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Abstract

The q-rook monoidIn(q) is a semisimple algebra overC(q) that specializes whenq → 1 to
C[Rn], whereRn is the monoid ofn× n matrices with entries from{0,1} and at most one nonzer
entry in each row and column. Whenq is specialized to a prime power,In(q) is isomorphic to
the Iwahori algebraHC(M,B), whereM = Mn(Fq) is the monoid ofn × n matrices with entries
from a finite field havingq-elements andB ⊆M is the Borel subgroup of invertible upper triangu
matrices. In this paper, we (i) give a new presentation forIn(q) on generators and relations a
determine a set of standard words which form a basis; (ii) explicitly construct a complete
“seminormal” irreducible representations ofIn(q); and (iii) show thatIn(q) is the centralizer of
the quantum general linear groupUqgl(r) acting on the tensor product(W ⊕ V )⊗n, whereV is the
fundamentalUqgl(r) module andW is the trivialUqgl(r) module.
 2004 Elsevier Inc. All rights reserved.
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0. Introduction

N. Iwahori [8] discovered the marvelous structure in the “Hecke algebra”HC(G,B),
whereG= GLn(Fq) is the general linear group of invertiblen× n matrices over the field
Fq with q elements andB is the Borel subgroup of upper triangular matrices. He pro
thatHC(G,B) ∼= C[Sn], whereC[Sn] is the group algebra of the symmetric groupSn,
and he showed thatHC(G,B) has a presentation given on generatorsT1, T2, . . . , Tn−1 and
relations
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(I1) T 2
i = q · 1+ (q − 1)Ti, for 1 � i � n− 1,

(I2) TiTi+1Ti = Ti+1TiTi+1, for 1 � i � n− 2, (0.1)

(I3) TiTj = TjTi, when|i − j | � 2.

At q = 1 this becomes the well-known presentation ofSn due to E.H. Moore [12] in 1897
The generatorsTi specialize to the simple transpositionssi = (i, i + 1) in Sn.

Now letq be an indeterminate, and letHn(q) be the associativeC(q)-algebra generate
by 1, T1, T2, . . . , Tn−1 subject to (I1)–(I3). We refer toHn(q) andHC(G,B) as Iwahori
algebras (see the historical remarks in [19]).

L. Solomon [19] studied the Iwahori algebraHC(M,B), where nowM = Mn(Fq) is
the monoid ofn×n matrices overFq andB is again the group of invertible upper triangu
matrices. He showed thatHC(G,B)∼= C[Rn], whereRn is the rook monoid consisting o
n × n matrices with entries from{0,1} andat most one nonzero entry in each row an
column. The symmetric groupSn lives inside the rook monoidRn as the rankn matrices.
In [21], Solomon defines aC(q)-algebra presented on generators 1, T1, T2, . . . , Tn−1,N

and relations (I1)–(I3), and

(I4) TiN =NTi+1, for 1 � i � n− 2,

(I5) TiN
k = qNk, wheni > n− k,

(I6) NkTi = qNk, wheni < k,

(I7) N(T1T2 · · ·Tn−1)N = qn−1N.

(0.2)

Whenq is a prime power,In(q) specializes toHC(M,B). At q = 1, (0.2) is the presen
tation ofRn found by Solomon in [20]. TheTi specialize tosi and the new generatorN
specializes toν = E1,2 +E2,3 + · · · +En−1,n, whereEi,j is a matrix unit with a 1 in row
i and columnj .

In this paper we study the representation theory ofIn(q). The main results are a
follows:

(1) We find a new presentation ofIn(q) on generatorsT1, . . . , Tn−1,P1, . . . ,Pn and
relations given in (2.1). Whenq → 1, the idempotentPi specializes toεi =Ei+1,i+1+
Ei+2,i+2 + · · · +En,n ∈ Rn for 1 � i � n− 1 (andPn specializes to the zero matrix
This presentation has several advantages:
(a) The action ofPi is simple and natural in the representations that we defin

Sections 3 and 4.
(b) It is a close generalization of the presentation of the rook monoid give

Lipscomb [10], who uses generatorss1, s2, . . . , sn−1, andε1.
(c) The idempotentsPi allow us to define a “basic construction” forIn(q) in [4]

that is analogous to a Jones basic construction. We use this construction in
define a set of elements inIn(q) on which it is sufficient to determine irreducib
characters (i.e., analogs of conjugacy class representatives).
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(d) The idempotentsPi appear in the general theory of reductive monoids.
set Λ = {1,P1, . . . ,Pn} is (up to scalar multiples) the set of cross-sectio
idempotents used by Putcha [16] to naturally representG-orbits in G\M/G.
However, Solomon’s generatorsN = {1,N,N2, . . . ,Nn} also index the thes
orbits. Furthermore,N , and notΛ, behaves well with respect to the length funct
onRn (see [18]), andN arises naturally in Solomon’s definition ofHC(M,B) (see
(1.7)).

Note that a presentation using elements that specialize atq → 1 to πi = In − Ei,i

appears difficult. See Remark 4.4 and the comments in [20].
(2) For each partitionλ with 0 � |λ| � n we define, in Section 3, a vector spaceV λ. The

dimension ofV λ is
(
n
|λ|
)
fλ, wherefλ is the dimension of the irreducibleS|λ| module

indexed byλ. We define a basis ofV λ indexed by standard tableaux of shapeλ and
give explicit actions of the generatorsTi,Pj on the basis. We show that theseV λ

form a complete set of irreducible, pairwise non-isomorphicIn(q)-modules. These
are generalizations of Young’s [22] seminormal representations ofSn and Hoefsmit’s
[7] seminormal representations ofHn(q), and we explicitly realize the decompositio
of V λ into irreducibles for the subalgebraIn−1(q)⊆ In(q). We also produce elemen
Xi,1� i � n, which are analogs of Jucys–Murphy elements and which act diago
on these representations.
Whenq = 1 we obtain seminormal representations ofRn. The representation theo
of Rn was originally determined by Munn [13,14] and furthered by Solomon [20]
analog Young’s natural representation forRn, using rook-monoid analogues of Youn
symmetrizers, is computed by Grood [5].

(3) Solomon [21] defined an action ofIn(q) on tensor space. In Section 4, we use t
action to determine a Schur–Weyl duality betweenIn(q) and the quantum gener
linear groupUqgl(r). Let W andV be the trivial and fundamental representation
Uqgl(r), respectively, and letCn = EndUqgl(r)((W ⊕V )⊗n) be the centralizer of tenso
powers of these representations. We computeR-matricesŘi andĚj in Cn and show
that these are images ofTi andPj , respectively. We show that whenr � n, this is an
isomorphism andIn(q)∼= Cn.
This duality is a generalization of the original Schur–Weyl duality betweenSn and the
general linear groupGL(r,C) on tensor space and of Jimbo’s duality betweenHn(q)

andUqgl(r) onV⊗n. Whenq → 1, this specializes to Solomon’s [20] duality betwe
GL(r,C) andRn on tensor space. In [4] we use the duality betweenIn(q) andUqgl(r)

to compute a Frobenius formula and a Murnaghan–Nakayama rule for the irred
characters ofIn(q).

(4) We can defineIn(q) with parameterq ∈ C∗. In [6], Halverson and Ram prove th
In(q) is semisimple whenever[n]! �= 0, where[n]! = [n][n − 1] · · · [1] and [k] =
qk−1 + qk−2 + · · · + 1. The results in this paper work equally well forIn(q) with
q ∈ C

∗ and[n]! �= 0.

Remark. The results of this paper inspired the work of Halverson and Ram [6], wher
show thatRn(q) is a quotient of the Iwahori Hecke algebraHn(u1, u2;q) of typeBn and
that many of the results in this paper come fromHn(u1, u2;q).
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1. The Iwahori algebra HC(M,B) and the q-rook monoid In(q)

1.1. The rook monoid

The symmetric groupSn of permutations of{1,2, . . . , n} can be identified with the
group ofn× n matrices with entries from{0,1} andprecisely one nonzero entry in eac
row and in each column. The rook monoidRn is the monoid (semigroup with identity) o
n× n matrices with entries from{0,1} andat most one nonzero entry in each row and

each column. There are
(
n
k

)2
k! matrices inRn having rankk, and thus

|Rn| =
n∑

k=0

(
n

k

)2

k!. (1.1)

The rook monoid gets its name from the fact that the elements inRn are in one-to-one
correspondence with placements of non-attacking rooks on ann× n chessboard. The roo
monoid is isomorphic to the monoid consisting of all one-to-one functionsσ whose domain
and range are subsets of{1,2, . . . , n}. The bijection is given by assigningσ(i)= j if the
corresponding matrix has a 1 in the(i, j)-position. This monoid is commonly called th
symmetric inverse semigroup.

Let si ∈ Sn denote the transposition that exchangesi andi + 1. InRn, the identity 1 is
then × n identity matrix andEi,j is the matrix unit with a 1 in the(i, j) position and 0s
elsewhere. Let

ν =E1,2 +E2,3 + · · · +En−1,n. (1.2)

If 0 � r � n, then

νr = νn−r =E1,n−r+1 +E2,n−r+2 + · · · +Er,n (1.3)

has rankr. Let

εi =Ei+1,i+1 +Ei+2,i+2 + · · · +En,n, for 0 � i � n− 1,

πi = In −Ei,i , for 1 � i � n, (1.4)

thenεi has rankn− i andπi has rankn− 1. We agree thatεn is the zero matrix, and w
haveπ1 = ε1.

A reduced word forw ∈ Sn is an expressionw = si1si2 · · · sik with k minimal. The length
of w is ((w)= k and is independent of the choice of reduced word. Solomon [19] de
a length function for the rook monoid: ifσ ∈ Rn with rank(σ )= r, then

((σ )= min
{
((w)+ ((w′)

∣∣w,w′ ∈ Sn andσ =wνrw
′}. (1.5)
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1.2. The Iwahori algebra HC(M,B)

Let q be a prime power and letM = Mn(Fq) be the monoid of alln × n matrices
overFq . LetG= GLn(Fq)⊆M be the general linear group of invertible matrices, and
B ⊆ G be the Borel subgroup of upper triangular matrices. Renner [18] proves that
is a disjoint union

M =
⊔
σ∈Rn

BσB,

and thatBσB = Bσ ′B implies thatσ = σ ′.
Define the idempotent

ε = 1

|B|
∑
b∈B

b ∈ C[M].

Following [19], define the Iwahori algebra

H =HC(M,B)= εC[M]ε.

If we considerC[M] acting on the left idealC[M]ε by left multiplication, thenH is
the centralizer of this action; it acts by right multiplication onC[M]ε. Okniński and
Putcha [15] proved thatC[M] is semisimple, and so it follows from general doub
centralizer results thatH is semisimple.

The elements

Tσ = q((σ )εσε, σ ∈ Rn,

form a basis forH. Solomon [19] proved that the elementsTs1, . . . , Tsn−1, Tν generateH
and

Tsi Tσ =


qTσ , if ((siσ )= ((σ ),

Tsiσ , if ((siσ )= ((σ )+ 1,
qTsiσ + (q − 1)Tσ , if ((siσ )= ((σ )− 1,

Tσ Tsi =


qTσ , if ((σsi)= ((σ ),

Tσsi , if ((σsi)= ((σ )+ 1,
qTσsi + (q − 1)Tσ , if ((σsi)= ((σ )− 1,

(1.6)

and

TνTσ = q((σ )−((νσ )Tνσ , Tσ Tν = q((σ )−((σν)Tσν (1.7)

for all σ ∈Rn.
Using (1.6), it is easy to verify the following lemma.
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Lemma 1.1 (Iwahori [8]).

(1) T 2
si

= (q − 1)Tsi + q · 1, 1 � i � n− 1,
(2) Tsi Tsi+1Tsi = Tsi+1Tsi Tsi+1, 1 � i � n− 2,
(3) Tsi Tsj = Tsi Tsj , |i − j |> 1.

In [21], Solomon proves thatTs1, Ts2, . . . , Tsn−1, Tν generateHC(M,B) and in [19] he
extended Iwahori’s relations to describe the interaction betweenTsi andTν :

Lemma 1.2 (Solomon [19]).

(1) Tsi Tν = TνTsi+1, 1 � i � n− 2,
(2) Tsi T

k
ν = qT k

ν , i > n− k,
(3) T k

ν Tsi = qT k
ν , i < k,

(4) Tν(Ts1Ts2 · · ·Tsn−1)Tν = qn−1Tν, |i − j |> 1.

1.3. The q-rook monoid

Let q be an indeterminate. For integersn� 2, defineIn(q) to be the associativeC(q)-
algebra with 1 generated byT1, . . . , Tn−1 andN subject to the relations

(I1) T 2
i = q · 1+ (q − 1)Ti, for 1 � i � n− 1,

(I2) TiTi+1Ti = Ti+1TiTi+1, for 1 � i � n− 2,

(I3) TiTj = TjTi, when|i − j | � 2.

(I4) TiN =NTi+1, for 1 � i � n− 2, (1.8)

(I5) TiN
k = qNk, for i > n− k,

(I6) NkTi = qNk, wheni < k,

(I7) N(T1T2 · · ·Tn−1)N = qn−1N.

Let I0(q) = C(q), and letI1(q) be theC(q)-span of 1 andN subject toN2 = N . We
see from Lemmas 1.1 and 1.2 that, whenq is specialized to a prime power, we have
surjection,In(q)→ HC(M,B) given byTi → Tsi andN → Tν . In [21], Solomon finds a
set of|Rn| words in the generators ofIn(q) which spanIn(q). Thus,

Theorem 1.3 (Solomon [21]).The C(q)-algebra In(q) is semisimple of dimension |Rn|,
and when q is specialized to a prime power, we have In(q)∼=HC(M,B).

Now, working inIn(q), we define

Tγn = T1T2 · · ·Tn−1, Pj = (
q1−n

)j
T j
γ Nj , for 1 � j � n. (1.9)

n
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Using (I2) one can easily verify the well-known fact that

TγnTi = Ti+1Tγn, 1 � i � n− 2. (1.10)

Furthermore,N = qn−1T −1
γn

P1, soT1, . . . , Tn−1 andP1 generateIn(q), and we have the
following lemma.

Lemma 1.4.

(1) TiPj = PjTi = qPj , 1 � i < j � n,
(2) TiPj = PjTi, 1� j < i � n,
(3) P 2

j = Pj , 1 � i � n,
(4) Pj+1 = qPjT

−1
i Pj , 2 � i � n.

Proof. Let x = q1−n. For part (1), assume that 1� i < j � n. We use Lemma 1.1(1) t
expandT 2

1 in the following calculation:

TiPj = xjTiT
j
γn
Nj

= xjT i−1
γn

T1T
j−(i−1)
γn

Nj by (1.8)

= xjT i−1
γn

(
T 2

1 T2 · · ·Tn−1
)
T j−i
γn

Nj

= (q − 1)xjT i−1
γn

(T1 · · ·Tn−1)T
j−i
γn

Nj + qxjT i−1
γn

(T2 · · ·Tn−1)T
j−i
γn

Nj

= (q − 1)Pj + qxjT i
γn
(T1 · · ·Tn−2)T

j−i−1
γn

Nj by (1.8)

= (q − 1)Pj + xjT i
γn
(T1 · · ·Tn−2)T

j−i−1
γn

Tn−j+iN
j by Lemma 1.2(2)

= (q − 1)Pj + xjT i
γn
(T1 · · ·Tn−2Tn−1)T

j−i−1
γn

Nj by (1.8)

= (q − 1)Pj + Pj

= qPj .

On the other hand, by Lemma 1.2(1) and 1.2(2), we have

PjTi = xjT j
γn
NjTi = xjT j

γn
Nj−(i−1)T1N

i−1 = qxjT j
γn
Nj−(i−1)Ni−1 = qPj .

For part (2), ifj < i, then using Lemma 1.2(1) and (1.8), we have

PjTi = xjT j
γn
NjTi = xjT j

γn
Ti−jN

j = xjTiT
j
γn
Nj = TiPj .

Part (3) follows from Lemma 1.2(4):

P 2
i = x2i T i

γn

(
NiT i

γn
Ni

) = xi T i
γn
Ni = Pi.

For (4), we have
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qPiT
−1
i Pi = qiPi

(
T −1
i T −1

i−1 · · ·T −1
1

)
Pi by part (1)

= qix2iT i
γn
Ni

(
T −1
i T −1

i−1 · · ·T −1
1

)
T i
γn
Ni

= qix2iT i
γn
Ni(Ti+1Ti+2 · · ·Tn−1)T

i−1
γn

Ni

= qix2iT i
γn
(T1T2 · · ·Tn−1−i )N

iT i−1
γn

Ni by Lemma 1.2(1)

= qixi+1T i
γn
(T1T2 · · ·Tn−1−i )N

i+1 by Lemma 1.2(4)

= xi+1T i+1
γn

Ni+1 = Pi+1 by part (1). ✷
Lemma 1.5. Let q be a prime power. Under the isomorphism In(q)→ HC(M,B) given
by Ti → Tsi and N → Tν , we have Pi → qj (j−n)Tεi .

Proof. We use induction to prove the following equivalent condition (see (1.9)):

T j
γn
T j
ν = qj (j−1)Tεj .

Note thatγnν = 1, ((γn) = n − 1, and((εj ) = j (n − j). Then the casej = 1 follows
immediately from (1.7):TγnTν = q((γn)−((ε1)Tε1 = Tε1.

Now let j > 1, and define

σ = (sj sj+1 · · · sn−1)εj = εj (sj sj+1 · · · sn−1),

so thatσν = εj and((σ )= ((εj−1)+ n− j = j (n− j)+ j − 1. Thus, by induction,

T j
γn
T j
ν = q(j−1)(j−2)TγnTεj−1Tν = q(j−1)(j−2)(Ts1 · · ·Tsj−1)(Tsj · · ·Tsn−1)Tεj−1Tν

= q(j−1)(j−2)+((σ )−((εj)(Ts1 · · ·Tsj−1)Tεj Tν

= q(j−1)2(Ts1 · · ·Tsj−1)Tεj Tν.

Now by (1.6),Tsi Tεj = qTεj for i < j , and the result follows. ✷

2. A new presentation for the q-rook monoid

Let q be an indeterminate. For integersn� 2, defineAn(q) to be the associativeC(q)-
algebra with 1 generated byT1, . . . , Tn−1 andP1, . . . ,Pn subject to the relations

(A1) T 2
i = q · 1+ (q − 1)Ti, for 1 � i � n− 1,

(A2) TiTi+1Ti = Ti+1TiTi+1, for 1 � i � n− 2,

(A3) TiTj = TjTi, when|i − j | � 2,

(A4) TiPj = PjTi = qPj , for 1 � i < j � n, (2.1)

(A5) TiPj = PjTi, for 1� j < i � n− 1,
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(A6) P 2
i = Pi, for 1 � i � n,

(A7) Pi+1 = qPiT
−1
i Pi , for 2 � i � n.

Let A0(q)= C(q), and letA1(q) be theC(q)-span of 1 andP1 subject toP 2
1 = P1. From

(A1) we have

T −1
i = (

q−1 − 1
) · 1+ q−1Ti. (2.2)

It follows that (A7) is equivalent to

Pi+1 = PiTiPi − (q − 1)Pi. (2.3)

From Lemmas 1.1 and 1.4, we see that theTi and thePi satisfy the same relation
in bothIn(q) andAn(q). Furthermore,T1, . . . , Tn−1 andP1 generateAn(q), so there is
a surjection fromAn(q) to In(q). In this section, we will show that they have the sa
dimension and are isomorphic. For this reason, we choose to use the same notationTi and
Pi in both algebras.

For w ∈ Sn with reduced expressionw = si1si2 · · · sik defineTw = Ti1Ti2 · · ·Ti( . Since
theTi satisfy the braid relations (A2) and (A3),Tw is independent of the choice of reduc
word for w. Furthermore, theTi satisfy the same relations as they do inHn(q), so the
subalgebra spanned byT1, . . . , Tn−1 is a homomorphic image ofHn(q) and theTw,w ∈ Sn
span this subalgebra. In Section 3 we will show that this subalgebra is isomorphic toHn(q).

If K ⊆ {1,2, . . . , n} define the subgroupSK ⊆ Sn to be the group of permutations o
the elements ofK. For 1� i � n, defineTi,i = 1, and define

Ti,j = Tj−1Tj−2 · · ·Ti, for 1 � i < j � n.

LetA= {a1, a2, . . . , ak} ⊆ {1,2, . . . , n}, and assume thata1 < a2 < · · ·< ak. Define

TA = T1,a1T2,a2 · · ·Tk,ak . (2.4)

Now for 0� k � n, letΩk be the following set of triples,

Ωk =
{
(A,B,w)

∣∣∣∣∣
A,B ⊆ {1,2, . . . , n},
|A| = |B| = k,

w ∈ S{k+1,...,n},

}
, (2.5)

and let

Ω =
n⋃

k=0

Ωk. (2.6)

Define the followingstandard words

T(A,B,w) = TATwPkT
−1, (A,B,w) ∈Ωk. (2.7)
B
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Note thatTwPk = PkTw by (A5). Furthermore, there are
(
n
k

)2 ways to chooseA andB, so

|Ωk| =
(
n

k

)2

(n− k)! and |Ω | =
n∑

k=0

(
n

k

)2

(n− k)! = |Rn|. (2.8)

Theorem 2.1. The standard words {T(A,B,w) | (A,B,w) ∈ Ω} span An(q). In particular,
dim(An(q))� |Rn|.

Proof. From (A7) we know thatTi,1 � i � n− 1, andP1 generateAn(q). Furthermore
Ti and P1 are standard words. It suffices to show that for all(A,B,w) ∈ Ω , we can
write T(A,B,w)Ti andT(A,B,w)P1 as a linear combination of standard words. SinceTi =
qT −1

i + (q−1) ·1, it is equivalent to show thatT(A,B,w)T
−1
i andT(A,B,w)P1 can be written

as linear combinations of standard words.

Case 1. T(A,B,w)T
−1
i is a linear combination of standard words.

Supposei, i + 1 ∈B. We use (A2) and (A3) to verify that

(
T −1
j+1,i+1T

−1
j,i

)
T −1
i = T −1

j

(
T −1
j+1,i+1T

−1
j,i

)
.

Then sincei, i + 1 ∈ B, we can writeT −1
B = XT −1

j+1,i+1T
−1
j,i Y so thatX commutes with

T −1
j andY commutes withT −1

i . Thus,

PkT
−1
B = PkXT

−1
j+1,i+1T

−1
j,i T

−1
i Y = PkXT

−1
j T −1

j+1,i+1T
−1
j,i Y = PkT

−1
j T −1

B = q−1PkT
−1
B

proving the result in this case.
Now supposei, i + 1 ∈ Bc . In this caseTB = XY whereY consists of elements of th

form T −1
(,j with j < i andX consists of elements of the formT −1

(,j with j > i. It follows

thatT −1
i commutes withY , andX = T −1

t,jt
T −1
t−1,jt−1

· · ·T −1
(,j1

with i < j1 < j2 < · · ·< jt and

i � (. If ( � i < j − 2, thenT −1
k,j T

−1
i = T −1

i+1T
−1
k,j . ThusTwT

−1
B T −1

i = TwT
−1
j T −1

B with

j > k. We now can expressTwT
−1
j as a linear combination ofTw′ with w′ ∈ S{k+1,...,n}.

Now supposei ∈ B, i + 1 ∈ Bc. We writeTB =XT −1
(,i Y whereY consists of element

of the formT −1
s,j with j < i andX consists of elements of the formT −1

t,j with j > i. It
follows that

TBT
−1
i =XT −1

(,i T
−1
i Y =XT −1

(,i+1Y = T −1
B ′ ,

whereB ′ is the same set asB except withi replaced byi + 1.
Finally, let i ∈ B, i + 1 ∈ Bc . We write TB = XT −1

(,i+1Y where whereY consists of

elements of the formT −1
s,j with j < i andX consists of elements of the formT −1

t,j with
j > i. It follows that
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TBT
−1
i =XT −1

(,i+1T
−1
i Y = (

q−1 − 1
)
XT −1

(,i+1Y + q−1XT −1
(,i Y

= (
q−1 − 1

)
T −1
B + q−1T −1

B ′ ,

whereB ′ is the same set asB except withi + 1 replaced byi.

Case 2. T(A,B,w)P1 is a linear combination of standard words.
Suppose 1∈ B. In this caseT −1

B contains onlyT −1
i with i > 1, so by (A5),T −1

B

commutes withP1. Thus,PkT
−1
B P1 = PkP1T

−1
B = PkT

−1
B .

Now suppose 1∈Bc andB �= ∅. We have

PiT
−1
i,b Pi = Pi

(
T −1
i · · ·T −1

b−1

)
Pi = PiT

−1
i Pi

(
T −1
i+1 · · ·T −1

b−1

) = q−1Pi+1T
−1
i+1,b. (∗)

In the following calculation, we use(∗) and fact thatPk = PkPi for i � k (see (A6) and
(A7)):

PkT
−1
B P1 = PkP1T

−1
B P1 = Pk

(
T −1
k,bk

· · ·T −1
2,b2

)(
P1T

−1
1,b1

P1
)

= q−1Pk
(
T −1
k,bk

· · ·T −1
2,b2

)
P2T

−1
2,b1

= q−1PkP2
(
T −1
k,bk

· · ·T −1
2,b2

)
P2T

−1
2,b1

= q−1Pk
(
T −1
k,bk

· · ·T −1
3,b3

)(
P2T

−1
2,b2

P2
)
T −1

2,b1

= q−2Pk
(
T −1
k,bk

· · ·T −1
3,b3

)
P3T

−1
3,b2

T −1
2,b1

...

= q−kPk+1
(
T −1
k+1,bk

· · ·T −1
3,b2

T −1
2,b1

) = q−kPk+1T
−1
B ′ ,

whereB ′ = {1, b1, . . . , bk}.
Finally, supposeB = ∅. We prove that

TwP1 = (TkTk−1 · · ·T1)P1Tw′ , with w′ ∈ S{2,...,n}. (∗∗)

This finishes the proof sinceTwP1 is a standard word withA= {k + 1} andB = {1}.
We prove (∗∗) by induction on((w). If ((w)= 1, thenTiP1 is a standard word. Ifi = 1

thenT1P1 = TAP1T
−1
B whereA= {2} andB = {1}. If i > 1, thenTiP1 = TAP1TwTB with

Tw = Ti , A= {1}, andB = {1}.
If ((w) = t > 1, then letTw = Ti1Ti2 · · ·Tit . Supposeit > 1. Then we can appl

induction

TwP1 = (Ti1 · · ·Tit−1)P1Tit = (TkTk−1 · · ·T1)P1TwTit .

We then re-expressTwTit as a linear combination ofTw′ with w′ ∈ S{2,...,n}.
If it = 1, then there exists anr � 1 so thatTwP1 = Ti1 · · ·TjTrTr−1 · · ·T1P1 and

j �= r + 1. We know thatj �= r, or w is not minimal. If j > r + 1, thenTj commutes
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with all the elements to its right, and we can apply induction as in the previous ca
j < r + 1, then

TjTrTr−1 · · ·T1P1 = TrTr−1 · · ·T1P1Tj+1

and we can apply induction.✷
We have a surjection fromAn(q) to In(q) and we have a set of|Rn| words which span

An(q), so dim(In(q)) � dim(An(q)) � |Rn|. Solomon [21] has proved the lower bou
dim(In(q))= |Rn|. We also will obtain this lower bound in the next section by produc
sufficiently many irreducible representations. Thus,

Corollary 2.2. An(q)∼= In(q).

3. Irreducible representations for In(q)

We use the notation for partitions and tableaux found in [11]. In particular, we letλ � k

denote the fact thatλ is a partition of the nonnegative integerk, and we write|λ| = k. The
length((λ) of λ is the number of nonzero parts ofλ. We identifyλ with its Young diagram
Thus,

λ= (5,5,3,1)= , ((λ)= 4, and |λ| = 14.

For integersn� 0 define

Λn = {λ � k | 0 � k � n}. (3.1)

Forλ ∈Λn, ann-standard tableau of shape λ is a filling of the diagram ofλ with numbers
from {1,2, . . . , n} such that

(1) each number appears at most 1 time,
(2) the entries in each column strictly increase from top to bottom, and
(3) the entries in each row strictly increase from left to right.

We letT λ
n denote the set of standard tableaux of shapeλ. If λ � k, the number ofk-standard

tableaux of shapeλ is given by

fλ = n!∏
b∈λ hb

, (3.2)

where the product is over all the boxesb in λ, andhb is the hook length ofb given by
hb = λi + λ′

j − i − j + 1 if b is in position(i, j) andλ′ is the conjugate (transpose

partition. If λ � k andn � k then there are
(
n
k

)
ways to choose the entries of a tableau

shapeλ so the number ofn-standard tableaux of shapeλ is
(
n
)
fλ.
k
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The symmetric groupSn acts on tableaux by permuting their entries. IfL ∈ T λ
n , then

siL is the tableau that is obtained fromL by replacingi (if i ∈ L) by i + 1 and replacing
i+ 1 (if i+ 1 ∈L) by i. Note thatsiL may be non-standard, since condition (2) or (3) m
fail, andsiL= L if and only if i, i + 1 /∈ L.

Let vL, L ∈ T λ
n , denote a set of vectors indexed by then-standard tableaux of shapeλ.

Let

V λ = C
(
q1/2)-span

{
vL

∣∣L ∈ T λ
n

}
(3.3)

In this way the symbolsvL,L ∈ T λ
n are a basis of the vector spaceV λ. It follows that if

λ � k, then

dim
(
V λ

) = #(n-standard tableaux of shapeλ)=
(
n

k

)
fλ. (3.4)

If b is a box in position(i, j) of λ, then thecontent of b is

ct(b)= j − i. (3.5)

LetL ∈ T λ
n . If i, i+ 1 ∈L, then letL(i) andL(i + 1) denote the box inL containingi and

i + 1, respectively. Define

aL(i)= q − 1

1− qct(L(i))−ct(L(i+1))
. (3.6)

Define an action ofTi, 1 � i � n− 1, onV λ as follows:

TivL =




aL(i) vL + (
1+ aL(i)

)
vL′, if i, i + 1 ∈L,

(q − 1) vL + q1/2vsiL, if i /∈ L, i + 1∈ L,

q1/2vsiL, if i ∈ L, i + 1 /∈ L,

q vL, if i, i + 1 /∈L,

(3.7)

where

vL′ =
{
vsiL, if siL is n-standard,
0, otherwise.

Define an action ofPi, 1 � i � n, onV λ by

Pi vL =
{
vL, if 1,2, . . . , i /∈L,

0, otherwise.
(3.8)

Remark 3.1. If i, i + 1 ∈ L then the action ofTi on vL is the same as the action
Hoefsmit’s [7] seminormal representation ofHn(q).



240 T. Halverson / Journal of Algebra 273 (2004) 227–251

t

.

e

Theorem 3.2. For each λ ∈ Λn, the actions of the generators of In(q) on the vector
space V λ afford an irreducible representation of In(q). Moreover, the set V λ, λ ∈ Λn,
is a complete set of irreducible, pairwise non-isomorphic In(q)-modules.

Proof. First we check relations (A1)–(A7) in the presentation (2.1).
(A1) Let L be a standard tableaux. ThenTi acts on the subspace spanned byvL

and vL′ . Let M be the matrix ofTi with respect to{vL, vL′ }. If i, i + 1 ∈ L, then this
is the same matrix as in the seminormal action ofHn(q), so we know from [7] tha
M2 = (q − 1)M + qI2, whereI2 is the 2× 2 identity matrix. If i /∈ L and i + 1 ∈ L,
then

M =
(
q − 1 q1/2

q1/2 0

)
.

Since det(M) = −q and trace(M) = q − 1, we haveM2 = (q − 1)M + qI2. The case
i ∈L, i + 1 /∈L is proved by exchanging the rows and columns ofM in the previous case
If i, i + 1 /∈ L, thenM = diag(q, q) which trivially satisfiesM2 = (q − 1)M + qI2.

(A3) We see fromTivL = avL + bvsiL that the action ofTi affects only positionsi and
i + 1 in L. Since|i − j | > 1, the sets{i, i + 1} and {j, j + 1} are disjoint and thus th
actions ofTi andTj commute.

(A4)–(A5) If i �= j , then 1, . . . , j /∈ L if and only if 1, . . . , j /∈ siL. Thus,i �= j and
1, . . . , j /∈ L imply thatTiPjvL andPjTivL are both equal toTivL. If i �= j and it is not
the case that 1, . . . , j /∈ L, thenTiPj vL = 0 andPjTivL = 0. If i < j , and 1, . . . , j /∈ L,
thenTivL = qvL, soTiPj acts the same asqPj .

(A6) is immediate from (3.8).
(A7) We verify the equivalent condition (2.3):Pj+1 = PjTjPj + (1− q)Pj . If it is not

the case that 1, . . . , j /∈L, then bothPjvL = 0 andPj+1vL = 0, and the result holds.
If 1, . . . , j + 1 /∈L, thenPjvL = Pj+1vL = vL, andTjvL = qvL. Thus,

PjTjPjvL + (1− q)PjvL = qvL + (1− q)vL = vL = Pj+1vL.

If 1, . . . , j /∈ L andj + 1 ∈ L, thenPjvL = vL, PjvsjL = 0, Pj+1vL = 0, andTjvL =
(q − 1)vL + q1/2vsjL. Thus,

PjTjPjvL + (1− q)PjvL = (q − 1)vL + (1− q)vL = 0= Pj+1vL.

(A2) depends on the positions ofi, i + 1, and i + 2. Wheni, i + 1, i + 2 ∈ L, we
know that the relation holds, since the action is exactly the same asHn(q) (see [7]). If
i, i + 1, i + 2 /∈ L, then bothTi andTi+1 act by multiplication byq , and (A2) holds. We
then consider, separately, the cases when one ofi, i + 1, i + 2 is in T and when two of
i, i + 1, i + 2 are inT .

LetLi be ann-standard tableau withi ∈Li andi + 1, i + 2 /∈ Li . LetLi+1 = siLi and
Li+2 = si+1Li+1. Note thatLi+1 containsi + 1 and noti or i + 2 andLi+2 containsi + 2
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and noti or i+1. Fork = i, i+1 letMk denote the matrix ofTk acting on{Li,Li+1,Li+2}.
Then

Mi =
( 0 q1/2 0
q1/2 q − 1 0

0 0 q

)
, Mi+1 =

(
q 0 0
0 0 q1/2

0 q1/2 q − 1

)
.

It is a straight-forward calculation to check thatMiMi+1Mi =Mi+1MiMi+1.
Suppose thati, i + 1 are in the same row (or column) in ann-standard tableauLa and

that i + 2 /∈ La . Let Lb = si+1La andTc = siLb. Note thati, i + 2 are in the same row
(column) inLb andi + 1, i + 2 are in the same row (column) inTc. Fork = i, i + 1 letMk

denote the matrix ofTk acting on{La,Lb,Lc}. Then

Mi =
(
x 0 0
0 0 q1/2

0 q1/2 q − 1

)
, Mi+1 =

( 0 q1/2 0
q1/2 q − 1 0

0 0 x

)
,

wherex = q if i, i + 1 are in the same row ofTa andx = −1 if i, i + 1 are in the same
column ofLa . Again it is straight-forward to check thatMiMi+1Mi =Mi+1MiMi+1.

Finally, let i, i + 1 ∈ La with i, i + 1 not adjacent, and letLb = siLa , Lc = si+1Lb,
Ld = siLc , Le = si+1La , andLf = siLe . Then ifα is the box containingi in La andβ is
the box containingi + 1 inLb, we have

La hasi in α andi + 1 in β, Lb hasi + 1 in α andi in β,

Lc hasi + 2 in α andi in β, Ld hasi + 2 in α andi + 1 in β,

Le hasi in α andi + 2 in β, Lf hasi + 1 in α andi + 2 in β.

For k = i, i + 1 letMk denote the matrix ofTk acting on{La,Lb,Lc,Ld,Le,Lf }. Then

Mi =




δ(k) 1+ δ(k) 0 0 0 0
1+ δ(−k) δ(−k) 0 0 0 0

0 0 0 q1/2 0 0
0 0 q1/2 q − 1 0 0
0 0 0 0 0 q1/2

0 0 0 0 q1/2 q − 1




and

Mi+1 =




0 0 0 0 q1/2 0
0 0 q1/2 0 0 0
0 q1/2 q − 1 0 0 0
0 0 0 δ(−k) 0 1+ δ(−k)

q1/2 0 0 0 q − 1 0
0 0 0 1+ δ(k) 0 δ(k)


 ,

wherek = ct(α) − ct(β) andδ(k) = (q − 1)/(1 − qk). After multiplying outMiMi+1Mi

andMi+1MiMi+1, the only non-trivial relations to check are
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(1) δ(k)+ δ(−k)= q − 1, and
(2) q + (q − 1)δ(k)= δ(k)2 + [1+ δ(k)][1+ δ(−k)].

They both follow quite easily from the relationδ(−k)= −qkδ(k).
Let Bk be the subalgebra ofIn(q) spanned byT1, . . . , Tk−1,P1, . . . ,Pk so thatB1 ⊆

B2 ⊆ · · · ⊆ Bn = In(q). Clearly, there is a surjection fromIk(q) to Bk . We will see that
they are isomorphic by producing sufficiently many irreducible representations.

Let 1� k � n andλ ∈Λk ⊆Λn. ThenV λ is spanned byvL, L ∈ T λ
n , and is a module

for the subalgebraBk . LetV λ,k ⊆ V λ be the subspace spanned byvL, L ∈ T λ
k . From (3.7)

and (3.8), we see thatV λ,k is aBk-submodule of theBn-moduleV λ. We use induction on
k to prove that the modulesV λ,k, λ ∈Λk , are irreducible modules forBk . In particular, this
shows that the modulesV λ = V λ,n, λ ∈Λn, are irreducible forIn(q)= Bn.

If k = 1, then the result is true since the modules, which correspond toλ = ∅ and
λ= (1), are 1-dimensional. Now, assume thatk > 1 and that the property holds forBk−1.
Fix λ ∈Λk , and consider the restriction ofV λ,k toBk−1. We partition the standard tablea
T λ
k into subsets as follows. Letc1, . . . , c( denote the “corners” of the partitionλ. These are

boxesci in λ such thatλ contains no box to the right or belowci (i.e., these are the possib
locations ofk in L). Define

T λ
k (0)= {

L ∈ T λ
k

∣∣ n /∈L
}

and T λ
k (i)= {

L ∈ T λ
k

∣∣ n ∈ ci
}
, 1 � i � k.

If |λ| = k, thenL must containk. In this case we omit the possibility thati = 0. Now define

V
λ,k
i = C

(
q1/2)-span

{
vL

∣∣ L ∈ T λ
k (i)

}
, 0� i � k.

By the definition of the action ofTi, 1� i � k−2, andPj ,1 � j � k−1, we see thatV λ,k
i

is a module forBk−1. In factV λ,k
i

∼= V µ,k−1, whereµ is obtained fromλ by removingci ,

for 1 � i � n, andµ= λ wheni = 0. The induction hypothesis shows thatV
λ,k
i , 0 � i � k,

is a set of irreducible, non-isomorphicBk−1-modules (again omiti = 0 if |λ| = k).
SupposeW ⊆ V λ,k is a nonzeroBk-submodule ofV λ,k . If we considerW to be a

Bk−1-module, thenW contains some irreducible componentV
λ,k
i . For eachj /∈ {i,0},

we can chooseL ∈ T λ,k(i) with k − 1 in cornercj . Thenk andk − 1 are not adjacen
in L, so Tk−1vL = avL + bvsk−1L with b �= 0. Thusvsk−1L ∈ W and sk−1L ∈ T λ

k (j).
Furthermore, if|λ| < k, then we can findL ∈ T λ,k(i) so thatL does not containk − 1.
ThenTk−1vL = (q − 1)vL + q1/2vsk−1L. Thusvsk−1L ∈ W andsk−1L ∈ T λ

k (0). This tells

us thatV λ,k
j ⊆W for eachj and soW = V λ,k , proving thatV λ,k is irreducible.

If λ �= µ ∈ Λk , thenV λ,k andV µ,k are non-isomorphic, because they have differ
decompositions asBk−1-modules.

The fact thatV λ,k, λ ∈ Λk , is a complete set of irreducibleBk-representations come
from summing the squared dimensions of these representations and comparing w
dimension ofBk . Indeed,

k∑∑(
k

(

)2

fλ =
k∑(

k

(

)2∑
fλ =

k∑(
k

(

)2

(!,

(=0 λ�( (=0 λ�( (=0
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where
∑

λ�( fλ = (! comes from the representation theory ofS(. We know thatBk

is a homomorphic image ofIk(q) and now we have shown that they have the sa
dimension. Thus,Bk

∼= Ik(q) and theV λ,k form a complete set of irreducibleBk-modules.
In particular,V λ, λ ∈Λn, is a complete set of irreducibleIn(q)-modules. ✷

The following is a corollary of the proof of Theorem 3.2.

Corollary 3.3. The subalgebra of In(q) spanned by T1, . . . , Tk−1,P1, . . . ,Pk is isomor-
phic to Ik(q). Furthermore, for λ ∈Λn, the decomposition of V λ into irreducible modules
for In−1(q) is given by

V λ ∼=
⊕

µ∈λ−,=
V µ,

where λ−,= is the set of all partitions µ ∈Λn−1 such that µ equals λ or µ is obtained from
λ by removing a box.

From Corollary 3.3 we see that the Bratteli diagram ofIn(q) is given in Fig. 1. The
vertices on rown are given byΛn and the edges are determined by restriction ru
from In(q) to In−1(q). The basis ofV λ partitions into subsets which explicitly realiz
the decomposition shown in Corollary 3.3 and Fig. 1.

Corollary 3.4. The subalgebra of In(q) spanned by T1, . . . , Tn−1 is isomorphic to Hn(q).

Proof. Let Cn be the subalgebra ofIn(q) spanned byT1, T2, . . . , Tk−1. Since theTi
satisfy relations (A1)–(A3), we see thatCn is a homomorphic image ofHn(q). The

Fig. 1. Bratteli diagram forIn(q).
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set of In(q)-representationsV λ,λ � n, are representations for the subalgebraCn and
thus are representations ofHn(q). Furthermore, they are isomorphic to Hoefsmit’s
seminormal representations ofHn(q), which are a complete set of irreducibleHn(q)-
representations. Since these representations factor throughCn, it follows that Cn and
Hn(q) are isomorphic. ✷
3.1. Jucys–Murphy elements

Hoefsmit [7] defines special elements inHn(q) which act diagonally on the seminorm
representations. The analogous elements inSn later became known as Jucys–Murp
elements (see [17]). We now define analogous elements inIn(q).

For 1� i � n, define

Xi = q−(i−1)(Ti−1Ti−2 · · ·T1)(1− P1)(T1T2 · · ·Ti−1),

so thatXi = q−1Ti−1Xi−1Ti−1, for i � 2.

Proposition 3.5. For 1 � i � n we have

XivL =
{
qct(L(i))vL, if i ∈ L,

0, if i /∈ L,

Proof. We use induction oni. If i = 1, thenX1 = P1 and the result holds by (3.8). No
we assume that the result is true forXi and prove it forXi+1 by cases determined by th
position ofi, i + 1 in L.

First assumei + 1 /∈L. If i /∈L, then

Xi+1vL = q−1TiXiTivL = TiXivL = 0.

If i ∈L, then

Xi+1vL = q−1TiXiTivL = q−1/2TiXivsiL = 0.

Now assumei + 1 ∈ L. If i /∈L, then

Xi+1vL = q−1TiXiTivL = q−1(q − 1)TiXivL + q−1/2TiXivsiL

= 0+ q−1/2qct(L(i+1))TivsiL = qct(L(i+1))vL.

Finally, let i, i + 1 ∈ L. As in the proof of Theorem 3.2, letd = ct(L(i))− ct(L(i + 1))
and letδ(d)= (q − 1)/(1− qd). Then

Xi+1vL = q−1TiXiTivL = q−1TiXi

[
δ(d)vL + (

1+ δ(d)
)
vL′

]
= q−1Ti

[
δ(d)qct(L(i))vL + (

1+ δ(d)
)
qct(L(i+1))vL′

]
= q−1

[
δ(d)qct(L(i))(δ(d)vL + (

1+ δ(d)
)
vL′

)



T. Halverson / Journal of Algebra 273 (2004) 227–251 245

ra
+ (
1+ δ(d)

)
qct(L(i+1))(δ(−d)vL′ + (

1+ δ(−d)
)
vL

)]
=AvL +BvL′ ,

where

A= q−1[δ(d)2qct(L(i)) + (
1+ δ(d)

)(
1+ δ(−d)

)
qct(L(i+1))] and

B = q−1(1+ δ(d)
)[
δ(d)qct(L(i)) + δ(−d)qct(L(i+1))].

Now,B = 0 follows quite easily fromδ(−d)= −qdδ(d) and

A= q−1[δ(d)2qct(L(i)) + (
1+ δ(d)

)(
1+ δ(−d)

)
qct(L(i+1))]

= q−1qct(L(i+1))[δ(d)2qd + (
1+ δ(d)

)(
1+ δ(−d)

)]
= q−1qct(L(i+1))[δ(d)2qd + q − qdδ(d)2

]
= qct(L(i+1)). ✷

4. Schur–Weyl duality

In this section we show thatIn(q) and the quantum general linear groupUqgl(r) are in
Schur–Weyl duality on tensor space.

4.1. The quantum general linear group

Following Jimbo [9], we define the quantumUqgl(r) corresponding to the Lie algeb
gl(r). The algebra we define here is the same as in [9], except with his parameterq replaced
by q1/2. LetUqgl(r) be theC(q1/4)-algebra given by generators

ei, fi (1 � i < r), and q±εi/2 (1� i � n),

with relations

qεi/2qεj/2 = qεj/2qεi/2, qεi/2q−εi/2 = q−εi/2qεi/2 = 1,

qεi/2ejq
−εi/2 =



q−1/2ej , if j = i − 1,
q1/2ej , if j = i,
ej , otherwise,

qεi/2fj q
−εi/2 =



q1/2fj , if j = i − 1,
q−1/2fj , if j = i,
fj , otherwise,

eifj − fj ei = δij
q1/2(εi−εi+1) − q−1/2(εi−εi+1)

1/2 −1/2
,

q − q
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by
ei±1e
2
i − (

q1/2 + q−1/2)eiei±1ei + e2
i ei±1 = 0,

fi±1f
2
i − (

q1/2 + q−1/2)fifi±1fi + f 2
i fi±1 = 0,

eiej = ej ei, fifj = fjfi, if |i − j |> 1.

Let

ti = qεi/4 (1 � i � r), ki = ti t
−1
i+1 (1 � i � r − 1).

There is a Hopf algebra structure (see [9, p. 248]) onUqgl(r) with comultiplication∆ and
counitu given by

∆(ei)= ei ⊗ k−1
i + ki ⊗ ei, u(ei)= 0,

∆(fi)= fi ⊗ k−1
i + ki ⊗ fi, u(fi)= 0,

∆(ti)= ti ⊗ ti , u(ti)= 1.

(4.1)

The “fundamental”r-dimensionalUqgl(r)-moduleV is the vector space

V = C
(
q1/4)-span{v1, . . . , vr }

(so that the symbolsvi form a basis ofV ) with Uqgl(r)-action given by (see [9, Propos
tion 1, Remark 1]),

eivj =
{
vj+1, if j = i,

0, if j �= i,
fivj =

{
vj−1, if j = i + 1,
0, if j �= i + 1,

and

tivj =
{
q1/4vj , if j = i,

vj , if j �= i.

The “trivial” 1-dimensionalUqgl(r)-moduleW is the vector space

W = C
(
q1/4)-span{v0}

(so that the symbolv0 is a basis ofW ) with Uqgl(r)-action given by the counitu (see
(4.1)),

eiv0 = fiv0 = 0 and tiv0 = v0.

Let λ be a partition with((λ) � r, and letV λ be an irreducibleUqgl(r)-module of
highest weightλ. ThenW = V ∅ andV = V (1). The decomposition rules for tensoring
V andW are (see [1, Proposition 10.1.16]),

V λ ⊗W ∼= V λ and V λ ⊗ V ∼=
⊕

+
V µ, (4.2)
µ∈λ
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whereλ+ is the set of partitions that are obtained by adding a box toλ. Thus,

V λ ⊗ (W ⊕ V )∼=
⊕

µ∈λ+,=
V µ, (4.3)

whereλ+,= is the set of partitions that are obtained by adding 0 or 1 boxes toλ.

4.2. Centralizer algebra of the tensor power representation

The coproduct onUqgl(r) is coassociative, so it makes sense to consider the te
product representation(W ⊕ V )⊗n. It follows from (4.3) and induction that then-fold
tensor product(W ⊕ V )⊗n decomposes into irreducibleUqgl(r)-modules as

(W ⊕ V )⊗n ∼=
n⊕

k=0

⊕
λ�k

(
n

k

)
fλV

λ, (4.4)

wherefλ is the number of standard tableaux of shapeλ (see (2.1)). The Bratteli diagra
for Uqgl(r) is shown in Fig. 1. It has the partitionsΛn on leveln, and a vertexµ ∈Λn+1
is connected to a vertexλ ∈Λn if µ ∈ λ+,=.

The centralizer algebra

Cn = EndUqgl(r)

(
(W ⊕ V )⊗n

)
is the set of transformations in End((W ⊕V )⊗n) which commute withUqgl(r). By general
results from double centralizer theory (see, for example, [2, §3D]), we have

(1) Cn is semisimple, and the irreducible representations ofCn are indexed byΛn, i.e.,
the same set that indexes the irreducible representations ofUqgl(r) which appear in
(W ⊕ V )⊗n.

(2) Forλ ∈Λn let Mλ denote the irreducibleCn-module indexed byλ. Then dim(Mλ)=
mλ is the multiplicity ofV λ in the decomposition of(W ⊕V )⊗n as aUqgl(r)-module,
and dim(V λ)= dλ is the multiplicity ofMλ in the decomposition of(W ⊕ V )⊗n as a
Cn-module. It follows thatmλ is the number of paths from∅ to λ in Fig. 1. We choose
|λ| levels on which to add a box, and there arefλ ways to add boxes to∅ and reachλ.
Thus,

mλ = #(paths from∅ to λ) =
(
n

|λ|
)
fλ.

(3) Whenr � n, all of the partitions inΛn appear in the Bratteli diagram, and

dim(Cn)=
n∑

k=0

∑
λ�k

(
n

k

)2

f 2
λ =

n∑
k=0

(
n

k

)2∑
λ�k

f 2
λ =

n∑
k=0

(
n

k

)2

k! = |Rn|. (4.5)
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4.3. R-matrices

We consider the embeddingUqgl(r) ⊂ Uqgl(r + 1) so thatUqgl(r) is defined as in
Section 4.1 andUqgl(r + 1) is generated byei , fi , 0� i < r, andti ,0 � i � r, with the
appropriately extended relations from Section 4.1. Then we define the fundamental
sentation ofUqgl(r + 1) as

U = C
(
q1/4)-span{v0, v1, . . . , vr },

where the symbolsvi are a basis forU such thatW = C(q1/4)-span{v0}, V =
C(q1/4)-span{v1, . . . , vr }, and thus we have the restriction rule

Res
Uqgl(r+1)
Uqgl(r) U =W ⊕ V.

TheR-matrix (see [9, §4]) forUqgl(r + 1) provides a canonicalUqgl(r + 1)-module
isomorphismŘMN :M ⊗N → N ⊗M for any twoUqgl(r + 1)-modulesM andN . The
R-matrix forU , ŘUU :U ⊗U → U ⊗U, is given explicitly in [9, formula (7)]. We rescal
it to the operatořS = q1/2ŘUU . For each 0� i, j � r, we have

Š(vi ⊗ vj )= q1/2ŘUU (vi ⊗ vj )=


qvj ⊗ vj , if i = j,

q1/2vj ⊗ vi, if i > j,

q1/2vj ⊗ vi + (q − 1)(vi ⊗ vj ), if i < j.

For each 1� i � n− 1 define

Ši = id ⊗ · · · ⊗ id ⊗ Š ⊗ id ⊗ · · · ⊗ id, (4.6)

whereŠ appears as the transformation in theith and(i + 1)st factor. Jimbo [9, Propos
tion 3], shows thaťS commutes withUqgl(r + 1) and thusŠ ∈Cn.

DefineĚ ∈ EndUqgl(r)(W ⊕ V ) to be projection onto the trivial moduleW , and let

Ěi = Ě ⊗ · · · ⊗ Ě ⊗ id ⊗ · · · id ∈Cn, (4.7)

where the projection onto the trivial modulěE appears in the firsti tensor slots and th
identity transformation id appears in the remainingn− i tensor slots.

Proposition 4.1. Let V be fundamental Uqgl(r)-module and let W be the trivial Uqgl(r)-
module. The matrices Ši and Ěi satisfy the following relations as transformations on U⊗n

(1) Š2
i = (q − 1)Š2

i + q · 1, 1 � i � n− 1,

(2) Ši Ši+1Ši , 1 � i � n− 2,
(3) Ši Šj = Šj Ši , |i − j |> 2,
(4) Ši Ěj = Ěj Ši = qĚj , 1 � i < j � n,

(5) Ši Ěj = Ěj Ši , 1 � j < i � n,
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(6) Ě2
i = Ěi, 1 � i � n,

(7) Ěi+1 = Ěi Ši Ěi + (1− q)Ěi, 2 � i � n.

Proof. Let Uqgl(r) be embedded inUqgl(r + 1) as discussed above so thatU = V ⊕W

as a module forUqgl(r). From [9], we know thaťSi is in EndUqgl(r+1)(U
⊗n) ⊆ Cn and

that theŠi satisfy relations (1)–(3). These are not difficult to verify.
If j < i, thenŠi acts as the identity in tensor positions 1, . . . , j andĚj acts as identity

in tensor positionsi, i + 1, soŠi andĚj commute and property (5) holds.
Property (6) follows immediately from the fact thatĚj is a projection.
For properties (4) and (7), we check the actions on the basis of simple te

vk1 ⊗ · · · ⊗ vkn with 0 � kj � r + 1. Letv = vk1 ⊗ · · · ⊗ vkn and letv′ be obtained fromv
by switchingvki with vki+1. ThusŠiv = αv + βv′ with α,β ∈ C(q1/2).

Assume thatj > i. If k1 = · · · = kj = 0, thenĚjv = v andŠiv = qv, soŠiĚjv = Šiv =
qv = qĚjv = Ěj Šiv. If it is not the case thatk1 = · · · = kj = 0, thenĚjv = Ějv′ = 0, so
Ěj Šiv = Ěj (αv + βv′)= 0= qĚjv = ŠiĚjv, and property (4) holds.

If it is not the case thatk1 = k2 = · · · = ki = 0 thenĚiv = 0 andĚi+1v = 0, so

Ěi+1v = 0= (
Ěi Ši Ěi + (1− q)Ěi

)
v.

Now assumek1 = k2 = · · · = ki = 0. If ki+1 = 0, thenĚiv = v, Ěi+1v = v, andŠiv = qv,
so

(
Ěi Ši Ěi + (1− q)Ěi

)
v = qv + (1− q)v = v = Ěiv = v.

If ki+1 > 0, thenĚiv = v, Ěiv′ = 0, Ěi+1v = 0, andŠiv = (q − 1)v + q1/2v′, so

(
Ěi Ši Ěi + (1− q)Ěi

)
v = Ěi

(
(q − 1)v + +q1/2v′)+ (1− q)v

= (q − 1)v + (1− q)v = 0 = Ěi+1v.

Thus, (7) holds and the proposition is proved.✷
Corollary 4.2. The elements Ě1 and Ši ,1 � i � n− 1, generate Cn.

Proof. Let Dn denote the subalgebra generated byĚ1 and Ši , 1 � i � n − 1. From
[20], we know that, under the specializationq → 1, Ě1 andŠi specialize to generators o
EndGL(r,C)((W ⊕V )⊗n), which has the same dimension asCn. Under such a specializatio
the dimension cannot go up. This follows from [3, §68.A], since there is a basis foDn

consisting of words in the generatorsE1, Si and the structure constants for this basis
well-defined (do not have poles) atq = 1. Thus,Dn is a subalgebra ofCn with the same
dimension asCn, and so they are equal.✷
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Corollary 4.3. The map φ :An(q)→ EndUqgl(r)((W ⊕ V )⊗n) given by

φ(Ti)= Ši and φ(Pi)= Ěi

is a surjective algebra homomorphism, and if r � n, then φ is an isomorphism. The action
of Ti, 1 � i � n− 1 and Pj , 1 � j � n on simple tensors v = vk1 ⊗ · · · ⊗ vkn is given by

Tiv =


(q − 1)v + q1/2v′, if ki < ki+1,

q1/2v′, if ki > ki+1,

qv, if ki = ki+1,

Pjv =
{

v, if k1 = · · · = kj = 0,
0, otherwise,

(4.8)

where v′ is the simple tensor obtained from v by switching vki with vki+1 .

Proof. Proposition 4.1 and Corollary 4.2 tell us thatφ is a surjective homomorphism. B
comparing dimensions whenr � n, we see thatφ is an isomorphism. The action of th
generators follows from (4.7) and (4.8). Note: one can also verify the relations (2.1).✷
Remark 4.4. It is natural to look for a presentation ofIn(q) using generatorsΠi which
project onto the trivial moduleW in only theith tensor slot. Atq → 1, these correspon
to the idempotentsπi = 1−Ei,i ∈ Rn. Furthermore, we havePi =Π1Π2 · · ·Πi . However,
theΠi appear to have a complicated relation with theTi . Using a computer, M. Dien
found that inI3(q),

Π2 = T −1
1 Π1T1 + (q − 1)

q3

(
T −1

1 P1 + T −1
1 P2

)
,

Π3 = T −1
2 Π2T2 + (q − 1)2T −1

2 T −1
1 P1 + (q − 1)T −1

2 T −1
1 P1T1

− (q − 1)2

q

(
T1T

−1
2 P2 + T −1

2 P2 + T −1
1 T −1

2 P2T2
)

+ (q − 1)

q
T −1

1 T −1
2 P2T2T1 + (q − 1)2(q + 1)

q3 P3.
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