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1. Introduction

Let n be a positive integer and letn= {1, . . . , n}. Let R be the set of all one-
to-one mapsσ with domainI (σ ) ⊆ n and rangeJ (σ) ⊆ n. If i ∈ I (σ ) let iσ
denote the image ofi underσ . There is an associative product(σ, τ ) �→ στ onR

defined by composition of maps:i(στ)= (iσ )τ if i ∈ I (σ ) andiσ ∈ I (τ ). Thus
the domainI (στ) consists of alli ∈ I (σ ) such thatiσ ∈ I (τ ). The setR, with
this product, is a monoid (semigroup with identity) called thesymmetric inverse
semigroup. We agree thatR contains a map with empty domain and range which
behaves as a zero element. LetF be a field. LetMn(F ) denote the algebra of
n× n matrices overF . There is a one-to-one mapR→Mn(F ) defined by

σ �→ [σ ] =
∑

i∈I (σ )
Ei,iσ (1.1)

where Eij is a matrix unit with an entry 1 in the(i, j) position and 0’s
elsewhere. The corresponding setR of matrices consists of those zero-one
matrices which have at most one entry equal to 1 in each row and column. In
particular,Eij corresponds to the mapσ with I (σ ) = {i}, J (σ) = {j } which
takesi to j . Since [στ ] = [σ ][τ ] for σ, τ ∈ R, the setR is a monoid under
matrix multiplication which is isomorphic toR. Since the elements ofR are in
one-to-one correspondence with placements of nonattacking rooks on ann × n

chessboard, we callR therook monoid. The author used the name “rook monoid”
in the title of this paper to (perhaps) increase the marketability of a paper on the
symmetric inverse semigroup to those who are interested in combinatorics and
representation theory.

If σ ∈ R, define therank of σ by rk(σ ) = |I (σ )|. Thus rk(σ ) is equal to the
rank of the matrix[σ ]. For 0� r � n let Rr = {σ ∈ R | rk(σ )= r}. Then
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r!, so |R| =
n∑
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n

r
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r!. (1.2)

To see the first equality in terms of rooks, note that there are
(
n
r

)
ways to choose

the rows,
(
n
r

)
ways to choose the columns andr! ways to placer nonattacking

rooks, once the rows and columns containing the rooks are chosen. For 1� r � n

let Sr ⊆ R be the symmetric group onr= {1, . . . , r}. Note thatRr ⊇ Sr and that
Rn = Sn. The restriction of the mapσ �→ [σ ] to Sn is the natural representation of
Sn by permutation matrices. For convenience and uniformity of statement define
S0 by S0 = R0; this is a group whose unique element is the map with empty
domain and range.

In this paper we consider various aspects of the representation theory ofR over
a field F of characteristic zero. It is understood that representations are finite-
dimensional, although we sometimes allow graded modules of infinite dimension
in which the homogeneous components are of finite dimension. We identify a
representation ofR with its F -linear extension to a representation of the monoid
algebraFR =⊕σ∈R Fσ and make a similar convention for representations of
Sr andFSr . The main concerns in this paper are Munn’s representation theory
and character formula, character multiplicities, the representation ofR on the
polynomial algebraF [x1, . . . , xn] and the representation ofR on tensors by
“place permutations.” We do not assume any facts from semigroup theory. We
do assume some facts about symmetric functions and the representation theory of
the symmetric group [7, Chapter I].

In Section 2 we describe the irreducible representations ofR. The ideas
and results in this section are due to W.D. Munn [10] who proved thatFR is
semisimple and found its irreducible representations in terms of the irreducible
representations of the symmetric groupsSr for 0 � r � n. Munn also defined a
character table forR. The irreducible charactersζ λ are indexed by partitionsλ
of integersr with 0 � r � n; ζ (1) is the character of the representationσ �→ [σ ]
by rook matrices. The main new feature in this section is an explicit formula for
certain central idempotents ofFR which were introduced [14] in the context of
the Möbius algebra of a lattice.

In Section 3 we define two square matricesA andB either of which, together
with the character tables of theSr , is sufficient to determine Munn’s character
table. BothA andB may be described in combinatorial terms. See Proposition 3.5
which givesA in terms of binomial coefficients and Proposition 3.11 which
givesB in terms of Ferrers boards. SinceR is not a group, we do not have the
usual orthogonality relations for irreducible characters to help compute character
multiplicities. Lemma 3.17 shows how to compute multiplicities in terms of
A or B. In Example 3.18 we useA to decompose the character of thepth
tensor power of the representationσ �→ [σ ]: if λ is a partition ofr then the
multiplicity of ζ λ in thepth tensor power isS(p, r)f λ whereS(p, r) is a Stirling
number of the second kind andf λ is the degree of the corresponding character
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of Sr . In Example 3.22 we useB to show that thepth exterior power of the
representationσ �→ [σ ] is an irreducible representation with characterζ (1p).

In Section 4 we study the action ofR on the polynomial algebraF [x1, . . . , xn].
We decompose theR-moduleF [x1, . . . , xn] into its isotypic components, in terms
of analogous (known) data for the symmetric groupsSr for 0 � r � n.

In Section 5 we study the action ofR on tensors by “place permutations.”
If V is a vector space overF then Sn acts onV ⊗n by place permutations:
w(v1 ⊗ · · · ⊗ vn)= v1w ⊗ · · · ⊗ vnw , for w ∈ Sn. According to Schur and Weyl,
the centralizer algebra for this action is the algebra of endomorphisms ofV⊗n

provided by the natural action ofGL(V ) on V⊗n. If σ ∈ R, we cannot define
σ(v1 ⊗ · · · ⊗ vn) = v1σ ⊗ · · · ⊗ vnσ because the domain ofσ need not be all
of n. We try to approximate the last formula as best we can: replaceV by
U = F ⊕ V and use the fieldF as a wastebasket for the undefinediσ . We prove
that the centralizer algebra for this action ofR is the algebra of endomorphisms
of U⊗n provided by the natural action ofGL(V ) onU⊗n, whereGL(V ) acts on
U = F ⊕ V by fixing F .

In Section 6 we give a presentation forR in terms of the Moore–Coxeter
generators forSn and the elementν ∈ R which corresponds to a nilpotent
Jordan block inR. This section is not about representation theory. However, the
argument given here is theq = 1 version of an argument which will be used in
a representation-theoretic context [16]; see the second paragraph of Section 6 for
some brief remarks about aq-analogue ofFR. The representation theory of this
q-analogue has been studied by Tom Halverson [3].

Cheryl Grood [2] defined the notion of aλnr -tableau whereλ is a partition of
an integerr with 1 � r � n. This is a Ferrers board of shapeλ filled with distinct
elements ofn. She has used the standardλnr -tableaux to constructR-modules
which are analogous to the Specht modules in the theory of the symmetric group
and has shown that they furnish a complete set of irreducibleR-modules.

The work in this article, except for the examples at the end of Section 3, was
outlined in a talk at the Centre de Recherches Mathématiques, Université de Mon-
tréal in June 1997. I would like to thank Ira Gessel and Glenn Tesler who heard the
talk and settled two points which were left open. Both Gessel and Tesler gave (in-
dependently) an explicit formula for the inverse of the matrixB; see Remark 3.27.
Gessel gave a direct proof of the Schur function identity in Corollary 4.10, which
follows in this paper from facts about the representation ofR on F [x1, . . . , xn].
In July 1997 I learned from Grant Walker that he has studied the representation
of R onF [x1, . . . , xn] in caseF = Fp is the field ofp elements; see [18].

2. Munn’s representation theory and character formula

The main ideas and the results in section are due to W.D. Munn [10], who
found the irreducible representations ofR and gave a formula for its irreducible
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characters in terms of the irreducible characters of the symmetric groupsSr for
0 � r � n. This was a special but interesting case of his general theory [9] of
representations of finite semigroups. LetA = FR =⊕

σ∈R Fσ be the monoid
algebra. The identity element 1A is the identity map ofn. It is understood that an
algebra homomorphismA→ B maps 1A to 1B . For 0� r � n let

I (r) =
∑

rk(σ )�r

Fσ. (2.1)

Since rk(στ) � rk(σ ) and rk(τσ ) � rk(σ ) for all σ, τ ∈R, it follows thatI (r) is a
two sided ideal ofA. Thus we have an ascending chainF � I (0) ⊂ · · · ⊂ I (r−1) ⊂
I (r) ⊂ · · · ⊂ I (n) =A of two sided ideals. Munn proved [10, Theorem 3.1] thatA

is semisimple. Thus there exists for each 0� r � n a uniquely determined central
idempotentηr of A such that

I (r) = I (r−1)⊕Aηr for 1 � r � n. (2.2)

The alternating sum formula forηr given by (2.4) and (2.8) is the new feature
in the present (self-contained) exposition of Munn’s work. The splitting (2.2) is
proved directly in Corollary 2.14 without assuming semisimplicity. The formula
for ηr has some antecedents. R. Penrose [9, p. 11] gave a formula for the identity
element ofA, which amounts to 1A =∑n

r=0ηr in our notation. The pairwise
orthogonal idempotentsηK defined in (2.4) were introduced in the context of the
Möbius algebra of a lattice; see [14, p. 605] or [17, p. 124]. In fact, the subalgebra
of A generated by the idempotents ofR is isomorphic to the Möbius algebra of
the lattice of subsets ofn and, under this isomorphism, theηK correspond to
the primitive idempotents of the Möbius algebra. The idempotentsηK also occur
naturally as projections in the action ofR on tensors; see (5.12) and (5.15).

If K ⊆ n is nonempty letεK ∈ R be the identity map ofK. If K = ∅ let ε∅ be
the zero element ofR. ThenεK is idempotent and

εJ εK = εJ∩K = εKεJ (2.3)

for J,K ⊆ n. ThusE = {εK | K ⊆ n} is a commutative submonoid ofR. The
elementε∅ is the zero element ofR but is not the zero element ofA. Similarly,
[ε∅] is the zero matrix but is not the zero element ofFR. If K ⊆ n define
ηK ∈ FE =⊕K⊆n FεK by

ηK =
∑
J⊆K

(−1)|K−J |εJ . (2.4)

It follows by inclusion–exclusion that

εK =
∑
J⊆K

ηJ . (2.5)

ThusFE =⊕K⊆n FηK .
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Lemma 2.6. If J,K ⊆ n then ηKηJ = δK,J ηK . Thus theηK are pairwise
orthogonal idempotents ofA.

Proof. We show first that

εKηJ =
{
ηJ if J ⊆K,

0 otherwise.
(2.7)

Fix J andK. Let L = J ∩ K and letM = J ∩ (n − K). Any subset ofJ has
the formX ∪ Y whereX ⊆ L andY ⊆M. SinceK ∩ (X ∪ Y ) = X we have
εKεX∪Y = εX by (2.3). Thus

εKηJ = εK
∑
X⊆L

∑
Y⊆M

(−1)|L∪M−X∪Y |εX∪Y

=
∑
X⊆L

( ∑
Y⊆M

(−1)|M−Y |
)
(−1)|L−X|εX.

If K ⊇ J thenM is empty andL= J so the inner sum is 1 and we getεKηJ = ηJ
by (2.4). IfK does not includeJ thenM is nonempty so the inner sum is 0 and
we getεKηJ = 0. This proves (2.7). By (2.4) and (2.7),

ηKηJ =
∑
L⊆K

(−1)|K−L|εLηJ =
∑

J⊆L⊆K

(−1)|K−L|ηJ .

The last sum is zero unlessK = J when it is 1. ✷
We may use theηK to construct some pairwise orthogonal central idempotents

of A. If 0 � r � n define

ηr =
∑
|K |=r

ηK. (2.8)

It follows from Lemma 2.6 that

ηjηk = δjkηk for 0 � j, k � n. (2.9)

Thus theηr are pairwise orthogonal idempotents ofA. If w ∈ Sn andK ⊆ n then
bothεKw andwεKw have domainK. If i ∈K theniεKw = iw = iwεKw. Thus
εKw=wεKw so

w−1εKw = εKw and hence w−1ηKw = ηKw. (2.10)

Let σ ∈ R and letK = I (σ ). Choosew ∈ Sn so thatiw = iσ for i ∈ K. Then
σ = εKw. Thus

R =ESn = SnE. (2.11)

It follows from (2.8) and (2.10) thatηr centralizesSn. SinceFE is a commutative
algebra,ηr also centralizesE. Thusηr centralizesR and hence lies in the center
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of A. ThusAηr is a two sided ideal ofA. Since 1A = εn, it follows from (2.5)
with K = n thatεn =∑n

r=0ηr . Thus

A=
n⊕

r=0

Aηr (2.12)

a direct sum of two sided ideals.

Lemma 2.13. Suppose1� r � n.

(i) If σ ∈R andrk(σ ) < r thenσηr = 0.
(ii) The set{σηr | σ ∈ Rr } is anF -basis forAηr .
(iii) I (r) =⊕r

j=0Aηj .

Proof. Supposeσ ∈ R and rk(σ ) < r. Let K = I (σ ). Since|K| = rk(σ ) < r, it
follows from (2.7) that ifJ ⊆ n and|J | = r thenεKηJ = 0. ThusεKηr = 0. Write
σ = εKw, wherew ∈ Sn. Sinceηr is central,σηr = εKηrw = 0. This proves (i).
SupposeK ⊆ n and|K| = r. If J ⊆ n and|J |� r thenεJ ∈ I (r). ThusηK ∈ I (r)

by (2.4), soηr ∈ I (r) and thusAηr ⊆ I (r). Supposeα ∈ Aηr . We may write
α =∑rk(σ )�r cσ σ with cσ ∈ F soα = αηr =∑rk(σ )=r cσ σηr by (i). Thus the set
{σηr | σ ∈ Rr } spansAηr . It follows that dimA=∑n

r=0 |Rr |�∑n
r=0 dimAηr =

dimA where the last equality comes from (2.12). Thus dimAηr = |Rr |. This
proves (ii). To prove (iii) letA(r) =∑r

j=0Aηj . If 0 � j � r thenηj ∈ I (j) ⊆ I (r)

by (2.1) and (2.8) soA(r) ⊆ I (r). To prove the reverse inclusion it suffices to
show that ifσ ∈ R0 ∪ · · · ∪ Rr thenσ ∈ A(r). Write σ = εKw wherew ∈ Sn
andK = I (σ ). Then|K| = rk(σ ) � r. If |J |> r thenεKηJ = 0 by (2.7). Thus
εKηj = 0 for j > r. Since 1A = εn =∑n

j=0ηj we haveεK =∑n
j=0 εKηj =∑r

j=0 εKηj ∈A(r) soσ = εKw ∈A(r). ✷
Corollary 2.14. I (r) = I (r−1)⊕Aηr for 0 � r � n.

Corollary 2.14 gives the splitting promised in (2.2). Ifr = 0 thenη0 = ε∅ so
I (0) = Fε∅ = Aε∅ =Aη0. Thus (ii) and (iii) in Lemma 2.13 hold forr = 0.

Next we describe the structure ofAηr . Supposer � 1. Choose, for eachK ⊆ n
with |K| = r, an elementµK ∈ R which mapsr = {1, . . . , r} to K. If K = r,
chooseµK = εK . If σ ∈ R defineσ− ∈ R by I (σ−) = J (σ), J (σ−) = I (σ )

andjσ− = i if iσ = j . Herei ∈ I (σ ) andj ∈ J (σ). Thusσσ− is the identity
map ofI (σ ) andσ−σ is the identity map ofJ (σ). Note thatµ−KµK = εK is the
identity map ofK. If σ ∈ Rr and I = I (σ ) andJ = J (σ) thenσ = εI σεJ =
µ−I µI σµ

−
J µJ . Definep(σ) ∈ Sr by

p(σ)= µIσµ
−
J (2.15)

whereI = I (σ ) andJ = J (σ). Then
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σ = µ−I p(σ )µJ . (2.16)

This expression is unique: ifI, J arer-subsets ofn andµ−I pµJ = µ−I qµJ with
p,q ∈ Sr thenp = q .

Lemma 2.17. For 1� r � n letAr =M(nr)
(FSr ) be theF -algebra of all matrices

with rows and columns indexed byr-subsetsI, J of n and entries inFSr . Let
EIJ ∈ Ar denote the natural basis of matrix units. Define anF -linear map
ψr :Aηr →Ar by

ψr(σηr)= p(σ)EIJ whereσ ∈ Rr, I = I (σ ), J = J (σ). (2.18)

For r = 0 we agree thatA0 = F and thatψ0 :Aη0 = Fε∅ → F is defined by
ψ0(ε∅)= 1. If 0� r � n thenψr is an isomorphism ofF -algebras.

Proof. We may assume thatr � 1. The mapψr is well defined by Lemma 2.13(ii).
Write ψ = ψr and η = ηr . We show first thatψ is a homomorphism of al-
gebras. It suffices to show thatψ((ση)(τη)) = ψ(ση)ψ(τη) for σ, τ ∈ Rr .
Let I = I (σ ) and J = J (σ). Let p = p(σ), q = p(τ) and let L = I (τ ),
K = J (τ). Then ψ(ση)ψ(τη) = (pEIJ )(qELK) = pqEIK if J = L and
ψ(ση)ψ(τη) = 0 otherwise. Note thatJ = L if and only if rk(στ) = r, in
which caseστ = (µ−I pµJ )(µ

−
J qµK) = µ−I pqµK . Thus, if rk(στ) = r then

ψ((ση)(τη)) = ψ(στη) = pqEIK = ψ(ση)ψ(τη). If rk(στ) < r then στ ∈
I (r−1) = Aη0 + · · · + Aηr−1 so στη = 0 becauseηjη = 0 for 0 � j � r − 1
by (2.9). Thusψ((ση)(τη)) = 0= ψ(ση)ψ(τη). Thusψ is a homomorphism
of algebras. Supposea ∈ kerψ . By Lemma 2.13(ii) and (2.16) we may write
a =∑

cIJ (p)µ
−
I pµJ ηr wherecIJ (p) ∈ F ; the sum is over allr-subsetsI, J

of n and all p ∈ Sr . Apply ψ . This gives 0= ∑
I,J

∑
p cIJ (p)pEIJ . Thus∑

p cIJ (p)p = 0 for all I, J so cIJ (p) = 0 for all I, J andp. Thusψ is one-

to-one. It follows from Lemma 2.13(ii) and (1.2) that dimAη = |Rr | = (n
r

)2
r! =

dimAr . Thusψ is an isomorphism. ✷
Corollary 2.19 (Munn).A�⊕n

r=0 M(nr)
(FSr). In particular,A is a semisimple

algebra.

Proof. The first assertion follows from (2.12) and Lemma 2.17. The second
assertion follows from the first sinceF has characteristic zero.✷

It is convenient, for the moment, to letA be any associativeF -algebra with
identity and letη ∈A be a central idempotent. LetB be an associativeF -algebra
with identity, letd be a positive integer and letψ :Aη→ Md (B) be an algebra
homomorphism. Ifa ∈A defineβij (a) ∈B for 1 � i, j � d by
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ψ(aη)=
d∑

i,j=1

βij (a)Eij . (2.20)

If a, b ∈ A thenβij (ab)=∑d
k=1βik(a)βkj (b). It is understood in what follows

that representations ofA or B are matrix representations with coefficients inF .
If ρ is a representation ofB then we may define a representationρ∗ of A by

ρ∗(a)=
d∑

i,j=1

ρ
(
βij (a)

)
Eij ; (2.21)

to get the matrixρ∗(a) we applyρ to the matrix entries ofψ(aη).

Lemma 2.22. Let A be an associative algebra overF . SupposeA contains
pairwise orthogonal central idempotentsη0, η1, . . . , ηn such thatA=⊕n

r=0Aηr .
Suppose for each0 � r � n that there exists an integerdr , a semisimple algebra
Br and an algebra isomorphismψr :Aηr → Mdr (Br). Let B̂r be a full set of
inequivalent irreducible representations ofBr . Then{ρ∗ | 0 � r � n, ρ ∈ B̂r } is
a full set of inequivalent irreducible representations ofA.

Proof. The hypotheses in Lemma 2.22 insure that the algebraA is semisimple. If
A is simple then it has a unique irreducible representation, up to equivalence, and
B is also simple, so the assertion is clear. The casen= 0 may be reduced to the
caseA simple. The general case may be reduced to the casen= 0. ✷

Apply Lemma 2.22 withA= FR, with Br = FSr andψr as in Lemma 2.17.
If ρ is an irreducible representation ofSr and hence ofBr we say thatρ∗ is an
irreducible representation ofA or R of rankr. Note that

degρ∗ =
(
n

r

)
degρ. (2.23)

For 1� r � n let Pr denote the set of partitions ofr. The equivalence classes of
irreducible representations ofSr are indexed byPr . Choose, for each 1� r � n

andλ ∈ Pr , an irreducible representationρλ of Sr indexed byλ. We agree that
P0 consists of the empty partition writtenλ = (0) and that the corresponding
irreducible representation ofS0 is given byρ(0)(ε∅) = 1 ∈ F . SinceB0 = Fε∅
andψ0(ση0)= ψ0(σε∅)= ψ0(ε∅)= 1 we haveρ(0)∗(σ )= 1 for all σ ∈ R. This
“trivial representation”ρ(0)∗ is the unique irreducible representation ofR which
has rank zero.

Theorem 2.24 (Munn). Let Q =⋃n
r=0Pr . The set{ρλ∗ | λ ∈ Q} is a full set of

inequivalent irreducible representations ofR.

Proof. This follows from (2.12), Lemmas 2.17 and 2.22.✷
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To compute the value of the character ofρ∗ = ρλ∗ on an element ofR we need
a formula forρ∗(σ ) with σ ∈ R.

Proposition 2.25. Suppose1 � r � n. If ρ is a representation ofSr andσ ∈ R

then

ρ∗(σ )=
∑
|K |=r

rk(εKσ)=r

ρ
(
p(εKσ)

)
EI(εKσ),J (εKσ). (2.26)

Proof. If rk(σ ) < r then we cannot have|K| = r andK ⊆ I (σ ) so the right-
hand side of side of (2.26) is zero. On the other hand,σ ∈ I (r−1) =⊕r−1

j=0Aηj by
Lemma 2.13(iii), soσηr = 0 by (2.9). Thus

ρ∗(σ )= 0 if rk(σ ) < r (2.27)

by (2.20) and (2.21). This proves (2.26) if rk(σ ) < r. If rk(σ ) = r then the sum
on the right-hand side of (2.26) consists of a single term withK = I (σ ) in which
caseεKσ = σ . Thus the right-hand side of (2.26) isρ(p(σ))EIJ whereI = I (σ )

andJ = J (σ). On the other hand,ψr(σηr)= p(σ)EIJ by (2.18). Thus

ρ∗(σ )= ρ
(
p(σ)

)
EIJ if rk(σ )= r (2.28)

by (2.20) and (2.21). This proves (2.26) if rk(σ )= r. Finally suppose rk(σ ) > r.
Let≡ denote congruence modI (r−1). Then

ηr =
∑
|K |=r

ηK =
∑
|K |=r

∑
J⊆K

(−1)|K−J |εJ ≡
∑
|K |=r

εK = εr .

Sinceηr is a central idempotent, we get

σηr = ηrσηr ≡ εrσηr =
∑
|K |=r

εKσηr .

But ρ∗(a) = ρ∗(aηr) for all a ∈ FR by (2.20) and (2.21). Thusρ∗(σ ) =∑
|K |=r, rk(εKσ)=r ρ

∗(εKσ) by (2.27). Now (2.26) follows from (2.28).✷
Example 2.29. If r = 1 then λ = (1) and ρ = ρ(1) :Sr → F is defined by
ρ(ε{1})= 1∈ F . The conditions onK in (2.26) areK = {i} andi ∈ I (σ ). Since
p(εKσ)= 1 and henceρ(p(εKσ))= 1, it follows thatρ(1)∗(σ )=∑i∈I (σ ) Ei,iσ .

Thusρ(1)∗ is the representation (1.1) ofR by rook matrices. Supposer = n. Then
K = n andεKσ = σ in (2.26). If rk(σ ) < n thenρ∗(σ )= 0 by (2.27). If rk(σ )= n

thenσ ∈ Sn andp(σ)= σ in (2.26) soρ∗(σ )= ρ(σ). Thus the representations of
maximal rankn have the shapeρ∗ = ρ ◦ π whereπ :FR→ FSn is theF -linear
map, in fact homomorphism of algebras, defined byπ(σ) = σ if σ ∈ Sn and
π(σ)= 0 if σ ∈ R − Sn.
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If χ is the character of a representationρ of Sr let χ∗ denote the character
of ρ∗. We identifyχ with itsF -linear extension to a character ofFSr and identify
χ∗ with its F -linear extension to a character ofA= FR. SinceA is semisimple,
two representations ofA are equivalent if and only if they have the same character.
The following theorem of Munn [10, Theorem 3.5] gives a formula forχ∗(σ )
whenσ ∈R.

Theorem 2.30 (Munn). Suppose1 � r � n. If χ is a character ofSr andχ∗ is
the corresponding character ofR then

χ∗(σ )=
∑

K⊆I (σ ), |K |=r
Kσ=K

χ(µKσµ−K). (2.31)

Proof. It follows from Proposition 2.25 that

χ∗(σ )=
∑

|K |=r, rk(εKσ)=r
I (εKσ)=J (εKσ)

χ
(
p(εKσ)

)
.

The simultaneous occurrence of rk(εKσ) = |K| and I (εKσ) = J (εKσ) is
equivalent to the simultaneous occurrence ofK ⊆ I (σ ) andKσ = K. If K ⊆
I (σ ) thenp(εKσ) = µKεKσµ−K by (2.15). Now (2.31) follows sinceµKεK =
µK . ✷
Example 2.32. Suppose thatn = 5 andr = 3. Suppose thatI (σ ) = {1,2,3,5}
and thatσ : 1 �→ 3 �→ 5 �→ 1 andσ : 2 �→ 4 with 4σ undefined. There are four sets
K with |K| = 3 andK ⊆ I (σ ). The action ofσ on these sets is

K Kσ

{1,2,3} {3,4,5}
{1,2,5} {1,3,4}
{1,3,5} {1,3,5}
{2,3,5} {1,4,5}

Thus Kσ = K only for K = {1,3,5}. ChooseµK : {1,2,3} → {1,3,5} so
that µK : 1 �→ 1,2 �→ 3,3 �→ 5. ThenµKσµ−K ∈ S3 has domain{1,2,3} and
maps 1�→ 2 �→ 3 �→ 1. ThusµKσµ−K = (123) in the usual cycle notation for
permutations soχ∗(σ )= χ((123)).

For 0� r � n andα,λ ∈ Pr letχλ
α be the value which the irreducible character

χλ of Sr assumes on elements of the conjugacy class ofSr indexed byα. The
character table ofSr is the square matrixXr of size|Pr | with (α,λ) entry equal to
χλ
α . Note thatχ(0)(ε∅) = 1 soχ

(0)
(0) = 1 andX0 is an identity matrix of size 1.

In [10] Munn defined a character table forR. This is a square matrixM of
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size |Q|. To define it we introduce an equivalence relation onR as follows. If
σ ∈ R let I ◦(σ ) denote the set ofi ∈ n suchiσ k is defined for allk � 1. Then
I ◦(σ )⊆ I (σ ) andI ◦(σ ) is stable underσ . Defineσ ◦ ∈ R to have domainI ◦(σ )
and letσ ◦ act on its domain asσ does. For example, ifσ is as in Example 2.32
thenI ◦(σ )= {1,3,5} andσ ◦ : 1 �→ 3 �→ 5 �→ 1. Note thatI (ε∅) andI (0)(ε∅) are
empty, soε◦∅ = ε∅. Say thatσ, τ ∈R are Munn equivalent and writeσ ≈ τ if there
existsw ∈ Sn with τ ◦ = w−1σ ◦w. Munn introduced this equivalence relation in
[10] and called rk(σ ◦) the subrank ofσ . Any Munn equivalence class meets a
unique groupSr wherer is the common subrank of all elements in the class. The
Munn classes ofR which meetSr are indexed by conjugacy classes ofSr and
hence byPr . Thus the Munn classes ofR are indexed byQ.

Proposition 2.33. If σ, τ ∈ R are Munn equivalent andζ is the character of a
representation ofFR thenζ(σ )= ζ(τ ).

Proof. Since there existsw ∈ Sn with τ ◦ = w−1σ ◦w we haveζ(σ ◦)= ζ(τ ◦). It
thus suffices to show thatζ(σ )= ζ(σ ◦). We may assume thatζ is the character of
an irreducible representation and apply (2.31) withζ = χ∗. The simultaneous
occurrence ofK ⊆ I (σ ) and Kσ = K is equivalent to the simultaneous
occurrence ofK ⊆ I (σ ◦) andKσ ◦ =K. Furthermore, if these conditions hold,
thenµKσ = µKσ ◦. The assertionζ(σ )= ζ(σ ◦) thus follows from (2.31) applied
to bothσ andσ ◦. ✷

In the rest of this paper we letζ λ = χλ∗ denote the irreducible character ofR

which corresponds to the irreducible characterχλ of Sr . From (2.23) we get

ζ λ(1)=
(
n

r

)
f λ, (2.34)

wheref λ = χλ(1). If α,λ ∈Q let ζ λ
α be the value whichζ λ assumes on elements

of the Munn class indexed byα. This is well defined by Proposition 2.33. Munn’s
character table is the square matrixM of size|Q| with (α,λ) entryMαλ = ζ λ

α .

3. Character table and character multiplicities

In this section we use various matricesT with rows and columns indexed byQ.
If λ ∈ Pr , write |λ| = r. To label the rows and columns ofT we linearly orderQ:
if λ,µ ∈Q say thatλ precedesµ if |λ| > |µ|, or |λ| = |µ| = r andλ precedes
µ in the reverse lexicographic order onPr . Let Tαλ denote the(α,λ) entry ofT.
Say thatT is block upper triangular ifTαλ = 0 for |λ| > |α| and block upper
unitriangular if, in addition,Tαλ = δαλ when|λ| = |α|.
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Lemma 3.1. Supposeα ∈ Pm andλ ∈ Pr where0 � m � r � n. If m < r then
ζ λ
α = 0. If m= r thenζ λ

α = χλ
α .

Proof. Chooseσ ∈ R with ζ λ(σ ) = ζ λ
α . Since the Munn class ofσ meetsSm

we may assume by Proposition 2.33 thatσ ∈ Sm. If m < r then (2.27) gives
ζ λ(σ )= 0. If m= r = 0 thenζ (0)

(0) = 1= χ
(0)
(0) . If m= r > 0, apply Theorem 2.30.

Since I (σ ) = r, the sum in (2.31) consists of a single term corresponding to
K = r, in which caseµK = εK by our choice ofµK . ThusµKσµ−K = σ , so
ζ λ(σ )= χλ(σ). ✷

It follows from Lemma 3.1 and the definition ofM that

M=


Xn · · · ∗ ∗
...

...
...

0 · · · X1 ∗
0 · · · 0 X0

 (3.2)

is block upper triangular whereXr is the character table ofSr . Define a block
diagonal matrixY by

Y= diag[Xn, . . . ,X1,X0]. (3.3)

Since the matricesXr are invertible,Y is invertible. Thus there are unique block
upper unitriangular matricesA,B with rows and columns indexed byQ such that

M= AY and M= YB. (3.4)

Thus eitherA or B and the character tables of theSr determine the character table
of R. If α,β ∈Q haveai, bi parts equal toi define

(
α
β

)=∏i�1

(
ai
bi

)
where

(
ai
bi

)
is

the binomial coefficient. We agree that
(0
0

)= 1.

Proposition 3.5. If α,β ∈Q thenAαβ =
(
α
β

)
.

Proof. Let r = |λ| andm = |α|. Chooseσ ∈ R such thatζ λ
α = ζ λ(σ ). We may

assume, as in the proof of Proposition 3.1, thatσ ∈ Sm. ThusI (σ )= {1, . . . ,m}.
It follows from (2.31) that

ζ λ
α =

∑
K⊆{1,...,m}, |K |=r

Kσ=K

χλ(µKσµ−K). (3.6)

A set K which appears in (3.6) is a union ofσ -orbits. Let σ |K denote the
restriction ofσ to K. Since|K| = r the permutationµKσµ−K of r has the same
cycle pattern as the permutationσ |K of K. Thus ifσ |K hasbi cycles of lengthi
thenχλ(µKσµ−K) = χλ

β whereβ ∈ Pr hasbi parts equal toi. Sinceσ hasai
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orbits of sizei, there are
(
α
β

)
ways to choose these orbits in such a way thatσ |K

has cycle patternβ . Thus

ζ λ
α =

∑
β∈Pr

(
α

β

)
χλ
β =

∑
β∈Q

(
α

β

)
Yβλ.

The assertionAαβ =
(
α
β

)
follows sinceY is invertible. ✷

Corollary 3.7. If λ,µ ∈Q andn= |λ|, m= |µ| then

Bλµ =
∑

α∈Pn, β∈Pm

z−1
α

(
α

β

)
χλ
αχ

µ
β ,

wherezα =∏i�0 ai !iai if α hasai parts equal toi.

Proof. For 0� r � n define a diagonal matrixZr of size|Pr | by (Zr )αβ = δαβzα
for α,β ∈ Pr . LetW= diag[Zn, . . . ,Z1,Z0]. The second orthogonality relation for
the characters ofSr givesXrX�r = Zr where� means transpose. ThusYY� =W.
From (3.4) we getB= Y−1AY= Y�W−1AY. Now compare(λ,µ) entries on both
sides of the last equation.✷

We may also compute the matrix entriesBλµ in terms of Ferrers diagrams.
To do this, recall some facts about symmetric functions and characters ofSn
[7, Chapter I]. LetΛ be theQ-algebra of symmetric functions in a sequence
of indeterminates. Forn = 1,2,3, . . . let hn ∈Λ be the complete homogeneous
symmetric function of degreen and letpn ∈ Λ be the power sum of degreen.
We agree thath0 = 1 and thathn = 0 for n < 0. If λ = (λ1, λ2, . . .) ∈ Pn let
pλ = pλ1pλ2 · · ·. The Schur functionsλ may be defined by [7, Chapter I, (3.4)]

sλ = det[hλi−i+j ], (3.8)

where the matrix has size equal to the number of parts inλ. Let Cn be the
space ofQ-valued functions onSn which are constant on conjugacy classes. The
characteristic map ch :

⊕
n�0Cn→Λ is defined by [7, Chapter I, (7.2)]

ch(f )=
∑
α∈Pn

z−1
α fαpα, (3.9)

wheref ∈ Cn and fα is the value whichf assumes on the conjugacy class
indexed byα. It is bijective. Letηn be the principal character ofSn. Then [7,
Chapter I, (7.3) and (7.4)]

ch(ηn)= hn and ch
(
χλ
)= sλ. (3.10)

Identify λ ∈ Pn with its Ferrers diagram. Ifλ,µ ∈ Q, say that the set theoretic
differenceλ− µ is a horizontal strip if it has at most one node in each column.
Forλ= (0) we agree that the empty Ferrers diagram is a horizontal strip.
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Proposition 3.11. If λ,µ ∈Q then

Bλµ =
{

1 if λ⊇ µ andλ−µ is a horizontal strip,
0 otherwise.

(3.12)

Proof. Let C be the square matrix of size|Q| with entriesCλµ given by the right-
hand side of (3.12). We must prove thatB= C. SinceY is invertible it suffices to
show thatM= YC. Argue by induction onn. Forn= 1

M=
[

1 1
0 1

]
=
[

1 0
0 1

][
1 1
0 1

]
= YC.

Supposen � 2. LetR′ ⊂R be the semigroup of all one-to-one maps with domain
and range included in{1, . . . , n − 1}. The irreducible representations ofR′ are
indexed byQ′ =⋃n−1

r=0 Pr =Q−Pn. We have usedR to define square matrices
M,A,C,Y. Let M′,A′,C′,Y′ be the corresponding matrices forR′. Let I be an
identity matrix of size|Pn| and let0 be a zero matrix of appropriate size. Since
M= AY andM′ = A′Y′ we have

M= AY=
[

I ∗
0 A′

][
Xn 0
0 Y′

]
=
[

Xn ∗
0 A′Y′

]
=
[

Xn ∗
0 M′

]
by (3.3) and Proposition 3.5 and the definition ofY. On the other hand, by
definition ofC andC′ and induction, we have

YC=
[

Xn 0
0 Y′

][
I ∗
0 C′

]
=
[

Xn ∗
0 Y′C′

]
=
[

Xn ∗
0 M′

]
.

To proveM = YC it thus suffices to show thatMαµ = (YC)αµ for α ∈ Pn and
µ ∈ Q′. This amounts toζµ

α =∑
λ∈Pn

χλ
αCλµ for α ∈ Pn and µ ∈ Pr where

0 � r � n − 1. This is clear forr = 0 sinceζ (0)
(0) = 1= χ

(0)
(0) and C(0)(0) = 1.

Suppose 1� r � n−1. The restriction ofζµ to Sn ⊆R is a character ofSn which
we write asζµ|Sn . We must prove that

ζµ|Sn =
∑
λ∈Pn

Cλµχ
λ for µ ∈ Pr and 1� r � n− 1. (3.13)

To do this we use Pieri’s formula [7, Chapter I, (5.16)]. This states, in terms
of the matrix C, that sµhn−r = ∑

λ∈Pn
Cλµsλ. Apply the characteristic map.

Fix r and letP = {w ∈ Sn | rw ⊆ r} � Sr × Sn−r be the stabilizer ofr. Then
ch(indSnP (χµ × ηn−r )) = sµhn−r as in [7, Chapter I, (7.1)] where ind means
induction of characters. Thus Pieri’s formula amounts to the character formula
indSnP (χµ × ηn−r )=∑λ∈Pn

Cλµχ
λ. It remains to prove that

ζµ|Sn = indSnP
(
χµ × ηn−r

)
for µ ∈Pr and 1� r � n− 1.

Apply (3.6) with m = n andσ = w ∈ Sn. This givesζµ(w) =∑χµ(µKwµ−K)

where the sum is over all subsetsK of n with |K| = r andKw = K. Extend
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µK : r → K to an elementwK ∈ Sn. The conditionKw = K is equivalent to
wKww−1

K ∈ P . If Kw =K thenµKwµ−K is the restriction ofwKww−1
K to r so

χµ(µKwµ−1
K )= (χµ × ηn−r )(wKww−1

K ). Thus

ζµ(w)=
∑(

χµ × ηn−r

)(
wKww−1

K

)
,

where the sum is over all subsetsK of n with |K| = r andwKww−1
K ∈ P . Since

the elementswK with |K| = r are a set of coset representatives forSn modP the
last sum is equal to indSnP (χµ × ηn−r )(w). ✷
Corollary 3.14. Let n � m be positive integers. Supposeλ ∈ Pn and µ ∈ Pm.
Then ∑

α∈Pn, β∈Pm

z−1
α

(
α

β

)
χλ
αχ

µ
β =

{
1 if λ⊇ µ andλ−µ is a horizontal strip,
0 otherwise.

This is a statement about characters of symmetric groups which does not
involve the monoidR. If λ = (n) andµ = (m), we get

∑
α∈Pn, β∈Pm

z−1
α

(
α
β

) =
1 for any positive integersn � m. The casen = m is Cauchy’s formula∑

α∈Pn
z−1
α = 1.

Corollary 3.15. If 1� r � n andµ ∈Pr thenζµ|Sn =
∑

λ∈Pn
Bλµχ

λ.

Proof. If 1 � r � n−1 this follows from (3.13) sinceC= B. If r = n thenλ⊇ µ

only for λ= µ soBλµ = Cλµ = δλµ. ✷
Example 3.16. Supposen= 3. The partitions which index the rows and columns
of our matrices are written in the order(3), (21), (13), (2), (12), (1), (0) and
M = AY = YB where Y is block diagonal with diagonal blocks equal to the
character tablesX3, X2, X1, X0. We computeA with Proposition 3.5, compute
B with Proposition 3.11 and find

A M B

1 0 0 0 0 0 1
0 1 0 1 0 1 1
0 0 1 0 3 3 1
0 0 0 1 0 0 1
0 0 0 0 1 2 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1





1 −1 1 0 0 0 1
1 0 −1 1 −1 1 1
1 2 1 3 3 3 1
0 0 0 1−1 0 1
0 0 0 1 1 2 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1





1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1
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Now consider the decomposition of characters into irreducible characters. Let
ψ be a character ofR. Forλ ∈Q let (ψ : ζ λ)R ∈ Z denote the multiplicity of the
irreducible characterζ λ as a constituent ofψ . Thus

ψ =
∑
λ∈Q

(
ψ : ζ λ

)
R
ζ λ.

SinceR is not a group we do not have the usual orthogonality relations for
irreducible characters to help compute multiplicities. The following lemma shows
how to compute multiplicities in terms of either (i) the matrixA−1 and the values
of the characterψ or (ii) the matrixB−1 and the decomposition into irreducible
characters of the restriction ofψ to Sr for 0 � r � n. After the proof we give
examples to illustrate (i) and (ii).

Lemma 3.17. Let ψ be a character ofR. Letψα be the value whichψ assumes
on elements of the Munn class indexed byα. Letψ|Sr be the restriction ofψ to Sr .
For µ ∈ Pr let (ψ|Sr : χµ)Sr be the multiplicity of the irreducible characterχµ

as a constituent ofψ|Sr .
(i) If λ ∈ Pr then

(
ψ : ζ λ

)
R
=
∑
β∈Pr

χλ
β z
−1
β

∑
α∈Q

A−1
βαψα.

(ii) If λ ∈Q then
(
ψ : ζ λ

)
R
=

n∑
r=0

∑
µ∈Pr

B−1
λµ

(
ψ|Sr : χµ

)
Sr
.

Proof. For µ ∈ Q let cµ = (ψ : ζµ)R. Then ψ = ∑
µ∈Q cµζ

µ so ψα =∑
µ∈Q cµζ

µ
α =∑µ∈Q cµMαµ. If λ ∈Q then(

ψ : ζ λ
)
R
=
∑
µ∈Q

cµδλµ =
∑
µ∈Q

cµ
∑
α∈Q

M−1
λα Mαµ =

∑
α∈Q

M−1
λαψα.

Let W be as in the proof of Corollary 3.7. ThenYY� =W. If λ ∈Pr thenYαλ = χλ
α

for |α| = r andYαλ = 0 otherwise. Thus

M−1
λα =

(
Y�W−1A−1)

λα
=
∑
β∈Pr

χλ
βz
−1
β A−1

βα .

This implies (i). Similarly

M−1
λα =

(
B−1Y�W−1)

λα
=
∑
µ∈Q

B−1
λµYαµz

−1
α

and ∑
α∈Pr

χµ
α z−1

α ψα =
(
ψ|Sr : χµ

)
Sr

for anyλ ∈Q. This implies (ii). ✷
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Example 3.18. We know from Example 2.29 thatζ (1) is the character of the
representationσ �→ [σ ] of R by rook matrices. Letψ = (ζ (1))p be the character
of thepth tensor power of this representation. We use Lemma 3.17(i) to show for
p � 1 andλ ∈Q that(

ψ : ζ λ
)
R
= S(p, r)f λ, (3.19)

wherer = |λ| andS(p, r) is a Stirling number of the second kind [17, p. 34]. To
do this, use the formula [17, p. 34, (24a)]

S(p, r)= 1

r!
r∑

k=0

(−1)r−k

(
r

k

)
kp.

We may sum here over 0� k � n since
(
r
k

)= 0 for k > r. Define a column vector
Ψ with componentsΨα for α ∈ Q by Ψα = ψ(σ) if σ lies in the Munn class
corresponding toα. Define a column vectorΘ with componentsΘα for α ∈Q by

Θα =
{
r!S(p, r) if α = (1r ) for some 1� r � n,

0 otherwise.
Fix α ∈ Q and leta be the number of parts ofα which are equal to 1. Then
Aα,(1r ) =

(
a
r

)
so

(AΘ)α =
∑
β∈Q

AαβΘβ =
n∑

r=1

Aα,(1r )

n∑
k=0

(−1)r−k

(
r

k

)
kp

=
n∑

k=0

(
n∑

r=1

(−1)r−k

(
a

r

)(
r

k

))
kp.

The inner sum is, by a known identity for binomial coefficients, equal toδa,k.
Thus(AΘ)α = ap. Chooseσ ∈ R in the Munn class corresponding toα. Then
ζ
(1)
α = trace[σ ] = a soΨα = ap = (AΘ)α . This is true for allα ∈Q soΨ = AΘ.

Thus
∑

α∈Q A−1
βαΨα = (A−1Ψ )β =Θβ for β ∈Q. If λ ∈Q then by Lemma 3.17(i)

and Proposition 3.5(
ψ : ζ λ

)
R
=
∑
β∈Pr

χλ
β z
−1
β Θβ = χλ

(1r )z
−1
(1r )r!S(p, r).

This proves (3.19) sincez(1r ) = r! andχλ
(1r ) = f λ. It follows from (3.19) that(

ζ (1))p =∑
λ∈Q

S
(
p, |λ|)f λζ λ. (3.20)

Since ζ λ(1) = (
n
r

)
f λ and

∑
λ∈Pr

(f λ)2 = r!, the last formula, specialized at
σ = 1∈R, is the known identity [17, p. 34, (24d)]

np =
n∑

r=1

S(p, r)r!
(
n

r

)
=

n∑
r=1

S(p, r)n(n− 1) · · · (n− r + 1).
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We may also restrict the characters in (3.20) to the groupSn ⊆ R. This gives us
a formula for the multiplicity ofχλ in the character of thepth tensor power of
the representationw �→ [w] of Sn by permutation matrices, a statement about
characters of symmetric groups which does not involve the monoidR:

Corollary 3.21. Let ϕ be the character of the representationw �→ [w] of Sn
by permutation matrices. Ifp � 1 and λ ∈ Pn, then the multiplicity ofχλ as
an irreducible constituent ofϕp is equal to

∑
S(p, |µ|)f µ, whereS(p, r) is a

Stirling number of the second kind and the sum is over all partitionsµ such that
λ⊇ µ andλ−µ is a horizontal strip.

Proof. By (3.20) and Corollary 3.15,ϕp =∑
λ∈Pn

∑
µ∈Q S(p, |µ|)f µBλµχ

λ.
The assertion follows from Proposition 3.12.✷
Example 3.22. Let Fn be the space of row vectors overF . Let x1, . . . , xn be the
standard basis forFn. MakeFn a rightR-module by defining

xiσ =
{
xiσ if i ∈ I (σ ),

0 otherwise,
(3.23)

for σ ∈ R. Thenxiσ = xi[σ ] so theR-moduleFn has characterζ (1). If K ⊆ n and
|K| = p write K = {i1, . . . , ip} wherei1 < · · ·< ip and letxK = xi1 ∧ · · · ∧ xip .
The elementsxK with |K| = p are anF -basis for∧pFn. Make∧pFn a right
R-module by defining

xKσ =
{
xi1σ ∧ · · · ∧ xipσ if K ⊆ I (σ ),

0 otherwise.
Forp = 0 we agree that 1σ = 1. Letψp be the character of theR-module∧pFn.
We will show thatψp = ζ (1p). Thus, in particular,ψp is an irreducible character.
The main effort is to show for 0� p � n and 0� r � n andλ ∈Pr that(

(ψp)|Sr : χλ
)
Sr
= Bλ,(1p). (3.24)

In doing this we use (3.12) to computeBλµ. If r = 0 andp = 0 then both sides
of (3.24) are equal to 1 becauseB(0),(0) = 1 and(ψ0)|S0 = χ(0). If r = 0 and
p � 1 then both sides of (3.24) are equal to 0, the right side because(0)⊇ (1p)

is impossible and the left side because∧p[ε∅] is the zero matrix. Assume from
now on thatr � 1. Say that a partitionλ is a hook ifλ = (r −m,1m) for some
0 � m � r − 1. If λ is not a hook thenλ− (1p) cannot be a horizontal strip so
Bλ,(1p) = 0. If λ = (r −m,1m) is a hook andλ− (1p) is a horizontal strip then
p =m or p =m+ 1. Thus

n∑
p=0

Bλ,(1p)t
p =

{
tm + tm+1 if λ= (r −m,1m) with 0 � m � r − 1,
0 if λ is not a hook.

(3.25)



L. Solomon / Journal of Algebra 256 (2002) 309–342 327

If λ ∈Pr define a polynomialFλ(t) in an indeterminatet by

Fλ(t)=
n∑

p=0

(
(ψp)|Sr , χλ

)
Sr
tp.

We will show that

Fλ(t)=
{
tm + tm+1 if λ= (r −m,1m) with 0 � m � r − 1,
0 if λ is not a hook.

(3.26)

Then (3.24) follows by equating coefficients oftp . IdentifyFr with Fx1⊕ · · · ⊕
Fxr ⊆ Fn and identify∧pF r with a subspace of∧pFn. For 0� p � n let ϕp,r

be the character of theSr -module∧pF r . Thusϕp,r = 0 if p > r. If γ ∈ Sr then
I (γ )= r soγ annihilatesxK if K contains at least one ofr + 1, . . . , n. Thus the
trace ofγ in its action on∧pFn is equal to the trace ofγ in its action on∧pF r

so (ψp)|Sr = ϕp,r .1 If γ ∈ Sr then
∑n

p=0ϕp,r(γ )t
p = det(1+ γ t) where, on the

right side, 1 is an identity matrix of sizer and we viewγ as a permutation matrix
of sizer. Thus

Fλ(t)=
n∑

p=0

(
ϕp,r : χλ

)
Sr
tp = 1

r!
∑
γ∈Sr

χλ(γ )det(1+ γ t).

If γ has cycle typeα = (α1, α2, . . .) ∈ Pr then det(1+ γ t) = (1− (−t)α1)×
(1− (−t)α2) · · · . As before letΛ be theQ-algebra of symmetric functions in a
sequence of indeterminates. ThenΛ=Q[p1,p2, . . .] wherepk is thekth power
sum. Define aQ-algebra homomorphismΦ :Λ→ Q[t] by Φ(pk) = 1− (−t)k .
Then det(1+ γ t)=Φ(pα) wherepα = pα1pα2 · · · . By (3.9), (3.10), and (3.8)

Fλ(t)=Φ

( ∑
α∈Pr

z−1
α χλ

αpα

)
=Φ(sλ)= det

[
Φ(hλi−i+j )

]
.

Let Aλ = [Φ(hλi−i+j )]. Sincekhk =∑k
j=1pjhk−j , we conclude, by induction

on k, thatΦ(hk)= 1+ t for k � 1. If λ is not a hook thenλ2 � 1 so all entries
in the first two rows ofAλ are equal to 1+ t . ThusFλ(t) = detAλ = 0. If
λ = (r − m,1m) for some 0� m � r − 1 then the matrixAλ has sizem + 1
with (i, j) entry equal to 1+ t if j � i, equal to 1 ifj = i − 1 and equal to 0
if j � i − 2. Subtract the second row ofAλ from the first row and use induction
on m to conclude thatFλ(t)= detAλ = tm + tm+1. This proves (3.26) and thus
proves (3.24). Ifν ∈Q then, by Lemma 3.17(ii) and (3.24)(

ψp : ζ ν
)
R
=

n∑
r=0

∑
λ∈Pr

B−1
νλ

(
(ψp)|Sr : χµ

)
Sr
=
∑
λ∈Q

∑
µ∈Q

B−1
νλ Bλµδµ,(1p)

1 This is a slippery spot. In the representation theory ofSn we usually viewSr as a subgroup of
Sn whenr � n so an element ofSr fixesxr+1, . . . , xn. In our present context the elements ofSr have
domainr soSr is not a subgroup ofSn for r < n. An element ofSr annihilatesxr+1, . . . , xn.
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=
∑
µ∈Q

δνµδµ,(1p) = δν,(1p).

Thusψp = ζ (1p). ✷
Remark 3.27. In view of Lemma 3.17 one would like formulas forA−1 andB−1.
L.C. Hsu [5, p. 176] showed that

A−1
αβ = (−1)l(α)+l(β)

(
α

β

)
,

wherel(α) is the number of parts inα. The author observed for smalln that the
entries ofB−1 are 0 or±1. I. Gessel and G. Tesler proved, independently, that if
λ,µ ∈Q then

B−1
λµ =

{
(−1)|λ−µ| if λ⊇ µ andλ−µ is a vertical strip,
0 otherwise.

4. The representation of R on F [x1, . . . , xn]

In this section allR-modules andSr -modules have action on the right. LetFn

be the space of row vectors overF . Let x1, . . . , xn be the standard basis forFn.
MakeFn anR-module as in (3.23). LetF [x] = F [x1, . . . , xn] be the polynomial
algebra in commuting indeterminatesx1, . . . , xn. Forp = 0,1,2, . . . let F [x]p be
the space of homogeneous polynomials of degreep. We agree thatF [x]p = 0 for
p < 0. MakeF [x] anR-module by defining 1σ = 1 and

(xi1 · · ·xip )σ = (xi1σ) · · · (xipσ ) (4.1)

for 1� i1, . . . , ip � n. In this section we determine the gradedR-module structure
of F [x]; this is the content of Theorem 4.7 and Corollary 4.9.

If M is anSr -module which affords a representationρ of Sr let M∗ denote
an R-module which affords the representationρ∗ of A defined in (2.21).
ThusM∗ is determined byM up to isomorphism. It follows from (2.23) that
dimM∗ = (

n
r

)
dimM. If λ ∈ Pr choose anSr -moduleMλ which affords the

irreducible representationρλ with characterχλ and anR-moduleNλ which
affords the irreducible representationρλ∗ with characterζ λ. Let J λ be the
isotypic component ofF [x] of type λ. This is by definition the sum of all
simpleR-submodules ofF [x] which are isomorphic toNλ. Forp = 0,1,2, . . .
let J λ

p = J λ ∩ F [x]p. Then

F [x] =
⊕
λ∈Q

J λ and F [x]p =
⊕
λ∈Q

J λ
p .
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Example 4.2. (i) Supposeλ= (0). Thenρλ∗ is the trivial representation. We may
chooseNλ = F with action 1σ = 1 for σ ∈ R. Supposef ∈ J λ is homogeneous.
Thenf σ = f for σ ∈ R. Defineν ∈ R by I (ν)= {1, . . . , n− 1} andkν = k + 1
for 1 � k � n− 1. Thenxkν = xk+1 for 1 � k � n− 1 andxnν = 0. If degf > 0
thenf = f νn = 0. ThusJ λ = F ; the onlyR-invariant polynomials are constants.
TheSn-invariant polynomials inx1, . . . , xn occur in (iii) below.

(ii) Supposeλ = (1). By Example 2.29 we may chooseNλ = Fx1 + · · · +
Fxn with R-action as in (3.23). Letθ :Nλ → F [x]p be a nonzeroR-mod-
ule homomorphism, wherep � 1. Let ν ∈ R be as in (i). Writeθ(x1) =∑

ci1,...,cin x
i1
1 · · ·xin

n whereci1,...,in ∈ F and the sum is over all(i1, . . . , in) with
i1 + · · · + in = p. Sincex1ν

n−1 = xn and xiν
n−1 = 0 for 2 � i � n we have

θ(xn)= θ(x1ν
n−1)= θ(x1)ν

n−1= cp,0,...,0x
p
n . SinceNλ is a simple module,θ is

one-to-one socp,0,...,0 "= 0. By replacingθ by a nonzero constant multiple we
may assume thatθ(xn) = x

p
n . Now apply powers ofν− to getxp

k ∈ θ(Nλ) for
1 � k � n. Thusθ(Nλ) ⊇ Fx

p
1 + · · · + Fx

p
n so θ(Nλ) = Fx

p
1 + · · · + Fx

p
n by

simplicity of Nλ. Since this is true for allθ , we haveJ λ
p = Fx

p
1 + · · · +Fx

p
n .

(iii) Supposeλ= (n). By Example 2.29 we may chooseNλ = F with action
1σ = 1 for σ ∈ Sn and 1σ = 0 for σ ∈ R − Sn. Let Λn be theF -algebra of
symmetric polynomials inx1, . . . , xn. Supposef ∈ J λ is homogeneous. Then
f σ = f for σ ∈ Sn andf σ = 0 for σ ∈R− Sn. In particular,f ∈Λ andf is not
constant. Fixk ∈ n and letK = {1, . . . , k−1, k+1, . . . , n}. Writef = xkf

′ +f ′′
wheref ′′ does not involvexk . Then 0= f εK = (xkεK)(f ′εK) + f ′′εK . But
xkεK = 0 andf ′′εK = f ′′. Thusf ′′ = 0. Thusxk dividesf for all k so f ∈
x1 · · ·xnΛn. ThusJ λ = x1 · · ·xnΛn.

We will compute theJ λ in terms of corresponding data for the symmet-
ric groupsSr with 0 � r � n. Let F [x; r] = F [x1, . . . , xr ]. We agree that
F [x;0] = F . ThenF [x; r] is anSr -submodule ofF [x]. The action ofSr de-
fined by (4.1) withr in place ofn is the natural action ofSr by automorphisms of
F [x; r]. LetF [x; r]p = F [x; r] ∩ F [x]p. If λ ∈Pr let Iλ be the isotypic compo-
nent ofF [x; r] of typeλ, the sum of all simpleSr -submodules ofF [x; r] which
are isomorphic toMλ. Let Iλp = Iλ ∩F [x; r]p. Then

F [x; r] =
⊕
λ∈Pr

I λ and F [x; r]p =
⊕
λ∈Pr

I λp .

To proceed further we construct for eachSr -submoduleM of F [x; r]
an R-submoduleMD of F [x]. Lemma 4.4 states various properties of the
correspondenceM ❀ MD, among them a module isomorphismMD � M∗. To
constructMD recall from Section 2 that we have chosen for eachK ⊆ n with
|K| = r, an elementµK ∈ R such thatµK mapsr to K. The elementµK is
not uniquely determined byK, but it is determined byK up to replacement by
γµK with γ ∈ Sr . SinceM is anSr -module, the spaceMµK is thus uniquely
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determined byM andK. DefinexK ∈ F [x] by xK =∏k∈K xk . Define a subspace
MD of F [x] by

MD =
∑
|K |=r

xK(MµK). (4.3)

For example, suppose thatλ = (n) and M = I (n) = Λn is the F -algebra
of symmetric polynomials inx1, . . . , xn. Since µn is the identity of Sn,
Example 4.2(iii) shows thatMD = xnΛ

n = x1 · · ·xnΛn = J (n).
If dimM is finite letχD be the character of theR-moduleMD. If M affords a

matrix representationρ of Sr then, by definition,M∗ affords the representation
ρ∗ of R. As in Section 2, ifχ is the character ofρ let χ∗ denote the character
of ρ∗.

Lemma 4.4. LetM be anSr -submodule ofF [x; r]. Then

(i) MD is anR-submodule ofF [x].
(ii) If dimM is finite thendimMD = (n

r

)
dimM.

(iii) If M =M1+ · · · +Mh is a sum of submodules, thenMD =MD
1 + · · · +MD

h.
(iv) If dimM is finite andχ is its character thenχD = χ∗ and thusMD �M∗.
(v) If λ ∈Pr then(Mλ)D �Nλ.

Proof. Let σ ∈ R andK ⊆ n with |K| = r. If K ⊆ I (σ ) thenµKσ : r→Kσ is
a one-to-one map. Thus there existsγK,σ ∈ Sr such that

µKσ = γK,σµKσ . (4.5)

Then(MµK)σ =MγK,σµKσ =MµKσ . If K ⊆ I (σ ) thenxKσ = xKσ . On the
other hand, ifK is not included inI (σ ) thenxKσ = 0. Thus(

xK(MµK)
)
σ = (xKσ)(MµKσ)=

{
xKσ (MµKσ ) if K ⊆ I (σ ),

0 otherwise.
(4.6)

In particular,(xK(MµK))σ ⊆MD. This proves (i). To prove (ii) we show first that
the sum in (4.3) is direct. Suppose that

∑
|K |=r xK(mKµK)= 0 wheremK ∈M.

It follows from (3.23) that ifK ⊆ n then xiεK = xi if i ∈ K and xiεK = 0
otherwise. ChooseL⊆ n with |L| = r. ThenxKεL = 0 if L "=K andxLεL = xL.
ThusxL(mLµLεL)= 0 somLµLεL = 0. ButµLεL = µL somLµL = 0 because
F [x] is an integral domain. SinceµLµ

−
L is the identity map ofL it follows that

mL = 0. Thus the sum is direct. The same argument shows that ifxKmKµK = 0
then mK = 0. ThusMD is a direct sum of the

(
n
r

)
subspacesxK(MµK) of

dimension equal to dimM. This proves (ii). Assertion (iii) is clear from the
definition ofMD. Suppose that dimM is finite. LetσD be the endomorphism of
MD which corresponds toσ . Choose a basis forMD adapted to the direct sum
decomposition (4.3). The matrix forσD is decomposed into blocks of size

(
n
r

)
.

The diagonal blocks are in one-to-one correspondence withr-subsetsK of n.
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It follows from (4.6) that theKth diagonal block is zero unlessK ⊆ I (σ ) and
Kσ =K. Assume in the rest of this argument thatK ⊆ I (σ ) andKσ =K. Then
(4.5) givesµKσ = γK,σµK . Thus the trace of theKth diagonal block isχ(γK,σ )

so

χD(σ )=
∑

K⊆I (σ ), |K |=r
Kσ=K

χ(γK,σ ).

Now εKσ = µ−KµKσ = µ−KγK,σµKσ . SinceI (εKσ) = K = J (εKσ) it follows
from the uniqueness in (2.16) and from (2.15) thatγK,σ = p(εKσ) = µKσµ−K .
Thus

χD(σ )=
∑

K⊆I (σ ), |K |=r
Kσ=K

χ(µKσµ−K).

Now (iv) follows from (2.31). Finally (v) follows from (iv) since both(Mλ)D and
Nλ have the same characterχλ∗. ✷
Theorem 4.7. If λ ∈Q thenJ λ = (Iλ)D.

Proof. If λ ∈ Pr then (Iλp−r )
D ⊆ F [x]p for all integersp by (4.3); if p < r

then Iλp−r = 0. Write Iλp−r as a sum ofSr -modules isomorphic toMλ. By

Lemma 4.4(iii) and (v),(Iλp−r )
D is a sum ofR-modules isomorphic toNλ and

is thus included inJ λ. ThusJ λ
p = J λ ∩F [x]p ⊇ (Iλp−r )

D. In particular, dimJ λ
p �

dim(Iλp−r )
D. To complete the proof we show that dimJ λ

p = dim(Iλp−r )
D whence

J λ
p = (Iλp−r )

D and thusJ λ = (Iλ)D. Let t be an indeterminate. Since

F [x]p =
⊕
λ∈Q

J λ
p and

∑
p�0

dimF [x]ptp = 1

(1− t)n

we have∑
p�0

n∑
r=0

∑
λ∈Pr

(
dimJ λ

p

)
tp = 1

(1− t)n
.

Similarly
∑

p�0
∑

λ∈Pr
(dimIλp)t

p = 1/(1− t)r . If λ ∈ Pr then dim(Iλp−r )
D =(

n
r

)
dimIλp−r by Lemma 4.4(ii). SinceIλp−r = 0 for p < r we get

∑
p�0

n∑
r=0

∑
λ∈Pr

(
dimIλp−r

)D
tp =

n∑
r=0

(
n

r

)
tr
∑
p�0

∑
λ∈Pr

(
dimIλp−r

)
tp−r

=
n∑

r=0

(
n

r

)
tr
∑
p�0

∑
λ∈Pr

(
dimIλp

)
tp
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=
n∑

r=0

(
n

r

)
tr

1

(1− t)r
= 1

(1− t)n
.

Now compare coefficients oftp to get

n∑
r=0

∑
λ∈Pr

dimJ λ
p =

n∑
r=0

∑
λ∈Pr

(
dimIλp−r

)D
.

Since dimJ λ
p � dim(Iλp−r )

D for all p � 0, we have dimJ λ
p = dim(Iλp−r )

D, so
J λ = (Iλ)D. ✷

The following corollary gives the multiplicity of theR-moduleNλ in F [x]p,
in terms of analogous data for the symmetric groupSr .

Corollary 4.8. Letψp be the character of theR-moduleF [x]p and letϕp,r be the
character of theSr -moduleF [x; r]p. If λ ∈Pr then(ψp : ζ λ)R = (ϕp−r,r : χλ)Sr .

Proof. SinceJ λ
p is isomorphic to a direct sum of(ψp : ζ λ)R copies ofNλ we

have dimJ λ
p = (ψp : ζ λ)R dimNλ = (ψp : ζ λ)R

(
n
r

)
f λ. SinceIλp−r is isomorphic

to a direct sum of(ϕp−r,r : χλ)Sr copies ofMλ, we have

dim
(
Iλp−r

)D = (n
r

)
dimIλp−r =

(
n

r

)(
ϕp−r,r : χλ

)
Sr
f λ.

The assertion follows sinceJ λ
p = (Iλp−r )

D. ✷
The next corollary gives a generating function for the multiplicities(ψp : ζ λ)R .

Corollary 4.9. Supposeλ ∈ Pr . LetGλ(t)=∑p�0(ψp : ζ λ)Rt
p . Then

Gλ(t)= tn(λ)+r
∏
x∈λ

(
1− th(x)

)−1
,

whereh(x) is the hook length at the nodex of the Ferrers diagram andn(λ) =∑
i�0(i − 1)λi .

Proof. By Corollary 4.8 we haveGλ(t)= trF λ(t) where

Fλ(t)=
∑
p�0

(
ϕp,r : χλ

)
Sr
tp.
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The seriesFλ(t) are known2 and may be computed as follows. Ifγ ∈ Sr then∑
p�0

ϕp,r(γ )t
p = det(1− γ t)−1,

where, on the right side, 1 is an identity matrix of sizer and we viewγ as a
permutation matrix of sizer. If γ has cycle typeα = (α1, α2, . . .) ∈Pr then

det(1− γ t)−1= (1− tα1
)−1(1− tα2

)−1 · · · = pα

(
1, t, t2, . . .).

Thus by (3.9), (3.10) and [7, p. 45, Example 2]

Fλ(t) =
∑
α∈Pr

z−1
α χλ

αpα

(
1, t, t2, . . .

)= sλ
(
1, t, t2, . . .

)
= tn(λ)

∏
x∈λ

(
1− th(x)

)−1
. ✷

The next corollary is a statement about Schur functions which does not involve
the monoidR.

Corollary 4.10. If λ ∈ Pr then

sλ
(
1, t, t2, . . .

)=∑ t |µ|sµ
(
1, t, t2, . . .

)
where the sum is over all partitionsµ such thatλ⊇ µ andλ− µ is a horizontal
strip.

Proof. As in Example 3.22 the restriction ofψp to Sr is ϕp,r .3 It follows
from Lemma 3.17(ii) and the definition ofGλ(t) and Fµ(t) that Gλ(t) =∑

µ∈Q B−1
λµF

µ(t). ThusFλ(t) =∑
µ∈Q BλµG

µ(t). The assertion follows now
from Proposition 3.11 since, as in the proof of Corollary 4.9,

Fλ(t)= sλ
(
1, t, t2, . . .

)
and µ(t)= t |µ|Fµ(t). ✷

5. The representation of R on tensors

Let V be a vector space of finite dimension overF . Let G = GL(V ) be the
general linear group. ThenV⊗n is aG-module with the action

g(v1⊗ · · · ⊗ vn)= gv1⊗ · · · ⊗ gvn (5.1)

2 See, for example, (2.2.1) in [G. Lusztig, Irreducible representations of finite classical groups,
Invent. Math. 43 (1977)], where the formula forFλ(t) is deduced from work of R. Steinberg on
characters ofGLn(Fq).

3 In Example 3.22 theψp andϕp,r are characters of representations on the exterior algebra rather
than the polynomial algebra, but the reasoning for this statement is the same in both cases.
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for v1, . . . , vn ∈ V andg ∈G. The spaceV⊗n also has the structure ofSn-module
in whichSn acts, on the left, by place permutations:

w(v1⊗ · · · ⊗ vn)= v1w ⊗ · · · ⊗ vnw (5.2)

for v1, . . . , vn ∈ V andw ∈ Sn. In his thesis [12] Schur constructed the represen-
tations ofGL(V ) which are rational and homogeneous of degreen and found
their characters in terms of the characters ofSn. Schur [13, Hilfsätze V, VI] and
Weyl [19, Satz 10] reworked the theory in terms of the actions (5.1) and (5.2) on
tensors. It is clear from the definitions that these actions centralize each another.
Thus (5.2) defines an algebra homomorphismρ :FSn→HomG(V ⊗n,V⊗n). For
λ ∈ Pn, let V λ be the simpleG-module which corresponds toλ. Schur and Weyl
showed thatV⊗n �⊕λ∈Pn

f λV λ, an isomorphism ofG-modules. It follows that

dimHomG

(
V ⊗n,V ⊗n

)= ∑
λ∈Pn

(
f λ
)2= n!,

so ρ :FSn → HomG(V ⊗n,V ⊗n) is an isomorphism of algebras. This isomor-
phism is often called Schur–Weyl duality.

In Lemma 5.4 we will construct an analogous isomorphism forFR. To do this
we need the analogue of a place permutation for an elementσ ∈ R. We cannot
defineσ(v1 ⊗ · · · ⊗ vn) = v1σ ⊗ · · · ⊗ vnσ as in (5.2) becauseσ need not have
domainn. We try to approximate the formula (5.2) as best we can by using the
field F as a wastebasket for the undefinediσ . To this end, letU = F ⊕ V . View
bothF andV as subspaces ofU . ThenU is aG-module viag(c + v) = c+ gv

for g ∈ G, c ∈ F , andv ∈ V . We giveU⊗n a G-module structure analogous to
that in (5.1), namely,

g(u1⊗ · · · ⊗ un)= gu1⊗ · · · ⊗ gun (5.3)

for u1, . . . , un ∈U andg ∈G.

Lemma 5.4. Let V be a vector space overF . Let U = F ⊕ V . Let u �→ u0 be
the projection ofU on F with kernelV . Let u �→ u1 be the identity map ofU .
For K ⊆ n and i ∈ n defineδ(i,K)= 1 if i ∈ K, andδ(i,K)= 0 if i /∈K. Thus
if u ∈ U thenuδ(i,K) is defined and is inU . If σ ∈ R write σ = εKw for some
K ⊆ n andw ∈ Sn, as in(2.11). Define

σ(u1⊗ · · · ⊗ un)= u
δ(1,K)
1w ⊗ · · · ⊗ uδ(n,K)

nw . (5.5)

Then(5.5)depends only onσ and not on the particular representationσ = εKw,
and givesU⊗n an R-module structure for which the action ofR centralizes the
action ofG.

Example 5.6. We precede the proof of Lemma 5.4 with an example to illustrate
(5.5). Suppose thatn = 3 and thatσ has domainI (σ ) = {1,2} with 1σ = 2
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and 2σ = 3. The corresponding rook matrix[σ ] is E12+ E23. Heuristically we
want σ(u1 ⊗ u2 ⊗ u3) = u2 ⊗ u3⊗? where ? lies in the wastebasketF . Write
σ = ε{1,2}w wherew ∈ S3 is the permutation 1�→ 2 �→ 3 �→ 1. Then (5.5) says
σ(u1 ⊗ u2 ⊗ u3) = u2 ⊗ u3 ⊗ u0

1. Note that if σ = w ∈ Sn then K = n, so
δ(i,K) = 1 for all i ∈ n andw(u1 ⊗ · · · ⊗ un) = u1w ⊗ · · · ⊗ unw . Thus the
action ofSn onU⊗n is the usual action ofSn on tensors by place permutations.

Proof. We show first that the right-hand side of (5.5) does not depend on the
chosenK andw. The setK is uniquely determined byσ asK = I (σ ). Thus we
must show that ifw,x ∈ Sn andεKw = εKx then

u
δ(1,K)
1w ⊗ · · · ⊗ uδ(n,K)

nw = u
δ(1,K)
1x ⊗ · · · ⊗ uδ(n,K)

nx .

If i ∈ K then iw = ix so u
δ(i,K)
iw = uiw = uix = u

δ(i,K)
ix . Write n − K =

{j1, . . . , jr}. We must show that

u0
j1w

⊗ · · · ⊗ u0
jrw

= u0
j1x
⊗ · · · ⊗ u0

jr x
.

Suppose for simplicity of notation that{j1, . . . , jr } = r. We must show that

u0
1w ⊗ · · · ⊗ u0

rw = u0
1x ⊗ · · · ⊗ u0

rx. (5.7)

SinceKw = Kx we have{1w, . . . , rw} = {1x, . . . , rx}. Choose anF -basisB
for V . We may assume by linearity that theuj lie in {1} ∪ B where 1∈ F is the
unit element. If 1� i � r define 1� i ′ � r by iw = i ′x. If uiw ∈ B for some
1 � i � r thenu0

iw = 0 andu0
i′x = 0, so both sides of (5.7) are zero. Ifuiw = 1 for

all 1 � i � r then both sides of (5.7) are equal to 1⊗ · · ·⊗ 1. Thus the right-hand
side of (5.5) does not depend on the choice ofw.

To show that (5.5) is anR-module action we must check thatσ(τ t) = (στ)t

for σ, τ ∈ R and t = u1 ⊗ · · · ⊗ un with uj ∈ U . Write σ = εKw andτ = εLx

whereK,L⊆ n andw,x ∈ Sn. Then

σ(τ t) = σ
(
u
δ(1,L)
1x ⊗ · · · ⊗ uδ(n,L)

nx

)
= (

u
δ(1w,L)
1wx

)δ(1,K)⊗ · · · ⊗ (uδ(nw,L)
nwx

)δ(n,K)
. (5.8)

View 0, 1 in the definition ofu0 andu1 as elements ofZ/2Z. Then(ua)b = uab

for a, b ∈ Z/2Z andu ∈ U . Also, δ(iw,L) = δ(i,Lw−1) and δ(i, J )δ(i,K) =
δ(i, J ∩K) for all subsetsJ,K of n. Thus (5.8) may be written as

σ(τ t)= u
δ(1,Lw−1∩K)
1wx ⊗ · · · ⊗ uδ(n,Lw−1∩K)

nwx . (5.9)

SincewεL = εLw−1w, we have(εKw)(εLx)= εKεLw−1wx = εLw−1∩Kwx. Thus
the right-hand side of (5.9) is(στ)t . To show thatσgt = gσ t for g ∈ GL(V )

we may assume, sinceσ = εKw, that σ = εK . The assertion follows since
g(ua)= (gu)a for u ∈U anda ∈ {0,1} and thusg(uδ(i,K))= (gu)δ(i,K). ✷

The following theorem is an analogue, forR and GL(V ), of Schur–Weyl
duality forSn andGL(V ).
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Theorem 5.10. Let V be a vector space of finite dimension over a fieldF of
characteristic zero. LetU = F ⊕V . LetG=GL(V ) act onU and hence onU⊗n

by fixingF . Letρ :R→GL(U⊗n) be the representation ofR defined in(5.5). If
dimV � n thenρ :FR→HomG(U⊗n,U⊗n) is an isomorphism of algebras.

Proof. LetA= FR. It suffices to show that dimHomG(U⊗n,U⊗n)= dimA and
that ρ is one-to-one. Suppose 0� r � n. Let Sr be the symmetric group onr.
ThenV ⊗r is aG-module and anSr -module where the action is given by (5.1)
and (5.2) withn replaced byr. If r = 0 we agree thatV⊗0 = F with trivial G
action and trivialS0 action. Ifr "= r ′ then [20, Theorem 4.4.F]

HomG

(
V⊗r , V ⊗r ′)= 0. (5.11)

ExpandV⊗n = (F ⊕ V )⊗n using distributivity of the tensor product. To be
precise, letU0 = F and letU1 = V . For i = 0,1 let pi be the projection ofU
onUi which annihilatesUj for j "= i. If K ⊆ n defineπK :U⊗n→U⊗n by

πK = pδ(1,K)⊗ · · · ⊗ pδ(n,K). (5.12)

Let TK = πKU⊗n. For example, ifn= 3 andK = {1,3} thenπK = p1⊗p0⊗p1

andTK = V ⊗ F ⊗ V . TheπK are pairwise orthogonal idempotents with sum
equal to the identity map ofU⊗n. ThusU⊗n =⊕K⊆n TK . If |K| = r thenTK is a
G-submodule ofU⊗n which is isomorphic toV ⊗r . Thus there is an isomorphism

U⊗n �
n⊕

r=0

(
n

r

)
V⊗r (5.13)

of G-modules where
(
n
r

)
V ⊗r means a direct sum of

(
n
r

)
copies ofV ⊗r . It follows

from (5.11), (5.13) and Schur–Weyl duality that

HomG

(
U⊗n,U⊗n

) � HomG

(
n⊕

r=0

(
n

r

)
V⊗r ,

n⊕
r=0

(
n

r

)
V ⊗r

)

�
n⊕

r=0

M(nr)

(
HomG

(
V ⊗r , V⊗r

))� n⊕
r=0

M(nr)
(FSr).

Thus, by (1.2),

dimHomG

(
U⊗n,U⊗n

)= n∑
r=0

(
n

r

)2

r! = dimA.

To prove thatρ is one-to-one we first construct anF -basis forA in terms of the
idempotentsηK defined in (2.4). ForK ⊆ n let SK = {w ∈ Sn | iw = i for all
i ∈K} be the fixer ofK. Supposew ∈ SK . If J ⊆K thenw ∈ SJ soεJw = εJ . It
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follows from (2.4) thatηKw = ηK . Write Sn = SKXK whereXK is a set of coset
representatives. By (2.4) and (2.5) we have

FE =
⊕
K⊆n

FεK =
⊕
K⊆n

FηK.

Thus

A= FR = FESn =
⊕
K⊆n

FηKSn =
⊕
K⊆n

FηKSKXK =
⊕
K⊆n

FηKXK.

Thus

Q= {ηKw |K ⊆ n andw ∈XK }
spansA as anF vector space. If|K| = r then|SK | = (n− r)!, so

|Q|�
n∑

r=0

(
n

r

)
n!

(n− r)! =
n∑

r=0

(
n

r

)2

r! = dimA.

ThusQ is anF -basis forA. Suppose thata ∈A andρ(a)= 0. Write

a =
∑
K⊆n

∑
w∈XK

cK,wηKw

for uniquely determinedcK,w ∈ F . To complete the proof we show thatcK,w = 0
for all K ⊆ n andw ∈XK . Fix K ⊆ n. Then

0= ρ(ηK)ρ(a)=
∑
J⊆n

∑
w∈XJ

cJ,wρ(ηKηJ )ρ(w).

It follows from Lemma 2.6 that∑
w∈XK

cK,wρ(ηK)ρ(w)= 0. (5.14)

Next we computeρ(ηK). If u1, . . . , un ∈ U thenεK(u1⊗ · · · ⊗ un)= u
δ(1,K)
1 ⊗

· · · ⊗ u
δ(n,K)
n . If u ∈ U thenuδ(i,K) = p0u + p1u if i ∈ K anduδ(i,K) = p0u if

i /∈K. Thus

εK(u1⊗ · · · ⊗ un) =
∑
J⊆K

pδ(1,J )u1⊗ · · · ⊗ pδ(n,J )un

=
∑
J⊆K

πJ (u1⊗ · · · ⊗ un)

by (5.5). For example, ifn= 3 andK = {1,3} then

εK(u1⊗ u2⊗ u3)= (p0u1+ p1u1)⊗ p0u2⊗ (p0u3+ p1u3)

and expansion of the right-hand side gives a sum indexed by subsets of{1,3}.
Thusρ(εK)=∑J⊆K πJ . It follows from (2.5) by induction on|K| that
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ρ(ηK)= πK. (5.15)

Thus, by (5.14) and (5.12),∑
w∈XK

cK,w(pδ(1,K)u1w ⊗ · · · ⊗ pδ(n,K)unw)= 0 (5.16)

for all u1, . . . , un ∈U . Letm= dimV . Let {b1, . . . , bm} be a basis forV . Choose
a subsetL of n with |L| = |K| and hold it fixed until further notice. LetY be the
set of allw ∈XK such thatKw= L. Since, by hypothesis,|L|� n � dimV =m

we may defineu1, . . . , un ∈U byuj = bj for j ∈L, anduj = 1 for j ∈ n−L. Let
tK,w = pδ(1,K)u1w ⊗ · · · ⊗ pδ(n,K)unw. Supposew ∈ XK − Y . Theniw ∈ L for
somei ∈ n−K. For thisi we havepδ(i,K)uiw = p0biw = 0. Thus ifw ∈XK −Y

thentK,w = 0. Thus (5.16) implies
∑

w∈Y cK,wtK,w = 0. Supposew ∈ Y . If i ∈K

then iw ∈ L, so pδ(i,K)uiw = p1uiw = biw. If i ∈ n − K then iw ∈ n − L, so
pδ(i,K)uiw = p01= 1. If w,w′ ∈ Y andbiw = biw′ for all i ∈ K theniw = iw′
for all i ∈ K sow′w−1 ∈ XK and thusw = w′. Since{1, b1, . . . , bm} is a basis
for U , the tensorstK,w with w ∈ Y are thus distinct elements of a basis forU⊗n.
It follows thatcK,w = 0 for all w ∈ Y . Now letL range over all subsets ofn for
which |L| = |K| to conclude thatcK,w = 0 for all w ∈XK . ✷
Remark 5.17. Let G = GL(V ) where dimV � n. If λ ∈ Q, let V λ be an
irreducible rationalG-module which corresponds toλ. By Schur–Weyl duality,
V⊗r �⊕λ∈Pr

f λV λ, an isomorphism ofG-modules. Thus, by (5.13),U⊗n �⊕n
r=0

⊕
λ∈Pr

(
n
r

)
f λV λ. Since

(
n
r

)
f λ = ζ λ(1), there is aG-module isomorphism

U⊗n �
⊕
λ∈Q

ζ λ(1)V λ.

Corollary 5.18. If dimV � n andU = F ⊕ V thenHomFR(U
⊗n,U⊗n) is the

subalgebra ofHom(U⊗n,U⊗n) generated by all endomorphismsu1⊗· · ·⊗un �→
gu1⊗ · · · ⊗ gun with u1, . . . , un ∈ U andg ∈GL(V ).

Proof. SinceFR is semisimple this follows from Theorem 5.10 and double
centralizer theory. ✷

6. A presentation for R

For 1� i � n− 1 let si ∈ Sn be the transposition ofi andi + 1. E.H. Moore
[8] found the now familiar presentation

(i) s2
i = 1,

(ii) sisj = sj si , if |i − j |� 2,

(iii ) sisi+1si = si+1sisi+1, (6.1)
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for Sn. There are several known presentations forR, found by L.M. Popova [11],
D. Easdown [1], and S. Lipscomb [6, Chapter 9]. These presentations adjoin an
idempotentε of rankn− 1 to the generating set{s1, . . . , sn−1} for Sn and use the
relations (6.1) together with further relations which involveε. In this section we
give a presentation forR in terms of{s1, . . . , sn−1} and the nilpotent elementν
defined byI (ν) = {1,2, . . . , n− 1} andiν = i + 1 for 1� i � n− 1. The rook
matrix [ν] ∈R corresponding toν is the Jordan blockE12+ · · · +En−1,n.

The incentive to look for a presentation ofR which involves the element
ν rather than an idempotentε lies in [15], which concerns an algebra—call it
I(q) here—with a basis{Tσ | σ ∈ R}. The algebraI(q) is a q-analogue of the
monoid algebraI(1) � FR. It contains the Iwahori Hecke algebra with basis
{Tw |w ∈ Sn} just asR containsSn. In [16] we will define a representation ofI(q)
on tensors which is aq-analogue of the representation ofR on tensors defined in
Lemma 5.4. To define the representation ofI(q) we use a presentation forI(q)
in terms of Iwahori generatorsTs1, . . . , Tsn−1 andTν , which isq-analogous to the
presentation forR in Theorem 6.2. It seems that there is no simple presentation
for I(q) in terms ofTs1, . . . , Tsn−1 and an elementTε which corresponds to an
idempotentε of rankn− 1.

Theorem 6.2. The monoidR has a presentation with generatorss1, . . . , sn−1, ν

and defining relations

(i) s2
i = 1,

(ii) sisj = sj si, if |i − j |� 2,
(iii) sisi+1si = si+1sisi+1,

(iv) νi+1si = νi+1,

(v) siν
n−i+1 = νn−i+1,

(vi) siν = νsi+1,

(vii) νs1s2 · · · sn−1ν = ν, (6.3)

where1 � i � n− 1 and1� i � n− 2 in (iii) and (vii) .

Proof. To start, lets1, . . . , sn−1, ν be as in the first paragraph of this section. We
show thats1, . . . , sn−1, ν satisfy (iv)–(vii) and generateR. For this it is convenient
to use the isomorphismR �R defined byσ �→ [σ ]. Left multiplication of[σ ] by
[si ] permutes rowsi andi + 1. Right multiplication by[si] permutes columnsi
andi + 1. Thus (iv) holds inR since the firsti + 1 columns ofνi+1 are zero and
(v) holds since the lasti+1 rows ofνi+1 are zero. Relation (vii) holds inR since
[ν][s1][s2] · · · [sn−1] = E11+ · · · + En−1,n−1 is idempotent. To check (vi) inR
examine the matrices on both sides of the formula. Thuss1, . . . , sn−1, ν satisfy
the relations (6.3).

Let M be the submonoid ofR generated by{s1, . . . , sn−1, ν}. For K ⊆ n let
εK be as in (2.3) and letE = {εK |K ⊆ n}. Thus[εK ] is the diagonal idempotent
matrix with nonzero entries in the rows indexed byK. Let J = {1, . . . , n − 1}.
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Since[εJ ] = [ν][s1] · · · [sn−1]we haveεJ ∈M. Conjugation by a suitable element
of Sn shows thatM contains allεK with |K| = n − 1 and hence, by (2.3),
M contains allεK with K ⊆ n. It follows from (2.11) thatM = R. Thus
s1, . . . , sn−1, ν generateR.

LetR′ be the monoid generated by elementss′1, . . . , s′n−1, ν
′ subject to defining

relations (6.3), withsi replaced bys′i andν replaced byν′; see [4, p. 10] for the
definition of a monoid presentation by generators and relations. We must show
thatR′ � R. SinceR satisfies (6.3), there is a surjective monoid homomorphism
ϑ :R′ → R such thatϑ(s′i ) = si andϑ(ν′) = ν. Let S′n = 〈s′1, . . . , s′n〉 ⊆ R′. By
(6.1) and (6.3), (i)–(iii), there is a group homomorphismψ :Sn → S′n such that
ψ(si) = s′i . Sinceψϑ is the identity map ofS′n the restriction ofϑ to S′n is an
isomorphismS′n � Sn. ThusS′n acts onn ands′i acts as the transposition(i, i+1).
To show thatϑ :R′ → R is an isomorphism of monoids it suffices to show that
|R′|� |R| where|R| is given by (1.2).

To avoid cluttered notation using “primed” letters, we replace the lettersν′, s′i
by ν, si and writeR,Sn in place ofR′, S′n. There is no danger in this provided
we are careful with what we know about the currentR,Sn. We know thatR is
a monoid generated by elementss1, . . . , sn−1, ν which satisfy the relations (6.3),
thatSn = 〈s1, . . . , sn−1〉 acts onn and thatsi acts as the transposition(i, i + 1). It
suffices to show using these properties ofR,Sn that

|R|�
n∑

r=0

(
n

r

)2

r!. (6.4)

For 0� j � n − 1 let wj = s1s2 · · · sj where we agree thatw0 = 1. Argue by
descending induction onj that νn = νwjν

n for 0 � j � n − 1. For j = n − 1,
(6.3)(vii) gives

νn = ννn−1= νwn−1νν
n−1= νwn−1ν

n.

Suppose thatνn = νwjν
n for some 1� j � n− 1. Sincewj =wj−1sj , (6.3)(v)

implies

ν = νwj−1sj ν
n−j+1νj−1= νwj−1ν

n−j+1νj−1= νwj−1ν
n.

This completes the induction. Forj = 0 we getνn+1 = νn. Agree to write
ν0= 1∈R. We show next forr � 0 and 0� j � n− 1 that

νwjν
r =

{
νr if r + j � n,

νr+1sr+1 · · · sr+j if r + j � n− 1. (6.5)

This is clear forr = 0, so assume thatr � 1. Suppose thatr + j � n. If
j + 1 � i � n − 1 then r � n − i + 1, so siν

r = νr by (6.3)(v). Thus, since
wj =wn−1sn−1 · · · sj+1, we have

νwjν
r = νwn−1sn−1 · · · sj+1ν

r = νwn−1ν
r = νwn−1νν

r−1= ννr−1= νr
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by (6.3)(vii). Suppose thatr + j � n − 1. If 1 � i � j then r + i � n − 1,
so siν

r = νrsr+i by r applications of (6.3)(vi). Thusνwj ν
r = νs1 · · · sj νr =

ννrsr+1 · · · sr+j . This proves (6.5).
Recall thatsi acts onn as the transposition(i, i + 1). Since〈s2, . . . , sn−1〉

is the stabilizer of 1∈ n and 1wj = j + 1 for 0 � j � n − 1, we haveSn =⋃n−1
j=0〈s2, . . . , sn−1〉wj . It follows from (6.3)(vi) thatν〈s2, . . . , sn−1〉 ⊆ Snν. Thus

νSn ⊆⋃n−1
j=0Snνwj . It follows from (6.5) that

νwjν
r ⊆ νrSn ∪ νr+1Sn for 0 � j � n− 1 andr � 0,

and thus

νSnν
r ⊆

n−1⋃
j=0

Snνwjν
r ⊆ Snν

rSn ∪ Snν
r+1Sn for r � 0.

Thus the set
⋃

r�0Snν
rSn is stable under left multiplication byν. Since the same

set is clearly stable under left multiplication bySn and containsν0 = 1, we have⋃
r�0Snν

rSn = R. Sinceνn+1 = νn and henceνr = νn for r � n, we conclude
that

R =
n⋃

r=0

Snν
rSn. (6.6)

To get an upper bound on|SnνrSn|, suppose first that 1� r � n− 1. Let

Sr,n−r = 〈s1, . . . , sr−1, sr+1, . . . , sn−1〉 � Sr × Sn−r .

Write Sn = Sr,n−rXr whereXr is a set of coset representatives. If 1� i � r − 1
then νrsi = νr by (6.3)(iv). If r + 1 � i � n − 1 then νrsi = si−r ν

r by r

applications of (6.3)(vi). ThusνrSn = νrSr,n−rXr ⊆ Snν
rXr , so∣∣SnνrSn∣∣� ∣∣SnνrXr

∣∣� ∣∣Snνr ∣∣|Xr | =
(
n

r

)∣∣Snνr ∣∣.
If 0 � r � n and n − r + 1 � i � n − 1 then siν

r = νr by (6.3)(v). Since
〈sn−r+1, . . . , sn−1〉 � Sr , it follows that|Snνr |� |Sn : Sr |. Thus

∣∣SnνrSn∣∣� (
n

r

)
n!
r! =

(
n

r

)2

(n− r)! (6.7)

for 1 � r � n− 1. In fact (6.7) holds forr = 0 andr = n as well. This is clear for
r = 0. It follows from (6.3), (iv) and (v), thatsiνn = νn = νnsi for 1 � i � n− 1,
soSnνnSn = {νn}. Thus (6.7) holds forr = n. The desired inequality (6.4) follows
from (6.6), (6.7), and the symmetry

(
n
r

)= ( n
n−r

)
. ✷
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