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Abstract. A finite poset (P ¹ S) determines a finite dimensional algebra TP over
the field over the field F of two elements, with an upper triangular representation. We
determine the structure of the radical of the representation algebra A of the monoid
(TP , ·) over a field of characteristic different from 2. We consider algebra deformations
of TP , using the cohomology comparison theorem. We also consider degenerations of
A over a complete discrete valuation ring with residue field of characteristic 2.

1. Introduction

The poset algebras form an important class of finite dimensional algebras, which have
been intensively studied in connection with the representations of posets [ARS]. In this
paper we consider the multiplicative monoid of the poset algebra, and in order to get
the simplest possible monoid, we restrict ourselves to considering the poset algebra over
a field of two elements. We then study representations of the multiplicative monoid.
The structure is much richer than that for the poset algebra itself.

Let (P,¹) be a finite poset. We may identify P with {1, . . . , n} in such a way that
i ¹ j implies that i ≤ j in the ordinary linear order on the integers. Let {Eij} be
the matrix units of Mn(F2), the n × n matrices over the field of two elements. Then
the poset (P,¹) determines a linear subspace TP = 〈Eij

∣∣ i ¹ j〉. By transitivity,
TP is actually a semigroup under multiplication. By reflexivity, (TP , ·) is a monoid.
Since the additive structure is clearly compatible with the multiplication, (TP , +, ·)
has the structure of a unitary algebra over F2. By anti-symmetry, it is embedded as
a subalgebra in Tn(F2), the upper triangular n × n matrices over F2. Letting MP be
the multiplicative monoid (TP , ·), we note that MP is a monoid with an absorbing zero
element, which we will denote by Z.

A representation of a monoid M with a zero element Z over a field k is a monoid ho-
momorphism into (Mm(k), ·) which sends Z to the zero matrix. By standard semigroup
representation theory, the monoid representations of M corresponds to the algebra rep-
resentations of the reduced monoid algebra

A = kM/kZ.

When M = MP , we will refer to A as the representation algebra of P over k.
There is a great deal known about A/ Rad(A) in terms of the structure of the semi-

group, and we will introduce these results in their place.
In §2, we will discuss the structure of Rad(A). In §3 and §4, we consider deformation

of TP . In §5, we consider the result of replacing k by a complete discrete valuation ring
O of characteristic 0, with residue field of characteristic 2, and describe the resulting
changes in the radical under degeneration to the closed point.
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2. The radical of the representation algebra

The standard tool for studying the representations of a finite dimensional algebra is
its quiver, as in [G]. However, as we showed in [Sc2] when one considers deformations
and degenerations, the appropriate object is not the quiver but the basis graph, a
directed graph whose vertices and arrows correspond to a vector space basis of A,
weighted according to the highest power of the radical containing the basis element.

Definition. Let {ei, . . . , er} be a complete set of orthogonal idempotents of a k-algebra
A, i.e., Σei = 1A and ei · ej = 0 for i 6= j. A basis graph of A adapted to {ei} is a
directed graph with r vertices, labelled by the ei, with (dim eiAej)− 1 loops at ei, and
dim eiAej arrows from ei to ej. The weighted basis graph is given by choosing bases
filtered by powers of the radical and weighting each arrow by the minimal radical power
containing the corresponding basis element. If all the idempotents are primitive, the
graph is independent of the choice of idempotents and is called the basis graph of A
[Sc2].

Let us establish some notation. Given the poset P = {1, . . . , n}, we let GP ⊆ P ×P
be the graph of the poset, i.e.,

GP = {(i, j)
∣∣ i ¹ j}.

The elements of MP are in one-to-one correspondence with the power set P(GP ); and
the zero element Z corresponds to the empty set ∅. For each B ∈ P(GP ), let S(B) be
the corresponding element of MP , a non-zero matrix with “1” in the (i, j) position for
each (i, j) ∈ B. Let

∆ = {(1, 1), . . . , (n, n)}
be the diagonal of P × P. The identity of MP is S(∆).

For any D ⊆ ∆, the element S(D) is an idempotent, and in fact there is a commu-
tative idempotent submonoid E of the monoid MP given by

E = {S(D)
∣∣ D ⊆ ∆},

[St].
The representation algebra of the commutative idempotent monoid E is a product

of |E| − 1 copies of k. The idempotents corresponding to the distinct copies are given
for D 6= ∅, by

Ê(D) = S(D)−
∑

(i,i)∈D

S(D − {(i, i)})

+
∑

{(i,i),(j,j)}∈D

S(D − {(i, i), (j, j)}) . . . (−1)|D|−1
∑

(i,i)∈D

S({(i, i)}),

where the sum is formed by the standard exclusion-inclusion principle [St]. Note that
this basis of primitive idempotents is much more appropriate for working with the
representation algebra of the monoid E than the original monoid basis E. In particular,
this set of idempotents is complete and orthogonal, though not necessarily primitive.

Since E is a submonoid of MP , the representation algebra of E is a subalgebra of
A. Thus E = {Ê(D)

∣∣ D ⊆ ∆, D 6= ∅} is a complete orthogonal set of idempotents
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for the representation algebra A, and we can try to find a basis graph w.r.t. this set of
idempotents Ê.

Let P∗ = P(GP )− {0}. For any B ∈ P∗, we define

L(B) = {(i, i)
∣∣ ∃j, (i, j) ∈ B} ⊆ ∆,

R(B) = {(j, j)
∣∣ ∃i, (i, j) ∈ B} ⊆ ∆.

Definition. For any B ∈ P∗, the element of A adapted to Ê which corresponds to B
is

W (B) = Ê(L(B))S(B)Ê(R(B)).

Lemma 2.1. The set {W (B)
∣∣ B ∈ P∗} is a basis for A over k, with a base change

matrix which is upper triangular with unit diagonal relative to an ordering of P∗ com-
patible with inclusion. Each S(B) = W (B) +

∑
B′⊆B µB′W (B′) for some coefficients

µB′ ∈ k.

Proof. S(L(B)) · S(B) = S(B), since EiiEij = Eij, and similarly

S(B) · S(R(B)) = S(B)

since EijEjj = Eij. In Ê(L(B)), a matrix S(D′) occurs with nonzero coefficient only
if D′ ⊆ L(B). For any D′ ( L(B), S(D′) · S(B) = S(B′), with B′ ( B and for
any D′′ ( R(B), S(B)S(D′′) = S(B′′), with B′′ ( B. Thus in W (B), S(B) appears
with coefficient 1 and all remaining S(B′) which appear satisfy B′ ( B, giving an
invertible upper triangular base change matrix. Inverting the base change matrix gives
the desired representation for S(B). ¤

Our next theoretical result will be to construct a subideal of the radical with no
directed cycle, but first we will work out the simplest nontrivial example in order to
illustrate all the definitions.

Example 1. Let (P,¹) be the poset with two elements P = {1, 2}, 1 ¹ 2. The algebra
TP has dimension 3 over F2, being simply T2(F2), with |TP | = 23 = 8. The graph GP

of the poset is {(1, 1), (1, 2), (2, 2)}, and P(GP ) thus has eight elements, corresponding
to the eight elements of MP = (TP , ·). The basis graph of TP is just · −→ ·, which in
this simple case is the Hasse diagram of the poset.

The representation algebra A is of dimension 7, since we have divided out by the
zero element Z of the monoid MP . The diagonal ∆ is {(1, 1), (2, 2)}. The idempotents
in the submonoid E of MP are

E = {S(∆), S({(1, 1)}), S({(2, 2)}), S(∅)}.
Since

W ({(1, 1)}) = S({(1, 1)}) = E11,

W ({(2, 2)}) = S({(2, 2)}) = E22,

and

W (∆) = S(∆)− S({(1, 1)})− S({(2, 2)})
= I2 − E11 − E22,
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we have
Ê = {W (∆), E11, E22}.

The four remaining elements in the algebra basis are as follows:

B0 = {(1, 2)}, L(B0) = {(1, 1)}, R(B0) = {2, 2},
W (B0) = S(B0) = S({(1, 2)}),

B1 = {(1, 1), (1, 2)}, L(B1) = {(1, 1)}, R(B1) = ∆,

W (B1) = Ê(L(B1))S(B1)Ê(∆)

= S(B1)Ê(∆)

= S(B1)− S({(1, 1)})− S({(1, 2)}),
B2 = {(1, 2), (2, 2)}, L(B2) = ∆, R(B2) = {(2, 2)}

W (B2) = (Ê(∆)S(B2)Ê(R(B2))

= Ê(∆)S(B2)

= S(B2)− S({(1, 2)})− S({(2, 2)}),
B3 = {(1, 1), (1, 2), (2, 2)}, L(B3) = ∆, R(B3) = ∆

W (B3) = Ê(∆)S(B3)Ê(∆)

= S(B3)− S(B1)− S(B2) + S(B0).

Besides the multiplication by idempotents, the only possible non-zero products are:

W (B1) ·W (B2) = [S(B1)− S({(1, 1)})− S({(1, 2)})]
· [S(B2)− S({(1, 2)})− S({(2, 2)}]

= −2S({(1, 2)})
W (B1)W (B3) = −W (B1)

W (B3)W (B2) = −W (B2)

W (B3)W (B3) = Ê(∆).

Since char k 6= 2, S({(1, 2)} = (−1
2
)W (B1)W (B2) lies in Rad2(A). Let W = W (B3).

Since W 2 = Ê(∆), and

Ê(∆)W = WÊ(∆),

we see that Ê(∆) splits into two primitive idempotents

E ′
3 =

1

2
(Ê(∆)−W )

E ′′
3 =

1

2
(Ê(∆) + W ).

We then have

W (B1) · E ′
3 =

1

2
(W (B1)− (−W (B1))) = W (B1)

W (B1) · E ′′
3 =

1

2
(W (B1) + (−W (B1))) = 0,
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and similarly for W (B2). Thus the weighted basis graph, after we substitute E ′
3, E

′′
3 for

Ê(∆),W (B3), is

·E ′′
3

·E ′
3

W (B1) ↗ ↘W (B2)

E11· ³ · E22

Note that the double arrowhead indicates weight 2 (not surjectivity).
For an algebra which is basic, i.e., whose semisimple part is a direct product of copies

of the base field, the quiver is obtained from the weighted basis graph by omitting all
arrows of weight greater than 1. In this case the quiver of A is

·E ′′
3

E11· −→·E ′
3 −→ ·E22

which is “almost” a barycentric subdivision of the quiver E11· −→ E22 of TP .

We now return to the general case. The semisimple part of the representation algebra
has been studied in depth in terms of the J-classes of M. Two elements a, b ∈ M are
in the same J-class if

MaM = MbM.

Two idempotents e, f are in the same J-class if there are elements x and y of M such
that e = xy and f = yx, and in this case we consider them equivalent, e ∼ f. A J-class
is regular if it contains a non-zero idempotent. If we choose representatives ei, i ∈ I,
of the different equivalence classes of idempotents, then the semisimple part S of A is
a direct sum of semisimple algebras derived from group algebras of the groups of units
of the subsemigroup eiMei

k(eiMei)
∗.

In the particular case of the poset monoid MP , the idempotents E = {S(D)
∣∣

D ∈ P(∆)}, form a complete set of representatives of the regular non-zero J-classes.
The invertible elements in S(D)MP S(D) correspond to the subsets B ∈ P∗ for which
L(B) = R(B) = D and B ∩∆ = D. We let

H(D) = {S(B)
∣∣ L(B) = R(B) = D, B ∩∆ = D}.

If π : ∆ → P is the projection, set

Y (D) = GP ∩ (π(D)× π(D)),

then the entry in every off diagonal position in Y (D) can be either 0 or 1, giving us
that H(D) is a 2-group

|H(D)| = 2|Y (D)|−|D|.

In Example 1, |Y (∆)| = 3, |∆| = 2, so |H(∆)| = 2. The group H(∆) = {S(∆), S(B3)}
and the semisimple part of the representation algebra ∆ is

S = kC1 ⊕ kC1 ⊕ kC2,

where Cm denotes a cyclic group of order m.
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Definition. For any subset of L ≤ P, let the spanned subset I(L) be the smallest
interval in P, in the linear ordering, containing L. Let π = π1 = π2 be the projection
of ∆ on P. We say that two subsets D1, D2 of ∆ are equivalent if I(π(D1)) = I(π(D2)).

This equivalence relation generates a corresponding equivalence relation on Ê. There
are

(
n
2

)
+n equivalence classes in Ê. We then define a partial ordering of the equivalence

classes of Ê by setting [Ê(D)] ≤ [Ê(D′))] if for I(π(D)) = [a, . . . b] and I(π(D′)] =
[c, . . . , d], we have a ≤ c and b ≤ d.

Lemma 2.2. If P is the linear poset on n elements, then there is a subset B ⊆ GP

such that L(B) = D and R(B) = D′ iff [Ê(D)] ≤ [Ê(D′)].

Proof. Let I(π(D)) = [a, . . . , b] and I(π(D′)) = [c, . . . , d].
(⇒) Suppose that there is a B ⊆ GP such that L(B) = D and R(B) = D′. If (i, j)

is a pair in B with j = c, then a ≤ i ≤ j = c, so a ≤ c. Similarly, if (i, j) is a pair with

i = b, then b = i ≤ j ≤ d, thus [Ê(D)] ≤ [Ê(D′)].
(⇐) If a ≤ c and b ≤ d, then we can take B to be the set containing (a, j) for every

(j, j) ∈ D′ and (i, d) for every i ∈ D, which is a well-defined subset of GP . ¤

We now prove a lemma which will simplify calculations.

Lemma 2.3. If R(B) ( D, then S(B) · Ê(D) = 0. Similarly, if L(B) ( D, the

Ê(D)S(B) = 0.

Proof. By inverting the upper triangular matrix expressing the Ê(Dj) as linear com-

binations of the E(Di), we get E(Dj) =
∑

Ê(Di) [St]. Let Dj = R(B). Then
S(B) · E(Dj) = S(B). Thus

S(B) · Ê(D) = S(B) · E(Dj)Ê(D) = S(B)

( ∑
Di⊆D

Ê(Di)

)
· Ê(D) = 0

since all Ê(Di)Ê(D) = 0. ¤

For any two subsets of B1, B2 of Gp, we denote by B1 ·B2 the subset of Gp such that
S(B1) ·S(B2) = S(B1 ·B2) in the monoid. Note that by standard properties of matrix
units, we always have L(B1) ·B2 ⊆ L(B1) and R(B1 ·B2) ⊆ R(B2).

Proposition 2.1. The vector space V spanned by the set of all W (B) such that

[Ê(L(B))] � [Ê(R(B))] is a two-sided ideal contained in Rad(A), with no directed
cycles.

Proof. V is an ideal. Since the W (B) form a basis for A, it suffices to show that

W (B′)W (B) ∈ V and W (B)W (B′′) ∈ V for any B′, B′′ ∈ GP . Since Ê is an orthogonal
set of idempotents, we have W (B′)W (B) = 0 unless R(B′) = L(B). However, in that
case, Lemma 2.2, we have

[Ê(L(B′)] ≤ [Ê(R(B′)] � [Ê(R(B)].
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By Lemma 2.3 and the orthogonality of Ê, either L(B′ · B) = L(B′) and R(B′B) =
R(B) or else

W (B′) ·W (B) = Ê(L(B′)) ·W (B′) ·W (B) · Ê(R(B))

= 0.

Thus, in either event, W (B′) · W (B) ∈ V. The proof for W (B) · W (B′′) is the same
with the sides switched.

V is nilpotent. The ideal V is nilpotent because the chain length of a strictly de-

creasing chain of equivalence classes [Ê(D)] is 2(n − 1). This poset (Ê/ ∼,≤) has a

minimal element Ê({(1, 1)}) and a maximal element Ê({n, n, }). Any maximal chain
connecting them has end of the interval I(D) moving step-by-step from 1 to n and the
beginning of the interval moving step-by-step from 1 to n, in such a way that the end
is always greater than or equal to the beginning, altogether (n− 1) + (n− 1) steps.

Thus, viewed as an ideal, V to the power 2n− 1 must be zero, so it is nilpotent. As
a nilpotent ideal, V is contained in the radical. ¤

If we divide out by V, the quotient A/V is a direct sum of algebras of the following
type:

Definition. For any natural number m, the gap algebra Rm of m is the representation
algebra of the monoid of the upper triangular matrices Tm(F2), for which the first and
last element of the diagonal are non-zero.

The algebra Rm has dimension
(

m
2

)− 2 over k, and its invertible subgroup R∗
m has

order 2

(
m−1

2

)
. The monoid (Rm, ·) has a central element of order 2, given by

C ′ =




1 0 . . . 0 1
1 0

. . .
1 0

1




Thus, if we construct a representation algebra Am for the monoid over a sufficiently
large field k of characteristic different than 2, we get that Am is a direct product of
two algebras with identities

e′ =
1

2
(Im + C), e′′ =

1

2
(Im − C).

We have already calculated these gap algebras in the first cases. For m = 2, the two
algebras are copies of k.

Every representation algebra for a poset on n elements is a subalgebra of the repre-
sentation algebra of the linear poset of n elements, for which TP = Tn(F2). Furthermore,
the set of idempotents for both monoids is the same.

Example 2. We consider the linear poset with three elements. The representation
algebra has dimension 63. We first give a matrix whose entries are dimension of
Ê(Di)A(Ê(Dj), where the seven elements Di are ordered as follows: D1 = {(1, 1)},
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D2 = {(1, 1), (2, 2)}, D3 = {(2, 2)}, D4 = {(1, 1), (2, 2), (3, 3)}, D5 = {(1, 1), (3, 3)},
D6 = {(2, 2), (3, 3)}, D7 = {(3, 3)}.




1 1 1 1 1 1 1
0 2 1 8 2 7 1
0 0 1 0 0 1 1
0 0 0 10 2 8 1
0 0 0 2 2 2 1
0 0 0 0 0 2 1
0 0 0 0 0 0 1




The matrix was obtained by considering possible pairs (L(B), R(B)) and counting
the elements B ∈ P∗ with the corresponding pair. For example, the pair (D5, D4)

corresponds to the two matrices
[

1 1 ∗
0 0 0
0 0 1

]
.

Although we were able to choose an ordering in which the above matrix is almost
triangular, there is an oriented cycle between D4 and D5, not to mention all the loops
in the basis graph w.r.t. {Ê(Di)} corresponding to non idempotent elements of the
H(Di).

By Proposition 2.1, the representation algebra of the representation group of the
linear poset of n elements has no directed cycles if and only if this is true for every gap
algebra (Rm, ·) for m ≤ n.

In this case, H(D1), H(D3) and H(D7) are trivial, H(D2), H(D5) and H(D6) are
isomorphic to C2, as in Example 1, and H(D4) is the dihedral group of order 8. In

addition to the eight elements corresponding to elements of H(D4), Ê(D4)AÊ(D4)
contains two elements corresponding to W (B) for

S(B) =




1 1 ∗
0 0 1
0 0 1


 .

The 16 dimensional algebra involving Ê(D4) and Ê(D5) is actually the sum of two 8
dimensional algebras cut out by the central idempotents e′, e′′ determined by the central
element of order 2 in H(D4), corresponding to W (C), where C = {(1, 1), (1, 3), (3, 3)}.
If

e′ =
1

2
(Ê(D4) + W (C)),

Then the corresponding 8 dimensional algebra has a basis graph

·
· ³ ·
↘ · ↗

·
Let B1 = {(1, 1), (2, 3), (3, 3)} and let B2 = {(1, 1), (1, 2), (3, 3)}. The lowest idempo-

tent is e′Ê(D5). The diagonal arrows are e′W (B1) and e′W (B2).
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If e′′ = 1
2
(Ê(D4) − W (C)), then we get two copies of M2(k). One comes from the

group algebra of the dihedral group. The second can be represented by a basis graph

·

©©·

HH

The bottom idempotent is e′′Ê(D5), and the idempotent at the top is −e′′ ·W (B)
for

B = {(1, 1), (1, 2), (2, 3), (3, 3)}.
The two matrix units are e′′W (B1) and e′′W (B2). In fact,

W (B) =




1 1 0
0 0 1
0 0 1


−




1 1 0
0 0 0
0 0 1


−




1 0 0
0 0 1
0 0 1


 +




1 0 0
0 0 0
0 0 1




and by multiplying out we get

W (B)2 = −e′′W (B).

Thus e′W (B) is in the radical and −e′′W (B) is an idempotent. In the diagram above,
e′W (B) is the horizontal arrow which is the composition of the two diagonal arrows.
The representation algebra of T3(F2) has no oriented cycles in the quiver, since the
matrix algebras appear in the quiver as isolated points.

In [DI], the representations of the triangular group are described as a “well-known
nightmare.” They are known explicitly only up to n = 7, and there does not seem to
be a generic formula for the representations. Thus there is little hope for finding the
quiver explicitly for general n.

For specific families of posets, it is possible to get a formula. We consider the
particular case of the two-point suspension of the discrete poset on n− 2 points.

Example 3. Let (P,¹) be the following poset

·
�� �
· · . . . ·
�� �

·
The groups H(D) are of three kinds: (1, 1), (n, n) /∈ D, then we get H(D)

∼→ C1. If

one of (1, 1) or (n, n) is in D, then H(D)
∼→ (C2)

|D|−1, being isomorphic the set of
|D| × |D| matrices over F2, with “1” on the diagonal and nonzero entries in the first
row or the last column. Finally, for D = ∆, we get a bouquet of |D| − 2 copies of the
dihedral group D4, identified at their centers. The representation are easily described:
All characters which take a positive value on the central element C are linear, giving
all the representations of (C2)

2(n−2).
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The J-class of the idempotent S(D), D = {(1, 1), (n, n)}, generates, using the Rees
theorem [R], a second copy of M4n−2(F2), in that part of the gap algebra Rn, corre-
sponding to the idempotent 1

2
(I −C). In the portion of the gap algebra corresponding

to 1
2
(I + C), there are a number of pairs of idempotents connected by a single arrow,

corresponding to nonzero vectors v = (v2, . . . , vn−1) ∈ Fn−2
2 .

The linear characters correspond to a dual basis of (C2)
2(n−2). The value of a char-

acter (x′, y′) ∈ (C2)
n−2 × (C2)

n−2 on a matrix with x = (a12, . . . , a1n−1) and y =
(a2n, . . . , an−1,n) is (−1)x·x′+y·y′ . The pairs of characters are those for which x′ = v and
y = 0 or x = 0 and y′ = v. The arrow corresponds to a matrix with x = y = v.
Example 3 above is the case n = 3.

3. Simplicial cohomology is a special case of Hochschild cohomology

We now turn to deformation theory. There are actually two algebras under consid-
eration, the poset algebra TP and the representation algebra A = kMp/kZ. We defined
TP over the field F̄2, but for purposes of deformation theory we may consider the poset
algebra over a more general commutative, unital coefficient ring O, which we will de-
note by AO(P ). The proof that AO(P ) is a unitary algebra embeddible in the upper
triangular matrices is exactly as for TP .

Let R be an integral domain with a maximal ideal m such that R/M is a field k .
A deformation of an F -algebra A over (R,M) is a flat R-algebra B together with an

isomorphism A
∼→ B⊗RR/M. If R is a k-algebra of finite type, this is called a k-algebra

deformation. If R
∼→ k[t]/(t)2, it is called a first order deformation. If R

∼→ k[[t]] and
M = (t), it is a power series deformation.

We will not go into the general theory of algebra deformations here. This material
can be found in many places [G], [Sc1], [Sc2]. The point which interests us is that the
first order deformations are parametrized by the second Hochschild cohomology group,
and we will now show in detail how this can be constructed for the poset algebras
AO(P ), via simplicial cohomology.

Simplicial and Hochschild cohomology, both of which we will describe briefly below,
initially look as though they belong to entirely different realms. Simplical cohomology
is defined for “nice” spaces. Here we will consider only finite polyhedra; for these the
groups are finitely generated and vanish past the dimension of the space. Hochschild
cohomology is defined for algebras. These may have an arbitrary commutative unital
ring as coefficient ring, but even when the algebra is finite dimensional over a field,
there may be an infinite sequence of non-trivial cohomology groups. What we will see,
however, is that from any finite polyhedron Σ and coefficient ring k we can build an
associative algebra A over k with the property that there is a canonical isomorphism
from the Hochschild cohomology H∗(A,A) of A with coefficients in itself to the sim-
plicial cohomology H∗(Σ, k) of Σ with coefficients in k. In fact, when we use the right
cochain groups, those of the algebra become identical with those of the polyhedron.
Much of this paper is drawn from [GS1]. The restriction here to finite polyhedra will,
we hope, make the basic ideas clearer.

Simplicial cohomology has sometimes been described as an “algebraic snapshot” of
a space. If two spaces S and T are homeomorphic, i.e., if there is a bijection f : S → T
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which is both continuous and has a continuous inverse, then the cohomology groups of S
and T (if they are defined) will be identical. On the other hand, there is much that the
cohomology groups miss; spaces with identical groups may be very different. Likewise,
isomorphic algebras have identical cohomology groups, while the converse fails. The
cohomology groups actually have richer structures, in particular, they are rings, but
even this additional information may fail to distinguish between non-homeomorphic
spaces or non-isomorphic algebras. Nevertheless they are very powerful tools for the
understanding of spaces and algebras, respectively.

3.1. Simplicial cohomology. A geometric n-dimensional simplex is something which
looks like the span of n + 1 independent points in Euclidean n space. (To fix the ideas
we may take the points to be the end points of the standard unit vectors in Rn+1.) In
particular, a 0-simplex is a point, a 1-simplex is a (closed) line segment, a 2-simplex is a
(filled-in)triangle, etc.. A topological n-simplex is a space homeomorphic to a geometric
one. An n simplex has n+1 faces of dimension n and these in turn have faces of lower
dimension until one gets down to the vertices. In the following, “faces” will mean all
of these. A polyhedron is a topological space which is a finite union of topological
simplices where the intersection of any two of these simplices is either empty or a (full)
common face of both. We impose the finiteness condition here for simplicity since
otherwise we would have to make some restrictions on the topology. A space which
is homeomorphic to a polyhedron is called triangulated once the homeomorphism is
fixed; intuitively it has been divided into a finite number of geometric simplices. For
example, a circle can be triangulated by marking three points, which divides it into the
union of three 1-simplices. (Dividing it into only two won’t do since the intersection of
the two simplices then consists of two points and this is not a single common face.) A
polyhedron can be triangulated in many ways. Sometimes a triangulated polyhedron is
called a simplicial complex but that term is better reserved for a more abstract algebraic
situation. From here on we will simply use polyhedron to mean a triangulated one. In
addition we will assume that the vertices have been ordered so that for each simplex,
we can say which is the first, which is the second, and so on. The actual choice of
ordering will not be important. However, since an n-simplex has n+1 vertices, we will
refer to them in order as vertices 0, 1, . . . , n.

Now suppose that we have a polyhedron Σ. Choose a commutative unital coefficient
ring k. An n-chain of Σ with coefficients in k is just a formal linear combination of n
simplices of Σ with coefficients in k, i.e., an expression of the form c1σ1+c2σ2+· · ·+crσr

where the ci are in k and the σi are n simplices. (Extensions of what we do here allow
spaces which are “triangulated” into infinitely many simplices but chains are still just
finite linear combinations of them.) The set of these linear combinations of n-simplices
is a free module over k of rank equal to the number of n-simplices, but it is traditional
to call it the “group” of n-chains of Σ with coefficients in k, denoted Cn(Σ, k). Since
the vertices of each of our n-simplices σ are ordered, we also have an order on its
n− 1 dimensional faces: the ith face, which we denote by ∂iσ, is the one obtained by
omitting the ith vertex. Here i runs from 0 to n. The boundary of σ, denoted ∂σ is
then defined by setting ∂σ = ∂0σ − ∂1σ + ∂2σ − · · · + (−1)n∂nσ. This is an element
of the group Cn−1(Σ, k). (The boundary of a 0-simplex, i.e., of a vertex, is zero.) The
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definition of the boundary can be extended linearly to all of Cn(Σ, k) by setting the
boundary of a linear combination of simplices equal to the same linear combination
of their boundaries, so we have a boundary map ∂ : Cn(Σ, k) → Cn−1(Σ, k). Here ∂
should also have a subscript n, but for simplicity we may omit it. For simplicity we
may also denote Cn(Σ, k) by Cn. We then have a sequence of maps

· · · ∂−→ Cn+1
∂−→ Cn

∂−→ Cn−1
∂−→ . . .

∂−→ C1
∂−→ C0 → 0.

At the left Cn is zero when n is greater than the dimension of the polyhedron, which
by definition is the largest dimension of any simplex which it contains. This is a
complex, i.e., the composite ∂n−1∂n of any two successive maps is zero. Denote the
kernel, ker ∂n by Zn and call these the n-cycles, and the image, im ∂n+1 = ∂n+1Cn+1

by Bn and call these the n-boundaries. Then Bn ⊂ Zn and we can form the quotient
Zn/Bn = Hn(Σ, k), called the nth homology group of Σ with coefficients in k (although
it is actually a k-module). It is a remarkable fact (not easy to prove) that these
homology groups depend only on the underlying topology of Σ and not on how it
is triangulated (or the vertices numbered). This basic theorem depends on the fact
that there are other ways to define homology groups for Σ. In particular, there are
the singular homology groups which by their nature depend only on the topology,
but are almost impossible to compute directly from the definition, while the above
“simplicial” groups are relatively easy to compute. For a polyhedron, one can show
that the various definitions of homology lead to the same result. A similar result will
hold for the homology of algebras.

While the homology of a polyhedron Σ is a basic topological invariant of the space
(i.e., it is the same for homeomorphic spaces), it is the cohomology, likewise an in-
variant, which mainly concerns us here. We define an n-cochain of Σ to be a map f
from the set of all n-simplices of Σ into k. These can be added by adding their values,
i.e., (f + g)(σ) = f(σ) + g(σ) and can be multiplied by elements of O, so they form a
k-module, denoted Cn(Σ, k) but again called abusively the “group” of n-cochains. An
n-cochain f thus just assigns to every n-simplex σ an element f(σ) in O. This may
not seem very different from an n-chain (which attaches a coefficient in O to every
n-simplex of Σ) but that is an accident of the fact that we have limited ourselves to
finite polyhedra. In the general case (think, e.g., of the entire plane triangulated into
infinitely many triangles), an n-chain is still a formal finite linear combination of sim-
plices, so the coefficient assigned to “almost all”, i.e., all but a finite number of the
simplices is zero. However, an n-cochain f may have a non-zero value on infinitely
many simplices.

3.2. Hochschild cohomology. We turn now to algebras. While for spaces homology
was defined first and cohomology followed, with algebras it was the reverse. Let A be
an algebra over some commutative, unital coefficient ring O. For simplicity we will
generally assume that A has a unit element. Consider bimodules M over A. The most
important A bimodule is A itself. The brilliant insight of Gerhard Hochschild (while
in the U.S. army during World War II) was to observe that with these ingredients
one could build a complex in the following way. Let Cn(A,M) be the set of all O-
multilinear maps F : A×A× · · · ×A (n times) → M , i.e., of maps which are O-linear
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as a function of each individual argument. (Of course, this is the same as the set of all
k-linear maps A⊗A⊗ · · · ⊗A (n times) → M .) The case n = 0 is allowed; C0(A,M)
is understood to be just M itself. (A function of no variables with values in M is just
an element of M .) The Hochschild coboundary δ : Cn → Cn+1 is then defined by

(δF )(a1, a2, . . . , an+1) = a1F (a2, . . . , an+1)

+
n∑

i=1

(−1)iF (a1, . . . , ai−1, aiai+1, ai+2, . . . an+1)

+ (−1)n+1F (a1, . . . , an)an+1.

Notice in this formula that the first and last terms are well-defined because the
bimodule M , in which F has its values, allows multiplication by elements of A from
both left and right, while each intermediate term has only n arguments because in each
two successive arguments are multiplied. Here are some examples in low dimensions.
First, δ : C0 → C1 is defined by setting (δm)(a) = am −ma for a ∈ A,m ∈ M . This
makes sense because an element of C0 is just an element of M and its coboundary is
now a mapping of A into M . If F ∈ Cn we may write F n to indicate its dimension.
Then

(δF 1)(a1, a2) = a1F
1(a2)− F 1(a1a2) + F 1(a1)a2

(δF 2)(a1, a2, a3) = a1F
2(a2, a3)− F 2(a1a2, a3) + F 2(a1, a2a3)− F 2(a1, a2)a3.

Here it is also an easy exercise to show that δδ = 0, so we have the Hochschild cochain
complex

C0 δ−→ C1 δ−→ · · · δ−→ Cn δ−→ Cn+1 δ−→ · · · .

Just as before we define the n-cocycles Zn(A,M) by Zn = ker δn, the n-coboundaries
by Bn = δn−1Cn−1 and the nth Hochschild cohomology group of the algebra A with
coefficients in the bimodule M by Hn(A,M) = Zn/Bn. (For any complex one simi-
larly defines “homology” groups or “cohomology” groups according as the indices are
descending or ascending.) The Hochschild “groups” are again actually O-modules. We
can now state more precisely the theorem which is the title of this section.

Theorem 3.1. Let Σ be a polyhedron and k be an arbitrary commutative unital coef-
ficient ring. Then there is a O-algebra A which is free and of finite rank over O such
that Hn(A,A) is naturally isomorphic to Hn(Σ,O) for all n.

3.3. Separable algebras. Unlike the case for finite polyhedra where the homology
and cohomology groups must vanish once one gets to a dimension greater than that of
the polyhedron itself, the Hochschild groups need never vanish even when A and M are
finite dimensional over a field. But like the topological case, they do vanish in positive
dimensions for what are in some sense the simplest objects. In the topological case, the
simplest object was a (solid) simplex. We could also take a disjoint union of a finite
number of simplices of varying dimensions. The homology and cohomology groups
of these vanish in all positive dimensions. For algebras over a ring O the “simplest”
objects are a little more difficult to describe. They are the “separable” algebras S,
the most basic example of which is the algebra of all n × n matrices Mn(O) with
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coefficients in k. For n = 1 this is just O itself. Any finite direct sum of separable
O-algebras is again separable. In particular, we can take S = O ⊕ O ⊕ · · · ⊕ O (any
finite number of times). For all separable algebras S we have Hn(S, M) = 0 for all
n > 0 and all S-bimodules M . The last example is the only case we shall need, but here
is the full definition of separability for a O-algebra S: Suppose we have a morphism
f : M → N of left S-modules (these are, of course, therefore also O-modules) and
suppose that f “splits” as a morphism of O-modules, i.e., that there is a O-module
morphism g : N → M such that fgf = f . (This will always be the case if O is
a field.) Then it also splits as a morphism of S-modules, i.e., we can actually find
such a g which is an S-module morphism. From the definition it is obvious that O
itself has this property and it is not too difficult to show that Mn(O) also has it.
(There are several other equivalent definitions of separability for an algebra, the most
useful probably being that it has a “separability idempotent”. For a discussion of
these cf., e.g., [DI].) There are, as with topological spaces, different ways to define the
cohomology of an algebra, all giving the same result, and for some of these the fact
that the cohomology of a separable algebra is trivial is easy to see. When O is a field
and the algebra A just a finite field extension then A is separable over O in the present
sense if and only if it is separable as a field extension. The extension of the concept of
separability to algebras over arbitrary coefficient rings is due to M. Auslander and O.
Goldman [AG], building on groundwork laid by G. Azumaya [A]).

Hochschild cohomology in general is not easy to compute, but there are techniques
which sometimes simplify it. First, call an n-cochain F in Cn(A,M) normalized if it
vanishes whenever any of its arguments is the unit element of O. Denote the set of
these by C

n
(A,M). It is easy to check that the Hochschild coboundary δCn(A,M) →

Cn+1(A,M) in fact carries C
n
(A,M) into C

n+1
(A,M). The normalized cochains thus

form a subcomplex of the full Hochschild complex. Now it is also easy to check that
the inclusion of one complex into another induces a mapping from the homology or
cohomology groups of the first into those of the second, but even though the map of
complexes is one-to-one, that of the homology groups need not be. For example, the
inclusion of the boundary, ∂σ, of an n-simplex σ into the solid simplex induces an in-
clusion of the complex C•(∂σ,O) of chain groups of the boundary into that of the solid
simplex C•(σ,O) but in the former there is a non-trivial homology class in dimension
n − 1 which obviously becomes a boundary in the latter. (Here we have adopted the
usual notational convention of denoting an entire complex simply by C•.) Nevertheless

it is a theorem (not difficult) that the inclusion of C
•
(A,M) into C•(A,M) induces

an isomorphism of cohomology groups. We can therefore compute Hochschild coho-
mology using only normalized cochains. This makes it easy, for example, to compute
the cohomology of the group ring kG when G is the group of two elements. (The
most important module in this case is O itself, on which G acts trivially. As an ex-
ercise, compute the result when O is a field, first of characteristic not 2 and then of
characteristic 2.)

Here is a deeper result which we will need. Suppose that S is a O-subalgebra of A,
arbitrary except that we will always assume that the unit element of A is contained
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in S. An S-relative cochain F ∈ Cn(A,M) is one such that for all s ∈ S we have

F (. . . , ais, ai+1, . . . ) = F (. . . , ai, sai+1, . . . ) (1)

F (sa1, . . . , an) = sF (a1, . . . , an), (2a)

F (a1, . . . , ans) = F (a1, . . . , an)s (2b)

If F is normalized then it must vanish whenever any argument is in S. (Write s as
s · 1 or 1 · s and use the above rules.) It is easy to check that the relative groups,
denoted Cn(A, S; M), also form a subcomplex of the Hochschild complex. The result
we need is that when S is a separable algebra over k the inclusion of the complex
of S-relative cochains into the full Hochschild complex induces an isomorphism of
cohomology. Finally, the normalized relative cochain groups, denoted C

n
(A, S; M)

form a subcomplex of the relative groups and their inclusion into the full Hochschild
cochain complex again induces an isomorphism of cohomology. (The proofs of these
statements are relatively simple if one starts with the description of cohomology using
projective resolutions.) It is this last subcomplex of normalized S-relative cochains
which will be essential in the next section.

3.4. Posets. We now have the basic homological machinery we need and can start
building the bridge between simplicial and algebraic cohomology. Suppose that P is a
finite partially ordered set or poset. From P we can build both a polyhedron Σ = Σ(P )
and the O-algebra AO = A(P ), which was described at the beginning of the section.
The vertices of the polyhedron are just the elements i, j, . . . of P . In this context, a
(simplicial) n-simplex will be a linearly ordered sequence σ = (i0 ≺ i1 ≺ · · · ≺ in).
It should be intuitively clear how to glue together corresponding geometric simplices
to form a polyhedron but it can also be done as follows. Map the elements of I to
linearly independent points inside a Euclidean space of sufficiently high dimension.
The convex hull of any set of points whose preimages were the vertices of a simplicial
simplex is certainly a geometric simplex. The union of all of these is called the geometric
realization of I; it is a polyhedron which automatically comes with a triangulation. We
do not actually need it for calculation since abstractly the boundary of σ = (i0, . . . , in)
is given by ∂σ =

∑n
r=0(i0, . . . , ı̂r, . . . , in), where ı̂r indicates that ir is omitted.

Here are some simple examples of both constructions. If P is actually linearly ordered
then Σ is just the (solid) N simplex and A is the algebra of all upper triangular matrices.
We describe next how to construct a poset I whose geometric realization is a sphere
of any dimension. For the N -sphere the elements of the poset will be the integers
{1, 2, . . . , 2N + 1, 2N + 2}, with a partial ordering consistent with the natural order.
A 0-sphere is just a pair of unconnected points which we may take to be the points
+1 and −1 on the real line, so for this we can simply take P = {1, 2} with no order
relation between 1 and 2. Now add 3 and 4 with no order relation between them
but with {1, 2 ≺ 3, 4} (meaning that 1 and 2 both precede 3 and both precede 4.
Now Σ has four 1-simplices, namely (1, 3), (1, 4), (2, 3), (2, 4) but no simplices of any
higher dimension. These are joined in what is topologically a circle; it is as if we had
taken two points in the plane, one at +1 on the y-axis and one at −1 and joined
them by line segments to the two unconnected points we already had on the x-axis.



16 MURRAY GERSTENHABER AND MARY SCHAPS

Now in 3-space take the points at +1 and at −1 on the z-axis and join them to all
points on the (topological) circle we have already constructed. The result will be the
surface of an octahedron; topologically this is a triangulated 2-sphere which we may
therefore view as the geometric realization of the poset {1, 2 ≺ 3, 4 ≺ 5, 6}. Technically,
we have taken the “two-point suspension” of the circle. Suspending again, the poset
{1, 2 ≺ 3, 4 ≺ 5, 6 ≺ 7, 8} will give a three sphere, and so on. Here are the corresponding
algebras of upper triangular matrices for N = 0, 1, 2, where a “∗” indicates that the
entry may be any element of k:

(∗ 0
0 ∗

)
,




∗ 0 ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 0 ∗


 ,




∗ 0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ 0
0 0 0 0 0 ∗




.

If P is any (finite) poset then the algebra AO(P ) (which, by our convention, always
consists of upper triangular matrices) contains the algebra S of all diagonal matrices.
As noted before, this subalgebra is separable over the coefficient ring k since it is a
direct sum of N copies of O, where N is the cardinality of P . We then have the
following basic result.

Theorem 3.2. Let P be a finite poset, O be a commutative unital coefficient ring,
AO(P ) be the poset algebra with coefficients in O, S be the separable subalgebra of
diagonal matrices, and Σ(P ) be the simplicial complex built from P . Then there is a

natural cochain isomorphism of complexes C
•
(A, S; A) → C•(Σ,O). That is, for every

n ≥ 0 there is a natural isomorphism fn : C
n
(A, S; A) → Cn(Σ,O) such that δfn =

fnδ where on the left δ is the simplicial coboundary and on the right the Hochschild
coboundary.

Proof. A cochain F ∈ C
n
(A, S; A) is completely determined by its values when the

arguments are amongst the generators Eij, i ¹ j, so we must examine the possible
values of F (Ei1j1 , Ei2j2 , . . . , Einjn). Now Eirjr = EirjrEjrjr , so

F (. . . , Eirjr , Eir+1jr+1 , . . . ) = F (. . . , EirjrEjrjr , Eir+1jr+1 , . . . )

= F (. . . , Eirjr , EjrjrEir+1jr+1 , . . . )

because every Ejj is in the separable subalgebra S. But EjrjrEir+1jr+1 = 0 un-
less jr = ir+1. Therefore, changing the numbering slightly, the only non-zero val-
ues of F are of the form F (Ei0,i1 , Ei1,i2 , . . . , Ein−1,in). Moreover, writing Ei0,i1 =
Ei0,i0Ei0,i1 , Ein−1,in = Ein−1,inEin,in , and using properties (2a) and (2b) of S-relative
cochains, we see that F (Ei0,i1 , Ei1,i2 , . . . , Ein−1,in) lies in Ei0,i0AEin,in . But this, as a
O-module, is just isomorphic to O itself. So F simply assigns an element of O to every
linearly ordered “chain” i0 ≺ i1 ≺ · · · ≺ in of elements of P . Moreover, the value will
be zero if any ir = ir+1 for then the argument Eir,ir+1 will be in the separable subalge-
bra S. So F assigns an element of O to every non-degenerate simplex (i0 ≺ i1 · · · ≺ in).
That is, it is just a simplicial n-cochain. Thus C

n
(A, S; A) is naturally identified with



FINITE POSETS AND THEIR REPRESENTATION ALGEBRAS 17

Cn(Σ, k). It is now an easy exercise to show that with this identification the Hochschild
coboundary becomes the simplicial coboundary. ¤

Theorem 3.3. Let P be a finite poset and k be a any commutative unital coefficient
ring. Set A = AO(P ), Σ = Σ(P ). Then for all n there is a isomorphism Hn(A,A) ∼=
Hn(Σ,O).

3.5. Barycentric subdivision. If a polyhedron Σ happens to be (the geometric re-
alization of one) of the form Σ(P ) then the preceding is enough to prove Theorem 3.2,
but that is not always the case. However, every polyhedron Σ gives rise in a natural
way to a partially ordered set whose objects are just all the faces (of all dimensions)
of Σ. The partial order is given by the face relation. That is, if σ, τ are simplices of
Σ then σ ≺ τ if σ is a face (of any dimension) of τ . We will denote this poset by
P (Σ). The geometric realization of this poset is the “barycentric subdivision” of Σ,
denoted Σ′. It is more commonly pictured in the following way. If σ is a standard
n-simplex then the vertices of its barycentric subdivision σ′ are the barycenters, i.e.,
the centers of gravity, of σ and of all of its faces. Denoting the vertices of σ just by
{0, 1, 2, . . . , n}, the r-simplices of σ′ are in 1-1 correspondence with the linearly ordered
subsets {i0 < i1 < · · · < ir}. We may also view this as a chain of faces of Σ, namely
{i0} ⊂ {i0, i1} ⊂ {i0, i1, i2} · · · ⊂ {i0, i1, . . . , ir}, which is just an r-simplex of Σ(P (Σ)).
Geometrically, every r-simplex of Σ has been broken into (r + 1)! smaller simplices,
but this does not change the topology of the geometric realization. In effect, we had
a polyhedron which now has been triangulated by smaller simplices. Since the topol-
ogy has not changed, neither has the cohomology. (There is, in fact, a simple purely
algebraic way to show this using the concept of a chain homotopy between complexes
which one can find in almost any standard text on algebraic topology; cf., e.g., [GH].)
Since we now have a topological space homeomorphic to our original polyhedron and
which is the geometric realization of Σ(P ) for some poset P , the proof of the main
theorem is at an end.

3.6. A peek at the Cohomology Comparison Theorem. Theorem 3.2 is like the
tip of an iceberg in that it is a very special case of a much deeper result (which, curi-
ously, was discovered first). We have presented simplicial cohomology and Hochschild
cohomology as though they came from entirely separate areas of mathematics. Origi-
nally they did but there is a generalization which combines the two. We will have to
use some sophisticated concepts, but there are simple special cases. If we have a con-
travariant functor f from a small category C, i.e., one whose objects form a set, to the
category of unital associative algebras, then we can define cohomology groups which
share features of both. (Such a contravariant functor is sometimes called a presheaf of
algebras or a diagram of algebras.) When C is the trivial category, i.e., it consists of
just a single object with the identity morphism, then all we have is a single algebra
and the cohomology groups are just the Hochschild groups. At the other extreme,
suppose that we have fixed a commutative, unital coefficient ring O, that C is an arbi-
trary small category, and that the functor f is trivial in the sense that to every object
of C it assigns this same O and to every morphism in C it assigns the identity map
from O to itself. Then the associated cohomology is just the simplicial cohomology
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of the geometric realization of C, with coefficients in O. Presheaves of algebras occur
very commonly. In fact, a unital morphism from one algebra to another is already
an example, so to any such morphism we can assign, in a natural way, cohomology
groups. The Cohomology Comparison Theorem says that for every such functor f one
can construct in a natural way a single ring, called the diagram ring, whose Hochschild
cohomology is that of the hybrid simplicial-Hochschild cohomology of the functor f .
For some purposes this greatly simplifies the study of the hybrid cohomology since it
shows, in particular, that the hybrid cohomology has the rich structure of the coho-
mology of a single ring. Every poset may be viewed as a category in which whenever
i ≺ j there is a unique morphism from i to j; Theorem 3.2 is just the special case of the
Cohomology Comparison Theorem when the poset is finite and the functor to algebras
is the trivial one just described. Another important case is that where we have a group
of automorphisms of an algebra. A group can be viewed as a category with but a single
object and in which every morphism from that object to itself is an isomorphism. The
hybrid cohomology is then equivariant cohomology and the Cohomology Comparison
Theorem asserts that it, too, is just the Hochschild cohomology of a single ring. For
an exposition of the Cohomology Comparison Theorem (in the context of algebraic
deformation theory), see [GS2].

3.7. Functoriality. Those already familiar with algebraic topology and cohomology
may have noticed one somewhat unsettling aspect of Theorem 3.2. A simplicial map
f : Σ1 → Σ2 between two polyhedra (i.e., which on each individual simplex is an affine
transformation) induces a homomorphism (in the reverse direction) of cohomology
groups f ∗ : H∗(Σ2) → H∗(Σ1), but the cohomology H∗(A,A) of an algebra with
coefficients in itself has no such functoriality. The problem here is that we should
really have been taking as coefficient module not A = AO(P ) itself, but its dual, A∗ =
homk(A, k). This would give the correct functoriality, since H∗(A,M) is contravariant
as a functor of A and covariant as a a functor of M . Moreover, the dual of an algebra
of the form AO(P ) is again an algebra; it consists of the transposes of all the matrices
in AO(P ). We didn’t do this in order to preserve the simplicity of Theorem 3.2, but it
is a good exercise to verify that in replacing AO(P ) here by its dual nothing untoward
happens.

4. Deformation of poset algebras over finite fields

We consider the deformations of poset algebras over a finite field F , where we now
let Tp(F ) be the linear span of the matrix units 〈Eij

∣∣ i < j〉 over the field F, and
let Mp(F ) be the corresponding monoid. If q is the order of the field, and m is the

dimension of Tp(F ), with n ≤ m ≤ n(n+1)
2

, then we naturally have qm elements in
Tp(F ), all of which can be represented by upper triangular matrices. The same set
of diagonal idempotents E gives representatives of the regular J-classes, but now the
local subgroups for an idempotent with k nonzero entries have a considerably more
complicated structure, being a semidirect product of a “torus” isomorphic to Ck

q−1

with a normal “unipotent” group of order qr, with 0 ≤ r ≤ k(k−1)
2

. If we consider the
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representation algebra of Tp(F ) over a field k of characteristic prime to q and q−1, then
the irreducible representations of these local groups would correspond to the simples.

For consideration of deformation theory, we look at deformations of the algebra
Tp(F ), not its representation algebra. For Tp(F ), we have the Hochschild cohomology
as defined in the previous chapter, taking O to be the field F.

As mentioned above, the deformations of the algebra depend on the second coho-
mology group in the Hochschild cohomology. Therefore, in order to have any hope
of a deformation, we would have to consider posets with a non-zero 2-cocycle in the
simplicial complex. This first arises as a two-point suspension of the circle, for which
the minimal poset is

· ·
↓ ↙↘ ↓
· ·

Thus the minimal poset for which we could hope to have a nontrivial deformation is

·
↙ ↘

· ·
↓ ↙↘ ↓
· ·
↘ ↙

·
The corresponding poset algebra has six elements. There are four independent paths
from top to bottom, and the deformation parameter is a form of cross ratio. (Un-
fortunately, if we take the poset algebra over F2, there is no nontrivial deformation
because there is only one possible value of the parameter.) We can get a configuration
of spheres connected by lines, by joining configurations with three point lines as in

· ·
↙ ↘ ↙ ↘

· · · · ·
↓ ↙↘ ↓ ↙ ↘ ↓ ↙↘ ↓
· · · ·
↘ ↙ ↘ ↙

· ·
Again, however, the sparseness of the ground field F2 would preclude nontrivial defor-
mation. Over larger ground fields, one does get nontrivial deformations, which should
lead to nontrivial deformations of the representation algebra, but in that case the rep-
resentation algebra will be so much more complicated that it will be difficult to make
the same tight analysis of its radical
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5. Degenerations of representation algebras

Another point of view is to consider not the deformations of the poset algebras or
their representation algebras, but rather the degenerations.

We will replace the field k of characteristic not equal to 2 by a complete discrete
valuation ring O with quotient field of characteristic zero and residue field of charac-
teristic 2. We consider the representation algebra AO of TP . Over the quotient field
K, we have the algebra determined as in §2. However, over the closed point, the basis
graph degenerates to an algebra A0. The primitive idempotents in A0 are precisely the
idempotents Ê(D) and the algebra is basic. The unweighted basis graph is obtained
from the characteristic zero basis graph by coalescing all the idempotents from each
J-class and adding extra loops to make up the lost dimensions. Because of all the
loops, the quiver surely has oriented cycles. There are not only loops but also pairs of
what were once matrix units and have become radical arrows in A0.

Which of these arrows are in the quiver? The number of quiver arrows in k(H(D)
for k of characteristic 2 is the number of generators of the 2-group.

The following is the diagram of the quiver in Example 3 of e0A0e0 with Ê(D4) +

Ê(D5) = e0.

·$$ dd

©©·

HH

EE

Another difference from the case of characteristic not equal to 2 is that some of the
compositions may be zero. Thus, for example, in Example 1, we have W (B1)·W (B2) =
−2W (B3) but in a field of characteristic 2, this composition is zero, so that W (B3) is
no longer in the radical squared but only in the radical.
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