{k} \delta(k)$.
Let B_{k} be the subalgebra of $\mathcal{I}_{n}(q)$ spanned by $T_{1}, \ldots, T_{k-1}, P_{1}, \ldots, P_{k}$ so that $B_{1} \subseteq$ $B_{2} \subseteq \cdots \subseteq B_{n}=\mathcal{I}_{n}(q)$. Clearly, there is a surjection from $\mathcal{I}_{k}(q)$ to B_{k}. We will see that they are isomorphic by producing sufficiently many irreducible representations.

Let $1 \leqslant k \leqslant n$ and $\lambda \in \Lambda_{k} \subseteq \Lambda_{n}$. Then V^{λ} is spanned by $v_{L}, L \in \mathcal{T}_{n}^{\lambda}$, and is a module for the subalgebra B_{k}. Let $V^{\lambda, k} \subseteq V^{\lambda}$ be the subspace spanned by $v_{L}, L \in \mathcal{T}_{k}^{\lambda}$. From (3.7) and (3.8), we see that $V^{\lambda, k}$ is a B_{k}-submodule of the B_{n}-module V^{λ}. We use induction on k to prove that the modules $V^{\lambda, k}, \lambda \in \Lambda_{k}$, are irreducible modules for B_{k}. In particular, this shows that the modules $V^{\lambda}=V^{\lambda, n}, \lambda \in \Lambda_{n}$, are irreducible for $\mathcal{I}_{n}(q)=B_{n}$.

If $k=1$, then the result is true since the modules, which correspond to $\lambda=\emptyset$ and $\lambda=(1)$, are 1 -dimensional. Now, assume that $k>1$ and that the property holds for B_{k-1}. Fix $\lambda \in \Lambda_{k}$, and consider the restriction of $V^{\lambda, k}$ to B_{k-1}. We partition the standard tableaux $\mathcal{T}_{k}^{\lambda}$ into subsets as follows. Let c_{1}, \ldots, c_{ℓ} denote the "corners" of the partition λ. These are boxes c_{i} in λ such that λ contains no box to the right or below c_{i} (i.e., these are the possible locations of k in L). Define

$$
\mathcal{T}_{k}^{\lambda}(0)=\left\{L \in \mathcal{T}_{k}^{\lambda} \mid n \notin L\right\} \quad \text { and } \quad \mathcal{T}_{k}^{\lambda}(i)=\left\{L \in \mathcal{T}_{k}^{\lambda} \mid n \in c_{i}\right\}, \quad 1 \leqslant i \leqslant k
$$

If $|\lambda|=k$, then L must contain k. In this case we omit the possibility that $i=0$. Now define

$$
V_{i}^{\lambda, k}=\mathbb{C}\left(q^{1 / 2}\right)-\operatorname{span}\left\{v_{L} \mid L \in \mathcal{T}_{k}^{\lambda}(i)\right\}, \quad 0 \leqslant i \leqslant k
$$

By the definition of the action of $T_{i}, 1 \leqslant i \leqslant k-2$, and $P_{j}, 1 \leqslant j \leqslant k-1$, we see that $V_{i}^{\lambda, k}$ is a module for B_{k-1}. In fact $V_{i}^{\lambda, k} \cong V^{\mu, k-1}$, where μ is obtained from λ by removing c_{i}, for $1 \leqslant i \leqslant n$, and $\mu=\lambda$ when $i=0$. The induction hypothesis shows that $V_{i}^{\lambda, k}, 0 \leqslant i \leqslant k$, is a set of irreducible, non-isomorphic B_{k-1}-modules (again omit $i=0$ if $|\lambda|=k$).

Suppose $W \subseteq V^{\lambda, k}$ is a nonzero B_{k}-submodule of $V^{\lambda, k}$. If we consider W to be a B_{k-1}-module, then W contains some irreducible component $V_{i}^{\lambda, k}$. For each $j \notin\{i, 0\}$, we can choose $L \in \mathcal{T}^{\lambda, k}(i)$ with $k-1$ in corner c_{j}. Then k and $k-1$ are not adjacent in L, so $T_{k-1} v_{L}=a v_{L}+b v_{s_{k-1} L}$ with $b \neq 0$. Thus $v_{s_{k-1} L} \in W$ and $s_{k-1} L \in \mathcal{T}_{k}^{\lambda}(j)$. Furthermore, if $|\lambda|<k$, then we can find $L \in \mathcal{T}^{\lambda, k}(i)$ so that L does not contain $k-1$. Then $T_{k-1} v_{L}=(q-1) v_{L}+q^{1 / 2} v_{s_{k-1} L}$. Thus $v_{s_{k-1} L} \in W$ and $s_{k-1} L \in \mathcal{T}_{k}^{\lambda}(0)$. This tells us that $V_{j}^{\lambda, k} \subseteq W$ for each j and so $W=V^{\lambda, k}$, proving that $V^{\lambda, k}$ is irreducible.

If $\lambda \neq \mu \in \Lambda_{k}$, then $V^{\lambda, k}$ and $V^{\mu, k}$ are non-isomorphic, because they have different decompositions as B_{k-1}-modules.

The fact that $V^{\lambda, k}, \lambda \in \Lambda_{k}$, is a complete set of irreducible B_{k}-representations comes from summing the squared dimensions of these representations and comparing with the dimension of B_{k}. Indeed,

$$
\sum_{\ell=0}^{k} \sum_{\lambda \vdash \ell}\binom{k}{\ell}^{2} f_{\lambda}=\sum_{\ell=0}^{k}\binom{k}{\ell}^{2} \sum_{\lambda \vdash \ell} f_{\lambda}=\sum_{\ell=0}^{k}\binom{k}{\ell}^{2} \ell!,
$$

where $\sum_{\lambda \vdash \ell} f_{\lambda}=\ell$! comes from the representation theory of S_{ℓ}. We know that B_{k} is a homomorphic image of $\mathcal{I}_{k}(q)$ and now we have shown that they have the same dimension. Thus, $B_{k} \cong \mathcal{I}_{k}(q)$ and the $V^{\lambda, k}$ form a complete set of irreducible B_{k}-modules. In particular, $V^{\lambda}, \lambda \in \Lambda_{n}$, is a complete set of irreducible $\mathcal{I}_{n}(q)$-modules.

The following is a corollary of the proof of Theorem 3.2.
Corollary 3.3. The subalgebra of $\mathcal{I}_{n}(q)$ spanned by $T_{1}, \ldots, T_{k-1}, P_{1}, \ldots, P_{k}$ is isomorphic to $\mathcal{I}_{k}(q)$. Furthermore, for $\lambda \in \Lambda_{n}$, the decomposition of V^{λ} into irreducible modules for $\mathcal{I}_{n-1}(q)$ is given by

$$
V^{\lambda} \cong \bigoplus_{\mu \in \lambda^{-,=}} V^{\mu}
$$

where $\lambda^{-,=}$is the set of all partitions $\mu \in \Lambda_{n-1}$ such that μ equals λ or μ is obtained from λ by removing a box.

From Corollary 3.3 we see that the Bratteli diagram of $\mathcal{I}_{n}(q)$ is given in Fig. 1. The vertices on row n are given by Λ_{n} and the edges are determined by restriction rules from $\mathcal{I}_{n}(q)$ to $\mathcal{I}_{n-1}(q)$. The basis of V^{λ} partitions into subsets which explicitly realize the decomposition shown in Corollary 3.3 and Fig. 1.

Corollary 3.4. The subalgebra of $\mathcal{I}_{n}(q)$ spanned by T_{1}, \ldots, T_{n-1} is isomorphic to $\mathcal{H}_{n}(q)$.
Proof. Let C_{n} be the subalgebra of $\mathcal{I}_{n}(q)$ spanned by $T_{1}, T_{2}, \ldots, T_{k-1}$. Since the T_{i} satisfy relations (A1)-(A3), we see that C_{n} is a homomorphic image of $\mathcal{H}_{n}(q)$. The

Fig. 1. Bratteli diagram for $\mathcal{I}_{n}(q)$.
set of $\mathcal{I}_{n}(q)$-representations $V^{\lambda}, \lambda \vdash n$, are representations for the subalgebra C_{n} and thus are representations of $\mathcal{H}_{n}(q)$. Furthermore, they are isomorphic to Hoefsmit's [7] seminormal representations of $\mathcal{H}_{n}(q)$, which are a complete set of irreducible $\mathcal{H}_{n}(q)$ representations. Since these representations factor through C_{n}, it follows that C_{n} and $\mathcal{H}_{n}(q)$ are isomorphic.

3.1. Jucys-Murphy elements

Hoefsmit [7] defines special elements in $\mathcal{H}_{n}(q)$ which act diagonally on the seminormal representations. The analogous elements in S_{n} later became known as Jucys-Murphy elements (see [17]). We now define analogous elements in $\mathcal{I}_{n}(q)$.

For $1 \leqslant i \leqslant n$, define

$$
X_{i}=q^{-(i-1)}\left(T_{i-1} T_{i-2} \cdots T_{1}\right)\left(1-P_{1}\right)\left(T_{1} T_{2} \cdots T_{i-1}\right),
$$

so that $X_{i}=q^{-1} T_{i-1} X_{i-1} T_{i-1}$, for $i \geqslant 2$.
Proposition 3.5. For $1 \leqslant i \leqslant n$ we have

$$
X_{i} v_{L}= \begin{cases}q^{\operatorname{ct(}(L(i))} v_{L}, & \text { if } i \in L, \\ 0, & \text { if } i \notin L,\end{cases}
$$

Proof. We use induction on i. If $i=1$, then $X_{1}=P_{1}$ and the result holds by (3.8). Now we assume that the result is true for X_{i} and prove it for X_{i+1} by cases determined by the position of $i, i+1$ in L.

First assume $i+1 \notin L$. If $i \notin L$, then

$$
X_{i+1} v_{L}=q^{-1} T_{i} X_{i} T_{i} v_{L}=T_{i} X_{i} v_{L}=0
$$

If $i \in L$, then

$$
X_{i+1} v_{L}=q^{-1} T_{i} X_{i} T_{i} v_{L}=q^{-1 / 2} T_{i} X_{i} v_{s_{i} L}=0
$$

Now assume $i+1 \in L$. If $i \notin L$, then

$$
\begin{aligned}
X_{i+1} v_{L} & =q^{-1} T_{i} X_{i} T_{i} v_{L}=q^{-1}(q-1) T_{i} X_{i} v_{L}+q^{-1 / 2} T_{i} X_{i} v_{s_{i} L} \\
& =0+q^{-1 / 2} q^{\operatorname{ct}(L(i+1))} T_{i} v_{s_{i} L}=q^{\operatorname{ct}(L(i+1))} v_{L} .
\end{aligned}
$$

Finally, let $i, i+1 \in L$. As in the proof of Theorem 3.2, let $d=\operatorname{ct}(L(i))-\operatorname{ct}(L(i+1))$ and let $\delta(d)=(q-1) /\left(1-q^{d}\right)$. Then

$$
\begin{aligned}
X_{i+1} v_{L} & =q^{-1} T_{i} X_{i} T_{i} v_{L}=q^{-1} T_{i} X_{i}\left[\delta(d) v_{L}+(1+\delta(d)) v_{L^{\prime}}\right] \\
& =q^{-1} T_{i}\left[\delta(d) q^{\operatorname{ct(L(i))}} v_{L}+(1+\delta(d)) q^{\operatorname{ct(L(i+1))}} v_{L^{\prime}}\right] \\
& =q^{-1}\left[\delta(d) q^{\operatorname{ct}(L(i))}\left(\delta(d) v_{L}+(1+\delta(d)) v_{L^{\prime}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+(1+\delta(d)) q^{\operatorname{ct}(L(i+1))}\left(\delta(-d) v_{L^{\prime}}+(1+\delta(-d)) v_{L}\right)\right] \\
= & A v_{L}+B v_{L^{\prime}}
\end{aligned}
$$

where

$$
\begin{aligned}
& A=q^{-1}\left[\delta(d)^{2} q^{\operatorname{ct}(L(i))}+(1+\delta(d))(1+\delta(-d)) q^{\operatorname{ct}(L(i+1))}\right] \quad \text { and } \\
& B=q^{-1}(1+\delta(d))\left[\delta(d) q^{\operatorname{ct}(L(i))}+\delta(-d) q^{\operatorname{ct}(L(i+1))}\right]
\end{aligned}
$$

Now, $B=0$ follows quite easily from $\delta(-d)=-q^{d} \delta(d)$ and

$$
\begin{aligned}
A & =q^{-1}\left[\delta(d)^{2} q^{\operatorname{ct}(L(i))}+(1+\delta(d))(1+\delta(-d)) q^{\operatorname{ct}(L(i+1))}\right] \\
& =q^{-1} q^{\operatorname{ct}(L(i+1))}\left[\delta(d)^{2} q^{d}+(1+\delta(d))(1+\delta(-d))\right] \\
& =q^{-1} q^{\operatorname{ct}(L(i+1))}\left[\delta(d)^{2} q^{d}+q-q^{d} \delta(d)^{2}\right] \\
& =q^{\operatorname{ct}(L(i+1))} .
\end{aligned}
$$

4. Schur-Weyl duality

In this section we show that $\mathcal{I}_{n}(q)$ and the quantum general linear group $U_{q} \mathfrak{g l}(r)$ are in Schur-Weyl duality on tensor space.

4.1. The quantum general linear group

Following Jimbo [9], we define the quantum $U_{q} \mathfrak{g l}(r)$ corresponding to the Lie algebra $\mathfrak{g l}(r)$. The algebra we define here is the same as in [9], except with his parameter q replaced by $q^{1 / 2}$. Let $U_{q} \mathfrak{g l}(r)$ be the $\mathbb{C}\left(q^{1 / 4}\right)$-algebra given by generators

$$
e_{i}, \quad f_{i} \quad(1 \leqslant i<r), \quad \text { and } \quad q^{ \pm \varepsilon_{i} / 2} \quad(1 \leqslant i \leqslant n)
$$

with relations

$$
\begin{aligned}
& q^{\varepsilon_{i} / 2} q^{\varepsilon_{j} / 2}=q^{\varepsilon_{j} / 2} q^{\varepsilon_{i} / 2}, \\
& q^{\varepsilon_{i} / 2} e_{j} q^{-\varepsilon_{i} / 2}= \begin{cases}q^{-1 / 2} e_{j}, & \text { if } j=i-1, \\
q^{1 / 2} e_{j}, & \text { if } j=i, \\
e_{j}, & \text { otherwise, },\end{cases} \\
& q^{\varepsilon_{i} / 2} f_{j} q^{-\varepsilon_{i} / 2}= \begin{cases}q^{1 / 2} f_{j}, & \text { if } j=i-1, \\
q^{-1 / 2} f_{j}, & \text { if } j=i, \\
f_{j}, & \text { otherwise },\end{cases} \\
& e_{i} f_{j}-f_{j} e_{i}=\delta_{i j} \frac{q^{1 / 2\left(\varepsilon_{i}-\varepsilon_{i+1}\right)}-q^{-1 / 2\left(\varepsilon_{i}-\varepsilon_{i+1}\right)}}{q^{1 / 2}-q^{-1 / 2}},
\end{aligned}
$$

$$
\begin{aligned}
& e_{i \pm 1} e_{i}^{2}-\left(q^{1 / 2}+q^{-1 / 2}\right) e_{i} e_{i \pm 1} e_{i}+e_{i}^{2} e_{i \pm 1}=0, \\
& f_{i \pm 1} f_{i}^{2}-\left(q^{1 / 2}+q^{-1 / 2}\right) f_{i} f_{i \pm 1} f_{i}+f_{i}^{2} f_{i \pm 1}=0, \\
& e_{i} e_{j}=e_{j} e_{i}, \quad f_{i} f_{j}=f_{j} f_{i}, \quad \text { if }|i-j|>1
\end{aligned}
$$

Let

$$
t_{i}=q^{\varepsilon_{i} / 4} \quad(1 \leqslant i \leqslant r), \quad k_{i}=t_{i} t_{i+1}^{-1} \quad(1 \leqslant i \leqslant r-1) .
$$

There is a Hopf algebra structure (see [9, p. 248]) on $U_{q} \mathfrak{g l}(r)$ with comultiplication Δ and counit u given by

$$
\begin{array}{ll}
\Delta\left(e_{i}\right)=e_{i} \otimes k_{i}^{-1}+k_{i} \otimes e_{i}, & u\left(e_{i}\right)=0, \\
\Delta\left(f_{i}\right)=f_{i} \otimes k_{i}^{-1}+k_{i} \otimes f_{i}, & u\left(f_{i}\right)=0, \tag{4.1}\\
\Delta\left(t_{i}\right)=t_{i} \otimes t_{i}, & u\left(t_{i}\right)=1 .
\end{array}
$$

The "fundamental" r-dimensional $U_{q} \mathfrak{g l}(r)$-module V is the vector space

$$
V=\mathbb{C}\left(q^{1 / 4}\right)-\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}
$$

(so that the symbols v_{i} form a basis of V) with $U_{q} \mathfrak{g l}(r)$-action given by (see [9, Proposition 1, Remark 1]),

$$
\begin{aligned}
& e_{i} v_{j}=\left\{\begin{array}{ll}
v_{j+1}, & \text { if } j=i, \\
0, & \text { if } j \neq i,
\end{array} \quad f_{i} v_{j}=\left\{\begin{array}{ll}
v_{j-1}, & \text { if } j=i+1, \\
0, & \text { if } j \neq i+1,
\end{array} \quad\right. \text { and }\right. \\
& t_{i} v_{j}= \begin{cases}q^{1 / 4} v_{j}, & \text { if } j=i, \\
v_{j}, & \text { if } j \neq i .\end{cases}
\end{aligned}
$$

The "trivial" 1-dimensional $U_{q} \mathfrak{g l}(r)$-module W is the vector space

$$
W=\mathbb{C}\left(q^{1 / 4}\right) \cdot \operatorname{span}\left\{v_{0}\right\}
$$

(so that the symbol v_{0} is a basis of W) with $U_{q} \mathfrak{g l}(r)$-action given by the counit u (see (4.1)),

$$
e_{i} v_{0}=f_{i} v_{0}=0 \quad \text { and } \quad t_{i} v_{0}=v_{0}
$$

Let λ be a partition with $\ell(\lambda) \leqslant r$, and let V^{λ} be an irreducible $U_{q} \mathfrak{g l}(r)$-module of highest weight λ. Then $W=V^{\emptyset}$ and $V=V^{(1)}$. The decomposition rules for tensoring by V and W are (see [1, Proposition 10.1.16]),

$$
\begin{equation*}
V^{\lambda} \otimes W \cong V^{\lambda} \quad \text { and } \quad V^{\lambda} \otimes V \cong \bigoplus_{\mu \in \lambda^{+}} V^{\mu} \tag{4.2}
\end{equation*}
$$

where λ^{+}is the set of partitions that are obtained by adding a box to λ. Thus,

$$
\begin{equation*}
V^{\lambda} \otimes(W \oplus V) \cong \bigoplus_{\mu \in \lambda^{+},=} V^{\mu} \tag{4.3}
\end{equation*}
$$

where $\lambda^{+,}=$is the set of partitions that are obtained by adding 0 or 1 boxes to λ.

4.2. Centralizer algebra of the tensor power representation

The coproduct on $U_{q} \mathfrak{g l}(r)$ is coassociative, so it makes sense to consider the tensor product representation $(W \oplus V)^{\otimes n}$. It follows from (4.3) and induction that the n-fold tensor product $(W \oplus V)^{\otimes n}$ decomposes into irreducible $U_{q} \mathfrak{g l}(r)$-modules as

$$
\begin{equation*}
(W \oplus V)^{\otimes n} \cong \bigoplus_{k=0}^{n} \bigoplus_{\lambda \vdash k}\binom{n}{k} f_{\lambda} V^{\lambda}, \tag{4.4}
\end{equation*}
$$

where f_{λ} is the number of standard tableaux of shape λ (see (2.1)). The Bratteli diagram for $U_{q} \mathfrak{g l}(r)$ is shown in Fig. 1. It has the partitions Λ_{n} on level n, and a vertex $\mu \in \Lambda_{n+1}$ is connected to a vertex $\lambda \in \Lambda_{n}$ if $\mu \in \lambda^{+,=}$.

The centralizer algebra

$$
C_{n}=\operatorname{End}_{U_{q} \mathfrak{g l}(r)}\left((W \oplus V)^{\otimes n}\right)
$$

is the set of transformations in $\operatorname{End}\left((W \oplus V)^{\otimes n}\right)$ which commute with $U_{q} \mathfrak{g l}(r)$. By general results from double centralizer theory (see, for example, $[2, \S 3 \mathrm{D}]$), we have
(1) C_{n} is semisimple, and the irreducible representations of C_{n} are indexed by Λ_{n}, i.e., the same set that indexes the irreducible representations of $U_{q} \mathfrak{g l}(r)$ which appear in $(W \oplus V)^{\otimes n}$.
(2) For $\lambda \in \Lambda_{n}$ let M^{λ} denote the irreducible C_{n}-module indexed by λ. Then $\operatorname{dim}\left(M^{\lambda}\right)=$ m_{λ} is the multiplicity of V^{λ} in the decomposition of $(W \oplus V)^{\otimes n}$ as a $U_{q} \mathfrak{g l}(r)$-module, and $\operatorname{dim}\left(V^{\lambda}\right)=d_{\lambda}$ is the multiplicity of M^{λ} in the decomposition of $(W \oplus V)^{\otimes n}$ as a C_{n}-module. It follows that m_{λ} is the number of paths from \emptyset to λ in Fig. 1. We choose $|\lambda|$ levels on which to add a box, and there are f_{λ} ways to add boxes to \emptyset and reach λ. Thus,

$$
m_{\lambda}=\#(\text { paths from } \emptyset \text { to } \lambda)=\binom{n}{|\lambda|} f_{\lambda}
$$

(3) When $r \geqslant n$, all of the partitions in Λ_{n} appear in the Bratteli diagram, and

$$
\begin{equation*}
\operatorname{dim}\left(C_{n}\right)=\sum_{k=0}^{n} \sum_{\lambda \vdash k}\binom{n}{k}^{2} f_{\lambda}^{2}=\sum_{k=0}^{n}\binom{n}{k}^{2} \sum_{\lambda \vdash k} f_{\lambda}^{2}=\sum_{k=0}^{n}\binom{n}{k}^{2} k!=\left|R_{n}\right| . \tag{4.5}
\end{equation*}
$$

4.3. R-matrices

We consider the embedding $U_{q} \mathfrak{g l}(r) \subset U_{q} \mathfrak{g l}(r+1)$ so that $U_{q} \mathfrak{g l}(r)$ is defined as in Section 4.1 and $U_{q} \mathfrak{g l}(r+1)$ is generated by $e_{i}, f_{i}, 0 \leqslant i<r$, and $t_{i}, 0 \leqslant i \leqslant r$, with the appropriately extended relations from Section 4.1. Then we define the fundamental representation of $U_{q} \mathfrak{g l}(r+1)$ as

$$
U=\mathbb{C}\left(q^{1 / 4}\right)-\operatorname{span}\left\{v_{0}, v_{1}, \ldots, v_{r}\right\}
$$

where the symbols v_{i} are a basis for U such that $W=\mathbb{C}\left(q^{1 / 4}\right)$-span $\left\{v_{0}\right\}, V=$ $\mathbb{C}\left(q^{1 / 4}\right)-\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}$, and thus we have the restriction rule

$$
\operatorname{Res}_{U_{q} \mathfrak{g l}(r)}^{U_{q} \mathfrak{g l}(r+1)} U=W \oplus V
$$

The \mathcal{R}-matrix (see [9, §4]) for $U_{q} \mathfrak{g l}(r+1)$ provides a canonical $U_{q} \mathfrak{g l}(r+1)$-module isomorphism $\check{R}_{M N}: M \otimes N \rightarrow N \otimes M$ for any two $U_{q} \mathfrak{g l}(r+1)$-modules M and N. The \mathcal{R}-matrix for $U, \check{R}_{U U}: U \otimes U \rightarrow U \otimes U$, is given explicitly in [9, formula (7)]. We rescale it to the operator $\check{S}=q^{1 / 2} \check{R}_{U U}$. For each $0 \leqslant i, j \leqslant r$, we have

$$
\check{S}\left(v_{i} \otimes v_{j}\right)=q^{1 / 2} \check{R}_{U U}\left(v_{i} \otimes v_{j}\right)= \begin{cases}q v_{j} \otimes v_{j}, & \text { if } i=j, \\ q^{1 / 2} v_{j} \otimes v_{i}, & \text { if } i>j, \\ q^{1 / 2} v_{j} \otimes v_{i}+(q-1)\left(v_{i} \otimes v_{j}\right), & \text { if } i<j\end{cases}
$$

For each $1 \leqslant i \leqslant n-1$ define

$$
\begin{equation*}
\check{S}_{i}=\mathrm{id} \otimes \cdots \otimes \mathrm{id} \otimes \check{S} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id} \tag{4.6}
\end{equation*}
$$

where \check{S} appears as the transformation in the i th and $(i+1)$ st factor. Jimbo [9, Proposition 3], shows that \check{S} commutes with $U_{q} \mathfrak{g l}(r+1)$ and thus $\check{S} \in C_{n}$.

Define $\check{E} \in \operatorname{End}_{U_{q} \mathfrak{g l}(r)}(W \oplus V)$ to be projection onto the trivial module W, and let

$$
\begin{equation*}
\check{E}_{i}=\check{E} \otimes \cdots \otimes \check{E} \otimes \mathrm{id} \otimes \cdots \mathrm{id} \in C_{n} \tag{4.7}
\end{equation*}
$$

where the projection onto the trivial module \check{E} appears in the first i tensor slots and the identity transformation id appears in the remaining $n-i$ tensor slots.

Proposition 4.1. Let V be fundamental $U_{q} \mathfrak{g l}(r)$-module and let W be the trivial $U_{q} \mathfrak{g l}(r)$ module. The matrices \check{S}_{i} and \check{E}_{i} satisfy the following relations as transformations on $U^{\otimes n}$
(1) $\check{S}_{i}^{2}=(q-1) \check{S}_{i}^{2}+q \cdot 1,1 \leqslant i \leqslant n-1$,
(2) $\check{S}_{i} \check{S}_{i+1} \check{S}_{i}, \quad 1 \leqslant i \leqslant n-2$,
(3) $\check{S}_{i} \check{S}_{j}=\check{S}_{j} \check{S}_{i},|i-j|>2$,
(4) $\check{S}_{i} \check{E}_{j}=\check{E}_{j} \check{S}_{i}=q \check{E}_{j}, 1 \leqslant i<j \leqslant n$,
(5) $\check{S}_{i} \check{E}_{j}=\check{E}_{j} \check{S}_{i}, 1 \leqslant j<i \leqslant n$,
(6) $\check{E}_{i}^{2}=\check{E}_{i}, 1 \leqslant i \leqslant n$,
(7) $\check{E}_{i+1}=\check{E}_{i} \check{S}_{i} \check{E}_{i}+(1-q) \check{E}_{i}, 2 \leqslant i \leqslant n$.

Proof. Let $U_{q} \mathfrak{g l}(r)$ be embedded in $U_{q} \mathfrak{g l}(r+1)$ as discussed above so that $U=V \oplus W$ as a module for $U_{q} \mathfrak{g l}(r)$. From [9], we know that \check{S}_{i} is in $\operatorname{End}_{U_{q} \mathfrak{g l}(r+1)}\left(U^{\otimes n}\right) \subseteq C_{n}$ and that the \check{S}_{i} satisfy relations (1)-(3). These are not difficult to verify.

If $j<i$, then \check{S}_{i} acts as the identity in tensor positions $1, \ldots, j$ and \check{E}_{j} acts as identity in tensor positions $i, i+1$, so \check{S}_{i} and \check{E}_{j} commute and property (5) holds.

Property (6) follows immediately from the fact that \check{E}_{j} is a projection.
For properties (4) and (7), we check the actions on the basis of simple tensors $v_{k_{1}} \otimes \cdots \otimes v_{k_{n}}$ with $0 \leqslant k_{j} \leqslant r+1$. Let $\mathbf{v}=v_{k_{1}} \otimes \cdots \otimes v_{k_{n}}$ and let \mathbf{v}^{\prime} be obtained from \mathbf{v} by switching $v_{k_{i}}$ with $v_{k_{i+1}}$. Thus $\check{S}_{i} \mathbf{v}=\alpha \mathbf{v}+\beta \mathbf{v}^{\prime}$ with $\alpha, \beta \in \mathbb{C}\left(q^{1 / 2}\right)$.

Assume that $j>i$. If $k_{1}=\cdots=k_{j}=0$, then $\check{E}_{j} \mathbf{v}=\mathbf{v}$ and $\check{S}_{i} \mathbf{v}=q \mathbf{v}$, so $\check{S}_{i} \check{E}_{j} \mathbf{v}=\check{S}_{i} \mathbf{v}=$ $q \mathbf{v}=q \check{E}_{j} \mathbf{v}=\check{E}_{j} \check{S}_{i} \mathbf{v}$. If it is not the case that $k_{1}=\cdots=k_{j}=0$, then $\check{E}_{j} \mathbf{v}=\check{E}_{j} \mathbf{v}^{\prime}=0$, so $\check{E}_{j} \check{S}_{i} \mathbf{v}=\check{E}_{j}\left(\alpha \mathbf{v}+\beta \mathbf{v}^{\prime}\right)=0=q \check{E}_{j} \mathbf{v}=\check{S}_{i} \check{E}_{j} \mathbf{v}$, and property (4) holds.

If it is not the case that $k_{1}=k_{2}=\cdots=k_{i}=0$ then $\check{E}_{i} \mathbf{v}=0$ and $\check{E}_{i+1} \mathbf{v}=0$, so

$$
\check{E}_{i+1} \mathbf{v}=0=\left(\check{E}_{i} \check{S}_{i} \check{E}_{i}+(1-q) \check{E}_{i}\right) \mathbf{v}
$$

Now assume $k_{1}=k_{2}=\cdots=k_{i}=0$. If $k_{i+1}=0$, then $\check{E}_{i} \mathbf{v}=\mathbf{v}, \check{E}_{i+1} \mathbf{v}=\mathbf{v}$, and $\check{S}_{i} \mathbf{v}=q \mathbf{v}$, so

$$
\left(\check{E}_{i} \check{S}_{i} \check{E}_{i}+(1-q) \check{E}_{i}\right) \mathbf{v}=q \mathbf{v}+(1-q) \mathbf{v}=\mathbf{v}=\check{E}_{i} \mathbf{v}=\mathbf{v}
$$

If $k_{i+1}>0$, then $\check{E}_{i} \mathbf{v}=\mathbf{v}, \check{E}_{i} \mathbf{v}^{\prime}=0, \check{E}_{i+1} \mathbf{v}=0$, and $\check{S}_{i} \mathbf{v}=(q-1) \mathbf{v}+q^{1 / 2} \mathbf{v}^{\prime}$, so

$$
\begin{aligned}
\left(\check{E}_{i} \check{S}_{i} \check{E}_{i}+(1-q) \check{E}_{i}\right) \mathbf{v} & =\check{E}_{i}\left((q-1) \mathbf{v}++q^{1 / 2} \mathbf{v}^{\prime}\right)+(1-q) \mathbf{v} \\
& =(q-1) \mathbf{v}+(1-q) \mathbf{v}=0=\check{E}_{i+1} \mathbf{v}
\end{aligned}
$$

Thus, (7) holds and the proposition is proved.
Corollary 4.2. The elements \check{E}_{1} and $\check{S}_{i}, 1 \leqslant i \leqslant n-1$, generate C_{n}.
Proof. Let D_{n} denote the subalgebra generated by \check{E}_{1} and $\check{S}_{i}, 1 \leqslant i \leqslant n-1$. From [20], we know that, under the specialization $q \rightarrow 1, \check{E}_{1}$ and \check{S}_{i} specialize to generators of $\operatorname{End}_{G L(r, \mathbb{C})}\left((W \oplus V)^{\otimes n}\right)$, which has the same dimension as C_{n}. Under such a specialization the dimension cannot go up. This follows from [3, §68.A], since there is a basis for D_{n} consisting of words in the generators E_{1}, S_{i} and the structure constants for this basis are well-defined (do not have poles) at $q=1$. Thus, D_{n} is a subalgebra of C_{n} with the same dimension as C_{n}, and so they are equal.

Corollary 4.3. The map $\phi: A_{n}(q) \rightarrow \operatorname{End}_{U_{q} \mathfrak{g l}(r)}\left((W \oplus V)^{\otimes n}\right)$ given by

$$
\phi\left(T_{i}\right)=\check{S}_{i} \quad \text { and } \quad \phi\left(P_{i}\right)=\check{E}_{i}
$$

is a surjective algebra homomorphism, and if $r \geqslant n$, then ϕ is an isomorphism. The action of $T_{i}, 1 \leqslant i \leqslant n-1$ and $P_{j}, 1 \leqslant j \leqslant n$ on simple tensors $\mathbf{v}=v_{k_{1}} \otimes \cdots \otimes v_{k_{n}}$ is given by

$$
\begin{align*}
& T_{i} \mathbf{v}= \begin{cases}(q-1) \mathbf{v}+q^{1 / 2} \mathbf{v}^{\prime}, & \text { if } k_{i}<k_{i+1}, \\
q^{1 / 2} \mathbf{v}^{\prime}, & \text { if } k_{i}>k_{i+1}, \\
q \mathbf{v}, & \text { if } k_{i}=k_{i+1},\end{cases} \tag{4.8}\\
& P_{j} \mathbf{v}= \begin{cases}\mathbf{v}, & \text { if } k_{1}=\cdots=k_{j}=0, \\
0, & \text { otherwise },\end{cases}
\end{align*}
$$

where \mathbf{v}^{\prime} is the simple tensor obtained from \mathbf{v} by switching $v_{k_{i}}$ with $v_{k_{i+1}}$.
Proof. Proposition 4.1 and Corollary 4.2 tell us that ϕ is a surjective homomorphism. By comparing dimensions when $r \geqslant n$, we see that ϕ is an isomorphism. The action of the generators follows from (4.7) and (4.8). Note: one can also verify the relations (2.1).

Remark 4.4. It is natural to look for a presentation of $\mathcal{I}_{n}(q)$ using generators Π_{i} which project onto the trivial module W in only the i th tensor slot. At $q \rightarrow 1$, these correspond to the idempotents $\pi_{i}=1-E_{i, i} \in R_{n}$. Furthermore, we have $P_{i}=\Pi_{1} \Pi_{2} \cdots \Pi_{i}$. However, the Π_{i} appear to have a complicated relation with the T_{i}. Using a computer, M. Dieng found that in $\mathcal{I}_{3}(q)$,

$$
\begin{aligned}
\Pi_{2}= & T_{1}^{-1} \Pi_{1} T_{1}+\frac{(q-1)}{q^{3}}\left(T_{1}^{-1} P_{1}+T_{1}^{-1} P_{2}\right), \\
\Pi_{3}= & T_{2}^{-1} \Pi_{2} T_{2}+(q-1)^{2} T_{2}^{-1} T_{1}^{-1} P_{1}+(q-1) T_{2}^{-1} T_{1}^{-1} P_{1} T_{1} \\
& -\frac{(q-1)^{2}}{q}\left(T_{1} T_{2}^{-1} P_{2}+T_{2}^{-1} P_{2}+T_{1}^{-1} T_{2}^{-1} P_{2} T_{2}\right) \\
& +\frac{(q-1)}{q} T_{1}^{-1} T_{2}^{-1} P_{2} T_{2} T_{1}+\frac{(q-1)^{2}(q+1)}{q^{3}} P_{3} .
\end{aligned}
$$

Acknowledgments

I thank Arun Ram and Louis Solomon for numerous enlightening conversations and helpful suggestions and for suggesting improvements on early versions of this paper. I also thank Momar Dieng, whose work on the characters of $\mathcal{I}_{n}(q)$ in [4] helped lead to the presentation (2.1) and to the calculations in Remark 4.4.

References

[1] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, 1994.
[2] C. Curtis, I. Reiner, Methods of Representation Theory: With Applications to Finite Groups and Orders, vol. I, Wiley, New York, 1981.
[3] C. Curtis, I. Reiner, Methods of Representation Theory: With Applications to Finite Groups and Orders, vol. II, Wiley, New York, 1987.
[4] M. Dieng, T. Halverson, V. Poladian, Character formulas for q-rook monoid algebras, J. Algebraic Combin. 17 (2003) 99-123.
[5] C. Grood, A Specht module analog for the rook monoid, Electron. J. Combin. 9 (2002) 10 (electronic).
[6] T. Halverson, A. Ram, q-rook monoid algebras, Hecke algebras, and Schur-Weyl duality, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283 (2001) 224-250.
[7] P.N. Hoefsmit, Representations of Hecke algebras of finite groups with $B N$-pairs of classical type, Thesis, Univ. of British Columbia, 1974.
[8] N. Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo, Sec. I 10 (1664) 215-236.
[9] M. Jimbo, A q-analog of $U(\mathfrak{g l}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986) 247-252.
[10] S. Lipscomb, Symmetric Inverse Semigroups, in: Math. Surveys Monogr., vol. 46, Amer. Math. Soc., Providence, RI, 1996.
[11] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Second edition, Oxford Univ. Press, New York, 1995.
[12] E.H. Moore, Concerning the abstract groups of order k ! and $\frac{1}{2} k$! holohedrically isomorphic with the symmetric and the alternating substitution groups on k letters, Proc. London Math. Soc. 28 (1897) 357366.
[13] W.D. Munn, Matrix representations of semigroups, Proc. Cambridge Philos. Soc. 53 (1957) 5-12.
[14] W.D. Munn, The characters of the symmetric inverse semigroup, Proc. Cambridge Philos. Soc. 53 (1957) 13-18.
[15] J. Okniński, M. Putcha, Complex representations of matrix semigroups, Trans. Amer. Math. Soc. 323 (1991) 563-581.
[16] M. Putcha, Monoid Hecke algebras, Trans. Amer. Math. Soc. 349 (1997) 3517-3534.
[17] A. Ram, Seminormal representations of Weyl groups and Iwahori-Hecke algebras, Proc. London Math. Soc. (3) 75 (1997) 99-133.
[18] L. Renner, Analog of the Bruhat decomposition for algebraic monoids II. The length function and trichotomy, J. Algebra 175 (1995) 697-714.
[19] L. Solomon, The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field, Geom. Dedicata 36 (1990) 15-49.
[20] L. Solomon, Representations of the rook monoid, J. Algebra 256 (2002) 309-342.
[21] L. Solomon, The Iwahori algebra of $\mathbf{M}_{n}\left(\mathbf{F}_{q}\right)$. A presentation and a representation on tensor space, J. Algebra 273 (2004) 206-226, this issue.
[22] A. Young, On quantitative substitutional analysis VI, Proc. London Math. Soc. 31 (1931) 253-289.

[^0]: E-mail address: halverson@macalester.edu.
 ${ }^{1}$ Research supported in part by National Science Foundation grant DMS-9800851.
 0021-8693/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2003.11.002

