Journal of Algebra 256 (2002) 309-342

Representations of the rook monoid

Louis Solomon
University of Wisconsin, Madison, WI 53706, USA
Received 29 November 1999
Communicated by Georgia Benkart

1. Introduction

Let n be a positive integer and let $\mathbf{n}=\{1, \ldots, n\}$. Let R be the set of all one-to-one maps σ with domain $I(\sigma) \subseteq \mathbf{n}$ and range $J(\sigma) \subseteq \mathbf{n}$. If $i \in I(\sigma)$ let $i \sigma$ denote the image of i under σ. There is an associative product $(\sigma, \tau) \mapsto \sigma \tau$ on R defined by composition of maps: $i(\sigma \tau)=(i \sigma) \tau$ if $i \in I(\sigma)$ and $i \sigma \in I(\tau)$. Thus the domain $I(\sigma \tau)$ consists of all $i \in I(\sigma)$ such that $i \sigma \in I(\tau)$. The set R, with this product, is a monoid (semigroup with identity) called the symmetric inverse semigroup. We agree that R contains a map with empty domain and range which behaves as a zero element. Let F be a field. Let $\mathbf{M}_{n}(F)$ denote the algebra of $n \times n$ matrices over F. There is a one-to-one map $R \rightarrow \mathbf{M}_{n}(F)$ defined by

$$
\begin{equation*}
\sigma \mapsto[\sigma]=\sum_{i \in I(\sigma)} E_{i, i \sigma} \tag{1.1}
\end{equation*}
$$

where $E_{i j}$ is a matrix unit with an entry 1 in the (i, j) position and 0 's elsewhere. The corresponding set \mathcal{R} of matrices consists of those zero-one matrices which have at most one entry equal to 1 in each row and column. In particular, $E_{i j}$ corresponds to the map σ with $I(\sigma)=\{i\}, J(\sigma)=\{j\}$ which takes i to j. Since $[\sigma \tau]=[\sigma][\tau]$ for $\sigma, \tau \in R$, the set \mathcal{R} is a monoid under matrix multiplication which is isomorphic to R. Since the elements of \mathcal{R} are in one-to-one correspondence with placements of nonattacking rooks on an $n \times n$ chessboard, we call \mathcal{R} the rook monoid. The author used the name "rook monoid" in the title of this paper to (perhaps) increase the marketability of a paper on the symmetric inverse semigroup to those who are interested in combinatorics and representation theory.

If $\sigma \in R$, define the rank of σ by $\operatorname{rk}(\sigma)=|I(\sigma)|$. Thus $\operatorname{rk}(\sigma)$ is equal to the rank of the matrix $[\sigma]$. For $0 \leqslant r \leqslant n$ let $R^{r}=\{\sigma \in R \mid \operatorname{rk}(\sigma)=r\}$. Then

$$
\begin{equation*}
\left|R^{r}\right|=\binom{n}{r}^{2} r!, \quad \text { so } \quad|R|=\sum_{r=0}^{n}\binom{n}{r}^{2} r!. \tag{1.2}
\end{equation*}
$$

To see the first equality in terms of rooks, note that there are $\binom{n}{r}$ ways to choose the rows, $\binom{n}{r}$ ways to choose the columns and r ! ways to place r nonattacking rooks, once the rows and columns containing the rooks are chosen. For $1 \leqslant r \leqslant n$ let $S_{r} \subseteq R$ be the symmetric group on $\mathbf{r}=\{1, \ldots, r\}$. Note that $R^{r} \supseteq S_{r}$ and that $R^{n}=S_{n}$. The restriction of the map $\sigma \mapsto[\sigma]$ to S_{n} is the natural representation of S_{n} by permutation matrices. For convenience and uniformity of statement define S_{0} by $S_{0}=R^{0}$; this is a group whose unique element is the map with empty domain and range.

In this paper we consider various aspects of the representation theory of R over a field F of characteristic zero. It is understood that representations are finitedimensional, although we sometimes allow graded modules of infinite dimension in which the homogeneous components are of finite dimension. We identify a representation of R with its F-linear extension to a representation of the monoid algebra $F R=\bigoplus_{\sigma \in R} F \sigma$ and make a similar convention for representations of S_{r} and $F S_{r}$. The main concerns in this paper are Munn's representation theory and character formula, character multiplicities, the representation of R on the polynomial algebra $F\left[x_{1}, \ldots, x_{n}\right]$ and the representation of R on tensors by "place permutations." We do not assume any facts from semigroup theory. We do assume some facts about symmetric functions and the representation theory of the symmetric group [7, Chapter I].

In Section 2 we describe the irreducible representations of R. The ideas and results in this section are due to W.D. Munn [10] who proved that $F R$ is semisimple and found its irreducible representations in terms of the irreducible representations of the symmetric groups S_{r} for $0 \leqslant r \leqslant n$. Munn also defined a character table for R. The irreducible characters ζ^{λ} are indexed by partitions λ of integers r with $0 \leqslant r \leqslant n ; \zeta^{(1)}$ is the character of the representation $\sigma \mapsto[\sigma]$ by rook matrices. The main new feature in this section is an explicit formula for certain central idempotents of $F R$ which were introduced [14] in the context of the Möbius algebra of a lattice.

In Section 3 we define two square matrices A and B either of which, together with the character tables of the S_{r}, is sufficient to determine Munn's character table. Both A and B may be described in combinatorial terms. See Proposition 3.5 which gives A in terms of binomial coefficients and Proposition 3.11 which gives B in terms of Ferrers boards. Since R is not a group, we do not have the usual orthogonality relations for irreducible characters to help compute character multiplicities. Lemma 3.17 shows how to compute multiplicities in terms of A or B. In Example 3.18 we use A to decompose the character of the p th tensor power of the representation $\sigma \mapsto[\sigma]$: if λ is a partition of r then the multiplicity of ζ^{λ} in the p th tensor power is $S(p, r) f^{\lambda}$ where $S(p, r)$ is a Stirling number of the second kind and f^{λ} is the degree of the corresponding character
of S_{r}. In Example 3.22 we use B to show that the p th exterior power of the representation $\sigma \mapsto[\sigma]$ is an irreducible representation with character $\zeta^{\left(1^{p}\right)}$.

In Section 4 we study the action of R on the polynomial algebra $F\left[x_{1}, \ldots, x_{n}\right]$. We decompose the R-module $F\left[x_{1}, \ldots, x_{n}\right]$ into its isotypic components, in terms of analogous (known) data for the symmetric groups S_{r} for $0 \leqslant r \leqslant n$.

In Section 5 we study the action of R on tensors by "place permutations." If V is a vector space over F then S_{n} acts on $V^{\otimes n}$ by place permutations: $w\left(v_{1} \otimes \cdots \otimes v_{n}\right)=v_{1 w} \otimes \cdots \otimes v_{n w}$, for $w \in S_{n}$. According to Schur and Weyl, the centralizer algebra for this action is the algebra of endomorphisms of $V^{\otimes n}$ provided by the natural action of $\mathbf{G L}(V)$ on $V^{\otimes n}$. If $\sigma \in R$, we cannot define $\sigma\left(v_{1} \otimes \cdots \otimes v_{n}\right)=v_{1 \sigma} \otimes \cdots \otimes v_{n \sigma}$ because the domain of σ need not be all of \mathbf{n}. We try to approximate the last formula as best we can: replace V by $U=F \oplus V$ and use the field F as a wastebasket for the undefined $i \sigma$. We prove that the centralizer algebra for this action of R is the algebra of endomorphisms of $U^{\otimes n}$ provided by the natural action of $\mathbf{G L}(V)$ on $U^{\otimes n}$, where $\mathbf{G L}(V)$ acts on $U=F \oplus V$ by fixing F.

In Section 6 we give a presentation for R in terms of the Moore-Coxeter generators for S_{n} and the element $\nu \in R$ which corresponds to a nilpotent Jordan block in \mathcal{R}. This section is not about representation theory. However, the argument given here is the $q=1$ version of an argument which will be used in a representation-theoretic context [16]; see the second paragraph of Section 6 for some brief remarks about a q-analogue of $F R$. The representation theory of this q-analogue has been studied by Tom Halverson [3].

Cheryl Grood [2] defined the notion of a λ_{r}^{n}-tableau where λ is a partition of an integer r with $1 \leqslant r \leqslant n$. This is a Ferrers board of shape λ filled with distinct elements of \mathbf{n}. She has used the standard λ_{r}^{n}-tableaux to construct R-modules which are analogous to the Specht modules in the theory of the symmetric group and has shown that they furnish a complete set of irreducible R-modules.

The work in this article, except for the examples at the end of Section 3, was outlined in a talk at the Centre de Recherches Mathématiques, Université de Montréal in June 1997. I would like to thank Ira Gessel and Glenn Tesler who heard the talk and settled two points which were left open. Both Gessel and Tesler gave (independently) an explicit formula for the inverse of the matrix B; see Remark 3.27. Gessel gave a direct proof of the Schur function identity in Corollary 4.10, which follows in this paper from facts about the representation of R on $F\left[x_{1}, \ldots, x_{n}\right]$. In July 1997 I learned from Grant Walker that he has studied the representation of R on $F\left[x_{1}, \ldots, x_{n}\right]$ in case $F=\mathbf{F}_{p}$ is the field of p elements; see [18].

2. Munn's representation theory and character formula

The main ideas and the results in section are due to W.D. Munn [10], who found the irreducible representations of R and gave a formula for its irreducible
characters in terms of the irreducible characters of the symmetric groups S_{r} for $0 \leqslant r \leqslant n$. This was a special but interesting case of his general theory [9] of representations of finite semigroups. Let $A=F R=\bigoplus_{\sigma \in R} F \sigma$ be the monoid algebra. The identity element 1_{A} is the identity map of \mathbf{n}. It is understood that an algebra homomorphism $A \rightarrow B$ maps 1_{A} to 1_{B}. For $0 \leqslant r \leqslant n$ let

$$
\begin{equation*}
I^{(r)}=\sum_{\operatorname{rk}(\sigma) \leqslant r} F \sigma . \tag{2.1}
\end{equation*}
$$

Since $\operatorname{rk}(\sigma \tau) \leqslant \operatorname{rk}(\sigma)$ and $\operatorname{rk}(\tau \sigma) \leqslant \operatorname{rk}(\sigma)$ for all $\sigma, \tau \in R$, it follows that $I^{(r)}$ is a two sided ideal of A. Thus we have an ascending chain $F \simeq I^{(0)} \subset \cdots \subset I^{(r-1)} \subset$ $I^{(r)} \subset \cdots \subset I^{(n)}=A$ of two sided ideals. Munn proved [10, Theorem 3.1] that A is semisimple. Thus there exists for each $0 \leqslant r \leqslant n$ a uniquely determined central idempotent η_{r} of A such that

$$
\begin{equation*}
I^{(r)}=I^{(r-1)} \oplus A \eta_{r} \quad \text { for } 1 \leqslant r \leqslant n \tag{2.2}
\end{equation*}
$$

The alternating sum formula for η_{r} given by (2.4) and (2.8) is the new feature in the present (self-contained) exposition of Munn's work. The splitting (2.2) is proved directly in Corollary 2.14 without assuming semisimplicity. The formula for η_{r} has some antecedents. R. Penrose [9, p. 11] gave a formula for the identity element of A, which amounts to $1_{A}=\sum_{r=0}^{n} \eta_{r}$ in our notation. The pairwise orthogonal idempotents η_{K} defined in (2.4) were introduced in the context of the Möbius algebra of a lattice; see [14, p. 605] or [17, p. 124]. In fact, the subalgebra of A generated by the idempotents of R is isomorphic to the Möbius algebra of the lattice of subsets of \mathbf{n} and, under this isomorphism, the η_{K} correspond to the primitive idempotents of the Möbius algebra. The idempotents η_{K} also occur naturally as projections in the action of R on tensors; see (5.12) and (5.15).

If $K \subseteq \mathbf{n}$ is nonempty let $\varepsilon_{K} \in R$ be the identity map of K. If $K=\emptyset$ let ε_{\emptyset} be the zero element of R. Then ε_{K} is idempotent and

$$
\begin{equation*}
\varepsilon_{J} \varepsilon_{K}=\varepsilon_{J \cap K}=\varepsilon_{K} \varepsilon_{J} \tag{2.3}
\end{equation*}
$$

for $J, K \subseteq \mathbf{n}$. Thus $E=\left\{\varepsilon_{K} \mid K \subseteq \mathbf{n}\right\}$ is a commutative submonoid of R. The element ε_{\emptyset} is the zero element of R but is not the zero element of A. Similarly, [ε_{\emptyset}] is the zero matrix but is not the zero element of $F \mathcal{R}$. If $K \subseteq \mathbf{n}$ define $\eta_{K} \in F E=\bigoplus_{K \subseteq \mathbf{n}} F \varepsilon_{K}$ by

$$
\begin{equation*}
\eta_{K}=\sum_{J \subseteq K}(-1)^{|K-J|} \varepsilon_{J} . \tag{2.4}
\end{equation*}
$$

It follows by inclusion-exclusion that

$$
\begin{equation*}
\varepsilon_{K}=\sum_{J \subseteq K} \eta_{J} \tag{2.5}
\end{equation*}
$$

Thus $F E=\bigoplus_{K \subseteq \mathbf{n}} F \eta_{K}$.

Lemma 2.6. If $J, K \subseteq \mathbf{n}$ then $\eta_{K} \eta_{J}=\delta_{K, J} \eta_{K}$. Thus the η_{K} are pairwise orthogonal idempotents of A.

Proof. We show first that

$$
\varepsilon_{K} \eta_{J}= \begin{cases}\eta_{J} & \text { if } J \subseteq K \tag{2.7}\\ 0 & \text { otherwise }\end{cases}
$$

Fix J and K. Let $L=J \cap K$ and let $M=J \cap(\mathbf{n}-K)$. Any subset of J has the form $X \cup Y$ where $X \subseteq L$ and $Y \subseteq M$. Since $K \cap(X \cup Y)=X$ we have $\varepsilon_{K} \varepsilon_{X \cup Y}=\varepsilon_{X}$ by (2.3). Thus

$$
\begin{aligned}
\varepsilon_{K} \eta_{J} & =\varepsilon_{K} \sum_{X \subseteq L} \sum_{Y \subseteq M}(-1)^{|L \cup M-X \cup Y|} \varepsilon_{X \cup Y} \\
& =\sum_{X \subseteq L}\left(\sum_{Y \subseteq M}(-1)^{|M-Y|}\right)(-1)^{|L-X|} \varepsilon_{X}
\end{aligned}
$$

If $K \supseteq J$ then M is empty and $L=J$ so the inner sum is 1 and we get $\varepsilon_{K} \eta_{J}=\eta_{J}$ by (2.4). If K does not include J then M is nonempty so the inner sum is 0 and we get $\varepsilon_{K} \eta_{J}=0$. This proves (2.7). By (2.4) and (2.7),

$$
\eta_{K} \eta_{J}=\sum_{L \subseteq K}(-1)^{|K-L|} \varepsilon_{L} \eta_{J}=\sum_{J \subseteq L \subseteq K}(-1)^{|K-L|} \eta_{J} .
$$

The last sum is zero unless $K=J$ when it is 1 .
We may use the η_{K} to construct some pairwise orthogonal central idempotents of A. If $0 \leqslant r \leqslant n$ define

$$
\begin{equation*}
\eta_{r}=\sum_{|K|=r} \eta_{K} \tag{2.8}
\end{equation*}
$$

It follows from Lemma 2.6 that

$$
\begin{equation*}
\eta_{j} \eta_{k}=\delta_{j k} \eta_{k} \quad \text { for } 0 \leqslant j, k \leqslant n \tag{2.9}
\end{equation*}
$$

Thus the η_{r} are pairwise orthogonal idempotents of A. If $w \in S_{n}$ and $K \subseteq \mathbf{n}$ then both $\varepsilon_{K} w$ and $w \varepsilon_{K w}$ have domain K. If $i \in K$ then $i \varepsilon_{K} w=i w=i w \varepsilon_{K w}$. Thus $\varepsilon_{K} w=w \varepsilon_{K w}$ so

$$
\begin{equation*}
w^{-1} \varepsilon_{K} w=\varepsilon_{K w} \quad \text { and hence } \quad w^{-1} \eta_{K} w=\eta_{K w} \tag{2.10}
\end{equation*}
$$

Let $\sigma \in R$ and let $K=I(\sigma)$. Choose $w \in S_{n}$ so that $i w=i \sigma$ for $i \in K$. Then $\sigma=\varepsilon_{K} w$. Thus

$$
\begin{equation*}
R=E S_{n}=S_{n} E \tag{2.11}
\end{equation*}
$$

It follows from (2.8) and (2.10) that η_{r} centralizes S_{n}. Since $F E$ is a commutative algebra, η_{r} also centralizes E. Thus η_{r} centralizes R and hence lies in the center
of A. Thus $A \eta_{r}$ is a two sided ideal of A. Since $1_{A}=\varepsilon_{\mathbf{n}}$, it follows from (2.5) with $K=\mathbf{n}$ that $\varepsilon_{\mathbf{n}}=\sum_{r=0}^{n} \eta_{r}$. Thus

$$
\begin{equation*}
A=\bigoplus_{r=0}^{n} A \eta_{r} \tag{2.12}
\end{equation*}
$$

a direct sum of two sided ideals.
Lemma 2.13. Suppose $1 \leqslant r \leqslant n$.
(i) If $\sigma \in R$ and $\operatorname{rk}(\sigma)<r$ then $\sigma \eta_{r}=0$.
(ii) The set $\left\{\sigma \eta_{r} \mid \sigma \in R^{r}\right\}$ is an F-basis for $A \eta_{r}$.
(iii) $I^{(r)}=\bigoplus_{j=0}^{r} A \eta_{j}$.

Proof. Suppose $\sigma \in R$ and $\operatorname{rk}(\sigma)<r$. Let $K=I(\sigma)$. Since $|K|=\operatorname{rk}(\sigma)<r$, it follows from (2.7) that if $J \subseteq \mathbf{n}$ and $|J|=r$ then $\varepsilon_{K} \eta_{J}=0$. Thus $\varepsilon_{K} \eta_{r}=0$. Write $\sigma=\varepsilon_{K} w$, where $w \in S_{n}$. Since η_{r} is central, $\sigma \eta_{r}=\varepsilon_{K} \eta_{r} w=0$. This proves (i). Suppose $K \subseteq \mathbf{n}$ and $|K|=r$. If $J \subseteq \mathbf{n}$ and $|J| \leqslant r$ then $\varepsilon_{J} \in I^{(r)}$. Thus $\eta_{K} \in I^{(r)}$ by (2.4), so $\eta_{r} \in I^{(r)}$ and thus $A \eta_{r} \subseteq I^{(r)}$. Suppose $\alpha \in A \eta_{r}$. We may write $\alpha=\sum_{\mathrm{rk}(\sigma) \leqslant r} c_{\sigma} \sigma$ with $c_{\sigma} \in F$ so $\alpha=\alpha \eta_{r}=\sum_{\mathrm{rk}(\sigma)=r} c_{\sigma} \sigma \eta_{r}$ by (i). Thus the set $\left\{\sigma \eta_{r} \mid \sigma \in R^{r}\right\}$ spans $A \eta_{r}$. It follows that $\operatorname{dim} A=\sum_{r=0}^{n}\left|R^{r}\right| \geqslant \sum_{r=0}^{n} \operatorname{dim} A \eta_{r}=$ $\operatorname{dim} A$ where the last equality comes from (2.12). Thus $\operatorname{dim} A \eta_{r}=\left|R^{r}\right|$. This proves (ii). To prove (iii) let $A^{(r)}=\sum_{j=0}^{r} A \eta_{j}$. If $0 \leqslant j \leqslant r$ then $\eta_{j} \in I^{(j)} \subseteq I^{(r)}$ by (2.1) and (2.8) so $A^{(r)} \subseteq I^{(r)}$. To prove the reverse inclusion it suffices to show that if $\sigma \in R^{0} \cup \cdots \cup R^{r}$ then $\sigma \in A^{(r)}$. Write $\sigma=\varepsilon_{K} w$ where $w \in S_{n}$ and $K=I(\sigma)$. Then $|K|=\operatorname{rk}(\sigma) \leqslant r$. If $|J|>r$ then $\varepsilon_{K} \eta_{J}=0$ by (2.7). Thus $\varepsilon_{K} \eta_{j}=0$ for $j>r$. Since $1_{A}=\varepsilon_{\mathbf{n}}=\sum_{j=0}^{n} \eta_{j}$ we have $\varepsilon_{K}=\sum_{j=0}^{n} \varepsilon_{K} \eta_{j}=$ $\sum_{j=0}^{r} \varepsilon_{K} \eta_{j} \in A^{(r)}$ so $\sigma=\varepsilon_{K} w \in A^{(r)}$.

Corollary 2.14. $I^{(r)}=I^{(r-1)} \oplus A \eta_{r}$ for $0 \leqslant r \leqslant n$.
Corollary 2.14 gives the splitting promised in (2.2). If $r=0$ then $\eta_{0}=\varepsilon_{\emptyset}$ so $I^{(0)}=F \varepsilon_{\emptyset}=A \varepsilon_{\emptyset}=A \eta_{0}$. Thus (ii) and (iii) in Lemma 2.13 hold for $r=0$.

Next we describe the structure of $A \eta_{r}$. Suppose $r \geqslant 1$. Choose, for each $K \subseteq \mathbf{n}$ with $|K|=r$, an element $\mu_{K} \in R$ which maps $\mathbf{r}=\{1, \ldots, r\}$ to K. If $K=\mathbf{r}$, choose $\mu_{K}=\varepsilon_{K}$. If $\sigma \in R$ define $\sigma^{-} \in R$ by $I\left(\sigma^{-}\right)=J(\sigma), J\left(\sigma^{-}\right)=I(\sigma)$ and $j \sigma^{-}=i$ if $i \sigma=j$. Here $i \in I(\sigma)$ and $j \in J(\sigma)$. Thus $\sigma \sigma^{-}$is the identity map of $I(\sigma)$ and $\sigma^{-} \sigma$ is the identity map of $J(\sigma)$. Note that $\mu_{K}^{-} \mu_{K}=\varepsilon_{K}$ is the identity map of K. If $\sigma \in R^{r}$ and $I=I(\sigma)$ and $J=J(\sigma)$ then $\sigma=\varepsilon_{I} \sigma \varepsilon_{J}=$ $\mu_{I}^{-} \mu_{I} \sigma \mu_{J}^{-} \mu_{J}$. Define $p(\sigma) \in S_{r}$ by

$$
\begin{equation*}
p(\sigma)=\mu_{I} \sigma \mu_{J}^{-} \tag{2.15}
\end{equation*}
$$

where $I=I(\sigma)$ and $J=J(\sigma)$. Then

$$
\begin{equation*}
\sigma=\mu_{I}^{-} p(\sigma) \mu_{J} \tag{2.16}
\end{equation*}
$$

This expression is unique: if I, J are r-subsets of \mathbf{n} and $\mu_{I}^{-} p \mu_{J}=\mu_{I}^{-} q \mu_{J}$ with $p, q \in S_{r}$ then $p=q$.

Lemma 2.17. For $1 \leqslant r \leqslant n$ let $A_{r}=\mathbf{M}_{\binom{n}{r}}\left(F S_{r}\right)$ be the F-algebra of all matrices with rows and columns indexed by r-subsets I, J of \mathbf{n} and entries in $F S_{r}$. Let $E_{I J} \in A_{r}$ denote the natural basis of matrix units. Define an F-linear map $\psi_{r}: A \eta_{r} \rightarrow A_{r}$ by

$$
\begin{equation*}
\psi_{r}\left(\sigma \eta_{r}\right)=p(\sigma) E_{I J} \quad \text { where } \sigma \in R^{r}, I=I(\sigma), J=J(\sigma) \tag{2.18}
\end{equation*}
$$

For $r=0$ we agree that $A_{0}=F$ and that $\psi_{0}: A \eta_{0}=F \varepsilon_{\emptyset} \rightarrow F$ is defined by $\psi_{0}\left(\varepsilon_{\emptyset}\right)=1$. If $0 \leqslant r \leqslant n$ then ψ_{r} is an isomorphism of F-algebras.

Proof. We may assume that $r \geqslant 1$. The map ψ_{r} is well defined by Lemma 2.13(ii). Write $\psi=\psi_{r}$ and $\eta=\eta_{r}$. We show first that ψ is a homomorphism of algebras. It suffices to show that $\psi((\sigma \eta)(\tau \eta))=\psi(\sigma \eta) \psi(\tau \eta)$ for $\sigma, \tau \in R^{r}$. Let $I=I(\sigma)$ and $J=J(\sigma)$. Let $p=p(\sigma), q=p(\tau)$ and let $L=I(\tau)$, $K=J(\tau)$. Then $\psi(\sigma \eta) \psi(\tau \eta)=\left(p E_{I J}\right)\left(q E_{L K}\right)=p q E_{I K}$ if $J=L$ and $\psi(\sigma \eta) \psi(\tau \eta)=0$ otherwise. Note that $J=L$ if and only if $\operatorname{rk}(\sigma \tau)=r$, in which case $\sigma \tau=\left(\mu_{I}^{-} p \mu_{J}\right)\left(\mu_{J}^{-} q \mu_{K}\right)=\mu_{I}^{-} p q \mu_{K}$. Thus, if $\operatorname{rk}(\sigma \tau)=r$ then $\psi((\sigma \eta)(\tau \eta))=\psi(\sigma \tau \eta)=p q E_{I K}=\psi(\sigma \eta) \psi(\tau \eta)$. If $\operatorname{rk}(\sigma \tau)<r$ then $\sigma \tau \in$ $I^{(r-1)}=A \eta_{0}+\cdots+A \eta_{r-1}$ so $\sigma \tau \eta=0$ because $\eta_{j} \eta=0$ for $0 \leqslant j \leqslant r-1$ by (2.9). Thus $\psi((\sigma \eta)(\tau \eta))=0=\psi(\sigma \eta) \psi(\tau \eta)$. Thus ψ is a homomorphism of algebras. Suppose $a \in \operatorname{ker} \psi$. By Lemma 2.13(ii) and (2.16) we may write $a=\sum c_{I J}(p) \mu_{I}^{-} p \mu_{J} \eta_{r}$ where $c_{I J}(p) \in F$; the sum is over all r-subsets I, J of \mathbf{n} and all $p \in S_{r}$. Apply ψ. This gives $0=\sum_{I, J} \sum_{p} c_{I J}(p) p E_{I J}$. Thus $\sum_{p} c_{I J}(p) p=0$ for all I, J so $c_{I J}(p)=0$ for all I, J and p. Thus ψ is one-to-one. It follows from Lemma 2.13(ii) and (1.2) that $\operatorname{dim} A \eta=\left|R^{r}\right|=\binom{n}{r}^{2} r!=$ $\operatorname{dim} A_{r}$. Thus ψ is an isomorphism.

Corollary 2.19 (Munn). $A \simeq \bigoplus_{r=0}^{n} \mathbf{M}_{\binom{n}{r}}\left(F S_{r}\right)$. In particular, A is a semisimple algebra.

Proof. The first assertion follows from (2.12) and Lemma 2.17. The second assertion follows from the first since F has characteristic zero.

It is convenient, for the moment, to let A be any associative F-algebra with identity and let $\eta \in A$ be a central idempotent. Let B be an associative F-algebra with identity, let d be a positive integer and let $\psi: A \eta \rightarrow \mathbf{M}_{d}(B)$ be an algebra homomorphism. If $a \in A$ define $\beta_{i j}(a) \in B$ for $1 \leqslant i, j \leqslant d$ by

$$
\begin{equation*}
\psi(a \eta)=\sum_{i, j=1}^{d} \beta_{i j}(a) E_{i j} \tag{2.20}
\end{equation*}
$$

If $a, b \in A$ then $\beta_{i j}(a b)=\sum_{k=1}^{d} \beta_{i k}(a) \beta_{k j}(b)$. It is understood in what follows that representations of A or B are matrix representations with coefficients in F. If ρ is a representation of B then we may define a representation ρ^{*} of A by

$$
\begin{equation*}
\rho^{*}(a)=\sum_{i, j=1}^{d} \rho\left(\beta_{i j}(a)\right) E_{i j} \tag{2.21}
\end{equation*}
$$

to get the matrix $\rho^{*}(a)$ we apply ρ to the matrix entries of $\psi(a \eta)$.
Lemma 2.22. Let A be an associative algebra over F. Suppose A contains pairwise orthogonal central idempotents $\eta_{0}, \eta_{1}, \ldots, \eta_{n}$ such that $A=\bigoplus_{r=0}^{n} A \eta_{r}$. Suppose for each $0 \leqslant r \leqslant n$ that there exists an integer d_{r}, a semisimple algebra B_{r} and an algebra isomorphism $\psi_{r}: A \eta_{r} \rightarrow \mathbf{M}_{d_{r}}\left(B_{r}\right)$. Let \widehat{B}_{r} be a full set of inequivalent irreducible representations of B_{r}. Then $\left\{\rho^{*} \mid 0 \leqslant r \leqslant n, \rho \in \widehat{B}_{r}\right\}$ is a full set of inequivalent irreducible representations of A.

Proof. The hypotheses in Lemma 2.22 insure that the algebra A is semisimple. If A is simple then it has a unique irreducible representation, up to equivalence, and B is also simple, so the assertion is clear. The case $n=0$ may be reduced to the case A simple. The general case may be reduced to the case $n=0$.

Apply Lemma 2.22 with $A=F R$, with $B_{r}=F S_{r}$ and ψ_{r} as in Lemma 2.17. If ρ is an irreducible representation of S_{r} and hence of B_{r} we say that ρ^{*} is an irreducible representation of A or R of rank r. Note that

$$
\begin{equation*}
\operatorname{deg} \rho^{*}=\binom{n}{r} \operatorname{deg} \rho . \tag{2.23}
\end{equation*}
$$

For $1 \leqslant r \leqslant n$ let \mathcal{P}_{r} denote the set of partitions of r. The equivalence classes of irreducible representations of S_{r} are indexed by \mathcal{P}_{r}. Choose, for each $1 \leqslant r \leqslant n$ and $\lambda \in \mathcal{P}_{r}$, an irreducible representation ρ^{λ} of S_{r} indexed by λ. We agree that \mathcal{P}_{0} consists of the empty partition written $\lambda=(0)$ and that the corresponding irreducible representation of S_{0} is given by $\rho^{(0)}\left(\varepsilon_{\emptyset}\right)=1 \in F$. Since $B_{0}=F \varepsilon_{\emptyset}$ and $\psi_{0}\left(\sigma \eta_{0}\right)=\psi_{0}\left(\sigma \varepsilon_{\emptyset}\right)=\psi_{0}\left(\varepsilon_{\emptyset}\right)=1$ we have $\rho^{(0) *}(\sigma)=1$ for all $\sigma \in R$. This "trivial representation" $\rho^{(0) *}$ is the unique irreducible representation of R which has rank zero.

Theorem 2.24 (Munn). Let $\mathcal{Q}=\bigcup_{r=0}^{n} \mathcal{P}_{r}$. The set $\left\{\rho^{\lambda *} \mid \lambda \in \mathcal{Q}\right\}$ is a full set of inequivalent irreducible representations of R.

Proof. This follows from (2.12), Lemmas 2.17 and 2.22.

To compute the value of the character of $\rho^{*}=\rho^{\lambda *}$ on an element of R we need a formula for $\rho^{*}(\sigma)$ with $\sigma \in R$.

Proposition 2.25. Suppose $1 \leqslant r \leqslant n$. If ρ is a representation of S_{r} and $\sigma \in R$ then

$$
\begin{equation*}
\rho^{*}(\sigma)=\sum_{\substack{|K|=r \\ \operatorname{rk}\left(\varepsilon_{K} \sigma\right)=r}} \rho\left(p\left(\varepsilon_{K} \sigma\right)\right) E_{I\left(\varepsilon_{K} \sigma\right), J\left(\varepsilon_{K} \sigma\right)} \tag{2.26}
\end{equation*}
$$

Proof. If $\operatorname{rk}(\sigma)<r$ then we cannot have $|K|=r$ and $K \subseteq I(\sigma)$ so the righthand side of side of (2.26) is zero. On the other hand, $\sigma \in I^{(r-1)}=\bigoplus_{j=0}^{r-1} A \eta_{j}$ by Lemma 2.13(iii), so $\sigma \eta_{r}=0$ by (2.9). Thus

$$
\begin{equation*}
\rho^{*}(\sigma)=0 \quad \text { if } \operatorname{rk}(\sigma)<r \tag{2.27}
\end{equation*}
$$

by (2.20) and (2.21). This proves (2.26) if $\operatorname{rk}(\sigma)<r$. If $\operatorname{rk}(\sigma)=r$ then the sum on the right-hand side of (2.26) consists of a single term with $K=I(\sigma)$ in which case $\varepsilon_{K} \sigma=\sigma$. Thus the right-hand side of (2.26) is $\rho(p(\sigma)) E_{I J}$ where $I=I(\sigma)$ and $J=J(\sigma)$. On the other hand, $\psi_{r}\left(\sigma \eta_{r}\right)=p(\sigma) E_{I J}$ by (2.18). Thus

$$
\begin{equation*}
\rho^{*}(\sigma)=\rho(p(\sigma)) E_{I J} \quad \text { if } \operatorname{rk}(\sigma)=r \tag{2.28}
\end{equation*}
$$

by (2.20) and (2.21). This proves (2.26) if $\mathrm{rk}(\sigma)=r$. Finally suppose $\mathrm{rk}(\sigma)>r$. Let \equiv denote congruence $\bmod I^{(r-1)}$. Then

$$
\eta_{r}=\sum_{|K|=r} \eta_{K}=\sum_{|K|=r} \sum_{J \subseteq K}(-1)^{|K-J|} \varepsilon_{J} \equiv \sum_{|K|=r} \varepsilon_{K}=\varepsilon_{r} .
$$

Since η_{r} is a central idempotent, we get

$$
\sigma \eta_{r}=\eta_{r} \sigma \eta_{r} \equiv \varepsilon_{r} \sigma \eta_{r}=\sum_{|K|=r} \varepsilon_{K} \sigma \eta_{r}
$$

But $\rho^{*}(a)=\rho^{*}\left(a \eta_{r}\right)$ for all $a \in F R$ by (2.20) and (2.21). Thus $\rho^{*}(\sigma)=$ $\sum_{|K|=r, \operatorname{rk}\left(\varepsilon_{K} \sigma\right)=r} \rho^{*}\left(\varepsilon_{K} \sigma\right)$ by (2.27). Now (2.26) follows from (2.28).

Example 2.29. If $r=1$ then $\lambda=(1)$ and $\rho=\rho^{(1)}: S_{r} \rightarrow F$ is defined by $\rho\left(\varepsilon_{\{1\}}\right)=1 \in F$. The conditions on K in (2.26) are $K=\{i\}$ and $i \in I(\sigma)$. Since $p\left(\varepsilon_{K} \sigma\right)=1$ and hence $\rho\left(p\left(\varepsilon_{K} \sigma\right)\right)=1$, it follows that $\rho^{(1) *}(\sigma)=\sum_{i \in I(\sigma)} E_{i, i \sigma}$. Thus $\rho^{(1) *}$ is the representation (1.1) of R by rook matrices. Suppose $r=n$. Then $K=\mathbf{n}$ and $\varepsilon_{K} \sigma=\sigma$ in (2.26). If $\operatorname{rk}(\sigma)<n$ then $\rho^{*}(\sigma)=0$ by (2.27). If $\operatorname{rk}(\sigma)=n$ then $\sigma \in S_{n}$ and $p(\sigma)=\sigma$ in (2.26) so $\rho^{*}(\sigma)=\rho(\sigma)$. Thus the representations of maximal rank n have the shape $\rho^{*}=\rho \circ \pi$ where $\pi: F R \rightarrow F S_{n}$ is the F-linear map, in fact homomorphism of algebras, defined by $\pi(\sigma)=\sigma$ if $\sigma \in S_{n}$ and $\pi(\sigma)=0$ if $\sigma \in R-S_{n}$.

If χ is the character of a representation ρ of S_{r} let χ^{*} denote the character of ρ^{*}. We identify χ with its F-linear extension to a character of $F S_{r}$ and identify χ^{*} with its F-linear extension to a character of $A=F R$. Since A is semisimple, two representations of A are equivalent if and only if they have the same character. The following theorem of Munn [10, Theorem 3.5] gives a formula for $\chi^{*}(\sigma)$ when $\sigma \in R$.

Theorem 2.30 (Munn). Suppose $1 \leqslant r \leqslant n$. If χ is a character of S_{r} and χ^{*} is the corresponding character of R then

$$
\begin{equation*}
\chi^{*}(\sigma)=\sum_{\substack{K \subseteq I(\sigma),|K|=r \\ K \sigma=K}} \chi\left(\mu_{K} \sigma \mu_{K}^{-}\right) \tag{2.31}
\end{equation*}
$$

Proof. It follows from Proposition 2.25 that

$$
\chi^{*}(\sigma)=\sum_{\substack{|K|=r, \operatorname{rk}\left(\varepsilon_{K} \sigma\right)=r \\ I\left(\varepsilon_{K} \sigma\right)=J\left(\varepsilon_{K} \sigma\right)}} \chi\left(p\left(\varepsilon_{K} \sigma\right)\right) .
$$

The simultaneous occurrence of $\operatorname{rk}\left(\varepsilon_{K} \sigma\right)=|K|$ and $I\left(\varepsilon_{K} \sigma\right)=J\left(\varepsilon_{K} \sigma\right)$ is equivalent to the simultaneous occurrence of $K \subseteq I(\sigma)$ and $K \sigma=K$. If $K \subseteq$ $I(\sigma)$ then $p\left(\varepsilon_{K} \sigma\right)=\mu_{K} \varepsilon_{K} \sigma \mu_{K}^{-}$by (2.15). Now (2.31) follows since $\mu_{K} \varepsilon_{K}=$ μ_{K}.

Example 2.32. Suppose that $n=5$ and $r=3$. Suppose that $I(\sigma)=\{1,2,3,5\}$ and that $\sigma: 1 \mapsto 3 \mapsto 5 \mapsto 1$ and $\sigma: 2 \mapsto 4$ with 4σ undefined. There are four sets K with $|K|=3$ and $K \subseteq I(\sigma)$. The action of σ on these sets is

K	$K \sigma$
$\{1,2,3\}$	$\{3,4,5\}$
$\{1,2,5\}$	$\{1,3,4\}$
$\{1,3,5\}$	$\{1,3,5\}$
$\{2,3,5\}$	$\{1,4,5\}$

Thus $K \sigma=K$ only for $K=\{1,3,5\}$. Choose $\mu_{K}:\{1,2,3\} \rightarrow\{1,3,5\}$ so that $\mu_{K}: 1 \mapsto 1,2 \mapsto 3,3 \mapsto 5$. Then $\mu_{K} \sigma \mu_{K}^{-} \in S_{3}$ has domain $\{1,2,3\}$ and maps $1 \mapsto 2 \mapsto 3 \mapsto 1$. Thus $\mu_{K} \sigma \mu_{K}^{-}=(123)$ in the usual cycle notation for permutations so $\chi^{*}(\sigma)=\chi((123))$.

For $0 \leqslant r \leqslant n$ and $\alpha, \lambda \in \mathcal{P}_{r}$ let χ_{α}^{λ} be the value which the irreducible character χ^{λ} of S_{r} assumes on elements of the conjugacy class of S_{r} indexed by α. The character table of S_{r} is the square matrix X_{r} of size $\left|\mathcal{P}_{r}\right|$ with (α, λ) entry equal to χ_{α}^{λ}. Note that $\chi^{(0)}\left(\varepsilon_{\emptyset}\right)=1$ so $\chi_{(0)}^{(0)}=1$ and X_{0} is an identity matrix of size 1 . In [10] Munn defined a character table for R. This is a square matrix M of
size $|\mathcal{Q}|$. To define it we introduce an equivalence relation on R as follows. If $\sigma \in R$ let $I^{\circ}(\sigma)$ denote the set of $i \in \mathbf{n}$ such $i \sigma^{k}$ is defined for all $k \geqslant 1$. Then $I^{\circ}(\sigma) \subseteq I(\sigma)$ and $I^{\circ}(\sigma)$ is stable under σ. Define $\sigma^{\circ} \in R$ to have domain $I^{\circ}(\sigma)$ and let σ° act on its domain as σ does. For example, if σ is as in Example 2.32 then $I^{\circ}(\sigma)=\{1,3,5\}$ and $\sigma^{\circ}: 1 \mapsto 3 \mapsto 5 \mapsto 1$. Note that $I\left(\varepsilon_{\emptyset}\right)$ and $I^{(0)}\left(\varepsilon_{\emptyset}\right)$ are empty, so $\varepsilon_{\emptyset}^{\circ}=\varepsilon_{\emptyset}$. Say that $\sigma, \tau \in R$ are Munn equivalent and write $\sigma \approx \tau$ if there exists $w \in S_{n}$ with $\tau^{\circ}=w^{-1} \sigma^{\circ} w$. Munn introduced this equivalence relation in [10] and called $\operatorname{rk}\left(\sigma^{\circ}\right)$ the subrank of σ. Any Munn equivalence class meets a unique group S_{r} where r is the common subrank of all elements in the class. The Munn classes of R which meet S_{r} are indexed by conjugacy classes of S_{r} and hence by \mathcal{P}_{r}. Thus the Munn classes of R are indexed by \mathcal{Q}.

Proposition 2.33. If $\sigma, \tau \in R$ are Munn equivalent and ζ is the character of a representation of $F R$ then $\zeta(\sigma)=\zeta(\tau)$.

Proof. Since there exists $w \in S_{n}$ with $\tau^{\circ}=w^{-1} \sigma^{\circ} w$ we have $\zeta\left(\sigma^{\circ}\right)=\zeta\left(\tau^{\circ}\right)$. It thus suffices to show that $\zeta(\sigma)=\zeta\left(\sigma^{\circ}\right)$. We may assume that ζ is the character of an irreducible representation and apply (2.31) with $\zeta=\chi^{*}$. The simultaneous occurrence of $K \subseteq I(\sigma)$ and $K \sigma=K$ is equivalent to the simultaneous occurrence of $K \subseteq I\left(\sigma^{\circ}\right)$ and $K \sigma^{\circ}=K$. Furthermore, if these conditions hold, then $\mu_{K} \sigma=\mu_{K} \sigma^{\circ}$. The assertion $\zeta(\sigma)=\zeta\left(\sigma^{\circ}\right)$ thus follows from (2.31) applied to both σ and σ°.

In the rest of this paper we let $\zeta^{\lambda}=\chi^{\lambda *}$ denote the irreducible character of R which corresponds to the irreducible character χ^{λ} of S_{r}. From (2.23) we get

$$
\begin{equation*}
\zeta^{\lambda}(1)=\binom{n}{r} f^{\lambda} \tag{2.34}
\end{equation*}
$$

where $f^{\lambda}=\chi^{\lambda}(1)$. If $\alpha, \lambda \in \mathcal{Q}$ let ζ_{α}^{λ} be the value which ζ^{λ} assumes on elements of the Munn class indexed by α. This is well defined by Proposition 2.33. Munn's character table is the square matrix M of size $|\mathcal{Q}|$ with (α, λ) entry $\mathrm{M}_{\alpha \lambda}=\zeta_{\alpha}^{\lambda}$.

3. Character table and character multiplicities

In this section we use various matrices T with rows and columns indexed by \mathcal{Q}. If $\lambda \in \mathcal{P}_{r}$, write $|\lambda|=r$. To label the rows and columns of T we linearly order \mathcal{Q} : if $\lambda, \mu \in \mathcal{Q}$ say that λ precedes μ if $|\lambda|>|\mu|$, or $|\lambda|=|\mu|=r$ and λ precedes μ in the reverse lexicographic order on \mathcal{P}_{r}. Let $\mathrm{T}_{\alpha \lambda}$ denote the (α, λ) entry of T . Say that T is block upper triangular if $\mathrm{T}_{\alpha \lambda}=0$ for $|\lambda|>|\alpha|$ and block upper unitriangular if, in addition, $\mathrm{T}_{\alpha \lambda}=\delta_{\alpha \lambda}$ when $|\lambda|=|\alpha|$.

Lemma 3.1. Suppose $\alpha \in \mathcal{P}_{m}$ and $\lambda \in \mathcal{P}_{r}$ where $0 \leqslant m \leqslant r \leqslant n$. If $m<r$ then $\zeta_{\alpha}^{\lambda}=0$. If $m=r$ then $\zeta_{\alpha}^{\lambda}=\chi_{\alpha}^{\lambda}$.

Proof. Choose $\sigma \in R$ with $\zeta^{\lambda}(\sigma)=\zeta_{\alpha}^{\lambda}$. Since the Munn class of σ meets S_{m} we may assume by Proposition 2.33 that $\sigma \in S_{m}$. If $m<r$ then (2.27) gives $\zeta^{\lambda}(\sigma)=0$. If $m=r=0$ then $\zeta_{(0)}^{(0)}=1=\chi_{(0)}^{(0)}$. If $m=r>0$, apply Theorem 2.30. Since $I(\sigma)=\mathbf{r}$, the sum in (2.31) consists of a single term corresponding to $K=\mathbf{r}$, in which case $\mu_{K}=\varepsilon_{K}$ by our choice of μ_{K}. Thus $\mu_{K} \sigma \mu_{K}^{-}=\sigma$, so $\zeta^{\lambda}(\sigma)=\chi^{\lambda}(\sigma)$.

It follows from Lemma 3.1 and the definition of M that

$$
\mathrm{M}=\left[\begin{array}{cccc}
\mathrm{X}_{n} & \cdots & * & * \tag{3.2}\\
\vdots & & \vdots & \vdots \\
0 & \cdots & \mathrm{X}_{1} & * \\
0 & \cdots & 0 & \mathrm{X}_{0}
\end{array}\right]
$$

is block upper triangular where X_{r} is the character table of S_{r}. Define a block diagonal matrix Y by

$$
\begin{equation*}
\mathrm{Y}=\operatorname{diag}\left[\mathrm{X}_{n}, \ldots, \mathrm{X}_{1}, \mathrm{X}_{0}\right] . \tag{3.3}
\end{equation*}
$$

Since the matrices X_{r} are invertible, Y is invertible. Thus there are unique block upper unitriangular matrices A, B with rows and columns indexed by \mathcal{Q} such that

$$
\begin{equation*}
\mathrm{M}=\mathrm{AY} \quad \text { and } \quad \mathrm{M}=\mathrm{YB} . \tag{3.4}
\end{equation*}
$$

Thus either A or B and the character tables of the S_{r} determine the character table of R. If $\alpha, \beta \in \mathcal{Q}$ have a_{i}, b_{i} parts equal to i define $\binom{\alpha}{\beta}=\prod_{i \geqslant 1}\binom{a_{i}}{b_{i}}$ where $\binom{a_{i}}{b_{i}}$ is the binomial coefficient. We agree that $\binom{0}{0}=1$.

Proposition 3.5. If $\alpha, \beta \in \mathcal{Q}$ then $\mathrm{A}_{\alpha \beta}=\binom{\alpha}{\beta}$.

Proof. Let $r=|\lambda|$ and $m=|\alpha|$. Choose $\sigma \in R$ such that $\zeta_{\alpha}^{\lambda}=\zeta^{\lambda}(\sigma)$. We may assume, as in the proof of Proposition 3.1, that $\sigma \in S_{m}$. Thus $I(\sigma)=\{1, \ldots, m\}$. It follows from (2.31) that

$$
\begin{equation*}
\zeta_{\alpha}^{\lambda}=\sum_{\substack{K \subseteq\{1, \ldots, m\},|K|=r \\ K \sigma=K}} \chi^{\lambda}\left(\mu_{K} \sigma \mu_{K}^{-}\right) . \tag{3.6}
\end{equation*}
$$

A set K which appears in (3.6) is a union of σ-orbits. Let $\left.\sigma\right|_{K}$ denote the restriction of σ to K. Since $|K|=r$ the permutation $\mu_{K} \sigma \mu_{K}^{-}$of \mathbf{r} has the same cycle pattern as the permutation $\left.\sigma\right|_{K}$ of K. Thus if $\left.\sigma\right|_{K}$ has b_{i} cycles of length i then $\chi^{\lambda}\left(\mu_{K} \sigma \mu_{K}^{-}\right)=\chi_{\beta}^{\lambda}$ where $\beta \in \mathcal{P}_{r}$ has b_{i} parts equal to i. Since σ has a_{i}
orbits of size i, there are $\binom{\alpha}{\beta}$ ways to choose these orbits in such a way that $\left.\sigma\right|_{K}$ has cycle pattern β. Thus

$$
\zeta_{\alpha}^{\lambda}=\sum_{\beta \in \mathcal{P}_{r}}\binom{\alpha}{\beta} \chi_{\beta}^{\lambda}=\sum_{\beta \in \mathcal{Q}}\binom{\alpha}{\beta} \mathrm{Y}_{\beta \lambda}
$$

The assertion $\mathrm{A}_{\alpha \beta}=\binom{\alpha}{\beta}$ follows since Y is invertible.
Corollary 3.7. If $\lambda, \mu \in \mathcal{Q}$ and $n=|\lambda|, m=|\mu|$ then

$$
\mathrm{B}_{\lambda \mu}=\sum_{\alpha \in \mathcal{P}_{n}, \beta \in \mathcal{P}_{m}} z_{\alpha}^{-1}\binom{\alpha}{\beta} \chi_{\alpha}^{\lambda} \chi_{\beta}^{\mu},
$$

where $z_{\alpha}=\prod_{i \geqslant 0} a_{i}!i^{a_{i}}$ if α has a_{i} parts equal to i.
Proof. For $0 \leqslant r \leqslant n$ define a diagonal matrix Z_{r} of size $\left|\mathcal{P}_{r}\right|$ by $\left(Z_{r}\right)_{\alpha \beta}=\delta_{\alpha \beta} z_{\alpha}$ for $\alpha, \beta \in \mathcal{P}_{r}$. Let $W=\operatorname{diag}\left[Z_{n}, \ldots, Z_{1}, Z_{0}\right]$. The second orthogonality relation for the characters of S_{r} gives $\mathrm{X}_{r} \mathrm{X}_{r}^{\top}=\mathrm{Z}_{r}$ where ${ }^{\top}$ means transpose. Thus $\mathrm{YY}^{\top}=\mathrm{W}$. From (3.4) we get $B=Y^{-1} A Y=Y^{\top} W^{-1} A Y$. Now compare ($\left.\lambda, \mu\right)$ entries on both sides of the last equation.

We may also compute the matrix entries $\mathrm{B}_{\lambda \mu}$ in terms of Ferrers diagrams. To do this, recall some facts about symmetric functions and characters of S_{n} [7, Chapter I]. Let Λ be the \mathbf{Q}-algebra of symmetric functions in a sequence of indeterminates. For $n=1,2,3, \ldots$ let $h_{n} \in \Lambda$ be the complete homogeneous symmetric function of degree n and let $p_{n} \in \Lambda$ be the power sum of degree n. We agree that $h_{0}=1$ and that $h_{n}=0$ for $n<0$. If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \in \mathcal{P}_{n}$ let $p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots$. The Schur function s_{λ} may be defined by [7, Chapter I, (3.4)]

$$
\begin{equation*}
s_{\lambda}=\operatorname{det}\left[h_{\lambda_{i}-i+j}\right], \tag{3.8}
\end{equation*}
$$

where the matrix has size equal to the number of parts in λ. Let C_{n} be the space of \mathbf{Q}-valued functions on S_{n} which are constant on conjugacy classes. The characteristic map ch: $\bigoplus_{n \geqslant 0} C_{n} \rightarrow \Lambda$ is defined by [7, Chapter I, (7.2)]

$$
\begin{equation*}
\operatorname{ch}(f)=\sum_{\alpha \in \mathcal{P}_{n}} z_{\alpha}^{-1} f_{\alpha} p_{\alpha} \tag{3.9}
\end{equation*}
$$

where $f \in C_{n}$ and f_{α} is the value which f assumes on the conjugacy class indexed by α. It is bijective. Let η_{n} be the principal character of S_{n}. Then [7, Chapter I, (7.3) and (7.4)]

$$
\begin{equation*}
\operatorname{ch}\left(\eta_{n}\right)=h_{n} \quad \text { and } \quad \operatorname{ch}\left(\chi^{\lambda}\right)=s_{\lambda} . \tag{3.10}
\end{equation*}
$$

Identify $\lambda \in \mathcal{P}_{n}$ with its Ferrers diagram. If $\lambda, \mu \in \mathcal{Q}$, say that the set theoretic difference $\lambda-\mu$ is a horizontal strip if it has at most one node in each column. For $\lambda=(0)$ we agree that the empty Ferrers diagram is a horizontal strip.

Proposition 3.11. If $\lambda, \mu \in \mathcal{Q}$ then

$$
\mathrm{B}_{\lambda \mu}= \begin{cases}1 & \text { if } \lambda \supseteq \mu \text { and } \lambda-\mu \text { is a horizontal strip } \tag{3.12}\\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let C be the square matrix of size $|\mathcal{Q}|$ with entries $\mathrm{C}_{\lambda \mu}$ given by the righthand side of (3.12). We must prove that $B=C$. Since Y is invertible it suffices to show that $\mathrm{M}=\mathrm{YC}$. Argue by induction on n. For $n=1$

$$
M=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\mathrm{YC} .
$$

Suppose $n \geqslant 2$. Let $R^{\prime} \subset R$ be the semigroup of all one-to-one maps with domain and range included in $\{1, \ldots, n-1\}$. The irreducible representations of R^{\prime} are indexed by $\mathcal{Q}^{\prime}=\bigcup_{r=0}^{n-1} \mathcal{P}_{r}=\mathcal{Q}-\mathcal{P}_{n}$. We have used R to define square matrices $\mathrm{M}, \mathrm{A}, \mathrm{C}, \mathrm{Y}$. Let $\mathrm{M}^{\prime}, \mathrm{A}^{\prime}, \mathrm{C}^{\prime}, \mathrm{Y}^{\prime}$ be the corresponding matrices for R^{\prime}. Let I be an identity matrix of size $\left|\mathcal{P}_{n}\right|$ and let 0 be a zero matrix of appropriate size. Since $M=A Y$ and $M^{\prime}=A^{\prime} Y^{\prime}$ we have

$$
\mathrm{M}=\mathrm{AY}=\left[\begin{array}{cc}
\mathrm{I} & * \\
0 & \mathrm{~A}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
\mathrm{X}_{n} & 0 \\
0 & \mathrm{Y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{X}_{n} & * \\
0 & \mathrm{~A}^{\prime} \mathrm{Y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{X}_{n} & * \\
0 & \mathrm{M}^{\prime}
\end{array}\right]
$$

by (3.3) and Proposition 3.5 and the definition of Y . On the other hand, by definition of C and C^{\prime} and induction, we have

$$
\mathrm{YC}=\left[\begin{array}{cc}
\mathrm{X}_{n} & 0 \\
0 & \mathrm{Y}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
1 & * \\
0 & \mathrm{C}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{X}_{n} & * \\
0 & \mathrm{Y}^{\prime} \mathrm{C}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{X}_{n} & * \\
0 & \mathrm{M}^{\prime}
\end{array}\right]
$$

To prove $\mathrm{M}=\mathrm{YC}$ it thus suffices to show that $\mathrm{M}_{\alpha \mu}=(\mathrm{YC})_{\alpha \mu}$ for $\alpha \in \mathcal{P}_{n}$ and $\mu \in \mathcal{Q}^{\prime}$. This amounts to $\zeta_{\alpha}^{\mu}=\sum_{\lambda \in \mathcal{P}_{n}} \chi_{\alpha}^{\lambda} \mathrm{C}_{\lambda \mu}$ for $\alpha \in \mathcal{P}_{n}$ and $\mu \in \mathcal{P}_{r}$ where $0 \leqslant r \leqslant n-1$. This is clear for $r=0$ since $\zeta_{(0)}^{(0)}=1=\chi_{(0)}^{(0)}$ and $\mathrm{C}_{(0)(0)}=1$. Suppose $1 \leqslant r \leqslant n-1$. The restriction of ζ^{μ} to $S_{n} \subseteq R$ is a character of S_{n} which we write as $\left.\zeta^{\mu}\right|_{S_{n}}$. We must prove that

$$
\begin{equation*}
\left.\zeta^{\mu}\right|_{S_{n}}=\sum_{\lambda \in \mathcal{P}_{n}} \mathrm{C}_{\lambda \mu} \chi^{\lambda} \quad \text { for } \mu \in \mathcal{P}_{r} \text { and } 1 \leqslant r \leqslant n-1 \tag{3.13}
\end{equation*}
$$

To do this we use Pieri's formula [7, Chapter I, (5.16)]. This states, in terms of the matrix C , that $s_{\mu} h_{n-r}=\sum_{\lambda \in \mathcal{P}_{n}} \mathrm{C}_{\lambda \mu} s_{\lambda}$. Apply the characteristic map. Fix r and let $P=\left\{w \in S_{n} \mid \mathbf{r} w \subseteq \mathbf{r}\right\} \simeq S_{r} \times S_{n-r}$ be the stabilizer of \mathbf{r}. Then $\operatorname{ch}\left(\operatorname{ind}_{P}^{S_{n}}\left(\chi^{\mu} \times \eta_{n-r}\right)\right)=s_{\mu} h_{n-r}$ as in [7, Chapter I, (7.1)] where ind means induction of characters. Thus Pieri's formula amounts to the character formula $\operatorname{ind}_{P}^{S_{n}}\left(\chi^{\mu} \times \eta_{n-r}\right)=\sum_{\lambda \in \mathcal{P}_{n}} \mathrm{C}_{\lambda \mu} \chi^{\lambda}$. It remains to prove that

$$
\left.\zeta^{\mu}\right|_{S_{n}}=\operatorname{ind}_{P}^{S_{n}}\left(\chi^{\mu} \times \eta_{n-r}\right) \quad \text { for } \mu \in \mathcal{P}_{r} \text { and } 1 \leqslant r \leqslant n-1 .
$$

Apply (3.6) with $m=n$ and $\sigma=w \in S_{n}$. This gives $\zeta^{\mu}(w)=\sum \chi^{\mu}\left(\mu_{K} w \mu_{K}^{-}\right)$ where the sum is over all subsets K of \mathbf{n} with $|K|=r$ and $K w=K$. Extend
$\mu_{K}: \mathbf{r} \rightarrow K$ to an element $w_{K} \in S_{n}$. The condition $K w=K$ is equivalent to $w_{K} w w_{K}^{-1} \in P$. If $K w=K$ then $\mu_{K} w \mu_{K}^{-}$is the restriction of $w_{K} w w_{K}^{-1}$ to \mathbf{r} so $\chi^{\mu}\left(\mu_{K} w \mu_{K}^{-1}\right)=\left(\chi^{\mu} \times \eta_{n-r}\right)\left(w_{K} w w_{K}^{-1}\right)$. Thus

$$
\zeta^{\mu}(w)=\sum\left(\chi^{\mu} \times \eta_{n-r}\right)\left(w_{K} w w_{K}^{-1}\right)
$$

where the sum is over all subsets K of \mathbf{n} with $|K|=r$ and $w_{K} w w_{K}^{-1} \in P$. Since the elements w_{K} with $|K|=r$ are a set of coset representatives for $S_{n} \bmod P$ the last sum is equal to ind ${ }_{P}^{S_{n}}\left(\chi^{\mu} \times \eta_{n-r}\right)(w)$.

Corollary 3.14. Let $n \geqslant m$ be positive integers. Suppose $\lambda \in \mathcal{P}_{n}$ and $\mu \in \mathcal{P}_{m}$. Then

$$
\sum_{\alpha \in \mathcal{P}_{n}, \beta \in \mathcal{P}_{m}} z_{\alpha}^{-1}\binom{\alpha}{\beta} \chi_{\alpha}^{\lambda} \chi_{\beta}^{\mu}= \begin{cases}1 & \text { if } \lambda \supseteq \mu \text { and } \lambda-\mu \text { is a horizontal strip }, \\ 0 & \text { otherwise } .\end{cases}
$$

This is a statement about characters of symmetric groups which does not involve the monoid R. If $\lambda=(n)$ and $\mu=(m)$, we get $\sum_{\alpha \in \mathcal{P}_{n}, \beta \in \mathcal{P}_{m}} z_{\alpha}^{-1}\binom{\alpha}{\beta}=$ 1 for any positive integers $n \geqslant m$. The case $n=m$ is Cauchy's formula $\sum_{\alpha \in \mathcal{P}_{n}} z_{\alpha}^{-1}=1$.

Corollary 3.15. If $1 \leqslant r \leqslant n$ and $\mu \in \mathcal{P}_{r}$ then $\left.\zeta^{\mu}\right|_{S_{n}}=\sum_{\lambda \in \mathcal{P}_{n}} \mathrm{~B}_{\lambda \mu} \chi^{\lambda}$.
Proof. If $1 \leqslant r \leqslant n-1$ this follows from (3.13) since $\mathrm{C}=\mathrm{B}$. If $r=n$ then $\lambda \supseteq \mu$ only for $\lambda=\mu$ so $\mathrm{B}_{\lambda \mu}=\mathrm{C}_{\lambda \mu}=\delta_{\lambda \mu}$.

Example 3.16. Suppose $n=3$. The partitions which index the rows and columns of our matrices are written in the order (3), (21), (1^{3}), (2), (1^{2}), (1), (0) and $M=A Y=Y B$ where Y is block diagonal with diagonal blocks equal to the character tables $\mathrm{X}_{3}, \mathrm{X}_{2}, \mathrm{X}_{1}, \mathrm{X}_{0}$. We compute A with Proposition 3.5, compute B with Proposition 3.11 and find

$$
\begin{aligned}
& \text { A } \\
& {\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 3 & 3 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrrrrr}
1 & -1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & -1 & 1 & -1 & 1 & 1 \\
1 & 2 & 1 & 3 & 3 & 3 & 1 \\
0 & 0 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& \text { M } \\
& \text { B }
\end{aligned}
$$

Now consider the decomposition of characters into irreducible characters. Let ψ be a character of R. For $\lambda \in \mathcal{Q}$ let $\left(\psi: \zeta^{\lambda}\right)_{R} \in \mathbf{Z}$ denote the multiplicity of the irreducible character ζ^{λ} as a constituent of ψ. Thus

$$
\psi=\sum_{\lambda \in \mathcal{Q}}\left(\psi: \zeta^{\lambda}\right)_{R} \zeta^{\lambda}
$$

Since R is not a group we do not have the usual orthogonality relations for irreducible characters to help compute multiplicities. The following lemma shows how to compute multiplicities in terms of either (i) the matrix A^{-1} and the values of the character ψ or (ii) the matrix B^{-1} and the decomposition into irreducible characters of the restriction of ψ to S_{r} for $0 \leqslant r \leqslant n$. After the proof we give examples to illustrate (i) and (ii).

Lemma 3.17. Let ψ be a character of R. Let ψ_{α} be the value which ψ assumes on elements of the Munn class indexed by α. Let $\left.\psi\right|_{S_{r}}$ be the restriction of ψ to S_{r}. For $\mu \in \mathcal{P}_{r}$ let $\left(\left.\psi\right|_{S_{r}}: \chi^{\mu}\right)_{S_{r}}$ be the multiplicity of the irreducible character χ^{μ} as a constituent of $\left.\psi\right|_{S_{r}}$.
(i) If $\lambda \in \mathcal{P}_{r}$ then $\left(\psi: \zeta^{\lambda}\right)_{R}=\sum_{\beta \in \mathcal{P}_{r}} \chi_{\beta}^{\lambda} z_{\beta}^{-1} \sum_{\alpha \in \mathcal{Q}} \mathrm{A}_{\beta \alpha}^{-1} \psi_{\alpha}$.
(ii) If $\lambda \in \mathcal{Q}$ then $\left(\psi: \zeta^{\lambda}\right)_{R}=\sum_{r=0}^{n} \sum_{\mu \in \mathcal{P}_{r}} \mathrm{~B}_{\lambda \mu}^{-1}\left(\left.\psi\right|_{S_{r}}: \chi^{\mu}\right)_{S_{r}}$.

Proof. For $\mu \in \mathcal{Q}$ let $c_{\mu}=\left(\psi: \zeta^{\mu}\right)_{R}$. Then $\psi=\sum_{\mu \in \mathcal{Q}} c_{\mu} \zeta^{\mu}$ so $\psi_{\alpha}=$ $\sum_{\mu \in \mathcal{Q}} c_{\mu} \zeta_{\alpha}^{\mu}=\sum_{\mu \in \mathcal{Q}} c_{\mu} \mathrm{M}_{\alpha \mu}$. If $\lambda \in \mathcal{Q}$ then

$$
\left(\psi: \zeta^{\lambda}\right)_{R}=\sum_{\mu \in \mathcal{Q}} c_{\mu} \delta_{\lambda \mu}=\sum_{\mu \in \mathcal{Q}} c_{\mu} \sum_{\alpha \in \mathcal{Q}} \mathrm{M}_{\lambda \alpha}^{-1} \mathrm{M}_{\alpha \mu}=\sum_{\alpha \in \mathcal{Q}} \mathrm{M}_{\lambda \alpha}^{-1} \psi_{\alpha}
$$

Let W be as in the proof of Corollary 3.7. Then $\mathrm{YY}^{\top}=\mathrm{W}$. If $\lambda \in \mathcal{P}_{r}$ then $\mathrm{Y}_{\alpha \lambda}=\chi_{\alpha}^{\lambda}$ for $|\alpha|=r$ and $\mathrm{Y}_{\alpha \lambda}=0$ otherwise. Thus

$$
\mathrm{M}_{\lambda \alpha}^{-1}=\left(\mathrm{Y}^{\top} \mathrm{W}^{-1} \mathrm{~A}^{-1}\right)_{\lambda \alpha}=\sum_{\beta \in \mathcal{P}_{r}} \chi_{\beta}^{\lambda} z_{\beta}^{-1} \mathrm{~A}_{\beta \alpha}^{-1}
$$

This implies (i). Similarly

$$
\mathrm{M}_{\lambda \alpha}^{-1}=\left(\mathrm{B}^{-1} \mathrm{Y}^{\top} \mathrm{W}^{-1}\right)_{\lambda \alpha}=\sum_{\mu \in \mathcal{Q}} \mathrm{B}_{\lambda \mu}^{-1} \mathrm{Y}_{\alpha \mu} z_{\alpha}^{-1}
$$

and

$$
\sum_{\alpha \in \mathcal{P}_{r}} \chi_{\alpha}^{\mu} z_{\alpha}^{-1} \psi_{\alpha}=\left(\left.\psi\right|_{S_{r}}: \chi^{\mu}\right)_{S_{r}}
$$

for any $\lambda \in \mathcal{Q}$. This implies (ii).

Example 3.18. We know from Example 2.29 that $\zeta^{(1)}$ is the character of the representation $\sigma \mapsto[\sigma]$ of R by rook matrices. Let $\psi=\left(\zeta^{(1)}\right)^{p}$ be the character of the p th tensor power of this representation. We use Lemma 3.17(i) to show for $p \geqslant 1$ and $\lambda \in \mathcal{Q}$ that

$$
\begin{equation*}
\left(\psi: \zeta^{\lambda}\right)_{R}=S(p, r) f^{\lambda} \tag{3.19}
\end{equation*}
$$

where $r=|\lambda|$ and $S(p, r)$ is a Stirling number of the second kind [17, p. 34]. To do this, use the formula [17, p. 34, (24a)]

$$
S(p, r)=\frac{1}{r!} \sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} k^{p}
$$

We may sum here over $0 \leqslant k \leqslant n$ since $\binom{r}{k}=0$ for $k>r$. Define a column vector Ψ with components Ψ_{α} for $\alpha \in \mathcal{Q}$ by $\Psi_{\alpha}=\psi(\sigma)$ if σ lies in the Munn class corresponding to α. Define a column vector Θ with components Θ_{α} for $\alpha \in \mathcal{Q}$ by

$$
\Theta_{\alpha}= \begin{cases}r!S(p, r) & \text { if } \alpha=\left(1^{r}\right) \text { for some } 1 \leqslant r \leqslant n \\ 0 & \text { otherwise }\end{cases}
$$

Fix $\alpha \in \mathcal{Q}$ and let a be the number of parts of α which are equal to 1 . Then $\mathrm{A}_{\alpha,\left(1^{r}\right)}=\binom{a}{r}$ so

$$
\begin{aligned}
(\mathrm{A} \Theta)_{\alpha} & =\sum_{\beta \in \mathcal{Q}} \mathrm{A}_{\alpha \beta} \Theta_{\beta}=\sum_{r=1}^{n} \mathrm{~A}_{\alpha,\left(1^{r}\right)} \sum_{k=0}^{n}(-1)^{r-k}\binom{r}{k} k^{p} \\
& =\sum_{k=0}^{n}\left(\sum_{r=1}^{n}(-1)^{r-k}\binom{a}{r}\binom{r}{k}\right) k^{p}
\end{aligned}
$$

The inner sum is, by a known identity for binomial coefficients, equal to $\delta_{a, k}$. Thus $(\mathrm{A} \Theta)_{\alpha}=a^{p}$. Choose $\sigma \in R$ in the Munn class corresponding to α. Then $\zeta_{\alpha}^{(1)}=\operatorname{trace}[\sigma]=a$ so $\Psi_{\alpha}=a^{p}=(\mathrm{A} \Theta)_{\alpha}$. This is true for all $\alpha \in \mathcal{Q}$ so $\Psi=\mathrm{A} \Theta$. Thus $\sum_{\alpha \in \mathcal{Q}} \mathrm{A}_{\beta \alpha}^{-1} \Psi_{\alpha}=\left(\mathrm{A}^{-1} \Psi\right)_{\beta}=\Theta_{\beta}$ for $\beta \in \mathcal{Q}$. If $\lambda \in \mathcal{Q}$ then by Lemma 3.17(i) and Proposition 3.5

$$
\left(\psi: \zeta^{\lambda}\right)_{R}=\sum_{\beta \in \mathcal{P}_{r}} \chi_{\beta}^{\lambda} z_{\beta}^{-1} \Theta_{\beta}=\chi_{\left(1^{r}\right)}^{\lambda} z_{\left(1^{r}\right)}^{-1} r!S(p, r)
$$

This proves (3.19) since $z_{\left(1^{r}\right)}=r$! and $\chi_{\left(1^{r}\right)}^{\lambda}=f^{\lambda}$. It follows from (3.19) that

$$
\begin{equation*}
\left(\zeta^{(1)}\right)^{p}=\sum_{\lambda \in \mathcal{Q}} S(p,|\lambda|) f^{\lambda} \zeta^{\lambda} \tag{3.20}
\end{equation*}
$$

Since $\zeta^{\lambda}(1)=\binom{n}{r} f^{\lambda}$ and $\sum_{\lambda \in \mathcal{P}_{r}}\left(f^{\lambda}\right)^{2}=r$!, the last formula, specialized at $\sigma=1 \in R$, is the known identity [17, p. 34, (24d)]

$$
n^{p}=\sum_{r=1}^{n} S(p, r) r!\binom{n}{r}=\sum_{r=1}^{n} S(p, r) n(n-1) \cdots(n-r+1)
$$

We may also restrict the characters in (3.20) to the group $S_{n} \subseteq R$. This gives us a formula for the multiplicity of χ^{λ} in the character of the p th tensor power of the representation $w \mapsto[w]$ of S_{n} by permutation matrices, a statement about characters of symmetric groups which does not involve the monoid R :

Corollary 3.21. Let φ be the character of the representation $w \mapsto[w]$ of S_{n} by permutation matrices. If $p \geqslant 1$ and $\lambda \in \mathcal{P}_{n}$, then the multiplicity of χ^{λ} as an irreducible constituent of φ^{p} is equal to $\sum S(p,|\mu|) f^{\mu}$, where $S(p, r)$ is a Stirling number of the second kind and the sum is over all partitions μ such that $\lambda \supseteq \mu$ and $\lambda-\mu$ is a horizontal strip.

Proof. By (3.20) and Corollary 3.15, $\varphi^{p}=\sum_{\lambda \in \mathcal{P}_{n}} \sum_{\mu \in \mathcal{Q}} S(p,|\mu|) f^{\mu} \mathrm{B}_{\lambda \mu} \chi^{\lambda}$. The assertion follows from Proposition 3.12.

Example 3.22. Let F^{n} be the space of row vectors over F. Let x_{1}, \ldots, x_{n} be the standard basis for F^{n}. Make F^{n} a right R-module by defining

$$
x_{i} \sigma= \begin{cases}x_{i \sigma} & \text { if } i \in I(\sigma) \tag{3.23}\\ 0 & \text { otherwise }\end{cases}
$$

for $\sigma \in R$. Then $x_{i} \sigma=x_{i}[\sigma]$ so the R-module F^{n} has character $\zeta^{(1)}$. If $K \subseteq \mathbf{n}$ and $|K|=p$ write $K=\left\{i_{1}, \ldots, i_{p}\right\}$ where $i_{1}<\cdots<i_{p}$ and let $x_{K}=x_{i_{1}} \wedge \cdots \wedge x_{i_{p}}$. The elements x_{K} with $|K|=p$ are an F-basis for $\wedge^{p} F^{n}$. Make $\wedge^{p} F^{n}$ a right R-module by defining

$$
x_{K} \sigma= \begin{cases}x_{i_{1} \sigma} \wedge \cdots \wedge x_{i_{p} \sigma} & \text { if } K \subseteq I(\sigma) \\ 0 & \text { otherwise }\end{cases}
$$

For $p=0$ we agree that $1 \sigma=1$. Let ψ_{p} be the character of the R-module $\wedge^{p} F^{n}$. We will show that $\psi_{p}=\zeta^{\left(1^{p}\right)}$. Thus, in particular, ψ_{p} is an irreducible character. The main effort is to show for $0 \leqslant p \leqslant n$ and $0 \leqslant r \leqslant n$ and $\lambda \in \mathcal{P}_{r}$ that

$$
\begin{equation*}
\left(\left.\left(\psi_{p}\right)\right|_{S_{r}}: \chi^{\lambda}\right)_{S_{r}}=\mathrm{B}_{\lambda,\left(1^{p}\right)} . \tag{3.24}
\end{equation*}
$$

In doing this we use (3.12) to compute $\mathrm{B}_{\lambda \mu}$. If $r=0$ and $p=0$ then both sides of (3.24) are equal to 1 because $\mathrm{B}_{(0),(0)}=1$ and $\left.\left(\psi_{0}\right)\right|_{S_{0}}=\chi^{(0)}$. If $r=0$ and $p \geqslant 1$ then both sides of (3.24) are equal to 0 , the right side because $(0) \supseteq\left(1^{p}\right)$ is impossible and the left side because $\wedge^{p}\left[\varepsilon_{\emptyset}\right]$ is the zero matrix. Assume from now on that $r \geqslant 1$. Say that a partition λ is a hook if $\lambda=\left(r-m, 1^{m}\right)$ for some $0 \leqslant m \leqslant r-1$. If λ is not a hook then $\lambda-\left(1^{p}\right)$ cannot be a horizontal strip so $\mathrm{B}_{\lambda,\left(1^{p}\right)}=0$. If $\lambda=\left(r-m, 1^{m}\right)$ is a hook and $\lambda-\left(1^{p}\right)$ is a horizontal strip then $p=m$ or $p=m+1$. Thus

$$
\sum_{p=0}^{n} \mathrm{~B}_{\lambda,\left(1^{p}\right)} t^{p}= \begin{cases}t^{m}+t^{m+1} & \text { if } \lambda=\left(r-m, 1^{m}\right) \text { with } 0 \leqslant m \leqslant r-1 \tag{3.25}\\ 0 & \text { if } \lambda \text { is not a hook. }\end{cases}
$$

If $\lambda \in \mathcal{P}_{r}$ define a polynomial $F^{\lambda}(t)$ in an indeterminate t by

$$
F^{\lambda}(t)=\sum_{p=0}^{n}\left(\left.\left(\psi_{p}\right)\right|_{S_{r}}, \chi^{\lambda}\right)_{S_{r}} t^{p}
$$

We will show that

$$
F^{\lambda}(t)= \begin{cases}t^{m}+t^{m+1} & \text { if } \lambda=\left(r-m, 1^{m}\right) \text { with } 0 \leqslant m \leqslant r-1, \tag{3.26}\\ 0 & \text { if } \lambda \text { is not a hook. }\end{cases}
$$

Then (3.24) follows by equating coefficients of t^{p}. Identify F^{r} with $F x_{1} \oplus \cdots \oplus$ $F x_{r} \subseteq F^{n}$ and identify $\wedge^{p} F^{r}$ with a subspace of $\wedge^{p} F^{n}$. For $0 \leqslant p \leqslant n$ let $\varphi_{p, r}$ be the character of the S_{r}-module $\wedge^{p} F^{r}$. Thus $\varphi_{p, r}=0$ if $p>r$. If $\gamma \in S_{r}$ then $I(\gamma)=\mathbf{r}$ so γ annihilates x_{K} if K contains at least one of $r+1, \ldots, n$. Thus the trace of γ in its action on $\wedge^{p} F^{n}$ is equal to the trace of γ in its action on $\wedge^{p} F^{r}$ so $\left.\left(\psi_{p}\right)\right|_{S_{r}}=\varphi_{p, r} .{ }^{1}$ If $\gamma \in S_{r}$ then $\sum_{p=0}^{n} \varphi_{p, r}(\gamma) t^{p}=\operatorname{det}(1+\gamma t)$ where, on the right side, 1 is an identity matrix of size r and we view γ as a permutation matrix of size r. Thus

$$
F^{\lambda}(t)=\sum_{p=0}^{n}\left(\varphi_{p, r}: \chi^{\lambda}\right)_{S_{r}} t^{p}=\frac{1}{r!} \sum_{\gamma \in S_{r}} \chi^{\lambda}(\gamma) \operatorname{det}(1+\gamma t)
$$

If γ has cycle type $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathcal{P}_{r}$ then $\operatorname{det}(1+\gamma t)=\left(1-(-t)^{\alpha_{1}}\right) \times$ $\left(1-(-t)^{\alpha_{2}}\right) \cdots$. As before let Λ be the \mathbf{Q}-algebra of symmetric functions in a sequence of indeterminates. Then $\Lambda=\mathbf{Q}\left[p_{1}, p_{2}, \ldots\right]$ where p_{k} is the k th power sum. Define a \mathbf{Q}-algebra homomorphism $\Phi: \Lambda \rightarrow \mathbf{Q}[t]$ by $\Phi\left(p_{k}\right)=1-(-t)^{k}$. Then $\operatorname{det}(1+\gamma t)=\Phi\left(p_{\alpha}\right)$ where $p_{\alpha}=p_{\alpha_{1}} p_{\alpha_{2}} \cdots$. By (3.9), (3.10), and (3.8)

$$
F^{\lambda}(t)=\Phi\left(\sum_{\alpha \in \mathcal{P}_{r}} z_{\alpha}^{-1} \chi_{\alpha}^{\lambda} p_{\alpha}\right)=\Phi\left(s_{\lambda}\right)=\operatorname{det}\left[\Phi\left(h_{\lambda_{i}-i+j}\right)\right]
$$

Let $A^{\lambda}=\left[\Phi\left(h_{\lambda_{i}-i+j}\right)\right]$. Since $k h_{k}=\sum_{j=1}^{k} p_{j} h_{k-j}$, we conclude, by induction on k, that $\Phi\left(h_{k}\right)=1+t$ for $k \geqslant 1$. If λ is not a hook then $\lambda_{2} \geqslant 1$ so all entries in the first two rows of A^{λ} are equal to $1+t$. Thus $F^{\lambda}(t)=\operatorname{det} A^{\lambda}=0$. If $\lambda=\left(r-m, 1^{m}\right)$ for some $0 \leqslant m \leqslant r-1$ then the matrix A^{λ} has size $m+1$ with (i, j) entry equal to $1+t$ if $j \geqslant i$, equal to 1 if $j=i-1$ and equal to 0 if $j \leqslant i-2$. Subtract the second row of A^{λ} from the first row and use induction on m to conclude that $F^{\lambda}(t)=\operatorname{det} A^{\lambda}=t^{m}+t^{m+1}$. This proves (3.26) and thus proves (3.24). If $v \in \mathcal{Q}$ then, by Lemma 3.17(ii) and (3.24)

$$
\left(\psi_{p}: \zeta^{\nu}\right)_{R}=\sum_{r=0}^{n} \sum_{\lambda \in \mathcal{P}_{r}} \mathrm{~B}_{\nu \lambda}^{-1}\left(\left.\left(\psi_{p}\right)\right|_{S_{r}}: \chi^{\mu}\right)_{S_{r}}=\sum_{\lambda \in \mathcal{Q}} \sum_{\mu \in \mathcal{Q}} \mathrm{B}_{\nu \lambda}^{-1} \mathrm{~B}_{\lambda \mu} \delta_{\mu,\left(1^{p}\right)}
$$

[^0]$$
=\sum_{\mu \in \mathcal{Q}} \delta_{\nu \mu} \delta_{\mu,\left(1^{p}\right)}=\delta_{v,\left(1^{p}\right)} .
$$

Thus $\psi_{p}=\zeta^{\left(1^{p}\right)}$.
Remark 3.27. In view of Lemma 3.17 one would like formulas for A^{-1} and B^{-1}. L.C. Hsu [5, p. 176] showed that

$$
\mathrm{A}_{\alpha \beta}^{-1}=(-1)^{l(\alpha)+l(\beta)}\binom{\alpha}{\beta}
$$

where $l(\alpha)$ is the number of parts in α. The author observed for small n that the entries of B^{-1} are 0 or ± 1. I. Gessel and G. Tesler proved, independently, that if $\lambda, \mu \in \mathcal{Q}$ then

$$
\mathrm{B}_{\lambda \mu}^{-1}= \begin{cases}(-1)^{|\lambda-\mu|} & \text { if } \lambda \supseteq \mu \text { and } \lambda-\mu \text { is a vertical strip }, \\ 0 & \text { otherwise. }\end{cases}
$$

4. The representation of R on $F\left[x_{1}, \ldots, x_{n}\right]$

In this section all R-modules and S_{r}-modules have action on the right. Let F^{n} be the space of row vectors over F. Let x_{1}, \ldots, x_{n} be the standard basis for F^{n}. Make F^{n} an R-module as in (3.23). Let $F[x]=F\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial algebra in commuting indeterminates x_{1}, \ldots, x_{n}. For $p=0,1,2, \ldots$ let $F[x]_{p}$ be the space of homogeneous polynomials of degree p. We agree that $F[x]_{p}=0$ for $p<0$. Make $F[x]$ an R-module by defining $1 \sigma=1$ and

$$
\begin{equation*}
\left(x_{i_{1}} \cdots x_{i_{p}}\right) \sigma=\left(x_{i_{1}} \sigma\right) \cdots\left(x_{i_{p}} \sigma\right) \tag{4.1}
\end{equation*}
$$

for $1 \leqslant i_{1}, \ldots, i_{p} \leqslant n$. In this section we determine the graded R-module structure of $F[x]$; this is the content of Theorem 4.7 and Corollary 4.9.

If M is an S_{r}-module which affords a representation ρ of S_{r} let M^{*} denote an R-module which affords the representation ρ^{*} of A defined in (2.21). Thus M^{*} is determined by M up to isomorphism. It follows from (2.23) that $\operatorname{dim} M^{*}=\binom{n}{r} \operatorname{dim} M$. If $\lambda \in \mathcal{P}_{r}$ choose an S_{r}-module M^{λ} which affords the irreducible representation ρ^{λ} with character χ^{λ} and an R-module N^{λ} which affords the irreducible representation $\rho^{\lambda *}$ with character ζ^{λ}. Let J^{λ} be the isotypic component of $F[x]$ of type λ. This is by definition the sum of all simple R-submodules of $F[x]$ which are isomorphic to N^{λ}. For $p=0,1,2, \ldots$ let $J_{p}^{\lambda}=J^{\lambda} \cap F[x]_{p}$. Then

$$
F[x]=\bigoplus_{\lambda \in \mathcal{Q}} J^{\lambda} \quad \text { and } \quad F[x]_{p}=\bigoplus_{\lambda \in \mathcal{Q}} J_{p}^{\lambda}
$$

Example 4.2. (i) Suppose $\lambda=(0)$. Then $\rho^{\lambda *}$ is the trivial representation. We may choose $N^{\lambda}=F$ with action $1 \sigma=1$ for $\sigma \in R$. Suppose $f \in J^{\lambda}$ is homogeneous. Then $f \sigma=f$ for $\sigma \in R$. Define $v \in R$ by $I(v)=\{1, \ldots, n-1\}$ and $k v=k+1$ for $1 \leqslant k \leqslant n-1$. Then $x_{k} \nu=x_{k+1}$ for $1 \leqslant k \leqslant n-1$ and $x_{n} v=0$. If $\operatorname{deg} f>0$ then $f=f \nu^{n}=0$. Thus $J^{\lambda}=F$; the only R-invariant polynomials are constants. The S_{n}-invariant polynomials in x_{1}, \ldots, x_{n} occur in (iii) below.
(ii) Suppose $\lambda=(1)$. By Example 2.29 we may choose $N^{\lambda}=F x_{1}+\cdots+$ $F x_{n}$ with R-action as in (3.23). Let $\theta: N^{\lambda} \rightarrow F[x]_{p}$ be a nonzero R-module homomorphism, where $p \geqslant 1$. Let $v \in R$ be as in (i). Write $\theta\left(x_{1}\right)=$ $\sum c_{i_{1}, \ldots, c_{i_{n}}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ where $c_{i_{1}, \ldots, i_{n}} \in F$ and the sum is over all $\left(i_{1}, \ldots, i_{n}\right)$ with $i_{1}+\cdots+i_{n}=p$. Since $x_{1} v^{n-1}=x_{n}$ and $x_{i} v^{n-1}=0$ for $2 \leqslant i \leqslant n$ we have $\theta\left(x_{n}\right)=\theta\left(x_{1} v^{n-1}\right)=\theta\left(x_{1}\right) \nu^{n-1}=c_{p, 0, \ldots, 0} x_{n}^{p}$. Since N^{λ} is a simple module, θ is one-to-one so $c_{p, 0, \ldots, 0} \neq 0$. By replacing θ by a nonzero constant multiple we may assume that $\theta\left(x_{n}\right)=x_{n}^{p}$. Now apply powers of v^{-}to get $x_{k}^{p} \in \theta\left(N^{\lambda}\right)$ for $1 \leqslant k \leqslant n$. Thus $\theta\left(N^{\lambda}\right) \supseteq F x_{1}^{p}+\cdots+F x_{n}^{p}$ so $\theta\left(N^{\lambda}\right)=F x_{1}^{p}+\cdots+F x_{n}^{p}$ by simplicity of N^{λ}. Since this is true for all θ, we have $J_{p}^{\lambda}=F x_{1}^{p}+\cdots+F x_{n}^{p}$.
(iii) Suppose $\lambda=(n)$. By Example 2.29 we may choose $N^{\lambda}=F$ with action $1 \sigma=1$ for $\sigma \in S_{n}$ and $1 \sigma=0$ for $\sigma \in R-S_{n}$. Let Λ^{n} be the F-algebra of symmetric polynomials in x_{1}, \ldots, x_{n}. Suppose $f \in J^{\lambda}$ is homogeneous. Then $f \sigma=f$ for $\sigma \in S_{n}$ and $f \sigma=0$ for $\sigma \in R-S_{n}$. In particular, $f \in \Lambda$ and f is not constant. Fix $k \in \mathbf{n}$ and let $K=\{1, \ldots, k-1, k+1, \ldots, n\}$. Write $f=x_{k} f^{\prime}+f^{\prime \prime}$ where $f^{\prime \prime}$ does not involve x_{k}. Then $0=f \varepsilon_{K}=\left(x_{k} \varepsilon_{K}\right)\left(f^{\prime} \varepsilon_{K}\right)+f^{\prime \prime} \varepsilon_{K}$. But $x_{k} \varepsilon_{K}=0$ and $f^{\prime \prime} \varepsilon_{K}=f^{\prime \prime}$. Thus $f^{\prime \prime}=0$. Thus x_{k} divides f for all k so $f \in$ $x_{1} \cdots x_{n} \Lambda^{n}$. Thus $J^{\lambda}=x_{1} \cdots x_{n} \Lambda^{n}$.

We will compute the J^{λ} in terms of corresponding data for the symmetric groups S_{r} with $0 \leqslant r \leqslant n$. Let $F[x ; r]=F\left[x_{1}, \ldots, x_{r}\right]$. We agree that $F[x ; 0]=F$. Then $F[x ; r]$ is an S_{r}-submodule of $F[x]$. The action of S_{r} defined by (4.1) with r in place of n is the natural action of S_{r} by automorphisms of $F[x ; r]$. Let $F[x ; r]_{p}=F[x ; r] \cap F[x]_{p}$. If $\lambda \in \mathcal{P}_{r}$ let I^{λ} be the isotypic component of $F[x ; r]$ of type λ, the sum of all simple S_{r}-submodules of $F[x ; r]$ which are isomorphic to M^{λ}. Let $I_{p}^{\lambda}=I^{\lambda} \cap F[x ; r]_{p}$. Then

$$
F[x ; r]=\bigoplus_{\lambda \in \mathcal{P}_{r}} I^{\lambda} \quad \text { and } \quad F[x ; r]_{p}=\bigoplus_{\lambda \in \mathcal{P}_{r}} I_{p}^{\lambda}
$$

To proceed further we construct for each S_{r}-submodule M of $F[x ; r]$ an R-submodule M^{\star} of $F[x]$. Lemma 4.4 states various properties of the correspondence $M \sim M^{\star}$, among them a module isomorphism $M^{\star} \simeq M^{*}$. To construct M^{\star} recall from Section 2 that we have chosen for each $K \subseteq \mathbf{n}$ with $|K|=r$, an element $\mu_{K} \in R$ such that μ_{K} maps \mathbf{r} to K. The element μ_{K} is not uniquely determined by K, but it is determined by K up to replacement by $\gamma \mu_{K}$ with $\gamma \in S_{r}$. Since M is an S_{r}-module, the space $M \mu_{K}$ is thus uniquely
determined by M and K. Define $x_{K} \in F[x]$ by $x_{K}=\prod_{k \in K} x_{k}$. Define a subspace M^{\star} of $F[x]$ by

$$
\begin{equation*}
M^{\star}=\sum_{|K|=r} x_{K}\left(M \mu_{K}\right) . \tag{4.3}
\end{equation*}
$$

For example, suppose that $\lambda=(n)$ and $M=I^{(n)}=\Lambda^{n}$ is the F-algebra of symmetric polynomials in x_{1}, \ldots, x_{n}. Since $\mu_{\mathbf{n}}$ is the identity of S_{n}, Example 4.2(iii) shows that $M^{\star}=x_{\mathbf{n}} \Lambda^{n}=x_{1} \cdots x_{n} \Lambda^{n}=J^{(n)}$.

If $\operatorname{dim} M$ is finite let χ^{\star} be the character of the R-module M^{\star}. If M affords a matrix representation ρ of S_{r} then, by definition, M^{*} affords the representation ρ^{*} of R. As in Section 2, if χ is the character of ρ let χ^{*} denote the character of ρ^{*}.

Lemma 4.4. Let M be an S_{r}-submodule of $F[x ; r]$. Then
(i) M^{\star} is an R-submodule of $F[x]$.
(ii) If $\operatorname{dim} M$ is finite then $\operatorname{dim} M^{\star}=\binom{n}{r} \operatorname{dim} M$.
(iii) If $M=M_{1}+\cdots+M_{h}$ is a sum of submodules, then $M^{\star}=M_{1}^{\star}+\cdots+M_{h}^{\star}$.
(iv) If $\operatorname{dim} M$ is finite and χ is its character then $\chi^{\star}=\chi^{*}$ and thus $M^{\star} \simeq M^{*}$.
(v) If $\lambda \in \mathcal{P}_{r}$ then $\left(M^{\lambda}\right)^{\star} \simeq N^{\lambda}$.

Proof. Let $\sigma \in R$ and $K \subseteq \mathbf{n}$ with $|K|=r$. If $K \subseteq I(\sigma)$ then $\mu_{K} \sigma: \mathbf{r} \rightarrow K \sigma$ is a one-to-one map. Thus there exists $\gamma_{K, \sigma} \in S_{r}$ such that

$$
\begin{equation*}
\mu_{K} \sigma=\gamma_{K, \sigma} \mu_{K \sigma} . \tag{4.5}
\end{equation*}
$$

Then $\left(M \mu_{K}\right) \sigma=M \gamma_{K, \sigma} \mu_{K \sigma}=M \mu_{K \sigma}$. If $K \subseteq I(\sigma)$ then $x_{K} \sigma=x_{K \sigma}$. On the other hand, if K is not included in $I(\sigma)$ then $x_{K} \sigma=0$. Thus

$$
\left(x_{K}\left(M \mu_{K}\right)\right) \sigma=\left(x_{K} \sigma\right)\left(M \mu_{K} \sigma\right)= \begin{cases}x_{K \sigma}\left(M \mu_{K \sigma}\right) & \text { if } K \subseteq I(\sigma) \tag{4.6}\\ 0 & \text { otherwise }\end{cases}
$$

In particular, $\left(x_{K}\left(M \mu_{K}\right)\right) \sigma \subseteq M^{\star}$. This proves (i). To prove (ii) we show first that the sum in (4.3) is direct. Suppose that $\sum_{|K|=r} x_{K}\left(m_{K} \mu_{K}\right)=0$ where $m_{K} \in M$. It follows from (3.23) that if $K \subseteq \mathbf{n}$ then $x_{i} \varepsilon_{K}=x_{i}$ if $i \in K$ and $x_{i} \varepsilon_{K}=0$ otherwise. Choose $L \subseteq \mathbf{n}$ with $|L|=r$. Then $x_{K} \varepsilon_{L}=0$ if $L \neq K$ and $x_{L} \varepsilon_{L}=x_{L}$. Thus $x_{L}\left(m_{L} \mu_{L} \varepsilon_{L}\right)=0$ so $m_{L} \mu_{L} \varepsilon_{L}=0$. But $\mu_{L} \varepsilon_{L}=\mu_{L}$ so $m_{L} \mu_{L}=0$ because $F[x]$ is an integral domain. Since $\mu_{L} \mu_{L}^{-}$is the identity map of L it follows that $m_{L}=0$. Thus the sum is direct. The same argument shows that if $x_{K} m_{K} \mu_{K}=0$ then $m_{K}=0$. Thus M^{\star} is a direct sum of the $\binom{n}{r}$ subspaces $x_{K}\left(M \mu_{K}\right)$ of dimension equal to $\operatorname{dim} M$. This proves (ii). Assertion (iii) is clear from the definition of M^{\star}. Suppose that $\operatorname{dim} M$ is finite. Let σ^{\star} be the endomorphism of M^{\star} which corresponds to σ. Choose a basis for M^{\star} adapted to the direct sum decomposition (4.3). The matrix for σ^{\star} is decomposed into blocks of size $\binom{n}{r}$. The diagonal blocks are in one-to-one correspondence with r-subsets K of \mathbf{n}.

It follows from (4.6) that the K th diagonal block is zero unless $K \subseteq I(\sigma)$ and $K \sigma=K$. Assume in the rest of this argument that $K \subseteq I(\sigma)$ and $K \sigma=K$. Then (4.5) gives $\mu_{K} \sigma=\gamma_{K, \sigma} \mu_{K}$. Thus the trace of the K th diagonal block is $\chi\left(\gamma_{K, \sigma}\right)$ so

$$
\chi^{\star}(\sigma)=\sum_{\substack{K \subseteq I(\sigma),|K|=r \\ K \sigma=K}} \chi\left(\gamma_{K, \sigma}\right)
$$

Now $\varepsilon_{K} \sigma=\mu_{K}^{-} \mu_{K} \sigma=\mu_{K}^{-} \gamma_{K, \sigma} \mu_{K \sigma}$. Since $I\left(\varepsilon_{K} \sigma\right)=K=J\left(\varepsilon_{K} \sigma\right)$ it follows from the uniqueness in (2.16) and from (2.15) that $\gamma_{K, \sigma}=p\left(\varepsilon_{K} \sigma\right)=\mu_{K} \sigma \mu_{K}^{-}$. Thus

$$
\chi^{\star}(\sigma)=\sum_{\substack{K \subseteq I(\sigma),|K|=r \\ K \sigma=K}} \chi\left(\mu_{K} \sigma \mu_{K}^{-}\right)
$$

Now (iv) follows from (2.31). Finally (v) follows from (iv) since both $\left(M^{\lambda}\right)^{\star}$ and N^{λ} have the same character $\chi^{\lambda *}$.

Theorem 4.7. If $\lambda \in \mathcal{Q}$ then $J^{\lambda}=\left(I^{\lambda}\right)^{\star}$.
Proof. If $\lambda \in \mathcal{P}_{r}$ then $\left(I_{p-r}^{\lambda}\right)^{\star} \subseteq F[x]_{p}$ for all integers p by (4.3); if $p<r$ then $I_{p-r}^{\lambda}=0$. Write I_{p-r}^{λ} as a sum of S_{r}-modules isomorphic to M^{λ}. By Lemma 4.4(iii) and (v), $\left(I_{p-r}^{\lambda}\right)^{\star}$ is a sum of R-modules isomorphic to N^{λ} and is thus included in J^{λ}. Thus $J_{p}^{\lambda}=J^{\lambda} \cap F[x]_{p} \supseteq\left(I_{p-r}^{\lambda}\right)^{\star}$. In particular, $\operatorname{dim} J_{p}^{\lambda} \geqslant$ $\operatorname{dim}\left(I_{p-r}^{\lambda}\right)^{\star}$. To complete the proof we show that $\operatorname{dim} J_{p}^{\lambda}=\operatorname{dim}\left(I_{p-r}^{\lambda}\right)^{\star}$ whence $J_{p}^{\lambda}=\left(I_{p-r}^{\lambda}\right)^{\star}$ and thus $J^{\lambda}=\left(I^{\lambda}\right)^{\star}$. Let t be an indeterminate. Since

$$
F[x]_{p}=\bigoplus_{\lambda \in \mathcal{Q}} J_{p}^{\lambda} \quad \text { and } \quad \sum_{p \geqslant 0} \operatorname{dim} F[x]_{p} t^{p}=\frac{1}{(1-t)^{n}}
$$

we have

$$
\sum_{p \geqslant 0} \sum_{r=0}^{n} \sum_{\lambda \in \mathcal{P}_{r}}\left(\operatorname{dim} J_{p}^{\lambda}\right) t^{p}=\frac{1}{(1-t)^{n}}
$$

Similarly $\sum_{p \geqslant 0} \sum_{\lambda \in \mathcal{P}_{r}}\left(\operatorname{dim} I_{p}^{\lambda}\right) t^{p}=1 /(1-t)^{r}$. If $\lambda \in \mathcal{P}_{r}$ then $\operatorname{dim}\left(I_{p-r}^{\lambda}\right)^{\star}=$ $\binom{n}{r} \operatorname{dim} I_{p-r}^{\lambda}$ by Lemma 4.4(ii). Since $I_{p-r}^{\lambda}=0$ for $p<r$ we get

$$
\begin{aligned}
\sum_{p \geqslant 0} \sum_{r=0}^{n} \sum_{\lambda \in \mathcal{P}_{r}}\left(\operatorname{dim} I_{p-r}^{\lambda}\right)^{\star} t^{p} & =\sum_{r=0}^{n}\binom{n}{r} t^{r} \sum_{p \geqslant 0} \sum_{\lambda \in \mathcal{P}_{r}}\left(\operatorname{dim} I_{p-r}^{\lambda}\right) t^{p-r} \\
& =\sum_{r=0}^{n}\binom{n}{r} t^{r} \sum_{p \geqslant 0} \sum_{\lambda \in \mathcal{P}_{r}}\left(\operatorname{dim} I_{p}^{\lambda}\right) t^{p}
\end{aligned}
$$

$$
=\sum_{r=0}^{n}\binom{n}{r} t^{r} \frac{1}{(1-t)^{r}}=\frac{1}{(1-t)^{n}}
$$

Now compare coefficients of t^{p} to get

$$
\sum_{r=0}^{n} \sum_{\lambda \in \mathcal{P}_{r}} \operatorname{dim} J_{p}^{\lambda}=\sum_{r=0}^{n} \sum_{\lambda \in \mathcal{P}_{r}}\left(\operatorname{dim} I_{p-r}^{\lambda}\right)^{\star}
$$

Since $\operatorname{dim} J_{p}^{\lambda} \geqslant \operatorname{dim}\left(I_{p-r}^{\lambda}\right)^{\star}$ for all $p \geqslant 0$, we have $\operatorname{dim} J_{p}^{\lambda}=\operatorname{dim}\left(I_{p-r}^{\lambda}\right)^{\star}$, so $J^{\lambda}=\left(I^{\lambda}\right)^{\star}$.

The following corollary gives the multiplicity of the R-module N^{λ} in $F[x]_{p}$, in terms of analogous data for the symmetric group S_{r}.

Corollary 4.8. Let ψ_{p} be the character of the R-module $F[x]_{p}$ and let $\varphi_{p, r}$ be the character of the S_{r}-module $F[x ; r]_{p}$. If $\lambda \in \mathcal{P}_{r}$ then $\left(\psi_{p}: \zeta^{\lambda}\right)_{R}=\left(\varphi_{p-r, r}: \chi^{\lambda}\right)_{S_{r}}$.

Proof. Since J_{p}^{λ} is isomorphic to a direct sum of $\left(\psi_{p}: \zeta^{\lambda}\right)_{R}$ copies of N^{λ} we have $\operatorname{dim} J_{p}^{\lambda}=\left(\psi_{p}: \zeta^{\lambda}\right)_{R} \operatorname{dim} N^{\lambda}=\left(\psi_{p}: \zeta^{\lambda}\right)_{R}\binom{n}{r} f^{\lambda}$. Since I_{p-r}^{λ} is isomorphic to a direct sum of $\left(\varphi_{p-r, r}: \chi^{\lambda}\right)_{S_{r}}$ copies of M^{λ}, we have

$$
\operatorname{dim}\left(I_{p-r}^{\lambda}\right)^{\star}=\binom{n}{r} \operatorname{dim} I_{p-r}^{\lambda}=\binom{n}{r}\left(\varphi_{p-r, r}: \chi^{\lambda}\right)_{S_{r}} f^{\lambda} .
$$

The assertion follows since $J_{p}^{\lambda}=\left(I_{p-r}^{\lambda}\right)^{\star}$.

The next corollary gives a generating function for the multiplicities $\left(\psi_{p}: \zeta^{\lambda}\right)_{R}$.

Corollary 4.9. Suppose $\lambda \in \mathcal{P}_{r}$. Let $G^{\lambda}(t)=\sum_{p \geqslant 0}\left(\psi_{p}: \zeta^{\lambda}\right)_{R} t^{p}$. Then

$$
G^{\lambda}(t)=t^{n(\lambda)+r} \prod_{x \in \lambda}\left(1-t^{h(x)}\right)^{-1}
$$

where $h(x)$ is the hook length at the node x of the Ferrers diagram and $n(\lambda)=$ $\sum_{i \geqslant 0}(i-1) \lambda_{i}$.

Proof. By Corollary 4.8 we have $G^{\lambda}(t)=t^{r} F^{\lambda}(t)$ where

$$
F^{\lambda}(t)=\sum_{p \geqslant 0}\left(\varphi_{p, r}: \chi^{\lambda}\right)_{S_{r}} t^{p} .
$$

The series $F^{\lambda}(t)$ are known ${ }^{2}$ and may be computed as follows. If $\gamma \in S_{r}$ then

$$
\sum_{p \geqslant 0} \varphi_{p, r}(\gamma) t^{p}=\operatorname{det}(1-\gamma t)^{-1}
$$

where, on the right side, 1 is an identity matrix of size r and we view γ as a permutation matrix of size r. If γ has cycle type $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathcal{P}_{r}$ then

$$
\operatorname{det}(1-\gamma t)^{-1}=\left(1-t^{\alpha_{1}}\right)^{-1}\left(1-t^{\alpha_{2}}\right)^{-1} \cdots=p_{\alpha}\left(1, t, t^{2}, \ldots\right)
$$

Thus by (3.9), (3.10) and [7, p. 45, Example 2]

$$
\begin{aligned}
F^{\lambda}(t) & =\sum_{\alpha \in \mathcal{P}_{r}} z_{\alpha}^{-1} \chi_{\alpha}^{\lambda} p_{\alpha}\left(1, t, t^{2}, \ldots\right)=s_{\lambda}\left(1, t, t^{2}, \ldots\right) \\
& =t^{n(\lambda)} \prod_{x \in \lambda}\left(1-t^{h(x)}\right)^{-1} .
\end{aligned}
$$

The next corollary is a statement about Schur functions which does not involve the monoid R.

Corollary 4.10. If $\lambda \in \mathcal{P}_{r}$ then

$$
s_{\lambda}\left(1, t, t^{2}, \ldots\right)=\sum t^{|\mu|} s_{\mu}\left(1, t, t^{2}, \ldots\right)
$$

where the sum is over all partitions μ such that $\lambda \supseteq \mu$ and $\lambda-\mu$ is a horizontal strip.

Proof. As in Example 3.22 the restriction of ψ_{p} to S_{r} is $\varphi_{p, r} .{ }^{3}$ It follows from Lemma 3.17(ii) and the definition of $G^{\lambda}(t)$ and $F^{\mu}(t)$ that $G^{\lambda}(t)=$ $\sum_{\mu \in \mathcal{Q}} \mathrm{B}_{\lambda \mu}^{-1} F^{\mu}(t)$. Thus $F^{\lambda}(t)=\sum_{\mu \in \mathcal{Q}} \mathrm{B}_{\lambda \mu} G^{\mu}(t)$. The assertion follows now from Proposition 3.11 since, as in the proof of Corollary 4.9,

$$
F^{\lambda}(t)=s_{\lambda}\left(1, t, t^{2}, \ldots\right) \quad \text { and } \quad \mu(t)=t^{|\mu|} F^{\mu}(t)
$$

5. The representation of \boldsymbol{R} on tensors

Let V be a vector space of finite dimension over F. Let $G=\mathbf{G L}(V)$ be the general linear group. Then $V^{\otimes n}$ is a G-module with the action

$$
\begin{equation*}
g\left(v_{1} \otimes \cdots \otimes v_{n}\right)=g v_{1} \otimes \cdots \otimes g v_{n} \tag{5.1}
\end{equation*}
$$

[^1]for $v_{1}, \ldots, v_{n} \in V$ and $g \in G$. The space $V^{\otimes n}$ also has the structure of S_{n}-module in which S_{n} acts, on the left, by place permutations:
\[

$$
\begin{equation*}
w\left(v_{1} \otimes \cdots \otimes v_{n}\right)=v_{1 w} \otimes \cdots \otimes v_{n w} \tag{5.2}
\end{equation*}
$$

\]

for $v_{1}, \ldots, v_{n} \in V$ and $w \in S_{n}$. In his thesis [12] Schur constructed the representations of $\mathbf{G L}(V)$ which are rational and homogeneous of degree n and found their characters in terms of the characters of S_{n}. Schur [13, Hilfsätze V, VI] and Weyl [19, Satz 10] reworked the theory in terms of the actions (5.1) and (5.2) on tensors. It is clear from the definitions that these actions centralize each another. Thus (5.2) defines an algebra homomorphism $\rho: F S_{n} \rightarrow \operatorname{Hom}_{G}\left(V^{\otimes n}, V^{\otimes n}\right)$. For $\lambda \in \mathcal{P}_{n}$, let V^{λ} be the simple G-module which corresponds to λ. Schur and Weyl showed that $V^{\otimes n} \simeq \bigoplus_{\lambda \in \mathcal{P}_{n}} f^{\lambda} V^{\lambda}$, an isomorphism of G-modules. It follows that

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(V^{\otimes n}, V^{\otimes n}\right)=\sum_{\lambda \in \mathcal{P}_{n}}\left(f^{\lambda}\right)^{2}=n!,
$$

so $\rho: F S_{n} \rightarrow \operatorname{Hom}_{G}\left(V^{\otimes n}, V^{\otimes n}\right)$ is an isomorphism of algebras. This isomorphism is often called Schur-Weyl duality.

In Lemma 5.4 we will construct an analogous isomorphism for $F R$. To do this we need the analogue of a place permutation for an element $\sigma \in R$. We cannot define $\sigma\left(v_{1} \otimes \cdots \otimes v_{n}\right)=v_{1 \sigma} \otimes \cdots \otimes v_{n \sigma}$ as in (5.2) because σ need not have domain \mathbf{n}. We try to approximate the formula (5.2) as best we can by using the field F as a wastebasket for the undefined $i \sigma$. To this end, let $U=F \oplus V$. View both F and V as subspaces of U. Then U is a G-module via $g(c+v)=c+g v$ for $g \in G, c \in F$, and $v \in V$. We give $U^{\otimes n}$ a G-module structure analogous to that in (5.1), namely,

$$
\begin{equation*}
g\left(u_{1} \otimes \cdots \otimes u_{n}\right)=g u_{1} \otimes \cdots \otimes g u_{n} \tag{5.3}
\end{equation*}
$$

for $u_{1}, \ldots, u_{n} \in U$ and $g \in G$.
Lemma 5.4. Let V be a vector space over F. Let $U=F \oplus V$. Let $u \mapsto u^{0}$ be the projection of U on F with kernel V. Let $u \mapsto u^{1}$ be the identity map of U. For $K \subseteq \mathbf{n}$ and $i \in \mathbf{n}$ define $\delta(i, K)=1$ if $i \in K$, and $\delta(i, K)=0$ if $i \notin K$. Thus if $u \in U$ then $u^{\delta(i, K)}$ is defined and is in U. If $\sigma \in R$ write $\sigma=\varepsilon_{K} w$ for some $K \subseteq \mathbf{n}$ and $w \in S_{n}$, as in (2.11). Define

$$
\begin{equation*}
\sigma\left(u_{1} \otimes \cdots \otimes u_{n}\right)=u_{1 w}^{\delta(1, K)} \otimes \cdots \otimes u_{n w}^{\delta(n, K)} . \tag{5.5}
\end{equation*}
$$

Then (5.5) depends only on σ and not on the particular representation $\sigma=\varepsilon_{K} w$, and gives $U^{\otimes n}$ an R-module structure for which the action of R centralizes the action of G.

Example 5.6. We precede the proof of Lemma 5.4 with an example to illustrate (5.5). Suppose that $n=3$ and that σ has domain $I(\sigma)=\{1,2\}$ with $1 \sigma=2$
and $2 \sigma=3$. The corresponding rook matrix $[\sigma]$ is $E_{12}+E_{23}$. Heuristically we want $\sigma\left(u_{1} \otimes u_{2} \otimes u_{3}\right)=u_{2} \otimes u_{3} \otimes$? where ? lies in the wastebasket F. Write $\sigma=\varepsilon_{\{1,2\}} w$ where $w \in S_{3}$ is the permutation $1 \mapsto 2 \mapsto 3 \mapsto 1$. Then (5.5) says $\sigma\left(u_{1} \otimes u_{2} \otimes u_{3}\right)=u_{2} \otimes u_{3} \otimes u_{1}^{0}$. Note that if $\sigma=w \in S_{n}$ then $K=\mathbf{n}$, so $\delta(i, K)=1$ for all $i \in \mathbf{n}$ and $w\left(u_{1} \otimes \cdots \otimes u_{n}\right)=u_{1 w} \otimes \cdots \otimes u_{n w}$. Thus the action of S_{n} on $U^{\otimes n}$ is the usual action of S_{n} on tensors by place permutations.

Proof. We show first that the right-hand side of (5.5) does not depend on the chosen K and w. The set K is uniquely determined by σ as $K=I(\sigma)$. Thus we must show that if $w, x \in S_{n}$ and $\varepsilon_{K} w=\varepsilon_{K} x$ then

$$
u_{1 w}^{\delta(1, K)} \otimes \cdots \otimes u_{n w}^{\delta(n, K)}=u_{1 x}^{\delta(1, K)} \otimes \cdots \otimes u_{n x}^{\delta(n, K)}
$$

If $i \in K$ then $i w=i x$ so $u_{i w}^{\delta(i, K)}=u_{i w}=u_{i x}=u_{i x}^{\delta(i, K)}$. Write $\mathbf{n}-K=$ $\left\{j_{1}, \ldots, j_{r}\right\}$. We must show that

$$
u_{j_{1} w}^{0} \otimes \cdots \otimes u_{j_{r} w}^{0}=u_{j_{1} x}^{0} \otimes \cdots \otimes u_{j_{r} x}^{0} .
$$

Suppose for simplicity of notation that $\left\{j_{1}, \ldots, j_{r}\right\}=\mathbf{r}$. We must show that

$$
\begin{equation*}
u_{1 w}^{0} \otimes \cdots \otimes u_{r w}^{0}=u_{1 x}^{0} \otimes \cdots \otimes u_{r x}^{0} . \tag{5.7}
\end{equation*}
$$

Since $K w=K x$ we have $\{1 w, \ldots, r w\}=\{1 x, \ldots, r x\}$. Choose an F-basis B for V. We may assume by linearity that the u_{j} lie in $\{1\} \cup B$ where $1 \in F$ is the unit element. If $1 \leqslant i \leqslant r$ define $1 \leqslant i^{\prime} \leqslant r$ by $i w=i^{\prime} x$. If $u_{i w} \in B$ for some $1 \leqslant i \leqslant r$ then $u_{i w}^{0}=0$ and $u_{i^{\prime} x}^{0}=0$, so both sides of (5.7) are zero. If $u_{i w}=1$ for all $1 \leqslant i \leqslant r$ then both sides of (5.7) are equal to $1 \otimes \cdots \otimes 1$. Thus the right-hand side of (5.5) does not depend on the choice of w.

To show that (5.5) is an R-module action we must check that $\sigma(\tau t)=(\sigma \tau) t$ for $\sigma, \tau \in R$ and $t=u_{1} \otimes \cdots \otimes u_{n}$ with $u_{j} \in U$. Write $\sigma=\varepsilon_{K} w$ and $\tau=\varepsilon_{L} x$ where $K, L \subseteq \mathbf{n}$ and $w, x \in S_{n}$. Then

$$
\begin{align*}
\sigma(\tau t) & =\sigma\left(u_{1 x}^{\delta(1, L)} \otimes \cdots \otimes u_{n x}^{\delta(n, L)}\right) \\
& =\left(u_{1 w x}^{\delta(1 w, L)}\right)^{\delta(1, K)} \otimes \cdots \otimes\left(u_{n w x}^{\delta(n w, L)}\right)^{\delta(n, K)} \tag{5.8}
\end{align*}
$$

View 0,1 in the definition of u^{0} and u^{1} as elements of $\mathbf{Z} / 2 \mathbf{Z}$. Then $\left(u^{a}\right)^{b}=u^{a b}$ for $a, b \in \mathbf{Z} / 2 \mathbf{Z}$ and $u \in U$. Also, $\delta(i w, L)=\delta\left(i, L w^{-1}\right)$ and $\delta(i, J) \delta(i, K)=$ $\delta(i, J \cap K)$ for all subsets J, K of \mathbf{n}. Thus (5.8) may be written as

$$
\begin{equation*}
\sigma(\tau t)=u_{1 w x}^{\delta\left(1, L w^{-1} \cap K\right)} \otimes \cdots \otimes u_{n w x}^{\delta\left(n, L w^{-1} \cap K\right)} \tag{5.9}
\end{equation*}
$$

Since $w \varepsilon_{L}=\varepsilon_{L w^{-1}} w$, we have $\left(\varepsilon_{K} w\right)\left(\varepsilon_{L} x\right)=\varepsilon_{K} \varepsilon_{L w^{-1}} w x=\varepsilon_{L w^{-1} \cap K} w x$. Thus the right-hand side of (5.9) is $(\sigma \tau) t$. To show that $\sigma g t=g \sigma t$ for $g \in \mathbf{G L}(V)$ we may assume, since $\sigma=\varepsilon_{K} w$, that $\sigma=\varepsilon_{K}$. The assertion follows since $g\left(u^{a}\right)=(g u)^{a}$ for $u \in U$ and $a \in\{0,1\}$ and thus $g\left(u^{\delta(i, K)}\right)=(g u)^{\delta(i, K)}$.

The following theorem is an analogue, for R and $\mathbf{G L}(V)$, of Schur-Weyl duality for S_{n} and $\mathbf{G L}(V)$.

Theorem 5.10. Let V be a vector space of finite dimension over a field F of characteristic zero. Let $U=F \oplus V$. Let $G=\mathbf{G L}(V)$ act on U and hence on $U^{\otimes n}$ by fixing F. Let $\rho: R \rightarrow \mathbf{G L}\left(U^{\otimes n}\right)$ be the representation of R defined in (5.5). If $\operatorname{dim} V \geqslant n$ then $\rho: F R \rightarrow \operatorname{Hom}_{G}\left(U^{\otimes n}, U^{\otimes n}\right)$ is an isomorphism of algebras.

Proof. Let $A=F R$. It suffices to show that $\operatorname{dim}_{\operatorname{Hom}_{G}\left(U^{\otimes n}, U^{\otimes n}\right)=\operatorname{dim} A \text { and }}$ that ρ is one-to-one. Suppose $0 \leqslant r \leqslant n$. Let S_{r} be the symmetric group on \mathbf{r}. Then $V^{\otimes r}$ is a G-module and an S_{r}-module where the action is given by (5.1) and (5.2) with n replaced by r. If $r=0$ we agree that $V^{\otimes 0}=F$ with trivial G action and trivial S_{0} action. If $r \neq r^{\prime}$ then [20, Theorem 4.4.F]

$$
\begin{equation*}
\operatorname{Hom}_{G}\left(V^{\otimes r}, V^{\otimes r^{\prime}}\right)=0 \tag{5.11}
\end{equation*}
$$

Expand $V^{\otimes n}=(F \oplus V)^{\otimes n}$ using distributivity of the tensor product. To be precise, let $U_{0}=F$ and let $U_{1}=V$. For $i=0,1$ let p_{i} be the projection of U on U_{i} which annihilates U_{j} for $j \neq i$. If $K \subseteq \mathbf{n}$ define $\pi_{K}: U^{\otimes n} \rightarrow U^{\otimes n}$ by

$$
\begin{equation*}
\pi_{K}=p_{\delta(1, K)} \otimes \cdots \otimes p_{\delta(n, K)} \tag{5.12}
\end{equation*}
$$

Let $T_{K}=\pi_{K} U^{\otimes n}$. For example, if $n=3$ and $K=\{1,3\}$ then $\pi_{K}=p_{1} \otimes p_{0} \otimes p_{1}$ and $T_{K}=V \otimes F \otimes V$. The π_{K} are pairwise orthogonal idempotents with sum equal to the identity map of $U^{\otimes n}$. Thus $U^{\otimes n}=\bigoplus_{K \subset \mathbf{n}} T_{K}$. If $|K|=r$ then T_{K} is a G-submodule of $U^{\otimes n}$ which is isomorphic to $V^{\otimes r}$. Thus there is an isomorphism

$$
\begin{equation*}
U^{\otimes n} \simeq \bigoplus_{r=0}^{n}\binom{n}{r} V^{\otimes r} \tag{5.13}
\end{equation*}
$$

of G-modules where $\binom{n}{r} V^{\otimes r}$ means a direct sum of $\binom{n}{r}$ copies of $V^{\otimes r}$. It follows from (5.11), (5.13) and Schur-Weyl duality that

$$
\begin{aligned}
\operatorname{Hom}_{G}\left(U^{\otimes n}, U^{\otimes n}\right) & \simeq \operatorname{Hom}_{G}\left(\bigoplus_{r=0}^{n}\binom{n}{r} V^{\otimes r}, \bigoplus_{r=0}^{n}\binom{n}{r} V^{\otimes r}\right) \\
& \simeq \bigoplus_{r=0}^{n} \mathbf{M}_{\binom{n}{r}}\left(\operatorname{Hom}_{G}\left(V^{\otimes r}, V^{\otimes r}\right)\right) \simeq \bigoplus_{r=0}^{n} \mathbf{M}_{\binom{n}{r}}\left(F S_{r}\right) .
\end{aligned}
$$

Thus, by (1.2),

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(U^{\otimes n}, U^{\otimes n}\right)=\sum_{r=0}^{n}\binom{n}{r}^{2} r!=\operatorname{dim} A .
$$

To prove that ρ is one-to-one we first construct an F-basis for A in terms of the idempotents η_{K} defined in (2.4). For $K \subseteq \mathbf{n}$ let $S_{K}=\left\{w \in S_{n} \mid i w=i\right.$ for all $i \in K\}$ be the fixer of K. Suppose $w \in S_{K}$. If $J \subseteq K$ then $w \in S_{J}$ so $\varepsilon_{J} w=\varepsilon_{J}$. It
follows from (2.4) that $\eta_{K} w=\eta_{K}$. Write $S_{n}=S_{K} X_{K}$ where X_{K} is a set of coset representatives. By (2.4) and (2.5) we have

$$
F E=\bigoplus_{K \subseteq \mathbf{n}} F \varepsilon_{K}=\bigoplus_{K \subseteq \mathbf{n}} F \eta_{K}
$$

Thus

$$
A=F R=F E S_{n}=\bigoplus_{K \subseteq \mathbf{n}} F \eta_{K} S_{n}=\bigoplus_{K \subseteq \mathbf{n}} F \eta_{K} S_{K} X_{K}=\bigoplus_{K \subseteq \mathbf{n}} F \eta_{K} X_{K}
$$

Thus

$$
Q=\left\{\eta_{K} w \mid K \subseteq \mathbf{n} \text { and } w \in X_{K}\right\}
$$

spans A as an F vector space. If $|K|=r$ then $\left|S_{K}\right|=(n-r)$!, so

$$
|Q| \leqslant \sum_{r=0}^{n}\binom{n}{r} \frac{n!}{(n-r)!}=\sum_{r=0}^{n}\binom{n}{r}^{2} r!=\operatorname{dim} A
$$

Thus Q is an F-basis for A. Suppose that $a \in A$ and $\rho(a)=0$. Write

$$
a=\sum_{K \subseteq \mathbf{n}} \sum_{w \in X_{K}} c_{K, w} \eta_{K} w
$$

for uniquely determined $c_{K, w} \in F$. To complete the proof we show that $c_{K, w}=0$ for all $K \subseteq \mathbf{n}$ and $w \in X_{K}$. Fix $K \subseteq \mathbf{n}$. Then

$$
0=\rho\left(\eta_{K}\right) \rho(a)=\sum_{J \subseteq \mathbf{n}} \sum_{w \in X_{J}} c_{J, w} \rho\left(\eta_{K} \eta_{J}\right) \rho(w) .
$$

It follows from Lemma 2.6 that

$$
\begin{equation*}
\sum_{w \in X_{K}} c_{K, w} \rho\left(\eta_{K}\right) \rho(w)=0 \tag{5.14}
\end{equation*}
$$

Next we compute $\rho\left(\eta_{K}\right)$. If $u_{1}, \ldots, u_{n} \in U$ then $\varepsilon_{K}\left(u_{1} \otimes \cdots \otimes u_{n}\right)=u_{1}^{\delta(1, K)} \otimes$ $\cdots \otimes u_{n}^{\delta(n, K)}$. If $u \in U$ then $u^{\delta(i, K)}=p_{0} u+p_{1} u$ if $i \in K$ and $u^{\delta(i, K)}=p_{0} u$ if $i \notin K$. Thus

$$
\begin{aligned}
\varepsilon_{K}\left(u_{1} \otimes \cdots \otimes u_{n}\right) & =\sum_{J \subseteq K} p_{\delta(1, J)} u_{1} \otimes \cdots \otimes p_{\delta(n, J)} u_{n} \\
& =\sum_{J \subseteq K} \pi_{J}\left(u_{1} \otimes \cdots \otimes u_{n}\right)
\end{aligned}
$$

by (5.5). For example, if $n=3$ and $K=\{1,3\}$ then

$$
\varepsilon_{K}\left(u_{1} \otimes u_{2} \otimes u_{3}\right)=\left(p_{0} u_{1}+p_{1} u_{1}\right) \otimes p_{0} u_{2} \otimes\left(p_{0} u_{3}+p_{1} u_{3}\right)
$$

and expansion of the right-hand side gives a sum indexed by subsets of $\{1,3\}$. Thus $\rho\left(\varepsilon_{K}\right)=\sum_{J \subseteq K} \pi_{J}$. It follows from (2.5) by induction on $|K|$ that

$$
\begin{equation*}
\rho\left(\eta_{K}\right)=\pi_{K} . \tag{5.15}
\end{equation*}
$$

Thus, by (5.14) and (5.12),

$$
\begin{equation*}
\sum_{w \in X_{K}} c_{K, w}\left(p_{\delta(1, K)} u_{1 w} \otimes \cdots \otimes p_{\delta(n, K)} u_{n w}\right)=0 \tag{5.16}
\end{equation*}
$$

for all $u_{1}, \ldots, u_{n} \in U$. Let $m=\operatorname{dim} V$. Let $\left\{b_{1}, \ldots, b_{m}\right\}$ be a basis for V. Choose a subset L of \mathbf{n} with $|L|=|K|$ and hold it fixed until further notice. Let Y be the set of all $w \in X_{K}$ such that $K w=L$. Since, by hypothesis, $|L| \leqslant n \leqslant \operatorname{dim} V=m$ we may define $u_{1}, \ldots, u_{n} \in U$ by $u_{j}=b_{j}$ for $j \in L$, and $u_{j}=1$ for $j \in \mathbf{n}-L$. Let $t_{K, w}=p_{\delta(1, K)} u_{1 w} \otimes \cdots \otimes p_{\delta(n, K)} u_{n w}$. Suppose $w \in X_{K}-Y$. Then $i w \in L$ for some $i \in \mathbf{n}-K$. For this i we have $p_{\delta(i, K)} u_{i w}=p_{0} b_{i w}=0$. Thus if $w \in X_{K}-Y$ then $t_{K, w}=0$. Thus (5.16) implies $\sum_{w \in Y} c_{K, w} t_{K, w}=0$. Suppose $w \in Y$. If $i \in K$ then $i w \in L$, so $p_{\delta(i, K)} u_{i w}=p_{1} u_{i w}=b_{i w}$. If $i \in \mathbf{n}-K$ then $i w \in \mathbf{n}-L$, so $p_{\delta(i, K)} u_{i w}=p_{0} 1=1$. If $w, w^{\prime} \in Y$ and $b_{i w}=b_{i w^{\prime}}$ for all $i \in K$ then $i w=i w^{\prime}$ for all $i \in K$ so $w^{\prime} w^{-1} \in X_{K}$ and thus $w=w^{\prime}$. Since $\left\{1, b_{1}, \ldots, b_{m}\right\}$ is a basis for U, the tensors $t_{K, w}$ with $w \in Y$ are thus distinct elements of a basis for $U^{\otimes n}$. It follows that $c_{K, w}=0$ for all $w \in Y$. Now let L range over all subsets of \mathbf{n} for which $|L|=|K|$ to conclude that $c_{K, w}=0$ for all $w \in X_{K}$.

Remark 5.17. Let $G=\mathbf{G L}(V)$ where $\operatorname{dim} V \geqslant n$. If $\lambda \in \mathcal{Q}$, let V^{λ} be an irreducible rational G-module which corresponds to λ. By Schur-Weyl duality, $V^{\otimes r} \simeq \bigoplus_{\lambda \in \mathcal{P}_{r}} f^{\lambda} V^{\lambda}$, an isomorphism of G-modules. Thus, by (5.13), $U^{\otimes n} \simeq$ $\bigoplus_{r=0}^{n} \bigoplus_{\lambda \in \mathcal{P}_{r}}\binom{n}{r} f^{\lambda} V^{\lambda}$. Since $\binom{n}{r} f^{\lambda}=\zeta^{\lambda}(1)$, there is a G-module isomorphism

$$
U^{\otimes n} \simeq \bigoplus_{\lambda \in \mathcal{Q}} \zeta^{\lambda}(1) V^{\lambda}
$$

Corollary 5.18. If $\operatorname{dim} V \geqslant n$ and $U=F \oplus V$ then $\operatorname{Hom}_{F R}\left(U^{\otimes n}, U^{\otimes n}\right)$ is the subalgebra of $\operatorname{Hom}\left(U^{\otimes n}, U^{\otimes n}\right)$ generated by all endomorphisms $u_{1} \otimes \cdots \otimes u_{n} \mapsto$ $g u_{1} \otimes \cdots \otimes g u_{n}$ with $u_{1}, \ldots, u_{n} \in U$ and $g \in \mathbf{G L}(V)$.

Proof. Since $F R$ is semisimple this follows from Theorem 5.10 and double centralizer theory.

6. A presentation for R

For $1 \leqslant i \leqslant n-1$ let $s_{i} \in S_{n}$ be the transposition of i and $i+1$. E.H. Moore [8] found the now familiar presentation
(i) $s_{i}^{2}=1$,
(ii) $s_{i} s_{j}=s_{j} s_{i}, \quad$ if $|i-j| \geqslant 2$,
(iii) $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$,
for S_{n}. There are several known presentations for R, found by L.M. Popova [11], D. Easdown [1], and S. Lipscomb [6, Chapter 9]. These presentations adjoin an idempotent ε of rank $n-1$ to the generating set $\left\{s_{1}, \ldots, s_{n-1}\right\}$ for S_{n} and use the relations (6.1) together with further relations which involve ε. In this section we give a presentation for R in terms of $\left\{s_{1}, \ldots, s_{n-1}\right\}$ and the nilpotent element v defined by $I(v)=\{1,2, \ldots, n-1\}$ and $i v=i+1$ for $1 \leqslant i \leqslant n-1$. The rook matrix $[\nu] \in \mathcal{R}$ corresponding to v is the Jordan block $E_{12}+\cdots+E_{n-1, n}$.

The incentive to look for a presentation of R which involves the element v rather than an idempotent ε lies in [15], which concerns an algebra-call it $\mathcal{I}(q)$ here-with a basis $\left\{T_{\sigma} \mid \sigma \in R\right\}$. The algebra $\mathcal{I}(q)$ is a q-analogue of the monoid algebra $\mathcal{I}(1) \simeq F R$. It contains the Iwahori Hecke algebra with basis $\left\{T_{w} \mid w \in S_{n}\right\}$ just as R contains S_{n}. In [16] we will define a representation of $\mathcal{I}(q)$ on tensors which is a q-analogue of the representation of R on tensors defined in Lemma 5.4. To define the representation of $\mathcal{I}(q)$ we use a presentation for $\mathcal{I}(q)$ in terms of Iwahori generators $T_{s_{1}}, \ldots, T_{s_{n-1}}$ and T_{ν}, which is q-analogous to the presentation for R in Theorem 6.2. It seems that there is no simple presentation for $\mathcal{I}(q)$ in terms of $T_{s_{1}}, \ldots, T_{s_{n-1}}$ and an element T_{ε} which corresponds to an idempotent ε of rank $n-1$.

Theorem 6.2. The monoid R has a presentation with generators $s_{1}, \ldots, s_{n-1}, \nu$ and defining relations
(i) $s_{i}^{2}=1$,
(ii) $s_{i} s_{j}=s_{j} s_{i}, \quad$ if $|i-j| \geqslant 2$,
(iii) $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$,
(iv) $v^{i+1} s_{i}=v^{i+1}$,
(v) $s_{i} v^{n-i+1}=v^{n-i+1}$,
(vi) $s_{i} v=v s_{i+1}$,
(vii) $\nu s_{1} s_{2} \cdots s_{n-1} \nu=v$,
where $1 \leqslant i \leqslant n-1$ and $1 \leqslant i \leqslant n-2$ in (iii) and (vii).
Proof. To start, let $s_{1}, \ldots, s_{n-1}, v$ be as in the first paragraph of this section. We show that $s_{1}, \ldots, s_{n-1}, v$ satisfy (iv)-(vii) and generate R. For this it is convenient to use the isomorphism $R \simeq \mathcal{R}$ defined by $\sigma \mapsto[\sigma]$. Left multiplication of [σ] by [s_{i}] permutes rows i and $i+1$. Right multiplication by [s_{i}] permutes columns i and $i+1$. Thus (iv) holds in \mathcal{R} since the first $i+1$ columns of v^{i+1} are zero and (v) holds since the last $i+1$ rows of ν^{i+1} are zero. Relation (vii) holds in \mathcal{R} since $[\nu]\left[s_{1}\right]\left[s_{2}\right] \cdots\left[s_{n-1}\right]=E_{11}+\cdots+E_{n-1, n-1}$ is idempotent. To check (vi) in \mathcal{R} examine the matrices on both sides of the formula. Thus $s_{1}, \ldots, s_{n-1}, v$ satisfy the relations (6.3).

Let M be the submonoid of R generated by $\left\{s_{1}, \ldots, s_{n-1}, \nu\right\}$. For $K \subseteq n$ let ε_{K} be as in (2.3) and let $E=\left\{\varepsilon_{K} \mid K \subseteq \mathbf{n}\right\}$. Thus [ε_{K}] is the diagonal idempotent matrix with nonzero entries in the rows indexed by K. Let $J=\{1, \ldots, n-1\}$.

Since $\left[\varepsilon_{J}\right]=[\nu]\left[s_{1}\right] \cdots\left[s_{n-1}\right]$ we have $\varepsilon_{J} \in M$. Conjugation by a suitable element of S_{n} shows that M contains all ε_{K} with $|K|=n-1$ and hence, by (2.3), M contains all ε_{K} with $K \subseteq \mathbf{n}$. It follows from (2.11) that $M=R$. Thus $s_{1}, \ldots, s_{n-1}, \nu$ generate R.

Let R^{\prime} be the monoid generated by elements $s_{1}^{\prime}, \ldots, s_{n-1}^{\prime}, v^{\prime}$ subject to defining relations (6.3), with s_{i} replaced by s_{i}^{\prime} and v replaced by ν^{\prime}; see [4, p. 10] for the definition of a monoid presentation by generators and relations. We must show that $R^{\prime} \simeq R$. Since R satisfies (6.3), there is a surjective monoid homomorphism $\vartheta: R^{\prime} \rightarrow R$ such that $\vartheta\left(s_{i}^{\prime}\right)=s_{i}$ and $\vartheta\left(v^{\prime}\right)=v$. Let $S_{n}^{\prime}=\left\langle s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right\rangle \subseteq R^{\prime}$. By (6.1) and (6.3), (i)-(iii), there is a group homomorphism $\psi: S_{n} \rightarrow S_{n}^{\prime}$ such that $\psi\left(s_{i}\right)=s_{i}^{\prime}$. Since $\psi \vartheta$ is the identity map of S_{n}^{\prime} the restriction of ϑ to S_{n}^{\prime} is an isomorphism $S_{n}^{\prime} \simeq S_{n}$. Thus S_{n}^{\prime} acts on \mathbf{n} and s_{i}^{\prime} acts as the transposition $(i, i+1)$. To show that $\vartheta: R^{\prime} \rightarrow R$ is an isomorphism of monoids it suffices to show that $\left|R^{\prime}\right| \leqslant|R|$ where $|R|$ is given by (1.2).

To avoid cluttered notation using "primed" letters, we replace the letters v^{\prime}, s_{i}^{\prime} by v, s_{i} and write R, S_{n} in place of $R^{\prime}, S_{n}^{\prime}$. There is no danger in this provided we are careful with what we know about the current R, S_{n}. We know that R is a monoid generated by elements $s_{1}, \ldots, s_{n-1}, v$ which satisfy the relations (6.3), that $S_{n}=\left\langle s_{1}, \ldots, s_{n-1}\right\rangle$ acts on \mathbf{n} and that s_{i} acts as the transposition $(i, i+1)$. It suffices to show using these properties of R, S_{n} that

$$
\begin{equation*}
|R| \leqslant \sum_{r=0}^{n}\binom{n}{r}^{2} r!. \tag{6.4}
\end{equation*}
$$

For $0 \leqslant j \leqslant n-1$ let $w_{j}=s_{1} s_{2} \cdots s_{j}$ where we agree that $w_{0}=1$. Argue by descending induction on j that $\nu^{n}=\nu w_{j} \nu^{n}$ for $0 \leqslant j \leqslant n-1$. For $j=n-1$, (6.3)(vii) gives

$$
v^{n}=v v^{n-1}=v w_{n-1} v v^{n-1}=v w_{n-1} v^{n} .
$$

Suppose that $\nu^{n}=\nu w_{j} \nu^{n}$ for some $1 \leqslant j \leqslant n-1$. Since $w_{j}=w_{j-1} s_{j},(6.3)(\mathrm{v})$ implies

$$
\nu=v w_{j-1} s_{j} \nu^{n-j+1} \nu^{j-1}=v w_{j-1} \nu^{n-j+1} v^{j-1}=\nu w_{j-1} \nu^{n} .
$$

This completes the induction. For $j=0$ we get $v^{n+1}=v^{n}$. Agree to write $\nu^{0}=1 \in R$. We show next for $r \geqslant 0$ and $0 \leqslant j \leqslant n-1$ that

$$
\nu w_{j} v^{r}= \begin{cases}v^{r} & \text { if } r+j \geqslant n, \tag{6.5}\\ v^{r+1} s_{r+1} \cdots s_{r+j} & \text { if } r+j \leqslant n-1 .\end{cases}
$$

This is clear for $r=0$, so assume that $r \geqslant 1$. Suppose that $r+j \geqslant n$. If $j+1 \leqslant i \leqslant n-1$ then $r \geqslant n-i+1$, so $s_{i} v^{r}=v^{r}$ by (6.3)(v). Thus, since $w_{j}=w_{n-1} s_{n-1} \cdots s_{j+1}$, we have

$$
\nu w_{j} \nu^{r}=\nu w_{n-1} s_{n-1} \cdots s_{j+1} \nu^{r}=\nu w_{n-1} \nu^{r}=\nu w_{n-1} \nu \nu^{r-1}=\nu \nu^{r-1}=\nu^{r}
$$

by (6.3)(vii). Suppose that $r+j \leqslant n-1$. If $1 \leqslant i \leqslant j$ then $r+i \leqslant n-1$, so $s_{i} \nu^{r}=v^{r} s_{r+i}$ by r applications of (6.3)(vi). Thus $\nu w_{j} \nu^{r}=\nu s_{1} \cdots s_{j} \nu^{r}=$ $\nu \nu^{r} s_{r+1} \cdots s_{r+j}$. This proves (6.5).

Recall that s_{i} acts on \mathbf{n} as the transposition $(i, i+1)$. Since $\left\langle s_{2}, \ldots, s_{n-1}\right\rangle$ is the stabilizer of $1 \in \mathbf{n}$ and $1 w_{j}=j+1$ for $0 \leqslant j \leqslant n-1$, we have $S_{n}=$ $\bigcup_{j=0}^{n-1}\left\langle s_{2}, \ldots, s_{n-1}\right\rangle w_{j}$. It follows from (6.3)(vi) that $\nu\left\langle s_{2}, \ldots, s_{n-1}\right\rangle \subseteq S_{n} \nu$. Thus $v S_{n} \subseteq \bigcup_{j=0}^{n-1} S_{n} \nu w_{j}$. It follows from (6.5) that

$$
\nu w_{j} \nu^{r} \subseteq \nu^{r} S_{n} \cup v^{r+1} S_{n} \quad \text { for } 0 \leqslant j \leqslant n-1 \text { and } r \geqslant 0
$$

and thus

$$
\nu S_{n} \nu^{r} \subseteq \bigcup_{j=0}^{n-1} S_{n} \nu w_{j} \nu^{r} \subseteq S_{n} \nu^{r} S_{n} \cup S_{n} \nu^{r+1} S_{n} \quad \text { for } r \geqslant 0
$$

Thus the set $\bigcup_{r \geqslant 0} S_{n} \nu^{r} S_{n}$ is stable under left multiplication by ν. Since the same set is clearly stable under left multiplication by S_{n} and contains $\nu^{0}=1$, we have $\bigcup_{r \geqslant 0} S_{n} \nu^{r} S_{n}=R$. Since $\nu^{n+1}=\nu^{n}$ and hence $\nu^{r}=\nu^{n}$ for $r \geqslant n$, we conclude that

$$
\begin{equation*}
R=\bigcup_{r=0}^{n} S_{n} \nu^{r} S_{n} \tag{6.6}
\end{equation*}
$$

To get an upper bound on $\left|S_{n} \nu^{r} S_{n}\right|$, suppose first that $1 \leqslant r \leqslant n-1$. Let

$$
S_{r, n-r}=\left\langle s_{1}, \ldots, s_{r-1}, s_{r+1}, \ldots, s_{n-1}\right\rangle \simeq S_{r} \times S_{n-r}
$$

Write $S_{n}=S_{r, n-r} X_{r}$ where X_{r} is a set of coset representatives. If $1 \leqslant i \leqslant r-1$ then $\nu^{r} s_{i}=\nu^{r}$ by (6.3)(iv). If $r+1 \leqslant i \leqslant n-1$ then $\nu^{r} s_{i}=s_{i-r} \nu^{r}$ by r applications of (6.3)(vi). Thus $v^{r} S_{n}=v^{r} S_{r, n-r} X_{r} \subseteq S_{n} \nu^{r} X_{r}$, so

$$
\left|S_{n} v^{r} S_{n}\right| \leqslant\left|S_{n} v^{r} X_{r}\right| \leqslant\left|S_{n} v^{r}\right|\left|X_{r}\right|=\binom{n}{r}\left|S_{n} v^{r}\right|
$$

If $0 \leqslant r \leqslant n$ and $n-r+1 \leqslant i \leqslant n-1$ then $s_{i} \nu^{r}=v^{r}$ by (6.3)(v). Since $\left\langle s_{n-r+1}, \ldots, s_{n-1}\right\rangle \simeq S_{r}$, it follows that $\left|S_{n} \nu^{r}\right| \leqslant\left|S_{n}: S_{r}\right|$. Thus

$$
\begin{equation*}
\left|S_{n} v^{r} S_{n}\right| \leqslant\binom{ n}{r} \frac{n!}{r!}=\binom{n}{r}^{2}(n-r)! \tag{6.7}
\end{equation*}
$$

for $1 \leqslant r \leqslant n-1$. In fact (6.7) holds for $r=0$ and $r=n$ as well. This is clear for $r=0$. It follows from (6.3), (iv) and (v), that $s_{i} \nu^{n}=v^{n}=v^{n} s_{i}$ for $1 \leqslant i \leqslant n-1$, so $S_{n} v^{n} S_{n}=\left\{v^{n}\right\}$. Thus (6.7) holds for $r=n$. The desired inequality (6.4) follows from (6.6), (6.7), and the symmetry $\binom{n}{r}=\binom{n}{n-r}$.

References

[1] D. Easdown, A monoid presentation of the symmetric inverse semigroup, Unpublished manuscript, 1991.
[2] C. Grood, A Specht module analogue for the rook monoid, Electron. J. Combin. 9 (1) (2002), Research Paper 2.
[3] T. Halverson, Representations of the q-rook monoid, Preprint, 2001.
[4] P.M. Higgins, Techniques of Semigroup Theory, Oxford University Press, 1992.
[5] L.C. Hsu, Note on a pair of combinatorial reciprocal formulas, Math. Student 22 (1954) 175-178.
[6] S. Lipscomb, Symmetric Inverse Semigroups, in: Math. Surveys Monographs, Vol. 46, American Mathematical Society, 1996.
[7] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd Edition, Clarendon Press, Oxford, 1995.
[8] E.H. Moore, Concerning the abstract groups of order k ! and $\frac{1}{2} k$! holohedrically isomorphic with the symmetric and alternating substitution groups on k letters, Proc. London Math. Soc. 28 (1897) 357-366.
[9] W.D. Munn, Matrix representations of semigroups, Proc. Cambridge Philos. Soc. 53 (1957) 512.
[10] W.D. Munn, The characters of the symmetric inverse semigroup, Proc. Cambridge Philos. Soc. 53 (1957) 13-18.
[11] L.M. Popova, Defining relations of certain semigroups of partial transformations of a finite set, Uchen. Zap. Leningrad. Gos. Ped. Inst. 218 (1961) 191-212, in Russian.
[12] I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, Dissertation, 1901, Gesammelte Abhandlungen, Band I, Springer-Verlag, 1973, pp. 1-70.
[13] I. Schur, Über die rationalen Darstellungen der allgemeinen lineare Gruppe, Sitz. Preuss. Akad. Wiss. Phys.-Math. Klasse (1927), Gesammelte Abhandlungen, Band III, Springer-Verlag, 1973, pp. 68-85.
[14] L. Solomon, The Burnside algebra of a finite group, J. Combin. Theory 2 (1967) 603-615.
[15] L. Solomon, The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field, Geom. Dedicata 36 (1990) 15-49.
[16] L. Solomon, The Iwahori algebra of $\mathbf{M}_{n}\left(\mathbf{F}_{q}\right)$; a presentation and a representation on tensor space, preprint 2002.
[17] R. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth \& Brooks Cole, 1986, reprinted by Cambridge Univ. Press.
[18] G. Walker, The actions of the divided differential operator algebra and the symmetric inverse semigroup on polynomials, unpublished manuscript, 1997.
[19] H. Weyl, Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen, I, Math. Z. 23 (1925) 271-309, Gesammelte Abhandlungen, Band II, Springer-Verlag, 1968, pp. 543-579.
[20] H. Weyl, The Classical Groups, 2nd Edition, Princeton University Press, 1946.

[^0]: ${ }^{1}$ This is a slippery spot. In the representation theory of S_{n} we usually view S_{r} as a subgroup of S_{n} when $r \leqslant n$ so an element of S_{r} fixes x_{r+1}, \ldots, x_{n}. In our present context the elements of S_{r} have domain \mathbf{r} so S_{r} is not a subgroup of S_{n} for $r<n$. An element of S_{r} annihilates x_{r+1}, \ldots, x_{n}.

[^1]: ${ }^{2}$ See, for example, (2.2.1) in [G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977)], where the formula for $F^{\lambda}(t)$ is deduced from work of R. Steinberg on characters of $\mathbf{G L}{ }_{n}\left(\mathbf{F}_{q}\right)$.
 ${ }^{3}$ In Example 3.22 the ψ_{p} and $\varphi_{p, r}$ are characters of representations on the exterior algebra rather than the polynomial algebra, but the reasoning for this statement is the same in both cases.

