

Journal of Algebra 273 (2004) 227-251

www.elsevier.com/locate/jalgebra

Representations of the q-rook monoid

Tom Halverson¹

Department of Mathematics and Computer Science, Macalester College, Saint Paul, MN 55105, USA

Communicated by Peter Littelmann

Abstract

The *q*-rook monoid $\mathcal{I}_n(q)$ is a semisimple algebra over $\mathbb{C}(q)$ that specializes when $q \to 1$ to $\mathbb{C}[R_n]$, where R_n is the monoid of $n \times n$ matrices with entries from $\{0, 1\}$ and at most one nonzero entry in each row and column. When *q* is specialized to a prime power, $\mathcal{I}_n(q)$ is isomorphic to the Iwahori algebra $\mathcal{H}_{\mathbb{C}}(M, B)$, where $M = \mathbf{M}_n(\mathbb{F}_q)$ is the monoid of $n \times n$ matrices with entries from a finite field having *q*-elements and $B \subseteq M$ is the Borel subgroup of invertible upper triangular matrices. In this paper, we (i) give a new presentation for $\mathcal{I}_n(q)$ on generators and relations and determine a set of standard words which form a basis; (ii) explicitly construct a complete set of "seminormal" irreducible representations of $\mathcal{I}_n(q)$; and (iii) show that $\mathcal{I}_n(q)$ is the centralizer of the quantum general linear group $U_q \mathfrak{gl}(r)$ acting on the tensor product $(W \oplus V)^{\otimes n}$, where *V* is the fundamental $U_q \mathfrak{gl}(r)$ module and *W* is the trivial $U_q \mathfrak{gl}(r)$ module.

Keywords: Quantum group; Iwahori Hecke algebra; Rook monoid; Representation

0. Introduction

N. Iwahori [8] discovered the marvelous structure in the "Hecke algebra" $\mathcal{H}_{\mathbb{C}}(G, B)$, where $G = \mathbf{GL}_n(\mathbb{F}_q)$ is the general linear group of invertible $n \times n$ matrices over the field \mathbb{F}_q with q elements and B is the Borel subgroup of upper triangular matrices. He proved that $\mathcal{H}_{\mathbb{C}}(G, B) \cong \mathbb{C}[S_n]$, where $\mathbb{C}[S_n]$ is the group algebra of the symmetric group S_n , and he showed that $\mathcal{H}_{\mathbb{C}}(G, B)$ has a presentation given on generators $T_1, T_2, \ldots, T_{n-1}$ and relations

E-mail address: halverson@macalester.edu.

¹ Research supported in part by National Science Foundation grant DMS-9800851.

^{0021-8693/\$ -} see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2003.11.002

T. Halverson / Journal of Algebra 273 (2004) 227-251

(I1)
$$T_i^2 = q \cdot 1 + (q - 1)T_i$$
, for $1 \le i \le n - 1$,
(I2) $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$, for $1 \le i \le n - 2$, (0.1)
(I3) $T_i T_j = T_j T_i$, when $|i - j| \ge 2$.

At q = 1 this becomes the well-known presentation of S_n due to E.H. Moore [12] in 1897. The generators T_i specialize to the simple transpositions $s_i = (i, i + 1)$ in S_n .

Now let q be an indeterminate, and let $\mathcal{H}_n(q)$ be the associative $\mathbb{C}(q)$ -algebra generated by 1, $T_1, T_2, \ldots, T_{n-1}$ subject to (I1)–(I3). We refer to $\mathcal{H}_n(q)$ and $\mathcal{H}_{\mathbb{C}}(G, B)$ as Iwahori algebras (see the historical remarks in [19]).

L. Solomon [19] studied the Iwahori algebra $\mathcal{H}_{\mathbb{C}}(M, B)$, where now $M = \mathbf{M}_n(\mathbb{F}_q)$ is the monoid of $n \times n$ matrices over \mathbb{F}_q and B is again the group of invertible upper triangular matrices. He showed that $\mathcal{H}_{\mathbb{C}}(G, B) \cong \mathbb{C}[R_n]$, where R_n is the rook monoid consisting of $n \times n$ matrices with entries from $\{0, 1\}$ and *at most* one nonzero entry in each row and column. The symmetric group S_n lives inside the rook monoid R_n as the rank n matrices. In [21], Solomon defines a $\mathbb{C}(q)$ -algebra presented on generators $1, T_1, T_2, \ldots, T_{n-1}, N$ and relations (I1)–(I3), and

(I4)
$$T_i N = N T_{i+1}$$
, for $1 \le i \le n-2$,
(I5) $T_i N^k = q N^k$, when $i > n-k$,
(I6) $N^k T_i = q N^k$, when $i < k$,
(I7) $N(T_1 T_2 \cdots T_{n-1})N = q^{n-1}N$.
(0.2)

When q is a prime power, $\mathcal{I}_n(q)$ specializes to $\mathcal{H}_{\mathbb{C}}(M, B)$. At q = 1, (0.2) is the presentation of R_n found by Solomon in [20]. The T_i specialize to s_i and the new generator N specializes to $v = E_{1,2} + E_{2,3} + \cdots + E_{n-1,n}$, where $E_{i,j}$ is a matrix unit with a 1 in row *i* and column *j*.

In this paper we study the representation theory of $\mathcal{I}_n(q)$. The main results are as follows:

- (1) We find a new presentation of $\mathcal{I}_n(q)$ on generators $T_1, \ldots, T_{n-1}, P_1, \ldots, P_n$ and relations given in (2.1). When $q \to 1$, the idempotent P_i specializes to $\varepsilon_i = E_{i+1,i+1} + E_{i+2,i+2} + \cdots + E_{n,n} \in R_n$ for $1 \le i \le n-1$ (and P_n specializes to the zero matrix). This presentation has several advantages:
 - (a) The action of P_i is simple and natural in the representations that we define in Sections 3 and 4.
 - (b) It is a close generalization of the presentation of the rook monoid given by Lipscomb [10], who uses generators $s_1, s_2, \ldots, s_{n-1}$, and ε_1 .
 - (c) The idempotents P_i allow us to define a "basic construction" for $\mathcal{I}_n(q)$ in [4] that is analogous to a Jones basic construction. We use this construction in [4] to define a set of elements in $\mathcal{I}_n(q)$ on which it is sufficient to determine irreducible characters (i.e., analogs of conjugacy class representatives).

(d) The idempotents P_i appear in the general theory of reductive monoids. The set $\Lambda = \{1, P_1, ..., P_n\}$ is (up to scalar multiples) the set of cross-sectional idempotents used by Putcha [16] to naturally represent *G*-orbits in $G \setminus M/G$. However, Solomon's generators $\mathcal{N} = \{1, N, N^2, ..., N^n\}$ also index the these orbits. Furthermore, \mathcal{N} , and not Λ , behaves well with respect to the length function on R_n (see [18]), and N arises naturally in Solomon's definition of $\mathcal{H}_{\mathbb{C}}(M, B)$ (see (1.7)).

Note that a presentation using elements that specialize at $q \rightarrow 1$ to $\pi_i = I_n - E_{i,i}$ appears difficult. See Remark 4.4 and the comments in [20].

(2) For each partition λ with 0 ≤ |λ| ≤ n we define, in Section 3, a vector space V^λ. The dimension of V^λ is (ⁿ_{|λ|}) f_λ, where f_λ is the dimension of the irreducible S_{|λ|} module indexed by λ. We define a basis of V^λ indexed by standard tableaux of shape λ and give explicit actions of the generators T_i, P_j on the basis. We show that these V^λ form a complete set of irreducible, pairwise non-isomorphic I_n(q)-modules. These are generalizations of Young's [22] seminormal representations of S_n and Hoefsmit's [7] seminormal representations of H_n(q), and we explicitly realize the decomposition of V^λ into irreducibles for the subalgebra I_{n-1}(q) ⊆ I_n(q). We also produce elements X_i, 1 ≤ i ≤ n, which are analogs of Jucys–Murphy elements and which act diagonally on these representations.

When q = 1 we obtain seminormal representations of R_n . The representation theory of R_n was originally determined by Munn [13,14] and furthered by Solomon [20]. An analog Young's natural representation for R_n , using rook-monoid analogues of Young symmetrizers, is computed by Grood [5].

(3) Solomon [21] defined an action of In(q) on tensor space. In Section 4, we use this action to determine a Schur–Weyl duality between In(q) and the quantum general linear group Uqgl(r). Let W and V be the trivial and fundamental representation of Uqgl(r), respectively, and let Cn = EndUqgl(r)((W ⊕ V)^{⊗n}) be the centralizer of tensor powers of these representations. We compute *R*-matrices Ř_i and Ě_j in Cn and show that these are images of T_i and P_j, respectively. We show that when r ≥ n, this is an isomorphism and In(q) ≅ Cn.

This duality is a generalization of the original Schur–Weyl duality between S_n and the general linear group $GL(r, \mathbb{C})$ on tensor space and of Jimbo's duality between $\mathcal{H}_n(q)$ and $U_q \mathfrak{gl}(r)$ on $V^{\otimes n}$. When $q \to 1$, this specializes to Solomon's [20] duality between $GL(r, \mathbb{C})$ and R_n on tensor space. In [4] we use the duality between $\mathcal{I}_n(q)$ and $U_q \mathfrak{gl}(r)$ to compute a Frobenius formula and a Murnaghan–Nakayama rule for the irreducible characters of $\mathcal{I}_n(q)$.

(4) We can define $\mathcal{I}_n(q)$ with parameter $q \in \mathbb{C}^*$. In [6], Halverson and Ram prove that $\mathcal{I}_n(q)$ is semisimple whenever $[n]! \neq 0$, where $[n]! = [n][n-1]\cdots[1]$ and $[k] = q^{k-1} + q^{k-2} + \cdots + 1$. The results in this paper work equally well for $\mathcal{I}_n(q)$ with $q \in \mathbb{C}^*$ and $[n]! \neq 0$.

Remark. The results of this paper inspired the work of Halverson and Ram [6], where we show that $R_n(q)$ is a quotient of the Iwahori Hecke algebra $H_n(u_1, u_2; q)$ of type B_n and that many of the results in this paper come from $H_n(u_1, u_2; q)$.

1. The Iwahori algebra $\mathcal{H}_{\mathbb{C}}(M, B)$ and the *q*-rook monoid $\mathcal{I}_n(q)$

1.1. The rook monoid

The symmetric group S_n of permutations of $\{1, 2, ..., n\}$ can be identified with the group of $n \times n$ matrices with entries from $\{0, 1\}$ and *precisely* one nonzero entry in each row and in each column. The rook monoid R_n is the monoid (semigroup with identity) of $n \times n$ matrices with entries from $\{0, 1\}$ and *at most* one nonzero entry in each row and in each column. There are $\binom{n}{k}^2 k!$ matrices in R_n having rank k, and thus

$$|R_n| = \sum_{k=0}^n \binom{n}{k}^2 k!.$$
 (1.1)

The rook monoid gets its name from the fact that the elements in R_n are in one-to-one correspondence with placements of non-attacking rooks on an $n \times n$ chessboard. The rook monoid is isomorphic to the monoid consisting of all one-to-one functions σ whose domain and range are subsets of $\{1, 2, ..., n\}$. The bijection is given by assigning $\sigma(i) = j$ if the corresponding matrix has a 1 in the (i, j)-position. This monoid is commonly called the *symmetric inverse semigroup*.

Let $s_i \in S_n$ denote the transposition that exchanges *i* and *i* + 1. In R_n , the identity 1 is the $n \times n$ identity matrix and $E_{i,j}$ is the matrix unit with a 1 in the (i, j) position and 0s elsewhere. Let

$$\nu = E_{1,2} + E_{2,3} + \dots + E_{n-1,n}.$$
(1.2)

If $0 \leq r \leq n$, then

$$\nu_r = \nu^{n-r} = E_{1,n-r+1} + E_{2,n-r+2} + \dots + E_{r,n}$$
(1.3)

has rank r. Let

$$\varepsilon_{i} = E_{i+1,i+1} + E_{i+2,i+2} + \dots + E_{n,n}, \quad \text{for } 0 \leq i \leq n-1,$$

$$\pi_{i} = I_{n} - E_{i,i}, \quad \text{for } 1 \leq i \leq n,$$
(1.4)

then ε_i has rank n - i and π_i has rank n - 1. We agree that ε_n is the zero matrix, and we have $\pi_1 = \varepsilon_1$.

A reduced word for $w \in S_n$ is an expression $w = s_{i_1}s_{i_2}\cdots s_{i_k}$ with *k* minimal. The length of *w* is $\ell(w) = k$ and is independent of the choice of reduced word. Solomon [19] defined a length function for the rook monoid: if $\sigma \in R_n$ with rank $(\sigma) = r$, then

$$\ell(\sigma) = \min\{\ell(w) + \ell(w') \mid w, w' \in S_n \text{ and } \sigma = wv_r w'\}.$$
(1.5)

1.2. The Iwahori algebra $\mathcal{H}_{\mathbb{C}}(M, B)$

Let *q* be a prime power and let $M = \mathbf{M}_n(\mathbb{F}_q)$ be the monoid of all $n \times n$ matrices over \mathbb{F}_q . Let $G = \mathbf{GL}_n(\mathbb{F}_q) \subseteq M$ be the general linear group of invertible matrices, and let $B \subseteq G$ be the Borel subgroup of upper triangular matrices. Renner [18] proves that there is a disjoint union

$$M=\bigsqcup_{\sigma\in R_n}B\sigma B,$$

and that $B\sigma B = B\sigma' B$ implies that $\sigma = \sigma'$.

Define the idempotent

$$\varepsilon = \frac{1}{|B|} \sum_{b \in B} b \in \mathbb{C}[M].$$

Following [19], define the Iwahori algebra

$$\mathcal{H} = \mathcal{H}_{\mathbb{C}}(M, B) = \varepsilon \mathbb{C}[M]\varepsilon.$$

If we consider $\mathbb{C}[M]$ acting on the left ideal $\mathbb{C}[M]\varepsilon$ by left multiplication, then \mathcal{H} is the centralizer of this action; it acts by right multiplication on $\mathbb{C}[M]\varepsilon$. Okniński and Putcha [15] proved that $\mathbb{C}[M]$ is semisimple, and so it follows from general double-centralizer results that \mathcal{H} is semisimple.

The elements

$$T_{\sigma} = q^{\ell(\sigma)} \varepsilon \sigma \varepsilon, \quad \sigma \in R_n,$$

form a basis for \mathcal{H} . Solomon [19] proved that the elements $T_{s_1}, \ldots, T_{s_{n-1}}, T_{\nu}$ generate \mathcal{H} and

$$T_{s_i}T_{\sigma} = \begin{cases} qT_{\sigma}, & \text{if } \ell(s_i\sigma) = \ell(\sigma), \\ T_{s_i\sigma}, & \text{if } \ell(s_i\sigma) = \ell(\sigma) + 1, \\ qT_{s_i\sigma} + (q-1)T_{\sigma}, & \text{if } \ell(s_i\sigma) = \ell(\sigma) - 1, \end{cases}$$

$$T_{\sigma}T_{s_i} = \begin{cases} qT_{\sigma}, & \text{if } \ell(\sigma s_i) = \ell(\sigma), \\ T_{\sigma s_i}, & \text{if } \ell(\sigma s_i) = \ell(\sigma) + 1, \\ qT_{\sigma s_i} + (q-1)T_{\sigma}, & \text{if } \ell(\sigma s_i) = \ell(\sigma) - 1, \end{cases}$$

$$(1.6)$$

and

$$T_{\nu}T_{\sigma} = q^{\ell(\sigma) - \ell(\nu\sigma)}T_{\nu\sigma}, \qquad T_{\sigma}T_{\nu} = q^{\ell(\sigma) - \ell(\sigma\nu)}T_{\sigma\nu}$$
(1.7)

for all $\sigma \in R_n$.

Using (1.6), it is easy to verify the following lemma.

Lemma 1.1 (Iwahori [8]).

(1) $T_{s_i}^2 = (q-1)T_{s_i} + q \cdot 1, \ 1 \le i \le n-1,$ (2) $T_{s_i}T_{s_{i+1}}T_{s_i} = T_{s_{i+1}}T_{s_i}T_{s_{i+1}}, \ 1 \le i \le n-2,$ (3) $T_{s_i}T_{s_j} = T_{s_i}T_{s_j}, \ |i-j| > 1.$

In [21], Solomon proves that $T_{s_1}, T_{s_2}, \ldots, T_{s_{n-1}}, T_{\nu}$ generate $\mathcal{H}_{\mathbb{C}}(M, B)$ and in [19] he extended Iwahori's relations to describe the interaction between T_{s_i} and T_{ν} :

Lemma 1.2 (Solomon [19]).

(1)
$$T_{s_i} T_{\nu} = T_{\nu} T_{s_{i+1}}, \ 1 \leq i \leq n-2,$$

(2) $T_{s_i} T_{\nu}^k = q T_{\nu}^k, \ i > n-k,$
(3) $T_{\nu}^k T_{s_i} = q T_{\nu}^k, \ i < k,$
(4) $T_{\nu} (T_{s_1} T_{s_2} \cdots T_{s_{n-1}}) T_{\nu} = q^{n-1} T_{\nu}, \ |i-j| > 1$

1.3. The q-rook monoid

Let *q* be an indeterminate. For integers $n \ge 2$, define $\mathcal{I}_n(q)$ to be the associative $\mathbb{C}(q)$ -algebra with 1 generated by T_1, \ldots, T_{n-1} and *N* subject to the relations

(I1) $T_i^2 = q \cdot 1 + (q - 1)T_i$, for $1 \le i \le n - 1$, (I2) $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$, for $1 \le i \le n - 2$, (I3) $T_i T_j = T_j T_i$, when $|i - j| \ge 2$. (I4) $T_i N = N T_{i+1}$, for $1 \le i \le n - 2$, (I5) $T_i N^k = q N^k$, for i > n - k, (I6) $N^k T_i = q N^k$, when i < k, (I7) $N(T_1 T_2 \cdots T_{n-1})N = q^{n-1} N$.

Let $\mathcal{I}_0(q) = \mathbb{C}(q)$, and let $\mathcal{I}_1(q)$ be the $\mathbb{C}(q)$ -span of 1 and N subject to $N^2 = N$. We see from Lemmas 1.1 and 1.2 that, when q is specialized to a prime power, we have a surjection, $\mathcal{I}_n(q) \to \mathcal{H}_{\mathbb{C}}(M, B)$ given by $T_i \to T_{s_i}$ and $N \to T_{v}$. In [21], Solomon finds a set of $|R_n|$ words in the generators of $\mathcal{I}_n(q)$ which span $\mathcal{I}_n(q)$. Thus,

Theorem 1.3 (Solomon [21]). The $\mathbb{C}(q)$ -algebra $\mathcal{I}_n(q)$ is semisimple of dimension $|R_n|$, and when q is specialized to a prime power, we have $\mathcal{I}_n(q) \cong \mathcal{H}_{\mathbb{C}}(M, B)$.

Now, working in $\mathcal{I}_n(q)$, we define

$$T_{\gamma_n} = T_1 T_2 \cdots T_{n-1}, \qquad P_j = \left(q^{1-n}\right)^j T_{\gamma_n}^j N^j, \quad \text{for } 1 \le j \le n.$$
(1.9)

Using (I2) one can easily verify the well-known fact that

$$T_{\gamma_n} T_i = T_{i+1} T_{\gamma_n}, \quad 1 \le i \le n-2.$$
 (1.10)

Furthermore, $N = q^{n-1}T_{\gamma_n}^{-1}P_1$, so T_1, \ldots, T_{n-1} and P_1 generate $\mathcal{I}_n(q)$, and we have the following lemma.

Lemma 1.4.

(1) $T_i P_j = P_j T_i = q P_j, \ 1 \le i < j \le n,$ (2) $T_i P_j = P_j T_i, \ 1 \le j < i \le n,$ (3) $P_j^2 = P_j, \ 1 \le i \le n,$ (4) $P_{j+1} = q P_j T_i^{-1} P_j, \ 2 \le i \le n.$

Proof. Let $x = q^{1-n}$. For part (1), assume that $1 \le i < j \le n$. We use Lemma 1.1(1) to expand T_1^2 in the following calculation:

$$\begin{aligned} T_i P_j &= x^j T_i T_{\gamma_n}^j N^j \\ &= x^j T_{\gamma_n}^{i-1} T_1 T_{\gamma_n}^{j-(i-1)} N^j \quad \text{by (1.8)} \\ &= x^j T_{\gamma_n}^{i-1} (T_1^2 T_2 \cdots T_{n-1}) T_{\gamma_n}^{j-i} N^j \\ &= (q-1) x^j T_{\gamma_n}^{i-1} (T_1 \cdots T_{n-1}) T_{\gamma_n}^{j-i} N^j + q x^j T_{\gamma_n}^{i-1} (T_2 \cdots T_{n-1}) T_{\gamma_n}^{j-i} N^j \\ &= (q-1) P_j + q x^j T_{\gamma_n}^i (T_1 \cdots T_{n-2}) T_{\gamma_n}^{j-i-1} N^j \quad \text{by (1.8)} \\ &= (q-1) P_j + x^j T_{\gamma_n}^i (T_1 \cdots T_{n-2}) T_{\gamma_n}^{j-i-1} T_{n-j+i} N^j \quad \text{by Lemma 1.2(2)} \\ &= (q-1) P_j + x^j T_{\gamma_n}^i (T_1 \cdots T_{n-2} T_{n-1}) T_{\gamma_n}^{j-i-1} N^j \quad \text{by (1.8)} \\ &= (q-1) P_j + P_j \\ &= q P_j. \end{aligned}$$

On the other hand, by Lemma 1.2(1) and 1.2(2), we have

$$P_{j}T_{i} = x^{j}T_{\gamma_{n}}^{j}N^{j}T_{i} = x^{j}T_{\gamma_{n}}^{j}N^{j-(i-1)}T_{1}N^{i-1} = qx^{j}T_{\gamma_{n}}^{j}N^{j-(i-1)}N^{i-1} = qP_{j}.$$

For part (2), if j < i, then using Lemma 1.2(1) and (1.8), we have

$$P_{j}T_{i} = x^{j}T_{\gamma_{n}}^{j}N^{j}T_{i} = x^{j}T_{\gamma_{n}}^{j}T_{i-j}N^{j} = x^{j}T_{i}T_{\gamma_{n}}^{j}N^{j} = T_{i}P_{j}.$$

Part (3) follows from Lemma 1.2(4):

$$P_i^2 = x^{2i} T_{\gamma_n}^i (N^i T_{\gamma_n}^i N^i) = x^i T_{\gamma_n}^i N^i = P_i.$$

For (4), we have

T. Halverson / Journal of Algebra 273 (2004) 227-251

$$q P_i T_i^{-1} P_i = q^i P_i \left(T_i^{-1} T_{i-1}^{-1} \cdots T_1^{-1} \right) P_i \quad \text{by part (1)}$$

$$= q^i x^{2i} T_{\gamma_n}^i N^i \left(T_i^{-1} T_{i-1}^{-1} \cdots T_1^{-1} \right) T_{\gamma_n}^i N^i$$

$$= q^i x^{2i} T_{\gamma_n}^i N^i (T_{i+1} T_{i+2} \cdots T_{n-1}) T_{\gamma_n}^{i-1} N^i$$

$$= q^i x^{2i} T_{\gamma_n}^i (T_1 T_2 \cdots T_{n-1-i}) N^i T_{\gamma_n}^{i-1} N^i \quad \text{by Lemma 1.2(1)}$$

$$= q^i x^{i+1} T_{\gamma_n}^i (T_1 T_2 \cdots T_{n-1-i}) N^{i+1} \quad \text{by Lemma 1.2(4)}$$

$$= x^{i+1} T_{\gamma_n}^{i+1} N^{i+1} = P_{i+1} \quad \text{by part (1).} \quad \Box$$

Lemma 1.5. Let q be a prime power. Under the isomorphism $\mathcal{I}_n(q) \to \mathcal{H}_{\mathbb{C}}(M, B)$ given by $T_i \to T_{s_i}$ and $N \to T_{\nu}$, we have $P_i \to q^{j(j-n)}T_{\varepsilon_i}$.

Proof. We use induction to prove the following equivalent condition (see (1.9)):

$$T_{\gamma_n}^{j} T_{\nu}^{j} = q^{j(j-1)} T_{\varepsilon_j}$$

Note that $\gamma_n \nu = 1$, $\ell(\gamma_n) = n - 1$, and $\ell(\varepsilon_j) = j(n - j)$. Then the case j = 1 follows immediately from (1.7): $T_{\gamma_n} T_{\nu} = q^{\ell(\gamma_n) - \ell(\varepsilon_1)} T_{\varepsilon_1} = T_{\varepsilon_1}$. Now let j > 1, and define

$$\sigma = (s_j s_{j+1} \cdots s_{n-1}) \varepsilon_j = \varepsilon_j (s_j s_{j+1} \cdots s_{n-1}),$$

so that $\sigma v = \varepsilon_j$ and $\ell(\sigma) = \ell(\varepsilon_{j-1}) + n - j = j(n-j) + j - 1$. Thus, by induction,

$$T_{\gamma_n}^{j} T_{\nu}^{j} = q^{(j-1)(j-2)} T_{\gamma_n} T_{\varepsilon_{j-1}} T_{\nu} = q^{(j-1)(j-2)} (T_{s_1} \cdots T_{s_{j-1}}) (T_{s_j} \cdots T_{s_{n-1}}) T_{\varepsilon_{j-1}} T_{\nu}$$

= $q^{(j-1)(j-2)+\ell(\sigma)-\ell(\varepsilon_j)} (T_{s_1} \cdots T_{s_{j-1}}) T_{\varepsilon_j} T_{\nu}$
= $q^{(j-1)^2} (T_{s_1} \cdots T_{s_{j-1}}) T_{\varepsilon_j} T_{\nu}.$

Now by (1.6), $T_{s_i} T_{\varepsilon_j} = q T_{\varepsilon_j}$ for i < j, and the result follows. \Box

2. A new presentation for the *q*-rook monoid

Let *q* be an indeterminate. For integers $n \ge 2$, define $A_n(q)$ to be the associative $\mathbb{C}(q)$ algebra with 1 generated by T_1, \ldots, T_{n-1} and P_1, \ldots, P_n subject to the relations

$$\begin{array}{ll} \text{(A1)} & T_i^2 = q \cdot 1 + (q-1)T_i, & \text{for } 1 \leqslant i \leqslant n-1, \\ \text{(A2)} & T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, & \text{for } 1 \leqslant i \leqslant n-2, \\ \text{(A3)} & T_i T_j = T_j T_i, & \text{when } |i-j| \geqslant 2, \\ \text{(A4)} & T_i P_j = P_j T_i = q P_j, & \text{for } 1 \leqslant i < j \leqslant n, \\ \text{(A5)} & T_i P_j = P_j T_i, & \text{for } 1 \leqslant j < i \leqslant n-1, \\ \end{array}$$

(A6)
$$P_i^2 = P_i$$
, for $1 \le i \le n$,
(A7) $P_{i+1} = q P_i T_i^{-1} P_i$, for $2 \le i \le n$.

Let $A_0(q) = \mathbb{C}(q)$, and let $A_1(q)$ be the $\mathbb{C}(q)$ -span of 1 and P_1 subject to $P_1^2 = P_1$. From (A1) we have

$$T_i^{-1} = (q^{-1} - 1) \cdot 1 + q^{-1} T_i.$$
(2.2)

It follows that (A7) is equivalent to

$$P_{i+1} = P_i T_i P_i - (q-1) P_i.$$
(2.3)

From Lemmas 1.1 and 1.4, we see that the T_i and the P_i satisfy the same relations in both $\mathcal{I}_n(q)$ and $A_n(q)$. Furthermore, T_1, \ldots, T_{n-1} and P_1 generate $A_n(q)$, so there is a surjection from $A_n(q)$ to $\mathcal{I}_n(q)$. In this section, we will show that they have the same dimension and are isomorphic. For this reason, we choose to use the same notation T_i and P_i in both algebras.

For $w \in S_n$ with reduced expression $w = s_{i_1}s_{i_2}\cdots s_{i_k}$ define $T_w = T_{i_1}T_{i_2}\cdots T_{i_\ell}$. Since the T_i satisfy the braid relations (A2) and (A3), T_w is independent of the choice of reduced word for w. Furthermore, the T_i satisfy the same relations as they do in $\mathcal{H}_n(q)$, so the subalgebra spanned by T_1, \ldots, T_{n-1} is a homomorphic image of $\mathcal{H}_n(q)$ and the $T_w, w \in S_n$ span this subalgebra. In Section 3 we will show that this subalgebra is isomorphic to $\mathcal{H}_n(q)$.

If $K \subseteq \{1, 2, ..., n\}$ define the subgroup $S_K \subseteq S_n$ to be the group of permutations on the elements of *K*. For $1 \leq i \leq n$, define $T_{i,i} = 1$, and define

$$T_{i,j} = T_{j-1}T_{j-2}\cdots T_i$$
, for $1 \leq i < j \leq n$.

Let $A = \{a_1, a_2, ..., a_k\} \subseteq \{1, 2, ..., n\}$, and assume that $a_1 < a_2 < \cdots < a_k$. Define

$$T_A = T_{1,a_1} T_{2,a_2} \cdots T_{k,a_k}.$$
 (2.4)

Now for $0 \leq k \leq n$, let Ω_k be the following set of triples,

$$\Omega_{k} = \left\{ (A, B, w) \middle| \begin{array}{l} A, B \subseteq \{1, 2, \dots, n\}, \\ |A| = |B| = k, \\ w \in S_{\{k+1, \dots, n\}}, \end{array} \right\},$$
(2.5)

and let

$$\Omega = \bigcup_{k=0}^{n} \Omega_k.$$
(2.6)

Define the following standard words

$$T_{(A,B,w)} = T_A T_w P_k T_B^{-1}, \quad (A, B, w) \in \Omega_k.$$
 (2.7)

Note that $T_w P_k = P_k T_w$ by (A5). Furthermore, there are $\binom{n}{k}^2$ ways to choose A and B, so

$$|\Omega_k| = {\binom{n}{k}}^2 (n-k)!$$
 and $|\Omega| = \sum_{k=0}^n {\binom{n}{k}}^2 (n-k)! = |R_n|.$ (2.8)

Theorem 2.1. The standard words $\{T_{(A,B,w)} | (A, B, w) \in \Omega\}$ span $A_n(q)$. In particular, $\dim(A_n(q)) \leq |R_n|$.

Proof. From (A7) we know that T_i , $1 \le i \le n-1$, and P_1 generate $A_n(q)$. Furthermore, T_i and P_1 are standard words. It suffices to show that for all $(A, B, w) \in \Omega$, we can write $T_{(A,B,w)}T_i$ and $T_{(A,B,w)}P_1$ as a linear combination of standard words. Since $T_i = qT_i^{-1} + (q-1) \cdot 1$, it is equivalent to show that $T_{(A,B,w)}T_i^{-1}$ and $T_{(A,B,w)}P_1$ can be written as linear combinations of standard words.

Case 1. $T_{(A,B,w)}T_i^{-1}$ is a linear combination of standard words. Suppose $i, i + 1 \in B$. We use (A2) and (A3) to verify that

$$(T_{j+1,i+1}^{-1}T_{j,i}^{-1})T_i^{-1} = T_j^{-1}(T_{j+1,i+1}^{-1}T_{j,i}^{-1}).$$

Then since $i, i + 1 \in B$, we can write $T_B^{-1} = XT_{j+1,i+1}^{-1}T_{j,i}^{-1}Y$ so that X commutes with T_i^{-1} and Y commutes with T_i^{-1} . Thus,

$$P_k T_B^{-1} = P_k X T_{j+1,i+1}^{-1} T_{j,i}^{-1} T_i^{-1} Y = P_k X T_j^{-1} T_{j+1,i+1}^{-1} T_{j,i}^{-1} Y = P_k T_j^{-1} T_B^{-1} = q^{-1} P_k T_B^{-1}$$

proving the result in this case.

Now suppose $i, i + 1 \in B^c$. In this case $T_B = XY$ where Y consists of elements of the form $T_{\ell,j}^{-1}$ with j < i and X consists of elements of the form $T_{\ell,j}^{-1}$ with j > i. It follows that T_i^{-1} commutes with Y, and $X = T_{t,j_i}^{-1}T_{t-1,j_{t-1}}^{-1} \cdots T_{\ell,j_1}^{-1}$ with $i < j_1 < j_2 < \cdots < j_t$ and $i \ge \ell$. If $\ell \le i < j - 2$, then $T_{k,j}^{-1}T_i^{-1} = T_{i+1}^{-1}T_{k,j}^{-1}$. Thus $T_w T_B^{-1}T_i^{-1} = T_w T_j^{-1}T_B^{-1}$ with j > k. We now can express $T_w T_j^{-1}$ as a linear combination of $T_{w'}$ with $w' \in S_{\{k+1,\dots,n\}}$.

Now suppose $i \in B$, $i + 1 \in B^c$. We write $T_B = XT_{\ell,i}^{-1}Y$ where *Y* consists of elements of the form $T_{s,j}^{-1}$ with j < i and *X* consists of elements of the form $T_{t,j}^{-1}$ with j > i. It follows that

$$T_B T_i^{-1} = X T_{\ell,i}^{-1} T_i^{-1} Y = X T_{\ell,i+1}^{-1} Y = T_{B'}^{-1},$$

where B' is the same set as B except with i replaced by i + 1.

Finally, let $i \in B$, $i + 1 \in B^c$. We write $T_B = XT_{\ell,i+1}^{-1}Y$ where where Y consists of elements of the form $T_{s,j}^{-1}$ with j < i and X consists of elements of the form $T_{t,j}^{-1}$ with j > i. It follows that

$$T_B T_i^{-1} = X T_{\ell,i+1}^{-1} T_i^{-1} Y = (q^{-1} - 1) X T_{\ell,i+1}^{-1} Y + q^{-1} X T_{\ell,i}^{-1} Y$$
$$= (q^{-1} - 1) T_B^{-1} + q^{-1} T_{B'}^{-1},$$

where B' is the same set as B except with i + 1 replaced by i.

Case 2. $T_{(A,B,w)}P_1$ is a linear combination of standard words.

Suppose $1 \in B$. In this case T_B^{-1} contains only T_i^{-1} with i > 1, so by (A5), T_B^{-1} commutes with P_1 . Thus, $P_k T_B^{-1} P_1 = P_k P_1 T_B^{-1} = P_k T_B^{-1}$. Now suppose $1 \in B^c$ and $B \neq \emptyset$. We have

$$P_i T_{i,b}^{-1} P_i = P_i \left(T_i^{-1} \cdots T_{b-1}^{-1} \right) P_i = P_i T_i^{-1} P_i \left(T_{i+1}^{-1} \cdots T_{b-1}^{-1} \right) = q^{-1} P_{i+1} T_{i+1,b}^{-1}. \quad (*)$$

In the following calculation, we use (*) and fact that $P_k = P_k P_i$ for $i \leq k$ (see (A6) and (A7)):

$$P_{k}T_{B}^{-1}P_{1} = P_{k}P_{1}T_{B}^{-1}P_{1} = P_{k}(T_{k,b_{k}}^{-1}\cdots T_{2,b_{2}}^{-1})(P_{1}T_{1,b_{1}}^{-1}P_{1})$$

$$= q^{-1}P_{k}(T_{k,b_{k}}^{-1}\cdots T_{2,b_{2}}^{-1})P_{2}T_{2,b_{1}}^{-1} = q^{-1}P_{k}P_{2}(T_{k,b_{k}}^{-1}\cdots T_{2,b_{2}}^{-1})P_{2}T_{2,b_{1}}^{-1}$$

$$= q^{-1}P_{k}(T_{k,b_{k}}^{-1}\cdots T_{3,b_{3}}^{-1})(P_{2}T_{2,b_{2}}^{-1}P_{2})T_{2,b_{1}}^{-1}$$

$$= q^{-2}P_{k}(T_{k,b_{k}}^{-1}\cdots T_{3,b_{3}}^{-1})P_{3}T_{3,b_{2}}^{-1}T_{2,b_{1}}^{-1}$$

$$\vdots$$

$$= q^{-k}P_{k+1}(T_{k+1,b_{k}}^{-1}\cdots T_{3,b_{2}}^{-1}T_{2,b_{1}}^{-1}) = q^{-k}P_{k+1}T_{B'}^{-1},$$

where $B' = \{1, b_1, \dots, b_k\}.$

Finally, suppose $B = \emptyset$. We prove that

$$T_w P_1 = (T_k T_{k-1} \cdots T_1) P_1 T_{w'}, \text{ with } w' \in S_{\{2,\dots,n\}}.$$
 (**)

This finishes the proof since $T_w P_1$ is a standard word with $A = \{k + 1\}$ and $B = \{1\}$.

We prove (**) by induction on $\ell(w)$. If $\ell(w) = 1$, then $T_i P_1$ is a standard word. If i = 1then $T_1P_1 = T_AP_1T_B^{-1}$ where $A = \{2\}$ and $B = \{1\}$. If i > 1, then $T_iP_1 = T_AP_1T_wT_B$ with $T_w = T_i$, $A = \{1\}$, and $B = \{1\}$.

If $\ell(w) = t > 1$, then let $T_w = T_{i_1}T_{i_2}\cdots T_{i_t}$. Suppose $i_t > 1$. Then we can apply induction

$$T_w P_1 = (T_{i_1} \cdots T_{i_{t-1}}) P_1 T_{i_t} = (T_k T_{k-1} \cdots T_1) P_1 T_w T_{i_t}.$$

We then re-express $T_w T_{i_t}$ as a linear combination of $T_{w'}$ with $w' \in S_{\{2,...,n\}}$.

If $i_t = 1$, then there exists an $r \ge 1$ so that $T_w P_1 = T_{i_1} \cdots T_j T_r T_{r-1} \cdots T_1 P_1$ and $j \neq r + 1$. We know that $j \neq r$, or w is not minimal. If j > r + 1, then T_j commutes

with all the elements to its right, and we can apply induction as in the previous case. If j < r + 1, then

$$T_i T_r T_{r-1} \cdots T_1 P_1 = T_r T_{r-1} \cdots T_1 P_1 T_{i+1}$$

and we can apply induction. \Box

We have a surjection from $A_n(q)$ to $\mathcal{I}_n(q)$ and we have a set of $|R_n|$ words which span $A_n(q)$, so dim $(\mathcal{I}_n(q)) \leq \dim(A_n(q)) \leq |R_n|$. Solomon [21] has proved the lower bound dim $(\mathcal{I}_n(q)) = |R_n|$. We also will obtain this lower bound in the next section by producing sufficiently many irreducible representations. Thus,

Corollary 2.2. $A_n(q) \cong \mathcal{I}_n(q)$.

3. Irreducible representations for $\mathcal{I}_n(q)$

We use the notation for partitions and tableaux found in [11]. In particular, we let $\lambda \vdash k$ denote the fact that λ is a partition of the nonnegative integer k, and we write $|\lambda| = k$. The length $\ell(\lambda)$ of λ is the number of nonzero parts of λ . We identify λ with its Young diagram. Thus,

$$\lambda = (5, 5, 3, 1) =$$
, $\ell(\lambda) = 4$, and $|\lambda| = 14$.

For integers $n \ge 0$ define

$$\Lambda_n = \{ \lambda \vdash k \mid 0 \leqslant k \leqslant n \}. \tag{3.1}$$

For $\lambda \in \Lambda_n$, an *n*-standard tableau of shape λ is a filling of the diagram of λ with numbers from $\{1, 2, ..., n\}$ such that

- (1) each number appears at most 1 time,
- (2) the entries in each column strictly increase from top to bottom, and
- (3) the entries in each row strictly increase from left to right.

We let \mathcal{T}_n^{λ} denote the set of standard tableaux of shape λ . If $\lambda \vdash k$, the number of k-standard tableaux of shape λ is given by

$$f_{\lambda} = \frac{n!}{\prod_{b \in \lambda} h_b},\tag{3.2}$$

where the product is over all the boxes b in λ , and h_b is the hook length of b given by $h_b = \lambda_i + \lambda'_j - i - j + 1$ if b is in position (i, j) and λ' is the conjugate (transposed) partition. If $\lambda \vdash k$ and $n \ge k$ then there are $\binom{n}{k}$ ways to choose the entries of a tableau of shape λ so the number of n-standard tableaux of shape λ is $\binom{n}{k} f_{\lambda}$.

The symmetric group S_n acts on tableaux by permuting their entries. If $L \in \mathcal{T}_n^{\lambda}$, then $s_i L$ is the tableau that is obtained from L by replacing i (if $i \in L$) by i + 1 and replacing i + 1 (if $i + 1 \in L$) by i. Note that $s_i L$ may be non-standard, since condition (2) or (3) may fail, and $s_i L = L$ if and only if $i, i + 1 \notin L$.

Let v_L , $L \in \mathcal{T}_n^{\lambda}$, denote a set of vectors indexed by the *n*-standard tableaux of shape λ . Let

$$V^{\lambda} = \mathbb{C}(q^{1/2})\operatorname{-span}\{v_L \mid L \in \mathcal{T}_n^{\lambda}\}$$
(3.3)

In this way the symbols $v_L, L \in \mathcal{T}_n^{\lambda}$ are a basis of the vector space V^{λ} . It follows that if $\lambda \vdash k$, then

$$\dim(V^{\lambda}) = \#(n\text{-standard tableaux of shape }\lambda) = \binom{n}{k} f_{\lambda}.$$
 (3.4)

If *b* is a box in position (i, j) of λ , then the *content* of *b* is

$$\operatorname{ct}(b) = j - i. \tag{3.5}$$

Let $L \in \mathcal{T}_n^{\lambda}$. If $i, i + 1 \in L$, then let L(i) and L(i + 1) denote the box in L containing i and i + 1, respectively. Define

$$a_L(i) = \frac{q-1}{1-q^{\operatorname{ct}(L(i))-\operatorname{ct}(L(i+1))}}.$$
(3.6)

Define an action of T_i , $1 \le i \le n-1$, on V^{λ} as follows:

$$T_{i}v_{L} = \begin{cases} a_{L}(i) v_{L} + (1 + a_{L}(i)) v_{L'}, & \text{if } i, i+1 \in L, \\ (q-1) v_{L} + q^{1/2} v_{s_{i}L}, & \text{if } i \notin L, i+1 \in L, \\ q^{1/2} v_{s_{i}L}, & \text{if } i \in L, i+1 \notin L, \\ q v_{L}, & \text{if } i, i+1 \notin L, \end{cases}$$
(3.7)

where

$$v_{L'} = \begin{cases} v_{s_iL}, & \text{if } s_iL \text{ is } n\text{-standard,} \\ 0, & \text{otherwise.} \end{cases}$$

Define an action of P_i , $1 \leq i \leq n$, on V^{λ} by

$$P_i v_L = \begin{cases} v_L, & \text{if } 1, 2, \dots, i \notin L, \\ 0, & \text{otherwise.} \end{cases}$$
(3.8)

Remark 3.1. If $i, i + 1 \in L$ then the action of T_i on v_L is the same as the action in Hoefsmit's [7] seminormal representation of $\mathcal{H}_n(q)$.

Theorem 3.2. For each $\lambda \in \Lambda_n$, the actions of the generators of $\mathcal{I}_n(q)$ on the vector space V^{λ} afford an irreducible representation of $\mathcal{I}_n(q)$. Moreover, the set V^{λ} , $\lambda \in \Lambda_n$, is a complete set of irreducible, pairwise non-isomorphic $\mathcal{I}_n(q)$ -modules.

Proof. First we check relations (A1)–(A7) in the presentation (2.1).

(A1) Let *L* be a standard tableaux. Then T_i acts on the subspace spanned by v_L and $v_{L'}$. Let *M* be the matrix of T_i with respect to $\{v_L, v_{L'}\}$. If $i, i + 1 \in L$, then this is the same matrix as in the seminormal action of $\mathcal{H}_n(q)$, so we know from [7] that $M^2 = (q - 1)M + qI_2$, where I_2 is the 2 × 2 identity matrix. If $i \notin L$ and $i + 1 \in L$, then

$$M = \begin{pmatrix} q - 1 & q^{1/2} \\ q^{1/2} & 0 \end{pmatrix}.$$

Since det(M) = -q and trace(M) = q - 1, we have $M^2 = (q - 1)M + qI_2$. The case $i \in L$, $i + 1 \notin L$ is proved by exchanging the rows and columns of M in the previous case. If $i, i + 1 \notin L$, then M = diag(q, q) which trivially satisfies $M^2 = (q - 1)M + qI_2$.

(A3) We see from $T_i v_L = av_L + bv_{s_iL}$ that the action of T_i affects only positions *i* and i + 1 in *L*. Since |i - j| > 1, the sets $\{i, i + 1\}$ and $\{j, j + 1\}$ are disjoint and thus the actions of T_i and T_j commute.

(A4)–(A5) If $i \neq j$, then $1, \ldots, j \notin L$ if and only if $1, \ldots, j \notin s_i L$. Thus, $i \neq j$ and $1, \ldots, j \notin L$ imply that $T_i P_j v_L$ and $P_j T_i v_L$ are both equal to $T_i v_L$. If $i \neq j$ and it is not the case that $1, \ldots, j \notin L$, then $T_i P_j v_L = 0$ and $P_j T_i v_L = 0$. If i < j, and $1, \ldots, j \notin L$, then $T_i v_L = q v_L$, so $T_i P_j$ acts the same as $q P_j$.

(A6) is immediate from (3.8).

(A7) We verify the equivalent condition (2.3): $P_{j+1} = P_j T_j P_j + (1-q) P_j$. If it is *not* the case that $1, \ldots, j \notin L$, then both $P_j v_L = 0$ and $P_{j+1} v_L = 0$, and the result holds.

If $1, \ldots, j + 1 \notin L$, then $P_j v_L = P_{j+1} v_L = v_L$, and $T_j v_L = q v_L$. Thus,

$$P_{i}T_{j}P_{j}v_{L} + (1-q)P_{j}v_{L} = qv_{L} + (1-q)v_{L} = v_{L} = P_{j+1}v_{L}.$$

If $1, ..., j \notin L$ and $j + 1 \in L$, then $P_j v_L = v_L$, $P_j v_{s_j L} = 0$, $P_{j+1} v_L = 0$, and $T_j v_L = (q-1)v_L + q^{1/2}v_{s_j L}$. Thus,

$$P_{i}T_{i}P_{j}v_{L} + (1-q)P_{i}v_{L} = (q-1)v_{L} + (1-q)v_{L} = 0 = P_{i+1}v_{L}.$$

(A2) depends on the positions of i, i + 1, and i + 2. When i, i + 1, $i + 2 \in L$, we know that the relation holds, since the action is exactly the same as $\mathcal{H}_n(q)$ (see [7]). If i, i + 1, $i + 2 \notin L$, then both T_i and T_{i+1} act by multiplication by q, and (A2) holds. We then consider, separately, the cases when one of i, i + 1, i + 2 is in T and when two of i, i + 1, i + 2 are in T.

Let L_i be an *n*-standard tableau with $i \in L_i$ and i + 1, $i + 2 \notin L_i$. Let $L_{i+1} = s_i L_i$ and $L_{i+2} = s_{i+1}L_{i+1}$. Note that L_{i+1} contains i + 1 and not i or i + 2 and L_{i+2} contains i + 2

and not *i* or i + 1. For k = i, i + 1 let M_k denote the matrix of T_k acting on $\{L_i, L_{i+1}, L_{i+2}\}$. Then

$$M_{i} = \begin{pmatrix} 0 & q^{1/2} & 0 \\ q^{1/2} & q - 1 & 0 \\ 0 & 0 & q \end{pmatrix}, \qquad M_{i+1} = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & q^{1/2} \\ 0 & q^{1/2} & q - 1 \end{pmatrix}.$$

It is a straight-forward calculation to check that $M_i M_{i+1} M_i = M_{i+1} M_i M_{i+1}$.

Suppose that *i*, *i* + 1 are in the same row (or column) in an *n*-standard tableau L_a and that $i + 2 \notin L_a$. Let $L_b = s_{i+1}L_a$ and $T_c = s_iL_b$. Note that *i*, *i* + 2 are in the same row (column) in L_b and *i* + 1, *i* + 2 are in the same row (column) in T_c . For k = i, i + 1 let M_k denote the matrix of T_k acting on $\{L_a, L_b, L_c\}$. Then

$$M_{i} = \begin{pmatrix} x & 0 & 0 \\ 0 & 0 & q^{1/2} \\ 0 & q^{1/2} & q - 1 \end{pmatrix}, \qquad M_{i+1} = \begin{pmatrix} 0 & q^{1/2} & 0 \\ q^{1/2} & q - 1 & 0 \\ 0 & 0 & x \end{pmatrix},$$

where x = q if i, i + 1 are in the same row of T_a and x = -1 if i, i + 1 are in the same column of L_a . Again it is straight-forward to check that $M_i M_{i+1} M_i = M_{i+1} M_i M_{i+1}$.

Finally, let $i, i + 1 \in L_a$ with i, i + 1 not adjacent, and let $L_b = s_i L_a, L_c = s_{i+1}L_b$, $L_d = s_i L_c, L_e = s_{i+1}L_a$, and $L_f = s_i L_e$. Then if α is the box containing i in L_a and β is the box containing i + 1 in L_b , we have

L_a has <i>i</i> in α and <i>i</i> + 1 in β ,	L_b has $i + 1$ in α and i in β ,
L_c has $i + 2$ in α and i in β ,	L_d has $i + 2$ in α and $i + 1$ in β ,
L_e has <i>i</i> in α and $i + 2$ in β ,	L_f has $i + 1$ in α and $i + 2$ in β .

For k = i, i + 1 let M_k denote the matrix of T_k acting on $\{L_a, L_b, L_c, L_d, L_e, L_f\}$. Then

$$M_{i} = \begin{pmatrix} \delta(k) & 1 + \delta(k) & 0 & 0 & 0 & 0 \\ 1 + \delta(-k) & \delta(-k) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & q^{1/2} & 0 & 0 \\ 0 & 0 & q^{1/2} & q - 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & q^{1/2} \\ 0 & 0 & 0 & 0 & 0 & q^{1/2} & q - 1 \end{pmatrix}$$

and

$$M_{i+1} = \begin{pmatrix} 0 & 0 & 0 & q^{1/2} & 0 \\ 0 & 0 & q^{1/2} & 0 & 0 & 0 \\ 0 & q^{1/2} & q - 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \delta(-k) & 0 & 1 + \delta(-k) \\ q^{1/2} & 0 & 0 & 0 & q - 1 & 0 \\ 0 & 0 & 0 & 1 + \delta(k) & 0 & \delta(k) \end{pmatrix}$$

where $k = \operatorname{ct}(\alpha) - \operatorname{ct}(\beta)$ and $\delta(k) = (q-1)/(1-q^k)$. After multiplying out $M_i M_{i+1} M_i$ and $M_{i+1} M_i M_{i+1}$, the only non-trivial relations to check are

(1) $\delta(k) + \delta(-k) = q - 1$, and

(2) $q + (q-1)\delta(k) = \delta(k)^2 + [1+\delta(k)][1+\delta(-k)].$

They both follow quite easily from the relation $\delta(-k) = -q^k \delta(k)$.

Let B_k be the subalgebra of $\mathcal{I}_n(q)$ spanned by $T_1, \ldots, T_{k-1}, P_1, \ldots, P_k$ so that $B_1 \subseteq B_2 \subseteq \cdots \subseteq B_n = \mathcal{I}_n(q)$. Clearly, there is a surjection from $\mathcal{I}_k(q)$ to B_k . We will see that they are isomorphic by producing sufficiently many irreducible representations.

Let $1 \le k \le n$ and $\lambda \in A_k \subseteq A_n$. Then V^{λ} is spanned by v_L , $L \in \mathcal{T}_n^{\lambda}$, and is a module for the subalgebra B_k . Let $V^{\lambda,k} \subseteq V^{\lambda}$ be the subspace spanned by v_L , $L \in \mathcal{T}_k^{\lambda}$. From (3.7) and (3.8), we see that $V^{\lambda,k}$ is a B_k -submodule of the B_n -module V^{λ} . We use induction on k to prove that the modules $V^{\lambda,k}$, $\lambda \in A_k$, are irreducible modules for B_k . In particular, this shows that the modules $V^{\lambda,n}$, $\lambda \in A_n$, are irreducible for $\mathcal{I}_n(q) = B_n$.

If k = 1, then the result is true since the modules, which correspond to $\lambda = \emptyset$ and $\lambda = (1)$, are 1-dimensional. Now, assume that k > 1 and that the property holds for B_{k-1} . Fix $\lambda \in \Lambda_k$, and consider the restriction of $V^{\lambda,k}$ to B_{k-1} . We partition the standard tableaux T_k^{λ} into subsets as follows. Let c_1, \ldots, c_ℓ denote the "corners" of the partition λ . These are boxes c_i in λ such that λ contains no box to the right or below c_i (i.e., these are the possible locations of k in L). Define

$$\mathcal{T}_{k}^{\lambda}(0) = \left\{ L \in \mathcal{T}_{k}^{\lambda} \mid n \notin L \right\} \text{ and } \mathcal{T}_{k}^{\lambda}(i) = \left\{ L \in \mathcal{T}_{k}^{\lambda} \mid n \in c_{i} \right\}, \quad 1 \leq i \leq k.$$

If $|\lambda| = k$, then L must contain k. In this case we omit the possibility that i = 0. Now define

$$V_i^{\lambda,k} = \mathbb{C}(q^{1/2})\operatorname{-span}\{v_L \mid L \in \mathcal{T}_k^{\lambda}(i)\}, \quad 0 \leq i \leq k.$$

By the definition of the action of T_i , $1 \le i \le k-2$, and P_j , $1 \le j \le k-1$, we see that $V_i^{\lambda,k}$ is a module for B_{k-1} . In fact $V_i^{\lambda,k} \cong V^{\mu,k-1}$, where μ is obtained from λ by removing c_i , for $1 \le i \le n$, and $\mu = \lambda$ when i = 0. The induction hypothesis shows that $V_i^{\lambda,k}$, $0 \le i \le k$, is a set of irreducible, non-isomorphic B_{k-1} -modules (again omit i = 0 if $|\lambda| = k$).

Suppose $W \subseteq V^{\lambda,k}$ is a nonzero B_k -submodule of $V^{\lambda,k}$. If we consider W to be a B_{k-1} -module, then W contains some irreducible component $V_i^{\lambda,k}$. For each $j \notin \{i, 0\}$, we can choose $L \in \mathcal{T}^{\lambda,k}(i)$ with k-1 in corner c_j . Then k and k-1 are not adjacent in L, so $T_{k-1}v_L = av_L + bv_{s_{k-1}L}$ with $b \neq 0$. Thus $v_{s_{k-1}L} \in W$ and $s_{k-1}L \in \mathcal{T}_k^{\lambda}(j)$. Furthermore, if $|\lambda| < k$, then we can find $L \in \mathcal{T}^{\lambda,k}(i)$ so that L does not contain k-1. Then $T_{k-1}v_L = (q-1)v_L + q^{1/2}v_{s_{k-1}L}$. Thus $v_{s_{k-1}L} \in W$ and $s_{k-1}L \in \mathcal{T}_k^{\lambda}(0)$. This tells us that $V_i^{\lambda,k} \subseteq W$ for each j and so $W = V^{\lambda,k}$, proving that $V^{\lambda,k}$ is irreducible.

If $\lambda \neq \mu \in \Lambda_k$, then $V^{\lambda,k}$ and $V^{\mu,k}$ are non-isomorphic, because they have different decompositions as B_{k-1} -modules.

The fact that $V^{\lambda,k}$, $\lambda \in \Lambda_k$, is a complete set of irreducible B_k -representations comes from summing the squared dimensions of these representations and comparing with the dimension of B_k . Indeed,

$$\sum_{\ell=0}^{k} \sum_{\lambda \vdash \ell} {\binom{k}{\ell}}^2 f_{\lambda} = \sum_{\ell=0}^{k} {\binom{k}{\ell}}^2 \sum_{\lambda \vdash \ell} f_{\lambda} = \sum_{\ell=0}^{k} {\binom{k}{\ell}}^2 \ell!,$$

where $\sum_{\lambda \vdash \ell} f_{\lambda} = \ell!$ comes from the representation theory of S_{ℓ} . We know that B_k is a homomorphic image of $\mathcal{I}_k(q)$ and now we have shown that they have the same dimension. Thus, $B_k \cong \mathcal{I}_k(q)$ and the $V^{\lambda,k}$ form a complete set of irreducible B_k -modules. In particular, V^{λ} , $\lambda \in \Lambda_n$, is a complete set of irreducible $\mathcal{I}_n(q)$ -modules. \Box

The following is a corollary of the proof of Theorem 3.2.

Corollary 3.3. The subalgebra of $\mathcal{I}_n(q)$ spanned by $T_1, \ldots, T_{k-1}, P_1, \ldots, P_k$ is isomorphic to $\mathcal{I}_k(q)$. Furthermore, for $\lambda \in \Lambda_n$, the decomposition of V^{λ} into irreducible modules for $\mathcal{I}_{n-1}(q)$ is given by

$$V^{\lambda} \cong \bigoplus_{\mu \in \lambda^{-,=}} V^{\mu},$$

where $\lambda^{-,=}$ is the set of all partitions $\mu \in \Lambda_{n-1}$ such that μ equals λ or μ is obtained from λ by removing a box.

From Corollary 3.3 we see that the Bratteli diagram of $\mathcal{I}_n(q)$ is given in Fig. 1. The vertices on row *n* are given by Λ_n and the edges are determined by restriction rules from $\mathcal{I}_n(q)$ to $\mathcal{I}_{n-1}(q)$. The basis of V^{λ} partitions into subsets which explicitly realize the decomposition shown in Corollary 3.3 and Fig. 1.

Corollary 3.4. The subalgebra of $\mathcal{I}_n(q)$ spanned by T_1, \ldots, T_{n-1} is isomorphic to $\mathcal{H}_n(q)$.

Proof. Let C_n be the subalgebra of $\mathcal{I}_n(q)$ spanned by $T_1, T_2, \ldots, T_{k-1}$. Since the T_i satisfy relations (A1)–(A3), we see that C_n is a homomorphic image of $\mathcal{H}_n(q)$. The

set of $\mathcal{I}_n(q)$ -representations $V^{\lambda}, \lambda \vdash n$, are representations for the subalgebra C_n and thus are representations of $\mathcal{H}_n(q)$. Furthermore, they are isomorphic to Hoefsmit's [7] seminormal representations of $\mathcal{H}_n(q)$, which are a complete set of irreducible $\mathcal{H}_n(q)$ -representations. Since these representations factor through C_n , it follows that C_n and $\mathcal{H}_n(q)$ are isomorphic. \Box

3.1. Jucys-Murphy elements

Hoefsmit [7] defines special elements in $\mathcal{H}_n(q)$ which act diagonally on the seminormal representations. The analogous elements in S_n later became known as Jucys–Murphy elements (see [17]). We now define analogous elements in $\mathcal{I}_n(q)$.

For $1 \leq i \leq n$, define

$$X_i = q^{-(i-1)} (T_{i-1} T_{i-2} \cdots T_1) (1 - P_1) (T_1 T_2 \cdots T_{i-1}),$$

so that $X_i = q^{-1}T_{i-1}X_{i-1}T_{i-1}$, for $i \ge 2$.

Proposition 3.5. *For* $1 \le i \le n$ *we have*

$$X_i v_L = \begin{cases} q^{\operatorname{ct}(L(i))} v_L, & \text{if } i \in L, \\ 0, & \text{if } i \notin L, \end{cases}$$

Proof. We use induction on *i*. If i = 1, then $X_1 = P_1$ and the result holds by (3.8). Now we assume that the result is true for X_i and prove it for X_{i+1} by cases determined by the position of *i*, i + 1 in *L*.

First assume $i + 1 \notin L$. If $i \notin L$, then

$$X_{i+1}v_L = q^{-1}T_i X_i T_i v_L = T_i X_i v_L = 0.$$

If $i \in L$, then

$$X_{i+1}v_L = q^{-1}T_iX_iT_iv_L = q^{-1/2}T_iX_iv_{s_iL} = 0.$$

Now assume $i + 1 \in L$. If $i \notin L$, then

$$X_{i+1}v_L = q^{-1}T_iX_iT_iv_L = q^{-1}(q-1)T_iX_iv_L + q^{-1/2}T_iX_iv_{s_iL}$$

= 0 + q^{-1/2}q^{ct(L(i+1))}T_iv_{s_iL} = q^{ct(L(i+1))}v_L.

Finally, let $i, i + 1 \in L$. As in the proof of Theorem 3.2, let $d = \operatorname{ct}(L(i)) - \operatorname{ct}(L(i+1))$ and let $\delta(d) = (q-1)/(1-q^d)$. Then

$$\begin{aligned} X_{i+1}v_L &= q^{-1}T_i X_i T_i v_L = q^{-1}T_i X_i \big[\delta(d)v_L + \big(1 + \delta(d)\big)v_{L'} \big] \\ &= q^{-1}T_i \big[\delta(d)q^{\operatorname{ct}(L(i))}v_L + \big(1 + \delta(d)\big)q^{\operatorname{ct}(L(i+1))}v_{L'} \big] \\ &= q^{-1} \Big[\delta(d)q^{\operatorname{ct}(L(i))} \big(\delta(d)v_L + \big(1 + \delta(d)\big)v_{L'} \big) \end{aligned}$$

T. Halverson / Journal of Algebra 273 (2004) 227-251

+
$$(1 + \delta(d))q^{\operatorname{ct}(L(i+1))}(\delta(-d)v_{L'} + (1 + \delta(-d))v_L)]$$

= $Av_L + Bv_{L'}$,

where

$$A = q^{-1} \Big[\delta(d)^2 q^{\operatorname{ct}(L(i))} + (1 + \delta(d)) (1 + \delta(-d)) q^{\operatorname{ct}(L(i+1))} \Big] \quad \text{and}$$
$$B = q^{-1} \Big(1 + \delta(d) \Big) \Big[\delta(d) q^{\operatorname{ct}(L(i))} + \delta(-d) q^{\operatorname{ct}(L(i+1))} \Big].$$

Now, B = 0 follows quite easily from $\delta(-d) = -q^d \delta(d)$ and

$$\begin{split} A &= q^{-1} \Big[\delta(d)^2 q^{\operatorname{ct}(L(i))} + \big(1 + \delta(d) \big) \big(1 + \delta(-d) \big) q^{\operatorname{ct}(L(i+1))} \Big] \\ &= q^{-1} q^{\operatorname{ct}(L(i+1))} \Big[\delta(d)^2 q^d + \big(1 + \delta(d) \big) \big(1 + \delta(-d) \big) \Big] \\ &= q^{-1} q^{\operatorname{ct}(L(i+1))} \Big[\delta(d)^2 q^d + q - q^d \delta(d)^2 \Big] \\ &= q^{\operatorname{ct}(L(i+1))}. \quad \Box \end{split}$$

4. Schur–Weyl duality

In this section we show that $\mathcal{I}_n(q)$ and the quantum general linear group $U_q\mathfrak{gl}(r)$ are in Schur–Weyl duality on tensor space.

4.1. The quantum general linear group

Following Jimbo [9], we define the quantum $U_q\mathfrak{gl}(r)$ corresponding to the Lie algebra $\mathfrak{gl}(r)$. The algebra we define here is the same as in [9], except with his parameter q replaced by $q^{1/2}$. Let $U_q\mathfrak{gl}(r)$ be the $\mathbb{C}(q^{1/4})$ -algebra given by generators

$$e_i, \quad f_i \quad (1 \leq i < r), \quad \text{and} \quad q^{\pm \varepsilon_i/2} \quad (1 \leq i \leq n),$$

with relations

$$\begin{split} q^{\varepsilon_i/2} q^{\varepsilon_j/2} &= q^{\varepsilon_j/2} q^{\varepsilon_i/2}, \qquad q^{\varepsilon_i/2} q^{-\varepsilon_i/2} = q^{-\varepsilon_i/2} q^{\varepsilon_i/2} = 1, \\ q^{\varepsilon_i/2} e_j q^{-\varepsilon_i/2} &= \begin{cases} q^{-1/2} e_j, & \text{if } j = i - 1, \\ q^{1/2} e_j, & \text{if } j = i, \\ e_j, & \text{otherwise,} \end{cases} \\ q^{\varepsilon_i/2} f_j q^{-\varepsilon_i/2} &= \begin{cases} q^{1/2} f_j, & \text{if } j = i - 1, \\ q^{-1/2} f_j, & \text{if } j = i, \\ f_j, & \text{otherwise,} \end{cases} \\ e_i f_j - f_j e_i = \delta_{ij} \frac{q^{1/2(\varepsilon_i - \varepsilon_{i+1})} - q^{-1/2(\varepsilon_i - \varepsilon_{i+1})}}{q^{1/2} - q^{-1/2}}, \end{split}$$

T. Halverson / Journal of Algebra 273 (2004) 227-251

$$e_{i\pm 1}e_i^2 - (q^{1/2} + q^{-1/2})e_ie_{i\pm 1}e_i + e_i^2e_{i\pm 1} = 0,$$

$$f_{i\pm 1}f_i^2 - (q^{1/2} + q^{-1/2})f_if_{i\pm 1}f_i + f_i^2f_{i\pm 1} = 0,$$

$$e_ie_j = e_je_i, \qquad f_if_j = f_jf_i, \quad \text{if } |i-j| > 1.$$

Let

$$t_i = q^{\varepsilon_i/4} \quad (1 \leq i \leq r), \qquad k_i = t_i t_{i+1}^{-1} \quad (1 \leq i \leq r-1).$$

There is a Hopf algebra structure (see [9, p. 248]) on $U_q \mathfrak{gl}(r)$ with comultiplication Δ and counit *u* given by

$$\Delta(e_i) = e_i \otimes k_i^{-1} + k_i \otimes e_i, \qquad u(e_i) = 0,$$

$$\Delta(f_i) = f_i \otimes k_i^{-1} + k_i \otimes f_i, \qquad u(f_i) = 0,$$

$$\Delta(t_i) = t_i \otimes t_i, \qquad u(t_i) = 1.$$
(4.1)

The "fundamental" r-dimensional $U_q \mathfrak{gl}(r)$ -module V is the vector space

$$V = \mathbb{C}(q^{1/4})\operatorname{-span}\{v_1, \ldots, v_r\}$$

(so that the symbols v_i form a basis of V) with $U_q \mathfrak{gl}(r)$ -action given by (see [9, Proposition 1, Remark 1]),

$$e_{i}v_{j} = \begin{cases} v_{j+1}, & \text{if } j = i, \\ 0, & \text{if } j \neq i, \end{cases} \qquad f_{i}v_{j} = \begin{cases} v_{j-1}, & \text{if } j = i+1, \\ 0, & \text{if } j \neq i+1, \end{cases} \text{ and}$$
$$t_{i}v_{j} = \begin{cases} q^{1/4}v_{j}, & \text{if } j = i, \\ v_{j}, & \text{if } j \neq i. \end{cases}$$

The "trivial" 1-dimensional $U_q \mathfrak{gl}(r)$ -module W is the vector space

$$W = \mathbb{C}(q^{1/4})\operatorname{-span}\{v_0\}$$

(so that the symbol v_0 is a basis of W) with $U_q \mathfrak{gl}(r)$ -action given by the counit u (see (4.1)),

$$e_i v_0 = f_i v_0 = 0$$
 and $t_i v_0 = v_0$.

Let λ be a partition with $\ell(\lambda) \leq r$, and let V^{λ} be an irreducible $U_q \mathfrak{gl}(r)$ -module of highest weight λ . Then $W = V^{\emptyset}$ and $V = V^{(1)}$. The decomposition rules for tensoring by V and W are (see [1, Proposition 10.1.16]),

$$V^{\lambda} \otimes W \cong V^{\lambda}$$
 and $V^{\lambda} \otimes V \cong \bigoplus_{\mu \in \lambda^{+}} V^{\mu}$, (4.2)

where λ^+ is the set of partitions that are obtained by adding a box to λ . Thus,

$$V^{\lambda} \otimes (W \oplus V) \cong \bigoplus_{\mu \in \lambda^{+,=}} V^{\mu}, \tag{4.3}$$

where $\lambda^{+,=}$ is the set of partitions that are obtained by adding 0 or 1 boxes to λ .

4.2. Centralizer algebra of the tensor power representation

The coproduct on $U_q \mathfrak{gl}(r)$ is coassociative, so it makes sense to consider the tensor product representation $(W \oplus V)^{\otimes n}$. It follows from (4.3) and induction that the *n*-fold tensor product $(W \oplus V)^{\otimes n}$ decomposes into irreducible $U_q \mathfrak{gl}(r)$ -modules as

$$(W \oplus V)^{\otimes n} \cong \bigoplus_{k=0}^{n} \bigoplus_{\lambda \vdash k} \binom{n}{k} f_{\lambda} V^{\lambda}, \tag{4.4}$$

where f_{λ} is the number of standard tableaux of shape λ (see (2.1)). The Bratteli diagram for $U_q \mathfrak{gl}(r)$ is shown in Fig. 1. It has the partitions Λ_n on level *n*, and a vertex $\mu \in \Lambda_{n+1}$ is connected to a vertex $\lambda \in \Lambda_n$ if $\mu \in \lambda^{+,=}$.

The centralizer algebra

$$C_n = \operatorname{End}_{U_a \mathfrak{gl}(r)} \left((W \oplus V)^{\otimes n} \right)$$

is the set of transformations in $\text{End}((W \oplus V)^{\otimes n})$ which commute with $U_q \mathfrak{gl}(r)$. By general results from double centralizer theory (see, for example, [2, §3D]), we have

- (1) C_n is semisimple, and the irreducible representations of C_n are indexed by Λ_n , i.e., the same set that indexes the irreducible representations of $U_q \mathfrak{gl}(r)$ which appear in $(W \oplus V)^{\otimes n}$.
- (2) For λ ∈ Λ_n let M^λ denote the irreducible C_n-module indexed by λ. Then dim(M^λ) = m_λ is the multiplicity of V^λ in the decomposition of (W ⊕ V)^{⊗n} as a U_q gl(r)-module, and dim(V^λ) = d_λ is the multiplicity of M^λ in the decomposition of (W ⊕ V)^{⊗n} as a C_n-module. It follows that m_λ is the number of paths from Ø to λ in Fig. 1. We choose |λ| levels on which to add a box, and there are f_λ ways to add boxes to Ø and reach λ. Thus,

$$m_{\lambda} = \#(\text{paths from }\emptyset \text{ to }\lambda) = \binom{n}{|\lambda|} f_{\lambda}$$

(3) When $r \ge n$, all of the partitions in Λ_n appear in the Bratteli diagram, and

$$\dim(C_n) = \sum_{k=0}^n \sum_{\lambda \vdash k} \binom{n}{k}^2 f_{\lambda}^2 = \sum_{k=0}^n \binom{n}{k}^2 \sum_{\lambda \vdash k} f_{\lambda}^2 = \sum_{k=0}^n \binom{n}{k}^2 k! = |R_n|.$$
(4.5)

4.3. R-matrices

We consider the embedding $U_q \mathfrak{gl}(r) \subset U_q \mathfrak{gl}(r+1)$ so that $U_q \mathfrak{gl}(r)$ is defined as in Section 4.1 and $U_q \mathfrak{gl}(r+1)$ is generated by e_i , f_i , $0 \leq i < r$, and t_i , $0 \leq i \leq r$, with the appropriately extended relations from Section 4.1. Then we define the fundamental representation of $U_q \mathfrak{gl}(r+1)$ as

$$U = \mathbb{C}(q^{1/4})\operatorname{-span}\{v_0, v_1, \ldots, v_r\},$$

where the symbols v_i are a basis for U such that $W = \mathbb{C}(q^{1/4})$ -span $\{v_0\}, V =$ $\mathbb{C}(q^{1/4})$ -span $\{v_1, \ldots, v_r\}$, and thus we have the restriction rule

$$\operatorname{Res}_{U_q\mathfrak{gl}(r)}^{U_q\mathfrak{gl}(r+1)}U = W \oplus V.$$

The \mathcal{R} -matrix (see [9, §4]) for $U_q \mathfrak{gl}(r+1)$ provides a canonical $U_q \mathfrak{gl}(r+1)$ -module isomorphism $\check{R}_{MN}: M \otimes N \to N \otimes M$ for any two $U_q \mathfrak{gl}(r+1)$ -modules M and N. The \mathcal{R} -matrix for $U, \check{R}_{UU}: U \otimes U \to U \otimes U$, is given explicitly in [9, formula (7)]. We rescale it to the operator $\check{S} = q^{1/2} \check{R}_{UU}$. For each $0 \leq i, j \leq r$, we have

$$\check{S}(v_i \otimes v_j) = q^{1/2} \check{R}_{UU}(v_i \otimes v_j) = \begin{cases} qv_j \otimes v_j, & \text{if } i = j, \\ q^{1/2}v_j \otimes v_i, & \text{if } i > j, \\ q^{1/2}v_j \otimes v_i + (q-1)(v_i \otimes v_j), & \text{if } i < j. \end{cases}$$

For each $1 \leq i \leq n - 1$ define

$$\check{S}_i = \mathrm{id} \otimes \cdots \otimes \mathrm{id} \otimes \check{S} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id},$$

$$(4.6)$$

where \check{S} appears as the transformation in the *i*th and (i + 1)st factor. Jimbo [9, Proposition 3], shows that \check{S} commutes with $U_q \mathfrak{gl}(r+1)$ and thus $\check{S} \in C_n$.

Define $\dot{E} \in \operatorname{End}_{U_{\mathfrak{ggl}}(r)}(W \oplus V)$ to be projection onto the trivial module W, and let

$$\check{E}_i = \check{E} \otimes \dots \otimes \check{E} \otimes \mathrm{id} \otimes \dots \mathrm{id} \in C_n, \tag{4.7}$$

where the projection onto the trivial module \check{E} appears in the first *i* tensor slots and the identity transformation id appears in the remaining n - i tensor slots.

Proposition 4.1. Let V be fundamental $U_q \mathfrak{gl}(r)$ -module and let W be the trivial $U_q \mathfrak{gl}(r)$ module. The matrices \check{S}_i and \check{E}_i satisfy the following relations as transformations on $U^{\otimes n}$

- (1) $\check{S}_i^2 = (q-1)\check{S}_i^2 + q \cdot 1, \ 1 \le i \le n-1,$

- (1) $\tilde{z}_{i} (q i) \tilde{z}_{i} + q i, i < i < n$ (2) $\check{S}_{i}\check{S}_{i+1}\check{S}_{i}, 1 \leq i \leq n-2,$ (3) $\check{S}_{i}\check{S}_{j} = \check{S}_{j}\check{S}_{i}, |i j| > 2,$ (4) $\check{S}_{i}\check{E}_{j} = \check{E}_{j}\check{S}_{i} = q\check{E}_{j}, 1 \leq i < j \leq n,$
- (5) $\check{S}_i \check{E}_i = \check{E}_i \check{S}_i, \ 1 \leq j < i \leq n,$

(6)
$$\check{E}_i^2 = \check{E}_i, \ 1 \leq i \leq n,$$

(7) $\check{E}_{i+1} = \check{E}_i \check{S}_i \check{E}_i + (1-q)\check{E}_i, \ 2 \leq i \leq n.$

Proof. Let $U_q \mathfrak{gl}(r)$ be embedded in $U_q \mathfrak{gl}(r+1)$ as discussed above so that $U = V \oplus W$ as a module for $U_q \mathfrak{gl}(r)$. From [9], we know that \check{S}_i is in $\operatorname{End}_{U_q \mathfrak{gl}(r+1)}(U^{\otimes n}) \subseteq C_n$ and that the \check{S}_i satisfy relations (1)–(3). These are not difficult to verify.

If j < i, then \check{S}_i acts as the identity in tensor positions $1, \ldots, j$ and \check{E}_j acts as identity in tensor positions i, i + 1, so \check{S}_i and \check{E}_j commute and property (5) holds.

Property (6) follows immediately from the fact that \check{E}_i is a projection.

For properties (4) and (7), we check the actions on the basis of simple tensors $v_{k_1} \otimes \cdots \otimes v_{k_n}$ with $0 \leq k_j \leq r+1$. Let $\mathbf{v} = v_{k_1} \otimes \cdots \otimes v_{k_n}$ and let \mathbf{v}' be obtained from \mathbf{v} by switching v_{k_i} with $v_{k_{i+1}}$. Thus $\check{S}_i \mathbf{v} = \alpha \mathbf{v} + \beta \mathbf{v}'$ with $\alpha, \beta \in \mathbb{C}(q^{1/2})$.

Assume that j > i. If $k_1 = \cdots = k_j = 0$, then $\check{E}_j \mathbf{v} = \mathbf{v}$ and $\check{S}_i \mathbf{v} = q\mathbf{v}$, so $\check{S}_i \check{E}_j \mathbf{v} = \check{S}_i \mathbf{v} = q\mathbf{v} = q\check{E}_j \mathbf{v} = \check{E}_j \check{S}_i \mathbf{v}$. If it is not the case that $k_1 = \cdots = k_j = 0$, then $\check{E}_j \mathbf{v} = \check{E}_j \mathbf{v}' = 0$, so $\check{E}_j \check{S}_i \mathbf{v} = \check{E}_j (\alpha \mathbf{v} + \beta \mathbf{v}') = 0 = q\check{E}_j \mathbf{v} = \check{S}_i \check{E}_j \mathbf{v}$, and property (4) holds.

If it is not the case that $k_1 = k_2 = \cdots = k_i = 0$ then $\check{E}_i \mathbf{v} = 0$ and $\check{E}_{i+1} \mathbf{v} = 0$, so

$$\check{E}_{i+1}\mathbf{v} = 0 = \left(\check{E}_i\check{S}_i\check{E}_i + (1-q)\check{E}_i\right)\mathbf{v}.$$

Now assume $k_1 = k_2 = \cdots = k_i = 0$. If $k_{i+1} = 0$, then $\check{E}_i \mathbf{v} = \mathbf{v}$, $\check{E}_{i+1} \mathbf{v} = \mathbf{v}$, and $\check{S}_i \mathbf{v} = q \mathbf{v}$, so

$$\left(\check{E}_i\check{S}_i\check{E}_i + (1-q)\check{E}_i\right)\mathbf{v} = q\mathbf{v} + (1-q)\mathbf{v} = \mathbf{v} = \check{E}_i\mathbf{v} = \mathbf{v}.$$

If $k_{i+1} > 0$, then $\check{E}_i \mathbf{v} = \mathbf{v}$, $\check{E}_i \mathbf{v}' = 0$, $\check{E}_{i+1} \mathbf{v} = 0$, and $\check{S}_i \mathbf{v} = (q-1)\mathbf{v} + q^{1/2}\mathbf{v}'$, so

$$(\check{E}_i\check{S}_i\check{E}_i + (1-q)\check{E}_i)\mathbf{v} = \check{E}_i((q-1)\mathbf{v} + q^{1/2}\mathbf{v}') + (1-q)\mathbf{v}$$
$$= (q-1)\mathbf{v} + (1-q)\mathbf{v} = 0 = \check{E}_{i+1}\mathbf{v}.$$

Thus, (7) holds and the proposition is proved. \Box

Corollary 4.2. The elements \check{E}_1 and \check{S}_i , $1 \leq i \leq n-1$, generate C_n .

Proof. Let D_n denote the subalgebra generated by \check{E}_1 and \check{S}_i , $1 \le i \le n - 1$. From [20], we know that, under the specialization $q \to 1$, \check{E}_1 and \check{S}_i specialize to generators of $\operatorname{End}_{GL(r,\mathbb{C})}((W \oplus V)^{\otimes n})$, which has the same dimension as C_n . Under such a specialization the dimension cannot go up. This follows from [3, §68.A], since there is a basis for D_n consisting of words in the generators E_1 , S_i and the structure constants for this basis are well-defined (do not have poles) at q = 1. Thus, D_n is a subalgebra of C_n with the same dimension as C_n , and so they are equal. \Box

Corollary 4.3. The map $\phi : A_n(q) \to \operatorname{End}_{U_q \mathfrak{gl}(r)}((W \oplus V)^{\otimes n})$ given by

$$\phi(T_i) = \check{S}_i$$
 and $\phi(P_i) = \check{E}_i$

is a surjective algebra homomorphism, and if $r \ge n$, then ϕ is an isomorphism. The action of T_i , $1 \le i \le n-1$ and P_j , $1 \le j \le n$ on simple tensors $\mathbf{v} = v_{k_1} \otimes \cdots \otimes v_{k_n}$ is given by

$$T_{i}\mathbf{v} = \begin{cases} (q-1)\mathbf{v} + q^{1/2}\mathbf{v}', & \text{if } k_{i} < k_{i+1}, \\ q^{1/2}\mathbf{v}', & \text{if } k_{i} > k_{i+1}, \\ q\mathbf{v}, & \text{if } k_{i} = k_{i+1}, \end{cases}$$

$$P_{j}\mathbf{v} = \begin{cases} \mathbf{v}, & \text{if } k_{1} = \dots = k_{j} = 0, \\ 0, & \text{otherwise}, \end{cases}$$
(4.8)

where \mathbf{v}' is the simple tensor obtained from \mathbf{v} by switching v_{k_i} with $v_{k_{i+1}}$.

Proof. Proposition 4.1 and Corollary 4.2 tell us that ϕ is a surjective homomorphism. By comparing dimensions when $r \ge n$, we see that ϕ is an isomorphism. The action of the generators follows from (4.7) and (4.8). Note: one can also verify the relations (2.1). \Box

Remark 4.4. It is natural to look for a presentation of $\mathcal{I}_n(q)$ using generators Π_i which project onto the trivial module *W* in only the *i*th tensor slot. At $q \rightarrow 1$, these correspond to the idempotents $\pi_i = 1 - E_{i,i} \in R_n$. Furthermore, we have $P_i = \Pi_1 \Pi_2 \cdots \Pi_i$. However, the Π_i appear to have a complicated relation with the T_i . Using a computer, M. Dieng found that in $\mathcal{I}_3(q)$,

$$\begin{split} \Pi_2 &= T_1^{-1} \Pi_1 T_1 + \frac{(q-1)}{q^3} \big(T_1^{-1} P_1 + T_1^{-1} P_2 \big), \\ \Pi_3 &= T_2^{-1} \Pi_2 T_2 + (q-1)^2 T_2^{-1} T_1^{-1} P_1 + (q-1) T_2^{-1} T_1^{-1} P_1 T_1 \\ &- \frac{(q-1)^2}{q} \big(T_1 T_2^{-1} P_2 + T_2^{-1} P_2 + T_1^{-1} T_2^{-1} P_2 T_2 \big) \\ &+ \frac{(q-1)}{q} T_1^{-1} T_2^{-1} P_2 T_2 T_1 + \frac{(q-1)^2 (q+1)}{q^3} P_3. \end{split}$$

Acknowledgments

I thank Arun Ram and Louis Solomon for numerous enlightening conversations and helpful suggestions and for suggesting improvements on early versions of this paper. I also thank Momar Dieng, whose work on the characters of $\mathcal{I}_n(q)$ in [4] helped lead to the presentation (2.1) and to the calculations in Remark 4.4.

References

- [1] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, 1994.
- [2] C. Curtis, I. Reiner, Methods of Representation Theory: With Applications to Finite Groups and Orders, vol. I, Wiley, New York, 1981.
- [3] C. Curtis, I. Reiner, Methods of Representation Theory: With Applications to Finite Groups and Orders, vol. II, Wiley, New York, 1987.
- [4] M. Dieng, T. Halverson, V. Poladian, Character formulas for q-rook monoid algebras, J. Algebraic Combin. 17 (2003) 99–123.
- [5] C. Grood, A Specht module analog for the rook monoid, Electron. J. Combin. 9 (2002) 10 (electronic).
- [6] T. Halverson, A. Ram, q-rook monoid algebras, Hecke algebras, and Schur–Weyl duality, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283 (2001) 224–250.
- [7] P.N. Hoefsmit, Representations of Hecke algebras of finite groups with *BN*-pairs of classical type, Thesis, Univ. of British Columbia, 1974.
- [8] N. Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo, Sec. I 10 (1664) 215–236.
- [9] M. Jimbo, A q-analog of $U(\mathfrak{gl}(N+1))$, Hecke algebra, and the Yang–Baxter equation, Lett. Math. Phys. 11 (1986) 247–252.
- [10] S. Lipscomb, Symmetric Inverse Semigroups, in: Math. Surveys Monogr., vol. 46, Amer. Math. Soc., Providence, RI, 1996.
- [11] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Second edition, Oxford Univ. Press, New York, 1995.
- [12] E.H. Moore, Concerning the abstract groups of order k! and $\frac{1}{2}k!$ holohedrically isomorphic with the symmetric and the alternating substitution groups on k letters, Proc. London Math. Soc. 28 (1897) 357–366.
- [13] W.D. Munn, Matrix representations of semigroups, Proc. Cambridge Philos. Soc. 53 (1957) 5-12.
- [14] W.D. Munn, The characters of the symmetric inverse semigroup, Proc. Cambridge Philos. Soc. 53 (1957) 13–18.
- [15] J. Okniński, M. Putcha, Complex representations of matrix semigroups, Trans. Amer. Math. Soc. 323 (1991) 563–581.
- [16] M. Putcha, Monoid Hecke algebras, Trans. Amer. Math. Soc. 349 (1997) 3517-3534.
- [17] A. Ram, Seminormal representations of Weyl groups and Iwahori–Hecke algebras, Proc. London Math. Soc.
 (3) 75 (1997) 99–133.
- [18] L. Renner, Analog of the Bruhat decomposition for algebraic monoids II. The length function and trichotomy, J. Algebra 175 (1995) 697–714.
- [19] L. Solomon, The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field, Geom. Dedicata 36 (1990) 15–49.
- [20] L. Solomon, Representations of the rook monoid, J. Algebra 256 (2002) 309-342.
- [21] L. Solomon, The Iwahori algebra of $\mathbf{M}_n(\mathbf{F}_q)$. A presentation and a representation on tensor space, J. Algebra 273 (2004) 206–226, this issue.
- [22] A. Young, On quantitative substitutional analysis VI, Proc. London Math. Soc. 31 (1931) 253-289.